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Abstract

The understanding of the effective functionality that governs the enzymatic self-organized processes in cellular conditions is
a crucial topic in the post-genomic era. In recent studies, Transfer Entropy has been proposed as a rigorous, robust and self-
consistent method for the causal quantification of the functional information flow among nonlinear processes. Here, in
order to quantify the functional connectivity for the glycolytic enzymes in dissipative conditions we have analyzed different
catalytic patterns using the technique of Transfer Entropy. The data were obtained by means of a yeast glycolytic model
formed by three delay differential equations where the enzymatic rate equations of the irreversible stages have been
explicitly considered. These enzymatic activity functions were previously modeled and tested experimentally by other
different groups. The results show the emergence of a new kind of dynamical functional structure, characterized by
changing connectivity flows and a metabolic invariant that constrains the activity of the irreversible enzymes. In addition to
the classical topological structure characterized by the specific location of enzymes, substrates, products and feedback-
regulatory metabolites, an effective functional structure emerges in the modeled glycolytic system, which is dynamical and
characterized by notable variations of the functional interactions. The dynamical structure also exhibits a metabolic
invariant which constrains the functional attributes of the enzymes. Finally, in accordance with the classical biochemical
studies, our numerical analysis reveals in a quantitative manner that the enzyme phosphofructokinase is the key-core of the
metabolic system, behaving for all conditions as the main source of the effective causal flows in yeast glycolysis.
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Introduction

Yeast glycolysis is one of the most studied dissipative pathways

of the cell; it was the first metabolic system in which spontaneous

oscillations were observed [1,2], and the study of these rhythms

allowed the construction of the first dynamic model where the

kinetics of an enzyme was explicitly considered [3,4].

Glycolysis is the central pathway of glucose degradation and it is

implied in relevant metabolic processes, such as the maintenance

of cellular redox states, the provision of ATP for membrane pumps

and protein phosphorylation, biosynthesis, etc; and its activity is

linked to a high variety of important cellular processes, e.g.,

glycolysis has a long history in cancer cell biology [5] and cell

proliferation [6], there is a correlation between brain aerobic

glycolysis and Amyloid-b plaque deposition which might precede

the clinical manifestations of the Alzheimer disease [7], the

glycolytic inhibition abrogates epileptogenesis [8], and glycolysis is

also related with oxidative stress [9] and apoptosis [10].

Over the last 30 years a large number of different studies focused

on different molecular mechanisms allowing for the emergency of

self-organized glycolytic patterns [11–15] and there is an interna-

tional consensus about the functionality of glycolytic enzymes in

yeast: the glycolytic system is a self-ordered metabolic structure, in

which the functionally associated enzymes adopt a new supra-

molecular configuration where some ordered metabolic dynamical

patterns may arise. During the oxidation reaction from one

molecule of glucose to two molecules of pyruvate, the glycolytic

enzymes convert the potential biochemical energy to usable

metabolic energy; a portion of this usable energy flows through

the glycolytic system to maintain it far from the equilibrium. Beyond

a critical point of instability of the non-equilibrium steady state it

can emerge enzymatic activity rhythms. The sustained oscillations

can be only maintained by the energy dissipation associated with the

exchange of metabolites between the glycolytic system and its

cellular environment. This type of non-equilibrium self-organiza-

tion represents a dissipative structure and the metabolic oscillatory

dynamics finds its roots in the non-linear regulatory processes which

control the catalytic behavior of the glycolytic irreversible enzymes:

the hexokinase, the phosphofructokinase and the pyruvatekinase

[16,17]. These functional structures which provide the temporal

self-organization of metabolism correspond to dissipative systems,

and the catalytic oscillatory behaviour finds its roots in the non-

linear regulatory processes which control the dynamics of the

irreversible enzymes [16,17].

The theoretical basis of dissipative self-organization processes

was formulated by Ilya Prigogine [18]. According to this theory, a
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dissipative structure is an open system which operates far from the

thermodynamic equilibrium and it exchanges energy and matter

with the external environment. As a consequence of these

interchanging processes, spontaneous self-organization can emerge

in the system producing high ordered spatial structures and

temporal-functional metabolic patterns [17,19].

From a dissipative point of view, the essential enzymatic

states are those corresponding to the biochemical irreversible

processes, and they are the only metabolic processes which

might allow that the enzymatic system to work far from the

thermodynamic equilibrium. Once the irreversible enzymatic

system operates sufficiently far-from-equilibrium as the nonlin-

ear nature of its kinetics, the steady state may become unstable

leading to dynamical behaviours and new instabilities originat-

ing the emergence of different biochemical temporal patterns

[20,21].

In the yeast glycolysis, the main instability-generating mecha-

nism is based on the self-catalytic regulation of the irreversible

enzyme phosphofructokinase, specifically, the positive feed-back

exerted by the reaction products, the ADP and fructose-1,6-

bisphosphate [3,16,17,22].

In this paper, to go a next step further in the understanding of

the relationship between the classical topological structure and

functionality we have analyzed the effective connectivity of yeast

glycolysis, which in inter-enzyme interactions accounts for the

influence that the activity of one enzyme has on the future of

another [23–27].

For this purpose, we considered a yeast glycolytic model

described by a system of three delay-differential equations in

which there is an explicit consideration of the rate equations of the

three irreversible enzymes hexokinase, phosphofructokinase and

pyruvatekinase. These enzymatic activity functions were previous-

ly modeled and tested experimentally by other different groups

[3,28,29].

We have obtained time series of enzymatic activity under

different sources of the glucose input flux. The data corresponded

to a typical quasi-periodic route to chaos which is in agreement

with experimental conditions [30]. The dynamics of the glycolytic

system changes substantially through this route, which allows for a

better comparison of the enzymatic processes in periodic, quasi-

periodic and chaotic conditions.

Using the non-linear analysis technique of Transfer Entropy

[31], we have analyzed the glycolytic series and quantified the

effective connectivity between enzymes. Transfer Entropy (TE)

is based on methods to compute effective connectivity, which

measures the causal influences between pairs of time series of

enzymatic activity, thus resulting in an asymmetric quantity

that defines a directionality in time from the cause to the effect.

A number of measures have been proposed for the function-

ality and correlations between biochemical time series.

However, functional correlations are symmetric measures and

they do not imply effective connectivity as most synchroniza-

tion measures do not distinguish between causal and non-

causal interactions.

TE has been proposed as a rigorous, robust and self-consistent

method for the effective connectivity i.e., causal quantification

of the functional information flow among nonlinear processes

[31]. Here we have applied the TE method to establish the

effective functional connectivity of yeast glycolysis under

dissipative conditions. The results show that in the numerical

analysis of yeast glycolysis a effective functional structure

emerges which is characterized by changing connectivity flows

and a metabolic invariant that constraints the activity of the

irreversible enzymes.

Results

In Fig. 1 it is represented the main enzymatic processes of yeast

glycolysis (the irreversible stages) with the enzymes arranged in

series.

The monitoring of the fluorescence of NADH in glycolyzing

baker0s yeast under sinusoidal glucose input flux, have shown that

quasi-periodic time patterns are common at low amplitudes of the

input and for high amplitudes chaotic behaviours emerge [32,33].

In order to simulate these metabolic processes, the glycolytic

system is considered under periodic input flux with a sinusoidal

source of glucose S~S0zA sin (vt). Assuming the experimental

value of S0~6 mM/h [34], after dividing by Km2 (the Michaelis

constant of phosphofructokinase, see Methods for more details) we

have obtained the normalized input flux S0~0:033 Hz.

Under these conditions, a wide range of different types of

dynamic patterns can emerge as a function of the control

parameter, hereafter the amplitude A of the sinusoidal glucose

input flux [30,35,37]. In particular, it is observed a quasi-periodic

route to chaos (cf. left panel in Fig. 2); thus for A~0:001 the

biochemical oscillator exhibits a periodic pattern (Fig. 2a). An

increment of the amplitude to A~0:005 provokes a Hopf

bifurcation generating another fundamental frequency, as a

consequence, quasi-periodic behaviors emerge (Fig. 2b). Above

A~0:021, complex quasi-periodic oscillations appear (Fig. 2c).

After a new Hopf bifurcation the originated dynamical behavior is

not particularly stable and small perturbations produce determin-

istic chaos (A~0:023, Fig. 2d), as predicted by Ruelle and Takens

[38]. This route is in agreement with experimental conditions [30].

To go a next step further in the understanding of the

relationship between the classical topological structure and

effective functionality we have analyzed by means of non-linear

statistical tools the catalytic patterns belonging to this scenario to

chaos, and for each transition represented in the Fig. 2 we have

obtained three time series corresponding to the variables a, b and

c (12 in total), which denote respectively the normalized

concentrations of glucose-6-phosphate, fructose 1-6-bisphosphate

and pyruvate. Results are given in next sections.

Effective functionality
Transfer Entropy (TE) quantifies the reduction in uncertainty

that one variable has on its own future when adding another. This

measure allows for a calculation of the functional influence in

Figure 1. Multi-enzyme instability-generating system of yeast
glycolysis. The main irreversible enzymatic processes are arranged in
series: E1 (hexokinase), E2 (phosphofructokinase) and E3 (pyruvateki-
nase). S, P1 , P01 , P2 , P02 and P3 denote, respectively, the concentrations of
glucose, glucose-6-phosphate, fructose 6-phospfate, fructose 1,6-bi-
sphospfate, phosphoenolpyruvate and pyruvate. q1 is the rate first-
order constant for the removal of P1 ; q2 is the rate constant for the sink
of the product P3 . The model includes the feedback activation of E2 and
the feedback inhibition of E3 . The ATP is consumed by E1 and recycled
by E3 .
doi:10.1371/journal.pone.0030162.g001
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terms of effective connectivity between two variables [31]. The

analysis of the glycolytic data by means of the TE method are

shown in Table 1. The 4D vectors in square brackets correspond

to the results obtained for the 4 different amplitudes of the

considered glucose input flux, A = [0.001;0.005;0.021;0.023].

The values of functional influence are ranging in 0:58ƒTE
ƒ1:00, with mean~0:79 and standard deviation = 0:12, what

indicates in general terms a high effective connectivity in the

enzymatic system. The minimum value 0.58 corresponded to the

causality flow between E3 and E2 when a simple periodic behavior

emerges. However, the functional connectivity from E2 to E3

shows the maximum value, achieved in all considered conditions

of the glucose input flux.

The glycolytic effective connectivity is illustrated in Figs. 2e–h.

The arrows width is proportional to the TE between pairs of

enzymes. The values change through the quasi-periodic route to

chaos, remarked from E3 to E2 by black dashed circles, [0.58;0.84;

0.61;0.66].

In all cases analyzed, the values of TE present a maximum

statistical significance (pvalue = 0, n = 50, Bonferroni Correction).

Total Information flows and the functional invariant
Next, we have measured the total information flow, defined as

the total outward of Transfer Entropy arriving to one enzyme

minus the total inward. Positive values mean that that enzyme is a

source of causality flow and negative flows are interpreted as sinks

or targets. The results of the total information flows are

represented Fig. 3 and shown in Table 2. The maximum source

of total transfer information (0.41) corresponds to the E2 enzyme

(phosphofructokinase) for A = 0.021, when complex quasi-periodic

oscillations appear in the glycolytic system.

For all conditions the enzyme E2 (phosphofructokinase) is the

main source of effective influence and the enzyme E3 (pyruvate-

kinase) a sink, which could be interpreted as a target from the

point of view of its effective functionality. The enzyme E1

(hexokinase) is less constrained, and it has a flow close to zero for

all conditions.

The attributed role to each enzyme, namely E2 the source, E3

the sink and E1 no-constrained is an invariant and preserved

through the whole route to chaos.

Functional Synchronization
Time correlations allows for quantification about how much

two time series are statistically independent. According to that, we

have measured the time pairwise correlations in the enzymatic

system, and the corresponding results are shown in Table 3. The

main finding is that E2 and E3 are highly synchronized

(correlation = 0.90, pvalue = 0, Bonferroni Correction) and E1 is

anti-synchronized with both E2 and E3 (respectively, correlation

equals 20.65 and 20.66, pvalue = 0, Bonferroni Correction).

These values of time correlations were almost constant through

the quasi-periodic route to chaos and established that the activities

of E2 and E3 are grouped to the same function, being activated at

similar time and oppositely to E1.

Redundancy and uncertainty reduction
The Mutual Information (MI) quantifies how much the

knowledge of one variable reduces the entropy or uncertainty of

the another [39]. The analysis of the glycolytic data by means of

this method are shown in Table 4.

The high values of MI (close to 0.50) proved a high redundancy

in information between the pairs of enzymes. In other words, the

number of bits of information transferred from one enzyme to

another is much larger than the actually needed.

The values in the principal diagonal of Table 4 represent the

uncertainty for each variable. We have found these values gra-

dually descending, H(E1) = [1.00;1.00;1.00;1.00], H(E2) = [0.85;

0.84;0.85;0.86] and H(E2) = [0.76;0.74;0.76;0.78], which is indic-

ative of the uncertainty in the enzymatic activity patterns

Figure 2. Glycolytic route to chaos and dynamical effective
connectivity. a–d: The time evolution of the E2 activity (the
normalized concentration b, fructose 1,6-bisphospfate) shows a quasi-
periodic route to chaos when varying the amplitude of the periodic
input-flux from A~0:001 (top) to A~0:023 (bottom). (a) Periodic
pattern. (b) Quasi-periodic oscillations. (c) Complex quasi-periodic
motion indicating the beginning destruction of the periodic behavior.
(d) Deterministic chaos. All series are plotted after 10000 seconds. e–h:
Effective connectivity of the system for the same values of A in the left
panel. The strength of effective connectivity is plotted with arrows
width proportional to the Transfer Entropy divided by the maximum
value (red arrow), results given in Table 1. Black dashed circles at the TE
from E3 and E2 emphasize that the strength of Information flows is not
the same, but varies through the quasi-periodic route to chaos.
doi:10.1371/journal.pone.0030162.g002

Table 1. Values of normalized Transfer Entropy.

From E1 From E2 From E3

To E1 –– [0.73;0.88;0.72;0.76] [0.74;0.80;0.68;0.74]

To E2 [0.76;0.80;0.70;0.72] –– [0.58;0.84;0.61;0.66]

To E3 [0.78; 0.86;0.74;0.75] [1.00;1.00;1.00;1.00] ––

doi:10.1371/journal.pone.0030162.t001

Effective Structure in Yeast Glycolysis
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belonging to E1, E2 and E3 is reduced monotonously for all

analyzed conditions.

The values of MI have a maximum statistical significance

(pvalue = 0, n = 50, Bonferroni Correction).

Finally, we have computed the Mutual Information between the

glucose input fluxes and the activity patterns of the different

enzymes. In all cases, the MI was equal to zero, proving that the

oscillations of the glucose were statistical independent of the

glucose- 6-phosphate, fructose 1-6-biphosphate and pyruvate,

products of the main irreversible enzymes of glycolysis.

Discussion

In this paper we have quantified essential aspects of the effective

functional connectivity among the main glycolytic enzymes in

dissipative conditions.

First, we have computed under different source of glucose the

causality flows in the metabolic system. This level of the functional

influence accounts for the contribution of each enzyme to the

generation of the different catalytic behavior and adds a

directionality in the influence interactions between enzymes.

The results show that the flows of functional connectivity can

change significantly during the different metabolic transitions

analyzed, exhibiting high values of transfer entropy, and in all

considered cases, the enzyme phosphofructokinase (E2) is the main

source of effective causality flow; the pyruvatekinase (E3) is the

main sink of information flow; the hexokinase (E1) has a quasi-zero

flow, meaning that, the total information arriving to E1 goes out to

either E2 or E3.

The maximum source of total transfer information (0.41)

corresponds to the E2 enzyme (phosphofructokinase) at the edge

of chaos, when complex quasi-periodic oscillations emerge (cf.

Fig. 2). This finding seems to be consistent with other studies

Figure 3. Total information flows and the functional invariant. Bars represent the total information flow, defined per each enzyme as the
total outward TE minus the total inward. For A = 0.021 and E2 an schematic visualization of the calculation of this flow is shown (bottom graph of the
panel). The functionality attributed for each enzyme is an invariant and preserved along the route, ie. E2 is a source, E3 is a sink and E1 has a quasi-zero
flow.
doi:10.1371/journal.pone.0030162.g003

Table 2. Values of total information flows.

E1 [0.06; 20.02;0.04;20.04] Quasi-zero flow

E2 [0.40; 0.24;0.41;0.39] source

E3 [20.46; 20.22;20.45;20.35] sink

doi:10.1371/journal.pone.0030162.t002

Effective Structure in Yeast Glycolysis
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which show that when a dynamical system operates in the frontier

between order (periodic behavior) and chaos its complexity is

maximal [40,41].

The level of influence in terms of causal interactions between

the enzymes is not always the same but varies depending on the

substrate fluxes and the dynamic characteristics emerging in the

system. In addition to the glycolytic topological structure

characterized by the specific location of enzymes, substrates,

products and regulatory metabolites there is an functional

structure of information flows which is dynamic and exhibit

notable variations of the causal interactions.

Another aspect of the glycolitic functionality was observed

during the quantification of the Mutual Information, which

measures how much the uncertainty about the one enzyme is

reduced by knowing the other; we found that the uncertainty for

E1, E2 and E3 monotonously decreased for all the values of the

periodic glucose input-flux.

Second, the numerical results show that for all analyzed cases

the maximum effective connectivity corresponds to the Transfer

Entropy from E2 to E3, indicating the biggest information flow in

the multi-enzyme instability-generating system. This is also

corroborated by the measure of correlation between the different

pairs of series which shows that E2 and E3 are highly correlated, or

synchronized (correlation = 0.90 pvalue = 0) and E1 is anti-

correlated with both E2 and E3 (respectively, correlation = 20.65

pvalue = 0 and correlation = 20.66 pvalue = 0). The values of time

correlations establish that the activities of E2 and E3 are grouped

to the same function, being activated at similar time and oppositely

to E1.

Third, our analysis allows for a hierarchical classification in

terms of what glycolytic enzyme is improving the future prediction

of what others, and the results reveals in a quantitative manner

that the enzyme E2 (phosphofructokinase) is the major source of

causal information and represents the key-core of glycolysis. The

second in importance is the E3 (pyruvatekinase).

From the biochemical point of view the E2 (phosphofructoki-

nase) has been commonly considered as a major checkpoint in the

control of glycolysis [42,43]. The main reason for this generalized

belief is that this enzyme exhibits a complex regulatory behavior

that reflects its capacity to integrate many different signals [44];

from a dissipative point of view, this enzyme catalyzes a reaction

very far from equilibrium and its self-catalytic regulation it has

been considered the main instability-generating mechanism for the

emergence of oscillatory patters in glycolysis [17]. The functional

studies presented here give a quantification of the effective

connectivity, and they confirm that the E2 (phosphofructokinase)

is the key-core of the pathway, and our results make stronger and

expand the classical biochemical studies of glycolysis.

Forth, the dynamics of the glycolytic system changes substan-

tially through the quasi-periodic route to chaos when the

amplitude of the input-flux varies. However, the hierarchy

obtained by transfer entropy, E2 the flow, E3 the sink and E1 a

quasi-zero flow, is preserved during this route and seems to be an

invariant. This functional invariant of a metabolic process may be

important for the understanding of functional enzymatic con-

straints in cellular conditions; but this issue requires other

additional studies.

We want to emphasize that Transfer Entropy as a quantitative

measure of effective causal connectivity can be a very useful tool in

studies of enzymatic processes that operate far from equilibrium

conditions. Moreover, many experimental observations have

shown that the oscillations in the enzymatic activity seem to

represent one of the most striking manifestations of the metabolic

dynamic behaviors, of not only qualitative but also quantitative

importance in cells (further details in Appendix S2).

Another interesting question is how our analysis can be scaled

up from a single pathway to ensembles of pathways in which

functional metabolic interactions between the catalytic sets can be

derived. In concordance with this, we have constructed dissipative

metabolic networks. Essentially, a Dissipative Metabolic Network

(DMN) is an open system formed by a given set of dissipative

enzymatic sets interconnected by substrate fluxes and three classes

of regulatory signals: activatory (positive allosteric modulation),

inhibitory (negative allosteric modulation) and all-or-nothing type

(which correspond with the regulatory enzymes of covalent

modulation). Certain enzymatic sets may receive an external

substrate flux. In the DMN, the emergent output activity for each

dissipative enzymatic set can be either oscillatory or steady state

with an infinite number of distinct activity regimes. The first model

of a Dissipative Metabolic Network was developed in 1999 [36,45]

which allowed to observe a singular spontaneously self-organized

Systemic Metabolic Structure, characterized by a set of different

enzymatic sets always locked into active states (metabolic core)

while the rest of catalytic subsystems presented on-off dynamics.

When an enzymatic subsystem is in an on-off state for a long time

it can be turned on under specific metabolic conditions. In this first

numerical work it was also suggested that the Systemic Metabolic

Structure could be an intrinsic characteristic of metabolism,

common to all living cellular organisms. Afterward, 2004 and

2005, several studies implementing flux balance analysis in

experimental data produced new evidences of this Systemic

Functional Structure [46,47]. Specifically, it was observed a set of

metabolic reactions belonging to different anabolic pathways

which remain active under all investigated growth conditions. The

rest of the reactions belonging to different pathways remain only

Table 3. Time Correlations.

E1 E2 E3

E1 [1.00;1.00;1.00;1.00] [20.65;20.66;20.64;20.63] [20.66;20.66;20.66;20.66]

E2 [20.65;20.66;20.64;20.63] [1.00;1.00;1.00;1.00] [0.90;0.90;0.90;0.90]

E3 [20.66;20.66;20.66;20.66] [0.90;0.90;0.90;0.90] [1.00;1.00;1.00;1.00]

doi:10.1371/journal.pone.0030162.t003

Table 4. Values of normalized Mutual Information.

E1 E2 E3

E1 [1.00;1.00;1.00;1.00] [0.52;0.49;0.45;0.44] [0.48;0.49;0.45;0.44]

E2 [0.52;0.49;0.45;0.44] [0.85;0.84;0.85;0.86] [0.47;0.46;0.45;0.45]

E3 [0.48;0.49;0.45;0.44] [0.47;0.46;0.45;0.45] [0.76;0.74;0.76;0.78]

doi:10.1371/journal.pone.0030162.t004
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intermittently active. These global catalytic processes were verified

for Escherichia coli, Helicobacter pylori, and Saccharomyces

cerevisiae [46,47]. More recently, extensive analyses with different

dissipative metabolic networks have shown that the fundamental

factor for the spontaneous emergence of this systemic self-

organized enzymatic structure is the number of enzymatic

dissipative sets [48]. Moreover, it has been observed that the

Systemic Metabolic Structure forms a unique dynamical system, in

which self-organization, self-regulation and persistent properties

may emerge [19]. In continuation with the glycolytic results

presented here, we recently also applied TE analysis to these

DMNs. We investigated the functional importance of the

metabolic core belonging to a network of dissipative pathways

and we found that the organization of the effective biomolecular

information flows between the enzymatic sets is modular and the

dynamical changes between the catalytic modules correspond to

metabolic switches which allow critical transitions in the systemic

enzymatic activity [49].

Transfer Entropy is able to detect the directed exchange of

causality flows among the irreversible enzymes which might allow

for a rigorous quantification of the effective functional connectivity

of many dissipative metabolic processes in both normal and

pathological cellular conditions.

The TE method applied to our numerical studies of yeast

glycolisis shows the emergence of a new kind of dynamical

functional structure which is characterized by changing connec-

tivity flows and a metabolic invariant that constrains the activity of

the irreversible enzymes.

Methods

Model
When the metabolite S (glucose) feeds the glycolytic system

(Fig. 1), it is transformed by the first enzyme E1 (hexokinase) into

the product P1 (glucose-6-phosphate). The enzymes E2 (phos-

phofructokinase) and E3 (pyruvatekinase) are allosteric, and

transform the substrates P01 (fructose 6-phosphate) and P02
(phosphoenolpyruvate) in the products P2 (fructose 1-6-bispho-

sphate) and P3 (pyruvate), respectively. The step P2?P02
represents reversible activity processes, reflected in the dynamic

system by the functional variable b’. A part of P1 does not

continue in the metabolic system, and is removed with a rate

constant of q1 which is related with the activity of pentose

phosphate pathway; likewise, q2 is the rate constant for the sink of

the product P3 which is related with the activity of pyruvate

dehydrogenase complex.

The main instability-generating mechanism in yeast glycolysis is

the self-catalytic regulation of the enzyme E2 (phosphofructoki-

nase), specifically, the positive feed-back exerted by the reaction

products, the ADP and fructose-1,6-bisphosphate [3,17,22]. From

a strictly biochemical point of view, E2 is also considered the main

regulator enzyme of glycolysis [44]. The second irreversible stage

for its regulatory importance is catalyzed by the enzyme E3

(pyruvatekinase) which is inhibited by the ATP reaction product

[44]. Finally, the third irreversible process corresponds to the first

stage the enzyme E1 (hexokinase) which is dependent on the ATP.

In the determination of the enzymatic kinetics of the enzyme E1

(hexokinase) the equation of the reaction speed dependent on

glucose and ATP has been used [28]. The speed function of the

allosteric enzyme E2 (phosphofructokinase) was developed in the

framework of the concerted transition theory [3]. The reaction

speed of the enzyme E3 (pyruvatekinase), dependent on ATP and

phospoenolpyruvate, was also constructed on the allosteric model

of the concerted transition [29].

To study the kinetics of the dissipative glycolytic system we have

considered normalized concentrations; a, b and c denoted

respectively the normalized concentrations of P1, P2 and P3. For

a spatially homogeneous system the time-evolution is described by

the following three delay differential equations:

da

dt
~z1s1w1(m){s2w2(a,b){q1a

db

dt
~z2s2w2(a,b){s3w3(b,b’,m)

dc

dt
~z3s3w3(b,b’,m){q2c

ð1Þ

where the functional variables b’ and m reflect the normalized

concentrations of P02 (phosphoenolpyruvate) and ATP respectively.

The three main enzymatic functions are the following:

w1(m)~
mSKd3

K3K2zmKm1Kd3zSK2zmSKd3ð Þ

w2(a,b)~
a 1zað Þ 1zd1bð Þ2

L1 1zcað Þ2z 1zað Þ2 1zd1bð Þ2

w3(b,b’,m)~
d2b’ 1zd2b’ð Þ3

L2 1zd3mð Þ4z 1zd2bð Þ4

ð2Þ

and

b’~f(b(t{l1))

m~h(b(t{l2)):
ð3Þ

The constants s1, s2 and s3 correspond to the maximum activity

of E1, E2 and E3 (Vm1, Vm2 and Vm3) divided by the Michaelis

constants of each enzyme, respectively Km1, Km2 and Km3. The

constants z’s are defined as z1~Km1=Km2, z2~Km2=Km3 and

z3~Km3=Kd3, with Kd3 representing the dissociation constant of

P2 by E3. The constants d’s are d1~Km3=Kd2, d2~Km3=Kd3 and

d3~Kd3=Kd4, with Kd4 representing the dissociation constant of

ATP; L1 and L2 are respectively the allosteric constant of E2 and

E3; c is the non-exclusive binding coefficient of the substrate P1.

More details about parameter values and experimental references

are given in Table S1.

From the dissipative point of view the essential enzymatic stages

are those that correspond to the biochemical irreversible processes

[21] and to simplify the model, we did not consider the

intermediate part of glycolysis belonging to the enzymatic

reversible stages. In this way, the functions f and h are supposed

to be the identity function. Thus,

b’~b(t{l1)

m~c(t{l2)
ð4Þ

The initial functions present a simple harmonic oscillation in the

following form:

a0(t)~AzB sin (2p=P)

b0(t)~CzD sin (2p=P)

c0(t)~EzF sin (2p=P)

ð5Þ

with A~26, B~12, C~12, D~10, E~7, F~6 and P~534.
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The dependent variables a, b and c were normalized dividing

them by Km2, Km3 and Kd3, and the parameters l1 and l2 are

time delays affecting the independent variable (further details in

Appendix S1).

The numerical integration of the system was performed with the

package ODE Workbench, which created by Dr. Aguirregabiria is

part of the Physics Academic Software. Internally this package

uses a Dormand-Prince method of order 5 to integrate differential

equations. Further information at http://www.webassign.net/

pas/ode/odewb.html.

This model has been exhaustively analyzed before, revealing a

notable richness of emergent temporal structures which included

the three main routes to chaos, as well as a multiplicity of stable

coexisting states, see for more details [30,35,37].

Transfer Entropy
TE allows for a quantification of how much the temporal

evolution of the activity of one enzyme helps to improve the future

prediction of another. The oscillatory patterns of the biochemical

metabolites might have information which can be read-out by the

TE. Further evidence about oscillatory behaviour in cellular

conditions is given in Appendix S2.

For a convenient derivation, let generally assume that each of

the pairs of enzymatic activity is represented by the two time series

X:fxtgT
t~1 and Y:fytgT

t~1. Here, xt is the state value of the

variable X in time t, and similarly for yt. Let I(X P,Y P?
X F )~{

P
xtzt,xt ,yt

P(xtzt,xt,yt) log2 P(xtztjxt,yt) be the am-

ount of information required to predict the future of X (X F )

known both the pasts of X and Y (X P and Y P). Analogously, let

I(X P?X F )~{
P

xtzt,xt
P(xtzt,xt) log2 P(xtztjxt) be the am-

ount of information required to predict the future of X known only

its past. The difference I(X P?X F ){I(X P,Y P?X F ) is by

definition the transfer entropy from Y to X , denoted by

TEY?X . It quantifies the amount of information in digits that Y
adds to the predictability of X .

Rewriting the conditional probabilities as the joint probability

divided by its marginal, one obtains an explicit form for the

Transfer Entropy:

TEY?X ~
X

xtzt,xt ,yt

P(xtzt,xt,yt) log2

P(xtzt,xt,yt)P(xt)

P(xt,yt)P(xtzt,xt)

� �
: ð6Þ

The problem of binning probabilities was solved by rounding at

each time the values of the variables to the nearest integer, thus

coarse-graining the continuous signal and counting the number of

times (frequency) in which a variable is in a certain state. Similar

choice were taking by Peng in his Matlab toolbox to compute the

Mutual Information, further details in [50] and the web-site

http://www.mathworks.com/matlabcentral/fileexchange/14888.

Another important parameter in the calculation of TE is the

order m of the Markov process [31], which says about the

number of past events one should consider in order to properly

sample the stationary probabilities, ie. the future states in the

time series depend on the past m states. We considered here

different values of m, up to m~5 and results did not change

considerably.

We also addressed the statistical significance for TE. This was

achieved by comparing the obtained values of TE between two

series of enzymatic activity, say X and Y, with the values obtained

when considering a random permutation of the future of Y, what

we called, the shuffled-future of Y. The values of TE in Table 1

were larger than those calculated in the shuffled situation

(pvalue = 0, n = 50, Bonferroni Correction).

The formula (6) is fully equivalent to the Mutual Informa-

tion between X F and Y P conditioned to X P. Thus, TEY?X:
I(X F ,Y PjX P), and consequently, Transfer Entropy says about

how much information the inclusion of Y P improves the

prediction of X F respect the situation of only considering

X P, ie. I(X F ,Y PjX P)~H(X F jX P){H(X F jX P,Y P). Therefore,

TE is fully quantifying the information flows between pairs of

variables. The values of TE were normalized between 0

and 1.

It is important to remark that the TE from X to Y is different to

the one from Y to X , ie. the effective connectivity is asymmetric,

adding a directionality in time which accounts for a particular case

of directed graphs, the graph of information flows between pairs of

enzymes.

Recently it was proved that the measures of effective

connectivity based on Granger Causality [51] and Transfer

Entropy coincide for Gaussian variables [52]. However, the

glycolytic data in our model is not Gaussian (results not shown),

thus the results of Transfer Entropy given in this paper might differ

from those obtained by using an analysis based on Granger

Causality.

Mutual Information and Redundancy
MI quantifies how much the knowledge of one variable reduces

the entropy or uncertainty of another. Therefore, MI says about

how much information the two variables are sharing. Against

other measures to compute correlations or statistical dependency,

the strongest point of the MI is that it extends functionality to high

order statistics [39]. Its definition is MI(X ,Y )~H(X ){H(X jY ),
where H(X jY )~H(X ,Y ){H(Y ) is the conditional entropy of X
given Y . It accounts for the remaining uncertainty in X knowing

the variable Y . We referred H(X ) and H(X ,Y ) as respectively the

joint and marginal (Shanon) entropies.

For statistical independent X and Y variables one has

MI(X ,Y )~0. The other limit satisfies MI(X ,X )~H(X ), be-

cause of H(X jY )~0. Therefore, the MI of two variables is

bounded and satisfies that 0ƒMI(X ,Y )ƒH(X ). High values of

MI mean that the redundancy in information between the two

variables is large. The values of MI were normalized between 0

and 1.

Supporting Information
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(PDF)
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(PDF)
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