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(DIS)ORIENTATION AND SPATIAL SENSE:  
TOPOLOGICAL THINKING IN THE MIDDLE 

GRADES 

Elizabeth de Freitas and MaryJean McCarthy 
In this paper, we focus on topological approaches to space and we argue that 
experiences with topology allow middle school students to develop a more ro-
bust understanding of orientation and dimension. We frame our argument in 
terms of the phenomenological literature on perception and corporeal space. 
We discuss findings from a quasi-experimental study engaging 9 grades 5-8 
students (10-13 years old) in a 6-week series of school-based workshops fo-
cused on knot theory. We discuss video data that shows how students engage 
with the intrinsic disorientation of mathematical knots through the use of ges-
ture and movement.  
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(Des)Orientación y sentido espacial: pensamiento topológico en los grados in-
termedios 
En este trabajo, nos centramos en enfoques topológicos del espacio y soste-
nemos que las experiencias con topología permiten a los estudiantes de se-
cundaria desarrollar una comprensión más sólida de la orientación y de la 
dimensión. Enmarcamos nuestro argumento en términos de la literatura fe-
nomenológica de la percepción y el espacio corpóreo. Discutimos los hallaz-
gos de un estudio cuasi-experimental con 9 estudiantes de quinto a octavo 
curso (10 a 13 años) que participaron en talleres sobre la teoría de nudos du-
rante 6 semanas. Discutimos los datos de vídeo que muestran cómo los estu-
diantes se involucran con la desorientación intrínseca de los nudos matemá-
ticos mediante el uso del gesto y movimiento. 

Términos clave: Cuerpo; Fenomenología; Geometría; Nudos; Orientación; Topología 

Fielker (2011) suggests that we need to broaden our conception of geometry and rec-
ognize that “geometries” are diverse kinds of approaches to space, some more suitable 
than others to the study of movement, transformation, connectedness, dimensionality 
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and orientation. Taking this more expansive approach by inviting students to experi-
ment with spatial reasoning creates an opportunity for students to attend to the corpo-
real and material aspects of mathematics. We focus on topological approaches to 
space, and we frame our analysis in terms of the literature on perception and corporeal 
space. We discuss data that suggests students’ gestures often function as devices for 
orienting a knot in relation to a moving frame of reference. Our analysis suggests that 
the students are operationalizing gesture and vision and voice to literally dislocate 
themselves in relation to the knot so as to better explore it, and that the experience 
provides an opportunity for them to develop the topological concept of dimensionali-
ty, which we define as degrees of freedom of movement.  

METHODS AND DATA 
Nine students (grades 5-8), three female and six male, were recruited from a New 
York State elementary school to participate in six two hour afterschool topology 
workshops over a three month period. These workshops led by the two principal in-
vestigators were offered as non-credit extra-curricular opportunities. The participants 
had not studied topology previously and their school math curriculum had not provid-
ed many opportunities for exploring spatial reasoning. The following questions guided 
our research: How do students solve problems that entail topological approaches to 
space? In what ways do gestural-haptic modalities factor into students’ spatial reason-
ing as they engage in problems through topological rather than Euclidean concepts? 
How does the concept of dimension factor into students’ spatial reasoning, and in 
what ways can problem solving with knots and knot diagrams develop a robust topo-
logical concept of dimension? We focused on knot theoretic activities that involved 
identifying, creating, modifying, comparing, sorting, decomposing and diagramming 
knots. Various media were used, such as strings, ropes, pipe cleaners, sculpie clay, 
ipads, and paper and pencils. The software Knot Plots generated dynamic images of 
knots which could be spun around and modified by the students. The focus of the ac-
tivities was on how students moved back and forth between image, object and dia-
gram, and how this entailed particular working concepts of dimensionality, direction-
ality and orientation. Although the concepts of invariance and non-rigid 
transformations were introduced and explored at the first workshop, the researchers 
gave no other direct instruction, allowing students to develop collaboratively various 
knot theoretic tools as they solved problems, such as the (un)crossing number, the 
Reidemeister moves and the colorability constraints. Activities that shed significant 
light on the questions guiding the research were tasks that were: (a) open-ended and 
invited inventive diagramming practices for representing 3-D objects, (b) involved 
working with orientable and non-orientable surfaces, and (c) entailed identifying dis-
crete Reidemeister moves in continuously unravelling mathematical knots displayed 
in video. Project data consists of video and audio recordings of workshops and per-
formance-based interview tasks completed 6 weeks and 6 months after completion of 
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the workshops, as well as drawn artifacts produced by students during both workshops 
and interviews. In order to focus carefully on the students’ entire corporeal space as 
they worked, we coded the video data by tracking student use of spatial language to 
describe their activity, and hand gesture as a form of embodied orientation (in relation 
to a set of coordinate axes).  

THE VESTIBULAR LINE AND THE VISUAL LINE 
Recent research on the kinesthetic perception of physical space and students’ deploy-
ment of gestural/haptic modalities in problem solving and other mathematical activity 
has begun to shed light on the complex facets of spatial sense (Nemirovsky & Ferrara, 
2009; Núñez, Edwards, & Matos, 1999). Hostetter and Alibali (2008), for instance, 
draw on Gibson (1979) and others to argue that perception and action are mutually 
determining, and that knowledge emerges through these co-adaptive processes. This 
“tight coupling of motor and perceptual processes” underscores the ways in which we 
activate sensorimotor processes when working with concepts (Hostetter & Alibali, 
2008, p. 497).  

The mathematician Bernard Teissier describes mathematical intuition as being a 
fusion of two modes of perception, the visual continuum and the continuum of mo-
tion. Drawing on recent work in neurophyisiology (e.g., Berthoz, 2000), Teissier 
(2011) puts forth what he calls the “Poincaré-Berthoz isomorphism” that links these 
two modes, suggesting that their fusion is at the source of mathematical invention. For 
instance, when we perceive a mathematical line or curve, we actually perceive two 
fundamentally different things: (a) a “vestibular line” that is dynamic, seemingly 
flowing, “parametrized by time and Rythmed by the steps” (p. 237); and (b) a “visual 
line” associated more with boundaries and ambient spatial coordinates. In the case of 
the straight line, we either perceive it in terms of its intrinsic mobility (constant ve-
locity) or as a “curve having everywhere the same orientation” in relation to a frame 
of reference (p. 238). The cognitive research of Berthoz (2000) suggests that the hu-
man mind makes strong links between the vestibular line and visual line, which ac-
cords with Poincaré’s insights, noted by Teissier, that “the position of an object in 
space is related to the set of muscular tensions corresponding to the movement we 
must make to capture it by the equivalent of a coordinate change” (Teissier, 2011, p. 
238). The fusion of these two perceptions generates a “protomathematical object” 
which then lends itself to all sorts of mathematizing. 

In order to study the fusion of these two modes of perception, we focus here on 
topology defined as the study of those properties of geometric objects that remain un-
changed under bi-uniform and bi-continuous transformations (Debnath, 2010). Infor-
mally referred to as “rubber sheet geometry,” topology is concerned with bending, 
stretching, twisting, or compressing elastic objects (O’Shea, 2007; Richeson, 2008; 
Stahl, 2005). Despite thousands of years of studying the metric relationships of poly-
hedra, no one prior to Euler had studied the non-metric relationships of connected-



E. de Freitas and MJ. McCarthy 

PNA 9(1) 

44 

ness.1 Through the work of Gauss, Klein, Riemann, and Poincaré, topology became 
the qualitative study of surfaces, manifolds, boundary relationships and curvature. To-
pology shifts our attention away from concepts of measure and rigid transformation, 
and focuses on the stretching and distortion of continuously connected lines and re-
gions. In Geometry and the Imagination (1952/1983/1990), David Hilbert and Steph-
an Cohn-Vossen claimed that “in topology we are concerned with geometrical facts 
that do not even involve concepts of straight line or plane but only the continuous 
connectiveness between points of a figure”. In this paper, we are concerned with how 
particular aspects of topological thinking allow for a better fusion of the two kinds of 
perception mentioned above. For instance, topology deploys a more robust concept of 
dimension than what we normally find in the geometry curriculum—rather than the 
“size” of a space, topologists refer to dimension in terms of degrees of freedom of 
movement. Also, the concept of orientation in topology is defined in terms of the ca-
pacity to move around space and return to a particular point oriented in the same di-
rection as when the motion began, rather than in terms of a fixed Euclidean frame of 
reference. Finally, the topological focus on distortion and stretching more generally 
fuses the two kinds of perception, since it transforms the static line into a mobile con-
tinuously varying object.  

According to Smith (2006), “Euclidean geometry defines the essence of the line in 
purely static terms that eliminate any reference to the curvilinear (‘a line which lies 
evenly with the points on itself’).” He contrasts this rectilinear concept with the “op-
erative geometry” of Archimedes, in which the straight line was characterized dynam-
ically as “the shortest distance between two points” (p. 148). Smith suggests this defi-
nition marks the line as a continuous operation and a “process of alignment” pursuing 
its own inherent variability.2 A more elastic definition of the line attributed to Heron is 
the following: “A straight line is a line stretched to the utmost” (Metrica, 4, Gray, 
1979, p. 128). 

Student experiences with knots afford opportunities for developing an understand-
ing of orientation and dimension as operative concepts rather than attributes. Instead 
of defining the line solely in terms of Euclidean measure and planar existence, knots 
embody a twisting stretching multi-dimensional line of flight that breaks through the 
plane. Knot theory emerged in the eighteenth and nineteenth century and developed 
within the field of topology. Mathematical knots are closed multi-dimensional (knot-
ted) curves that are deemed equivalent if one can be deformed into another (note that 
this deformation is not a Euclidean rigid transformation). Mathematical knots take up 
the line as a non-linear and non-planar process of becoming (without end or origin), a 
process of actualization whereby new dimensions and new entanglements unfold. The 
                                                
1 We know that Liebniz was already familiar with the formula, and historians speculate that Descartes 
was aware of a similar one (Richeson, 2008). Although Euler’s solution to the bridges of Konigsberg 
problem (1736) comes prior to his letter to Goldbach about polyhedra, the significance of the latter is 
noted here due to the way it breaks with prior mathematical treatments of polyhredra. 
2 According to Netz & Noel (2007), Archimedes treated diagrams as physical models while attending 
more to the “broader, topological features of a geometrical object” (Netz & Noel, 2007, p. 105). 
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curve or line in n-space is a multi-dimensional entity, suddenly possessing perspective 
and depth. One can relax the knot and loosen its crossings, and then imagine crawling 
along the rope, following its path into the depth of the page. The knot has no interior 
or exterior; it is all line, or all outside. Recent interest in including knot theory in the 
middle school curriculum points to how it helps students develop spatial reasoning 
through visual and tactile exploration of both quantitative and qualitative invariants 
(Adams, 2004; Handa & Mattman, 2008). Knot theory offers students a creative and 
generative approach to spatial reasoning. It captures the dynamic multiplicity of space 
as a process of dimensional unfolding. One is always in the middle of a knot, pursuing 
its lines of flight.  

KNOTS AND KNOT DIAGRAMS  
From 1988-1991, Carol Strohecker ran a “knot lab” in an urban elementary school 
where 20 fifth graders (10 years old) explored topological thinking through the study 
of knots. Students used string and other media to compose knots, developing and dis-
cussing strategies for doing so. Using the snake method, which involved placing the 
string on the table, identifying a starting point and fixing one end of the string while 
moving the other end, students were able to perceive the relationships between strands 
differently, conceptually integrating the more entangled parts with the various loops 
that fed into them. The use of this method also seemed to occasion students’ efforts at 
re-orienting their knots (rotating them on the desk), which further developed their 
body syntonicity (Papert, 1980) in that they began to decenter themselves as a per-
ceiver located at a fixed position, and instead identified with the mobility and disori-
entation embodied in the knot. Strohecker suggests that the medium itself (the pliable 
string) afforded students an opportunity to develop their spatial reasoning in this way, 
describing how “many of the children involved their bodies in expressing their con-
ceptions of knots and knot-tying, often relying on their arms or legs to represent ends 
of string moving into the form of a knot” (p. 6). She also indicates that student lan-
guage use while describing their knots, for instance expressions such as “up/down”, 
“top/bottom”, “above/below”, “over/under”, “in/out” revealed how they worked the 
string as though it were a boundary, dividing space into neighborhoods that were ei-
ther in or outside of the knot. Her research clearly shows that students dealt explicitly 
with topological concepts.  

As Kuechler (2001) suggests, the capacity of the knot “to fashion decentred spa-
tial cognition” (p. 82) explains in part our fascination with knots in textiles and sym-
bolic forms. She offers an “ethnography of knots” pointing to the prevalence and 
power of knotted effigies and knotted patterns across various cultures and times. 
Knots seem to refuse to be seen from one particular point of view or perspective. 
Knots are all movement along a curvilinear line, evoking fluid spatial relationships. 
“Each knot is, in a sense, its own universe, which invites contemplation of its topolo-
gy both as it is being formed and as a completed object.” (Strohecker, 1991, p. 215) 
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For middle school students, one of the biggest challenges—as well as being one 
of the richest areas for developing spatial reasoning—involves tasks of creating and 
decoding diagrams of knots. Knot diagrams introduce depth into the plane, conjuring 
a virtual dimension within the two-dimensional surface. The crossings in knot dia-
grams create a multi-dimensional effect, suggesting a layering precisely where Carte-
sian geometry would have imposed an intersection. Making sense of knot diagrams 
demands that one construe an “over/under” relationship in two dimensions and that 
one follow the continuity of a line as it seems to leap off the surface of the page. 
Moreover, knots are defiantly without orientation, and yet diagrams are attempts to 
capture and orient knots on the plane. Students have to decide what is in the fore-
ground/background (and in some cases how that relationship might be evoked) and 
decide on a perspective and an orientation. Because of the absence of axes and other 
straight lines to structure one’s vision, and because students are learning to pay atten-
tion to topological relationships rather than Euclidean ones, drawing knot diagrams 
often entails positioning oneself (as the observer) in multiple and diverse locations. 
Châtelet (2006) argues that knots and knot diagrams disrupt fundamental Euclidean 
spatial practices. They introduce a new manner of intervention and a new way of mak-
ing mathematical images. They express both entanglement and rupture in the way they 
disobey the plane. Thus the knot and its diagram contest the usual epistemological 
barrier between geometric space and corporeal space. Thus any attempt to locate the 
knot within a mathematical frame of reference is complicated by its “tied” nature, its 
folds and twists, connectedness and relationality.  

ORIENTATION, MOVEMENT AND CORPOREAL SPACE 
We see from the literature that (dis)orientation and dimensionality figure prominently 
in our engagements with knots. Ahmed (2010) argues that orientation is an essential 
aspect of spatial sense making. Put simply, “orientations are about the direction we 
take that puts some things and not others in our reach.” (Ahmed, 2010, p. 245). Body 
orientations thus shape and map space by generating operative axes around which we 
define our movements. Thus orientation marks a “here” and a “now” from which we 
proceed. One might even suggest that orientation and motion are mutually implicated. 
With reference to the phenomenology of Husserl, Ahmed (2010) suggests that orienta-
tion marks a “zero-point” or starting point “from which the world unfolds” (p. 236). 
This implicit structuring of a zero-point for the body entails a sense of movement or 
potential movement, and this in turn conditions our perception of what is foreground 
and what is background. Indeed, the perception of depth (and dimensionality) is not as 
simple as one might first imagine, as it depends on a tactile-kinesthetic fusion of sen-
sory impressions. The body is thus “something that I move with, not something I 
move, i.e., it has the characteristic of direct motility—I do not have to place my body 
in order to move it.” (Rush, 2009, p. 18) 
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CASE STUDY 
In this section, we discuss data collected during the post-intervention interviews with 
the student participants of our study. We focus on one task where the students were 
shown a 2-D depiction of a knot (Figure 1, Picture 1), asked to explain if and how 
they might simplify the knot, and then asked to identify key moves in a video of the 
same knot unraveling into the unknot. We discuss below how Maya moves back and 
forth between the vestibular line and the visual line as she engages with this picture of 
a knot. The image demands a great deal of depth perception since there are loops un-
der loops under loops. This layering of the rope makes for a complex perceptual task. 
Each time one focuses on one crossing and “sees” a particular relationship of 
over/under on a plane of reference, one is then forced to dislocate that plane of refer-
ence when either the same two strands reverse the relationship of over/under at the 
adjacent crossing or a third strand appears beneath the other two and the student has to 
penetrate the imagined plane to incorporate this third strand in making spatial sense of 
the relationships. Despite the seeming complexity of the knot, it is reducible to the 
unknot after a series of moves. 

  
Picture 1 Picture 2 

Figure 1. Maya 
Maya is first asked to count the crossings. She tilts her head and body as her fingers 
trace the path of the knot (Figure 1, Picture 2). She names the crossings as either over 
or under because her finger follows the vestibular line and thus there is a relative ex-
perience of over or under. Then she stops and looks up and says, “But if you look at it 
from the other perspective wouldn’t it be over or under?” (0:15). When asked to say 
more, she removes her hands, and explains: “You can see this one going under, this 
one going under, but you have to like focus on one and the one that you focus would 
go over or under” (0:52). 

In so doing, Maya is shifting from perceiving the vestibular line to perceiving the 
visual line. With the visual line, the concepts of over and under cannot be assigned to 
a crossing unambiguously. In other words, at each crossing there are two strands, so 
there is no sense that a crossing has a definitive over or under designation. Such a des-
ignation only makes sense if one imagines oneself actually moving along one of the 
strands on the vestibular line.  
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Asked where she would start in order to simplify the knot, she picks a strand 
(lower right for her, labeled A on Figure 2, Picture 1) and gestures as though she had 
used her pointer finger to stretch and pin the strand (Figure 2, Picture 2). She affixes 
this finger to the page, as though she were holding down the rope, while her other 
hand takes on the gesture of a pincher or grabber, hovering and rocking slightly back 
and forth in the air above the knot.  

   

Picture 1 Picture 2 Picture 3 
Figure 2. Maya’s case 

She then places both hands on the table and she taps her fingers rhythmically and in 
unison while she thinks. She switches her first answer and picks a second strand (la-
beled X on Figure 2, Picture 1), and then she gestures to pull and stretch the strand out 
from under strand B. She flips her hand palm up (Figure 2, Picture 3) to show that it 
would “go like that”. This is not a pointing gesture, even though it looks like one. It is 
a flipping gesture that is meant to embody the inversion required as the loop moves 
from background to foreground. The hand is working as a proxy here as she embodies 
the new sense of orientation. She could have kept her hand oriented as in Figure 2, 
Picture 1, and simply indicated the grabbing or pincering of the strand and its being 
stretched to a new location. But, in order to capture the new relative relationships be-
tween over and under, she inverts her hand so that it’s palm up. This is significant. It 
shows how she is following the vestibular line using the orientation of her hands 
(palms up or down or other). What was under is now over, what was up is now 
down—she is back to following the vestibular line and enacting (through her hands) 
the changing relationships. In this sense, the hands are proxies for the disorientation 
embodied in the knot. In relation to the space of the room, Maya is upside down and 
looking up at the backside of the knot, as though she were on the other side of the pa-
per. Maya is shifting her projected perspective on the knot as she engages with the 
task. In other words, she is moving around the knot—within, behind, beside, on top—
in ways that speak to her embodied engagement. It is usually her left hand that per-
forms the flipping while the right hand performs the stretching. She then pauses say-
ing “Oh, this one’s complicated” and spins the sheet of paper around, until it is orient-
ed as in Figure 3, Picture 1.  
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Picture 1  Picture 2  Picture 3  Picture 4 
Figure 3. Maya’s moves 

Rotating the paper shows that she is engaged with the disorientation of the knot and 
that she is aware that the image isn’t locked into a particular perceptual grid of “prop-
er” up/down orientation. She then confidently suggests a series of moves: Pulling 
strand C out, flipping strand C over D and towards B, pulling strand A out, and then 
flipping strand E over the body of the knot. Although the first two moves don’t seem 
to simplify the knot, the combination of these last two moves is indeed a move that 
will begin the unraveling (notice that strand E is linked to strand A in such a way that 
the two are part of a loop that is buried beneath the knot, and three of the adjacent 
crossings are under the rest of the knot). One can grab and stretch the loop towards the 
left, eliminating these three crossings (Figures 3, Picture 2).  

One of the challenges in this task is “seeing” into and behind the knot, shifting 
one’s imagined perspective, and noticing these kinds of patterns related to depth and 
adjacency. This entails shrinking and stretching lines, which we found to be associat-
ed with student gesturing of both hands simultaneously. One hand was consistently 
used to gesture the pulling and stretching of a particular strand, but both hands were 
used—as though at either end of an elastic—when the students wanted to eliminate a 
crossing using Redeimester moves 2 and 3 (see Figure 3, Pictures 3 y 4).  

CONCLUSION 
Studying students’ experiences with topology revealed how orientation is a complex 
component of spatial sense. Analysis of video data showed how students’ corporeal 
space entailed a moving rather than fixed perspective, and that gestures embodied this 
implicit mobility. Rather than seeing the gestures as iconic or indexical, we analyze 
them as embodiments of perspective. Students’ gestures reveal how they follow both 
the vestibular line and the visual line as they make sense of knots. We see here how 
the two modes of perception—the visual continuum and motion continuum—were 
taken up in her gestures as she pursued the shifting orientation entailed in the diagram. 
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