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{ ABSTRACT |

Podiform chromitite bodies occur in highly serpentinized peridotites at Dobromirtsi Ultramafic Massif
(Rhodope Mountains, southeastern Bulgaria). The ultramafic body is believed to represent a fragment of
Palaeozoic ophiolite mantle. The ophiolite sequence is associated with greenschist - lower-temperature amphi-
bolite facies metamorphosed rocks (biotitic gneisses hosting amphibolite). This association suggests that peri-
dotites, chromitites and metamorphic rocks underwent a common metamorphic evolution. Chromitites at
Dobromirtsi have been strongly altered. Their degree of alteration depends on the chromite/silicate ratio and to
a lesser extent, on the size of chromitite bodies. Alteration is recorded in individual chromite grains in the form
of optical and chemical zoning. Core to rim chemical trends are expressed by MgO- and Al,O3- impoverish-
ment, mainly compensated by FeO and/or Fe,O3 increases. Such chemical variations correspond with three
main alteration events. The first one was associated with ocean-floor metamorphism and was characterized by a
lizardite replacement of olivine and the absence of chromite alteration. The second event took place during
greenchist facies metamorphism. During this event, MgO- and SiO»-rich fluids (derived from low temperature
serpentinization of olivine and pyroxenes) reacted with chromite to form chlorite; as a consequence, chromite
became altered to a FeO- and CryO3-rich, Al,O3-poor chromite. The third event, mainly developed during lower
temperature amphibolite facies metamorphism, caused the replacement of the primary and previously altered
chromite by Fe,Os-rich chromite (ferritchromite).
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INTRODUCTION

Cr-spinel [(Mg, Fe?*) (Cr, Al, Fe3*);,04] is a com-
mon accessory mineral in ultramafic and mafic rocks. It
also forms monomineralic bodies of economic value
which are found scattered in the mantle section of ophi-
olite complexes worldwide. In such settings, Cr-spinel
displayes a large range of composition, reflecting their
primary, magmatic origin. Because Cr-spinel chemistry
is sensitive to unaltered melt composition, its primary
composition is used as a petrogenetic indicator (Irvine,
1967; Hil and Roeder, 1974; Maurel and Maurel, 1982;
Dick and Bullen, 1984; Roeder and Reynolds, 1991;
Arai, 1992; Stowe, 1994; Zhou and Robinson, 1997;
Zhou et al., 1998; Proenza et al., 1999; Barnes and
Roeder, 2001). Chemical modifications related to sub-
solidus equilibration during metamorphic or hydrother-
mal processes can significantly modify the primary
composition of Cr-spinel. As a matter of fact, in serpen-
tinized and metamorphosed rocks, the composition of
Cr-spinel changes with alteration and metamorphic
degree (Spangenberg, 1943; Thayer, 1966; Cerny, 1968;
Beeson and Jackson, 1969; Ulmer, 1974; Evans and
Frost, 1975; Bliss and McLean, 1975; Wylie et al., 1987,
Thalhammer et al., 1990; Suita and Streider, 1996;
Prichard et al., 2001; Proenza et al., 2004, 2008; Zac-
carini et al., 2005; Garuti et al., 2007; among others),
but the extent of chromite alteration still remains an
open question.

In this paper, we examine the effects of serpentiniza-
tion and metamorphism on the composition of Cr-spinel
from a set of chromitite bodies, located in the Dobromirt-
si Ultramafic Massif, southeastern Bulgaria, on the basis
of their petrologic features and mineral chemistry. This
massif is included in a metamorphosed area (central
Rhodopes) which reached the amphibolite facies condi-
tions. This fact, together with the low reactivity of Cr-
spinel will allow the identification of different alter-
ation/metamorphic events that affected these chromitite
bodies. These events were recorded in Cr-spinel grains in
the form of zoning patterns. The constraints provided
here, on the origin of the different zoning patterns of Cr-
spinel in relation to alteration/metamorphic reactions, are
revealed to be an useful tool for studies that have
chromite alteration mechanisms as their main targets.

GEOLOGICAL SETTING

The Rhodope Massif

The Rhodope Massif is a wide crystalline massif
mainly composed of granitic and metamorphic rocks that
extends along southeastern Bulgaria and northern Greece
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(Fig. 1). This massif represents a large orogen formed
between the Srednogorie zone (underlain by European
continental basement) and the present Aegean Sea
(Marchev et al., 2005). Complex thrust tectonics and
crustal thickening resulted from accretion of dominantly
continental crustal material followed by polyphase
regional metamorphism and final structuring by major
low-angle extensional faults. Metamorphism is dominant-
ly of amphibolite-facies with incipient migmatization in
some areas and local relics of high to ultra-high pressure,
eclogite facies metamorphism. Two major tectonostrati-
graphic complexes, the Gneiss-Migmatite Complex and
the Variegated Complex, have been distinguished on the
basis of dominant metamorphic rock composition. These
units are separated, at least locally, by their degree of
metamorphism and/or mappable low-angle detachment
faults and thus they approximate the lower and upper
plates of interpreted core complexes. The Gneiss-
Migmatite Complex represents the tectonostratigraphical-
ly lower unit in extensional domes and in the studied area
it builds the core of the Central Rhodopean Dome
(Marchev et al., 2005). It is dominated by orthogneisses
and is characterized by widespread evidence of incipient
melting, with subordinate paragneisses, marbles and
amphibolites located mainly in its upper parts. Ages
reported for this complex suggest that it derived mainly
from a Variscan or an older continental basement. The
Variegated Complex is dominated by generally non-
migmatized gneisses, amphibolites, scattered meta-ultra-
mafic bodies and abundant marbles. In the studied area it
makes up the upper plate of the Central Rhodopen Dome
and is separated from its core complex by the Starsevo
shear zone. The age of the initial rock formation and
metamorphism is still discussed. Nevertheless, on the
basis of SHRIMP dating of zircons in a gabbro that show
neoproterozoic cores (570 Ma) overgrown by Variscan
rims (300 to 350 Ma), some authors (Marchev et al.,
2005) consider that these rocks and perhaps even their
amphibolite-facies metamorphism are PreAlpine in age.
These authors consider that amphibolite-facies metamor-
phism took place during a subduction process in Jurassic
times.

According to Zhelyaskova-Panayotova and Econo-
mou-Eliopoulos (1994), there are dismembered meta-
ophiolite bodies scattered within central and eastern
Rhodope Massif. The ultramafic sequences of these ophi-
olite bodies are made up of highly deformed peridotites
(harzburgites and dunites with minor amounts of lherzo-
lites) and rocks of the cumulate sequence, including
dunites, pyroxenite-dunites, olivine-pyroxenites, meta-
gabbros and gabbropegmatites. Most of the ultramafic
bodies are of small size and crop out in the eastern
Rhodopes. Among them, the Dobromirtsi Ultramafic
Massif is the biggest. This massif belongs to the Bojno
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lithotectonic unit (the uppermost unit of the Variegated
Complex) which is separated from the underlying Strart-
sevo unit by the Borovitsa fault zone (Fig. 1). The Bojno
unit includes marbles, biotitic and fine-grained gneisses,
porphyric and equigranular granites, massive metabasites,
and highly serpentinized ultramafic rocks. The latter unit
is thrusted by the Kurdjali unit and unconformably cov-
ered by tertiary sediments and volcanic rocks (Fig. 1).

The Dobromirtsi Ultramafic Massif

The Dobromirtsi Ultramafic Massif is a small ultra-
mafic body (it crops out over 11 km?) slightly elongated
along the SW-NE direction (Fig. 2). The western part of
the body thrusts over Palacozoic metamorphic rocks
(biotitic gneisses hosting amphibolites), whereas the
eastern part is unconformably covered by continental
sediments that host Oligocene volcanic rocks. The ultra-
mafic rocks consist of highly serpentinized harzburgites,
containing variable amounts of orthopyroxene, and
dunites. Both types of rocks are cut by strongly folded
(nearly isoclinal) veins of pyroxenites a few-centimetres
thick. Mantle foliation (defined by the elongation of
pyroxene and spinel crystals in porphyroclastic rocks) is
obliterated by a late mylonitic foliation probably related
either to the crustal emplacement of the peridotites or to
the greenschist-amphibolite facies metamorphism that
affected the central Rhodopes. This foliation strikes 20-
60°, dipping 55-80° to the East, but is slightly parallel to
vertical dipping near the western contacts of the body
(Fig. 2). The dominant metamorphic alteration is serpen-
tinization, but along tectonic faults the rocks were also
affected by chloritization, carbonatization and talciza-
tion processes.

CHROMITE DEPOSITS

Chromitites at Dobromirtsi occur concordantly to the
mylonitic foliation of the massif, and are located along a
single dunite-rich horizon (Fig. 2). Locally, they are also
cross-cut by pyroxenite veins.

Most chromitite bodies at Dobromirtsi were mined
during the Second World War. However, accurate data
about the mining history of the area and its ore production
are unavailable. First scientific reports on these deposits
were made by Payakov et al. (1961) and more recently by
Zhelyaskova-Panayotova et al. (2000), who reported about
two hundred small, podiform-like ore bodies in the mas-
sif. As a result of mining, only a few “in situ” chromitite
bodies remain. Field data, along with the data reported by
Payakov et al. (1961) and Zhelyaskova-Panayotova et al.
(2000), suggest that chromite ore bodies form single,
elongated lenses (tens of metres long, and less than 3 m
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thick) and layers (only a few metres long, and less than
0.5 m thick). Chromite is also concentrated in the form of
small disseminations or veinlets, less than 5 cm thick.

SAMPLING AND ANALYTICAL METHODS

Eighty-two chromitite samples were collected from
nine chromitite bodies (Fig. 2). Although, the majority of
the collected chromitite samples come from blocks accu-
mulated in dumps close to the old mining works, some
samples were also collected in situ from the unexploited
walls of various ore bodies. Polished thin sections of
chromitites were studied by ore microscope, SEM, FESEM
and ESEM prior to the quantitative, WDS analysis of the
mineral phases by electron-microprobe. Analyses were
obtained with a CAMECA SX50 electron microprobe at
the Serveis Cientificotecnics of the Universitat de Bar-
celona. The analytical conditions were 20 kV accelerating
voltage, 20 nA beam current, 2 um beam diameter, and 10
s counting time. Calibration was performed using natural
and synthetic standards: periclase (Mg), orthoclase (Al),
diopside (Si), rutile (Ti), Cr,O3 (Cr), rhodonite (Mn),
Fe,03 (Fe), NiO (Ni) and sphalerite (Zn). Structural formu-
lae of Cr-spinel were calculated assuming stoichiometry,
following Carmichael’s (1967) procedure.

CHROMITITES
Petrography

Chromitite texture is mainly massive, but some bodies
show semi-massive, disseminated, or locally nodular tex-
tures at their peripheral parts. Banded chromitites, with
alternating chromite-rich and serpentine-rich layers are
also present. Massive chromitites (>80% chromite) are
composed of coarse aggregates of chromite crystals, up to
1.5 cm across. In contrast, semi-massive- and dissemina-
ted-textured ores (30-80% chromite) contain smaller (<1
cm), sometimes oriented chromite grains, and usually
grade to more massive textures by increasing chromite
content.

The degree of alteration of the different chromitite
bodies is quite variable. It also varies within a single
body. The degree of alteration depends on the size of the
ore body and on the chromite/silicate ratio. Thus, massive
chromitite from big ore bodies (D3, D4 and D8) are less
altered than mid-sized and small ore bodies (D1, D2, D5,
D6, D7 and D9). Likewise, chromite from disseminated
chromitites displays higher degrees of alteration than
chromite from semi-massive and massive chromitites. As
a consequence, alteration increases from inner to outer
parts of chromitite bodies.

|416



J.M. GONZALEZ-JIMENEZ et al. Metamorphised chromite ores in ultramafic rocks (Rhodope Mts., SE Bulgaria)

[ serpentinized ultramafic rocks

Quaternary Sediments

(Paleozoic)
[] Tufites (Late Oligocene) ®D3 Sampling point
E#E Conglomerates ( Late Oligocene) [] Metamorphic foliation

in ultramafic rocks
| Conglomerates, sands

and clays (Late Oligocene) Foliation and dip in metamorphic

and sedimentary rocks

/‘ Normal faults
/ Thrusts

FIGURE 2| Simplified geological map of the Dobromirtsi Ultramafic Massif (modified from Payakov et al., 1961).

Conglomerates (Early Oligocene)

| /|| Biotitic gneisses (Palaeozoic)

Geologica Acta, 7(4), 413-429 (2009) [417|
DOI: 10.1344/104.000001447



J.M. GONZALEZ-JIMENEZ et al. Metamorphised chromite ores in ultramafic rocks (Rhodope Mts., SE Bulgaria)

"Chiorite

Chlorite+Serpentine

Chlorite Chlorite
] - +

T Serpentine
Serpentine P

Chlorite &
. .
Serpentine

e

Vs

N f?:‘.
erpentin%,

VI

FIGURE 3 | Back-scattered electron microphotographs illustrating typical zoning patterns of chromite ores from Dobromirtsi. A) concentrically zoned
chromite crystal from D2 chromitite, showing a dark central zone (core) and an outer light-coloured zone (rim). Note that the rim contains abundant
inclusions of chlorite. The white spot in the core is a minute inclusion of laurite (RuS3). B) zoned chromite crystal of D2 chromitite. Note that the
altered margin host very abundant inclusions of chlorite. C) zoned chromite crystal from D6 chromitite, showing alteration advancing from margins
and open fractures inwards. D) zoned chromite crystal of D1 chromitite showing an altered margin made up of two optically and chemically differen-
tiated rims. E) detail of the previous grain showing the unaltered core and the two alteration rims. The white spots in Rim-2 correspond to inclusions
of Ni-arsenides F) complex irregular zoning in chromite of D1 chromitite.

Geologica Acta, 7(4), 413-429 (2009) |418|
DOI: 10.1344/104.000001447



J.M. GONZALEZ-JIMENEZ et al.

Individual chromite crystals are often fractured. Most
of them show irregular optical zoning (Figs. 3A-F). Zoning
is usually concentric, advancing from rims and open frac-
tures inwards (Fig. 3A-E), although irregular and complex
patterns with patches of unaltered and/or altered zones are
also present (Fig. 3F). Chromite from D1 and D9 ore bod-
ies show rims with two optically different zones (Figs. 3E
and F). Chromite cores characteristically have rounded
shapes, separated from the altered rims by sharp contacts.
The outermost altered zones often develop a porous texture
containing abundant inclusions of secondary silicates such
as serpentine or mostly chlorite (Fig. 3A and B).

The interstitial serpentine matrix of chromitites con-
sists of mesh-textured lizardite partly replaced by antig-
orite, together with chlorite, talc and carbonates. Chlorite
forms either intergrowth aggregates with serpentine or
aureoles that surround chromite; in the latter case, com-
position approaches chromium clinochlore. Talc forms
after pyroxenes, whilst carbonates occur as tiny (less than
lcm thick) cross-cutting veins in chromite and serpenti-
nite matrix. Traces of magnetite and brucite also occur in
the serpentine matrix.

Mineral Chemistry

Although most chromite grains of the studied chromi-
tites show systematic core to rim, or irregular composi-
tional variations, those from the massive-textured ores of
the D3, D4 and D8 do not show any compositional varia-
tion. The composition of these chromites clearly plots
within the field of podiform (ophiolite) chromitites (Fig.
4) having Cr# from 0.55 to 0.77, and Mg# from 0.53 to

Metamorphised chromite ores in ultramafic rocks (Rhodope Mts., SE Bulgaria)

0.69. Whereas Mg# of chromite is very similar in the three
ore bodies, Cr# increases from D8 to D4 and to D3. Similar
compositions are preserved in the cores of chromite from D1
and D5 ore bodies (Fig. 4). Chromite cores from D1 chromi-
tite show variable Cr# (from 0.57 to 0.71) and the highest
Mg# (up to 0.78). In contrast, those from D5 chromitite have
similar Mg# (from 0.51 to 0.67) like the unaltered chromite,
but the lowest Cr# (from 0.53 to 0.57). Chromite from the
latter chromitite show core to rim compositional variations
(Fig. 4) characterized by strong Cr,O3 and FeO enrichment
(Cr# varies from 0.53 to 0.85, and Mg# from 0.85 to 0.18)
with no increase in Fe,O3 (Fig. 5). Cores of D2 chromitite
are very heterogeneous showing significant Cr# and Mg#
variations (from 0.60 to 0.74 and from 0.31 to 0.38, respec-
tively) (Fig. 4). These compositions overlap those of the
chromite rims of D5 chromitites (Fig. 4).

Core to rim, Fe3*# variations in chromite are mainly
observed in semi-massive- and disseminated-textured ores
of D1, D2, D6 and D9 chromitites (Fig. 5). This figure
shows the absence of Fe3* enrichment in chromite from
D3, D4, D8 and D5 chromite, as well as different trends
of Fe3* enrichment, compared to chromite from the other
ore bodies studied. Core to rim, Fe3* enrichment in D2
chromitite (Fe3*# varies from 0.03 to 0.12) is accompa-
nied by a slight increase in FeO (Mg# varies from 0.38
to 0.17) (Fig. 5) and a strong Cr,0O3 enrichment (Cr#
varies from 0.81 to 0.94) (Fig. 6). In contrast, in D6
chromitite, Fe3* enrichment from core to rim (Fe3*#
varies from 0.06 to 0.28) takes place without any varia-
tion in either FeO or CrpO3 contents, but is associated
with a strong loss of Al,O3 (Figs. 5 and 6). Chromite
from D1 and D9 chromitites shows a more complex pat-
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tern of zoning with two alteration zones (Rim-1 and
Rim-2) irregularly surrounding the unmodified or slightly
modified cores (Figs. 3D-F and 5). The composition of
chromite cores in D1 chromitite plots in an elongated
field which suggest a compositional trend characterized
by a slight increase in Fe;O3 (Fe’*# varies from 0 to 0.08)
and a significant depletion in FeO (Mg# varies from 0.56
to 0.79) (Fig. 5). Rim-1 forms around these cores by a
slight increase in Fe,O3 (Fe3*# varies from 0.09 to 0.10),
a significant increase of FeO (Mg# varies from 0.47 to
0.45) and loss of Al,O3 (Cr# increases from 0.71 to 0.77)
content (Figs. 4 and 5). Rim-2 (not always present) forms
around Rim-1 (compositional trend drawn with a solid
arrow in Fig. 5) or occasionally around cores (composi-
tional trend drawn with a dashed arrow in Fig. 5) (Figs.
3D-F). The formation of this rim implies a further in-
crease in FerO3 (Fe3*# up to 0.23) coupled with a
decrease in FeO (Mg# varies from 0.78 to 0.46) and a
very significant decrease in Al,O3 content (Cr# varies
from 0.64 to 0.91). The alteration trends identified in the
different zones, observed in chromite from D9 chromitite
are almost the same as those described in D1, except for

Fe 3+

D3-D4-D8

Metamorphised chromite ores in ultramafic rocks (Rhodope Mts., SE Bulgaria)

the fact that the cores are more homogenous, having Fe,O3
contents that overlap the Fe,Os-richest zone of the field
defined by the cores of D1 chromite (Fig. 5). Some of these
trends are well illustrated in the profiles shown in Fig. 7
and representative analytical data are listed in tables 1 to 4.

DISCUSSION

Chromite from chromitites of the Dobromirtsi Ultra-
mafic Massif is variably altered. The degree of alteration
mainly depends on the chromite/silicate ratio and, to a
lesser extent, on the size of chromitite bodies (large bod-
ies tend to be massive). Thus, whereas chromite from D3,
D4 and D8 ore bodies remains unaltered, chromite from
the other ore bodies studied is affected by variable alter-
ation degrees, showing different zoning patterns.

The alteration rim of chromite from D5 chromitite, as
well as chromite cores of D2 chromitite, have a chemical
composition that provides evidence of an alteration event
characterized by FeO enrichment and Cr# increase

Fe3+ Fe 3+

Cr

Al

FIGURE 6| Compositional variation in chromite from the studied chromitites in terms of its Fe3*+, Cr3* and AI3* contents.
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(caused by loss of Al,O3) with little or no variation in
Fe,O3 content (Fig. 6). According to Purvis et al. (1972),
Evans and Frost (1975) and Suita and Streider (1996),
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FIGURE 7 | Compositional variations of Cr3+, AI3*, Fe3+, Fe2* and
Mg2*, through representative zoned chromite grains showing the
alteration zones identified in the studied chromites. Variations as
determined by electron microprobe are shown in atoms per formula
unit (apfu). A) zoned chromite grain of D5 chromitite illustrating core
to rim, Fe2* and Cr3+ enrichment and Mg2*+ and AI3* loss. B) zoned
chromite from D1 chromitite showing an unaltered core and altered
margin made up of two alteration rims. Rim-1 is characterized hy
Cr3+, Fe3* and Fe2* increase and loss of AI3* and Mg2*, and Rim-2 is
characterized by Fe3* increase coupled with a decrease in Fe2*+ and
with opposite variations in Cr3* and AI3* contents.
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such chemical variation is typical of chromite altered
under greenschist facies metamorphism (Fig. 8). The ori-
gin of Fe?*-, Cr’*-enriched and Al-, Mg-depleted
chromite can be explained using the modified reaction
proposed by Kimball (1990). According to this author, at
relatively high temperatures (> 400°C) the Mg- and Al-
rich component of the primary chromite reacts with
MgO- and SiO;-rich fluids to produce chlorite:

(1) (Mg, Fe)(ALCr),0;4 + Fluid ~
Chromite
MgsAlSi3010(OH)g + (Fe,Mg)(Cr,AI)204
Chlorite

The formation of chlorite through this reaction implies
outward diffusion of Al and Mg from chromite, leaving a
residual Fe2*-, Cr3*-enriched and Al-, Mg-depleted
chromite. The temperatures proposed by Kimball (1990)
do not concur with those at which greenschist facies meta-
morphism takes places (200-400 °C; Ernst, 1993). Howev-
er, the combined serpentinization of olivine and pyroxene
(Bach et al., 2006) at lower temperatures (200-300 °C)
could favour the creation of a MgO-, SiO»-rich environ-
ment necessary for the Kimball reaction to take place.

The alteration rim surrounding chromite cores of D2
chromitite, as well as the inner alteration rim (Rim-1) sur-
rounding the slightly altered chromite cores of D1 and D9
chromitites display a chemical composition, similar to
that described in the alteration rim of chromite of D5
chromitite and the chromite cores of D2 chromitite in
terms of FeO, MgO, Cr,0O3 and Al,O3, but showing slight
Fe>0O3 enrichment (Figs. 5 and 6). These compositions
also plot in the field of greenschist facies metamorphism
(Fig. 8). Nevertheless, the slight Fe3* enrichment in
chromite suggests the beginning of a change in the alter-
ation conditions to more oxidative states. According to
Mellini et al. (2005), relatively high oxidative conditions
favour the reaction of spinel (or the spinel component of
chromite) with serpentine to produce chlorite and a Fe-
rich, Cr-spinel intermediate between chromite and mag-
netite:

() MgALO;, + 1.5Mg3Si05(OH)4 + H,0 + 0.0830,

Al-Spinel Serpentine
MgsAlSi3O 1 o(OH)g +0.1 67(Fe,Cr)3O4
Chlorite Ferritchromite

Textural evidence and the observed chemical variations
show that this Fe-rich, Cr-spinel occurs as an alteration rim
of the previously altered chromite from D2 and as Rim-1 of
chromites from D1 and D9 chromitites, formed by the
reaction of the pre-existing chromite (unaltered or affected
by the described early stages of greenschist facies meta-
morphism) with the serpentine of the silicate matrix. The
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Fe-spinels

Lower-amphibolite-
facies spinels

Greenschist-
facies Cr-spinels

Metamorphised chromite ores in ultramafic rocks (Rhodope Mts., SE Bulgaria)

Fe3* Fe3*

Upper-amphibolite-
facies spinels

Granulite-facies
Spinels

Cr

Al

FIGURE 8 Compositional changes in chromites from Dobromirtsi expressed in a triangular Cr-Fe3+-AI3+ plot with reference to the fields of the differ-
ent metamorphic facies defined for Cr-spinels by Purvis et al., (1972); Evans and Frost, (1975), and Suita and Streider, (1996). D1) white diamonds;
D2) white circles; D3) grey triangles; D4) grey squares; D5) hlack diamonds; D6) white triangles; D8) grey circles; D9) white squares. Arrows indi-

cate the main compositional trends.

lack of evidence of alteration in chromite from D1 and D9
chromitites during the early stages of greenschist facies
metamorphism, shows either that it was not affected by this
metamorphic event or, most probably, that it was complete-
ly obliterated by the subsequent oxidizing event. The f{O»)
increase required for the formation of Fe-rich Cr-spinel
might be associated with late stages of serpentinization
during advanced steps of greenschist metamorphism, when
olivine was totally replaced by serpentine (Eckstrand,
1975; Frost, 1985; Bach et al., 20006).

The composition of chromite from D6 chromitites,
as well as Rim-2 of chromite from D1 and D9 shows the
highest Fe3* contents among the studied chromite.
These compositions are typical for an Fe3*-rich, Cr-
spinel known in the literature as “ferritchromite” (Span-
genber, 1943; Evans and Frost, 1975). In the studied
chromitites, the formation of ferritchromite implies an
alteration event characterized by a strong increase in
Fe3* associated with a strong loss of Al,O3 with little or
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no Cry03 and FeO variation. According to Fig. 8, this
alteration event should have taken place during lower-
temperature amphibolite facies metamorphism. Progres-
sive Fe3* increase relative to earlier altered chromites
suggests an increase of the oxidative state with increas-
ing metamorphism. Prograde metamorphism stopped
serpentinization of pyroxene and olivine (Frost, 1985;
Bach et al., 2006), favouring an oxidizing environment.
As noted above, reaction II is mainly controlled by f{O>)
in the environment. The progressive increase of f(O»)
favoured the reaction of higher amounts of serpentine
and chromite, producing chlorite (now found as inclu-
sions at ferritchromite alteration margins or forming
haloes around chromite) and ferritchromite. The shape
of the contacts between ferritchromite rims and alter-
ation Rim-1 or unaltered or slightly altered cores of
chromite from D1, D9 and D6 chromitites (Fig. 3E) sug-
gests that oxidizing fluids involved in the alteration
process were very aggressive and also able to dissolve
chromite, giving rise to a migration of Fe3*, A1’* and
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Cr3* out of chromite (Wylie et al., 1987). The decrease
in FeO observed in the alteration Rim-2 of chromite of
D1 chromitites (Figs. 5, 6 and 7) also suggests that the
dissolution of chromite might favour the liberation of
some amounts of Fe2*, which was later oxidized to Fe3*,
therefore contributing to the increase in the amount of
Fe3* available for the formation of ferritchromite.

The local presence of some amounts of talc, brucite
and carbonates, suggests that late, highly oxidizing condi-
tions were accompanied by limited influence of CO,-rich
fluids (Eckstrand, 1975):

(1) 15Mg3SirOs(OH), + 2Fe304 + 30C0O,

Serpentine Magnetite
9Mg3Si4010(OH)2 + 30(Mg0.9 Fe()_l)CO3 + 27H20 +12 02
Talc Magnesite

The scarce proportion of these minerals in the stud-
ied chromitites allows us to deduce that their formation
was a very late process, limited by the small amount of
magnetite, generated when olivine was transformed to
lizardite, during ocean-floor metamorphism. On the
other hand, the preservation of chlorite/antigorite inter-
growths in the altered silicate matrix between chromite
grains, together with the absence of newly formed
olivine (that forms after antigorite by dehydration at
500 °C; Caruso and Chernosky, 1979) again suggest
that the temperature did not exceed the range of lower
amphibolite facies metamorphism.

Metamorphised chromite ores in ultramafic rocks (Rhodope Mts., SE Bulgaria)

The described evolution of the alteration process is
summarized in Fig. 9. This simplified diagram shows that
alteration rims in metamorphosed chromitites are a faith-
ful record of the metamorphic path. As shown in Fig.8§,
low temperature serpentinization, occurring during ocean-
floor metamorphism most probably did not produce any
change in chromite composition as it took place under
highly reducing conditions (Bach et al., 2006). However,
with the increasing temperature, during the earlier stages
of greenschist facies metamorphism, chromite reacts with
Mg- and SiO»-rich fluids losing Al** and Mg?*, and giv-
ing rise to a new chromite rich in FeO and Cr,O3 in equi-
librium with chlorite. A further increase in the metamor-
phic degree stops the serpentinization of olivine and
pyroxene, promoting the creation of a relatively more oxi-
dizing environment. Then, the reaction of the pre-existing
chromite (both altered and unaltered) with serpentine
results in the formation of a new alteration rim character-
ized by higher Fe3* content. Under lower-temperature
amphibolite facies conditions, chemical changes in
chromite are characterized by a strong increase in the
Fe,O3 content, demonstrating a significant increase of O».
Under these oxidizing conditions, higher amounts of
serpentine react with chromite, producing ferritchromite
and an abundance of chlorite. At the end of the evolu-
tionary history of these chromitites, serpentine reacted
with brucite to form chlorite/antigorite intergrowths or
with magnetite to form talc and carbonates (magnesite)
in the silicate matrix of chromite or along late narrow
veins.

Increasing metamorphic grade (T)

Ocean-floor metamorphism

Ol——>Lz/Ctl Chr—— Chl
Ol = olivine
Lz = lizardite
Ctl = chrysotile
Chr = chromite
Chl = chlorite

Atg = antigorite

Brc = brucite

Fe-Chr = Ferritchromite
Tic =talc

Mgs = magnesite

Mgt = magnetite

Greenschist

Lower-T amphibolites

S s 1
=\ F\efi\, 7
Atg+Brc — Chl

Chr+Atg—> Chl+Fe-Chr
Atg+Mgt— Tlc+Mgs

FIGURE 9 | Schematic illustration of chemical changes in chromite during prograde alteration and metamorphism.
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CONCLUDING REMARKS

The study of chromitite samples from the nine
chromite ore bodies of the Dobromirtsi Ultramafic Massif
indicates that the chemical variation observed in the
altered chromite, relative to primary chromite, reflects the
effect of metamorphic reactions between chromite and the
surrounding silicate matrix.

The detailed petrography and chemical investigation
of chromitites indicates that alteration is very heteroge-
neous. The degree of alteration depends on the
chromite/silicate ratio and, to a lesser extent on the size of
the chromitite bodies. Thus, in massive-textured and big
ore bodies chromite survives, showing very little or no
alteration; in contrast, chromite from small ore bodies,
usually with disseminated texture, is easily altered.

Alteration is recorded in individual chromite grains
as irregular to concentric zones. Thus, three main alter-
ation events have been identified. During the first one,
lizardite replaced olivine and chromite remained unal-
tered. During the second event, the Mg- and Al-rich
component of primary chromite reacted with MgO- and
Si05-rich fluids to form chlorite, and chromite enriched
in FeO and CryO3 and impoverished in Al,O3, with little
or no variation in the Fe,O3 content. Finally, during the
third event, unaltered or previously altered chromite
reacted with already formed serpentine under oxidizing
conditions to form new amounts of chlorite. As a result
of this process, chromite strongly enriches in Fe3* form-
ing ferritchromite.

These alteration events characterize different steps of
the prograde metamorphism that affected chromitites in
accordance with the evolution of the regional metamor-
phism of central Rhodopes. The first one took place dur-
ing ocean-floor metamorphism, whereas the second and
third events occurred during greenschist and lower tem-
perature amphibolite facies metamorphism, respectively.
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APPENDIX

Analytical data

TABLE 1 | Selected representative analyses of unaltered chromite.

Sample/Point d1-3  d1-6-1 d3-102 d3-104 d4-102 d4-101 d5-202 d5-202 d8-205 d8-209
Sio, 0.12 0.07 0.21 0.25 0.11 0.18 0.02 0.01 0.02 0.05
TiO, 0.3 0.25 0.21 0.24 0.25 0.24 0.2 0.23 0.38 0.37
Al,O, 16.76  18.88 1259 1291 15.23 17.28  24.81 2457  17.79 21.79
Cr,0, 5197 50.34 56.84 54.92 52.4 50.08 4275 41.89 49.69 44.25
Fe,0O, 3.51 3.64 3.89 3.51 3.52 3.42 2.58 4.23 4.86 4.96
FeO 1263 11.96 12.71 14.23 16.6 14 1458  13.01 12.14 14.78
MnO 0.5 0.54 0.56 0.56 0.65 0.5 0.4 0.39 0.38 0.35
MgO 1423 14.95 13.94 12.75 11.39 13.26 13.62 14.61 14.83 13.56
ZnO 0.1 0.06 0.1 0.06 0.07 0 - - - -
NiO 0.19 0.15 0.15 0.1 0.19 0.12 - - - -
Total Ox% 100.3 100.84 101.21 99.53 10042 99.08 98.96 98.94 100.1  100.11
Si 0 0 0.01 0.01 0 0.01 0 0 0 0
Ti 0.01 0.01 0.01 0.01 0.01 0.01 0 0.01 0.01 0.01
Al VI 0.62 0.68 0.47 0.49 0.57 0.64 0.89 0.88 0.65 0.78
Cr 1.28 1.22 1.42 1.4 1.32 1.25 1.04 1.01 1.22 1.07
Fe* 0.08 0.08 0.09 0.09 0.09 0.08 0.06 0.09 0.11 0.12
Fe* 0.33 0.31 0.34 0.38 0.44 0.37 0.37 0.33 0.32 0.38
Mn* 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
Mg 0.66 0.68 0.66 0.61 0.54 0.63 0.62 0.66 0.68 0.62
Zn 0 0 0 0 0 0 - - - -
Ni 0.01 0 0 0 0.01 0 - - - -
Cr# 0.68 0.64 0.75 0.74 0.7 0.66 0.54 0.53 0.65 0.58
Mgt 0.67 0.69 0.66 0.62 0.55 0.63 0.63 0.67 0.69 0.62
Fe# 0.33 0.31 0.34 0.38 0.45 0.37 0.37 0.33 0.32 0.38
Fe™# 0.04 0.04 0.05 0.04 0.04 0.04 0.03 0.05 0.06 0.06
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TABLE 2 | Selected representative analyses of Fe0-enriched and Al203- and Mg0- depleted chromite (rim of chromite from D5 chromitites and

chromite cores of D2 chromitites).

Sample/Point d2B-1-1 d2B-1-2 d2B-1-3 d2B-1-4 d2B-1-5 d5-202-1 d5-202-2 d5-202-3 d5-202-4 d5-202-5
SiO, 0.1 0.07 0.11 0.09 0.13 0.07 0.08 2.21 0.78 0.06
TiO, 0.42 0.39 0.28 0.35 0.34 0.18 0.16 0.17 0.15 0.12
AlL,O, 18.17 18.38 12.66 17.91 19.14 14.69 20.67 8.49 6.51 9.13
Cr,0, 44.36 44.83 53.3 45.84 45.36 47.32 44.09 54.11 56.72 55.95
Fe,0O, 4.51 4.26 2.62 4.92 3.97 4.46 3.35 2.63 4.15 1.77
FeO 22.98 23.08 24.39 23.2 22.89 25.51 23.85 26.17 26.86 26.69
MnO 0.73 0.78 0.78 0.73 0.68 1.31 1.26 1.49 1.58 1.39
MgO 7.25 7.23 6.04 7.4 7.8 4.7 6.87 5.98 3.89 3.34
ZnO 0.12 0.07 0.07 0.13 0.11 - - - - -
NiO 0.08 0.12 0.05 0.12 0.05 - - - - -
Total Ox% 98.73 99.2 100.29 100.7 100.48 98.23 100.32 101.26 100.64 98.45
Si 0 0 0 0 0 0 0.01 0.07 0.03 0
Ti 0.01 0.01 0 0.01 0.01 0.01 0.01 0 0.04 0
Al VI 0.71 0.71 0.5 0.68 0.73 0.59 0.78 0.34 0.26 0.38
Cr 1.15 1.16 1.41 1.17 1.15 1.27 1.12 1.44 1.56 1.56
Fe* 0.1 0.11 0.06 0.12 0.09 0.12 0.08 0.06 0.1 0.05
Fe* 0.63 0.63 0.68 0.63 0.62 0.73 0.64 0.74 0.78 0.78
Mn* 0.02 0.02 0.02 0.02 0.02 0.04 0.03 0.04 0.04 0.04
Mg 0.35 0.35 0.3 0.35 0.37 0.23 0.33 0.3 0.2 0.17
Zn 0 0 0 0 0 - - - - -
Ni 0 0 0 0 0.001 - - - - -
Cr# 0.62 0.62 0.74 0.63 0.61 0.68 0.59 0.81 0.85 0.8
Mo# 0.36 0.36 0.31 0.36 0.38 0.25 0.34 0.29 0.21 0.18
Fe# 0.97 0.97 0.97 0.97 0.97 0.95 0.95 0.94 0.94 0.95
Fe™# 0.06 0.05 0.03 0.06 0.05 0.06 0.04 0.04 0.06 0.02

TABLE 3 [ Selected representative analyses of Fe;03- and Fe0-enriched, and Al;03- and Mg0- depleted chromite (rim of chromite from D2 and Rim-1
in D1 and D9 chromitites)

Sample/Point d1-3-1 d1-3-2 d1-3-4 d2B-1-6 d2B-1-7 d2B-1-8 d2B-1-9 D9-202-1 D9-202-2 D9-202-3
SiO, 0.19 0.13 0.11 0.16 0.11 0.27 0.92 0 0 0.24
Tio, 0.31 0.36 0.35 0.45 0.44 0.8 1.35 0.41 0.36 0.36
AlL,O, 10.2 10.35 10.2 7.54 8.26 8.08 2.32 15.44 15.12 14.69
Cr0, 50.65 50.7 50.49 53.53 53.86 53.49 53.31 49.11 47.92 47.07
Fe,0, 7.9 7.02 7.55 6.2 5.32 6.13 6.18 6.01 6.34 6.89
FeO 18.83 18.59 18.56 25.39 25.25 25.45 27.59 17.78 21.18 22.65
MnO 0.55 0.61 0.61 0.93 0.87 0.87 0.8 0.38 0.78 0.68
MgO 8.94 8.83 8.83 4.55 4.75 5.21 3.09 10.87 8.32 7.63
ZnO 0.08 0.08 0.12 0.14 0.08 0.08 0.11 - - -
NiO 0.33 0.35 0.33 0.06 0.04 0.13 0.24 - - -
Total Ox% 9796 97.01 97.14 98.96 98.98 100.49 95.91 100 100.02 100.19
Si 0.01 0 0 0.01 0 0.01 0.04 0 0 0.01
Ti 0.01 0.01 0.01 0.01 0.01 0.02 0.04 0.01 0.01 0.01
Al VI 0.41 0.42 0.41 0.31 0.34 0.33 0.1 0.59 0.58 0.57
Cr 1.36 1.37 1.37 1.49 1.49 1.45 1.58 1.25 1.24 1.23
Fe* 0.2 0.18 0.2 0.16 0.14 0.16 0.17 0.15 0.16 0.17
Fe* 0.54 0.53 0.53 0.75 0.74 0.73 0.86 0.48 0.58 0.62
Mn* 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.01 0.02 0.02
Mg 0.45 0.45 0.45 0.24 0.25 0.27 0.17 0.52 0.41 0.37
Zn 0 0 0 0 0 0 0 - - -
Ni 0.01 0.01 0.01 0 0 0 0.01 - - -
Cr# 0.77 0.77 0.77 0.83 0.81 0.82 0.94 0.68 0.68 0.68
Mo# 0.46 0.46 0.46 0.24 0.25 0.27 0.17 0.52 0.41 0.37
Fe# 0.54 0.54 0.54 0.76 0.75 0.73 0.83 0.48 0.59 0.63
Fe™# 0.1 0.09 0.1 0.08 0.07 0.08 0.09 0.07 0.08 0.09
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TABLE 4 | Selected representative analyses of ferritchromite (rim of chromite from D6 and Rim-2 in chromite from D1 and D9 chromitites).

Sample/Point d1-6-2 d1-6-3 d1-6-4 d6-206-1 d6-206-2 d6-206-3 d6-206-4 D9-202-4 D9-202-5 D9-202-6

Sio, 0.13 0.2 0.1 2.9 0.07 0.02 0.99 0.03 0.06 0.02
TiO, 0.45 0.41 0.4 0.27 0.3 0.52 0.48 0.44 0.38 0.4
AlLO, 4.16 3.59 6.24 10.15 8.98 4.55 5.28 7.02 7.46 6.99
Cr,0; 49.54 53.21 50.88 44.47 47.68 46.35 45.77 45.63 46.14 47.53
Fe,O, 17.73 13.67 13.44 13.59 17.04 21.84 22.09 19.65 18.5 18.52
FeO 14.69 15.71 14.75 11.26 11.62 13.65 12.24 12.55 12.17 12.47
MnO 0.64 0.65 0.57 0.58 0.54 0.68 0.73 0.58 0.59 0.67
MgO 10.92 10.24 11.02 16.75 14.08 12.12 14.34 12.94 13.15 13.1
ZnO 0.04 0.04 0.06 - - - - - - -
NiO 0.61 0.41 0.43 - - - - - - -
Sum Ox% 98.9 98.13 97.89 99.97 100.31 99.72 101.92 98.85 98.45 99.7
Si 0 0.01 0 0.09 0 0 0.03
Ti 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0 0
Al VI 0.17 0.15 0.25 0.38 0.34 0.18 0.2 0.01 0.01 0.01
Cr 1.34 1.46 1.38 1.1 1.22 1.24 1.17 0.28 0.29 0.27
Fe* 0.46 0.36 0.35 0.32 0.42 0.55 0.54 1.21 1.22 1.24
Fe* 0.42 0.46 0.42 0.3 0.32 0.39 0.33 0.49 0.47 0.46
Mn* 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.35 0.34 0.35
Mg 0.56 0.53 0.56 0.79 0.68 0.61 0.69 0.02 0.02 0.02
Zn 0 0 0 - - - - 0.65 0.66 0.65
Ni 0.02 0.01 0.01 - - - - - - -
Cri# 0.89 0.91 0.85 0.75 0.78 0.87 0.85 0.96 0.97 0.96
Mg# 0.57 0.54 0.57 0.73 0.68 0.61 0.68 0.03 0.04 0.04
Fe# 0.43 0.46 0.43 0.27 0.32 0.39 0.32 0.97 0.96 0.96
Fe*# 0.23 0.18 0.18 0.18 0.21 0.28 0.28 0.81 0.8 0.81
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