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RECENT TRENDS ON ANALYTIC PROPERTIES OF MATRIX ORTHONORMAL
POLYNOMIALS ∗

F. MARCELLÁN† AND H. O. YAKHLEF ‡

Abstract. In this paper we give an overview of recent results on analytic properties of matrix orthonormal
polynomials. We focus our attention on the distribution of their zeros as well as on the asymptotic behavior of such
polynomials under some restrictions about the measure of orthogonality.

Key words. matrix orthogonal polynomials, zeros, asymptotic behavior.

AMS subject classifications. 42C05, 15A15, 15A23.

1. Introduction. Consider a p × p positive definite matrix of measures W (x) =
(Wi,j(x))

p
i,j=1 supported on Ω (Ω = R or Ω = T, the unit circle), i.e., for every Borel

set A ⊂ Ω the numerical matrix W (A) = (Wi,j(A))
p
i,j=1 is positive semi-definite. Notice

that the diagonal entries of W are positive measures and the non-diagonal entries are complex
measures with Wi,j = Wj,i.

For a positive definite matrix of measures W the support of W is the support of the trace
measure τ(W ) =

∑p
i=1 Wi,i. A matrix polynomial of degree m is a mapping P : C →

C(p,p) such that

P (x) = Mmxm + Mm−1x
m−1 + · · · + M1x + M0,

where (Mk)
m
k=0 ∈ C(p,p) and Mm is different of the zero matrix. We denote P ∗(x) =

M∗
mxm + M∗

m−1x
m−1 + · · · + M∗

1 x + M∗
0 .

Assuming that
∫

Ω
P (x)dW (x)P ∗(x) is nonsingular for every matrix polynomial P with

nonsingular leading coefficient, we introduce an inner product in the linear space of matrix
polynomials C(p,p)[x] in the following way

(1.1) 〈P, Q〉L
def
=

∫

Ω

P (x)dW (t)Q∗(x).

Using the Gram-Schmidt orthonormalization process for the canonical sequence {xnIp}∞n=0,
we will obtain many sequences of matrix polynomials which are orthonormal with respect to
(1.1). Indeed, if (Pn) is a sequence of matrix polynomials such that

(1.2) 〈Pn, Pm〉L = δn,mIp

then for every sequence (Un) of unitary matrices, the sequence (Rn) such that Rn = UnPn

satisfies

〈Rn, Rm〉L = δn,mIp.

Such orthonormal polynomials are interesting not only from a theoretical point of view but
by their applications in many scientific domains.
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Orthogonal matrix polynomials on the real line appear in the Lanczos method for block
matrices [11, 12], in the spectral theory of doubly infinite Jacobi matrices [18], in the anal-
ysis of sequences of polynomials satisfying higher order recurrence relations [9], in rational
approximation and in system theory [10].

Orthogonal matrix polynomials on the unit circle are used in the inversion of finite block
Toeplitz matrices which arise naturally in linear estimation theory. The matrix to be inverted
is the covariance matrix of a multivariate stationary stochastic process [14]. Furthermore, they
appear in the analysis of sequences of polynomials orthogonal with respect to scalar measure
supported on equipotential curves in the complex plane [13]. Finally, another application
in time series analysis consists in the frequency estimation of a stationary harmonic process
(Xn), i.e.,

Xn =

n∑

k=1

[Ak cosnwk + Bk sinnwk] + Zn,

where (Ak), (Bk) are matrices of dimension p and Zn is a white noise. The frequencies
(wk)n

k=1 are unknown and need to be estimated from the data. They can be given in terms
of zeros of matrix orthogonal polynomials associated with some purely discrete measure
supported on the unit circle [18].

The aim of the present contribution is to give a framework of the subject and summarize
some recent contributions focused in two aspects:

1. The asymptotic behavior of sequences of matrix orthonormal polynomials in several
cases (real and unit circle, respectively).

2. The distribution of the zeros of such polynomials as well as their connection with
matrix quadrature formulas.

These questions have attracted during the last decade the interest of several research groups.
A big effort was done in the analytic theory by A. J. Durán and coworkers in Universidad of
Sevilla, and W. Van Assche in Katholieke Universiteit Leuven among others. We hope that
our work will be a useful approach for beginners, following the nice surveys [15, 18].

The structure of the paper is the following. In section 2 we introduce matrix orthogonal
polynomials on the real line, and we consider the three-term recurrence relation which char-
acterizes them. In section 3 we give some basic results about the zeros of such polynomials,
and we explain the analog of the gaussian quadrature formulas in the matrix case. In sec-
tion 4, the matrix Nevai class is studied, and thus relative asymptotics for the corresponding
sequences of matrix orthonormal polynomials are discussed. Furthermore, the analysis of
perturbations in the Nevai class by the addition of a discrete measure supported in a singleton
is presented. In section 5, we analyze matrix orthonormal polynomials on the unit circle.
We focus our attention on the study of their zeros and, as an application, we find quadrature
formulas extending the well known results of the scalar case. Finally, in section 6 we present
the connection between matrix of measures supported on the interval [−1, 1] and matrix of
measures supported on the unit circle.

2. Orthogonal matrix polynomials on the real line. Let W be a matrix of measures
supported on the real line. As in the scalar case, the shift operator

H : C
(p,p)[x] → C

(p,p)[x], H[P ](x) = xP (x)

is symmetric with respect to the inner product (1.1). Thus, for every sequence (Pn) of matrix
orthonormal polynomials with respect to (1.1), we get a three-term recurrence relation

(2.1)
z Pn(z; W ) = Dn+1(W )Pn+1(z; W )

+En(W )Pn(z; W ) + D∗
n(W )Pn−1(z; W ), n ≥ 0,
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where

En = 〈xPn, Pn〉L = 〈Pn, xPn〉L = E∗
n, n ≥ 0

is a Hermitian matrix, and

Dn = 〈xPn−1, Pn〉L , n ≥ 1.

Notice that if the leading coefficient An of Pn is nonsingular, then Dn = An−1A
−1
n , i.e.,

Dn is a nonsingular matrix. On the other hand, since (UnPn) is another sequence of matrix
orthonormal polynomials when (Un) are unitary matrices, in such a case the corresponding
coefficients in the three-term recurrence relation are Ẽn = UnEnU∗

n and D̃n = Un−1DnU∗
n.

Conversely, given two sequences of matrices (Dn) and (En) of dimension p, such that
(Dn) are nonsingular matrices and (En) are Hermitian matrices, then there exists a positive
definite matrix of measures W such that the matrix polynomials defined by the recurrence
relation

(2.2) xYn = Dn+1Yn+1 + EnYn + D∗
nYn−1, n ≥ 0,

with the initial conditions Y−1 = 0 and Y0 = Ip constitute a sequence of matrix polynomials
orthonormal with respect to the inner product (1.1) associated with W . In fact, W is related
with the spectral resolution of the identity for the operator H defined as above (cf. [1]). This
result constitutes the matrix analog of the Favard´s theorem in the scalar case (cf. [2, 4]).

A second polynomial solution of (2.2) is associated with initial conditions Y1 = D−1
1

and Y0 = 0. Then if we denote it by (Qn), we get deg Qn = n − 1. In fact

(2.3) Qn(z; W ) =

∫

R

Pn(z; W ) − Pn(s; W )

z − s
dW (s).

Such a sequence of matrix polynomials is called the sequence of matrix orthonormal poly-
nomials of the second kind with respect to the matrix of measures W , where we assume
∫

R
dW (s) = Ip.

¿From (2.3) we get

(2.4) Qn(z; W ) = Pn(z; W )

∫

R

dW (s)

z − s
−
∫

R

Pn(s; W )

z − s
dW (s).

If the operator H is bounded, then the function F(z; W )
def
=
∫

R

dW (s)
z−s is analytic outside

the spectrum of H. In a neighborhood of the infinity we get F(z; W ) =

∞∑

k=0

Sk

zk+1
, where

Sk =
∫

R
skdW (s) are the moments for the matrix of measures W . Thus (2.4) yields

Pn(z; W )F(z; W ) − Qn(z; W ) =
An,1

zn+1
+ · · · .

The regular rational matrix function πn(z) = P−1
n (z; W )Qn(z; W ) is said to be the nth Padé

fraction for F(z; W ). This constitutes one of the main applications of matrix orthonormal
polynomials in approximation theory. The connection with rational matrix approximation
and matrix continued fractions follows immediately [1].

As in the scalar case, we introduce the nth kernel polynomial associated with the matrix
of measures W .
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DEFINITION 2.1. The matrix polynomial Kn(x, y; W )
def
=

n∑

j=0

P ∗
j (y; W )Pj(x; W ) is

said to be the nth kernel polynomial associated with W .
PROPOSITION 2.2 (Reproducing property).

〈Q(x), Kn(x, y; W )〉L = Q(y)

for every matrix polynomials Q of degree less than or equal to n.
Notice that the nth kernel is the same for every sequence of matrix orthonormal polynomials
associated with W . In fact, if Rn = UnPn with (Un) unitary matrices, then Kn(x, y; W ) =
n∑

j=0

R∗
j (y; W )Rj(x; W ) =

n∑

j=0

P ∗
j (y; W )Pj(x; W ).

3. Zeros and quadrature formulas. A point x0 is said to be a zero of the matrix poly-
nomial P (x) if det P (x0) = 0. If P (x) is a p × p matrix polynomial and x0 is a zero of
P (x), we write

N (x0, P ) =
{

v ∈ C
(p,1) : P (x0)v = 0

}

,

i.e., the null space for the singular matrix P (x0).

LEMMA 3.1 ([7]). If dimN (x0, P ) = n, then [Adj P (x)]
(l)

(x0) = 0 for l = 0, 1, · · · , n−
2, and x0 is a zero of P (x) of multiplicity at least n. Here Adj P (x) is the matrix such that
P (x) Adj P (x) = Adj P (x) P (x) = (det P (x)) Ip.

LEMMA 3.2 ([7]). For n ∈ N, the zeros of the matrix polynomial Pn(x) are the same as
those of the polynomial det (xInp −Jnp) (with the same multiplicity) where Jnp is the Jacobi
matrix of dimension np, i.e., the eigenvalues of the matrix

Jnp =












E0(.) D1(.) 0 · · · 0

D∗
1(.) E1(.) D2(.)

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . Dn−1(.)

0 · · · 0 D∗
n−1(.) En−1(.)












∈ C
(np,np).

Notice that if v is an eigenvector corresponding to the eigenvalue x0, writing v as a block
column vector

v =








v0

v1

...
vn−1








∈ C
(np,1),

where vi ∈ C(p,1), the equation Jnpv = x0v reads

v1 = P1(x0)v0

v2 = P2(x0)v0

... =
...

vn−1 = Pn−1(x0)v0, 0 = Pn(x0)v0,
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or, equivalently,

v =








P0(x0)
P1(x0)

...
Pn−1(x0)








v0.

In other words, there exists a bijection between N (x0, Pn) and the subspace of eigenvectors
of the matrix Jnp associated with the eigenvalue x0.

THEOREM 3.3 ([7]).
1. The zeros of Pn have a multiplicity less than or equal to p. All the zeros are real.
2. If x0 is a zero of Pn with multiplicity m then rank Pn(x0) = p − m.
3. If we write xn,k (k = 1, · · · , np) for the zeros of Pn in increasing order and taking

into account their multiplicities, then the following interlacing property holds,

xn+1,k ≤ xn,k ≤ xn+1,k+p

for k = 1, 2, · · · , np.
4. If x0 is both a zero of Pn and Pn+1, then N (x0, Pn) ∩N (x0, Pn+1) = {0}.
5. If xn,k is a zero of Pn with multiplicity p, then it can not be a zero of Pn+1.

We will denote Zn(W )
def
= {xn,k, k = 1, · · · , np, det Pn(xn,k; W ) = 0} the set of

zeros of the orthonormal matrix polynomial Pn(. ; W ). Let

MN = ∪n≥N Zn(W ) and Γ = ∩N≥1MN ,

then supp(dW ) ⊂ Γ. We will denote by Γ̂ the smallest closed interval which contains the
support of dW .

As in the scalar case, we can deduce quadrature formulas for matrix polynomials. The
next theorem shows how to compute the quadrature coefficients (the matrix Christoffel con-
stants) by means of the eigensystem of the Jacobi matrix Jnp.
Let vi,j (j = 1, 2, · · · , mi) be the eigenvectors of the matrix Jnp associated with the eigen-
value xi (i = 1, · · · , k) (with multiplicity mi). Let

Λi =
(

v
(0)
i,1 v

(0)
i,2 · · · v

(0)
i,mi

)

︸ ︷︷ ︸

v
(0)
i

M−1
i









v
(0)∗

i,1

v
(0)∗

i,2
...

v
(0)∗

i,mi









︸ ︷︷ ︸

v
(0)∗

i

∈ C
(p,p),

where v
(0)
i,s ∈ C(p,1) (s = 1, · · · , mi) is the vector consisting of the first p components of vi,s

and Mi =
(

v
(0)
i

)∗

Kn−1(xi, xi)v
(0)
i . Then

THEOREM 3.4 ([17]). The quadrature formula

In(P, Q)
def
=

∫ b

a

P (x)dW (x)Q∗(x) =

k∑

i=1

P (xi) Λi Q∗(xi)

is exact for matrix polynomials P and Q with deg P + deg Q ≤ 2n − 1. Here k denotes the
number of different zeros of Pn.
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This quadrature formula yields, as in the scalar case,

In(P, Ip) =

k∑

i=1

P (xi) Λi, deg P ≤ 2n − 1.

An alternative approach is given in the following sense.
THEOREM 3.5 ([5]). Let xn,i (i = 1, · · · , k) be the different zeros of the matrix

polynomial Pn with multiplicities mi respectively. Let

Γn,i
def
=

1

[det Pn(x)](mi) (xn,i)
[Adj Pn(x)]

(mi−1)
(xn,i) Qn(xn,i).

Then
1. For every polynomial P with deg P ≤ 2n − 1 we get

∫

R

P (x)dW (x) =

k∑

i=1

P (xn,i) Γn,i.

2. {Γn,i}k
i=1 are positive semi-definite matrices of rank mi.

Using the above quadrature formula, we get the following matrix analog of the Markov´s
theorem

THEOREM 3.6 ([5]). Assume the positive definite matrix of measures W is determinate,
i.e., no other positive definite matrix of measures has the same moments as those of W . Then

lim
n→∞

P−1
n (z; W ) Qn(z; W ) =

∫

R

dW (t)

z − t

def
= F(z; W )

locally uniformly in C \ Γ.
F(z; W ) is called the Stieltjes (Markov) function associated with the matrix of measures W .

The above result means that if W is determinate, the nth Padé fraction of F(z; W ) con-
verges locally uniformly to F(z; W ) in C \ Γ.

4. The Nevai class. We will introduce an analog of the so-called Nevai class for matrix
orthonormal polynomials

DEFINITION 4.1. Given two matrices D and E, where E is Hermitian, a sequence
of matrix orthonormal polynomials Pn satisfying (2.1) belongs to the matrix Nevai class
M(D, E) if limn→∞ Dn(W ) = D and limn→∞ En(W ) = E, respectively.
A positive definite matrix of measures W belongs to the Nevai class M(D, E) if some of the
corresponding sequences of matrix orthonormal polynomials belongs to M(D, E). Notice
that a positive definite matrix of measures can belong to several Nevai classes because of the
non-uniqueness of the corresponding sequences of matrix orthonormal polynomials. If D is
a nonsingular matrix, we can introduce the sequence of matrix polynomials {Un(z; D, E)}
defined by the recurrence formula

z Un(z) = D∗Un+1(z) + EUn(z) + DUn−1(z) n ≥ 0

with the initial conditions U0(z) = Ip, U−1(z) = 0. According to Favard´s theorem, this
sequence is orthonormal with respect to a positive definite matrix of measures WD,E . Notice
that they are the matrix analogs of Chebyshev polynomials of second kind.
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REMARK 4.2. The Jacobi matrix associated with a sequence of matrix orthonormal
polynomials in the Nevai class is a compact perturbation of the Jacobi matrix

J(.)
def
=










E(.) D(.) 0

D∗(.) E(.) D(.)
. . .

0 D∗(.) E(.)
. . .

. . .
. . .

. . .










.

If F(z; D, E) is the Stieltjes function associated with the matrix of measures WD,E and D
is nonsingular matrix, we get

THEOREM 4.3 ([6]). Let (Pn) ∈ M(D, E) with D a nonsingular matrix. Then

lim
n→∞

Pn−1(z)P−1
n (z)D−1

n = F(z; D, E)

locally uniformly in C \ Γ. Furthermore, F(z; D, E) is a solution of the quadratic matrix
equation

D∗XDX + (E − zIp)X + Ip = 0.

In particular, if D is a positive definite matrix, we can give the explicit expression for
F(z; D, E). Let S(z) = 1

2D−1/2(zIp − E)D−1/2, then

F(z; D, E) = D−1/2
[

S(z) −
(
S2(z) − Ip

)1/2
]

D−1/2.

Furthermore, the matrix S(z) is diagonalizable up to a finite set of complex numbers z and
also so is D1/2F(z; D, E)D1/2. If a is an eigenvalue of S(z), then a − (a2 − 1)

1
2 is an

eigenvalue of D1/2F(z; D, E)D1/2 assuming that | a − (a2 − 1)
1
2 |< 1 for a ∈ C \ [−1, 1]

which guarantees the existence of an appropriate square root. Since for x ∈ R, Ip −S2(x) is
Hermitian, then

Ip − S2(x) = U(x)N(x)U∗(x),

where N(x) is a diagonal matrix with entries {di,i}p
i=1 and U(x) is an unitary matrix. Then

the matrix weight WD,E(x), x ∈ R, is

dWD,E(x) =
1

π
D−1/2 U(x)

[
N+(x)

] 1
2 U∗(x) D−1/2dx,

where N+(x) is the diagonal matrix with entries d+
i,i(x)

def
= max{di,i(x), 0}.

The support of WD,E is then the set of real numbers

{y ∈ R : S(y) has an eigenvalue in [−1, 1]} .

In fact, WD,E is absolutely continuous with respect to the Lebesgue measure multiplied by
the identity matrix, and the support is the finite union of at most p disjoint and bounded
intervals.

If D is Hermitian, in [6] an example where WD,E is absolutely continuous with respect
to the Lebesgue measure times the identity matrix but with an unbounded Radon-Nikodym
derivative is presented. In the general case of non-singularity of D, nothing is known about
the support of WD,E . Furthermore, nothing is known about the absolute continuity for the
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entries with respect to the Lebesgue measure as well as Dirac deltas can appear. This last
case is one of the reasons for the analysis of perturbation of matrix of measures on the Nevai
class by the addition of Dirac deltas.

Let W be a matrix of measures supported on the real line, M a positive definite matrix
of dimension p, and c ∈ R \ Γ. Consider the matrix of measures W̃ such that

dW̃ (x) = dW (x) + Mδ(x − c).

If (Pn(x; W )) and (Pn(x; W̃ )) are two sequences of matrix orthonormal polynomials with
respect to W and W̃ respectively, satisfying a three-term recurrence relation such that D =
limn→∞ Dn(W ) is nonsingular, then

THEOREM 4.4 ([22],[21]). There exists a sequence of matrix orthonormal polynomials
(Pn(x; W̃ )) such that

1. lim
n→∞

[

An(W̃ )An(W )−1
]∗ [

An(W̃ )An(W )−1
]

=

Ip + F(c; D, E) [F′(c; D, E)]
−1

F(c; D, E).
2. If Λ(c)Λ(c)∗ is the Cholesky factorization of the positive definite matrix given in the

right hand side of the above expression, then

lim
n−→∞

Pn(x, W̃ )P−1
n (x, W ) =

Λ(c)−1 + 1
c−x

{
Λ(c)∗ − Λ(c)−1

}{
F−∗(c; D, E) − F−1(c; D, E)

}

locally uniformly in R \
{

Γ̂ ∪ {c}
}

.

3. (Pn(x; W̃ )) belongs to the matrix Nevai class M(D̃, Ẽ) with

D̃ = Λ∗(c)DΛ−∗(c)

Ẽ = Λ∗(c)EΛ−∗(c) + Λ∗(c)
{
D
[
Λ−∗(c).Λ−1(c) − Ip

]
D∗F(c; D, E)

−
[
Λ−∗(c).Λ−1(c) − Ip

]
D∗F(c; D, E)D

}
Λ−∗(c).

When D is Hermitian and nonsingular, we associate with the Nevai class M(D, E) the
sequence {Tn(z; D, E)} of matrix orthonormal polynomials defined by the recurrence for-
mula

z Tn(z) = DTn+1(z) + ETn(z) + DTn−1(z), n ≥ 2,

z T1(z) = DT2(z) + ET1(z) +
√

2 DT0(z)

with the initial conditions

T0(z) = Ip, T1(z) = (1/
√

2)D−1(z Ip − E).

Notice that {Tn(z; D, E)} is orthonormal with respect to a positive definite matrix of mea-
sures that we denote VD,E . They are the matrix analogue of the orthonormal Chebyshev
polynomials of the first kind and, in fact, as in the scalar case, the sequence of associated
polynomials of the first kind for our sequence (Tn(z)) is (1/

√
2) Un(z; D, E) D−1, n ≥ 1

(cf. [8]).
If we denote

σn(x) =
1

np

k∑

j=1

mjδ(x − xn,j),
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where xn,j (j = 1, · · · , k) denotes as in Theorem 3.3 the set of zeros of a sequence (Pn) of
matrix orthonormal polynomials with respect to a matrix of measures W , mk is the multi-
plicity of xn,k, then the Nevai class M(D, E) has the zero asymptotic behavior.

THEOREM 4.5 ([8]). Let (Pn) be a sequence of matrix orthonormal polynomials in the
Nevai class M(D, E). Then there exists a positive definite matrix of measures µ such that the
sequence of discrete matrices of measures (µn)

µn(x) =
1

np

k∑

j=1

(
n−1∑

i=0

Pi(xn,k)Γn,kP ∗
i (xn,k)

)

δ(x − xn,k)

converges in the ∗-weak topology to µ. Furthermore, σn converges to τ(µ) in the same
topology.
Notice that if D is a Hermitian and nonsingular matrix, then µ can be explicitly given (cf.
[8]) by

µ =
1

p
VD,E .

5. Orthogonal matrix polynomials on the unit circle. Let W be a matrix of measures
supported on the unit circle T. As in the scalar case the shift operator H : C(p,p)[x] →
C(p,p)[x], H[P ](x) = xP (x) is a unitary operator with respect to the inner product

(5.1) 〈P, Q〉L
def
=

1

2π

∫ 2π

0

P (eiθ)dW (θ)Q∗(eiθ).

Let (Φn(.; W )) be a sequence of matrix orthonormal polynomials with respect to (5.1), i.e.,
〈Φn, Φm〉L = δn,mIp. Notice that (UnΦn(.; W )) is a sequence of matrix polynomials or-
thonormal with respect to (5.1) if we assume (Un) is a sequence of unitary matrices. Fur-
thermore, taking into account the polar decomposition for the leading coefficient of (Φn),
we can assume that such a matrix coefficient is a positive definite matrix, and thus, we can
choose this normalization in order to have uniqueness for our sequence of matrix orthonormal
polynomials [1, page 333]. For a sake of simplicity we will assume such a condition. On the
other hand, in (5.1) we consider the measure 1

2π dW (θ) so as to have a probability measure,

i.e., 1
2π

∫ 2π

0
dW (θ) = Ip.

We also introduce the reversed polynomial P̃ (z) = zn P ∗(1/z) for every polynomial
P ∈ C(p,p)[x] with deg P = n. This means that for P (z) =

∑n
k=0 Dn,kzk, P̃ (z) =

∑n
k=0 D∗

n,n−kzk. Reversed polynomials will play an important role in our presentation.
As in the case of the real line (cf. Section 2, Definition 2.1) we can consider the sequence

of matrix polynomials (Kn),

Kn(x, y; W ) =

n∑

j=0

Φ∗
j (y; W ) Φj(x; W ),

the so called nth kernel polynomial associated with the matrix of measures W . Next, we
introduce a sequence (Ψn(.; W )) of matrix polynomials such that

1

2π

∫ 2π

0

Ψ∗
n(eiθ)dW (θ)Ψm(eiθ) = δn,mIp.

The sequence (Ψn(.; W )) is said to be a right orthonormal sequence of matrix polynomials
with respect to W . Notice that in the real case, right orthonormal polynomials are related
with the “left” or standard sequence by the transposed coefficients.
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As an analog of the backward and forward recurrence relations for the scalar case [19],
we can deduce two mixed recurrence relations where “left” and “right” matrix orthonormal
polynomials are involved.
Let

(5.2)
Φn(z) =

∑n
j=0 An,jz

j , and

Ψn(z) =
∑n

j=0 Bn,jz
j .

Since

(5.3)
∫ 2π

0

Ψ̃n(z)dW (θ)Φ∗
n(z) =

∫ 2π

0

Ψ∗
n(z)dW (θ)Φ̃n(z) =

n∑

j,k=0

B∗
n,n−jCj−kA∗

n,k,

where z = eiθ and Cl = 1
2π

∫ 2π

0 ei lθdW (θ), then taking into account that the leading coeffi-
cients of the polynomials Φn and Ψn are nonsingular matrices, as well as the orthonormality
conditions, we get

B−1
n,nA∗

n,0 = B∗
n,0A

−1
n,n.

We can introduce the reflection coefficients

Hn = A−∗
n,nBn,0 = An,0B

−∗
n,n

in such a way that

(Ip − H∗
nHn)1/2 = B−1

n,nBn−1,n−1 = B∗
n−1,n−1B

−∗
n,n,

(Ip − HnH∗
n)1/2 = A−∗

n,nA∗
n−1,n−1 = An−1,n−1A

−1
n,n.

Since we have assumed the leading coefficients are positive definite matrices, we have that
‖ Hn ‖2< 1. Thus, the recurrence relations can be written using the matrices Hn (as in the
scalar case):

(5.4a) Φn(z; W ) = (Ip − HnH∗
n)

1
2 zΦn−1(z; W ) + HnΨ̃n(z; W ),

(5.4b) Ψn(z; W ) = zΨn−1(z; W )(Ip − H∗
nHn)

1
2 + Φ̃n(z; W )Hn

(backward recurrence relation).
¿From (5.4b) we get

Ψ̃n(z; W ) = (Ip − H∗
nHn)

1
2 Ψ̃n−1(z; W ) + H∗

nΦn(z; W ),

and from (5.4a), we deduce that

Φ̃n(z; W ) = Φ̃n−1(z; W )(Ip − HnH∗
n)

1
2 + Ψn(z; W )H∗

n.

Finally, by substitution in (5.4) we obtain the so-called forward recurrence relations

(5.5a) (Ip − HnH∗
n)

1
2 Φn(z; W ), = z Φn−1(z; W ) + HnΨ̃n−1(z; W )

(5.5b) Ψn(z; W )(Ip − H∗
nHn)

1
2 = zΨn−1(z; W ) + Φ̃n−1(z; W )Hn.
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THEOREM 5.1 ((Christoffel-Darboux formula) [3]).

(5.6) (1 − yz)

n∑

j=0

Φ∗
j (y)Φj(z) = Ψ̃∗

n(y)Ψ̃n(z) − yz Φ∗
n(y)Φn(z).

As a consequence, writing y = z in (5.6), we get

(5.7) | z |2 Φ∗
n(z)Φn(z) = Ψ̃∗

n(z)Ψ̃n(z) + (| z |2 −1)

n∑

j=0

Φ∗
j (z)Φj(z).

Since the right hand side of (5.7) is a positive definite matrix for | z |> 1, the matrix Φn(z)
is nonsingular for | z |> 1. Assume that Φn(z0) is a singular matrix for | z0 |= 1. Let u be
an eigenvector of Φn(z0). Then, from (5.7) it follows that Ψ̃n(z0)u = 0. Thus from (5.4a)
we get Φn−1(z0)u = 0. By induction, Φ0(z0) is a singular matrix in contradiction with the
non-singularity of the matrix Φ0(z0) = A0,0.

COROLLARY 5.2. The zeros of Φn belong to the unit disk.
In order to compute such zeros, writing y = 0 in (5.6), we get

Ψ̃∗
n(0)Ψ̃n(z) = Kn(z, 0).

But Ψ̃∗
n(0) = Bn,n, and so Ψ̃n(z) = B−1

n,nKn(z, 0). From (5.5a)

z Φn−1(z) = (Ip − HnH∗
n)

1
2 Φn(z) − Hn B−1

n−1,n−1

n−1∑

k=0

Φ∗
k(0)Φk(z).

Taking into account Φ∗
j (0) = Ψ̃∗

j (0)H∗
j = Bj,jH

∗
j , we get

z Φn−1(z) = (Ip − HnH∗
n)

1
2 Φn(z) − Hn

∑n−1
k=0

(
∏n−1

j=k+1(Ip − H∗
jHj)

1
2

)

H∗
kΦk(z)

=
∑n

k=0 Mn−1,kΦk(z).

Thus, if we denote

Mn =













M0,0 M0,1 0
M1,0 M1,1 M1,2

...
...

...
. . .

...
...

...
. . .

Mn−2,0 Mn−2,1 · · · · · · Mn−2,n−2 Mn−2,n−1

Mn−1,0 Mn−1,1 · · · · · · Mn−1,n−2 Mn−1,n−1













,

then

z








Φ0(z)
Φ1(z)

...
Φn−1(z)








= Mn








Φ0(z)
Φ1(z)

...
Φn−1(z)








+








0
...
0

(Ip − HnH∗
n)

1
2 Φn(z)








.
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THEOREM 5.3. For n ∈ R, the zeros of the matrix polynomials Φn(z) are the eigenval-
ues of the block Hessenberg matrix

Mn ∈ C
(np,np)

with the same multiplicity.
Notice that if v is an eigenvalue corresponding to the eigenvalue z0 of Mn, writing v as a
block column vector

v =








v0

v1

...
vn−1








∈ C
(np,1),

where vi ∈ C(p,1), then the equation Mnv = z0v becomes

v1 = Φ1(z0)v0

v2 = Φ2(z0)v0

· · · · · ·
vn−1 = Φn−1(z0)v0, 0 = Φn(z0)v0.

In other words, there exists a bijection between N (z0, Φn) and the subspace of eigenvec-
tors of the matrix Mn associated with the eigenvalue z0. From (5.7), if | z |= 1, then
Φ∗

n(z)Φn(z) = Ψn(z)Ψ∗
n(z) is nonsingular matrix. As in the scalar case, we will analyze

two kinds of quadrature formulas.
Let us now define the weight matrix function Wn(θ) =

[
Φ∗

n(ei θ) Φn(ei θ)
]−1

as well as

Ωn(θ) =
∫ θ

0 Wn(s) ds. Because the rational matrix function [Φ∗
n(z)]

−1 is analytic in the
closed disk, one has

THEOREM 5.4 ([3]). For 0 ≤ j, k ≤ n

1

2π

∫ 2π

0

Φj(e
i θ)dΩn(θ)Φ∗

k(ei θ) = δj,kIp.

This means that the sequences of matrix orthonormal polynomials corresponding to the ma-
trices of measures Ωn and W have the same n + 1 first elements. Furthermore, if P and Q
are polynomials of degree less than or equal to n, we get

(5.8)
1

2π

∫ 2π

0

P (ei θ)dW (θ)Q∗(ei θ) =
1

2π

∫ 2π

0

P (ei θ)dΩn(θ)Q∗(ei θ).

¿From the above result a straightforward proof of the Favard´s theorem on the unit circle
follows ([3]). In fact, given a sequence of matrices (Hn) of dimension p with ‖ Hn ‖2< 1,
there exists a unique matrix of measures W such that the sequence of matrix polynomials
given by (5.5) is orthonormal with respect to W .

Notice that zeros of Φn which lie in the unit disk are involved in (5.8). In order to
obtain a quadrature formula with knots on the unit circle, we need to introduce the concept of
para-orthogonality.

DEFINITION 5.5 ([16], [18]). Let Un be a unitary matrix. The matrix polynomial

Bn(z; Un) = Φn(z) + UnΨ̃n(z)

is said to be para-orthogonal with respect to the matrix of measures W .
THEOREM 5.6 ([16]).
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1. The zeros of Bn(z; Un) are the eigenvalues of a unitary block Hessenberg matrix Nn

whose multiplicities are less than or equal to p.
The blocks of the matrix Nn are the same as those of Mn up to the corresponding to
the last row. In fact,

Nn−1,k = Mn−1,k − (Ip − HnH∗
n)1/2(U∗

n + H∗
n)−1

n∏

j=k+1

(Ip − H∗
j Hj)

1/2H∗
k .

2. If (mi)
k
i=1 are the multiplicities of the eigenvalues (zi)

k
i=1 and (vi,j)

k
i=1 (j = 1, 2, · · · , mi)

the corresponding eigenvectors, then

〈P, Q〉L =
k∑

i=1

P (zi)ΛiQ
∗(zi),

where P, Q are Laurent matrix polynomials P ∈ L−s,t, Q ∈ L−(n−1−t),(n−1−s)

(Lr,s =
{∑s

k=r Akzk, Ak ∈ C(p,p), r ≤ s
}
),

Λi =
(

v
(0)
i,1 , v

(0)
i,2 , · · · , v

(0)
i,mi

)

G−1
i







v
(0)∗

i,1
...

v
(0)∗

i,mi







,

v
(0)
i,s ∈ C(p,1) (s = 1, · · · , mi) is the vector consisting of the first p component of

vi,s, and (Gi)k,l = v∗i,kvi,l.

6. Orthogonality in the unit circle from orthogonality in [−1, 1]. Let W be a matrix
of measures supported on [−1, 1]. We can introduce a matrix of measures W̃ on the unit
circle T in the following way

(6.1) W̃ (θ) =

{
−W (cos θ) 0 ≤ θ ≤ π
W (cos θ) π ≤ θ ≤ 2π.

Taking into account the symmetry of the above measure, the matrix coefficients in (5.2) are
related in the following way

Bn,j = A∗
n,j j = 0, 1, · · · , n.

In this case, it is easy to prove that the reflection matrix parameters (Hn) associated with
the matrix of measures given in (6.1) are Hermitian. The first question to solve is the con-
nection between these reflection parameters and the parameters of some sequence of matrix
orthonormal polynomials with respect to W .

PROPOSITION 6.1 ([20]). Let (Φn) and (Ψn) be sequences of left and right matrix or-
thonormal polynomials on the unit circle with respect to W̃ (θ) with positive definite matrices
as leading coefficients. The sequence of matrix polynomials

Pn(x; W ) =
1√
2π

(Ip + H2n)−1/2
[

Φ2n(z; W̃ ) + Ψ̃2n(z; W̃ )
]

z−n,

where x = 1
2 (z+ 1

z ), is orthonormal with respect to W . The sequence of the matrix orthonor-
mal polynomials (Pn) satisfies (2.1) with

(6.2)
Dn(W ) = 1

2 (Ip + H2n−2)
1
2 (Ip − H2

2n−1)
1
2 (Ip − H2n)

1
2

En(W ) = 1
2 (Ip − H2n)

1
2 H2n−1(Ip − H2n)

1
2

− 1
2 (Ip + H2n)

1
2 H2n+1(Ip + H2n)

1
2
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for n ≥ 1.
Notice that if Hn = H for every n, we get

D = Dn =
1

2
(Ip − H2) > 0 and E = En = −H2.

Thus, the sequence (Pn) is a sequence analyzed in §4, i.e., it belongs to the matrix Nevai
class M(D, E). In such a case, the corresponding matrix of measures is given by

dW =
1

π
D−1

(
Ip −

[
(Ip − H2)−1(xIp + H2)2

])1/2
dx.

On the other hand, the support of the matrix of measures W lives in a finite union of at most
p disjoint bounded non-degenerate intervals whose end points are some zeros of the scalar
polynomial

det
[
(Ip − H2) − (xIp + H2)

]2
= 0,

i.e.,

det [Ip + xIp] = 0 or det
[
Ip − 2H2 − xIp

]
= 0.

This means that the set of ends points is contained in

{−1} ∪
{
1 − 2λ2, λ eigenvalue of H

}
.

Since 0 ≤ H < Ip, the above set is [−1, 1].
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