
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

The speed of quantum and classical learning for
performing the kth root of NOT

Daniel Manzano1,2,4, Marcin Pawłowski3 and Časlav Brukner4,5
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Abstract. We consider quantum learning machines—quantum computers
that modify themselves in order to improve their performance in some
way—that are trained to perform certain classical task, i.e. to execute a
function that takes classical bits as input and returns classical bits as output. This
allows a fair comparison between learning efficiency of quantum and classical
learning machines in terms of the number of iterations required for completion of
learning. We find an explicit example of the task for which numerical simulations
show that quantum learning is faster than its classical counterpart. The task
is extraction of the kth root of NOT (NOT = logical negation), with k = 2m

and m ∈ N. The reason for this speed-up is that the classical machine requires
memory of size log k = m to accomplish the learning, while the memory of a
single qubit is sufficient for the quantum machine for any k.
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Learning can be defined as the changes in a system that result in an improved performance over
time on tasks that are similar to those performed in the system’s previous history. Although
learning is often thought of as a property associated with living things, machines or computers
are also able to modify their own algorithms as a result of training experiences. This is the main
subject of the broad field of ‘machine learning’. Recent progress in quantum communication
and quantum computation [1]—development of novel and efficient ways to process information
on the basis of laws of quantum theory—provides motivations to generalize the theory of
machine learning into the quantum domain [2]. For example, quantum learning algorithms have
been developed for extracting information from a ‘black-box’ oracle for an unknown Boolean
function [3, 4].

The main ingredient of the quantum machine is a feedback system that is capable of
modifying its initial quantum algorithm in response to interaction with a ‘teacher’ such that it
yields better approximations to the intended quantum algorithm. In the literature there have been
intensive and extensive studies by employing feedback systems. They include quantum neural
networks [5], estimation of quantum states [7] and automatic engineering of quantum states
of molecules or light with a genetic algorithm [8]–[10]. Quantum neural networks deal with
many-body quantum systems and refer to the class of neural network models, which explicitly
use concepts from quantum computing to simulate biological neural networks [6]. Standard
state-engineering schemes optimize unitary transformations to produce a given target quantum
state. The present approach of quantum automatic control contrasts with these methods. Instead
of quantum state it optimizes quantum operations (e.g. unitary transformations) to perform a
given quantum information task. It is also different from the problems studied in [3, 4], where
one does not learn a task but rather a specific property of a black-box oracle.

An interesting question arises in this context: (i) can a quantum machine learn to perform
a given quantum algorithm? This question has been answered affirmative for special tasks,
such as quantum pattern recognition [11], matching of unknown quantum states [12] and for
learning quantum computational algorithms such as the Deutch algorithm [13], the Grover
search algorithm and the discrete Fourier transform [14].

Another interesting question is: (ii) can one have quantum improvements in the speed of
learning in a sense that a quantum machine requires fewer steps than the best classical machine
to learn some classical task? By ‘classical task’ we mean an operation or a function that has
classical input and classical output. Quantum machines such as the quantum state discriminator,
universal quantum cloner or programmable quantum processor [15] do not fall into this category.
Quantum computational algorithms do perform classical tasks, but no investigation has been
undertaken to compare the speed of learning of these algorithms with that of their classical
counterparts. To our knowledge the question (ii) is still open. In this paper, we will give evidence
for the first explicit classical computational task that quantum machines can learn faster than
their classical counterparts. In both cases a certain set of independent parameters must be
optimized to learn the task. We will show that the fraction of the space of parameters, which
corresponds to (approximate) successful completion of the task, is exponentially smaller for
the classical machine than for the quantum one. This analytical result supports our numerical
simulation showing that the quantum machine learns faster than the classical one.

We first define a family of problems of our interest: let the mth member (m ∈ N) of this
family be the kth root of NOT with k = 2m , where the roots of NOT are defined as follows:

Definition 1. The operation is kth root of NOT if, when applied subsequently nk times on the
Boolean input of 0 or 1, it returns the input for even n and its negation for odd n. We denote this
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operation with k
√

NOT. (Remark: with this definition we want to discard the cases for which, for
example, the operation returns the kth root of NOT when performed once, but does not return
identity when performed twice.)

The machine that performs this operation takes one input bit and returns one output bit.
This bit will be called the ‘target bit’. In general, however, the machine could use many more
auxiliary bits that might help the performance. Specifically, in the classical case the input Ei
and output Ej are vectors with binary components. An operation is defined by a probability
distribution p(Ei, Ej) that gives the probability that the machine will generate the output Ej from
the input Ei . Thus, one has

∑
Ej p(Ei, Ej) = 1. The readout of the target bit is a map: Ej → {0, 1}.

Without loss of generality we assume that the target bit is the first component of the input and the
output vector. The remaining components are auxiliary bits that play the role of the machine’s
memory.

In the quantum case, no auxiliary (qu)bits are necessary as only one qubit is enough to
implement any k

√
NOT. The input of the machine is a single qubit and the machine itself is a

unitary transformation. The input state will be either |0〉 or |1〉 corresponding to the Boolean
values of classical bits ‘0’ and ‘1’, respectively. The readout procedure is the measurement in
the computational basis {|0〉, |1〉} and we consider the state that the qubit is projected to as the
output of the machine.

In both cases the term learning is used for the process of approximating the function
k
√

NOT to which we will refer as the target function. We will consider that learning has been
accomplished when the learning machine returns with high probability correct outputs for both
inputs. Then a learning process is reduced to approximating the target function in a sequence of
taking the inputs, performing transformations on the inputs, returning the outputs, estimating the
fidelity between the actual outputs and the ones that the target function would have produced
and correspondingly of making adjustments to the transformations. The schematic diagrams
depicting both types of machines are shown in figure 1. Now we will describe the learning in
both cases in more detail.

Quantum learning: in every learning trial the following steps are performed.

1. Select a new unitary operator U using a Gaussian random walk (the first U is initialized
randomly using the Haar measure).

2. Run the unitary U k on an input qubit state chosen to be |0〉 or |1〉 with equal probability.
Measure the output qubit in the computation basis. Repeat this on M input states and store
the results (classical bits). The number M defines the size of teachers (classical) memory
of the quantum machine.

3. Estimate how close the actual operation is to the target one. To achieve this count the
number of times the operation is successful in approximating the target function (i.e. it
produces |1〉, when the input was in |0〉, and it produces |0〉, when it was in |1〉). The
number of successes is denoted by news and olds in the executed and the previous trial,
respectively.

4. If news > olds , go to 1 with the current unitary operator as the center of the Gaussian;
otherwise, go to 1 with the unitary operator chosen in the previous trial as the center of the
Gaussian.
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Figure 1. Diagram of classical and quantum learning machines. The
learning procedure consists of a sequence of taking the inputs, performing
transformations on them, returning the outputs, estimating the figure of merit
between the outputs obtained and the expected ones and correspondingly making
adjustments to the transformations. For the task of extracting the kth root of
NOT (see text for definition), the dimension of the space of the parameters for
a classical machine is log 2k times larger than that for a quantum machine. This
results in considerably faster learning of the quantum machine.

Any single qubit rotation can be parameterized by Euler’s angles as follows:

U = eiα

(
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)
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)
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)
)
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Since the global phase α is irrelevant for the present application, we are left with the parameters
δ ∈ [0, 2π ], β ∈ [0, 2π ] and γ ∈ [0, π]. In every new learning trial, these parameters will be
selected independently with a normal probability distribution centered around the values from
the previous run and the widths of the Gaussians are taken as free parameters of the simulation.
There are two free parameters of the learning procedure: σγ and σβ (σδ = σβ). In all simulations
these parameters are optimized to minimize the number of learning steps.

Note that if the quantum machine performs the task for n = 1 perfectly, then it will also
perform the task perfectly for all n. This is why our quantum machine is trained only to learn
the task for n = 1. Nevertheless, after the learning has been completed one should compare how
close the performance of the learning machine is to this of the target operation for all n. We
define a set of figures of merit {Pn

}
∞

n=1 as follows:

P1
=

1
2(|〈0|U k

|1〉|
2 + |〈1|U k

|0〉|
2),

P2
=

1
4(|〈0|U k

|1〉|
2 + |〈1|U k

|0〉|
2 + |〈0|U 2k

|0〉|
2 + 〈1|U 2k

|1〉|
2),

Pn
=

1

2n
(|〈0|U k

|1〉|
2 + |〈1|U k

|0〉|
2 + · · · + |〈0|U nk

|b〉|
2 + |〈1|U nk

|b ⊕ 1〉|
2),

(2)
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Figure 2. Quantum learning for performing the fourth root of NOT. Different
figures of merit P s (s = 1, 5, 10) as a function of the number of learning trials
(×103). The size of the teacher’s memory M is varied to achieve the maximal
value of the figures of merits for a given number of trials. The free parameters
have the values σγ =

π
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Figure 3. Quantum learning for performing the fourth root of NOT. Figure of
merit P10 as a function of the number of learning trials (×104) for different
sizes of teacher’s memory M (blue = 300, green = 100 and red = 50). The free
parameters have the values σγ =
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where b = 0 if n is even, and b = 1 if n is odd, and ⊕ denotes sum modulo 2. Note that each
subsequent Pn is more demanding in the sense that more constraints from the definition of the
k
√

NOT are being taken into account. This is reflected by the results of the computer simulation
of the quantum learning procedure, which are presented in figure 2.

The memory size of the teacher M is another free parameter of the quantum machine. The
learning ability has a very strong dependence on M as can be seen from figure 3. For lower
values of M the learning is faster at the beginning (up to about 4 × 104 trials), before it slows
down and saturates. At the saturation the size of the memory does not allow distinguishing
between sufficiently ‘good’ operations all for which news = M . For higher M values the
learning is slower, but it reaches higher fidelities. To combine the high speed with the high
fidelity of learning we apply the learning procedure with variable M : the machine starts with
M = 1 and whenever it obtains the number of successes news = M it increments M by one.
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With this kind of algorithm the learning has one fewer free parameter. All our simulations were
done for variable M , unless stated otherwise.

Next we describe the classical learning procedure.
Classical learning: The classical learning is an iterative process of finding the optimal

probability distribution p(Ei, Ej) for the classical machine to extract the k
√

NOT. The speed of
learning depends on the number N 2

− N of independent parameters (independent probabilities
p(Ei, Ej)), where N = 2dim(i) and dim(i) is the dimension of the input Ei and the output vector Ej .
We will refer to N as the memory size of the classical learning machine because it is equal to
the total number of distinguishable internal states of the machine. To minimize the number of
learning trials required to complete the learning and thus to maximize the speed of learning, we
are interested in the minimal number of internal states N for which it is possible to construct a
classical machine that is able to extract k

√
NOT.

Lemma 1. Any classical machine that performs the kth root of NOT perfectly must have at least
2k internal states if k = 2m and m ∈ N.

Proof. Each probabilistic classical machine can be considered as a convex combination of
deterministic ones. If it performs some task perfectly, then there must also be a deterministic
machine that does the same. This means that we can restrict ourselves in this proof only to
deterministic machines without any loss of generality. Any (deterministic, classical) machine
can be represented as an oriented graph, with vertices corresponding to the internal states. Edge
pointing from vertex Ei to Ej will mean that the operation on input Ei generates the output Ej . Any
(finite) machine must have at least one loop and, if the machine is run subsequently a large
number of times, it will eventually end up in that loop. Since the definition of the task involves
arbitrary large n we may start our analysis from n large enough such that the machine is already
in the loop. Since we will prove the lemma by giving a constraint from below on the size of the
loop, we may assume that the whole graph is a one loop and each vertex is a part of it.

Let the length of the loop be N . Let g be the greatest common divisor g = GC D(k, N ).
Then there exist numbers x and y such that

k = gx, N = gy, GC D(x, y) = 1. (3)

If the machine is initially in a vertex that corresponds to input ‘1’ of the target bit and we apply
the operation Nk times we will always end up in the same vertex ‘1’, since Nk = 0 mod N .
Since, however, the task is defined such that for N odd the ending vertex should correspond to
‘0’ value for the target bit, one concludes that N must be even. Therefore, we can write N as
N = 2K c, where c is odd and K > 1. We also have N x = 0 mod N , but since N x = gyx = ky,
then ky = 0 mod N . According to our definition of k

√
NOT, this implies that y is even and, since

GC D(y, x) = 1, x is odd. Also

y =
N

g
=

N x

k
= 2K−m xc. (4)

Since y is even and both x and c odd, then K > m + 1 must hold. We conclude with N = 2K c >
2K > 2m+1

= 2k. ut

The lemma implies that if the machine is to perform k
√

NOT perfectly it needs to have
log k = m auxiliary bits in addition to the target bit. It is easy to check that this is not only
necessary but also a sufficient condition. One just needs to design a machine that is a loop of
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length 2k where the vertices corresponding to initial target input bits 0 and 1 are at a distance
k from each other. The number of functions with this property divided by the total number of
functions f : {0, 1}

2k
→ {0, 1}

2k gives the fraction of the target functions:

R =
(2k − 4)!(2k − 2)(k2

− 2)

(2k)2k
' O

(
1

k4k

)
. (5)

The target functions thus constitute an exponentially small fraction of all functions. Next, we
will consider probabilistic classical machines which in order to approximate the target functions
with high probability need to be sufficiently ‘close’ (e.g. in the sense of Kullback–Leibler
divergence) in the probability space. In such a way both the quantum and classical machines
‘search’ in a continuous space of parameters; however, the relative fraction of this space that is
close to the target functions is obviously much larger for the quantum case.

In the case of the quantum machine any root of NOT can be performed with only one qubit.
The operation that performs k

√
NOT is k

√
σx , where σx is the spin matrix along the x-direction.

Therefore, the memory requirements for our family of problems grows as log k in the classical
case, while remaining constant in the quantum one.

Next, we introduce the classical learning procedure. We assume that the classical machine
is initially in a ‘random’ state for which p(Ei, Ej) =

1
2k . The learning process consists of the

following steps:

1. Set initially the internal state of the machine such that its first bit (target bit) is in 0 or 1
with equal probability. All auxiliary bits are in 0.

2. Apply the operation k times and after each of them read out the output: Ej r , with r ∈

{1, . . . , k}. We observe a sequence Ei ≡ Ej0 → Ej1 → Ej2 → · · · → Ej k of machine’ states. If
the target bit of the final state Ej k is inverse of the target bit of initial state Ei , move to step 3.
Otherwise move to 4.

3. Increase every probability p( Ej r−1, Ej r) that led to success by adding a factor 1> Ks > 0.
Renormalize the probability distribution such that

∑
Ej p(Ei, Ej) = 1 and go back to step 2.

4. Decrease every probability p( Ej r−1, Ej r) that led to a failure by subtracting a factor 1> Kf >
0 (if then the probability is negative, put it to be 0). Renormalize the probability distribution
and go back to step 1.

Note that repeating the steps 2 and 3 the classical machine gradually learns to perform the
task for all n. The learning has two free parameters Ks and Kf, exactly like the quantum learning
(with a variable teacher’s memory size M). To estimate how close the machine’s functioning is
to that of the target machine we use the set of figures of merit for all n: {Pn

}
∞

n=1, which are
similar to those of equation (2). For example, P2

≡ Pk(0, 1) + Pk(1, 0) + P2k(0, 0) + P2k(1, 1),
where Pk(1, 0) is the probability that the target bit has been changed from 1 to 0 after applying
the transformation k times and other probabilities are similarly defined.

We have performed computer simulations of both quantum and classical learning
processes. The results are presented in figure 4. We see that the learning in the quantum case
is much faster for k > 2. This speed-up can be understood if one realizes that for the present
problem the process of learning is an optimization of a square matrix: a unitary transformation
U in the quantum case, and a matrix with entries p(Ei, Ej) in the classical one. While the size of
U remains 2 (with complex entries), the size of the matrix with entries p(Ei, Ej) grows linearly
with k. It is clear that optimization of significantly larger matrices requires more iterative steps
and thus leads to slower learning.

New Journal of Physics 11 (2009) 113018 (http://www.njp.org/)

http://www.njp.org/


8

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20

P
10

Trials (103)

QL2

QL4

CL2

CL4

CL8

QL8

Figure 4. The figure of merit (P10) of classical learning (CL) and quantum
learning (QL) for performing different kth (k = 2, 4 and 8) roots of NOT as a
function of the number of learning trials (×103). The values of free parameters
are chosen to maximize the figure of merit. Already for k = 4 quantum learning
is faster than classical learning. For the eighth root of NOT, the figure of merit
of classical learning is as for a random choice (= 0.5) at the given timescale.
The free parameters have the values σγ =

π

4 and σα = σβ =
π

8 (for all roots) for
the quantum case and the values Ks = Kf = 0.25 (second root), Ks = Kf = 0.75
(fourth root) and Ks = 0.75, Kf = 0.25 (eighth root) for the classical one.

The classical learning algorithm given is not the most general and might not be optimal.
The general framework for finding optimal learning procedures is still not fully understood. We
have chosen the quantum and classical learning algorithms such that the comparison between
them is most evident. The two tasks, i.e. finding a unitary operator for the kth root of NOT, and
finding a classical probability distribution that generates the kth root of NOT, though different
from the physical point of view, both require optimization of matrix elements. Since for a given
task, the classical machines require a significantly larger number of independent parameters (of
which only a small fraction leads to the desired matrix) to be optimized, it is natural to assume
that they also require a larger number of learning steps to accomplish learning, regardless of the
explicit learning procedure employed. This is exactly what our numerical simulations show.

Quantum information processing has been shown to allow a speed-up over the best
possible classical algorithms in computation and has advantages over its classical counterpart in
communication tasks, such as secure transmission of information or communication complexity.
In this paper, we extend the list with a novel task from the field of machine learning: learning to
perform the kth root of NOT.
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