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Abstract

Inducible nitric oxide synthase (iNOS), which produce large amounts of nitric oxide (NO), is induced in macrophages and
microglia in response to inflammatory mediators such as LPS and cytokines. Although iNOS is mainly expressed by microglia
that become activated in different pathological and experimental situations, it was recently reported that undifferentiated
amoeboid microglia can also express iNOS during normal development. The aim of this study was to investigate the pattern
of iNOS expression in microglial cells during normal development and after their activation with LPS by using the quail
retina as model. iNOS expression was analyzed by iNOS immunolabeling, western-blot, and RT-PCR. NO production was
determined by using DAR-4M AM, a reliable fluorescent indicator of subcellular NO production by iNOS. Embryonic,
postnatal, and adult in situ quail retinas were used to analyze the pattern of iNOS expression in microglial cells during
normal development. iNOS expression and NO production in LPS-treated microglial cells were investigated by an in vitro
approach based on organotypic cultures of E8 retinas, in which microglial cell behavior is similar to that of the in situ retina,
as previously demonstrated in our laboratory. We show here that amoeboid microglia in the quail retina express iNOS
during normal development. This expression is stronger in microglial cells migrating tangentially in the vitreal part of the
retina and is downregulated, albeit maintained, when microglia differentiate and become ramified. LPS treatment of retina
explants also induces changes in the morphology of amoeboid microglia compatible with their activation, increasing their
lysosomal compartment and upregulating iNOS expression with a concomitant production of NO. Taken together, our
findings demonstrate that immature microglial cells express iNOS during normal development, suggesting a certain degree
of activation. Furthermore, LPS treatment induces overactivation of amoeboid microglia, resulting in a significant iNOS
upregulation.
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Introduction

Microglia are cells responsible for innate cell immunity in the

central nervous system (CNS); they have a ramified morphology in

the adult CNS and continuously survey the local environment by

extending and retracting their highly motile cell processes [1,2].

Ramified microglia derive from differentiation of amoeboid

microglia, which are proliferating and phagocytic amoeboid cells

of yolk sac origin that enter the CNS during development and

migrate long distances to colonize all CNS regions [3–8]. Under

pathological conditions in the adult CNS, ramified microglia

become activated, retracting their processes and acquiring a

macrophage-like rounded morphology [9–11] reminiscent of

amoeboid microglia during development. Activated microglia

upregulate their migratory, proliferative and phagocytic capacities

to perform their macrophage-like defensive functions, thereby

becoming similar to amoeboid microglia. Activated microglia are

able to produce a panoply of neurotoxic and neurotrophic

mediators [12–16], including nitric oxide (NO).

NO is a liposoluble radical gas that traverses freely across cell

membranes and acts as a cellular signaling molecule that

participates in various biological effects without the need for a

specific membrane receptor. It has an extremely short half-life of

only a few seconds due to its rapid reaction with different

substances, as a consequence of its unpaired electron [17,18]. NO

has been extensively demonstrated to have a role in neurotoxicity

[19–26]. However, NO alone is not directly responsible for

neuronal apoptosis [27] and can have beneficial effects on cell

survival [28,29]. In fact, it has a pivotal role in regulating signaling

pathways involved in neuronal survival in the retina [30], it

promotes neuronal protection induced by ischemic precondition-

ing [31], and it can contribute to endothelial cell survival [32].

Many of the cytotoxic effects of NO appear to be mediated by its

oxidation products rather than by NO itself. Thus, simultaneous

production of NO and superoxide by activated microglia, under

proinflammatory conditions, gives rise to the formation of

peroxynitrite, a powerful oxidant that induces neuronal death

[18,27,28,33–35].
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Synthesis of NO from L-arginine and molecular oxygen is

catalyzed by NO synthases (NOS) [18,29,36]. Three isotypes of

these enzymes have been identified: endothelial NOS (eNOS),

neuronal NOS (nNOS), and inducible NOS (iNOS). eNOS and

nNOS are constitutively expressed in endothelial cells and

neurons, respectively, while iNOS is expressed in macrophages,

microglia, astrocytes, and other cell types in response to

inflammatory mediators such as LPS and cytokines [17,18,34].

iNOS appears to be mainly expressed by microglia after their

activation by inflammatory factors [13,34,37], although some

amoeboid microglia were recently reported to express iNOS

during the normal development of the CNS [38,39]. This would

be related to the fact that amoeboid microglia undergo a certain

degree of activation during normal CNS development, as

described in the whole brain [39], the spinal cord [40], and the

corpus callosum, fornix, and external capsule [41] of developing

mice. In connection with these studies, the present article

demonstrates the expression of iNOS in amoeboid microglia of

the developing quail retina and its downregulation when microglia

differentiate to become ramified.

Although amoeboid microglia show a basal activation in the

developing CNS, they appear to be able to increase their

activation degree in response to different injurious stimuli [42–

48] by increasing their phagocytic and proliferative activity [46]

and their release of pro-inflammatory cytokines [41,44,48]. The

bacterial endotoxin lipopolysaccharide (LPS) has been extensively

used to induce activation of microglia, with a marked increase in

the release of pro-inflammatory molecules and concomitant

induction of iNOS expression and NO production [19,49–52].

Hence, the LPS model of microglia activation may be useful to

show the ability of amoeboid microglia in the developing retina to

increase their activation degree. In the present study, upregulation

of iNOS expression was observed in amoeboid microglia of LPS-

treated organotypic cultures of quail embryo retina explants,

suggesting an increase in the basal activation of amoeboid

microglia in the developing retina after LPS treatment.

Materials and Methods

Animals
Embryonic, posthatched, and adult quails (Coturnix coturnix

japonica) were used in this study. Embryonic and posthatched

developing retinas were obtained at the following days of

incubation (E) and posthatching (P): E8, E9, E14, E16 and P4.

Adult retinas from P60 quails were also studied. Non-cultured

retinas were used to examine iNOS expression in developing and

adult microglia. Organotypic cultures of explants from E8 quail

retinas were also used to study changes in iNOS expression after in
vitro experimental activation of immature microglia.

Experimental procedures were approved by the Animal

Experimentation Ethics Committee of the University of Granada,

following the guidelines of the European Union Directive 2010/

63/EU on the protection of animals used for scientific purposes.

In vitro culture of E8 retina explants
Explants from E8 retinas were cultured in vitro on 30-mm

Millicell CM culture plate inserts (Millipore, Billerica, MA; pore

size 0.4 mm) according to the method described by Stoppini et al.

(1991) [53] with some modifications [54]. Retinas were dissected

out into cold Gey’s balanced salt solution (Sigma, St. Louis, MO)

supplemented with 5 mg/mL glucose (Sigma) and 50 IU-mg/mL

penicillin-streptomycin (Invitrogen, Paisley, United Kingdom).

After removing the pigment epithelium, square explants

(3 mm63 mm) were isolated from the central area of each retina

and then placed on Millicell inserts (Millicell CM, Millipore,

Bedford, MA, USA; pore size 0.4 mm), vitreal surface down.

Millicell inserts were put in six-well plates containing 1 mL/well

culture medium composed of 50% basal medium with Earle’s

salts, 25% Hank’s balanced salt solution, 25% horse serum, 1 mM

L-glutamine, 10 IU-mg/mL penicillin-streptomycin (all purchased

from Invitrogen), and 5 mg/mL glucose. E8 retina explants were

then incubated at 37uC in a humidified atmosphere with 5% CO2

for 1 hour in vitro (hiv) to 24 hiv (E8+1hiv to E8+24hiv) according

to the aim of each experiment.

LPS-induced activation of microglial cells in cultured
retina explants

Microglial activation experiments were performed in E8 retina

explants. Microglial cells were activated by treating the explants

with 5 mg/mL LPS (Escherichia coli OB4:1111, Sigma), which was

added to the medium from the beginning of the culture. In each

experiment, an explant obtained from the central retina of the

right eye of a quail embryo was LPS-treated, and a similar explant

from the retina of the left eye of the same embryo was cultured

without LPS and served as a control. Non-cultured E9 retinas

were used to compare the morphological appearance and the

lysosomal compartment of microglial cells between E8+24hiv

retina explants and in situ retinas at an equivalent developmental

age.

Immunocytochemistry
Microglial cells were identified in cultured retina explants and

non-cultured retinas by immunolabeling with the monoclonal

antibody QH1 (Developmental Studies Hybridoma Bank

[DSHB], University of Iowa, Iowa City, IA), which recognizes

all quail hemangioblastic cells except for mature erythrocytes [55],

including amoeboid, ramified, and activated microglia [56]. iNOS

was identified by immunolabeling with two anti-iNOS polyclonal

antibodies from different manufacturers (Abcam, Cambridge,

United Kingdom, catalog number ab3523; Thermo Fisher

Scientific, Rockford, IL, catalog number PA1-036). These

antibodies recognize the mouse iNOS (but not other isoforms of

NOS, such as eNOS and nNOS) and show reactivity with the

chick iNOS, as described on the antibody data sheet. The

monoclonal antibody LEP100 (DSHB), specific to avian species,

was used to recognize the microglial cell lysosomal compartment,

which is increased in activated microglia [47].

Double QH1/anti-iNOS immunolabeling was carried out on

wholemounted non-cultured retinas and cultured retina explants,

which were fixed in 4% paraformaldehyde in 0.1 M phosphate

buffer for 1 h and permeabilized in 0.01 M phosphate buffered

saline (PBS) containing 0.1% Triton X-100 (PBS-Tr) for 4 h. They

were subsequently incubated overnight at 4uC in polyclonal anti-

iNOS diluted 1:500 in 1% bovine serum albumin in 0.01 M PBS

(BSA-PBS) containing 0.25% Triton X-100 (BSA-PBS-Tr), rinsed

in PBS-Tr, and incubated for 4 h at room temperature in one

secondary antibody, Alexa Fluor 594-conjugated goat anti-rabbit

IgG (Molecular Probes, Eugene, OR). After rinsing in PBS-Tr,

wholemounts were incubated overnight at 4uC in the monoclonal

antibody QH1 diluted 1:4 in BSA-PBS, rinsed, and incubated for

4 h at room temperature in the other secondary antibody (Alexa

Fluor-488 conjugated goat anti-mouse IgG, Molecular Probes).

Both secondary antibodies were diluted 1:1000 in BSA-PBS-Tr.

After further rinsing, wholemounts were coverslipped with

Fluoromount G (Southern Biotech, Birmingham, AL) with the

vitreal side up.

iNOS Expression in Developing Quail Retina Microglia
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Cross cryosections of noncultured retinas and cultured retina

explants were also used for double QH1/anti-iNOS immunola-

beling. Specimens were fixed for 1 h at 4uC in 4% paraformal-

dehyde in 0.1 M phosphate buffer, thoroughly rinsed in PBS-Tr,

cryoprotected overnight at 4uC in 20% sucrose in PBS-Tr, and

introduced into 7.5% gelatin and 20% sucrose in PBS-Tr.

Solidified blocks containing the specimens were then embedded

in OCT compound, frozen in isopentane cooled with liquid

nitrogen, and stored at 240uC before sectioning on a Leica

CM1850 cryostat; 15 mm-thick cryosections were obtained on

Superfrost slides (Menzel-Glasser, Braunschweig, Germany),

hydrated in PBS, and treated for double QH1/anti-iNOS

immunolabeling following a similar schedule to that described

for wholemounts with minor modifications (cryosections were not

permeabilized and incubation time in secondary antibodies was

reduced to 2.5 h). In addition, cell nuclei were stained in

immunolabeled cryosections with the nuclear dye Hoechst

33342 (Sigma).

To guarantee the specificity of the iNOS immunolabeling,

single anti-iNOS immunofluorescence was also done on retinal

wholemounts and cryosections, checking that the iNOS labeling

was similar between single and double immunolabeled specimens.

Negative controls omitting the primary antibody were also used.

Double immunofluorescence for LEP100 and QH1 was

performed in some cultured E8 retina explants, which were fixed

and permeabilized with methanol at 220uC for 10 min, rinsed in

PBS-Tr, and incubated in normal goat serum (NGS) diluted 1:10

in BSA-PBS-Tr for 1 h at room temperature. Next, they were

incubated in LEP100 antibody (dilution 1:1 in BSA-PBS-Tr) for

72 h at 4uC, and then in the first secondary antibody (Alexa Fluor

594-conjugated goat anti-mouse IgG diluted 1:1000 in BSA-PBS-

Tr) for 4 h at room temperature. After washing overnight in PBS-

Tr and blocking with NGS for 1 h, explants were incubated in

QH1 antibody (dilution 1:4 in BSA-PBS-Tr) for 24 h at 4uC, and

then in the second secondary antibody (Alexa Fluor 488-

conjugated goat anti-mouse IgG diluted 1:1000 in BSA-PBS-Tr)

for 4 h at room temperature. After washing, retina explants were

mounted on slides and coverslipped with Fluoromount.

Microscopy
Observations of fluorescent specimens were made with a Leica

TCS-SP5 confocal microscope (Leica, Wetzlar, Germany). Stacks

of confocal optical sections of selected microscopic fields were

collected at 0.5–1 mm intervals and projection images were

obtained, stored in TIFF format, and digitally prepared with

Adobe Photoshop (Adobe Systems, San José, CA).

Quantification of anti-iNOS immunofluorescence
intensity in microglial cells

The anti-iNOS immunolabeling was quantified by measuring

the fluorescence intensity in each microglial cell. The fluorescence

intensity of the anti-iNOS labeling was measured on confocal

images of double QH1/anti-iNOS immunolabeled whole-mount-

ed retinas of E8, E9, E14, P4, and adult quails. The quantitative

analysis was made separately in the nerve fiber layer (NFL), inner

plexiform layer (IPL), and outer plexiform layer (OPL) except for

E8 and E9, when no microglia were present in the IPL and OPL.

30 QH1-positive microglial cells were randomly selected for each

age and retinal layer. Once the profile of each cell was obtained in

the QH1 channel, the anti-iNOS channel was converted to

grayscale, and the average intensity of pixels per microglial cell

was measured in this channel by using Image J 1.48i software

(NIH, USA). Pixel intensities ranged from 0 to 255 from the

darkest to the lightest shade, respectively. Mean anti-iNOS

fluorescence intensity per microglial cell was then obtained for

each age and retinal layer.

Quantitative analysis of morphological features of
microglial cells

QH1-labeled microglial cells were morphometrically analyzed

in LPS-treated and control E8 retina explants and in E9 non-

cultured retinas using Image Tool 2.0 software (University of

Texas Health Science Center, San Antonio, TX). Cell profile area,

cell elongation index, and cell rounding index were determined as

indicators of cell morphology to assess changes in the microglial

phenotype compatible with microglial activation after LPS

treatment. The elongation index of a cell was defined as the ratio

of its major axis length to its minor axis length. The cell rounding

index was calculated by the formula 4pA/P2, where A is the cell

profile area in mm2 and P is the cell perimeter in mm. The mean

values of these cell parameters were determined in 10 LPS-treated

E8+24hiv retina explants, 10 control E8+24hiv retina explants,

and 10 non-cultured E9 retinas, based on morphometric analysis

data in three different square microscopic fields of 0.25 mm2

(5006500 mm) in each specimen.

The relative area of the lysosomal compartment profile with

respect to the microglial cell profile area was determined in double

LEP100/QH1 immunolabeled retina explants. An increase in this

cell parameter was considered an indicator of microglial activa-

tion. Three square microscopic fields (2506250 mm) were selected

in each explant, measuring the profile area of all microglial (QH1-

positive) cells in each field and the profile area of lysosomal

(LEP100-positive) compartments within microglial cells. The

relative area of the lysosomal compartment profile (percentage

of the cell profile area occupied by this compartment) was assessed

in each field, determining the mean values in 15 LPS-treated E8+
24hiv retina explants, 15 control E8+24hiv retina explants, and 15

non-cultured E9 retinas.

Determination of iNOS protein expression by western
blot analysis

Western blot analysis was used to determine the expression of

the iNOS protein in LPS-treated and non-treated control E8+
12hiv retina explants. Retina explants were rinsed in PBS and

centrifuged at 1,600 rpm for 3 min at 4uC. After removing PBS,

explants were resuspended in 100 mL lysis buffer (50 mM Tris

HCl, pH 8.0, 0.1 mM EDTA, 0.5% Triton X-100, 12.5 mM b-2-

mercaptoethanol) containing 1X protease inhibitor cocktail

(Roche Applied Science, Indianapolis, IN) for 45 min on ice with

shaking and centrifuged at 13,200 rpm for 15 minutes at 4uC.

After protein quantification (Bio-Rad Protein Assay, Bio-Rad,

Hercules, CA) of the supernatant, 6X SDS reducing buffer

(50 mM Tris-HCl pH 6.8, 6 M urea, 6% b-2-mercaptoethanol,

3% SDS, and 0.003% bromophenol blue) was added, and

Western blot analysis was carried out using standard procedures.

Briefly, 70 mg protein was loaded into each well of a 7.5% SDS-

polyacrylamide gel, which was then run in a mini gel system (Bio-

Rad), transferring proteins onto a polyvinylidene difluoride

membrane (Immun-Blot PVDF Membrane; Bio-Rad) using a

Trans-Blot semi-dry electrophoretic transfer system (Bio-Rad).

Blots were blocked with 5% milk powder and 0.1% Tween-20 in

PBS for 30 minutes and incubated overnight at 4uC with iNOS

antibody (Abcam) diluted 1:500 in blocking solution. After rinsing,

blots were incubated for 2 h at room temperature with peroxidase-

conjugated anti-rabbit IgG (Sigma) diluted 1:1000. Antibody

reaction was revealed by chemiluminescence using Immobilon

Western HRP substrate (Millipore, Billerica, MA, USA) and

iNOS Expression in Developing Quail Retina Microglia
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ChemiDoc-It Imaging System (UVP, Upland, CA). Anti-b-tubulin

antibody was used as loading control for normalization of protein

levels.

Analysis of iNOS mRNA expression
Total RNA was extracted from E8, E9, E14, E16, P4, and adult

non-cultured retinas and from LPS-treated and control E8+12hiv

retina explants using Trizol (Invitrogen, Carlsbad, CA). Briefly,

1 mg RNA from each specimen was used to remove genomic DNA

and synthesize cDNA with a QuantiTect Reverse Transcription

kit (QIAGEN GmbH, Hilden, Germany) as per manufacturer’s

instructions. iNOS gene expression was quantitated by real-time

PCR (RT-PCR) analysis using the QuantiTect SYBR Green PCR

kit (QIAGEN) in the iCycler iQ detection system (Bio-Rad),

amplifying 1 mL cDNA in a 20 mL reaction mixture containing

10 ml SYBR Green Master Mix 2x and 2 ml primer

(Gg_NOS2_1_SG, QuantiTect primer Assay, QIAGEN). The

expression of 18S rRNA (Mn-Rn18s_2_SG, QuantiTect Primer

Assay, QIAGEN) was used as an endogenous control. RT-PCR

conditions for amplification of iNOS and 18S rRNA genes were

40 cycles, which consisted of denaturation (95uC, 15 s), annealing

(55uC, 30 s) and elongation (72uC, 30 s). In the data analysis,

sample amplification curves were represented in triplicate for both

the iNOS gene and endogenous control gene, determining the

cycle threshold (CT) in each case. The 22DDCt method [57] was

used to calculate differences (fold changes) in the expression of

iNOS gene between E8, E9, E14, E16, P4, and adult non-cultured

retinas, as well as between LPS-treated and non-treated retina

explants. iNOS RT-PCR products were run on 1.5% agarose gel,

and the bands were digitalized with the PhotoDoc-It imaging

system (UVP) and referred to the corresponding 18S rRNA bands.

Monitoring NO production in microglial cells of cultured
retina explants

NO production by microglial cells was monitored in exper-

iments with LPS-treated and control E8+12hiv retina explants by

using the membrane-permeable fluorophore diaminorhodamine-

4M acetoxymethyl ester (DAR-4M AM, Calbiochem, Darmstadt,

Germany), which is a fluorescent indicator sensitive to the NO

presence [58,59]. E8 retina explants cultured for 12 hiv in the

Figure 1. iNOS immunolabeling of amoeboid microglia in retinas of quail embryos at 8 and 9 days of incubation. Confocal
micrographs of QH1 (green) and anti-iNOS (red) double-immunolabeled amoeboid microglial cells in whole-mounted retinas (WM) and retinal cross-
sections (CS) of quail embryos at 8 (E8, A, B) and 9 days of incubation (E9, C, D). Cell nuclei in retinal cross sections are stained with Hoechst (blue). All
QH1-positive amoeboid microglial cells in E8 and E9 embryo retinas are located in the nerve fiber layer (NFL) and are also immunolabeled with the
anti-iNOS antibody. Anti-iNOS labeling of microglial cells is similar to QH1 labeling but with some differences. Thus, QH1 labels the entire microglial
cell profile, including lamellipodia, whereas anti-iNOS labeling is exclusively cytoplasmic in distinct zones of the soma and cell processes. OPL: outer
plexiform layer; INL: inner nuclear layer; IPL: inner plexiform layer; GCL: ganglion cell layer. Scale bar, 50 mm for A and C; 60 mm for B and D.
doi:10.1371/journal.pone.0106048.g001
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presence (5 mg/mL) or absence of LPS, as described above, were

treated with 5 mM DAR-4M AM and 0.4 mg/ml Alexa Fluor-488

conjugated QH1 antibody (AF488-QH1) for 1 h at 37uC. AF488-

QH1 marked microglial cells in the explants with strong green

fluorescent labeling without affecting their physiological behavior

[54], whereas DAR-4M AM labeled NO-producing cells with red

fluorescence. After AF488-QH1 and DAR-4M AM treatment, the

explants were fixed in 4% paraformaldehyde in 0.1 M phosphate

buffer for 45 min and coverslipped with Fluoromount G.

Observations of wholemounted explants were made using a Zeiss

Axiophot microscope (Zeiss, Oberkochen, Germany) equipped for

epifluorescence, obtaining micrographs with a Zeiss AxioCam

digital camera.

Statistical analysis
Data are reported as means 6 standard error of the mean

(SEM). Statistical differences were determined by one-way analysis

of variance (ANOVA) followed by Tukey test for multiple

comparisons. All analyses were performed using IBM SPSS

statistics software version 20.0.0 for Windows (Chicago, IL, USA).

Differences were considered significant at P,0.05.

Results

iNOS immunolabeling of amoeboid microglia migrating
tangentially in the vitreal part of the quail embryo retina

Previous studies by our group showed that amoeboid microglial

cells enter the retina of quail embryos from the pecten/optic nerve

head area between E7 and hatching (E16) and migrate tangentially

in a central-to-peripheral direction on the vitreal part of the

embryonic retina [60–62]. In the present study, immunofluores-

cence analysis in E8 and E9 quail embryo retinas showed that cells

immunolabeled with the monoclonal antibody QH1, which

recognizes microglial cells, were simultaneously immunostained

with the polyclonal anti-iNOS antibody, whereas retinal neurons

and Müller cells were not immunostained (Figure 1). No difference

in results was observed between the use of two different polyclonal

anti-iNOS antibodies (see Material and Methods), and cell labeling

for iNOS was identical with single anti-iNOS immunofluorescence

(Figure 2A) and with double QH1/iNOS immunostaining.

Negative controls omitting the primary antibody showed no

labeled cells (Figure 2B). Therefore, iNOS immunolabeling was

specific to microglial cells.

Microglial cells in E8 retinas were exclusively amoeboid and

localized in the NFL, where they were migrating tangentially from

the center to the periphery [60,62]. These amoeboid microglial

cells were strongly labeled with anti-iNOS in both whole-mounted

retinas (Figure 1A) and retinal cross sections (Figure 1B). QH1/

iNOS double immunolabeling of E9 retinas also revealed iNOS-

positive amoeboid microglial cells in the vitreal part of the retina

(Figure 1C, D), although they were more abundant than in E8

retinas and showed a lower anti-iNOS fluorescence intensity

(Figures 1 and 3).The iNOS immunolabeling of amoeboid

microglial cells bore some resemblance to the QH1 immunostain-

ing, but they were clearly different (compare QH1 and iNOS

micrographs in Figure 1A, C). Thus, QH1 labeling showed the

entire microglial cell profile, including lamellipodia (Figure 1A,

QH1 panel), because this antibody labels both the cytoplasmic

structures and the cell membrane of microglial cells [61].

However, anti-iNOS labeling was exclusively cytoplasmic in

discrete zones of the soma and some cell processes but lamellipodia

were not immunostained (Figure 1A, iNOS panel). iNOS-positive

microglial cytoplasmic components were always QH1-positive. In

addition, QH1-positive vitreal macrophages adhering to the

pecten surface were strongly iNOS-positive, whereas endothelial

cells of the pecten blood vessels were strongly immunolabeled with

QH1 but very weakly immunostained with anti-iNOS (Figure 4), a

further difference between the iNOS and QH1 immunolabeling.

Decreased iNOS immunolabeling in ramified microglial
cells of the developing and adult quail retina

Between E9 and P3, microglial cells migrate radially in a vitreal-

to-scleral direction to reach their final location in the IPL and

OPL, where they ramify [60,62,63]. Thus, in E14 quail embryo

retinas, many microglial cells had already reached the IPL and

OPL (Figure 5). In the NFL, microglial cells continued to have an

amoeboid appearance, with morphological features similar to

those seen at E8 and E9, and they showed strong iNOS

immunolabeling (Figures 3 and 5A). In the IPL, abundant

ramifying microglial cells were observed, with a weaker iNOS

labeling in comparison to the amoeboid microglia in the NFL

(Figures 3 and 5B), suggesting that iNOS expression was

Figure 2. iNOS immunolabeling controls. Representative confocal images of single immunolabeling (IL) for iNOS (A) and its negative control,
omitting the primary antibody (B) from whole-mounted retinas of quail embryos at 8 days of incubation. Note that the single iNOS labeling is similar
to the iNOS labeling in double immunolabeled specimens shown in figure 1A, whereas no labeling is seen when anti-iNOS was omitted. Scale bar,
25 mm.
doi:10.1371/journal.pone.0106048.g002

iNOS Expression in Developing Quail Retina Microglia
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downregulated as amoeboid cells differentiated into ramified

microglia. Similar observations were made in the OPL, although

microglial cells were scarce in this layer and were less ramified

than in the IPL (Figures 3 and 5C).

Microglial cells in the NFL, IPL, and OPL of P4 retinas were

more profusely ramified than at E14 (Figure 6). Interestingly,

iNOS immunostaining of ramified microglia was significantly

lower in the NFL, IPL and OPL of P4 retinas than in the same

layers at E14 (Figures 3 and 6).

In the adult retina, microglial cells had achieved their mature

ramification pattern in the NFL, IPL, and OPL [64] (Figure 7).

Cell processes of ramified microglia were parallel to the course of

ganglion cell axon fascicles in the NFL (Figure 7A, QH1 panel)

but were oriented in all directions in the IPL (Figure 7B, QH1

panel) and OPL (Figure 7C, QH1 panel), where microglial cells

had a star-like appearance. The iNOS immunolabeling of mature

ramified microglia was significantly lower in the IPL and OPL of

adult retinas than in these layers at P4 (Figures 3 and 7B, C, iNOS

panels). However, iNOS immunostaining of the elongated

microglial cells in the NFL was stronger at adulthood than at P4

(Figures 3 and 7A, iNOS panel).

iNOS mRNA expression throughout quail retina
development

RT-PCR analysis of iNOS mRNA from E8, E9, E14, E16, P4

and adult retinas demonstrated iNOS gene expression in the quail

retina during embryonic and postnatal development and in

adulthood (Figure 8A). We highlight that the iNOS mRNA level

in E8 retinas, as quantified by RT-PCR analysis, did not

significantly differ from that in developing retinas from E9 onward

and in adult retinas (Figure 8B), contrasting with the reduction in

iNOS immunolabeling from E9 onward (Figure 3). These

apparently contradictory results can be explained by the presence

of relatively few microglial cells in E8 retinas and the subsequent

increase in their number with higher age [60]. Given that the

amount of total RNA used to synthesize cDNA and amplify iNOS

gene cDNA was always the same, the higher concentration of

iNOS mRNA per cell from a low number of E8 retina microglial

cells would match the lower amount of mRNA per cell from a

higher number of microglial cells in more developed retinas.

Increased activation of amoeboid microglia after in vitro
LPS treatment of explants from E8 quail embryo retina

Strong iNOS immunolabeling of amoeboid microglia in E8

quail embryo retinas suggest some degree of activation, as

described in the CNS of developing mice [40,41]. In order to

test whether amoeboid microglia were able to increase their

activation degree in response to toxic exogenous factors, exper-

iments were made on organotypic cultures of E8+24hiv retina

explants incubated in the presence of LPS.

Microglial cells in non-cultured E8 retina explants were

exclusively located in the NFL and showed a polarized morpho-

logical appearance typical of tangentially-migrating amoeboid

microglia (Fig. 1A), with an elongated cell body bearing two cell

processes in opposite poles and broad lamellipodia, as previously

described [54]. After LPS treatment for 24 hiv, microglia in E8

retina explants changed their morphological features, showing a

more rounded cell body with scarce, shorter cell processes and

infrequent lamellipodia (Figure 9A). Control E8+24hiv explants

were cultured in medium without LPS and showed that microglial

cells retained an elongated morphology (Figure 9B) similar to that

of microglia in non-cultured E8 retina explants. Non-cultured

explants from E9 retinas were also used to compare the

morphological appearance of microglia in control E8+24hiv

explants (Figure 9B) with that in the non-cultured retina at an

equivalent developmental age (Figure 9C). Morphological polar-

ization of microglial cells in control E8+24hiv explants was similar

to that in non-cultured E9 retina explants, although lamellipodia

were noticeably less abundant in the former (compare B and C in

Figure 9).

Morphometric analysis revealed that the microglial cell area was

similar between LPS-treated and control E8+24hiv explants but

significantly higher in E9 retinas (Figure 9D). These differences in

cell area appear attributable to the presence of abundant broad

lamellipodia in microglial cells of non-cultured E9 retinas, which

were retracted during in vitro culture of E8 explants. The cell

elongation index was significantly lower in LPS-treated E8+24hiv

Figure 3. Anti-iNOS immunofluorescence intensity in microg-
lial cells of quail embryo retinas from 8 days of incubation to
adulthood. The histogram represents anti-iNOS fluorescence intensi-
ties per microglial cell obtained in the nerve fiber layer (NFL), inner
plexiform layer (IPL) and outer plexiform layer (OPL) on confocal
micrographs of double QH1/anti-iNOS immunolabeled whole-mounted
retinas of quail embryos at 8 days of incubation (E8), E9, E14, and of 4-
day-old (P4) and adult quails. Pixel intensities ranged from 0 (the
darkest shade) to 255 (the lightest shade). Data are expressed as means
6 SEM (n = 30 cells for each age and retinal layer). Asterisks indicate
significant differences (* p,0.05 and ** p,0.001, one-way ANOVA
followed by Tukey test for multiple comparisons). Note that iNOS
immunofluorescence intensities of microglial cells in the NFL are higher
than in the IPL and OPL and show the highest value at E8, decreasing
until P4 and then increasing in adulthood. In the IPL and OPL, the
highest fluorescence intensity is observed at E14, with a significant
decrease until adulthood. No data are shown for iNOS-immunofluores-
cence intensity in the IPL and OPL at E8 and E9 because no microglial
cells were present in these layers at these ages.
doi:10.1371/journal.pone.0106048.g003
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Figure 4. Pecten-adhered vitreal macrophages are also positive for iNOS immunostaining. Confocal image of a QH1 (green) and anti-
iNOS (red) double-immunostained cross section of the pecten from a quail embryo at 8 days of incubation. Note that QH1-positive vitreal
macrophages adhered to the pecten surface are strongly iNOS-positive, whereas endothelial cells of blood vessels (arrows) within the pecten show
strong QH1 labeling but are weakly immunostained with anti-iNOS. Scale bar, 25 mm.
doi:10.1371/journal.pone.0106048.g004

Figure 5. Decreased iNOS immunolabeling in ramifying microglial cells at the end of embryonic development of the quail retina.
Representative confocal images of QH1 (green) and anti-iNOS (red) double-immunolabeled microglial cells in a whole-mounted retina (WM, A-C) and
a retinal cross section (CS, D) of quail embryos at 14 days of incubation (E14). Cell nuclei in the retinal cross section are stained with Hoechst (blue). In
the nerve fiber layer (NFL), microglial cells have an amoeboid appearance with strong iNOS immunolabeling (A, D). However, in the inner plexiform
layer (IPL) and outer plexiform layer (OPL), ramifying microglial cells have a weaker iNOS labeling (B-D), suggesting that iNOS expression becomes
downregulated as amoeboid microglia differentiate into ramified microglia. INL: inner nuclear layer; GCL: ganglion cell layer. Scale bar, 50 mm for A-C;
60 mm for D.
doi:10.1371/journal.pone.0106048.g005
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explants than in control E8+24hiv explants or E9 retinas

(Figure 9E), whereas the cell rounding index was significantly

higher in the former (Figure 9F). Accordingly, LPS treatment of

retina explants induced important changes in the phenotype of

microglial cells compatible with increased activation.

Given that the activation process induces an increase in

lysosomal protein synthesis [65], microglial activation after LPS

treatment of E8 retina explants was also investigated by analyzing

the lysosomal compartment revealed by LEP100 antibody

immunolabeling (Figure 10). This compartment was mainly

located in the cell body of microglial cells and was clearly larger

in LPS-treated E8+24hiv explants (Figure 10A, A9) than in control

E8+24hiv explants (Figure 10B, B9) or E9 retinas (Figure 10C, C9).

Morphometric analysis confirmed these observations, showing that

the relative area occupied by the lysosomal compartment with

respect to the total microglial cell area was significantly higher

(around 15%) in LPS-treated E8+24hiv explants than in the

control or E9 retinas (Figure 10D). According to these results,

amoeboid microglia in E8 retina explants increased their

activation after LPS treatment for 24 hiv.

A study was also conducted of variations in the morphology of

microglial cells after LPS treatment of retinal explants for 24 hiv.

The typical rounded microglial phenotype of activated cells was

already observed at 1 hiv, indicating that microglial activation was

induced by LPS soon after its addition to the culture medium and

was subsequently maintained (results not shown).

Increased iNOS expression in activated amoeboid
microglia of LPS-treated retina explants

A major difference in the iNOS labeling of microglia between

control and LPS-treated E8 explants was observed at 12 hiv

(compare A with B in Figure 11). Therefore, this culture time was

chosen for western blot analysis of possible differences in iNOS

protein levels between non-treated and LPS-treated explants.

Immunoblots of retina explant lysates showed that a 135-kD band,

corresponding to the iNOS protein, was noticeably more intense

in LPS-treated versus control explants (Figure 11C). Determina-

tion of iNOS mRNA expression in E8 explants by RT-PCR

showed that iNOS mRNA levels were more than two-fold higher

Figure 6. Weak iNOS immunolabeling of ramified microglia in the developing quail retina during the first post-hatching week.
Representative confocal images of QH1 (green) and anti-iNOS (red) double-immunolabeled microglial cells in a whole-mounted retina (WM, A-C) and
retinal cross sections (CS, D) from 4-day-old quails (P4). Hoechst staining was used to visualize nuclei (blue) in the retinal cross section. Microglial cells
at this developmental stage are mainly located in the nerve fiber layer (NFL, A), inner plexiform layer (IPL, B), and outer plexiform layer (OPL, C) and
show a more profuse ramification and a similar anti-iNOS immunostaining in comparison to ramifying microglial cells in retinas from embryos at 14
days of incubation. During the first post-hatching week, some microglial cells can be seen in the inner nuclear layer (INL), apparently traversing this
layer towards the OPL (D). GCL: ganglion cell layer. Scale bar, 50 mm for A-C; 65 mm for D.
doi:10.1371/journal.pone.0106048.g006
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in LPS-treated versus non-treated explants (Figure 11D, E),

reflecting an upregulation of the iNOS gene after LPS treatment.

DAR-4M AM, a reliable fluorescent indicator of subcellular NO

production by iNOS [58,59], was used to determine the true

production of NO in amoeboid microglial cells of control and

LPS-treated E8+12hiv retina explants, which were previously

shown to express iNOS. DAR-4M AM fluorescence was detected

in elongated amoeboid microglial cells of non-treated control E8+
12hiv explants (Figure 12A), reflecting NO production in these

cells, and was also detected in activated rounded microglial cells of

LPS-treated E8+12hiv explants (Figure 12B). DAR-4M AM

fluorescence was not detected in non-QH1 labeled cells in either

control or LPS-treated explants, verifying that NO production was

specific to microglial cells. The morphology of DAR-4M AM

fluorescence was variable. Thus, a DAR-4M AM-fluorescent mass

filling the entire cell body was observed in some cells (right inserts

in Figure 12A, B), whereas others had cell bodies containing more

or less rounded DAR-4M AM-fluorescent masses of different sizes

(left inserts in Figure 12A, B). At any rate, the appearance of

DAR-4M AM fluorescence in each microglial cell differed from

that of the QH1-labeling.

Taken together, our results demonstrate that LPS treatment of

E8 retina explants induced a higher activation degree in amoeboid

microglia, which resulted in significant iNOS upregulation.

Discussion

The results of this study demonstrate that amoeboid microglia

express iNOS and produce NO during normal embryonic

development of the quail retina. Given the association between

iNOS expression and microglial activation [13,34,37], these

findings indicate a certain degree of activation (‘‘baseline

activation’’) in amoeboid microglia during normal development.

iNOS expression becomes downregulated as amoeboid microglia

differentiate into ramified microglia, suggesting a decrease in this

baseline activation during the microglial differentiation process.

We also found that LPS treatment of organotypic cultures of E8

retina explants in vitro induces amoeboid microglia to change

their morphology, increase their lysosomal compartment, and

upregulate their iNOS expression, with a concomitant increase in

NO production. We conclude from these results that amoeboid

Figure 7. iNOS immunolabeling of ramified microglial cells in the adult quail retina is weak in the plexiform layers and stronger in
the nerve fiber layer. Representative confocal images of a QH1 (green) and anti-iNOS (red) double-immunolabeled adult whole-mounted retina
showing mature ramified microglial cells in the nerve fiber layer (NFL, A), inner plexiform layer (IPL, B), and outer plexiform layer (OPL, C). In the NFL,
microglial cell processes are parallel to the course of ganglion cell axon fascicles (not shown) and show stronger iNOS immunolabeling in comparison
to ramified microglial cells in the IPL and OPL, whose cell processes are oriented in all directions. Microglial iNOS immunostaining in the IPL and OPL
is similar to that in retinas from quail embryos at 14 days of incubation and from 4-day-old quails. Scale bar, 50 mm.
doi:10.1371/journal.pone.0106048.g007
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microglia in the quail embryo retina increase their activation level

in response to the action of LPS.

iNOS expression and NO production by normal
amoeboid microglia

Non-pathological amoeboid microglia migrating in the NFL of

E8 and E9 quail embryo retina were shown to express iNOS and

produce NO. These observations were made after specifically

immunolabeling amoeboid microglia with polyclonal antibodies

against mouse iNOS, which are described by the manufacturers as

showing reactivity with chick iNOS. It could be argued that these

anti-iNOS polyclonal antibodies might have cross-reacted with an

antigen distinct from iNOS, given the heterogeneity of polyclonal

antibodies. However, iNOS expression in amoeboid microglia of

developing quail retina was confirmed by the results of three other

investigations. First, analysis of the iNOS mRNA by RT-PCR

revealed iNOS expression in normal developing retinas, which

presumably corresponds to microglial cells because the NOS

expressed by neurons is generally nNOS [36]. Second, in vitro
experiments using organotypic cultures of E8 quail embryo retina

explants incubated for 24 hiv showed that amoeboid microglia

upregulate iNOS expression in response to LPS treatment, as

revealed by: their increased anti-iNOS immunolabeling, greater

western blot-determined iNOS protein content, and higher RT-

PCR-analyzed iNOS mRNA levels. Third, the specific microglial

production of NO, the final molecule catalyzed by iNOS action,

was revealed by fluorescent probe using DAR-4M AM. This

fluorophore has proven to be a reliable indicator of NO

production [58,59] and has been employed in numerous studies

[66–69]; therefore, the specific DAR-4M AM labeling of

microglial cells can be considered conclusive evidence of iNOS

expression in normal amoeboid microglia. In the present study,

DAR-4M AM was used in E8+12hiv retina explants to avoid

technical problems inherent to its in vivo utilization. Given the

physiologic behavior of microglial cells in E8 quail retina explants

up to 24 hiv [54], microglial NO production in these explants

would be representative of the production in vivo. The upregula-

tion of iNOS expression in response to LPS treatment provides

further indirect evidence of iNOS expression in normal retina

amoeboid microglia. This upregulation is consistent with the well-

documented effect of LPS in other systems [19,50,52,70] and was

demonstrated in our study by anti-iNOS immunocytochemistry,

western blot, quantitative RT-PCR, and DAR-4M AM-based NO

detection, validating the technical procedure used to reveal iNOS

expression in microglial cells of in vivo retinas.

The finding of iNOS expression in amoeboid microglia during

normal retina development conflicts with the widely held view that

it is only expressed by microglia in pathological events as a

response to inflammatory factors [17,18,34,36,52], although iNOS

expression has also been reported in the normal adult human

retina [71]. A previous study [72] showed that NOS activity was

elevated in the retinas of E8-E9 chick embryo retinas and

decreased thereafter. Various retinal neurons are known to express

nNOS in developing and adult chicks [73–77], and eNOS has

been detected in certain neuronal populations and in Müller cells

[73,78]. However, there has been no previous report of iNOS

expression in any cell type of the normal retina of avian species.

Our results show that iNOS is expressed in microglia of the non-

pathological quail retina, mainly during development. Another

study using NADPH-diaphorase histochemistry revealed NOS

activity in amoeboid microglia during the postnatal development

of rat corpus callosum and internal and external capsules [79].

This was attributed by the authors to iNOS, given the absence of

Figure 8. iNOS gene is expressed in the quail retina during embryonic and post-hatching development and adulthood. A.
Representative gel from three independent experiments of agarose gel electrophoresis of iNOS mRNA by RT-PCR of cDNAs prepared from quail
retinas of different embryonic (E8, E9, E14 and E16) and post-hatching (P4 and adulthood) ages. iNOS RT-PCR products at each age are referred to the
corresponding 18S rRNA bands. Expression of the iNOS gene is observed in retinas at all tested ages (embryonic, postnatal and adulthood). B.
Quantitative analysis of iNOS mRNA expression in quail retinas of different ages, as shown by RT-PCR of six RT-PCR experiments. The histogram
represents changes in the iNOS mRNA levels (mean 6 SEM) at the different ages with respect to E8. No significant differences are observed between
the different ages (one-way ANOVA followed by Tukey test for multiple comparisons).
doi:10.1371/journal.pone.0106048.g008
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nNOS immunolabeling in the microglia. Recently, iNOS expres-

sion was also reported in amoeboid microglia of prenatal rat

neocortex [38] and 3-day-old mouse whole brain [39]. Neverthe-

less, a recent study showed that iNOS is only detected in rare

microglial cells in the corpus callosum of postnatal transgenic mice

expressing the fluorescent reporter tdTomato and CRE recombi-

nase under the control of iNOS gene regulatory regions [52].

Constitutive iNOS expression has also been described in other

non-pathological brain cell types, such as early differentiating

olfactory neurons [80] and other neurons scattered in several brain

regions [52]. Hence, these earlier reports and the present results

demonstrate that iNOS can be constitutively expressed in different

CNS cell types, including microglia, during development and

adulthood.

NO synthesized by the action of iNOS in amoeboid microglia

would play some physiological role in the normal developing

retina. It has been proposed that NO produced by non-microglial

cell types in the developing chick retina [73,75] participates in

various functions, including regulation of synaptogenesis, refine-

ment of neural circuits, and control over the arrest of neural cell

proliferation at the start of the differentiation process [66,81–83].

NO released by microglia in the developing quail retina might also

contribute to these functions via paracrine mechanisms. In

addition, naturally-occurring neuronal death observed in the quail

embryo retina from E7 onward [62] coincides in time with the

stronger iNOS immunolabeling of amoeboid microglial cells.

Therefore, microglial NO may be related to neuronal death, and

in vitro studies have shown that microglia can induce neuronal

death by a mechanism involving NO [22,23,84]. The apoptotic

effects of microglial NO may be mediated by peroxynitrite, which

is produced by the oxidation of NO with superoxide [27,33]. It has

been demonstrated that naturally-occurring neuronal death is

mediated by superoxide production in the developing mouse

cerebellum and hippocampus [85,86]. Hence, it is not unreason-

able to conjecture that peroxynitrite produced by the simultaneous

release of NO and superoxide in amoeboid microglial cells would

play a role in the mechanism of naturally-occurring neuronal

death in the developing quail retina. However, it cannot be ruled

out that NO also favors neuronal survival, because in vitro studies

have demonstrated its participation in the inhibition of the

apoptotic elimination of embryonic neurons [30,87]. In fact, it has

been suggested that NO has opposite effects on neuronal death

depending on its concentration [28,37]. Microglial NO might be

also involved in the phagocytosis of dead neuron debris, given the

recent observation by Kakita et al. [88] that NO production is a

key regulator of microglial phagocytosis.

Figure 9. In vitro LPS treatment of quail embryo retina explants induces morphological changes in amoeboid microglia compatible
with activation. A, B. Representative images of a pair of QH1 immunolabeled retina explants from a quail embryo at 8 days of incubation cultured
for 24 hrs in vitro (E8+24hiv) in medium containing LPS (LPS, A) and in LPS-free medium (CTRL, B). QH1-positive microglial cells in the LPS-treated
explant are more rounded than those in the control explant. C. QH1 immunolabeled non-cultured retina explant from a quail embryo at 9 days of
incubation (E9), showing the typical polarized morphology of amoeboid microglia migrating tangentially in the nerve fiber layer, with elongated cell
body, polarized cell processes, and broad lamellipodia. Note that the microglial cell morphology is similar in the control E8+24hiv retina explant (B) to
that in the non-cultured E9 retina explant (C), although lamellipodia are noticeably less abundant in the former. D-F. Morphometric analysis of cell
area (D), elongation index (E), and cell rounding index (F) for microglial cells in LPS-treated E8+24hiv (red bars), non-treated control E8+24hiv (blue
bars), and non-cultured E9 (green bars) retina explants. Data are expressed as means 6 SEM (n = 30 for each). Asterisks indicate significant differences
(* p,0.05 and ** p,0.001, one-way ANOVA followed by Tukey test for multiple comparisons). Scale bar, 50 mm.
doi:10.1371/journal.pone.0106048.g009
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Besides its possible paracrine effects, microglial NO might have

autocrine effects on the microglial cells themselves and play a role

in their migration and proliferation. Microglial migration occurs in

the quail embryo retina from E7 onward [60–62], coinciding in

time with the stronger iNOS immunolabeling of microglial cells

reported here. A hypothetical relationship between NO and

microglial migration is supported by findings on the role of this

molecule in the migration of other cell types, such as endothelial

cells [68,89,90] and cerebellar neurons [91]. The proliferation of

microglia also coincides in time with their stronger iNOS

immunolabeling, because microglial cells undergo mitosis simul-

taneously with their migratory activity [92], and mitosis regulation

may be related to NO production. In this respect, it has been

suggested that NO is involved in microglial proliferation in the

injured prenatal rat brain [46]. Nevertheless, the chronological

coincidence between two developmental processes does not prove

a causal relationship, and further studies are required to elucidate

the possible role of NO in microglial migration and proliferation.

According to the present findings, iNOS immunolabeling is

strong in amoeboid microglia of E8 quail embryo retina and

continues to be present in ramifying and ramified microglia in

more advanced developmental stages and adulthood, although at a

much lower intensity. In general, iNOS immunolabeling is

stronger in microglial cells migrating tangentially in the vitreal

Figure 10. LPS treatment markedly increases the lysosomal compartment in amoeboid microglia of quail embryo retina explants.
Confocal images of QH1 (green) and LEP100 (specific lysosomal membrane marker, red) double-immunolabeled amoeboid microglial cells in retina
explants from quail embryos at 8 days of incubation cultured for 24 hrs in vitro (E8+24hiv) in medium containing LPS (LPS, A, A9) and in LPS-free
medium (CTRL, B, B9). Double-immunolabeled microglial cells in non-cultured retina explants from quail embryos at 9 days of incubation (E9) are
shown in C and C9. The lysosomal compartment is clearly larger in the LPS-treated E8+24hiv retina explant than in control E8+24hiv and non-cultured
E9 retina explants. D. Morphometric analysis shows that the relative area of the microglial cell lysosomal compartment is significantly higher in LPS-
treated E8+24hiv retina explants (red bar) than in non-treated control E8+24hiv (blue bar) or non-cultured E9 (green bar) retina explants. Data are
expressed as means 6 SEM (n = 45 for each). Asterisks indicate significant differences (* p,0.05 and ** p,0.001, one-way ANOVA followed by Tukey
test for multiple comparisons). Scale bar, 50 mm for A-C; 23 mm for A9-C9.
doi:10.1371/journal.pone.0106048.g010
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part of the retina and weaker in radially-migrating microglia,

coinciding with the start of ramification [63], suggesting a role for

NO in the tangential migration of microglia. The weak iNOS

immunolabeling in ramified microglia of the adult quail retina

implies that iNOS expression is downregulated but continues to be

present, as corroborated by our RT-PCR results. The role of NO

produced by microglial iNOS in the adult retina is not known and

warrants further investigation, although it may contribute to the

same NO functions as those of the nNOS expressed in a variety of

retinal neurons [76,77].

LPS-induced increased activation of amoeboid microglia
iNOS is considered to be a microglial activation marker [93];

therefore, its expression in amoeboid microglia of quail embryo

retina supports a certain degree of activation of these cells during

normal development. In a strict sense, the concept of microglial

activation is reserved for the defensive reaction of ramified

microglia against pathological stimuli in the adult CNS. It is

characterized by a change from a ramified morphology to a

macrophage-like rounded appearance, with increased prolifera-

tion, upregulated expression of some surface receptors, and the

production of various factors, including growth factors, cytokines

Figure 11. iNOS gene expression is upregulated in LPS-treated quail embryo retina explants cultured for 12 hrs in vitro (hiv). A, B.
Confocal images of QH1 (green) and anti-iNOS (red) double immunostained microglial cells in non-treated control (CTRL, A) and LPS-treated (LPS, B)
retina explants from quail embryos at 8 days of incubation cultured for 12 hiv (E8+12hiv). The iNOS labeling is higher in LPS-treated versus control
explants. C. Western blot analysis results, representative of three independent experiments, for iNOS protein levels in non-treated control (CTRL) and
LPS-treated (LPS) E8+12hiv retina explants. The 135 kDa band, which corresponds to the iNOS protein, is noticeably more intense in LPS-treated
versus control explants. b-tubulin antibody was used as a loading control. D. Representative gel of three independent experiments on agarose gel
electrophoresis of iNOS mRNA, showing a more intense band in LPS-treated explants (LPS) than in control explants (CTRL). iNOS amplification
products are referred to the corresponding 18S rRNA bands. E. Quantitative analysis of iNOS mRNA expression by real-time PCR. The histogram
represents changes in the iNOS mRNA levels of LPS-treated E8+12hiv retina explants with respect to non-treated explants (mean 6 SEM) obtained
from three real-time PCR experiments. iNOS mRNA levels are more than two-fold higher in LPS-treated explants than non-treated explants. Scale bar,
25 mm.
doi:10.1371/journal.pone.0106048.g011
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(e.g., IL-1b, TNF-a and IFN-c), NO, and ROS [14,94,95]. These

factors operate in the microenvironment around activated

microglia to restore CNS parenchymal homeostasis [11]. Microg-

lial activation in the adult brain has been considered as almost a

retracing in reverse of events observed during brain development

[96]. Therefore, in a wider sense, the term activation has also been

applied to immature amoeboid microglia during normal CNS

development [39–41,97]. This amoeboid microglia activation is

triggered by non-pathological signals in the normal developing

CNS microenvironment, which stimulate the production of similar

factors to those released by activated microglia in the pathological

adult CNS, such as cytokines, NO, and ROS. These factors have a

role in normal CNS development, contributing to various

developmental processes, including neurogenesis and oligoden-

drogenesis [97], promotion of neuronal survival [98], neuronal

commitment to a death fate [99], and execution of engulfment-

mediated neuronal death [85,86]. Microglial activation in the

context of normal developmental processes has been referred to as

constitutive activation [100], which induces the release of factors at

appropriate concentrations for specific developmental functions.

Moreover, activated amoeboid microglia in the developing CNS

can be additionally stimulated by pathological stimuli or nerve

injury, inducing a greater activation degree (over-activation) that

gives rise to the massive production of cytokines and ROS,

resulting in alterations of normal development. In this respect, the

present results show that LPS treatment of in vitro cultured E8

retina explants induces iNOS upregulation in amoeboid microglia,

as demonstrated by anti-iNOS immunolabeling, western-blot, and

RT-PCR, suggesting that their activation level increases in

response to LPS, a classic stimulant of microglial activation and

inductor of iNOS that is frequently used in in vitro
[19,50,70,84,101,102] and in vivo [52,103–105] studies.

The increased activation of microglia in LPS-treated E8 retina

explants was verified by analysis of the morphology of microglial

cells, following previously reported criteria [38,98]. The cell

rounding index was significantly higher in microglia after LPS

treatment, compatible with increased activation, and the relative

area of the lysosomal compartment was significantly higher in

LPS-treated versus control explants. According to these findings,

microglia, which show a baseline activation degree in non-treated

E8 retina explants, increase their activation level in response to

LPS treatment, upregulating their iNOS expression and NO

production.

Acknowledgments

The QH1 (developed by F. Dieterlen-Lièvre) and LEP100 (developed by
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Figure 12. Microglial cells produce NO in quail embryo retina explants from quail embryos at 8 days of incubation cultured for
12 hrs in vitro (E8+12hiv). Representative images of QH1 (green) immunolabeled amoeboid microglia in non-treated control (CTRL, A) and LPS-
treated (LPS, B) E8+12hiv retina explants cultured in the presence of DAR-4M AM (DAR, red), a reliable fluorescent indicator of subcellular NO
production by iNOS. All microglial cells are specifically labeled with DAR in the LPS-treated and control explants. An entirely DAR-fluorescent cell
body is observed in some cells (right inserts), whereas other cell bodies contain several distinct DAR-fluorescent masses of variable size (left inserts).
Scale bar, 50 mm; 20 mm for inserts.
doi:10.1371/journal.pone.0106048.g012
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