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Abstract: A novel and simpler method to calculate the main parameters in fiber 
optics is presented. This method is based in a planar dielectric waveguide in rotation 
and, as an example, it is applied to calculate the turning points and the inner caustic 
in an optical fiber with a parabolic refractive index. It is shown that the solution 
found using this method agrees with the standard (and more complex) method, 
whose solutions for these points are also summarized in this paper. 
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1. Introduction 

According to wave or physical optics, the electromagnetic waves radiated by an optical source 
and propagated in an optical fiber can be represented by a train of spherical, planar, etc. 
wavefronts with the source at the center. A wavefront is defined as the locus of all points in 
the wave train which exhibit the same phase. Far from source, wavefronts tend to be in a 
plane. When the wavelength of light is much smaller than the object to be illuminated, the 
light wave can be represented by a ray, which is drawn perpendicular to the phase front and 
parallel to the Poynting vector, which indicates the flow of energy. Thus, large-scale optical 
effects such as reflection and refraction can be analyzed by a simple geometric process called 
ray tracing. 

In the ray theory, to study the transmission of light within an optical fiber, it is essential to 
take into account the relation between the refractive indexes of the core and the cladding. 
Geometric ray analysis is introduced as an alternative to the ondulatory model. In many cases, 
both models are equivalent [1-2]. 

There are two conditions for establishing guided waves in an optical fiber, one of them is 
that the waves must be totally reflected twice in the interface core-cladding and the other that 
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the total phase shift alter two consecutive reflections must be an integer multiple of 2π . To 
study internal reflection, we must consider the principles of Geometrical Optics –i.e. the Snell 
law in simple cases or eikonal equation in more complex situations (equations of Geometrical 
Optics). Reflection and transmission of Hermites-Gaussian beams on curved interface can be 
studied by means of complex ray analysis of reflection and transmission [3] without using the 
ondulatory model, which is more difficult. 

A model of cladded multimode fiber taper using geometric and wave theory was provided 
to study its transmission property and evanescent wave absorption. With this model, it is 
possible to know the transmission property and evanescent wave absorption of cladded 
multimode fiber tapers [4]. 

An idea about an equivalent refractive index for the ray tracing calculation of hollow core 
waveguides is proposed. A virtual, complex refractive index is uniquely found by minimizing 
the difference between reflectivity of a virtual monolayer material and a metal substrate coated 
with a dielectric film. By using this technique, it is possible to calculate transmission losses of 
a delivery system consisting of a hollow fiber and a tapered hollow waveguide. [5] 

As we can see above, the geometrical optics theory can be used to obtain the same result 
and as a substitution of the ondulatory theory in some cases. 

In this paper we present an alternative model of geometrical optics in fiber optics easier 
than the current one. Essentially, an optical fiber is considered to be a planar waveguide in 
rotation. This alternative model gives the same results but the mathematics involved are much 
simpler than those required by conventional explanations, since the large number of equations 
arising from the cylindrical geometry is reduced. 

The innovative aspect of the present paper is the new perspective given to optical fibers, 
which can be simulated from a planar dielectric waveguide. Good agreement between 
classical model and our modern model results have been achieved, and, in fact, we have 
arrived at the same classical results, but using a completely new and much simpler method–a 
method radically different from the classical one. 

2. Classical model 

Let there be an arbitrary ray entering one fiber whose refractive index is constant so far. If we 
define two perpendicular planes (H-H and H-V) whose intersection line is the axis of the fiber 

then the ray is completely defined by means of two parameters: the angle zθ  (between the ray 

itself and the horizontal plane H-H) and the angle φθ  (found in the core cross-section 

between the tangent to the interface and the projection of the ray path, as shown in Figure 1). 
If the refractive index of the fiber is constant, these parameters remain constant [6] but, 

besides the trivial case of rays with 2πθφ =  (meridional rays), an arbitrary guided ray 

(skew rays if 2πθφ ≠ ) will follow a complex path due to the cylindrical geometry of the 

fiber (see Fig. 1). Under these conditions the mathematical treatment is relatively simple but 
the situation in fibers whose refractive index depends on the distance to the axis of the fiber 
(graded-index profile fibers) is rather different. Due to the continuous refractions, the angles 

Zθ  and φθ  are no longer constant and they change after each refraction according to the laws 

of the Geometrical Optics. This makes us use the eikonal equation, whose treatment is 
complex [6-8], and the parameters derived from its integration prove rather obscure, loosing a 
big part of their actual physical meaning. 

Since a typical graded-index profile fiber consists of N  concentric layers with refractive 

indexes Nnnn ,..., 21  that decrease from the axis to the outer layers, a ray propagating within 

such fiber will suffer consecutive refractions until it meets a layer whose refractive index 
together with the angle of incidence of the ray cause total reflection and make it return [Fig. 
1(a) and (b)]. The points where this reflection takes place are called turning points and the 
most external surface they originate is called the external caustic of the fiber for one given 
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ray. Due to the geometry of the fiber, a skew ray will never intersect the axis of the fiber, so 
that there is an inner surface (internal caustic) between the axis and the path of the ray that it 
will never intersect. The points of this surface are called caustic points. 

 

 
 

Fig. 1.  Trajectory of the rays within the core of a gradual-index fiber with the position of the 
turning points; (a) shows the trajectory of a meridional ray and (b) an oblique one.  In (c), the 

angle (r) is represented and the azimuthal direction; zθ  and φθ  are projections of the path on 

a plane perpendicular to the axis of the fiber. 
 

Then, the path of each ray is confined between two surfaces within the fiber: the internal 
and the external caustic, respectively, formed by the turning points. The knowledge of the 
position of such points is extremely important in graded-index profile fibers since it informs 
us about the amount of power that could be guided. 

In our model, specifically the turning points and the caustics, whose calculation is rather 
complex using the eikonal equation arises from a simple physical consideration. 

Let there be a graded-index profile fiber with radius ρ and an undefined number of 

concentric layers, each one with thickness dx and refractive index in . Let there be a 

meridional ray entering the fiber with an angle of incidence 1Zθ . If this ray is guided, it will 

be refracted as it passes from one layer to another with successive angles 2Zθ  … 3Zθ  until it 

reaches the turning point and it is reflected towards the inner layers (see Fig. 2). 
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Fig. 2. Path of a meridional ray moving along a graded-index profile fiber. Detail of one layer magnified. 
 

The distance covered by the ray within each layer is 
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3. Modern model 
 
The basic idea is that a planar dielectric waveguide in rotation behaves as an optical fiber if 
the rotation velocity is appropriate; in this way, there is no distinction between the types of 
rays that are propagated by the fiber. We offer a view that an optical fiber is not a static 
element through which light is propagated, but rather a system comprising rays and a 
hypothetical planar waveguide that contains them and that has a different rotation velocity for 
each. The model consists of a planar dielectric waveguide that spins with variable angular 
velocity ω  around its optical axis. It gives a fuller vision of the physical fundamentals of 
fiber optics at the same time as demonstrating that the different models can lead to the same 
result. Skew and meridional rays will be indistinct in the fiber. 

Starting from this principle, our model of dielectric waveguide in rotation is equivalent to 
any fiber optics of similar characteristics (same refractive indexes for core and cladding and 
semi thickness equivalent to the radius of the fiber). 

 
3.1. Meridional rays in graded-index profile fibers 
 
Let there be a meridional ray going through a planar dielectric waveguide of symmetrical and 
square section with a graded-index (GRIN) profile (the step-index profile case is studied in [6-
8]). The ray will be guided along the fiber as long as total reflection takes place every two 
opposite interfaces. Nevertheless, if the waveguide rotated with a given angular velocity ω � 
(the waveguide, not the ray), we could make the ray be reflected always on the same face. 

Let there be a square planar dielectric waveguide circumscribing our fiber optics with a 
semi-thickness equal to the radius of the fiber. Let us assume that this planar dielectric 
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waveguide can rotate around the axis of the fiber in such a way that the plane of incidence of 
the guided ray always intersects the same straight line on the waveguide, regardless of where 
the ray is. We could say that the waveguide “follows” the ray as it moves along the fiber [6]. 
To satisfy the above conditions, the dielectric waveguide will rotate with an angular velocity 

iω  while the ray passes through the layer “i”. This velocity is given by: 

 

dt

xd
xi

)(
)( φθ

ωω =→                                                 (3) 

 
where it is considered a continuous change of the refractive index, which means that the 

numbers of layers trends to infinity ( )∞→N  and, thus, )(xZiZ θθ → , )(xi φφ θθ →  

and )(xi ωω → . The consideration ∞→N  is not at all restrictive—on the contrary, we 

can consider it without losing physical or mathematical generality.  It is the only way to 
manage the number of layers of an optical fiber with this profile.  

If we introduce dx  in both the numerator and denominator, we get: 
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Note that here we have considered 
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xd

2

)( πθφ =                                                       (5) 

 

because, for meridional rays, the angle φθ  changes from 2/π  to - 2/π  when it cuts the 

axis of the fiber. Here, obviously, dx2  is the thickness of the central layer. 
The meaning of Eq. (4) is the following: while the ray is traveling out of the central layer: 

our hypothetical waveguide remains at rest but when it enters this layer, the waveguide rotates 
with an angular speed that allows the ray to be reflected on the same face of the square planar 
dielectric waveguide when it meets the core-cladding interface. The orientation of this rotation 
(clockwise or counter clockwise) is free since the results of this model clearly do not depend 
on it. 

In summary, according to our model, a planar dielectric waveguide that rotates “following 

the ray” through a GRIN fiber would be at rest ( )0=ω  except when the ray enters the 
central layer of the waveguide. In this situation the waveguide rotates with angular velocity 

 

dxxn

xc Z

2)(

)(sinθπω =                                                    (6) 

 

In step-index profile fibers ( )ρ=dx , the previous value of ω  matches the results 
obtained in [6]. 
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3.2. Skew rays in graded-index profile fibers 

Let us consider one section of the optical fiber perpendicular to its axis. Since we are working 
with an optical fibers whose refractive index continuously changes from the inner to the outer 

layers, the thickness of each layer will trend to 0 ( )0→dx  and thus the length of the 

projection of one skew ray on this plane can be approached to dxxdLi )(cos φθ=  in the 

layer “i” (see Figs. 1 and 3). 
 

 
 

Fig. 3. Section of the fiber on a plane perpendicular to the axis.  Projection of the path traveled 
within each layer over a section perpendicular to the axis. 

 
If the ray traveling in the optical fiber is considered, then the length of the path of a ray 

within the layer “i” will be (see Figs. 1 and 3): 
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Thus the time that the ray spends in each layer is given by:  
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In the case of meridional rays, we studied the movement of the rays in each layer “i”, but 

here this procedure does not make much sense, given the existence of the ∞→N layer. 
Therefore, we will study the movement at each point “x”, and therefore the skew rays 

)(xnni → . 
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Once more, we get 
 

)(sin)(

)(sin)()(
)(

xxn

xc

dx

xd

dt

dx

dx

xd
x Z

φ

φφ

θ
θθθ

ω ==                                (9) 

 
Since the refractive index decreases from the axis to the outer parts, the angular velocity 

ω  must logically increase as the ray goes to these outer parts. After total internal reflection 
the ray starts to travel towards the inner layers of the fiber, and thus ω  must decrease until it 
again meets layers with a lower value of the refraction index. 

This means that it is possible to find the points where total internal reflection is produced 
(turning points) and the nearest points from the path of the ray to the axis of the fiber (caustic 
points) by solving the equation  
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where α  is the angular acceleration of the square planar dielectric waveguide we are 
considering. 

 Developing the above equation, we get 
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And developing again, we get 
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Consequently, 
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Due to their physical meaning, there are two terms in the above equation that vanish at the 

turning points; ( ) 22 dxxd φθ  represents the rate of change of the angular variation of 

)(xφθ  as the ray goes through the different layers. As this rate will change from increasing to 

decreasing at the turning points (from decreasing to increasing at the caustic points —that is, 
the function goes from decreasing to increasing and, mathematically, it is a continuous and 
derivable function. This term vanishes at such points. Furthermore, this approximation makes 
sense in GRIN fibers where there are no strong variations between contiguous layers. As the 
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ray goes through the different layers ( ) dxxd zθ  is the change of )(xZθ . Due to total 
reflection, this angle will have a minimum at the turning points and a maximum at the internal 
caustic ones and, thus, it is 0 at such points. 

After these considerations, the final equation is: 
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and, integrating, we get 
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3.3. Example: turning and caustic points in a fiber with parabolic profile 
 
Let there be an index profile like 
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If we introduce this index profile into Eq. (15), we get 
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and we finally get the value of x: 
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Apparently, we have only one solution, but so that our model functions, we should have 

two solutions, as the turning points correspond to the internal and external caustic points. 
Nevertheless, we will realize that this solution makes sense under certain conditions. Let us 
compare this expression with the exact solutions for the caustic and turning points in the 
classical model: 
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We can simplify the equations above: let us suppose that ρ  is very big and the numerical 

aperture (and therefore Δ ) is very small. If we take it into account in the expression of the 

#90039 - $15.00 USD Received 26 Nov 2007; revised 9 Jan 2008; accepted 9 Jan 2008; published 11 Jan 2008

(C) 2008 OSA 21 January 2008 / Vol. 16,  No. 2 / OPTICS EXPRESS  934



invariant ( )( ) ( ) ( ) ( ) ( )rrsenrnrdsdrnrl z φθθρφρ cos2 == , then 08 22 →Δ nunl . 

In this case,  
 

( )ββρββρ −−
Δ

=−+−
Δ

=
22222

2

1

22
nu

nu

nunu

nu

pl n
n

nn
n

r             (21) 

 

0
2

2222 =+−−
Δ

= ββρ
nunu

nu

ci nn
n

r                                (22) 

 
The solution above for the inner caustic is logical since for big radii of the fiber, the value 

of the radius of the inner caustic can be negligible. In the same way, the value of the turning 
point will be the same as the one we found with our approximation as long as two conditions 
hold: 
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These two conditions demand values of cos )(xZθ  and sin )(xφθ very close to 1 

(especially this latter one). It means that )(xZθ  must be small and )(xφθ  must be near to 

2π . In fact we are assuming fibers with big radii or small numeric aperture, which fits with 

the request of small values of )(xZθ . 
Under these conditions, we have reached results completely similar to these arising from 

the classical model. It might seem just an approach but, since only rays within a cone 

subtended by small angles )(xZθ  are propagated through the fiber, we find that the results 
reproduced by our model are quite real. 

In the same way as our model is capable of giving the same results as the classical model 
of fiber-optic rays, it is also capable of calculating the radiation losses due to the bending of 
fibers, coupling between fibres, and other photonic devices; furthermore, with our model, we 
can design polarization-maintaining optical fibers. 

The meridional rays that are propagated by a bended fiber are defined by the axis of the 
curve and the centre of curvature of the fiber and are identical to those propagated in a bent 
planar waveguide. In specific, they are propagated with fixed half-periods. The other rays are 
skewed, because of the asymmetry introduced by the bend, and each ray propagates along a 
trajectory with a varying half-period. 

In the case of the polarization-maintaining optical fibers, there are fibers that have a 
circular core and an elliptical cladding [8, 10]. In these cases, our model is applicable to these 
types of fibers. 

In the case of the coupling between optical fibers and other photonic devices, with our 
model, we can also calculate the radiation losses due to coupling between fibers and other 
photonic devices. To calculate the losses by misalignment (lateral or axial, longitudinal or 
angular), it is sufficient to know the diameters of the fibers and the surface areas of the cores 
overlapping between fibers or with devices, the numerical aperture of the fibers or of the 
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devices, the angular differences between the axes of the fibers or between the fibers and the 
devices or the differences of the refractive-index profiles between fibers and devices 
respectively and all these data can be calculated with our new model. 

4. Conclusions 

This new model can be used as an alternative to the one that generally appears in books and 
scientific papers or as a second point of view. Thus it is proved that, starting from two 
different formalisms in Physics (Optics) we can reach similar results. In this case, we prove 
again a well known fact: the laws of Geometric Optics are invariant under rotation. 

The models explaining the transmission of radiation in optical fibers are complex due to 
the occurrence of several kinds of rays (meridional, skew …), that arise from the cylindrical 
geometry of the fiber. We have reported a new and simpler mathematical method based on the 
rotation of a square planar dielectric waveguide that requires only the study of one parameter 

( )ω  instead of three (3D). Our new model was applied to determine two typical and essential 
parameters (rtp and ric) of classical optical fibers. The same results were found between those 
solutions and the solutions reached with our model. 

According to these results, we realize that it is not necessary to develop a specific 
mathematical treatment for skew rays because they arise directly when considering a planar 
dielectric waveguide in rotation. 

As inferred from Eq. (15), if we work with an optical fiber having the same geometric 
characteristics but a different refractive index, the study of the radiation transmission requires 
the introduction of this index into many equations. In our model the guide is the same and 
only the angular velocity varies. 

As we explained at the end of the previous section, our model is capable of accurately 
accounting for design issues related to optical fibers such as polarization-maintaining fibres, 
radiation losses due to fiber bending or coupling between fibers and other photonic devices. 

In the same way, if we wish to work with another optical fiber whose diameter is the only 
parameter which changes, this study would just require modification of its angular velocity, 
ω . This signifies a great simplification, for example, for simulation programs. 
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