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A characterization for the entire solutions of a nonlinear inequality, which has a natural
interpretation in terms of certain nonflat Robertson-Walker spacetimes, is given. As an application,
new Calabi-Bernstein type problems are solved.

1. Introduction

Let f : I → R be a positive smooth function on an open interval I = (a, b), −∞ ≤ a <
b ≤ ∞, of the real line R, and let Ω be an open domain of R

2. For each u ∈ C∞(Ω) such that
|Du| < f(u), where |Du| stands for the length of the gradientDu of u, we consider the smooth
function

H(u) = −div

⎛
⎜⎝ Du

2f(u)
√
f(u)2 − |Du|2

⎞
⎟⎠ − f ′(u)

2
√
f(u)2 − |Du|2

(
2 +

|Du|2
f(u)2

)
, (1.1)

where div represents the divergence operator. The function H(u) has a natural geometric
interpretation as showed below. In fact, consider the graph {(u(x, y), x, y) : (x, y) ∈ Ω} of u
in the 3-dimensional manifold M = I × R

2, endowed with the Lorentzian metric

〈·, ·〉 = −π∗
I

(
dt2
)
+ f(πI)2π∗

R2

(
g0
)
, (1.2)
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where πI and πR2 denote the projections onto I and R
2, respectively, and g0 is the usual

Riemannian metric of R
2. The Lorentzian manifold (M, 〈·, ·〉) is the warped product, in the

sense of [1, page 204], with base (I,−dt2), fiber (R2, g0), and warping function f . We will
callM a 3-dimensional Robertson-Walker (RW) spacetime with fiber R

2. The induced metric
from (1.2) on the graph of u is written as follows:

gu = −du2 + f(u)2g0, (1.3)

on Ω, and it is positive definite, that is, Riemannian, if and only if u satisfies |Du| < f(u) on
all Ω (the graph is then said to be spacelike). The unitary timelike vector field ∂t := ∂/∂t ∈
X(M) determines a time orientation onM and allows us to take for each spacelike graph (or
spacelike surface) in M, a unitary normal vector field N in the same time orientation of −∂t,
that is, such that 〈N,∂t〉 > 0. On the spacelike graph of u, we have

N = − 1

f(u)
√
f(u)2 − |Du|2

(
f(u)2 ∂t +Du

)
, (1.4)

and the function H(u), given by (1.1), is the mean curvature with respect to N for the
spacelike graph of u (see Section 3 for details). Note that if u = u0 (constant) then (1.1)
reduces toH(u0) = −f ′(u0)/f(u0), which is the mean curvature of the spacelike surface ofM
defined by t = u0 (it is called a spacelike slice). Thus, formula (1.1), with H = constant, and
the constraint |Du| < f(u), constitute the constant mean curvature (CMC) spacelike graph
equation in M. Note that the constraint involving the length of the gradient of u implies that
the partial differential equation is elliptic. In a special case where I = R,Ω = R

2 and f = 1, that
is, when M is the Lorentz-Minkowski spacetime, there are many entire (i.e., defined on all
R

2) solutions of the CMC spacelike graph equation [2]. This suggests that, when dealing with
uniqueness results of entire solutions of the CMC spacelike graph equation in RW spacetimes,
a stronger assumption than |Du| < f(u) is needed (see below).

More generally, in this paper we will study the following nonlinear differential
inequality

H(u)2 ≤ f ′(u)2

f(u)2
, (I.1)

|Du| < λf(u), 0 < λ < 1. (I.2)

The geometric meaning of (I.2) is that the graph of u is spacelike and Sup(|Du|/f(u)) <
1. Moreover, (I.1) means that at the point of the graph of u corresponding to (x0, y0), the
absolute value of the mean curvature, is at most the absolute value of the mean curvature of
the graph of the constant function u = u0, where u0 = u(x0, y0). Note that we only suppose
here a natural comparison inequality between two mean curvature quantities, but we don’t
requireH constant. Along the paper, inequality (I)will mean inequality (I.1)with additional
assumption (I.2).
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It is clear that the constant functions are entire solutions of inequality (I). Our main
aim in this paper is to state a converse under a suitable assumption on the warping function
f . In order to do that, we will work directly on spacelike surfaces instead of spacelike graphs.
Recall that a spacelike surface is locally a spacelike graph and this holds globally under some
extra topological hypotheses [2, Section 3]. Our main tool is a local integral estimation of
the squared length of the gradient of the restriction of the warping function on a spacelike
surface. If f is not locally constant (then, M is said to be proper) and f ′′ ≤ 0 (which has
an interesting curvature interpretation called the timelike convergence condition (TCC)), we
first prove (Theorem 4.2).

Let S be a spacelike surface of a proper RW spacetime with fiber R
2, which obeys the TCC.

Suppose that the mean curvature H of S satisfies

H2 ≤ f ′(t)2

f(t)2
. (1.5)

If BR denotes a geodesic disc of radius R around a fixed point p in S, then, for any r such
that 0 < r < R, there exists a positive constant C = C(p, r) such that

∫

Br

∣∣∇f(t)
∣∣2 dV ≤ C

μr,R
, (1.6)

where Br is the geodesic disc of radius r around p in S, and 1/μr,R is the capacity of the
annulus BR \ Br .

For the case in which S is analytic, we can express the local integral estimation in a more
geometric way (Remark 4.5).

Recall that a (general) noncompact 2-dimensional Riemannian manifold S is parabolic
if and only if 1/μr,R → 0 as R → ∞ [3, Section 2]. On the other hand, the Gauss curvature of
the spacelike surface S is nonnegative whereas the TCC and inequalityH2 ≤ f ′(t)2/f(t)2 hold
true (see Section 3.2). Thus, using a well-known result by Ahlfors and Blanc-Fiala-Huber [4],
we obtain that if S is complete then it is parabolic. Therefore, R approaches infinity for a fixed
arbitrary point p and a fixed r, obtaining that f(t) is constant on S. Since the RW spacetime
is proper, this implies that S must be a spacelike slice with t = t0. Thus, the first application
of Theorem 4.2 is to reprove uniqueness result [5, Theorem 4.5] with a local and different
approach (Corollary 4.3).

It should be noted that inequality forH assumed in Theorem 4.2 holds in a natural way
under some suitable hypotheses on each complete CMC spacelike surface that lies between
two spacelike slices [5, Section 5]. However, note that we are not assuming here that H is
constant. In fact, Theorem 4.2 provides with several uniqueness results for complete spacelike
surfaces whose constant mean curvature is only bounded (Corollaries 4.6 and 4.7).

Returning to our main aim, recall that an entire spacelike graph in an RW spacetime
with fiber R

2 cannot be complete, in general (see, e.g., [6]). However, a graph of an entire
function which satisfies (I.2) must be complete (Section 4). Therefore, as an application of
the previous result we obtain the following uniqueness results in the nonparametric case
(Theorems 4.8 and 4.9)
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If f is not locally constant, satisfies Inf(f) > 0 and f ′′ ≤ 0, then the only entire solutions
of inequality (I) are the constant functions.

If f is not locally constant and satisfies f ′′ ≤ 0, then the only bounded entire solutions of
inequality (I) are the constant functions.

Finally, observe that inequality (I) is trivially true in the maximal case; that is, for
H = 0. Hence, our results contain new proofs of well-known Calabi-Bernstein type results
(see [7, Theorem A]).

2. Preliminaries

On each RW spacetimeM with fiber R
2, the vector field ξ := f(πI) ∂t is timelike and satisfies

∇Xξ = f ′(πI)X, (2.1)

for any X ∈ X(M), where ∇ denotes the Levi-Civita connection of the metric (1.2), [1,
Proposition 7.35]. Thus, ξ is conformal with Lξ〈·, ·〉 = 2 f ′(πI) 〈·, ·〉, and its metrically
equivalent 1-form is closed.

Since M is 3-dimensional, its curvature is completely determined by its Ricci tensor,
and this obviously depends on f ; actually, M is flat if and only if f is constant [1, Corollary
7.43]. Here, we are interested in the case in which no open subset of M is flat (i.e., f is not
locally constant) and, then, we will refer M as a proper RW spacetime. Moreover, we will
suppose that the curvature of M satisfies a natural geometric assumption which arises from
Relativity theory. This assumption is the so-called timelike convergence condition (TCC).
Recall that a Lorentzian manifold (of any dimension ≥ 3) obeys the TCC if its Ricci tensor Ric
satisfies

Ric(Z,Z) ≥ 0, for any timelike tangent vector Z, (2.2)

that is, such that 〈Z,Z〉 < 0. This curvature condition is the mathematical translation that
gravity, on average, attracts and, on 4-dimensional spacetimes, holds whenever the metric
tensor satisfies the Einstein equation (with zero cosmological constant) [8]. We will also
consider onM the stronger condition: Ric(Z,Z) > 0, for any timelike tangent vector Z. When
this holds, we will say that the TCC is strict on M. Let us remark that, on 4-dimensional
spacetimes, this curvature assumption indicates the presence of nonvanishing matter fields
[9].

A weaker curvature condition than the TCC is the null convergence condition (NCC)
which reads

Ric(Z,Z) ≥ 0, for any null tangent vector Z, (2.3)

that is, Z/= 0 which satisfies 〈Z,Z〉 = 0 [8]. A clear continuity argument shows that the TCC
implies the NCC (on any n(≥ 3)-dimensional Lorentzian manifold). Note that any Einstein
Lorentzian manifold (in particular, a Lorentzian space form) always satisfies the NCC.
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In the case that M is an RW spacetime with fiber R
2, and making use again of [1,

Corollary 7.43], we can express the previous curvature conditions in terms of the warping
function. Thus,M obeys the TCC if and only if f ′′ ≤ 0, the TCC strict if and only if f ′′ < 0 and
the NCC is equivalent to (log f)′′ ≤ 0. It is easy to see that if there exists t0 ∈ I with f ′(t0) = 0,
then the NCC implies the TCC. Moreover, if (log f)′′ ≤ 0 and there exists t0 ∈ I such that
f ′(t0) = 0, then this zero of f ′ is unique and Sup f(t) = f(t0).

3. Setup

3.1. The Restriction of the Warping Function on a Spacelike Surface

Let x : S → M be a (connected) spacelike surface in M; that is, x is an immersion and it
induces a Riemannian metric on the (2-dimensional) manifold S from the Lorentzian metric
(1.2). It should be noted that any spacelike surface in M is orientable and noncompact [10].
We represent the induced metric with the same symbol as the metric (1.2) does. The unitary
timelike vector field ∂t ∈ X(M) allows us to considerN ∈ X⊥(S) as the only, globally defined,
unitary timelike normal vector field on S in the same time orientation of −∂t. Thus, from
the wrong way Cauchy-Schwarz inequality, (see [1, Proposition 5.30], for instance) we have
〈N,∂t〉 ≥ 1 and 〈N,∂t〉 = 1 at a point p if and only if N(p) = −∂t(p). By spacelike slice we
mean a spacelike surface x such that πI ◦ x is a constant. A spacelike surface is a spacelike
slice if and only if it is orthogonal to ∂t or, equivalently, orthogonal to ξ.

Denote by ∂Tt := ∂t + 〈N,∂t〉N the tangential component of ∂t on S. It is not difficult
to see

∇t = −∂Tt , (3.1)

where∇t is the gradient of t := πI ◦x on S. Now, from the Gauss formula, taking into account
ξT = f(t)∂Tt and (3.1), the Laplacian of t satisfies

Δt = −f
′(t)

f(t)

{
2 + |∇t|2

}
− 2H 〈N,∂t〉, (3.2)

where f(t) := f ◦ t, f ′(t) := f ′ ◦ t and the function H := −(1/2) trace(A), where A is the
shape operator associated to N, is called the mean curvature of S relative to N. A spacelike
surface Swith constant mean curvature is a critical point of the area functional under a certain
volume constraint (see [11], for instance). A spacelike surface with H = 0 is called maximal.
Note that, with our choice of N, the shape operator of the spacelike slice with t = t0 is A =
(f ′(t0)/f(t0)) I and its mean curvature is H = −f ′(t0)/f(t0).

A direct computation from (3.1) and (3.2) gives

Δf(t) = −2 f ′(t)2

f(t)
+ f(t)

(
log f

)′′(t)|∇t|2 − 2f ′(t)H〈N,∂t〉, (3.3)

for any spacelike surface inM.
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3.2. The Gauss Curvature of a Spacelike Surface

From the Gauss equation of a spacelike surface S inM and taking in mind the expression for
the Ricci tensor of M [1, Corollary 7.43], the Gauss curvature K of S satisfies

K =
f ′(t)2

f(t)2
− (log f)′′(t)|∇t|2 − 2H2 +

1
2
trace

(
A2
)
, (3.4)

where

f ′(t)2

f(t)2
− (log f)′′(t)|∇t|2 (3.5)

is, at any p ∈ S, the sectional curvature in M of the tangent plane dxp(TpS).
Now, the Cauchy-Schwarz inequality for symmetric operators implies (trace A)2 ≤

2 trace(A2), and therefore, we have H2 ≤ (1/2) trace(A2). If M obeys the NCC and we
assume the spacelike surface satisfies H2 ≤ f ′(t)2/f(t)2, then formula (3.4) gives K ≥ 0.

4. Main Results

If Br and BR (r < R) denote geodesic balls centered at the point p of a Riemannian manifold,
we recall that 1/μr,R :=

∫
Ar,R

|∇ωr,R|2dV is the capacity of the annulus Ar,R := BR \ Br , being
ωr,R the harmonic measure of ∂BR (see [3, Section 2] for instance). First of all, we recall the
following technical result.

Lemma 4.1 (see [12, Lemma 2.2]). Let S be an n(≥ 2)-dimensional Riemannian manifold and let
v ∈ C2(S) which satisfies vΔv ≥ 0. Let BR be a geodesic ball of radius R in S. For any r such that
0 < r < R, one has

∫

Br

|∇v|2 dV ≤
4SupBR

v2

μr,R
, (4.1)

where Br denotes the geodesic ball of radius r around p in S and 1/μr,R is the capacity of the annulus
BR \ Br .

Now, we are in a position to prove the announced local integral estimation.

Theorem 4.2. Let S be a spacelike surface of a proper RW spacetime with fiber R
2, which obeys the

TCC. Suppose that the mean curvatureH of S satisfies

H2 ≤ f ′(t)2

f(t)2
. (4.2)
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If BR denotes a geodesic disc of radiusR around a fixed point p in S, then, for any r such that 0 < r < R,
there exists a positive constant C = C(p, r) such that

∫

Br

∣∣∇f(t)
∣∣2 dV ≤ C

μr,R
, (4.3)

where Br is the geodesic disc of radius r around p in S, and 1/μr,R is the capacity of the annulus
BR \ Br .

Proof. Let Θ be the hyperbolic angle between N and −∂t, therefore 〈N,∂t〉2 = cosh2Θ and
|∇t|2 = sinh2Θ. Now, from (3.3) we obtain

1
f(t)

Δf(t) ≤
(
H2 − f ′(t)2

f(t)2

)
cosh2Θ +

f ′′(t)
f(t)

sinh2Θ. (4.4)

The first term of the right-hand side of (4.4) is nonpositive, because of (4.2), and the second
one is also nonpositive using the TCC. Therefore, we obtain Δf(t) ≤ 0.

Now, let us consider the function v := arccot(f(t)) : S → (π, 2π). A direct
computation from (4.4) gives vΔv ≥ 0. Finally, the result follows making use of Lemma
4.1.

As a first application of Theorem 4.2 we reprove the following well-known uniqueness
result, using a different approach.

Corollary 4.3 (see [5, Theorem 4.5]). Let M be a proper RW spacetime with fiber R
2 and which

obeys the TCC. The only complete spacelike surfaces S inM whose mean curvature H satisfies

H2 ≤ f ′(t)2

f(t)2
(4.5)

on all S, are the spacelike slices.

Asmentioned in Section 2, ifM obeys the NCC and there exists t0 ∈ I such that f ′(t0) =
0, thenM also obeys the TCC. On the other hand, any maximal surface inM clearly satisfies
(4.2), hence we reprove and extend (with a different approach) the parametric version of the
Calabi-Bernstein type result [7, Corollary 5.1].

Corollary 4.4. Let M be a proper RW spacetime, with fiber R
2, which obeys the NCC and assume

there exists t0 ∈ I such that f ′(t0) = 0. Then, the only complete maximal surface inM is the spacelike
slice t = t0.
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Remark 4.5. Let us assume f is analytic (i.e., themetric (1.2) is analytic) and nonconstant. Take
the spacelike surface S to be the graph of an analytic function. Then, under the assumptions
of Theorem 4.2 and using [13, Lemma 2.1 and inequality (2.4)], we can rewrite the integral
estimation as

∫

Br

∣∣∇f(t)
∣∣2 dV ≤ C̃

log(R/r)
, (4.6)

where C̃ = C̃(p, r) is a positive constant.

Corollary 4.6. Let M be a proper RW spacetime with fiber R
2, which obeys the TCC. Suppose that

its warping function satisfies f ′ > 0. If lims→ b(f ′(s)2/f(s)2)R, then the only complete spacelike
surfaces such that

H2 ≤ lim
s→ b

f ′(s)2

f(s)2
(4.7)

are the spacelike slices. Moreover, if the TCC is strict on M, then there is no such a spacelike surface.

Proof. From our assumptions, the TCC and f ′ > 0, we have Inf f ′(s)2/f(s)2 =
lims→ bf

′(s)2/f(s)2. Therefore, the mean curvature of the spacelike surface satisfies (4.2).
Thus, Theorem 4.2 can be then claimed to conclude the integral estimation (4.3). The proof
ends making R → ∞ in this formula.

Analogously we can state the following corollary.

Corollary 4.7. Let M be a proper RW spacetime with fiber R
2, which obeys the TCC. Suppose that

its warping function satisfies f ′ < 0. If lims→a(f ′(s)2/f(s)2)R, then the only complete spacelike
surfaces such that

H2 ≤ lim
s→a

f ′(s)2

f(s)2
(4.8)

are the spacelike slices. Moreover, if the TCC is strict on M, then there is no such a spacelike surface.

Finally, we show the announced uniqueness results of inequality (I).

Theorem 4.8. If f is not locally constant, has Inf(f) > 0 and satisfies f ′′ ≤ 0, then the only entire
solutions to inequality (I) are the constant functions.

Proof. The graph Σ = {(u(x, y), x, y) : (x, y) ∈ R} of any entire solution u to inequality (I) is a
spacelike surface and the constraint (I.2)may be expressed as follows:

〈N,∂t〉 <
1√

1 − λ2
. (4.9)
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Hence, the induced metric gu, given in (1.3), satisfies

gu((a, b), (a, b)) ≥
(
1 − λ2

)
f(u)2

(
a2 + b2

)
, (4.10)

from (4.9), for all (a, b)R2. On the other hand, we have Inf f(u) > 0, and therefore, previous
inequality indicates that gu is complete. Now, the result follows from the parametric case.

With an analogous reasoning we obtain the following theorem.

Theorem 4.9. If f is not locally constant and satisfies f ′′ ≤ 0, then the only bounded entire solutions
of inequality (I) are the constant functions.

Remark 4.10. Observe that Theorem 4.9 trivially holds true if H is assumed to be identically
zero. Therefore, Theorem 4.9 reproves the well-known uniqueness result for the maximal
surface equation [7, Theorem A]. On the other hand, Theorem 4.8, partially extends [14,
Theorem 7.1].
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