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(Communicated by Richard Schoen)

Abstract. We prove that the standard double bubble provides the least-area
way to enclose and separate two regions of prescribed volume in R3.

1. History

Archimedes and Zenodorus (see [K, p. 273]) claimed and Schwarz [S] proved that
the round sphere is the least-perimeter way to enclose a given volume in R3. The
Double Bubble Conjecture, long assumed true ([P, pp. 300–301], [B, p. 120]) but
only recently stated as a conjecture [F1, Section 3], says that the familiar double
soap bubble in Figure 1, consisting of two spherical caps separated by a spherical
cap (or flat disc), meeting at 120-degree angles, provides the least-perimeter way
to enclose and separate two given volumes. The analogous result in R2 was proved
by the 1990 Williams College “SMALL” undergraduate research Geometry Group
[F2]. In 1995, Hass, Hutchings, and Schlafly [HHS] announced a computer-assisted
proof for the case of equal volumes in R3. (See [M1], [HS1], [HS2], [Hu], [M2,
Chapter 13].) Here we announce a proof [HMRR] of the general Double Bubble
Conjecture, using stability arguments.

Theorem 1.1. In R3, the unique perimeter-minimizing double bubble enclosing
and separating regions R1 and R2 of prescribed volumes v1 and v2 is a standard
double bubble as in Figure 1, consisting of three spherical caps meeting along a
common circle at 120-degree angles. (For equal volumes, the middle cap is a flat
disc.)

Reichardt et al. [RHLS] have generalized our results to R4 and certain higher
dimensional cases (when at least one region is known to be connected). The 2000
edition of [M2] treats bubble clusters through these current results.

2. Previous results

(See [M2, Chapters 13 and 14].) F. Almgren [A, Thm. VI.2] proved the existence
and almost everywhere regularity of perimeter-minimizing bubble clusters enclosing
k prescribed volumes in Rn, using geometric measure theory. Taylor [T] proved that
minimizers in R3 consist of smooth constant-mean-curvature surfaces meeting in
threes at 120-degree angles along curves, which in turn meet in fours at isolated
points. An idea suggested by White, written up by Foisy [F1, Thm. 3.4] and
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Figure 1. The standard double bubble provides the least-perime-
ter way to enclose and separate two prescribed volumes. [Com-
puter graphics copyright John M. Sullivan, University of Illinois,
http://www.math.uiuc.edu/∼jms/Images.]

Hutchings [Hu, Thm. 2.6], shows that any perimeter-minimizing double bubble in
Rn has rotational symmetry about some line. A major complication is that the
regions are not a priori known to be connected. (If one tries to require the regions
to be connected, they might in principle disconnect in the minimizing limit as
thin connecting tubes shrink away.) Hutchings [Hu] developed new concavity and
decomposition arguments to rule out “empty chambers” (bounded components of
the exterior) and to bound the number of connected components of the two regions
of a minimizer. In particular, a nonstandard minimizer in Rn consists of a central
bubble with nested toroidal bands. For equal volumes in R2, there is only one
band and at most a two-parameter family of possibilities. Hass and Schlafly [HS2]
carried out a rigorous computer search of this family to eliminate these possibilities
and prove the Double Bubble Conjecture for equal volumes. Earlier computer
experiments of Hutchings and Sullivan had suggested that no such double bubbles
were stable.

3. The proof

As indicated above, a perimeter-minimizing double bubble is known to exist, to
have rotational symmetry, and to consist of constant-mean-curvature surfaces of
revolution (“surfaces of Delaunay”), meeting in threes at 120-degree angles along
circles of revolution. In R3 the convexity and decomposition arguments of Hutchings
[Hu, Thm. 4.2] imply easily that the larger region is connected and with careful
computation that the smaller region has at most two components, as in Figure 2.
Actually we give a less computational, stability argument to show that the smaller
region has at most two components.

To rule out nonstandard minimizers, we use the following stability argument.
Suppose that there is a nonstandard minimizer, and consider rotations about an
axis A orthogonal to the axis of symmetry as in Figure 3. This axis can be chosen
so that the places where the rotation vector field v is tangent to the double bubble
separate the bubble into (at least) four pieces. Some linear combinations of the
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Figure 2. In this nonstandard double bubble, the smaller re-
gion has two components—a central bubble and a thin toroidal
bubble around the outside—while the larger region is another
toroidal bubble in between. Note that although this example
consists of constant mean curvature surfaces meeting at 120-
degree angles, it is not in equilibrium, because the two compo-
nents of the disconnected region have unequal pressures. [Com-
puter graphics copyright John M. Sullivan, University of Illinois,
http://www.math.uiuc.edu/ ∼jms/Images.]

restrictions of v to the four pieces vanish on one piece and respect the two volume
constraints. By regularity for eigenfunctions, v must vanish on certain associated
parts of the bubble, which therefore must be spherical or flat. When three surfaces
meet and two are spherical or flat, so is the third. Lots of spherical or flat surfaces
lead easily to a contradiction.

This argument is inspired by Courant’s Nodal Domain Theorem [CH, p. 452],
which says for example that the first eigenfunction is nonvanishing. Other ap-
plications of this principle to isoperimetric problems and to the study of volume-
preserving stability have been given by Ritoré and Ros [RR], by Ros and Vergasta
[RV], by Ros and Souam [RS], and by Pedrosa and Ritoré [PR]. Perhaps the sim-
plest such phenomenon without constraints is that a circle of longitude on the unit
sphere is unstable because the rotation vector field vanishes at the poles (conjugate
points): rotating just half of it can be smoothed to reduce length.

Finding the required axis A requires consideration of a number of cases, as shown
in Figure 3.
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Figure 3. Case by case, one finds an “axis of instability” A per-
pendicular to the x-axis of symmetry. The places “ | ” where the
rotational vector field is tangent to the surface divide the bub-
ble into four pieces. [Drawing by James F. Bredt, copyright 2000
Frank Morgan.]
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Departamento de Geometŕia y Topoloǵia, Universidad de Granada, E-18071 Granada,

España

E-mail address: ritore@ugr.es
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