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Abstract. Lidar and sun-photometer measurements were
performed intensively over the Iberian Peninsula (IP) dur-
ing the eruption of the Eyjafjallajökull volcano (Iceland) in
April–May 2010. The volcanic plume reached all the IP sta-
tions for the first time on 5 May 2010. A thorough study of
the event was conducted for the period 5–8 May. Firstly, the
spatial and temporal evolution of the plume was described by
means of lidar and sun-photometer measurements supported
with backtrajectories. The volcanic aerosol layers observed
over the IP were rather thin (<1000 m) with a top height up
to 11–12 km. However, in some cases at the beginning of the
period the thickness of those layers reached several kilome-
ters inÉvora and Madrid. The optical thicknesses associated
to those layers were rather low (between 0.013 and 0.020 in
average over the whole period), with peak values near 0.10
detected on 7 May. Secondly, the volcanic aerosols were
characterized in terms of extinction and backscatter coeffi-
cients, lidar ratios,Ångstr̈om exponents and linear particle
depolarization ratio. Lidar ratios at different sites varied be-
tween 30 and 50 sr without a marked spectral dependency.
Similar extinction-related̊Angstr̈om exponents varying be-
tween 0.6 and 0.8 were observed at different sites. The tem-
poral evolution of the backscatter-relatedÅngstr̈om expo-
nents points out a possible decrease of the volcanic particle
size as the plume moved from west to east. Particle depolar-
ization ratios on the order of 0.06–0.08 confirmed the coexis-

tence of both ash and non-ash particles. Additionally, profiles
of mass concentration were obtained with a method using the
opposite depolarizing effects of ash particles (strongly depo-
larizing), non-ash particles (very weakly depolarizing), and
sun-photometer observations. In Granada the ash mass con-
centration was found to be approximately 1.5 times higher
than that of non-ash particles, and probably did not exceed
the value of 200 µgm−3 during the whole event.

1 Introduction

The eruption of the Eyjafjallajökull volcano, an ice-covered
stratovolcano with a summit elevation of 1666 m a.s.l. sit-
uated in southern Iceland, started on 14 April 2010 and
stopped on 21 May 2010. This eruption threw volcanic
aerosols with variable intensity several kilometers up into
the atmosphere (Langmann et al., 2011) which were trans-
ported mostly towards Europe and led to air travel disruption
in northern and central Europe from 15 April onwards and in
southeastern Europe in May 2010. Many major northern and
central European countries closed their airspace completely
during several days. Several thousands of flights, which af-
fected several millions of passengers, were canceled. From
a climate point of view, since no significant amount of ash
and sulphur dioxide was injected into the stratosphere, their
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residence time in the atmosphere was rather small compared
to other recent eruptions (Parker et al., 1996). Thus the im-
pact of the Eyjafjallaj̈okull eruption on the Earth’s radiative
budget and climate is very unlikely.

The lidar technique is one of the most relevant remote
sensing tools with which to study atmospheric aerosols. In
the past, volcanic aerosols have been observed by lidars a
long time after they have been ejected in the stratosphere
(Langford et al., 1995; Borrmann et al., 1995; Wandinger
et al., 1995; Di Girolamo et al., 1996) and less frequently in
the troposphere (Pappalardo et al., 2004; Villani et al., 2006;
Wang et al., 2008). The Eyjafjallajökull volcanic plume was
followed in near-real time by many scientists from differ-
ent fields of atmospheric sciences all over the world but es-
pecially in Europe since the very first day of the eruption.
While many results obtained in northern and central Europe
have already been published (Ansmann et al., 2010, 2011;
Flentje et al., 2010; Wiegner et al., 2011;, only very few re-
sults about the situation in southern Europe can be found in
peer-reviewed literature (Papayannis et al., 2011; Mona et
al., 2011; Toledano et al., 2011).

Most of the 27 lidar stations that formed EARLINET
(European Aerosol Research Lidar Network) at the time of
the study started monitoring the Eyjafjallajökull event on
15 April (Pappalardo et al., 2010). Four of those stations
are situated in the Iberian Peninsula (IP) and are members
of SPALINET (Spanish and Portuguese Aerosol Lidar Net-
work) (Sicard et al., 2009). While the plume travelled some-
times less than two days before it was observed at north and
central European stations at altitudes not higher than 10 km,
it took at least three to five days to reach the IP where it
was detected at altitudes as high as 11–12 km (Pappalardo
et al., 2012). The volcanic aerosol layers that reached the
IP were very faint compared to those observed in northern
and central Europe. For those reasons it is assumed that the
volcanic plumes observed over the IP have different proper-
ties in terms of composition and particle size compared to
those observed over northern and central Europe. The pecu-
liar situation of the IP with respect to the transport pattern of
the volcanic plumes makes lidar measurements over the IP
suitable to evaluate dispersion model boundary conditions.
In a preliminary study, Molero et al. (2010) made a sim-
ple comparison between model predictions such as EURAD
(EURopean Air Pollution Dispersion, http://www.eurad.uni-
koeln.de/indexe.html) and FLEXPART (http://transport.
nilu.no/flexpart) and vertical profiles obtained by four lidar
systems over the IP. More extended analysis were made over
the IP (Toledano et al., 2011) and over the Atlantic Ocean
and northern and central Europe (Stohl et al., 2011).

Until 5 May only sporadic, isolated volcanic plumes were
observed over the IP, especially on 19 and 20 April. On 4
May, a change in the synoptic situation caused the strongest
intrusion of volcanic aerosols over the IP from the Atlantic
Ocean eastward. This paper focuses on the monitoring of
the volcanic plume over the IP observed by four lidar sta-

tions during the period 5–8 May 2010. We only concen-
trate on lofted volcanic aerosol plumes, i.e. not coupled to
the planetary boundary layer (PBL), because in situ mea-
surements in the PBL are not available at all sites to dif-
ferentiate volcanic aerosols from local aerosols and to study
the mixing processes occurring in the PBL. In this paper,
we refer to volcanic aerosols and not only volcanic ash.
Volcanic aerosols are a mixture of ash particles (volcanic
glass, minerals and lithic fragments), volcanic gases such
as sulphur dioxide (SO2), carbon dioxide (CO2) and hydro-
gen (H2), and droplets of water vapor (H2O), hydrochloric
acid (HCl) and hydrofluoric acid (HF) among others (http://
volcanoes.usgs.gov/hazards/gas/s02aerosols.php). Ash par-
ticles fall out quite rapidly due to their large mass so that
over the IP, far away from the source, their contribution may
be significantly reduced. On the contrary, the residence time
of sulfate aerosols is in general longer for they can reside in
the atmosphere for several weeks or months.

This paper is organized as follows: Sect. 2 briefly presents
the instrumentation; in Sect. 3 the spatial and temporal evo-
lution of the volcanic plume over the IP is described; and in
Sect. 4 the vertical characterization of the volcanic aerosols
is presented in terms of their optical properties and an esti-
mate of their mass concentration is shown. Conclusions are
made in Sect. 5.

2 Instruments

2.1 Lidars

The four lidar systems involved in this study all belong to
EARLINET and SPALINET. A short description of them can
be found in Sicard et al. (2009, 2011a). The principal char-
acteristics of those systems are presented in Table 1. The
institutions involved are:

– Centro de Geofı́sica deÉvora,Évora (Portugal,
38.57◦ N, 7.91◦ W, 293 m a.s.l.);

– Centro de Investigaciones Energéticas Medioambien-
tales y Tecnoĺogicas, Madrid (Spain, 40.46◦ N, 3.72◦ W,
665 m a.s.l.);

– Universidad de Granada, Granada (Spain, 37.16◦ N,
3.58◦ W, 680 m a.s.l.);

– Universidad Polit́ecnica de Catalũna, Barcelona (Spain,
41.39◦ N, 2.11◦ E, 115 m a.s.l.).

All four systems participated in an intercomparison cam-
paign in Madrid from 18 October to 5 November 2010 in
the framework of the EARLINET quality assurance pro-
gram and were satisfactorily compared to the reference sys-
tem of Potenza, Italy (for more details see Freudenthaler et
al., 2011). Coordinated measurements started on 15 April
2010 and intensified on 5 May as the intrusion strengthened.
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Table 1. Some characteristics of the lidar systems involved in the study.

Station Évora Madrid Granada Barcelona
Country Portugal Spain Spain Spain

Elastic
wavelengths
(nm)

1064, 532, 355 532 1064, 532, 355 532, 355

Raman
wavelengths
(nm)

607, 387 607 607, 387, 408 –

Depolarization no. no. at 532 nm no.

Raw resolution
(m)

30 3.75 7.5 7.5

Full overlap
height (m)

500 400 300 400

Maximum
range (km)

61 15 120 30

All measurements were inverted using the two-component
elastic lidar inversion algorithm (Fernald, 1984; Sasano and
Nakane, 1984; Klett, 1985) and a constant lidar ratio of 50 sr.
All nighttime measurements were also inverted using the Ra-
man lidar inversion algorithm (Ansmann et al., 1990, 1992).

2.2 Sun-photometers

Some columnar aerosol properties of interest were mea-
sured by CIMEL sun-sky photometers ińEvora, Granada,
and Barcelona. For Madrid, the sun-photometer in Cáceres
(located approximately 250 km southwest of Madrid) was
used. Escudero et al. (2006) showed that for long-range
transport events, namely Saharan dust, PM10 concentrations
from several Iberian Peninsula EMEP stations correlated rea-
sonably well. For this reason, the Cáceres aerosol opti-
cal thickness is assumed to be a good indicator of long-
range transport aerosols in the same way as PM10 con-
centrations. All sun-photometers are part of the Aerosol
Robotic Network (AERONET,http://aeronet.gsfc.nasa.gov/)
(Holben et al., 1998) and despite the small quantities of
volcanic aerosols that reached the IP, the capability of
AERONET sun-photometer data to detect them has been ex-
tensively demonstrated by Toledano et al. (2011). The high-
est AERONET level available was used: Level 1.5 (cloud
screened data) atÉvora and Level 2.0 (quality assured data)
at Madrid, Granada and Barcelona. The instrument provides
information about, among other properties, the aerosol op-
tical thickness (AOT) at 340, 380, 440, 500, 675, 870, and
1020 nm inÉvora, Madrid, and Granada, and at 440, 675,
870 and 1020 nm in Barcelona, as well as the single scat-
tering albedo and the̊Angstr̈om exponent between pairs of
wavelengths. In this paper we used theÅngstr̈om exponent

provided for the pair (440, 675 nm) at all sites. A common
product of AERONET is the fine and coarse mode AOT at
500 nm (O’Neill et al., 2003). Inversion products such as the
volume size distribution are also provided.

3 Evolution of the Eyjafjallaj ökull volcanic aerosol
plume over the IP: 5–8 May 2010

3.1 Synoptic situation

A complex system developed during the period 5–8 May
2010. Figure 1 shows the synoptic situation over western
Europe in terms of sea level pressure for every day of the pe-
riod 4–9 May at 12:00 UTC. The start of the period is char-
acterized by a deep anticyclone located south of Iceland and
west of Ireland, while a low pressure system affected south-
ern France. On 5 and 6 May a front formed in the Atlantic
west of the IP’s coasts as a new low pressure system appeared
at the 40W longitude. During 6–8 May this new low pressure
system swept over the Atlantic Ocean eastwards towards the
IP leading to pronounced easterly winds starting on 8 May.
From 9 May on, this low pressure gradient settled over the
north of the IP producing several days of unstable conditions
with broken clouds and low intensity rains. Backtrajectories
have been calculated with the HYSPLIT (Hybrid Single Par-
ticle Lagrangian Integrated Trajectory Model) (Draxler and
Rolph, 2003; Rolph, 2003) model provided by NOAA-ARL
(National Oceanic and Atmospheric Administration – Air
Resources Laboratory) to check the air-masses origin. Fig-
ure 2 shows 120-h backtrajectories arriving at the four sta-
tions at 6 altitude levels between 500 and 5500 m with a res-
olution of 1000 m for each day. The time of arrival was fixed
at 12:00 UTC as an example. In practice the backtrajectories

www.atmos-chem-phys.net/12/3115/2012/ Atmos. Chem. Phys., 12, 3115–3130, 2012

http://aeronet.gsfc.nasa.gov/


3118 M. Sicard et al.: Monitoring of the Eyjafjallaj ökull volcanic aerosol plume

Fig. 1. Synoptic situation at 12:00 UTC on(a) 4, (b) 5, (c) 6, (d) 7, (e) 8 and(f) 9 May 2010. Dark and light and colors represent low and
high pressures, respectively.

were checked case by case at each station. The length of the
trajectories corresponds to 5 days. InÉvora and Madrid, a
transport over Iceland was visible every day at two or more
altitude levels. InÉvora the backtrajectories were similar on
5 and 6 May: all altitude levels show a transport over Iceland
3 to 4 days prior to the plume arrival. On 7 May the same
pattern persisted except for the 500-m altitude level. On 8
May only the 500- and 1500-m altitude levels showed trans-
port over Iceland approximately 5 days prior to the plume
arrival. In Madrid on 5 May, only air masses at altitude lev-
els above 3500 m travelled over Iceland 2 to 3 days prior to
arrival. On 6 and 7 May the situation was similar to that
of Évora. On 8 May only the altitude levels below 2500 m
showed transport over Iceland approximately 4 days prior to
arrival. The situation in Granada and Barcelona was slightly
different. On 5 May mesoscale transports dominate. On 6
May the air masses at altitude levels below 3500 m were all
transported over Iceland 5 days (at 500 and 1500 m) and 3–4
days (at 2500 and 3500 m) prior to arrival. On 7 May, all
trajectories traveled over Iceland 3 days (Granada) and 4–5
days (Barcelona) prior to arrival. On 8 May, only the altitude
levels below 2500 m showed clearly a transport over Iceland
with travelling times of 4 to 5 days.

In summary, according to the synoptic situation and the
backtrajectory analysis, the volcanic aerosol plume entered
the IP from west-northwest at all altitude levels and with rel-
atively short transport times from Iceland between 2 and 4
days. Along the intrusion, the plume transported from Ice-

land reached the IP at lower altitudes and longer transport
times. In the southern and eastern IP the plume appeared on
6 May at lower altitudes.

3.2 Spatial and temporal evolution of the volcanic
aerosol plume over the IP

The spatial and temporal evolution of the volcanic aerosol
(VA) plume over the IP is analyzed through the time se-
ries of vertical profiles of range-square corrected lidar signals
(RSCS).

Figure 3 shows the RSCS time series of the four Iberian
stations over the whole period. All the measurements per-
formed by the four stations including cloudy and clear scenes
have been plotted for completeness. The height, if not oth-
erwise stated, is reported above sea level (a.s.l.). Below the
lidar time series, the sun-photometer total, coarse and fine
mode AOT at 500 nm, as well as the̊Angstr̈om exponent
calculated between the wavelengths of 440 and 675 nm are
reported for each station. Figure 4 shows the AOT of the
lofted layers of VA, hereinafter called AOTVA , at 532 nm
measured by the lidar stations as a function of height and
time with a time resolution of 1 h. In this section, AOTVA
was calculated by the integration of the backscatter profiles
inverted with the two-component elastic lidar inversion algo-
rithm multiplied by a constant lidar ratio of 50 sr. This value
is a good approximation in view of the lidar ratios found in
Ansmann et al. (2010) and the results presented in Sect. 4 of
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Fig. 2. 120-h (5 days) backtrajectories arriving inÉvora, Madrid, Granada and Barcelona at 12:00 UTC on 5, 6, 7 and 8 May 2010 at 500
(red), 1500 (blue), 2500 (green), 3500 (cyan), 4500 (purple) and 5500 m (yellow) above ground level. The red star indicates the location of
the Eyjafjallaj̈okull volcano.

this paper. The layers below 2 km that might have been cou-
pled to the PBL have been discarded in order to minimize the
influence of local aerosols in the analysis. The measurements
with clouds or optically extremely thin VA layers (leading to
large errorbars in the retrieval of the optical coefficients) have
been discarded in Fig. 4. The thickness of lofted VA layers
is hereinafter called1hVA . Table 2 gives the daily mean of
the AOTVA , AOTVA , and of the layer thickness,1hVA , of

the lofted VA layers. The minimum and maximum values of
AOTVA and1hVA are also reported in Table 2 to show their
large variability.

The uncertainty of AOTVA can be calculated as the sum
of the systematic error and the statistical error. Both terms
are given in Eqs. (A2) and (A4) of Appendix A. The sys-
tematic error has been calculated using the relative errors of
the backscatter coefficient given in Sicard et al. (2009) while
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Fig. 4. AOT of lofted VA layers at 532 nm versus height from 5 to 8 May 2010. The vertical gray bars indicate the time periods discussed in
Sect. 4.

the statistical error has been calculated directly with the sta-
tistical error of the backscatter coefficient provided for each
inversion (EARLINET products such as the backscatter coef-
ficient are provided with their statistical error). For all three
wavelengths of 355, 532, and 1064 nm, the uncertainty of
AOTVA is 15–20 % for AOTVA ≥ 0.01 (the systematic errors
dominate) and 20–30 % for 0.01> AOTVA ≥ 0.002 (both er-
rors are similar). Taking into account the low values of
AOTVA found, those uncertainties are acceptable.

On 5 May the first VA plume was detected inÉvora just

before noon, in Madrid around 16:00 UTC and in Granada
around 17:00 UTC. The Barcelona station was covered with
clouds part of the afternoon. Clearly marked VA layers
were observed above the PBL and below 5–6 km (Fig. 3).
However, over the 3 stations the rest of the troposphere was
not aerosol-free (Fig. 4), indicating a strong vertical disper-
sion of the plume. No vertical motion is noticeable until
around midnight when the plume shows a downward mo-
tion in Granada. The sun-photometer AOT did not present
any significant increase which also indicates optically thin
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Table 2. Mean optical (at 532 nm) and spatial thickness of the lofted VA layers at the 4 stations from 5 to 8 May 2010. The minimum and
maximum values (min, max) of AOTVA and1hVA are also reported.

Station 5 May 6 May 7 May 8 May 5–8 May

Évora AOTVA
(min, max)
1hVA (m)
(min, max)

0.008
(<0.002, 0.022)
1104
(179, 3885)

0.009
(<0.002, 0.065)
543
(60, 2332)

0.025
(0.002, 0.107)
360
(89, 777)

–
–

0.013
(<0.002, 0.107)
614
(60, 3885)

Madrid AOTVA
(min, max)
1hVA (m)
(min, max)

0.034
(<0.002, 0.016)
4240
(750, 6600)

0.008
(0.004, 0.130)
1000
(600, 1500)

0.070
(0.070, 0.070)
2250
(2250, 2250)

0.004
(0.004, 0.004)
2105
(2105, 2105)

0.020
(<0.002, 0.130)
2098
(600, 6600)

Granada AOTVA
(min, max)
1hVA (m)
(min, max)

0.007
(<0.002, 0.016)
422
(262, 705)

0.004
(<0.002, 0.021)
325
(82, 1147)

0.026
(<0.002, 0.137)
412
(82, 1230)

0.027
(<0.002, 0.106)
343
(113, 667)

0.020
(<0.002, 0.137)
382
(82, 1230)

Barcelona AOTVA
(min, max)
1hVA (m)
(min, max)

–
–

–
–

–
–

0.015
(0.013, 0.017)
950
(700, 1200)

0.015
(0.013, 0.017)
950
(700, 1200)

VA layers. Figure 4 shows clearly the large vertical dis-
persion inÉvora with discontinued layers between 2.3 and
9.3 km. In Madrid the first lofted layers of VA detected
above the PBL are very broad (5400 and 6600 m thick).
They were detected between 4.0 and 11.4 km – which ac-
cording to the Madrid radiosounding launched on 6 May at
00:00 UTC, which detected the tropopause around 10.6 km,
was inside the stratosphere – without clear discontinuity
while in Granada much thinner VA layers (1hVA = 422 m)

are detected. Both in Granada and inÉvora the mean opti-
cal thickness of the VA layers was very low around 0.007–
0.008 which represents less than 10 % of the columnar AOT.
In Madrid the first VA layers detected had an AOTVA lower
than 0.016 which indicates extremely optically thin layers
given their large vertical extension. It is worth noting that the
CALIOP (Cloud-Aerosol Lidar with Orthogonal Polariza-
tion) lidar flying on board CALIPSO (Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observations) (Winker et al.,
2009) made an overpass over the eastern IP on 6 May around
02:40 UTC and also detected very thin aerosol plumes iden-
tified as dust and polluted dust – in which categories volcanic
aerosols do fit – up to 10 km.

At the beginning of 6 May, the same situation persisted in
Évora and Madrid whereas Granada was covered by mid-
and high-altitude clouds. VA layers were clearly visible
above 2.5 km ińEvora and between 2.5 and 7.0 km in Madrid
throughout the day. The sun-photometer AOT increased sub-
stantially during the day: it passed from 0.09 at noon in
both stations to 0.20 at 18:15 UTC ińEvora and to 0.16 at
18:00 UTC in Madrid. In both stations the̊Angstr̈om expo-
nent slightly decreased compared to the previous day. The
coarse mode AOT was constant in both stations which in-
dicates that the total AOT increase was due to fine particles

only. Slightly after 17:30 UTC, a sudden increase of the AOT
was visible in both stations. It is associated to an increase of
the coarse mode AOT and a decrease of theÅngstr̈om ex-
ponent which indicated the intrusion of a new layer formed
by coarse particles. ThéEvora RSCS time series indicated
the intrusion of a well defined VA layer above 5 km with a
clear downward motion. The same intrusion was observed
in Madrid after 21:00 UTC but there a cirrus cloud was em-
bedded in the descending VA layer between 5 and 8 km. In
terms of AOTVA , the main layer observed ińEvora on 5 May
remained during the first half of 6 May as very thin layers
appear below. The new layers which appeared above 5 km
after 18:00 UTC had higher optical thicknesses. In Madrid
the VA layers were more stable than on the previous day:
AOTVA oscillated around 0.008 and1hVA between 600 and
1500 m. Both inÉvora and in Madrid the mean optical thick-
ness of the VA layers was around 0.008–0.009, i.e. similar
to the values on the previous day. One can easily deduce
that the columnar AOT increase was due to aerosols trapped
in the layers below 2 km which according to the backtrajec-
tory analysis had been transported over Iceland. Once again,
the mean vertical dispersion of the VA layers was stronger in
Madrid (1hVA = 1000 m) than inÉvora (1hVA = 543 m). In
Granada very thin layers (AOTVA ≈ 0.004,1hVA = 325 m)

with a downward motion were observed between 2 and 5 km
before noon. No sun-photometer data is available.

On 7 May several descending VA layers were detected
overÉvora between 2 and 6 km, which were optically thicker
than those observed on 6 May. Shortly before noon, clouds
started developing on top of the PBL preventing a further
analysis. In Madrid clouds were present on top of the PBL
from 04:00 to 05:00 UTC, VA layers were observed between
07:00 and 08:00 UTC and later clouds were again embedded
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3122 M. Sicard et al.: Monitoring of the Eyjafjallaj ökull volcanic aerosol plume

in the VA layers between 2 and 5 km. In Granada, a complex
situation similar to that ińEvora was observed in the morn-
ing. In both Évora and Madrid, the sun-photometer AOT
(and essentially the fine mode AOT) had increased compared
to the previous day while the̊Angstr̈om exponent had no
marked trend. In Granada two AOT increases associated
with a slight increase of the̊Angstr̈om exponent were ob-
served after 09:30 and 15:30 UTC. In both cases, the Granada
RSCS time series indicated the intrusion of new well-defined
VA layers. In Évora, while the optical thickness of the VA
layers had increased (AOTVA ≈ 0.025) compared to 6 May,
their thickness had decreased (1hVA = 360 m). This indi-
cates smaller and optically thicker VA layers. In Granada,
the VA layers presented roughly the same characteristics
(AOTVA ≈ 0.026,1hVA = 412 m). As the day went by, the
lowest lofted VA layers got coupled to the PBL both inÉvora
(in the morning) and Granada (in the afternoon). Those re-
sults are supported in the horizontal context by satellite ob-
servations such as MODIS (Moderate Resolution Imaging
Spectroradiometer) and model simulations such as the La-
grangian particle dispersion model FLEXPART (Toledano et
al., 2011) which both showed the arrival of volcanic aerosols
in the southwest of the IP.

On 8 May single-layer stratifications predominated: in
Madrid a layer was detected between 5.0 and 7.0 km in the
first hours of the day, in Granada between 2.2 and 4.2 km and
in Barcelona between 1.9 and 3.1 km. For information the
CALIPSO overpass over the central IP at 13:35 UTC showed
aerosol plumes classified as polluted dust up to 6 km. The
VA layers were observed at lower altitudes than at the begin-
ning of the period. The total AOT decreased following the
variations of the fine mode back to its seasonal mean value
(0.10) in Granada (Alados-Arboledas et al., 2003) and os-
cillated around 0.15 in Barcelona, which also comes to be
a seasonal mean value (Sicard et al., 2011b). In Granada,
the VA layers had approximately the sameAOTVA (0.027)
than on the previous day while their thickness decreased
(1hVA = 343 m). However, AOTVA and1hVA were not con-
stant throughout the day: the relatively thick layers (spatially
and optically, AOTVA > 0.060) observed at the beginning
of the day got thinner as the day went by. In the morning
of 8 May, the presence of volcanic aerosols in Barcelona
was supported by satellite observations such as MODIS,
IASI (Infrared Atmospheric Sounding Interferometer), and
SEVIRI (Spin-stabilised Enhanced Visible and Infrared Im-
ager). It is interesting to note that the presence of volcanic
aerosols in Granada was supported by FLEXPART column
mass simulations for aerosols within the size range 0.75–
2.5 µm (Toledano et al., 2011) but not for aerosols of all sizes
(Stohl et al., 2011).

4 Characterization of the volcanic aerosols

The VA characterization has been made through the retrieval
of their optical coefficients from nighttime Raman and day-
time elastic lidar data, as well as through an estimate of the
mass concentration of ash and non-ash particles. The fact
that the lofted VA layers of interest in this study were opti-
cally very thin (in average AOTVA < 0.020 over all stations
and over the whole period) induced lidar signals with very
low signal-to-noise ratios which made the inversions, and
in particular the nighttime Raman inversions, quite difficult.
After a careful review of all the good quality inversions avail-
able, three cases have been selected and are presented next
(indicated in the time scale of Figs. 3 and 4 by gray bars):

– Raman inversion comparison betweeńEvora and
Madrid on 7 May at 01:00 UTC,

– Raman inversion at Granada on 8 May at 04:00 UTC,
and

– Elastic inversion comparison between Granada and
Barcelona on 8 May at 16:00 UTC.

The optical characterization has been made in terms of
aerosol extinction,α, and backscatter,β, coefficients, lidar
ratios at 355 nm,S355, and at 532 nm,S532, the α-related
Ångstr̈om exponent at 355/532 nm (AEα

355−532) and theβ-

relatedÅngstr̈om exponents at 355/532 nm (AEβ

355−532) and

at 532/1064 nm (AEβ532−1064), as well as the linear parti-
cle depolarization ratio,δ, when available. In this section
AOTVA was calculated as the integration of the extinction
profiles when Raman measurements were available and oth-
erwise as the integration of the backscatter profiles multiplied
by a constant lidar ratio of 50 sr in a first approximation (see
Sect. 3.2).

4.1 Retrieval of the optical coefficients

4.1.1 7 May 2010, 01:00 UTC,́Evora–Madrid

Those two measurements reflect some of the optically thick-
est layers observed during the period 5–8 May, 2010 (see
Fig. 4). The optical characterization is shown in Fig. 5. The
VA layer in Évora is about 1-km thick and is located between
2.65 and 3.70 km. AOTVA is 0.099, 0.070 and 0.050 at 355,
532 and 1064 nm, respectively. The bottom part of the opti-
cal coefficient (α andβ) profiles is shown as reference. In
Madrid the VA layer is observed roughly between 4.2 and
6.8 km and has an AOTVA of 0.095 at 532 nm. For the sake
of clarity theÉvora profiles are not represented above 4.0 km
and those of Madrid below 4.0 km. The numbers in the plots
of the lidar ratio andÅngstr̈om exponent indicate the mean
values plus standard deviation of the profiles in the VA lay-
ers. The lidar ratios retrieved in the VA layer ińEvora are
39± 10 and 32± 4 sr at 355 and 532 nm, respectively, Those
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 1

2

3

4

5

6

7

0 2 4 0 100 200 30 60 90 0 1 2 3

 355 nm
 532 nm
 1064 nm

H
ei

g
h

t 
[k

m
 a

sl
]

Bsc. Coeff.

[Mm-1·sr-1]

 

 355 nm
 532 nm

Ext. Coeff.

[Mm-1]

 

 355 nm
 532 nm

Lidar Ratio
[sr]

 
355/532 nm
 355/532 nm
 532/1064 nm

Ang. exp.

 

 

 

32 ± 4 

39 ± 10 

1.05 ± 0.43 

0.68 ± 0.63

0.22 ± 0.40

52 ± 27 
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tios, andβ- (blue and green curves) andα-related (black curve)
Ångstr̈om exponents on 7 May 2010 at 01:00 UTC atÉvora (solid
lines) and Madrid (dash lines).

values are rather small compared to recent studies (Ansmann
et al., 2010; Mona et al., 2011; Wiegner et al., 2011). Ac-
cording to the backtrajectories (Fig. 2), all the air masses
arriving over Évora above 2500 m travelled above the At-
lantic Ocean at altitudes well above 3000 m. In absence of
anthropogenic emission sources along its way the VA plume
probably did not mix with other aerosols during its trans-
port, except maybe with sea salt which are known to have
low lidar ratio values. Another possible explanation for the
low values ofS355 andS532 is that the air masses dehydrated
along their path. This is suggested by Mona et al. (2011)
who found thatS355 decreases when the relative humidity
decreases. In Madrid the lidar ratio at 532 nm was larger:
its mean value was 52± 27 sr. The backtrajectories arriv-
ing over Madrid above 3500 m were very similar to those
arriving overÉvora above 2500 m. The most probable hy-
pothesis is that in Madrid, between 4.2 and 6.8 km, pro-
portionally more small particles were present than inÉvora
between 2.65 and 3.70 km. Therefore small non-ash and
small aged ash particles may have dominated, resulting in
an increased contribution of non-ash particles which have a
larger lidar ratio than ash particles (Ansmann et al., 2011).
From Fig. 5, the mean AEβ355−532 and AEβ

532−1064 in Évora
are 0.22± 0.40 and 1.05± 0.43, respectively. This indicates
that the backscatter coefficient changes more sensitively at
longer wavelengths. The meanα-relatedÅngstr̈om expo-
nent, 0.68± 0.63, is relatively low. Such values are represen-
tative of rather medium-size particles. They range between
very low values of 0.0 to 0.1 observed in Germany (Ansmann
et al., 2010) and higher values of 1.0 to 1.4 observed in Italy
(Mona et al., 2011).
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04:00 UTC at Granada.

4.1.2 8 May 2010, 04:00 UTC, Granada

This measurement reflects also one of the optically thickest
layers observed during the period 5–8 May, 2010. The op-
tical characterization is shown in Fig. 6. The VA layer is
located between 2.6 and 2.9 km. The bottom part of the opti-
cal coefficient (α andβ) profiles is shown as reference. The
extinction and backscatter coefficient profiles reach values in
the VA layers on the same order of magnitude than in the
layer centered around 1.50–1.75 km which is supposedly a
mixture of local aerosols and VA. AOTVA is 0.106, 0.078 and
0.028 at 355, 532 and 1064 nm, respectively, which are quite
high values compared to the rest of the period. The lidar ra-
tios retrieved in the VA layer are 47± 7 and 48± 16 sr at 355
and 532 nm, respectively. Those values are higher than those
observed ińEvora the day before and are on the same order of
magnitude, despite different mixing, of values found in for-
mer and ongoing VA studies (Ansmann et al., 2010; Mona et
al., 2011; Pappalardo et al., 2012). The mean particle depo-
larization ratio is 0.06. This value is much lower than what
was observed in plumes consisting mainly of ash in Germany
(Ansmann et al., 2010) or of ash and non-ash particles in Italy
(Mona et al., 2011) and suggests, if we consider that pure ash
and non-ash depolarization ratios are 0.36 and 0.01, respec-
tively, (Ansmann et al., 2011; see Sect.4.2), the coexistence
of both aerosol types. Below 2.5 km (not shown) the parti-
cle depolarization ratio is around 0.045, which is a typical
value at Granada when only local aerosols are present (J. A.
Bravo-Aranda and F. Navas-Guzmán, personal communica-
tion, 2011). However, the backtrajectories below 2.5 km and
the synoptic analysis (Sect.3) indicated that VA are present
and mixed with local aerosols in the lowermost layer. The
mean value of 0.045 suggests then that the depolarization ef-
fect of the VA in the lowermost layer is also on the order
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of 0.045, which leads to a higher contribution of non-ash
particles in the lowermost layer (see Sect.4.2) than in the
2.6–2.9 km layer. From Fig. 6, the mean AEβ

355−532 and

AEβ

532−1064 are 0.73± 0.07 and 1.68± 0.31, respectively.
This indicates again that the backscatter coefficient changes
more sensitively at longer wavelengths. The similar values
of 0.73–0.79 found for theα- and theβ-relatedÅngstr̈om
exponents at 355/532 nm clearly reflects the fact that the li-
dar ratios at both wavelengths are nearly equal. The mean
α-relatedÅngstr̈om exponent, 0.79± 0.54, is similar to that
in Évora the day before and is also representative of rather
medium-size particles.

4.1.3 8 May 2010, 16:00 UTC, Granada–Barcelona

In the afternoon of 8 May, almost all the downward mov-
ing VA layers mixed with the upward developing local PBL.
Two lofted layers were still visible in Fig. 7: in Granada
an extremely thin VA layer was observed between 3.00 and
3.35 km while in Barcelona a VA layer was visible around
2.2–2.9 km. For the sake of clarity, the Granada profiles are
not represented below 3.0 km and those of Barcelona above
3.0 km. The sun-photometer AOT and the fine mode frac-
tion were respectively around 0.15 and 80 % in Granada and
0.13 and 70 % in Barcelona. In Granada AOTVA is 0.005
at 355 nm and 0.002 at 532 nm. At 1064 nm AOTVA was
less than 0.001. In Barcelona AOTVA was higher: 0.025 at
355 nm and 0.010 at 532 nm. In both cases, the AOT of the
lofted VA represents a small fraction of the columnar AOT
(between 1 and 7 %). Because those values are extremely
low, their interpretation should be done very cautiously. The
backscatter coefficients reach very low values which do not
exceed 1 Mm−1 sr−1. The β-relatedÅngstr̈om exponents
at 355/532 nm oscillate around similar values at both sites
(2.35± 0.20 and 2.37± 0.27 in Granada and in Barcelona,
respectively). This result indicates that the backscatter coef-
ficient is highly wavelength-dependent at short wavelengths.
In Granada the mean AEβ532−1064 (1.45± 0.17) and the mean
particle depolarization ratio (0.075) are similar to their re-
spective values at 04:00 UTC.

4.2 Estimate of the mass concentration

Mass concentration is one of the most critical parameters
for airspace restrictions related to volcanic aerosol plumes.
Shortly after the end of the Eyjafjallajökull eruption, the
UK Meteorological Office distinguished between 3 con-
tamination levels: low (<200 µgm−3), medium (200 to
4000 µgm−3), and high (>4000 µgm−3) (Schumann at al.,
2011). At present, 2000 µgm−3 is considered as the maxi-
mum tolerable concentration for continuous flight operation.

Mass concentrations have been calculated from backscat-
ter coefficients for ash and non-ash particles. The method
used to distinguish between both types of particles is based
on the work by Tesche et al. (2009) and refined recently for

ash and fine-mode particles by Ansmann et al. (2011). The
method uses the opposite depolarizing effects of ash particles
(strongly depolarizing) and non-ash particles (very weakly
depolarizing). Only the Granada system had a depolariza-
tion channel (at 532 nm) operative during the period 5–8 May
2010, so that profiles of mass concentration were only calcu-
lated for this station. For the sake of clarity, the wavelength
dependency of all coefficients has been omitted in this sec-
tion. We remark that the method was applied under the as-
sumption of external mixing only. As the Eyjafjallajökull
eruption was sub-glacial, it is unlikely that internal mixing
such as sulfur coating on ash occurred due to the high con-
centration of water vapor present in the ash cloud (Thomas
and Prata, 2011).

If we call β the total aerosol backscatter coefficient, the
backscatter coefficients of ash,βa, and non-ash particles,βna,
can be calculated respectively as:

βa= β
(δ−δna)

(δa−δna)

(1−δa)

(1−δ)
and (1)

βna= β
(δ−δa)

(δna−δa)

(1−δna)

(1−δ)
(2)

whereδ is the linear particle depolarization ratio, andδa and
δna represent the ash and non-ash linear particle depolariza-
tion ratios, respectively. Pure ash and pure non-ash particle
depolarization ratios are reasonably well known asδa= 0.36
andδna= 0.01 (Ansmann et al., 2010; Groß et al., 2010), re-
spectively. The mass concentrations of ash,ma, and non-ash
particles,mna, are given in terms of backscatter coefficient
respectively as:

ma= ρa
Cc

AOTc
βaSa and (3)

mna= ρna
Cf

AOTf
βnaSna (4)

whereρa andρna are the ash and non-ash particle mass den-
sity, andSa and Sna are the ash and non-ash particle lidar
ratio. The two ratios, Cf

AOTf
and Cc

AOTc
, also called mean

extinction-to-mass conversion factors, represent the ratio of
volume concentration to AOT for the fine (non-ash) and the
coarse (ash) mode, respectively.

For pure ash and non-ash particles, respectively,
ρa = 2.6 g cm−3 (http://volcanoes.usgs.gov/ash/properties.
html{#}density; Schumann et al., 2011) andρna= 1.6 g cm−3

(Bukowiecki et al., 2011), andSa = 50± 10 sr andSna =

60±20 sr (Ansmann et al., 2011). The ratios of volume con-
centration to AOT were calculated from AERONET-derived
level 1.5 inversion products on 8 May, 2010, at 06:35 and
07:00 UTC. The size distributions associated to those inver-
sions are shown in Fig. 8. They are very similar and ex-
hibit an enhanced fine (non-ash) mode. Note en passant that
similar size distributions have been obtained in Madrid by
ground-based in-situ measurements (Revuelta et al., 2011).
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Table 3. Sun-photometer total, fine and coarse mode AOT at 500 nm and lidar-derived total, non-ash, and ash AOT at 532 nm at Granada on
8 May 2010. The numbers in parenthesis represent the fraction of AOT of the mode considered to the AOT total (AOT for the sun-photometer
and AOTVA for the lidar).

AOT AOTf AOTc AOTVA
∫

VA layer
βnaSna

∫
VA layer

βaSa

Lidar
04:00 UTC
2.6–2.9 km

0.101 0.083
(82 %)

0.018
(18 %)

Sun-phot.
06:35 UTC

0.376 0.334
(89 %)

0.042
(11 %)

Sun-phot.
07:00 UTC

0.358 0.313
(87 %)

0.045
(13 %)

Lidar
16:00 UTC
3.00–3.35 km

0.0025 0.002
(80 %)

0.0005
(20 %)

This result is completely different than similar observations
made in Germany at the beginning of the eruption (Ans-
mann et al., 2011) where the fine (non-ash) and coarse (ash)
mode predominance were inverted, the enhanced mode be-
ing that of coarse (ash) particles, and where the volume con-
centration was higher by a factor 10. The mean extinction-
to-mass conversion factors for the fine (non-ash) and the
coarse (ash) modes areCf

AOTf
= 0.255×10−6 m and Cc

AOTc
=

0.89×10−6 m, respectively.
By applying the law of error propagation to Eqs. (3) and

(4), the uncertainty in the mass concentration in Fig. 9 is esti-
mated to be about 40–45 %. The following individual uncer-
tainties have been considered: 25 % for the mass densities,
20 % for the lidar ratios, and 15 % for the mean extinction-
to-mass conversion factors (Tesche et al., 2009; Ansmann
et al., 2011). Concerning the particle backscatter coeffi-
cient, its uncertainty is estimated of the order of 15–20 %
(see Sect. 3.2), two times higher than in the dust and smoke
plumes in Cape Verde (Tesche et al., 2009). The uncertainty
of the particle depolarization ratio is 6 % at 04:00 UTC and
20 % at 16:00 UTC. The latter two uncertainties and the un-
certainty in δa and δna yield an overall relative uncertainty
for ash and non-ash backscatter coefficients of∼20 % during
nighttime and∼30 % during daytime.

In order to justify the use of the columnar values of the
mean extinction-to-mass conversion factors in the VA layers,
the non-ash and the ash AOT fractions are calculated for the
lidar at 04:00 and 16:00 UTC and

compared, respectively, to the fine (non-ash) and coarse
(ash) mode fractions of the sun-photometer at 06:35 and
07:00 UTC. In this section the lidar-derived AOTVA was cal-
culated as:

AOTVA =

∫
VA layer

(βnaSna+βaSa). (5)
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Fig. 7. Volume backscatter coefficients,β-relatedÅngstr̈om ex-
ponents, and linear particle depolarization ratio on 8 May 2010 at
16:00 UTC at Granada (solid lines) and Barcelona (dot lines).

Table 3 summarizes the values found for both instruments.
Even though the AERONET AOT uncertainty is known to be
≤ ±0.01 for wavelengths greater than 440 nm (Holben et al.,
1998; Dubovik et al., 2000), here the AOT at 500 nm is ex-
pressed with three digits in order to minimize differences due
to truncation in the calculation of the fine and coarse mode
fractions. For the same reason, the lidar-derived AOTVA
is expressed with four digits. The VA layers at 04:00 and
16:00 UTC are found around 2.6–2.9 km and 3.00–3.35 km,
respectively. In those layers, the ratio of lidar-derived non-
ash AOT to AOTVA is nearly constant between both lidar
measurements around 80–82 %. In the atmospheric column
the sun-photometer fine (non-ash) mode fraction is around
87–89 %. Given the relatively good agreement between those
numbers and besides the lack of size distribution measure-
ments in the VA layers, the above-mentioned method can be
further applied to our lidar measurements.
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 Fig. 9. Mass concentration profiles of ash and non-ash particles at
Granada on 8 May 2010, at(a) 04:00 and(b) 16:00 UTC.

The results are shown in Fig. 9 for the VA layers iden-
tified at 2.6–2.9 km at 04:00 UTC and at 3.00–3.35 km at
16:00 UTC. As a consequence of the low particle depolar-
ization ratios observed around 0.06–0.075 (see Figs. 6 and 7)
compared to central Europe (Ansmann et al., 2010, 2011)
or central Mediterranean (Mona et al., 2011) the ash and
non-ash particle mass concentrations appear approximately
in the same order of magnitude. They roughly fluctuate in
the range 60–180 µgm−3 at 04:00 UTC and 1.5–3.5 µgm−3

at 16:00 UTC. In the afternoon, the mass concentration is
around 30 to 50 times smaller than what is observed at
04:00 UTC. Those proportions are also reflected by the dif-
ference observed between both AOTVA . It is worth noting
that the AOTVA at Granada reaches the highest values of the
period in the night between 7 and 8 May (see Fig. 4) without
a significant change, either in the thickness of the layers or in
the particle depolarization ratio. Thus it leads to high values
of the backscatter coefficient and also of the mass concen-
tration. It is quite probable that the mass concentration of
neither the ash nor the non-ash particles found in lofted VA
layers exceeded the value of 200 µg m−3 in Granada in the
period 5–8 May 2010.

5 Conclusions

During the Eyjafjallaj̈okull eruption, the strongest intrusion
of volcanic aerosols in the Iberian Peninsula occurred during
5–8 May 2010. Volcanic aerosols were first observed at the
westernmost lidar station ińEvora. Lofted VA layers showed
a downward motion from 6 May onwards. The mean AOT
of those layers was rather low (between 0.013 and 0.020 in
all stations over the whole period) with a peak on 7 May.
Even though the thickness of the VA layers was spatially
and temporally quite variable, rather thin layers (<1000 m)
with a top height up to 11–12 km were observed. A signif-
icant increase in the total AOT, as well as in the fine mode
AOT, is observed along the intrusion which indicates an in-
crease of the aerosol load of rather small size in the PBL
since the lofted VA layers optical thickness did not change
significantly during the intrusion. The backtrajectory analy-
sis which shows transport time from Iceland on the order of
3 days at the beginning of the period and on the order of 5
days at the end corroborates this result: the size of the lofted
VA decreases with increasing age. Contrarily to lidar stations
from northern and central Europe that detected optically very
thick lofted VA layers, most of the VA that reached the IP
were already coupled to the PBL. In general the presence
of volcanic aerosols was also supported by satellite images
and/or FLEXPART simulations.

Lidar ratios at different sites varied between 30 and 50 sr
without a marked spectral dependency between 355 and
532 nm. Values near 50 sr were observed on 7 May over
Madrid in high VA layers above 4 km (AOTVA = 0.095 at
532 nm ) and on 8 May over Granada in VA layers between
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2.5 and 3.0 km (AOTVA = 0.078 at 532 nm). Smaller val-
ues between 30 and 40 sr were observed overÉvora on 7
May in a VA layer between 2.5 and 4.0 km (AOTVA = 0.070
at 532 nm). Similar extinction-related̊Angstr̈om exponents
varying between 0.6 and 0.8 were observed inÉvora and
Granada. In terms of backscatter-relatedÅngstr̈om expo-
nents, an increase is observed between sites with time: e.g.
at 355/532 nm, 0.22 is measured inÉvora on 7 May, 0.73
is measured in Granada on 8 May (morning), and∼2.35 is
measured in Granada and Barcelona on 8 May (afternoon).
This result points out a possible decrease of the volcanic par-
ticle size as the plume moves from west to east. The rela-
tively low linear particle depolarization ratio at 532 nm mea-
sured in the VA layers in Granada around 0.065–0.075 fur-
ther indicates the coexistence of ash and non-ash particles.

An estimate of the mass concentration of ash and non-ash
particles has been performed in Granada by using the op-
posite depolarizing effects of ash particles (strongly depo-
larizing) and non-ash particles (very weakly depolarizing),
and sun-photometer observations. In the morning of 8 May,
both the ash and non-ash mass concentration varied between
60 and 180 µgm−3 in a VA layer with an optical thickness
of 0.101. Later the mass concentration varied between 1.5
and 3.5 µgm−3 in a VA layer with an optical thickness of
0.0025. In both cases, the ash mass concentration was ap-
proximately 1.5 higher than the non-ash mass concentration.
Given that the case selected in the morning of 8 May had
one of the highest optical thicknesses, it is quite probable
that the mass concentration of neither the ash nor the non-
ash particles found in lofted VA layers exceeded the value
of 200 µgm−3 in Granada in the period 5–8 May 2010. If
we extrapolate this result to the entire Iberian Peninsula, it is
most probable that the societal inconvenience created by the
air travel disruption over the IP pointed out an overreaction
from policy makers.

Appendix A

Calculation of the uncertainty of AOTVA

The uncertainty of AOTVA can be deduced from the uncer-
tainty of the backscatter coefficient profiles. There are two
terms to consider:

– The systematic error (dβsyst): the sum of the error due to
a range-dependent lidar ratio and the error due to an er-
roneous backscatter coefficient at the calibration height;

– The statistical error (dβstat) due to the observation noise.

On the one hand, the systematic errors,d(AOTVA )syst, are
correlated with range, so that the variance associated to
AOTVA due to systematic errors falls like 1

/
N2 (Barlow,

1989), beingN the number of samples in the VA layer andS

the lidar ratio:

V (AOTVA )syst=

[
d(AOTVA )syst

]2

N2
and (A1)

d(AOTVA )syst= N ·
[
V (AOTVA )syst

] 1
2 = N ·S ·

 ∫
VA layer

1

N2
dβ2

syst(u)du


1
2

. (A2)

On the other hand, the statistical error,d(AOTVA )stat is un-
correlated with range, so that the variance associated to
AOTVA due to the statistical error falls now like 1

/
N (Bar-

low, 1989):

V (AOTVA )stat=

[
d(AOTVA )stat

]2

N
and (A3)

d(AOTVA )stat=
√

N ·
[
V (AOTVA )stat

] 1
2 =

√
N ·S ·

 ∫
VA layer

1

N
dβ2

stat(u)du


1
2

. (A4)
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the National Re-equipment Program REDE/1527/RNG/2007.
Jana Preißler was funded by FCT (grant SFRH/BD/47521/2008).
Juan Luis Guerrero-Rascado was partially funded by FCT (grant
SFRH/BPD/63090/2009) and by the Spanish Ministry of Education
(grant EX2009-0700). The authors gratefully acknowledge the
Earth Sciences Division of the Barcelona Supercomputing Center
and the Universidad de Extremadura for the use of the Barcelona
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