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Foreword

The information theory of quantum systems gives a view of the physical world in which
information is regarded as the primary entity from which physical reality is built. This the-
ory is common among scientists who work on the foundations of quantum mechanics and
quantum computation, as well as among physicists who deal with quantum information.
It provides not merely a technical change in perspective with respect to the orthodox one,
but a radical shift in world view, well captured by John Archivald Wheeler’s pithy slogan
“It from bit”. In this view the laws of physics are informational statements: they tell us
something about the way the physical world operates. Then, it is natural to ask ourselves
about the different ways to describe, to quantify the information content of the quantum
systems and the universe. After all, stretching things a bit, physics may be regarded as the
science of everything that is quantifiable.

This Thesis is primarily intended as a contribution to the information-theoretical repre-
sentation of the microscopic complex systems (atoms, molecules,...), which complements
the familiar energy-representation provided by the density-functional and wave-function
theories. In passing, let us just bring here the Peres and Zurek’s comment that “there is
nothing in quantum theory making it applicable to, say, three atoms and inapplicable to
1023” [1]. The studies of microscopic complex systems that use information-theoretical
ideas have exploited with the advent of this century, so that there is a need for much further
work in this area. To date, approaches have been made to numerous systems and phenom-
ena not only in atomic and molecular physics and quantum chemistry [2, 3, 4, 5] but also
in quantum cryptography and teleportation [6, 7], quantum information and computation
[8, 9, 10], quantum optics and quantum metrology [11, 12, 13, 14], quantum and cognitive
biology [15], and quantum social science, psichology, evolution, brain sciences and life
[16, 17, 18, 19], among many other fields.

The most important role in the treatment of the one- and many-particle quantum
systems considered in this Thesis is played by the notions of information, complexity,
divergence, similarity and entanglement of the characteristic probability density of the
quantum-mechanical states of the systems under consideration.

The Thesis is structured in three self-contained Parts (each one with its own Intro-
duction and Conclusions), and two Appendices. They may be read in arbitrary order, and
correspond to six (Part I), two (Part II) and two (Part III) scientific publications done by
the autor in collaboration with a variety of coworkers.

Let us now briefly outline the contents of the Thesis. A more detailed introduction and
motivation can be found at the beginning of the respective parts and chapters.

Part I, entitled Information-theoretic Measures with Applications to Atomic Systems
and conformed by Chapters 1-7, addresses various measures of the information content
and the relative informational distance of some non-relativistic and relativistic atomic sys-



2 Foreword

tems, their properties and their applications to some specific atomic quantities and pro-
cesses. The basic variable is the electron distribution as a source and carrier of information
in atomic systems.

In the opening Chapter 1 the main information-theoretic measures which quantify a
single facet of the internal disorder of the system (e.g., entropic or frequency moments,
disequilibrium, Rényi and Shannon entropies, Fisher information) are defined, and the un-
certainty relations associated to them are pointed out. As well, the two-component com-
plexity indices are also briefly discussed; they quantify two different facets of local-global
(Fisher-Shannon, Fisher-Rényi, Crámer-Rao) and global-global (LMC or Disequilibrium-
Shannon, Disequilibrium-Rényi or LMC-Rényi) character. These indices are usually un-
derstood as general indicators of pattern, structure and correlation in physical and chemical
systems and processes, and their quantitative characterization is a very important subject of
research that has received considerable attention over the past years. Finally, some relative
similarity and Jensen’s divergence indices, which measures the distance and/or similarity
among different distribution densities, are described such as the quantum similarity index,
the Jensen-Shannon and Jensen-Fisher divergences and the relative Kullback-Leibler and
Rényi entropies.

In Chapter 2 we calculate the previous entropy and complexity measures in position
and momentum spaces for the bound-state wavefunctions of the one-dimensional hydro-
gen atom with a Dirac-delta-function interaction, which has been used to study different
phenomena of bosonic, fermionic and anionic systems. As well, we compute the corre-
sponding quantities for the wavefunctions of the single-particle systems with a twin-delta-
function potential, which has been used to approximate the helium atom, the hydrogen
molecular ion and some scattering and solid-state phenomena.

In Chapter 3 a complexity analysis of the non-relativistic (Schrödinger) and relativistic
(Dirac) hydrogen atom is carried out. This is done by studying the dependence on the
nuclear charge and on quantum numbers of the ground and some excited states, and the
quantification of the main dynamical Dirac effects (charge contraction towards the nucleus,
nodal disappearance and gradient reduction near to and far from the nucleus) by means of
the LMC and Fisher-Shannon complexity measures, and some related information planes.

In Chapter 4 we find some universal upper bounds on the entropic moments of a
quantum probability density in terms of the radial expectation values of the density in
the conjugate space, by means of inequality relations of uncertainty type which involve
position and momentum entropic moments. Then, they are applied to several macroscopic
energies in many-electron systems of Thomas-Fermi and Dirac exchange types, and their
accuracy for all the neutral atoms from hydrogen to lawrencium is numerically analyzed.

Chapters 5, 6 and 7 are devoted to extend and generalise the similarity and Jensen’s
divergence measures of electron distributions, what allow us to quantify the dissimilarity
among two or more many-electron systems. We have introduced three new relative
measures: the one-parameter generalised quantum similarity index (see Chapter 5), the
one-parameter generalised divergence measure (called by geometric Rényi divergence;
see Chapter 6) and the two-parameter generalised realtive complexity (see Chapter 7).
Their main theoretical features are also discussed in detail, including their advantages
with respect to previous related quantities which turn out to be instances of them. As well,
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they are applied to pairs of neutral and ionized atoms with nuclear charge from 1 to 103

in a non-relativistic Hartree-Fock setting. Keeping in mind the shell-filling patterns of
the systems, we give answers to the following questions: (i) Can we grasp the difference
between the physico-quimical properties of two atoms and/or ions by means of the relative
measures of the corresponding position and/or momentum electron densities?, (ii) To what
extent the ionization of a neutral atom modifies its electron densities in the two conjugate
spaces?, (iii) Are these relative measures appropriate to quantify the modifications of
the densities?, (iv) In an ionization process, how are connected the relative measures of
the initial and final systems with the ionization potential?, how do the relative measures
depend on the quantum numbers of the ejected or added electron during the process?, (v)

Do these relative measures allow the atoms and ions to cluster somehow, and what are
the common physico-chemical properties of the systems of a given cluster?,... and some
related ones.

Part II, entitled Quantum Entanglement in Harmonic Many-body Systems and con-
formed by Chapters 8, 9 and 10, is devoted to investigate the entanglement-related features
of the ground and excited states of the three following exactly solvable harmonic systems:
the 3D two-electron Moshinsky system subject to an external uniform magnetic field, the
1D three-electron Moshinsky system, and the 1D many-body Moshinsky-like system con-
sisting of Nn heavy particles (“nuclei”) and Ne light particles (“electrons”) which interact
harmonically with each other and, moreover, they are assumed to be confined by an har-
monic potential.

Beyond the opening Chapter 8, which collects some basic knowledge about the phe-
nomenon of entanglement, the first two systems are considered in Chapter 9. Therein we
discuss the dependence of the entanglement on the energy and the field strength, as well
as its behaviour in the regime of vanishing interaction. For strong magnetic fields the en-
tanglement approaches a finite asymptotic value that depends on the interaction strength.
Then, we develop a perturbative approach in order to shed some light on the energy de-
pendence of the entanglement, as well as to clarify the finite value of the entanglement
exhibited by excited states in the limit of weak interactions.

In Chapter 10 we analytically compute the entanglement of the eigenstates of the 1D

many-body system. We investigate its dependence on the different system parameters, such
as the relative strength between the two-particle interaction and the confining harmonic
potential, and the number of particles; particular attention is paid to the dependence of the
entanglement on the mass ratio of the constituent particles. We consider the entanglement
of different bi-partitions of the system, beyond the particular situation in which the two
subsystems have very different masses (where the electrons are known to be disentangled
from the nuclei). It is found that entanglement takes its maximum value when the masses
of the two subsystems are comparable. When these masses are very different from
each other, the eigenstates of the system are well represented by the Born-Oppenheimer
Ansatz, and our present study naturally leads to consider the connection between this
approximation and entanglement. The Born-Oppenheimer approach turns out to provide
a good description of the system even in cases where there is an appreciable amount of
entanglement between the two subsystems under consideration.
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Part III, entitled Entanglement and Interference of Composite Bosons, is conformed by
Chapters 11, 12 and 13. It is devoted to a detailed treatment of the deviations from the ideal
bosonic behavior of the cobosons (two-fermion bosons), which are shown to be observable
in many coboson interferences. In the opening Chapter 11 we briefly review the concepts
and methods that are necessary for an accurate treatment of composite particles and for the
understanding of its quantum statistics.

In Chapter 12 we investigate the relationship between the compositeness character of
cobosons and the entanglement, as characterized by the purity of the single-fermion states.
We have improved the existing bounds and derived the explicit form of those quantum
states that maximize and minimize the indicator of the bosonic behavior given by the ra-
tio of normalizations constants of N -coboson states for a given purity P. Our bounds are
optimal in the sense that they are saturated by the extremal states found. The tight upper
bound comes close to the lower bound when N ·P � 1, so that in this regime, not only the
deviation from perfectly bosonic behavior is small, but it can also be bounded very tightly
via the purity.

In Chapter 13 we provide a general formalism of the interference process for many
composite bosons, we characterize the physical interference model of cobosons by a Fermi-
Hubbard lattice model, and we show how the cobosons state describing the behavior of co-
bosons under beam-splitter dynamics is imitated exactly by a superposition of states with
a different number of perfect bosons and fermions. Finally, let us point out that this super-
position allows to understand the partially fermionic behavior of cobosons, and ultimately
leads to simple expressions for the interference of Bose-Einstein condensates (BEC) and
molecular Bose-Einstein condensates (mBEC).
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La teoría de información de los sistemas cuánticos proporciona una descripción del
mundo físico donde la información es el elemento primario de construcción de la realidad
física. Esta teoría se usa por los científicos que trabajan en los fundamentos de la mecánica
cuántica y la computación cuántica, así como por los físicos que trabajan en información
cuántica. No es meramente una modificación técnica de la perspectiva ortodoxa, sino un
cambio radical de la visión del mundo, que está bien recogida por el eslogan breve de John
Archivald Wheeler : “It from bit”. En esta forma de ver e interpretar las cosas, las leyes
de la física son declaraciones o afirmaciones informacionales: nos dicen algo acerca de
la forma de funcionamiento del mundo físico. Parece entonces natural preguntarse sobre
las diferentes maneras de describir y cuantificar el contenido informacional de los sistemas
cuánticos en particular, y del universo en general. Al fin y al cabo, exagerando un poco las
cosas, la física puede considerarse como la ciencia de todo lo que puede cuantificarse.

Esta Tesis constituye una contribución a la representación teórico-informacional de
los sistemas complejos microscópicos (átomos, moléculas,...), que complementa la repre-
sentación energética familiar que proporcionan las teorías basadas en la función de onda
y en los funcionales de la densidad. Vale la pena mencionar aquí entre paréntesis el co-
mentario de Peres y Zurek “There is nothing in quantum theory making it applicable to,
say, three atoms and inapplicable to 1023” [1]. Los estudios de los sistemas complejos
microscópicos que usan las ideas y técnicas teórico-informacionales han experimentado
una pujanza impresionante en las dos últimas décadas, de forma que hay mucho trabajo
que hacer próximamente en este área. En efecto, no solo se han podido explicar teórico-
informacionalmente con éxito muchos fenómenos y sistemas cuánticos en física atómica y
molecular y química cuántica [2, 3, 4, 5], sino también en criptografía y teleportación cuán-
ticas [6, 7], información y computación cuántica [8, 9, 10], óptica cuántica y metrología
cuántica [11, 12, 13, 14], biología cognitiva, ciencias sociales cuánticas y otros aspectos de
la evolución, la psicología, las ciencias del cerebro y la vida [16, 17, 18, 19], entre otros
campos.

El papel más relevante en el tratamiento de los sistemas de una y de muchas partículas
que se consideran en esta Tesis lo juegan las nociones de información, complejidad,
divergencia, similitud y entrelazamiento de la densidad de probabilidad característica de
los estados cuánticos de tales sistemas.

La Tesis está estructurada en tres Partes auto-contenidas (cada una con su Introducción
y Conclusiones propias) y dos apéndices, de forma que pueden leerse en orden arbitrario.
Su contenido corresponde a seis (Parte I), dos (Parte II) y dos (Parte III) publicaciones
científicas realizadas por el autor en colaboración con varios colegas.

A continuación se describen brevemente los contenidos de esta Tesis. Una introduc-
ción y motivación más detalladas puede encontrarse al inicio de las partes y capítulos
respectivos.
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La Parte I, titulada Information-theoretic Measures with Applications to Atomic Sys-
tems, está compuesta por los Capítulos 1-7. En ella se analizan varias medidas del
contenido informacional y de la distancia teórico-informacional relativa de varios sis-
temas atómicos no-relativistas y relativistas, sus propiedades y sus aplicaciones a algunos
fenómenos y procesos atómicos específicos. La variable básica es la distribución mono-
electrónica como fuente y mensajero de información en los sistemas atómicos. En el Capí-
tulo 1 se definen las medidas teórico-informacionales principales que cuantifican una faceta
concreta del desorden interno del sistema (e.g., el desequilibrio, los momentos entrópicos,
las entropías de Rényi y Shannon, la información de Fisher), y se analizan las relaciones de
incertidumbre asociadas a ellas. Asimismo, también se discuten brevemente los índices de
complejidad de dos componentes recientemente introducidos, que cuantifican dos facetas
diferentes de tipo local- global (Fisher-Shanon, Fisher-Rényi, Crámer-Rao) y global-global
(LMC o desequilibrio-Shannon, Desequilibrio-Rényi o LMC-Rényi). Estos índices son in-
terpretados usualmente como indicadores generales de patrones, estructura y correlación
en sistemas y procesos físicos y químicos. Su caracterización cuantitativa es un tópico de
investigación que ha recibido una considerable atención en los últimos años. Finalmente,
se describen algunos índices relativos de similitud y de divergencia de tipo Jensen-Shannon
y Jensen-Fisher, así como las entropías relativas de Kullback-Leibler y Rényi.

En el Capítulo 2 se calculan las medidas entrópicas y de complejidad antes men-
cionadas en los espacios de posiciones y momento para los estados ligados del átomo
de hidrógeno mono-dimensional con una interacción de tipo delta de Dirac, que ha sido
usada para aproximar numerosos fenómenos en sistemas bosónicos, fermiónicos y anióni-
cos. Asimismo, se determinan las magnitudes correspondientes a las funciones de onda de
los sistemas mono-particulares con un potencial de Dirac gemelo, que ha sido usado para
aproximar el átomo de helio, el ion molecular de hidrógeno y algunos fenómenos de estado
sólido.

En el Chapter 3 se lleva a cabo un análisis de complejidad del átomo de hidrógeno
tridimensional no-relativista (Schrödinger) y relativista (Dirac). Se estudia la dependen-
cia en la carga nuclear y en los números cuánticos de los estados fundamental y estados
excitados, y la cuantificación de los efectos de Dirac principales (i.e., contracción de la
carga, desaparición de los nodos, y reducción del gradiente) por medio de las medidas de
complejidad LMC y Fisher-Shannon y de algunos planos de información asociados.

En el Chapter 4 se obtienen algunas cotas superiores universales a los momentos en-
trópicos de la densidad de probabilidad cuántica en un espacio, en términos de los val-
ores esperados radiales de la densidad en el espacio conjugado. Para ello se utiliza una
metodología basada en las relaciones de incertidumbre que involucran a momentos en-
trópicos de posiciones y momentos. Luego, estos resultados son aplicados a varias energías
macroscópicas en los sistemas multi-electrónicos de tipo Thomas-Fermi y de intercambio
de Dirac, y su precisión es investigada numéricamente en todos los átomos neutros desde
el hidrógeno al lawrencio.

En los Capítulos 5, 6 y 7 se generalizan las medidas de similitud o semejanza, se
extiende las medidas de divergencia de Jensen, que cuantifican la disimilaridad entre dos
o mas sistemas de muchos cuerpos y mejora mediante una generalización el concepto de
complejidad relativa. Hemos introducido tres nuevas medidas comparativas: el índice
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de similitud cuántica generalizada mono-paramétrico (ver Capítulo 5), la medida de
divergencia geométrica mono-paramétrica (ver Capítulo 6) y la complejidad relativa
generalizada bi-paramétrica (ver Capítulo 7). Se discuten sus propiedades principales
y sus ventajas con respecto a las correspondientes medidas comparativas conocidas con
anterioridad en la literatura, las cuales resultan ser casos particulares de las introducidas en
esta memoria. Después se aplican las nuevas medidas a pares de átomos neutros y átomos
singularmente ionizados con carga nuclear desde 1 a 103 en un marco Hartree-Fock
no-relativista. Habida cuenta de los patrones de llenado de capas de estos sistemas,
abordamos y respondemos a cuestiones tales como: (i) ¿Puede cuantificarse la diferencia
entre propiedades físico-químicas de dos átomos y/o dos iones por medio de las medidas
comparativas antes mencionadas en los espacios de posiciones y/o de momentos?. (ii)

¿Hasta qué punto la ionización de un átomo neutro modifica sus densidades electrónicas
en los dos espacios conjugados?, (iii) ¿Son estas medidas comparativas adecuadas para
cuantificar las modificaciones de las densidades?, (iv) En un proceso de ionización, ¿cómo
están conectadas las medidas comparativas de los sistemas inicial y final?, (v) ¿Permiten
estas medidas agrupar de alguna manera a los átomo e iones?, y ¿qué propiedades comunes
poseen los átomos de un grupo dado?,... y otras cuestiones relacionadas.

La Parte II, titulada Quantum Entanglement in Harmonic Many-body Systems, está
compuesta por los Capítulos 8, 9 y 10. En ella se investigan las características de en-
trelazamiento de los estados fundamental y de los estados excitados de los tres sistemas
armónicos exactamente resolubles siguientes: el sistema de Moshinsky tri-dimensional de
dos electrones en presencia de un campo magnético externo, el sistema de Moshinsky
mono-dimensional de tres electrones, y el sistema de tipo Moshinsky de muchos cuerpos
que consta de Nn partículas de masa grande (“núcleos”) y Ne partículas de masa pequeña
(“electrones”) que interactúan armónicamente entre sí y, además, están confinados en un
potencial armónico. En el Capítulo 8 se recogen algunos conocimientos básicos acerca
del entrelazamiento.

En el Capítulo 9 se analiza el entrelazamiento del primer sistema armónico, su depen-
dencia con la energía y la intensidad del campo, así como su comportamiento cuando la
interacción tiende a cero. Se observa que para campos fuertes, el entrelazamiento tiende a
un valor asintótico finito, que depende de la intensidad del campo. Asimismo, se desarrolla
un método perturbativo para lograr una mayor introspección en la dependencia energética
del entrelazamiento, así como para explicar mas claramente la finitud del entrelazamiento
que presentan los estados excitados en el límite de interacción débil.

En el Capítulo 10 se determina el entrelazamiento de los estados propios del sistema
de muchos cuerpos de Moshinsky mono- dimensional. Se investiga su dependencia con los
diversos parámetros del sistema, tales como la intensidad relativa entre la interacción a dos
cuerpos y el potencial de confinamiento, y el número de partículas; se presta una atención
especial a la dependencia del entrelazamiento con respecto a la ratio de las masas de las
partículas constituyentes. Se considera el entrelazamiento de diferentes bi-particiones del
sistema, mas allá del caso particular en que los dos subsistemas tienen masas muy distintas
(donde se sabe que los electrones no están entrelazados con los núcleos). Se encuentra
que el entrelazamiento toma su máximo valor cuando las masas de los dos subsistemas
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son comparables. Cuando estas masas son muy diferentes entre si, los autoestados del
sistema están bien representados en la aproximación de Born-Oppenheimer, de forma que
ello nos da la oportunidad de observar el entrelazamiento en este marco. Resulta que
la aproximación de Born- Oppenheimer proporciona una buena descripción del sistema
incluso en los casos en que existe una diferencia apreciable entre los dos subsistemas
involucrados.

La Parte III, titulada Entanglement and Interference of Composite Bosons, está com-
puesta por los Capítulos 11, 12 and 13. En ella se hace un tratamiento detallado del com-
portamiento bosónico ideal de los cobosones (bosons formados por dos fermiones), que se
dejan observar en interferencias cobosónicas. En el Capítulo 11 revisamos brevemente los
conceptos y métodos necesarios para un tratamiento preciso de las partículas compuestas
y para la comprensión de su estadística cuántica.

En el Capítulo 12 se investiga la relación entre el carácter compuesto de los cobosones
y el entrelazamiento (descrito por la pureza de los estados mono-fermiónicos). Se en-
cuentra una mejora sustancial de las cotas existentes en la literatura, y se obtiene la forma
explícita de los estados cuánticos que optimizan el indicador del carácter bosónico dado
por la ratio de las constantes de normalización de los estados de N -cobosones para una
pureza P dada. Las cotas obtenidas son óptimas en el sentido de que saturan para los esta-
dos extremales encontrados. La cota superior precisa obtenida cae cerca de la cota inferior
cuando el producto N ·P es mucho menor que la unidad, de forma que en este régimen no
solo la desviación del comportamiento perfectamente bosónico es pequeña sino que puede
estar también acotada de manera muy precisa por la pureza.

En el Capítulo 13 se da un formalismo general del proceso de interferencia de mu-
chos bosones compuestos, usándose el modelo de Fermi-Hubbard para su interpretación,
y mostrándose de qué forma el estado de los cobosones describe el comportamiento co-
bosónico en una dinámica de tipo beam-splitter es descrito por una superposición de esta-
dos con un número diferente de bosones y fermiones perfectos. Finalmente, cabe señalar
que esta superposición permite entender el comportamiento parcialmente fermiónico de
los cobosones, y finalmente dar lugar a expresiones sencillas para la interferencia de los
condensados Bose-Einstein (BEC) y de BEC moleculares (mBEC).
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Introduction

Quantum Information Theory (QIT) [8] and the study of entanglement [20, 21] are ex-
amples of the versatility of information theory techniques applied in new fields of scientific
or technological interest [22]. In particular there has been a tremendous interest in the lit-
erature to apply information theory to quantum mechanical systems [5, 23, 24, 25, 26, 27],
to study the electronic structure of atoms and molecules [28, 29, 30], to explore some
chemical processes such as ionization or chemical reactions [31, 32] or even to study the
controversial homochirality of amino acids [19], building blocks of the biological systems.

The concepts of uncertainty, randomness, correlation, organization, complexity, infor-
mation, disorder or delocalization are basic ingredients in the study of relevant properties
for many probability distributions appearing as descriptors of chemical or physical systems
or processes. These concepts concerning probability distributions are quantified by means
of closely related and well known density functionals, such as Shannon entropy, Fisher
information or disequilibrium. Other relevant quantities, dependent on two (or more) dif-
ferent densities, have been also defined, studied and applied to detect similarity or discrep-
ancy, as comparative measures among them.

In Chapter 1 we discuss in a non-exhaustive way the best known information-theoretic
measures, of continuous probability densities, which we shall use throughout this part
of the thesis. We provide their definitions and interpretation, as well as their most rel-
evant mathematical properties and relationships among them. These measures, when
applied to the basic variable of the Hohenberg-Kohn Density Functional Theory (DFT)
[33, 34, 35, 36] of many-electron systems (i.e., the electron density in position and mo-
mentum spaces), are closely related to the density functionals which characterize the main
macroscopic quantities of atoms and molecules.

The interpretation of the infomation-theoretic measures outlined in Chapter 1 becomes
more clear and understandable in analytically solvable quantum models, since therein
one can control all the parameters of the system or model. Dirac-delta-like quantum-
mechanical potentials are frequently used to describe and interpret numerous phenomena
in many scientific fields including atomic and molecular physics, condensed matter and
quantum computation. In Chapter 2, the entropy and complexity properties of potentials
with one and two Dirac delta functions are analytically calculated and numerically dis-
cussed in both position and momentum spaces. We have studied the information- theoretic
lengths of Fisher, Rényi and Shannon types as well as the Crámer-Rao, Fisher-Shannon
and LMC shape complexities of the lowest-lying stationary states of one delta and twin-
delta. They allow us to grasp and quantify different facets of the spreading of the charge
and momentum of the system far beyond the celebrated standard deviation.

In Chapter 3 we characterize by means of single-density information measure com-
puted analytically, the relativistic (Dirac equation) and non-relativistic (Schrödinger equa-
tion) hydrogen atom. The primary dynamical Dirac relativistic effects can only be seen in
hydrogenic systems without the complications introduced by electron-electron interactions
in many-electron systems. They are known to be the contraction towards the origin of the
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electronic charge in hydrogenic systems and the nodal disappearance (because of the rais-
ing of all the non-relativistic minima) in the electron density of the excited states of these
systems. In addition we point out the (largely ignored) gradient reduction of the charge
density near to and far from the nucleus. In this work we quantify these effects by means
of single (Fisher information) and composite (Fisher-Shannon complexity and plane, LMC
complexity) information-theoretic measures. While the Fisher information measures the
gradient content of the density, the (dimensionless) composite information-theoretic quan-
tities grasp two-fold facets of the electronic distribution: The Fisher- Shannon complexity
measures the combined balance of the gradient content and the total extent of the electronic
charge, and the LMC complexity quantifies the disequilibrium jointly with the spreading
of the density in the configuration space. Opposite to other complexity notions (e.g., com-
putational and algorithmic complexities), these two quantities describe intrinsic properties
of the system because they do not depend on the context but they are functionals of the
electron density.

Rigorous and universal bounds on frequency moments of one-particle densities in terms
of radial expectation values in the conjugate space are obtained in Chapter 4. The results,
valid for any d-dimensional quantum-mechanical system, are derived by using Rényi-like
position-momentum inequalities in an information-theoretical framework. Especially in-
teresting are the upper bounds on the Dirac exchange and Thomas-Fermi kinetic energies,
as well as the disequilibrium or self-similarity of both position and momentum distribu-
tions. A variety of bounds for these functionals in a given space are known, but most
usually in terms of quantities defined within the same space. Very few results including a
density functional on one space, and expectation values on the conjugate one, are found in
the literature. In Chapter 4, a pioneering bound on the disequilibrium in terms of the ki-
netic energy is improved. A numerical study of the aforementioned relationships is carried
out for atomic systems in their ground state. Some results are given in terms of relevant
physical quantities, including the kinetic and electron-nucleus attraction energies, the dia-
magnetic susceptibility and the height of the peak of the Compton profile, among others.

In the following chapters of this part of the thesis, we propose three novel comparative
measures within the framework of the information theory.

In Chapter 5, a generalized quantum similarity index is defined, quantifying the simi-
larity among density functions. The generalization includes, as new features (i) comparison
among an arbitrary number of functions, (ii) its ability to modify the relative contribution
of different regions within the domain of the densities, and (iii) the possibility of assigning
different weights to each function according to its relevance on the comparative proce-
dure. The similarity among atomic one-particle densities in both conjugated spaces, and
neutral-cation similarity in ionization processes are analyzed. The results are interpreted
attending to shell-filling patterns, and also in terms of experimentally accessible quantities
of relevance in ionization processes.

A new one-parameter measure of divergence is proposed in Chapter 6, quantifying the
discrepancy among general probability densities. Its main mathematical properties include
the features above described. The main difference with the measures of divergence in
the literature, is that it is a functional of the geometric mean of the densities to compare
instead of the arithmetic mean. Applications to the study of atomic density functions, in
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both conjugated spaces, show the versatility and universality of this divergence.
Finally, in Chapter 7, the search of an appropriate measure of relative complexity

among density functions is afforded. In doing so, the main properties required for complex-
ity functionals of a given distribution, as well as those for discrimination measures among
two or more distributions are considered. A proposal for a generalized relative complexity
is provided, which includes a pioneering definition as a limiting case. A theoretical anal-
ysis of the generalized measure for arbitrary distributions is carried out. The applications
regard the electron charge densities of neutral atoms, and the results are interpreted on the
basis of the main physical properties of the systems considered.

In this part of the thesis we use atomic units (a.u.) except in Chapter 2 and Chapter 3.





CHAPTER 1

Information-theoretic measures:
Basics

A major goal of the information theory of the atomic and molecular systems is the
quantification of the multiple facets of their internal disorder which is manifest in the elec-
tron density of the system, as recently reviewed [4, 37, 38].

First, various single (one-component) information-theoretic measures were used to
grasp single facets of the rich variety of complex three-dimensional geometries of these
systems in a non-relativistic framework, such as the spread of the electronic distribution all
over the configuration space (Shannon, Rényi and Tsallis entropies), the gradient content
(Fisher information) and other manifestations of the non-uniformity of the electron den-
sity (disequilibrium). Later, composite (two-component) measures have been proposed to
jointly grasp various facets of the electron density. They are called complexity measures be-
cause they are minumum for the two extreme distributions of perfect order and maximum
disorder (so, approaching the intuitive notion of complexity), such as the Crámer-Rao,
Fisher-Shannon and LMC (López-Ruiz, Mancini and Calbet) complexity measures. Oppo-
site to the single-component measures, they are dimensionless (what lets them be mutually
compared) and moreover they fulfil a number of invariance properties under replication,
translation and rescaling transformations. Throughout the development of the probability,
statistics and information theories, comparative measures have also emerged in order to
quantify the “distance” or similarity among different systems, each one with its own prop-
erties and characteristics, which makes these measures to be more or less useful according
to the kind of problem, system or process as well as the interpretation we are dealing with.
Different approaches have dealt with the aim of establishing quantitative measures of sim-
ilarity or disimilarity (or divergence), among two or more probability distributions, giving
rise to various measures such as the Kullback-Leibler, Jensen-Shannon and Jensen-Rényi
divergences or the Quantum Similarity Index among other.

In this chapter we describe the best known information-theoretic measures for contin-
uous probability densities which we shall use in the first part of this thesis. We provide
their definitions, their most relevant properties and relationships among them as well as the
uncertainty relations that they satisfy. Moreover, we present some relevant applications ex-
isting in the literature for these measures within the context of this thesis. The structure of
the chapter is the following. In Section 1.1 we deal with the basic spreading measures of a
single probability distribution. Uncertainty relations among different information measures
are shown in Section 1.2 and two- component composite information-theoretic measures,
i.e. complexity measures, in Section 1.3. Finally, in Section 1.4, we turn to deal with
information theory measures of two or more probability distributions.
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1.1 Information-theoretic description of a probability density

The application of the information theory for a probability distribution ρ(~r) (see Ap-
pendix A to know in detail how these densities are derived) corresponding to some d-
dimensional continuous random variable ~r (e.g. position, momentum, phase,...) have pro-
vided a wide range of measures to quantify the spread (or uncertainty) of ~r over a a domain
∆ ⊆ Rd [39, 40] far beyond the statistical root-mean-square or standard deviation

∆~r = 〈|~r − 〈~r〉|2〉1/2 (1.1)

where the expectation value 〈f(~r)〉 is given by

〈f(~r)〉 =

∫
∆
f(~r)ρ(~r)d~r. (1.2)

The choice f(~r) = |~r| a = ra (i.e., 〈~r a〉) provides the moment of order a of the probability
distribution ρ(~r):

〈ra〉 =

∫
∆
raρ(~r)d~r (1.3)

In this part of the thesis we will deal with some of the most relevant information-
theory-based spreading measures of ρ(~r), namely the Shannon and Rényi entropies and the
Fisher information. In the nineteen forties Claude E. Shannon proposed a set of reasonable
assumptions that should satisfy a candidate for being an appropriate measure of average
uncertainty contained in a discrete probability distribution of a finite set of observational
events; i.e. the outcomes of a measurement or a detection of a signal in a communication
channel. Shannon entropy was introduced as the uncertainty on the outcome of an experi-
ment based on a given probability distribution. Then, it is a measure of ignorance or lack
of information concerning the outcome of the experiment. The original definition was gen-
eralized to a continuous probability density as proposed by Shannon himself [41, 39], in
the form

S[ρ] = −
∫

∆
ρ(~r) ln ρ(~r)d~r, (1.4)

where it is assumed that ρ(~r) ln ρ(~r) = 0 for those values ~r for which ρ(~r) = 0. See also
[42].

Although Shannon entropy for continuous variables has some properties which are
quite different from those of its discrete counterpart (e.g., it may take negative values),
retains enough properties, such as the Schur concavity [40] (i.e., it is non decreasing under
a doubly stochastic transformation), to make of this entropy a very useful information-
theoretic tool.

The Rényi entropy of order q, Rq[ρ] [43, 39], of the normalized to unity (i.e. 〈1〉 = 1)
probability density ρ(~r) is defined by

Rq[ρ] =
1

1− q lnωq[ρ] for q > 0, and q 6= 1 (1.5)

where the quantity

ωq[ρ] =

∫
∆

[ρ(~r)]q d~r (1.6)
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denotes the q-th order frequency, or entropic, moment of the distribution ρ(~r) [44]. In
spite of their names, the mathematical definition of the frequency moments (expectation
values of powers of the density ρ(~r)) strongly differs from that of the “usual” moments
given in Eq. (1.3) (expectation values of powers of the independent variable ~r). Frequency
moments of a (d-dimensional) probability density are essentially a class of quantities whose
key property is Schur concavity [40], see also [8, 45, 46]. Frequency moment of order two
[47] is particularly relevant because quantifies the departure of the probability density from
uniformity or equiprobability situation (equilibrium). It is known as disequilibrium (also
known as self-similarity [48] or information energy [49])

D[ρ] = ω2[ρ] =

∫
ρ2(~r)d~r = 〈ρ(~r)〉 , (1.7)

which is basically the expected value of the own density ρ(~r). The interpretation as a
measure of departure from equiprobability arised in the framework of discrete and finite
probability distributions [49]. Later on, this interpretation was generalized for the case
of infinite and continuous probability distributions [50]. In spite of the nonexistence of
uniform distributions in those cases, uniformity can be arbitrarily approached by means of
sequences of distributions. The disequilibrium plays a relevant role, also, in what concerns
the concept of “shape complexity” [51, 52] and its physical interpretation for atomic [53]
and molecular [54] systems as will be shown in Section 1.3.

Rényi entropy is also a measure of uncertainty that can be viewed as a generalization
of Shannon’s entropy. In the limiting value q → 1, taking into account the normalization
condition ω1[ρ] = 1, yields the Shannon entropy

S[ρ] = lim
q→1

Rq[ρ]. (1.8)

The allowed range of values for the characteristic order parameter q of the Rényi entropy in
the continuous case is determined by the convergence conditions on the integral definition
of the frequency moment, Eq. (1.6), being imposed by the probability distribution ρ(~r).
The order parameter q of the frequency moments and the Rényi entropy, Eqs. (1.6) and
(1.5) respectively, allows to enhance or diminish, by increasing or decreasing its value, the
contribution of the probability distribution over different regions. The higher the value of q
the more concentrated is the function [ρ(~r)]q around the local maxima of the distribution,
while the lower values have the effect of smoothing that function over its whole domain.

The quantities previously defined are global measures of spreading. In contrast, Ronald
A. Fisher introduced the Fisher information that could be able to detect local changes of the
probability distribution besides giving us the notion of information concerning to statistical
inference. The Fisher information of a probability distribution ρ(~r) is defined as [55, 56]

F [ρ] =

∫
∆

[
~∇ρ(~r)

]2

ρ(~r)
d~r. (1.9)

One of the most relevant features of this magnitude is that fulfils the consequence of the
Cauchy-Schwartz inequality known as the Cramér-Rao inequality [39],

(∆~r)2 · F [ρ(~r)] ≥ d2 (1.10)
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allowing us to measure the ability to estimate the value of the random variable ~r. Fisher in-
formation gives the minimum error in estimating ~r from the given probability distribution.

Fisher information has a property of locality because of its gradient-functional form.
It measures the narrowness of the distribution as a property of locality, then, it is very
sensitive to the fluctuations of ρ(~r). In contrast, the Rényi and Shannon entropies are
global measures of spreading, as well as the standard deviation, because they are power
and logarithmic functionals of ρ(~r), respectively. Let us highlight that while the standard
deviation quantifies the separation of the region(s) of the probability concentration with
respect to the mean value or centroid 〈~r〉, the Rényi and Shannon entropies do not depend
on any specific point of the domain ∆, so they are (global) measures of the extent to which
the density is in fact concentrated anywhere. On the other hand, the Fisher information
measures the pointwise concentration of the probability density over its domain.

Shannon and Rényi entropies and the Fisher information have, however, a disadvan-
tage: each one has its own units which differ among each other, what bears a difficulty for
their mutual comparison. To overcome this difficulty, sometimes, it is more convenient to
use instead the Rényi and Shannon lengths [46, 40] defined by

LRq [ρ] = exp (Rq[ρ]) = {ωq[ρ]}
1

1−q (1.11)

and
N [ρ] = lim

q→1
LRq [ρ] = exp (S[ρ]) (1.12)

respectively, and the Fisher length [57, 58] given by

δ~r =
1√
F [ρ]

. (1.13)

The standard deviation and these three information-theoretic lenghts are direct spread-
ing measures of ρ(~r) in the sense that they have the same units as ~r. Moreover, all four
quantities share the following relevant properties: translation and reflection invariance, lin-
ear scaling with ~r (e.g., ∆~R = α∆~r for ~R = α~r in the case of standard deviation) and
vanishing in the limit for which the random variable has some definite value, that is when
ρ(~r) approaches a Dirac-delta function. These four direct spreading measures are comple-
mentary in the sense that they grasp different facets of the distribution of the probability
density ρ(~r) all over its support interval. Moreover, all of them enjoy an uncertainty prop-
erty as will be shown in the next section.

1.2 Uncertainty relations

Different expectation values and density functionals have been considered in order to
characterize or to estimate the main physical properties of quantum systems. A relevant
concept for the interpretation of different quantum-mechanical phenomena is that of “un-
certainty”, in the Heisenberg sense, regarding the accuracy in the knowledge of the par-
ticle’s position and momentum simultaneously. Here we give the uncertainty relations
corresponding to the moments, frequency moments together with those associated to the
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Rényi and Shannon entropies and the Fisher information of general d-dimensional quantum
systems. These relations constitute different mathematical formulations of the quantum-
mechanical uncertainty principle which describes a characteristic feature of quantum me-
chanics and states the limitations to perform measurements on a system without disturbing
it. Moreover, since the two canonically conjugate observables involved in the uncertainty
relations here considered -position and momentum- do not commute, both observables
cannot be precisely simultaneously determined in any quantum state of the system.

The original Heisenberg uncertainty relation was extended by using information-
theoretic methods, to a product of both position ~r and momentum ~p, radial expectation
values of arbitrary order in [59], and to d-dimensional spaces in [60] where is provided the
position-momentum Heisenberg-like uncertainty relation

〈rd/α〉α 〈pd/β〉β ≥ ααββ
[
Γ
(
1 + d

2

)]2
Γ(1 + α)Γ(1 + β)

ed−α−β; α, β > 0 (1.14)

which is given in terms of the radial expectation values, Eq. (1.2) with f(~r) = ra,

〈ra〉 =

∫
raρ(~r)d~r (1.15)

with r = |~r|, and similarly for 〈pa〉. The real exponent a will be referred to as the “order”
of the radial expectation value, whose range of allowed values will be imposed by the
convergence conditions of the involved integrals. For densities with finite value at the
origin, the condition a > −d has to be taken into account, according to the expression of
the volume element d~r = rd−1dr dΩ where Ω is the d-dimensional solid angle.

The quantity 〈ra〉 does not depend on the angular variables of the distribution ρ(~r).
This means that we can determine them from the spherically averaged density ρ(~r), whose
moments over the interval r ∈ [0,∞)

µa =

∫ ∞
0

raρ(r)dr (1.16)

are related to the aforementioned radial expectation values as 〈ra〉 = Ωd−1µa+d−1, where
ΩD = 2πD/2/Γ(D/2) the volume of the D-dimensional sphere. From a mathematical
point of view, we can deal in similar ways with the quantities 〈ra〉 or µa. In the present
work, the radial expectation values 〈ra〉will be considered, because of their physical mean-
ing.

For α = β = d/2, Eq. (1.15) simplifies to the familiar d-dimensional form of the
Heisenberg inequality [61, 62, 63]

〈r2〉 〈p2〉 ≥ d2

4
(1.17)

which shows that the more accurately the position is known, the less accurately is the mo-
mentum determined, and conversely. See [64, 65] for recent improvements of this relation.

Similar relationships were obtained drawing upon the concept of “Shannon entropy”,
Eq. (1.4), which is a measure of “spreading/delocalization” of the probability distribution.
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As suggested by the notion of uncertainty previously discussed, the Shannon entropies in
position and momentum spaces, namely S(ρ) and S(γ), fulfil the uncertainty relation given
in Ref. [66]

S(ρ) + S(γ) ≥ d(1 + lnπ), (1.18)

what implies that it is not possible to deal, simultaneously, with arbitrary low values of both
entropies or, in other words, with extremely accurate values of the position and momentum
variables. The above inequality will be denoted as BBM, paying homage to its pioneering
authors Bialynicki-Birula and Mycielski. This inequality has been recently improved for
central potentials by Rudnicki et al [67].

Other entropic inequalities are also known [45, 68] with a variety of applications in a
quantum framework [69]. A generalization of the (power-moments-based) Heisenberg-like
uncertainty relation was obtained by Rajagopal [70] using the entropic moments, Eq. (1.6),
in position and momentum spaces. He extended to d dimensions and improved the one-
dimensional results of Maassen-Uffink [45], obtaining the following entropic-moment-
based uncertainty relation:

(ωµ+1[ρ])
− 1
µ (ων+1[γ])−

1
ν ≥

(
π(1 + 2µ)

1+ 1
2µ

1 + ν

)d
(1.19)

which is valid for µ > −1
2 and ν = − µ

1+2µ whenever both entropic moments converge.
The BBM uncertainty relation (1.18) is recovered as a limiting case for µ = ν = 0.

A very recent improvement of the BBM inequality on radial uncertainty products has
been achieved [71] by considering a Rényi-like inequality instead of the Shannon-like
BBM one, giving rise to a lower bound with a new parameter q, providing the original
bound as q = 1. The optimization of this new bound with respect to the parameter q im-
proves the well-known results with the particular value q = 1. Similarly to the uncertainty
inequality for frequency moments, Eq.(1.19), there exists a Rényi-like one given by [72]

Rq(ρ) +Rt(γ) ≥ ln
[
(2π)(2q)

1
2(q−1) (2t)

1
2(t−1)

]d
, (1.20)

with 1
q + 1

t = 2. The BBM inequality is recovered for the particular case q = t = 1. Apart
from the above mentioned case, it is clear that one of the orders must be above unity while
the other is below unity. In what follows, let us choose the parameters in such a way that
q ≥ 1 ≥ t. The opposite order can be considered by exchanging the distributions ρ and γ.

Let us now discuss the uncertainty relations which involve the Fisher informations.
Since the nineteen fifties the Stam inequalities [73] are known to be

F [ρ] ≤ 4 〈p2〉 and F [γ] ≤ 4 〈r2〉 , (1.21)

which link the position (momentum) Fisher information and the momentum (position)
radial expectation value 〈p2〉 (respectively 〈r2〉). See also Ref. [74] where generalized
uncertainty-like relationships to arbitrary dimensions are found and some of its applica-
tions to finite many-electron systems are provided. Recently, a Fisher-information-based
uncertainty relation has been found [75] as

F [ρ] · F [γ] ≤ 4d2, (1.22)
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which is valid not only for one-dimensional [27] but also for d-dimensional [76] real-valued
wavefunctions.

Finally, let us point out that for further relevant information about uncertainty relations,
particularly the ones of entropic character, see the recent publications [77, 78, 79].

1.3 Complexity measures

Another relevant concept within Information Theory is complexity [4, 80, 81, 82],
strongly related, in some cases, to the aforementioned magnitudes. Indeed some of the
recent definitions of complexity consist of the product of two factors measuring respec-
tively order and disorder on the given system or process, or equivalently localization and
delocalization [50]. It is important to note here that there is not a unique and universal
definition of complexity and therefore many mathematical quantifications exist to explore
pattern, structure or uncertainty as complexity ingredients or indicators. Complexity is
used in very different fields including, for instance, molecular and DNA (deoxyribonucleic
acid) analyses, dynamical systems, time series, spatial patterns or analysis of atomic mod-
els [83, 84] and multielectronic systems [81, 85, 54, 86, 53, 87], the last two being the
focus of interest in this work. For further properties of these statistical complexities see the
recent monograph of K.D. Sen [4].

The product complexity measures were criticized and consequently modified, leading
to powerful estimators applied in a wide variety of fields [88, 89, 85]. Following the pi-
oneering product measure of López-Ruiz, Mancini and Calbet (LMC shape complexity)
[50] some other related and generalized complexity measures were defined and success-
fully applied [85, 90, 91, 86].

Here we collect three two-component composite information-theoretic measures which
have been recently shown to be very useful to quantify the complexity of a probability
distribution ρ(~r) of a continuous variable ~r define over the d-dimensional domain ∆ ⊂ Rd.
In this context, the term “complexity“ refers to the difficulty of modeling the distribution,
according to the number and intricacy of functions needed to do it. This will be clearly
illustrated in the discussion of the numerical results in Section 4.3. Below, we present the
LMC, Fisher-Shannon and Cramér-Rao complexities which seems to be, up to now, the
main two-component measures of complexity for a probability distribution ρ(~r).

The LMC or shape complexity [50, 92]

CLMC = D[ρ] ·N [ρ] (1.23)

involves the product of two important information-theoretic quantities, namely the disequi-
librium, D[ρ] given in Eq. (1.7) which quantifies the departure of the probability density
from uniformity, and the Shannon entropy S[ρ] defined in Eq. (1.4), which is a general
measure of randomness or uncertainty of the probability density. Then, this composite
information-theoretic quantity measures the complexity of the system by means of a com-
bined balance of the average of the probability density ρ(~r), as given by D[ρ], and its
total bulk extent, as given by Shannon entropy power or Shannon lenght N [ρ] given by



26 Chapter 1

Eq. (1.12). As both quantities D and S posses a global character, the CLMC complexity is
a global measure of complexity.

The Fisher-Shannon complexity [87, 93],

CFS [ρ] = F [ρ] · J [ρ] (1.24)

is built up as the product of a global information measure given by the ”normalized“ Shan-
non entropy power

J [ρ] =
1

2πe
e

2
d
S[ρ] (1.25)

and a local one, the Fisher information, Eq. (1.9). Then, the Fisher-Shannon complexity
measures the gradient content or oscillatory degree of ρ(~r) (given by the Fisher informa-
tion, F [ρ]) combined with its total extent (Shannon entropy power, J [ρ]). The properties
of the Fisher information make this measure to be an appropriate candidate to define a
complexity measure in terms of complementary global and local factors. The definition of
J [ρ] has been chosen in order to preserve the general properties of complexity, in particular
the scaling invariance, including a constant factor in order to simplify the expression of its
universal lower bound, I[ρ] · J [ρ] ≥ d, see [39, 94].

From the Cramér-Rao bound [39, 94] we can consider a complexity measure given by
the Cramér-Rao product as [53]

CCR[ρ] = F [ρ] · (∆~r)2 (1.26)

where the connection between both the local and global levels of uncertainty is manifested
again. The Cramér-Rao complexity quantifies the gradient content of ρ(~r) together with
the spreading of the probability distribution respect to its mean value (centroid).

According to the units in which each individual component is measured, it is straigth-
forwardly observed that the above complexities are dimensionless quantities. It is also
worthy to mention that the three complexities are known to be bounded from below for
d-dimensional distributions [94, 73, 95, 96]. In addition, and contrary to other notions of
complexity encountered and used also in the scientific literature [97, 98, 99, 100], such as
the computational and logarithmic complexities which depend on the context, these three
complexity measures are intrinsic properties of the system since they are described by
density-dependent functionals.

Finally, we define a one-parameter generalization of the two-component LMC shape
complexity, namely the Shape-Rényi complexity [90]

C
(q)
SR[ρ] = D[ρ] · eRq [ρ], (1.27)

defined as the product of the disequilibrium, Eq. (1.7), and the the exponential of the Rényi
entropy, Eq. (1.5). The power q of the distribution allows us to enhance or diminish, by
increasing or decreasing its value, the relative contribution to the complexity measure of
the Rényi entropy power integrand over different regions. In the limit case q → 1, the
LMC complexity is recovered, CLMC [ρ] = C

(1)
SR[ρ].
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1.4 Comparative measures: Similarity and divergence

In Part I of the Thesis we will place particular emphasis on the concepts of similarity
and dissimilarity (or divergence) among two or more distributions ρ1(~r), ρ2(~r), . . . , ρn(~r),
all of them defined over the same d-dimensional domain ∆ ⊂ Rd. It is of general interest
to have at our disposal other density functionals which enable us to measure the ”distance“
and/or similarity among different distributions to compare them.

Many information-theoretic similarity and divergence measures between two proba-
bility distributions have been introduced and extensively studied regarding their mathe-
matical properties [101, 39, 102, 103, 104]. The wide variety of applications of these
measures can be found in the analysis of contingency tables [105], as well as in ap-
proximation of probability distributions [106], in signal processing [107], inference prob-
lems [108], pattern recognition [109], biodiversity [110], classification [111], homology
[112], neural networks [113], computational linguistics [114], study of electronic densi-
ties [29, 30, 115, 31, 116], molecular similarity [117, 118], texture and image registration
[119, 120, 121], sequence analysis [122], machine learning [123], artificial intelligence
[124], fuzzy set theory [125] and more recently in quantum information theory [25], in
particular as a measure of entanglement [23].

The recent developement in knowledge-based chemical research has created a surge of
interest in chemical similarity or divergence. Molecular modelling, molecular similarity
[48, 117] and quantitative structure activity relationship (QSAR) are simple examples of
such an interest [126]. More recently the molecular quantum similarity framework has
been used to provide a new set of quantum quantitative structure-properties relationship
procedures (QQSPR) [127].

Among the proposed measures, the pioneering and best known one is the Kullback-
Leibler divergence or relative entropy [128] based on Shannon entropy [41]. It is defined
as

KL[ρ1, ρ2] =

∫
∆
ρ1(~r) ln

ρ1(~r)

ρ2(~r)
d~r. (1.28)

The main properties of this quantity are: (i) it is always non-negative if the normalization
of both distributions are identical, i.e.

∫
∆ ρ1(~r)d~r =

∫
∆ ρ2(~r)d~r, (ii) the minimum value

KL[ρ1, ρ2] = 0 is reached only for ρ1(~r) = ρ2(~r), (iii) the Shannon entropy, S[ρ], can
be obtained except for a sign by taking ρ2(~r) = 1 in Eq. (1.28), so, we can give a new
interpretation for the Shannon entopy, as the relative entropy of ρ1(~r) with respect to the
uniform distribution. This quantity can be considered as a measure of how different the
two distributions are attending to their global spreading. The absence of symmetry of the
KL divergence induces its symmetrization

KLS[ρ1, ρ2] =
1

2
(KL[ρ1, ρ2] +KL[ρ2, ρ1]) , (1.29)

in order to get an appropriate interpretation of this quantity as an information distance.
The divergence measure KL[ρ1, ρ2], has been extensively used in Bayesian updating

through the minimum-cross-entropy principle [129]. Another recent and important appli-
cation belongs to the field of QIT, where the relative entropy can be used as a measure
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of distinguishability between quantum systems and therefore as a quantum entanglement
measure [24]. Kullback-Leibler divergences have been also widely employed in a huge
variety of applications in atomic and molecular systems [130, 116, 131].

Since then many other measures of divergence have been proposed, studied and
applied, in particular by considering theoretic-information magnitudes with both local
character (using Fisher information, [132]), or global character (using Shannon entropy,
[133, 134]), on which we inquire. Jensen-Shannon divergence (JSD[ρ1, ρ2]) is directly
related to both the Shannon entropy (1.4) and the Kullback-Leibler relative entropy (1.28)
as [133, 134]

JSD[ρ1, ρ2] = S

[
ρ1 + ρ1

2

]
− 1

2
(S[ρ1] + S[ρ2]) = (1.30)

=
1

2

(
KL

[
ρ1,

ρ1 + ρ1

2

]
+KL

[
ρ2,

ρ1 + ρ1

2

])
.

It is characterized for quantifying the Shannon ”entropy excess“ of the mean density with
respect to the mean entropy of the involved distributions. Last equality provides an addi-
tional interpretation of the JSD[ρ1, ρ2] as the mean ”distance“, in terms of KL[ρ1, ρ2] of
each density to the mean one. Jensen-Shannon divergence possesses the main properties re-
quired for a measure to be interpreted as an informational distance, namely non-negativity
(as a consequence of the convexity of the S[ρ] functional), symmetry and the minimum
value zero being reached only when ρ1 = ρ2.

The Jensen-Shannon divergence can be generalized to a measure of the mean distance
among an arbitrary number n of distributions, ρi(~r), each one weighted by a factor λi (with
i = 1, . . . , n) as follows:

JSD[λi, ρi] = S[ρ]−
n∑
i=1

λiS[ρi], (1.31)

where

ρ =
n∑
i=1

λiρi;
n∑
i=1

λi = 1. (1.32)

This definition reduces to the initial one in Eq. (1.30) by considering the particular case n =

2 and λ1 = λ2 = 1/2. Recently, Lamberti and Majtey have investigated and generalized
the properties of JSD in the framework of non-extensive Tsallis statistics [135, 25], and
J. Antolín and J.C. Angulo found several applications of this generalized divergence to
atomic systems [136].

Some generalized entropies such as the Rényi one, Eq. (1.5), have also been used to
formulate one-parameter generalized measures of divergence, discrepancy or distinguisha-
bility [137]. The ”Jensen-Rényi divergence“, to be denoted as JRD(q), was conceived at
a first step [138] as a measure of dissimilarity/divergence between two distribution density
functions, say ρ1(~r) and ρ2(~r). In this way, the deviation from linearity allows to define
the Jensen-Rényi divergence between two distributions as [138]

JRD(q)[ρ1, ρ2] = Rq

[
ρ1 + ρ2

2

]
− 1

2
(Rq[ρ1] +Rq[ρ2]), (1.33)
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which constitutes the difference between the Rényi entropy of the arithmetic mean and
the arithmetic mean of the respective Rényi entropies of ρ1(~r) and ρ2(~r). Generalizations
of this divergence have been provided very recently [137], by considering mean values
for arbitrary number of distributions and their associated weights, as previously done for
JSD:

JRD(q)[λi, ρi] = Rq [ρ]−
n∑
i=1

λiRq(ρi). (1.34)

This divergence generalizes the previously introduced which is reached in the limit JSD =

lim
q→1

JRD(q). The non-negativity of JRD(q) is guaranteed only for 0 < q < 1, constraint

which arises from the convex/concave character of the frequency moments ωq, Eq. (1.6),
according to the value of q. So, JRD(q) allows us to establish a comparison among densi-
ties, with weights λi, enphasizing their similarity within specific regions of their common
domain.

Another straigthforward one-parameter relative measure, now in terms of the Rényi
entropy is that given by the relative Rényi entropy [39]

Rq[ρ1, ρ2] =
1

q − 1
ln

∫
∆

ρ1(~r)q

ρ2(~r)q−1
d~r, (1.35)

which constitutes a generalization of the Kullback-Leibler relative entropy, Eq. (1.28),
found in the limit KL[ρ1, ρ2] = lim

q→1
Rq[ρ1, ρ2]. Like the KL relative entropy, the rela-

tive Rényi entropy is non-negative for any q > 0 whenever the involved integral converge,
and the original Rényi entropy, Eq. (1.5) is obtained for the uniform distribution ρ2(~r) = 1.

In contrast to the above measures, which have an entropic origin, there exists a measure
for comparing two probability distributions within information theory. Quantum similarity,
introduced in the early eighties, attempts to provide a quantitative measure of the degree
of similarity between two quantum objects, having its grounds on the comparison of their
one-particle densities with later applications to other quantities, such as e.g. Fukui func-
tions [139]. To quantify the similarity between quantum systems under comparison, a
general Quantum Similarity Measure (QSM ) [118] can be defined by means of an inte-
grated measure enclosing the density functions attached to the quantum systems. For the
case of molecules or atoms this kind of similarity measures can be defined as the scalar
product between the first order density functions weighted with a bielectronic definite pos-
itive operator [140]. The simplest choice, the Dirac delta operator, leads to the well-known
Quantum Similarity Index (QSI) [48]

QSI[ρ1, ρ2] =

∫
ρ1(~r)ρ2(~r)d~r√∫
ρ2

1(~r)d~r
∫
ρ2

2(~r)d~r
, (1.36)

which is basically the overlap integral of the density distributions. The numerator is refer-
eed as the QSM of ρ1(~r) and ρ2(~r), while the denominator normalizes the QSM in terms
of the respective disequilibria defined in Eq. (1.7). The main properties of this measure are:
(i) symmetry under exchange of distributions, (ii) it is bounded within the interval (0, 1]
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and (iii) the maximum value 1 is only reached for ρ1(~r) = ρ2(~r). There is an important
mathematical connection between the QSI measure, Eq. (1.36), and Hölder’s inequality
[141] as will be described in more detail in Chapter 5.

The definition ofQSI arises from the molecular research field [118, 142, 117], but later
has been widely applied in many different problems related to atomic systems in order to
establish a comparative measure as indicator of similarity between two atomic one-particle
probability distributions [115, 143, 144, 139, 145, 146].

So far, we have reviewed some of the most relevant measures used to characterize dif-
ferent facets and properties of probability distributions from a statistical standpoint. These
probability distributions can represent both classical and quantum systems. In the first part
of the thesis we perform an information-theoretic study, of probability density functions of
quantum systems or models, from a classical statistics point of view.



CHAPTER 2

Entropy and complexity analysis of
Dirac-delta-like quantum potentials

The elementary one-dimensional potentials V (x) are interesting per se because
they provide approximate models for the physically exact three-dimensional quantum-
mechanical potentials of physical systems. Moreover, they are very useful for the inter-
pretation of numerous microscopic and macroscopic properties of natural systems, mainly
because their associated quantum-mechanical equation of motion can be exactly solved, so
that their physical solutions (wavefunctions) are known to be expressed in terms of special
functions of applied mathematics and mathematical physics [147, 148]. This is the case for
the piecewise-constant potentials (finite and infinite wells), harmonic oscillator (V ∼ x2),
Coulomb potential (V ∼ 1/|x|) and delta-function potential (V ∼ δ(x)), to mention just a
few although they do not abound.

Recently the emerging information theory of quantum systems, which is at the basis of
the modern quantum information and quantum computation, has provided the best method-
ology to quantify the various facets of the position (usually associated with the charge dis-
tribution in atomic systems) and momentum spreading all over the confinement region of
the system, far beyond the well-known standard deviation or Heisenberg measure. This
quantification is carried out by means of various information-theoretic functionals (such as
the Fisher information, the Rényi and Shannon entropies, and the associated information-
theoretic lengths) and complexity measures (such as the Cramér-Rao, Fisher-Shannon and
LMC ones) previously defined in Chapter 1. Such a work has been partially done for
the infinite well [149, 150, 27, 151], finite well [152], the harmonic-oscillator [153, 154],
Coulomb potential [153, 154] and other potentials [155, 156], but the Dirac-delta-like ones
still remain to be explored within that framework, to the best of our knowledge. Here we
want to contribute to fill this lacuna.

The one-dimensional Dirac-delta-function potential δ(x), where x is the cartesian coor-
dinate,−∞ < x <∞, has been shown to be very useful to describe a number of properties
not only for the three-dimensional hydrogen atom and molecular ion [157, 158, 159, 160]
but also in d-dimensional physics [161, 162]. Moreover, this function has been proved
to describe short-range potentials such as the interaction between the electrons and fixed
ions in a lattice crystal. The use of potentials composed by an array of N delta functions is
very frequent in atomic and molecular physics [163, 164, 157, 160, 159], condensed matter
[165, 166, 167] and quantum computation [168]. Let us just mention the useful Kronig-
Penney model to study the physical and chemical properties of solids (see e.g. [165]) and
the numerous works done to describe the behaviour of impurities in solid state systems,
particularly quantum wires (see e.g. [169, 166, 170] and references therein) and to char-
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acterize the instantaneous interaction between flying and static qubits (see e.g. [168] and
references therein).

In this chapter we will first calculate the position and momentum entropy and complex-
ity measures of the bound-state wavefunctions of the one-dimensional hydrogen atom with
a delta-function interaction, which has been used to study different phenomena of bosonic
[171, 172], fermionic [163, 159, 160, 157] and anionic [162] systems. In addition, we will
compute these quantities for the wavefunctions of the single-particle systems with a twin
delta-function potential, which has been used to approximate the helium atom [164, 157],
the hydrogen molecular ion [159, 157, 160] and some scattering [173] and solid-state [167]
phenomena.

In Section 2.1, we obtain the direct spreading and complexity measures of the one-
dimensional hydrogen atom with a single-delta potential, including, the standard devia-
tion and the Fisher, Rényi and Shannon information-theoretic lengths in the two reciprocal
spaces. In Section 2.2, we carry out a similar study for a single-particle system with a twin-
delta interaction. The previous analytical results are numerically analyzed in Section 2.3.
Finally we give some conclusions and open problems.

2.1 Information theory of a single-delta potential

The time-dependent Schrödinger equation of a particle with mass m moving under the
action of a single attractive singular potential of Dirac-delta type, V (x) = −gδ(x) with
g > 0 a real constant, is given by[

− ~2

2m

d2

dx2
− gδ(x)

]
Ψ(x, t) = i~

∂

∂t
Ψ(x, t) (2.1)

When the particle is an electron and g = Ze2/4πε0, this system may be considered as
the one-dimensional hydrogenic atom (in particular Z = 1 for neutral hydrogen) with δ-
function interaction. It is well-known that this system has a unique bound state with energy
E = −|E| < 0 and a continuum of unbound states forE > 0. Moreover, the wavefunction
of the bound state is given [159, 158, 174] by

Ψ(x, t) = ψ(x)e−
i
~Et (2.2)

with the expressions

E = −mg
2

2~2
and ψ(x) =

√
ke−k|x| ; k ≡ mg

~2
(2.3)

for its energy and normailized-to-unity eigenfunction, respectively. Notice that k = a−1
0 in

the hydrogen case, where a0 = 4πε0~2/me2 is the Bohr radius.
The momentum-space wavefunction Φ(p, t) = φ(p)e−

i
~Et, where the momentum

eigenfunction φ(p) is given [159] by the Fourier transform of the position eigenfunction
ψ(x) so that

φ(p) =
1√
2π~

∫ −∞
−∞

ψ(x)e−
i
~pxdx =

√
2p0

π

p0

p2 + p2
0

, (2.4)
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with p0 ≡ ~k, has a Lorentzian form.
In this section we will compute the information-theoretic measures of the position and

momentum spreading of this system, which are characterized by the position and momen-
tum probability densities

ρ(x) = ke−2k|x| (2.5)

and

Π(p) =
2p3

0/π(
p2 + p2

0

)2 , (2.6)

respectively. Emphasis will be made on the direct spreading measures in both position and
momentum spaces which include the standard deviation and the Fisher, Rényi and Shannon
lengths.

(a) In position space we obtain from Eqs. (1.1), (1.2) and (2.5) the value

∆x =

√
2

2k
(2.7)

for the standard deviation in a straightforward manner, because 〈x〉 = 0 and 〈x2〉 =

1/(2k2). Moreover, from Eqs. (1.5)-(1.9) and (2.5), the values

ωq[ρ] =
1

q
kq−1 ; Rq[ρ] = −

(
ln k +

ln q

1− q

)
(2.8)

S[ρ] = 1− ln k and F [ρ] = 4k2 (2.9)

are obtained for the entropic moments, the Rényi and Shannon entropies and the
Fisher information, respectively. Then, from Eqs. (1.11)-(1.13), (2.8) and (2.9) we
obtain the values

LRq [ρ] =
1

kq
, N [ρ] =

e

k
and δx =

1

2k
(2.10)

for their respective lengths. The mutual comparison of Eqs. (2.7) and (2.10) indicates
that δx = ∆x/

√
2 ∼= 0.7071∆x and N [ρ] = 2eδx, so that

δx < ∆x < N [ρ] (2.11)

In addition, it is useful to calculate, in order to quantify the complexity of the dis-
tribution, the two-component composite measures of Cramér-Rao, Fisher-Shannon
and LMC types defined by Eqs. (1.26), (1.24) and (1.23) respectively. From those
expressions and Eq. (2.10), we have the values

CCR[ρ] = 2 , CFS [ρ] =
2e

π
and CLMC [ρ] =

e

2
(2.12)

for the corresponding complexities. It is worthy to remark that, in spite of the de-
pendence of the individual components on the potential strength g, the above com-
plexity values do not depend on such a parameter. It is worth noting that the same
phenomenon holds for homogeneous potentials [156]. Additionally, all of them are
above unity as should be expected [94, 95].
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(b) In momentum space we observe that the moments 〈pa〉 of the momentum density in
Eq. (2.6) diverge for a ≥ 3 due to the long-range behavior of the density Π(p). The
only finite moments of integer order are 〈p0〉 = 1, 〈p〉 = 0 and 〈p2〉 = p2

0. Then, the
momentum standard deviation is given by

∆p =
(
〈p2〉 − 〈p〉2

) 1
2 = p0. (2.13)

The entropic moments have the values

ωq[Π] =

(
2

πp0

)q
p0

Γ(2q − 1
2)
√
π

Γ(2q)
(2.14)

with q > 1
4 as impossed by the convergence of the integral defining ωq[Π], and the

Rényi entropies

Rq[Π] =
1

1− q lnωq[Π] =
1

1− q ln

(
p0

√
π

(
2

πp0

)q Γ(2q − 1
2)

Γ(2q)

)
, (2.15)

also with q > 1
4 . Moreover, taking into account Eqs. (2.6) and (2.14) one has that

the momentum Shannon entropy is given by

S[Π] = − d

dq
lnωq[Π]

∣∣∣∣
q=1

= ln
8πp0

e2
(2.16)

and the momentum Fisher information by

F [Π] =
2

p2
0

. (2.17)

Therefore, the Rényi, Shannon and Fisher information-theoretic lengths (1.11)-
(1.13) are

LRq [Π] =

[
p0

√
π

(
2

πp0

)q Γ(2q − 1
2)

Γ(2q)

] 1
1−q

, q >
1

4
, (2.18)

N [Π] =
8πp0

e2
, (2.19)

and

δp =

√
2

2
p0, (2.20)

respectively. The mutual comparison of Eqs. (2.13), (2.19) and (2.20) shows that

δp = ∆p/
√

2 ∼= 0.7071∆p and N [Π] =
8π

e2
∆p, so that

δp < ∆p < N [Π], (2.21)

as also occurs for the position density ρ(x), see Eq. (2.11), showing the hierarchy of
the different spreading measures for a single-delta potential.
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In addition, we obtain the values

CCR[Π] = 2 , CFS [Π] =
64π

e5
and CLMC [Π] =

10

e2
(2.22)

for the Cramér-Rao, Fisher-Shannon and LMC complexities of the system in mo-
mentum space, where we have taken into account Eqs. (1.26)-(1.23) together with
Eq. (2.14) for q = 2, and Eqs (2.13), (2.17) and (2.19). It is important to note that:
(i) the Cramér-Rao complexities in position and momentum spaces are equal; this
is because when the wavefunction is real and its moment of order 1 vanishes, the

relationships F [ρ] =
4

~2
V [Π] and F [Π] =

4

~2
V [ρ] between Fisher information and

variance are fulfilled; and (ii) these three complexity measures are independent of
the parameter k, highlighting that the difficulty of modeling the distributions ρ(x)

and Π(p) is determined by the presence of a unique parameter, but not by its specific
value.

(c) Finally, the expressions given by Eqs. (2.7), (2.10), (2.13), (2.19) and (2.20) yield
the following uncertainty products:

∆x ·∆p =
~√
2

= 0.7071~ (2.23)

δx · δp =

√
2

4
~ = 0.3536~ (2.24)

N [ρ] ·N [Π] =
8π

e
~ = 9.2458~ (2.25)

respectively. The above products do not depend on the g parameter value, and also
they certainly fulfil the Heisenberg [175], Fisher-information-based [27, 75] and
Shannon-entropy-based or entropic [66, 176, 177] uncertainty relations given by

∆x ·∆p ≥ ~
2

(2.26)

δx · δp ≤ ~
2

(2.27)

N [ρ] ·N [Π] ≥ eπ~ (2.28)

respectively.

2.2 Information theory of a twin-delta potential

Let us here consider the non-relativistic motion of a particle with mass m in a potential
having not only one (as in the previous section) but two attractive centers separated by a
distance 2a, i.e. in the twin-δ-function potential defined as

V (x) = −g[δ(x+ a) + δ(x− a)]
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This potential with g = e2/4πε0 not only describes the one-dimensional hydrogen
molecule with δ-function interactions (see [159, 157, 160] and references therein) and ap-
proximates the helium atom [164, 157], but also it has been used to interpret some scatter-
ing [173] and solid-state phenomena [167]. Because of its symmetry, this potential has two
types of solutions which correspond to even and odd eigenfunctions [159, 158].

The even bound-state solution has the eigenfunction

ψ+(x) =


Aekx , x < −a
B cosh(kx) , − a < x < a

Ae−kx , x > a

(2.29)

and the energy E is given by the eigenvalue condition

γ(1 + tanh γ) =
2a

a0
(2.30)

with γ = ka, k =

√
2m|E|
~

and a0 =
~2

mg
. The parameters A and B are given by

A = Beγ cosh γ and B =

(
2γ

a

)1/2 (
e2γ + 2γ + 1

)−1/2
, (2.31)

as imposed by the continuity and the normalization conditions.
The odd solution has the eigenfunction

ψ−(x) =


Cekx , x < −a
D sinh(kx) , − a < x < a

−Ce−kx , x > a

(2.32)

where

C = −Deγ sinh γ and D =

(
2γ

a

)1/2 (
e2γ − 2γ − 1

)−1/2
, (2.33)

and the corresponding eigenvalue equation being

γ(1 + coth γ) =
2a

a0
. (2.34)

A detailed analysis of the energy eigenvalue conditions (2.30) and (2.34) shows [158]
that (i) for a >> a0/2 (i.e., in the limit of large separation) there are two degenerated
eigenfunctions, one even and the other odd, at the energy given by Eq. (2.3) of the single-
delta case, (ii) for a < a0/2 there are no odd solutions and, most important, (iii) the odd
solution, whenever exists, lies energetically above the corresponding even solution, see
Fig 2.1; i.e. it is less bounded. So, we will restrict ourselves to the even bound-state
eigenstate given by Eqs. (2.29) and (2.31) in position space. The corresponding Fourier
transformation provides the expression

φ+(p) =
1√
2π~

∫ ∞
−∞

ψ+(x)e−
i
~pxdx = B

√
2~
π

p0e
p0a
~ cos pa~

p2 + p2
0

, (2.35)
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Figure 2.1: Even (red) and odd (blue) eigenenergies as a function of the distance (2a)
between delta function. Atomic units are used.

where p0 ≡ ~k. In this section we will quantify the position and momentum spreading
of this system in its ground state as described by the eigenfunctions (2.29) and (2.35),
respectively. This will be done not only by means of the standard deviation (already done
by Lapidus [159]) but also by the following information-theoretic measures: Rényi and
Shannon entropies and Fisher information and, most appropriately, their corresponding
lengths. To do that, and according to the procedure used in Section 2.1, we start with the
expressions ρ+(x) = |ψ+(x)|2 and Π+(p) = |Φ+(p)|2 for the position and momentum
space quantum-mechanical probability densities of this state, respectively.

(a) In position space, we first check that 〈x0〉+ = 1 so that the density ρ+(x) is nor-
malized to unity. Then, since 〈x〉+ = 0 (all odd-oder moments vanish because of
symmetry), one obtains that the standard deviation (∆x)+ is given by

(∆x)2
+ = 〈x2〉+ =

a2

2γ2
+ a2 e

2γ + 2
3γ + 1

e2γ + 2γ + 1
(2.36)

which provides the Heisenberg uncertainty measure of the system. Moreover, one
can also obtain the even-order moments of ρ+(x) as

〈x2n〉+ =
a2n

(2γ)2n(e2γ + 2γ + 1)
×

×
[(

e4γ

2
+ e2γ

)
Γ(2n+ 1, 2γ) +

Γ(2n+ 1,−2γ)

2
+

(2γ)2n+1

2n+ 1

]
(2.37)

for n = 0, 1, 2, ..., where the symbol Γ(α, β) denotes the incomplete gamma func-
tion. In addition, the Fisher information (1.9) of the system is computed as

F [ρ+] =
4B2

a
γ [eγ cosh γ − γ] =

4γ2

a2
· e

2γ − 2γ + 1

e2γ + 2γ + 1
(2.38)
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so that the Fisher length (δx)+ of the system, as defined by Eq (1.13), is given by

(δx)+ =
1√
F [ρ+]

=
a

2γ

(
e2γ + 2γ + 1

e2γ − 2γ + 1

)1/2

. (2.39)

Working similarly, one can calculate the frequency or entropic moments

ωq[ρ+] = 2

{
B2q

∫ a

0
[cosh(kx)]2qdx+A2q

∫ ∞
a

e−2kqxdx

}
. (2.40)

According to the integral expressions∫ ∞
a

e−2kqxdx =
ae−2qγ

2qγ

and ∫ a

0
[cosh(kx)]2ndx =

a

22nγ

[(
2n

n

)
γ +

n∑
m=1

(
2n

n−m

)
sinh(2mγ)

m

]

for any non-negative integer n, one has that the entropic moments ωq[ρ+] with inte-
ger order q = n have the values

ωn[ρ+] =
2γn−1

(2a)n−1(e2γ + 2γ + 1)n
×

×


(

2n

n

)(
2γ +

1

n

)
+

n∑
l = −n
l 6= 0

(
2n

n− l

)(
1

n
+

1

l

)
e2lγ


. (2.41)

For the lowest n’s we have that ω1[ρ+] = 1 and

ω2[ρ+] =
γ

4a
· e

4γ + 6e2γ − 2e−2γ + 12γ + 3

(e2γ + 2γ + 1)2
, (2.42)

which gives the ”disequilibrium”, Eq. 1.7, of the system. It is also worth noting that
in the limit a → 0 we obtain the single-delta-potential value kn−1/n as given by
Eq. (2.8). From the expressions (1.11) and (2.41) we obtain the Rényi uncertainty
measure as given by the Rényi lengths

LRn [ρ+] = (ωn[ρ+])
1

1−n .

For n = 2 we have the Onicescu-Heller measure [49]

LR2 [ρ+] =
4a

γ
· (e2γ + 2γ + 1)2

e4γ + 6e2γ − 2e−2γ + 12γ + 3
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Let us now compute the position Shannon entropy of the ground-state density ρ+(x).
According to its definition (1.4), one has

S[ρ+] = −2

{∫ a

0
ρ+(x) ln ρ+(x)dx+

∫ ∞
a

ρ+(x) ln ρ+(x)dx

}
=

=
e2γ − 2γ + 1

e2γ + 2γ + 1
− ln

(
2γ/a

e2γ + 2γ + 1

)
+

+ 2

[
γ2 − π2

12 + 2γ ln(1 + e2γ)

e2γ + 2γ + 1
− Li2(−e−2γ)

e2γ + 2γ + 1
− ln cosh γ

]
(2.43)

where Lis(x) =
∞∑
k=1

xk

ks
is the polylogarithm function.

(b) In momentum space we first observe that the density Π+(p) = |φ+(p)|2 has null odd
moments (〈p2n+1〉+ = 0 for n = 0, 1, 2, ...) because of symmetry. Moreover, all the
even moments 〈p2n〉+ diverge except for n = 0 and 1: 〈p0〉+ = 1 and

〈p2〉+ =
~2γ2

a2
· e

2γ − 2γ + 1

e2γ + 2γ + 1
. (2.44)

So, the Heisenberg uncertainty measure of the system in momentum space is given
by the standard deviation

(∆p)+ = 〈p2〉1/2+ =
~γ
a

(
e2γ − 2γ + 1

e2γ + 2γ + 1

)1/2

. (2.45)

Since the momentum wavefunction φ+(p) is a real function, the Fisher information
(1.9) of the ground state momentum density Π+(p) is related to the second order
moment 〈x2〉 as we have already mention in page 35, i.e.

F [Π+] =

∫ ∞
−∞

[
Π′+(p)

]2
Π+(p)

dp = 4

∫ ∞
−∞

[φ′+(p)]2dp =

= −4

∫ ∞
−∞

φ+(p)φ′′+(p)dp =
4

~2
〈x2〉+, (2.46)

which was calculated in Eq. (2.36). Then, the Fisher uncertainty measure (δp)+ has,
according to Eq. (1.13), the value

(δp)+ =
1√
F [γ+]

=
~
2
〈x2〉−1/2

+ . (2.47)

Working similary, the frequency or entropic moments ωn[Π+] with integer n of the
momentum density Π+(p) are given by

ωn[Π+] =
n

(4πp0)n−1

e2nγ

(e2γ + 2γ + 1)n
×
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×

(4n− 3)!!

(n!)2
+ 22−2n

n∑
l=1

e−2lγ

(n− l)!(n+ l)!
·

2n−1∑
j=0

(4n− j − 2)!(4lγ)j

j!(2n− j − 1)!

 (2.48)

with p0 = ~k =
~γ
a

. It is interesting to check the normalization condition ω1[Π+] =

1, and to compute the second order entropic moment or disequilibrium:

ω2[Π+] =
a

8π~γ(e2γ + 2γ + 1)
×

×
{

15e4γ + 4e2γ

(
8

3
γ3 + 8γ2 + 10γ + 5

)
+

64

3
γ3 + 32γ2 + 20γ + 5

}
. (2.49)

From Eqs. (1.5), (1.11) and (2.48) the Rényi entropies and lengths of the system are
obtained in a straightforward manner. Moreover, from Eq. (1.4) and the expression
of Π+(p) one obtains that the momentum Shannon entropy of the twin-delta potential
can be expressed as

S[Π+] = −2M×

×
{
π(lnM − 4 ln p0)

8p3
0

[1 + e−2γ(1 + 2γ)] + J1(a, p0)− 2J2(a, p0)

}
(2.50)

with

M =
4p3

0

π

e2γ

e2γ + 2γ + 1

and the integrals

J1(a, p0) =

∫ ∞
0

cos2(pa~ ) ln cos2(pa~ )

(p2 + p2
0)2

dp

J2(a, p0) =

∫ ∞
0

cos2(pa~ ) ln(p2 + p2
0)

(p2 + p2
0)2

dp

which have not be solved analytically up to now. The corresponding Shannon
length is given by Eq. (1.12) We can go forward by calculating the momentum two-
component complexities of Cramér-Rao, Fisher-Shannon and LMC types by use of
Eqs. (1.23)-(1.26) together with Eqs. (2.45), (2.49), (2.50) and (1.12). From the
information-theoretic quantities previously considered in this section, plenty of re-
sults can be derived. Let us here only point out the Heisenberg-Fisher uncertainty
products defined as

(∆x)+(δp)+ = (δx)+(∆p)+ =
~
2

(2.51)

and the connection between the Cramér-Rao complexity and the Heisenberg product
given by

CCR[ρ+] = CCR[Π+] =
4

~2
[(∆x)+(∆p)+]2 =

= 4γ2 e
2γ − 2γ + 1

e2γ + 2γ + 1

(
1

2γ2
+
e2γ + 2

3γ + 1

e2γ + 2γ + 1

)
(2.52)
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The reason for these two complexity measures to be equal in both conjugated spaces
is the same as described in the previous section. Note that in this case, however, the
three complexity measures depend on the parameters k and a through γ = ka. It is
worthy remarking that the complexity measures obtained for the even solution tend
to the complexity values of the single-delta when the distance a approaches zero. We
continue with a more detailed description of this phenomenon in the next section.

2.3 Numerical analysis

In this section the information-theoretic measures (lengths and complexities) of the
stationary states of the single- and twin-delta potentials (even solution), previously obtained
in an analytical way, are numerically analyzed and discussed in terms of their characteristic
parameters in both position and momentum space. We use here atomic units (a.u.), that is
~ = m = e = a0 = 1.

2.3.1 Single-delta potential: lengths and complexities

Each of the densities given in Eqs. (2.5) and (2.6), corresponding to position and
momentum spaces respectively, is characterized by a parameter which is determined, in
fact, by the energy of the bounded state. The characteristic parameter is k in position space
and p0 in the momentum one.

Let us analyze the Shannon and Fisher-type information measures, as well as the stan-
dard deviation, by means of their corresponding lengths. In doing so, different values of k
and p0 will be considered. Those values are given in Table 2.1, in terms of the aforemen-
tioned parameters and lengths.

POSITION SPACE
k (∆x)× 10−2 N [ρ]× 10−2 (δx)× 10−2

1 70.711 271.828 49.991

20 3.536 13.591 2.491

50 1.414 5.437 0.991

90 0.786 3.020 0.556

MOMENTUM SPACE
p0 (∆p)× 10−2 N [Π]× 10−2 (δp)× 10−2

1 0.730 2.482 0.516

20 14.595 49.642 10.320

50 36.487 124.104 25.800

90 65.676 223.387 46.440

Table 2.1: Standard deviation, Shannon length and Fisher length for different values of the
parameter k (position space) and p0 (momentum space) for the single-delta position and
momentum space densities, ρ(x) and Π(p) respectively.
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Some comments are in order. It is firstly observed the decreasing trend of all spreading
measures, in position space, as the parameter k increases. In fact, and according to Eqs.
(2.10), (2.18) with q = 2, (2.19) and (2.20), the three measures are essentially the inverse
of k in position space and proportional to p0 in momentum space. Let us remind the func-
tional expression of ρ(x), an exponential on each of the half-axes with a decreasing rate
determined by k. Consequently, increasing the value of k provokes a higher concentration
of the density around the origin, where its value becomes higher as far as k increases. On
the other hand, diminishing the k value makes the density to progressively spread over the
whole real line. This means that, as k decreases, (i) the variance, a measure of the mean
deviation from the centroid at the origin, increases because the density enhances its contri-
bution in regions far from the origin, (ii) the Shannon length, a measure of spread over the
whole real line, also increases because of its progressive approach to a uniform distribution,
and (iii) the Fisher information, a measure of the ’content of gradient’, decreases notably
with a consequent increase of its inverse, the square of the Fisher length; the reason is that
the density approaches a Dirac delta for extremely large k, with a very high value of the
derivative (its absolute value) around the origin.

In what concerns the momentum density, similar interpretations can be done, according
to the value of p0, the parameter which determines the structural characteristics of the
momentum density Π(p). An increasing trend of each measure as functions of p0 (notice
that p0 = ~k) is now displayed. The functional dependence of Π(p) on p0, as shown in Eq.
(2.6), makes the density to spread over its domain and to reduce its content of gradient as
far as p0 increases. This behavior appears opposite to that of the position space density, and
consequently the same occurs with the information measures considered, namely standard
deviation and Shannon and Fisher lengths, as clearly observed in Table 2.1.

2.3.2 Twin-delta potential: lengths

The interpretation of the different information lengths in the twin delta problem is based
on identical arguments for both the symmetric and antisymmetric solutions. For the sake
of simplicity and briefty, we will restrict the discussion to the symmetric solution, keeping
in mind that similar conclusions in opposite spaces are obtained from the analysis of the
antisymmetric wavefunction. The densities ρ+(x) and Π+(p) will be denoted by ρ(x) and
Π(p) in what follows.

In position space, we observe that the density ρ(x) has two different components: (i)
an hyperbolic function within the interval (−a, a) determined by the location of the two
attractive centers, and (ii) a decreasing exponential out of the aforementioned interval.

The parameter k, which determines the decreasing rate of the exponential component as
well as the curvature of the hyperbolic one, is determined by the half width a of the interval
through the eigenvalue equation (2.30). The analysis of their mutual relationship allows to
assert that the parameter k is a decreasing function of a. Consequently, considering wider
intervals (−a, a) implies to deal with lower values of k.

In Figure 2.2a, the standard deviation ∆x and the Shannon, Fisher and second-order
Rényi lengths (denoted by N [ρ], δx and R2[ρ], respectively) are displayed for different
values of the interval half-width a. It is remarkable that the curves for the three lenghts
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display an unimodal shape: they increase until reaching their absolute maximum, and then
slowly decrease towards an asymptotic value for large a. Opposite behaviour is observed
in momentum space (Figure 2.2b): the curves first decrease and then tend to a constant
long-range limit.
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Figure 2.2: Standard deviation and Shannon, Fisher and second-order Rényi lengths for
the symmetric solution of the twin-potential problem, in (a) position and (b) momentum
spaces.

Let us interpret the above comments according to the structual properties of the den-
sities ρ(x) and Π(p), as displayed in Figure 2.3 for different values of their characteristic
parameters. In what concerns the position space density (Figure 2.3a) and starting with a
very narrow interval, amplifying the small-sized hyperbolic interval increases the global
spreading, not only due to the lower curvature and exponential decreasing rate as deter-
mined by k, but also because the contribution of the exponential component diminishes
as compared to the hyperbolic one. On the other hand, the extremely high gradient at the
points x = ±a decreases as far as a increases, what justifies the enhancement of the Fisher
length.
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Figure 2.3: Density function for the symmetric solution of the twin-potential problem, in
(a) position and (b) momentum spaces.

However, after reaching the interval a large enough width, the aforementioned lengths
display a decreasing trend. The reason is that the hyperbolic component mainly governs
the length values as compared to the exponential contribution. In this sense, the global
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spread as measured by the variance and the Shannon, Rényi and Fisher lengths remains
almost constant, because the density approaches a unique-component distribution, namely
the hyperbolic one with very low curvature.

Concerning the momentum space density, we firstly observe that its analytical expres-
sion in Eq. (2.35) consists of an (oscillatory) cosine-like numerator and a decreasing factor
as given by the denominator. The behaviour of both factors is determined by the parameter
p0: the numerator becomes increasingly oscillatory as far as p0 increases, while the com-
plementary factor (denominator) governs the rate of global decrease. In this sense, higher
values of p0 give rise to highly oscillatory momentum densities but also with a higher global
spreading. Again we observe a counterbalance of both contributions for large enough p0,
as displayed in Figure 2.3b for the momentum density and Figure 2.2b for the momentum
space lengths.

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10 12 14 16 18 20

200 ×

Figure 2.4: Rényi length, as a function of its order q, for the symmetric solution of the
twin-potential problem with a fixed value a = 1.4 in position and momentum spaces.

It is also interesting to analyze the dependence of the Rényi lengths on the order param-
eter q. This will be done attending to the curves displayed in Figure 2.4 for a fixed interval
extremum a. The decreasing behaviour observed for the symmetric solution, as also occurs
with the antisymmetric one, independently of dealing with position or momentum space
densities, can be justified as follows. The effect of increasing q translates into a ’more con-
centrated’ integrand within the expression (1.5) defining the frequency moments and their
corresponding Rényi lengths in position space. So, increasing q makes the relative contri-
bution from the exponential component in position space to become almost negligible as
compared to the hyperbolic one, as corresponds to a density highly concentrated around the
origin and, consequently, less sparse. Concerning the momentum density, an enhancement
of both the strength of oscillations as well as a global concentration around the origin arises
as q increases. The consequence is the same as in position space, that is, lower values of
the Rényi length, indicating a higher level of concentration, especially around the origin
but also at the extrema of the oscillatory curve.
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2.3.3 Twin-delta potential: complexities

According to the general interpretation of the ’complexity’ concept, as a measure of
the difficulty of modeling the distribution, it is clear that the distance between the locations
of the delta functions or, equivalently, the width of the interval (−a, a), will be essential in
determining the level of complexity. This is shown in Figure 2.5, where the LMC, Fisher-
Shannon and Cramér-Rao complexities are displayed as functions of the half-distance a
between delta attractors. Let us analyze the results in position (Fig. 2.5a) and momentum
(Fig. 2.5b) spaces.
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Figure 2.5: Complexities LMC, Fisher-Shannon (FS) and Cramér-Rao (CR) for the sym-
metric solution of the twin-potential problem, in (a) position and (b) momentum spaces.

In doing so, let us firstly think on the process of ’separation of deltas’ (increase of a).
For large enough separation, the quantum-mechanical problem can be approximated by
an ’overlap’ of two independent single-delta equations, dealt in detail in Section 2.1. For
the single-delta case we obtained constant values of all complexities; in our case we ob-
serve that the LMC and Fisher-Shannon complexities displayed in Figure 2.5a are constant
unless dealing with very small values of a. This is a consequence of the behavior of the
factors composing those complexitites, as observed in Fig. 2.3a. Increasing a makes the
Shannon, Fisher and second-order Rényi lenghts to become almost constant, because each
of the single-delta components corresponding to potentials centered at x = ±a gives rise
to a density approaching uniformity as far as a increases. The situation is very different,
however, regarding the variance or the standard deviation, which monotonically increases
because the centers of the delta potentials separate between themselves. The key point here
is the definition of variance as a measure of spreading with respect to the centroid, the ori-
gin in the present problem. So, location of the highest values of the density, which occur
around the attractive centers, are progressively more distant from the centroid at the origin.
This makes the variance to increase because of its reference with respect to the origin, con-
trary to the other information measures and lengths which have no reference points, being
determined instead according to the behavior of the density over its whole domain.

Concerning the momentum space complexities (Figure 2.5b), the essential difference
among themselves is the presence or not of the Fisher information factor, which appears
in the Fisher-Shannon and Cramér-Rao cases but not in the LMC one. It is observed that
(i) the LMC complexity in momentum space displays a very similar shape to the corre-
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sponding one in position space, and (ii) the Fisher-Shannon and Cramér-Rao momentum
complexities are increasing functions, in a similar fashion as the Crámer-Rao one in posi-
tion space. It is worthy remembering the presence of an oscillatory factor in the momentum
density, the frequency of the oscillations being determined by the half-distance a. Such an
oscillatory behavior mainly affects the Fisher information factor, whose increase with a
translates into that of the associated complexitites. Such is not the case of the LMC com-
plexity, for which a “counterbalance effect” of each factor constrains the LMC complexity
value for arbitrary a to a much narrower interval.

Conclusions

In this chapter we have studied both analytically and numerically the single
information-theoretic lengths (Fisher, Shannon and Rényi) and complexity measures
(Cramér-Rao, Fisher-Shannon and LMC) of the lowest-lying stationary state of the single-
delta and twin-delta potentials in terms of their energies and characteristic parameters.
These quantities are analyzed in both position and momentum spaces. They grasp various
individual and combined spreading facets of the charge and momentum of the particle far
beyond that described by the celebrated standard deviation.

Finally, we point out some open problems. First, to study the information and com-
plexity properties of the bound states of the one-dimensional hydrogen atom as well as the
helium and hydrogen molecular ion with a single and twin delta potential, respectively,
confined in a box [178, 179] or with an external electric and/or magnetic fields. Second, to
extend the results of this work toN -delta one-dimensional arrays because of their use to ap-
proximate and describe numerous scientific and technological properties of quantum wires
and other semiconductor nanostructures. Third, to study the related information-theoretic
complexity measures of higher dimensionality delta potentials, which do not have the same
properties as those in one dimension. Delta potentials in more than one dimension do not
allow bound states and scattering but, nevertheless, once regularized they are very instruc-
tive for illustrating basic concepts of quantum field theory [180]. Fourth, to investigate
the relativistic effects in the aforementioned information-theoretic properties of delta-like
potentials. It is planned the inclusion, in all of the above points, of information lengths
based on a so relevant information quantifier as the Tsallis entropy citeTsallis1988, a non-
extensive measure which characteristic parameter measures the departure from extensivity.
Numerous applications of this entropy in nonextensive thermodynamics or statistical me-
chanics and many other scientific fields have been carried out [181].
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Complexity quantification of Dirac
effect

Single and composite information-theoretic quantities reviewed in this Thesis have
been numerically determined in position space for a great deal of atomic and molecular
systems in a Hartree-Fock-like framework (see [4, 37, 38] and references therein). On
the contrary, the information theory of relativistic quantum systems is a widely open field
[182, 183, 184]; indeed, only a few recent works have been done for single-particle systems
[185, 83, 182] and neutral atoms [186, 187, 188, 189] in various relativistic settings. Let
us here mention that the comparison of some Hartree-Fock and Dirac-Fock ground-state
results in neutral atoms shows that Shannon entropy is able to characterize the atomic shell
structure but it hardly grasps any relativistic effects [186], while the disequilibrium and the
LMC complexity measure [186], as well as the Fisher information [4], strongly exhibits
them. Moreover, it has been recently shown that these quantities are good relativistic in-
dicators for ground-state hydrogenic systems in a Dirac setting [182] and for ground and
excited states of pionic systems in a Klein-Gordon setting [185, 83].

In this chapter we use the Fisher information and the Fisher-Shannon and LMC com-
plexity measures to characterize and quantify some fundamental features [190, 191] of the
stationary solutions of the Dirac equation of hydrogenic systems; namely, the well estab-
lished charge contraction towards the nucleus in both ground and excited states, the raising
of all the non-relativistic minima and the (largely ignored) gradient reduction near to and
far from the nucleus of the electron density of any excited state of the system.

This work extends the information-theoretic study of the hydrogenic systems recently
done in the Schrödinger [84] and relativistic Klein-Gordon [185, 83] and Dirac [182]
frameworks. Indeed, previous efforts have analyzed not only the single and compos-
ite information-theoretic measures of both ground and excited states in the Schrödinger
[192, 84]] and Klein-Gordon [185, 83] settings, but also the single entropic measures of
the ground state in the Dirac setting [182].

The structure of the Chapter is the following. First, in Section 3.1, we briefly discuss the
two information-theoretic quantities needed for that aim, and we give the known relativistic
(Dirac) and non-relativistic (Schrödinger) electron densities of a hydrogenic system. Later,
in Section 3.2, we carry out a detailed study of the dependence of the previous complexity
measures on the nuclear charge in the ground state and some excited states, as well as
the quantification of the main dynamical relativistic effects (charge contraction towards
the nucleus, minima raising or nodal disappearance, and gradient reduction near to and far
from the nucleus) by means of the Dirac-Schrödinger complexity ratios of LMC and Fisher-
Shannon types. In Section 3.3, we analyse the dependence of the complexity measures on
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the energy and the relativistic quantum number as well as the associated information planes
for the ground and various excited states. Finally, some conclusions are drawn.

3.1 Complexity measures and Dirac hydrogenic densities

Here we briefly review the concepts of LMC shape complexity and Fisher-Shannon
complexity of a general probability density ρ(~r) used in this Chapter, which turn to be
good indicators of the Dirac relativistic effects in hydrogenic systems and in neutral atoms
[186]. Then, we collect here the known Dirac wave functions of the hydrogenic bound
states, and their associated probability densities together with their non-relativistic limit
(Schrödinger densities).

The LMC shape complexity, Eq. (1.23), is defined by the product of the disequilib-
rium D [ρ] (which quantifies the departure of the probability density from uniformity, see
Eq. (1.7)) and the exponential of the Shannon entropy S [ρ] (a general measure of the un-
certainty of the density, see Eq. (1.4)):

CLMC [ρ] = D [ρ]× eS[ρ], (3.1)

where
D [ρ] =

∫
[ρ(~r)]2 d~r; S [ρ] = −

∫
ρ(~r) ln ρ(~r)d~r. (3.2)

The Fisher-Shannon complexity, Eq. (1.24), is given by

CFS [ρ] = F [ρ]× J [ρ] , (3.3)

where

F [ρ] =

∫ |~∇ρ(~r)|2
ρ(~r)

d~r; J [ρ] =
1

2πe
e

2
3
S[ρ] (3.4)

are the (translationally invariant) Fisher information, Eq. (1.9), and the Shannon entropic
power, Eq. (1.25), of the probability density, respectively. The latter quantity, which is an
exponential function of the Shannon entropy, measures the total extent to which the single-
particle distribution is in fact concentrated [39]. The Fisher information, F [ρ], which is
closely related to the kinetic energy [193], is a local information-theoretic quantity; i.e.,
it is very sensitive to strong changes on the distribution over a small-sized region of its
domain.

On the other hand, the Dirac wavefunctions of the stationary states of a hydrogenic
system with nuclear charge Z are described by the eigensolutions (E,ψD) of the Dirac
equation of an electron moving in the Coulomb potential V (r) = − Ze2

4πε0r
, namely(

E + i~c~α · ~∇− βm0c
2 − V (r)

)
ψD = 0. (3.5)

where m0 denotes the mass of the electron at rest. The Dirac matrices ~α = (α1, α2, α3)

and β are given in terms of the Pauli matrices and the identity as follows:

β =

(
I 0

0 −I

)
αj =

(
0 σj
σj 0

)
,
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where

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
.

The stationary eigensolutions are most naturally obtained by working in spherical polar
coordinates (r, θ, φ) and taking into account that the Dirac hamiltonian commute with the
operators { ~J 2, Jz, ~K}. The total angular momentum operator is given by the coupling
~J = ~L+ ~S and the Dirac operator by ~K = β(~Σ · ~L+ ~), being ~L and ~S ≡ ~

2
~Σ the orbital

and spin angular momenta, respectively, and ~Σ = (σ1, σ2, σ3). So, the stationary states
are to be characterized by the quantum numbers (n, k,mj), where n ∈ N, the Dirac or
relativistic quantum number

k = ±1,±2, ...,±(n− 1),−n

and
−j ≤ mj ≤ j with j =

1

2
,
3

2
, ..., n− 1

2
.

Besides, let us remark that k = ∓(j + 1
2) for j = l ± 1

2 , so that

k =

{ −(l + 1) if j = l + 1
2

l if j = l − 1
2

;

in other terms, k = ±(j + 1
2), to which there corresponds (upper component) angular

momentum l = j ± 1
2 and (lower component) l′ = j = ∓1

2 . The energy eigenvalues are
known (see e.g. [190, 194, 195, 196]) to be

E = M

1 +
(αZ)2(

n− |k|+
√
k2 − (αZ)2

)2


−1/2

, (3.6)

where α denotes the fine structure constant, M = m0c
2 and Z ≤ 137. For Z > 137 the

Klein paradox [197] comes into play and the eigenenergies become complex beyond that
point; the resolution of this paradox is known to be related with the creation of electron-
positron pairs from de Dirac-Fermi sea [198]. Note that, because of the smallness of the
binding energies, E is only slightly less than m0c

2. The corresponding eigensolutions of
the bound relativistic hydrogenic states are given by the four-component spinors

ψDnkmj (~r) =

(
gnk(r)Ωkmj (θ, φ)

ifnk(r)Ω−kmj (θ, φ)

)
, (3.7)

where the symbol Ωk,mj (θ, φ) denotes the (two-component) spin-orbital harmonics

Ωkmj =

 − k
|k|

√
k+ 1

2
−mj

2k+1 Y|k+ 1
2
|− 1

2
,mj− 1

2
(θ, φ)√

k+ 1
2

+mj
2k+1 Y|k+ 1

2
|− 1

2
,mj+

1
2
(θ, φ)

 , (3.8)
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and the so-called large (g) and small (f ) radial components with the normalization∫∞
0 (g2 + f2)r2dr = 1, are known to be

gnk(r)

fnk(r)

}
=
±(2λ)3/2

Γ(2γ + 1)

√√√√ (M ± E)Γ(2γ + n′ + 1)

4M (n′+γ)M
E

(
(n′+γ)M

E − k
)
n′!

(2λr)γ−1e−λr×

×
[(

(n′ + γ)M

E
− k
)
F (−n′, 2γ + 1; 2λr)s∓ n′F (1− n′, 2γ + 1; 2λr)

]
(3.9)

where n′ = n − |k|, γ =
√
k2 − (αZ)2, λ = 1

~c(M
2 − E2)1/2, and F (a, b; z) denotes

the Kummer confluent hypergeometric function. Notice that the lower and the upper com-
ponents of the Dirac wavefunction have an opposite parity. Moreover, the binding energy
B = |EDn,|k|| = m0c

2−E depends on the principal quantum number n and on the absolute
value of the Dirac quantum number k, but not on its sign. This means that states with the
same angular momentum quantum number j which belongs to different pairs of orbital
quantum numbers (l, l′) are degenerated in energy. In addition we should point out that we
will often identify ψDnljmj with ψDnkmj although the Dirac relativistic states are no longer
eigenfunctions of the orbital angular momentum because the Dirac hamiltonian does not
commute with ~L; so, the orbital quantum number is not an appropiate quantum number.
Indeed, each relativistic state contains two values: l and l′ = l ± 1. However, since the
component with the radial function gnk(r) is large as compared to its partner fnk(r), the
value l pertaining to the large component may be used to denote the state. So, although
we use the non-relativistic notation |n, l, j,mj〉 we should keep in mind that it stands for
|n, k,mj〉.

Then, the Dirac probability density ρDnljmj (~r) = |ψDnljml(~r)|
2 of the hydrogenic state

|n, l, j,mj , 〉 can be written down in the following separable form:

ρDnljmj (~r) = ρDradial(r)ρangular(θ), (3.10)

where the radial and angular parts are given by

ρDradial(r) = |gnk(r)|2 + |fnk(r)|2 (3.11)

and

ρangular(θ) = 〈l,mj −
1

2
;
1

2
,+

1

2
|j,mj〉2|Yl,mj− 1

2
(θ, φ)|2 +

+ 〈l,mj +
1

2
;
1

2
,−1

2
|j,mj〉2|Yl,mj+ 1

2
(θ, φ)|2, (3.12)

respectively.
Finally, it is well known that in the non-relativistic limit of the hydrogenic system

the large component gnk(r) tends to the corresponding radial function of the Schrödinger
equation, while the small component fnk(r) tends to zero. So, the Schrödinger probability
density ρSnljmj (~r) which describes the state |nljmj〉 of the system is

ρSnljmj (r, θ) = |ψSnljmj (r, θ, φ)|2 = ρSradial(r)ρangular(θ), (3.13)
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where

ρSradial(r) =
Γ(n− l)

2nΓ(n+ l + 1)

(
2Z

a0n

)2l+3

×

× e−
2Z
a0n

r
r2l

∣∣∣∣L2l+1
n−l−1

(
2Z

a0n
r

)∣∣∣∣2 (3.14)

gives the radial part of the wavefunction, and ρangular(θ) is the same angular part as in
Dirac case, given by Eq. (3.12). The corresponding energy of the non-relativistic system is
known to be ESn = − ~2Z2

2a2
0n

2 .

3.2 Complexity quantification of Dirac effects

In this Section we quantify the two main dynamical Dirac relativistic effects (charge
contraction towards the origin and raising of all non-relativistic minima), as well as the
gradient reduction near to and far from the origin, in hydrogenic systems by means of the
LMC and Fisher-Shannon complexity measures. This is done by studying the comparison
between the Schrödinger and Dirac values of the LMC and Fisher-Shannon complexities
for the ground and excited states of hydrogenic systems. Specifically we show the depen-
dence of these quantities, as well as the Fisher-Shannon information plane, on the nuclear
charge Z and the principal quantum number n. For convenience we will use atomic units
hereafter.

3.2.1 Relativistic effects enhancement with nuclear charge.

First, let us present and discuss the dependence on the nuclear charge Z of the LMC
(see Fig. 3.1-left) and Fisher-Shannon (see Fig. 3.1-right) complexity measures in the
ground state of the hydrogenic system in the Schrödinger and Dirac settings described
in the previous section. We find that for both complexity measures (i) the Schrödinger
values remain constant for all Z (as recently proved in an analytical way [95, 84]), and
(ii) the Dirac values enhance when the nuclear charge increases, in accordance with the
corresponding Klein-Gordon results found in pionic systems [83].

This enhancement is provoked by the contraction of the electron density towards the
origin, a phenomenon similar to that observed for Klein-Gordon single-particle systems
[185, 83]. To quantify it we have defined the relative ratios ζLMC = 1 − CS

LMC
CD

LMC
and ζFS =

1 − CS
FS

CD
FS

. They are shown in the inner windows of Figs. 3.1-left-and-right in terms of Z.
We observe that both complexity ratios behave similarly in the ground state. This is not,
however, the case for other states as it is illustrated in Fig. 3.2-left for the LMC measure in
three circular states with n ≤ 3, and in Fig. 3.2-right for the Fisher-Shannon complexity
in the ground state and two excited states. Therein we observe that while the LMC ratio is
always positive and has an increasing behavior as a function of Z, this is not the case for
the Fisher-Shannon ratio. Indeed, the latter ratio can reach negative values for the excited
states, indicating that the Dirac value of the Fisher-Shannon complexity is lower than the
Schrödinger one.
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Figure 3.1: Dependence of the ground-state hydrogenic LMC (left) and Fisher-Shannon
(right) complexity measures on the nuclear charge Z
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The positivity of the LMC ratio can be understood because it measures the charge
contraction towards the nucleus by means of two global concentration (or spreading)
information-theoretic quantities, the disequilibrium and the Shannon entropy. We observe
that although these two factors work in the same sense, the contribution of the disequi-
librium turns out to be much greater than that of the Shannon entropy. The negativity
of the Fisher-Shannon ratio is more difficult to explain, because it quantifies the com-
bined balance of the spreading (via the Shannon entropy) and the gradient content (via the
Fisher information) of the charge distribution of the hydrogenic system. To understand this
phenomenon we analyze the behavior of the two components of the Fisher-Shannon com-
plexity, Eq. (3.3). Keeping in mind that the Shannon entropy is not very sensitive to the
relativistic effects, the former analysis boils down to a careful determination of the Fisher
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information which can be written down as

F [ρ] = Fradial +
〈
r−2
〉
× Fangular, (3.15)

where Fradial denotes the Fisher information of the radial probability function ρiradial(r)

(i = D or S for the Dirac and Schrödinger cases, respectively), and Fangular the Fisher
quantity associated to the angular probability function, ρangular(θ). Let us point out that
the Fisher information presents a singularity at Z = 118.68, as pointed out by Katriel and
Sen [182], what explains why we do not approach to the extreme relativistic limit. Since
the angular density is the same function in both relativistic and non-relativistic descriptions
and

〈
r−2
〉

is slightly higher in the relativistic case, the main reason for the negativity
of the Fisher-Shannon complexity ratio arises from the difference between the Dirac and
Schrödinger radial probability densities. This is clearly shown in Fig. 3.3, where we
have plotted the Dirac and Schrödinger radial densities, Di(r) ≡ ρiradial(r)r

2, and the

corresponding Fisher kernels, F ikernel(r) ≡ 1
ρiradial(r)

(
∂ρiradial(r)

∂r

)2
r2, for the excited states

(n, l,mj) = (5, 2, 3/2) and (6, 1, 3/2) of the hydrogenic atom with nuclear charge Z = 50

in Fig. 3.3-left and -right, respectively.
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Figure 3.3: Radial density, Di(r), and radial Fisher information kernel, F ikernel(r), in the
Dirac (i = D) and Schrödinger (i = S) settings for the hydrogenic states n = 5, l = 2, j =
1
2 (left) and n = 6, l = 1, j = 1

2 (right) with nuclear charge Z = 50. Atomic units (a.u.)
are used.

Therein we notice that while the Schrödinger radial density, DS(r), vanishes at various
points (nodes), the Dirac radial density, DD(r), only vanishes at the origin and the infinity.
This means that the Dirac density have finite values also at the radial positions of the
non-relativistic nodes (this is the relativistic minima-raising effect). Hence, the Fisher
information kernel is zero at these points because although the radial density does not
vanish, its derivative does (see Fig. 3.3); and this is the reason for the high negative values
of ζFS detected in Fig. 3.2.

This relativistic effect of nodal disappearance (or existence of non-nodal minima) in
the Dirac density, firstly pointed out by Burke and Grant [190, 191], is indeed due to
the different behavior of the two components g(r) and f(r) of the Dirac wave function.
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Both functions vanish at different values of r as we can observe in Fig. 3.4, where the
contribution of g and f to the total probability density for the state n = 5, l = 2, j = 2.5 of
the system with Z = 90 have been plotted for illustrative purposes. As we can see in Fig.
3.4, the largest contribution to the total probability density is indeed due to the component
g(r) of the Dirac spinor, Eq (3.7). The contribution of the f -component, although very
small, is sufficiently significant as to make the Dirac density not to vanish for any radial
value except for r = 0 and∞.
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Figure 3.4: Contribution of the g(r) and f(r) component to the total probability density
for the hydrogenic state n = 5, l = 2, j = 2.5 with nuclear charge Z = 90. Atomic units
(a.u.) are used.

For illustrative purposes we show in Fig. 3.5 the Dirac and Schrödinger radial distri-
butions and the Fisher information kernels of the ground state and the circular state with
n = 5 of the hydrogenic system with Z = 50. Therein it is observed that (i) in the two
states the Dirac radial density (solid red) is always above the Schrödinger curve (dashed
blue) when r is lower than the radial expectation value (centroid), and below otherwise,
and (ii) the behavior of the Fisher kernel in the excited state is different from that of the
ground state: the Dirac values are smaller than the Schrödinger ones not only when r is
larger than the radial expectation value, but also in the neighborhood of the nucleus.

We have observed that the latter effect (to be called gradient reduction effect hereto-
forth) is present in all bound states other than the ground state, although in excited non-
circular states this effect is hidden by the nodal disapearance or minima-raising effect. In
circular states other than the ground state, this effect gives rise to the small negativity of the
Fisher-Shannon ratio, as we can also observe in the next Fig. 3.7 discussed in Section 3.2.2.

Finally let us emphasize that while the LMC ratio quantifies the charge contraction
towards the nucleus (mainly by means of its disequilibrium ingredient), the Fisher-Shannon
ratio quantifies the combined balance of this charge concentration, the gradient reduction
in the regions near to and far from the origin, and the minima raising or nodal disapearance
of the charge distribution. This balance is very delicate, so that the latter ratio is positive in
all ground-state systems and in all excited states of heavy hydrogenic states. However, the
Fisher-Shannon ratio is negative for all excited states of hydrogenic systems with nuclear
charge lower than a critical state-dependent value; in these cases the relativistic minima-
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Figure 3.5: Radial density, Di(r), and radial Fisher information kernel, F ikernel(r), in the
Dirac (i = D) and Schrödinger (i = S) settings for the ground state (left) and the circular
state n = 5 (right) with nuclear charge Z = 50. Atomic units (a.u.) are used.

raising and gradient reduction joint effects are greater than the charge-contraction effect.
All in all, the Fisher-Shannon ratio quantifies (a) the charge contraction towards the

nucleus in the ground state, (b) the charge contraction together with the gradient reduction
effect for circular states other than the ground state, and (c) the combined effect due to the
charge contraction, the gradient reduction and the minima raising for the remaining excited
states.

3.2.2 Quantum numbers and Dirac effects.

The quantification of the Dirac effects for all excited states with n ≤ 6 in hydrogenic
sytems with Z = 19 and Z = 90 is examined by means of the LMC (see Figs. 3.6)
and Fisher-Shannon (see Figs. 3.7) complexity ratios. In Fig. 3.6-left for Z = 19 and
Fig. 3.6-right for Z = 90, the LMC ratio displays a common general structure. For given
quantum numbers (n, l) the ratio has higher values for states with j = l− 1

2 than for states
with j = l + 1

2 . Moreover, it does not depend on the magnetic quantum number mj , what
can be theoretically understood from Eqs. (3.1), (3.2), (3.10) and (3.13) which allow us to
factorize the LMC complexity as a product of a radial complexity (associated to the radial
density) and an angular complexity (associated to the angular density, which is the same
in both Dirac and Schrödinger frameworks); then, the LMC ratio has no dependence on
any angular property. In addition, the LMC ratio (i) decreases when the orbital quantum
number l increases for fixed n and (ii) increases with the principal quatum number n for
fixed values of (j, l). As already pointed out in Section 3.2.1, for large values of Z, the
bigger the nuclear charge is, the higher the ratio due to the common electronic charge
contraction.

The Fisher-Shannon ratio displays a different behavior regarding its dependence on the
quantum numbers than the LMC one, as we show in Fig. 3.7-left for Z = 19 and in Fig.
3.7-right for Z = 90. Indeed, it has negative values except in a few s (l = 0) and p (l = 1)
states. Moreover, although the relativistic effects are stronger in the system with nuclear
charge Z = 90, the qualitative dependence of the ratio on the quantum numbers is similar
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in the two systems: it has higher values for states with j = l + 1
2 than for states with

j = l − 1
2 for fixed (n, l). For states with l < n − 1 the ratio severely decreases because

of the minima raising, as previously discussed. Moreover, for penetrating states (mainly
states s) the charge contraction effect counterbalances the minima-raising effect and makes
the ratio to become positive. Besides, the ratio hardly depends on the magnetic quantum
number mj because the Fisher-Shannon complexity, opposite to the LMC quantity, cannot
be factorized into radial and angular parts.

The gradient reduction effect is increasingly higher for states with j = l − 1
2 than for

states with j = l+ 1
2 when the nuclear charge increases. For excited states with l < n− 1,

the minima-raising effect (which grows with Z) decreases the ratio. For large values of Z,
the charge-contraction effect is so powerful that makes negligible the gradient reduction
and minima-raising effects, producing a global positive Fisher-Shannon ratio.

We have done a similar analysis for states ns, which all have j = l + 1
2 = 1

2 , as shown
in Figs. 3.8 for the hydrogenic system with Z = 55. Contrary to the other excited states
wherein the LMC (Fisher-Shannon) ratio decreases (increases) asymptotically to a constant
value, the LMC ratio grows up to a maximum at n = 3, and then slowly decreases towards a
constant asymptotic value as shown in Fig. 3.8-left. On the other hand, the Fisher-Shannon
ratio (see Fig. 3.8-right) shows an opposite behavior as a function of n; that is, initially
it decreases down to a minimun at n = 4 and then it slowly increases towards a constant
asymptotic value. For large values of Z, both LMC and Fisher-Shannon ratios of ns-states
behave like in the other states. Notice, in addition, that LMC and Fisher-Shannon complex-
ities of states ns have different behavior: while the LMC one remains roughly constant, the
Fisher-Shannon one increases monotonically. The latter is because the charge density os-
cillates more and more when the principal quantum number n increases, what makes the
Fisher-information factor of the Fisher-Shannon complexity to grow in a monotonic way.
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n with Z = 55.
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3.3 Hydrogenic complexities, energy and Dirac quantum num-
ber

In this section we study the dependence of the LMC and Fisher-Shannon complexities
on both the binding energy B and the Dirac or relativistic quantum number k for various
excited states of the hydrogenic system with nuclear charge Z = 90, and also we discuss
the associated Fisher-Shannon (F − J) and disequilibrium-Shannon (D− eS) information
planes.

3.3.1 Complexity and Dirac energy

In Fig. 3.9 we show the values of LMC (Fig. 3.9-left) and Fisher-Shannon (Fig. 3.9-
right) complexities for several excited states (n ≤ 6,mj = j) of the hydrogenic system
with nuclear charge Z = 90. Therein we observe that when the energy increases, the LMC
complexity (a) decreases for states with the same quantum number j, and (b) increases
parabolically for states with l = n− i and fixed i (i = 1, ..., n). Moreover, the LMC com-
plexity of the states ns have significantly larger values, mainly because of the relativistic
sensitivity previously discussed of the disequilibrium ingredient.

Furthermore, the behavior of the Fisher-Shannon complexity as a function of the energy
is similar to the LMC complexity for states with the same j, but it varies slightly within a
narrow interval for states with l = n− i and fixed i (i = 1, ..., n).
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Figure 3.9: LMC (left) and Fisher-Shannon (right) complexities for some excited states in
n and l with Z = 90 and mj = j as a function of the energy. Atomic units (a.u.) are used.

3.3.2 Dependence on the relativistic quantum number k

In Fig. 3.10 we show the dependence of the LMC (left) and Fisher-Shannon (right)
complexity measures on the relativistic quantum number k for the ground state and several
excited states (n ≤ 6, l, j,mj = j) of the hydrogenic system with nuclear charge Z = 90.

We observe that the LMC complexity (a) has a global maximum for states ns (i.e.,
k = −1), and (b) presents a quasi-symmetric decreasing behavior around the line with
k = −1 (i.e., for states ns). On the oder hand, the Fisher-Shannon complexity has not a



3.3. Hydrogenic complexities, energy and Dirac quantum number 59

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

-6 -4 -2 0 2 4 6

L
M
C
C
om

pl
ex
ity

=1
=2
=3
=4
=5
=6

0

10

20

30

40

50

60

70

80

90

100

-6 -4 -2 0 2 4 6

Fi
sh
er
-S
ha
nn
on

C
om

pl
ex
ity

=1
=2
=3
=4
=5
=6

Figure 3.10: ) LMC (left) and Fisher-Shannon (right) complexities for some excited states
in n and k with Z = 90 and mj = j as a function of the relativistic quantum number k.

global maximum at ns states but it shows up a monotonically decreasing behavior for the l-
manifold states with a given principal quantum number n, mainly because of the decreased
number (n− l) of maxima of the density.

3.3.3 Information planes

The previous behaviors can be studied by means of the associated relativistic
information-theoretic planes. In Fig. 3.11 we show the disequilibrium-Shannon (left)
and Fisher-Shannon (right) information planes which include the same states as above
(n ≤ 6, l, j = l + 1

2 ,mj = j) of the hydrogenic system with nuclear charge Z = 90.
Notice that the scale in both axes is logarithmic.

First of all, we observe that in both cases all the complexity values lie down the allowed
region; that is, they are in the right side of the rigorous frontier (see continuous line in
the two graphs) defined by the known analytic LMC and Fisher-Shannon lower bounds
[95, 73, 96]: CLMC [ρ] ≥ 1 andCFS [ρ] ≥ 3. Moreover while the LMC values remain closer
to the borderline, the Fisher-Shannon ones move away from this bound when the principal
quantum number increases. This is a clear indication that the Fisher-Shannon values of a
given state (a) are higher than the corresponding LMC ones and (b) this enhancement is
greater when the principal quantum number increases, mainly because the gradient content
(so, the Fisher-information ingredient) raises faster than the disequilibrium.

Conclusions

We have studied the LMC and Fisher-Shannon complexities of both ground and sev-
eral excited states of hydrogenic systems by means of the Dirac relativistic wavefunc-
tions. First we have shown the enhancement of these composite measures when the nu-
clear charge increases and we have compared these values with the corresponding non-
relativistic (Schrödinger) ones, what has allowed us (i) to illustrate that these complexity
measures are good indicators of the Dirac relativistic effects, and (ii) to quantify the three
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primary dynamical Dirac effects (electronic charge contraction, minima-raising and gra-
dient reduction) by means of a Schrödinger-Dirac ratio. We have observed that while the
LMC ratio is always positive and it has an increasing behavior as a function of Z (mainly
because its disequilibrium ingredient enhances when Z increases), the Fisher-Shannon ra-
tio can reach negative values for the excited states although finally enhances when Z in-
creases. Moreover, the global enhancement phenomenon of the two complexities is mainly
due to the electronic charge contraction, and the Fisher-Shannon negativity in the excited
states is associated to the raising of the non-relativistic minima. The latter phenomenon
is mainly due to the Fisher-information ingredient of the Fisher-Shannon complexity, be-
cause it is the only factor which is very sensitive to the fact that the Dirac relativistic radial
density cannot vanish except at the origin and infinity, keeping in mind that it is a gradient
functional of the density. The (largely ignored) gradient reduction effect is present in all
excited states although it is, at times, hidden by the minima-raising effect.

Furthermore, we have shown in large-Z hydrogenic systems the dependence of the
two previous statistical complexities as a function of the following parameters of the Dirac
states: the energy, the principal quantum number (n) and the relativistic quantum number
(k). We have observed that for the l-manifold states of a given quantum number n, the
LMC complexity enhances parabolically and the Fisher-Shannon complexity varies within
the same interval when energy is increasing; this is mainly because of the delicate balance
of the charge contraction and the minima raising effects. Besides, beyond the ground state,
we have observed that for j = mj the behavior of the two complexity measures of the
l-manifold states in terms of the relativistic quantum number k is quasi-symmetric around
the line with k = −1 (i.e., states s).



CHAPTER 4

Entropic uncertainty inequality and
applications

The entropic, or frequency, moments of a one-particle density function ρ(~r), defined
in Eq. (1.6), play a relevant role within a Density Functional Theory framework [35, 34].
Much effort has been made to obtain a similar formulation of the DFT theory in the conju-
gate space, i.e. in terms of the momentum one-particle density γ(~p), with many successful
results [199, 200, 201, 202].

Different studies based on the simultaneous use of quantities in the position and mo-
mentum spaces have been carried out. Most of them aim to provide uncertainty-like re-
lationships. For instance, the well-known Heisenberg uncertainty principle [61, 62, 63]
involves variances (defined by means of radial expectation values) in conjugate spaces.
Since the formulation of the Heisenberg principle, many other uncertainty relations have
been obtained, with a diversity of expectation values and/or density functionals. It is worth
mentioning the lower bounds on products of radial expectation values 〈rα〉 and 〈pβ〉 [60]
emphasizing the particular case α = β = 2. Bounds on the disequilibrium of the charge
density [203], the product of logarithmic uncertainties [60] and the sum of Shannon [66]
or Rényi [72] entropies are also known. Although these relationships are usually applied
in three-dimensional systems (i.e. with vectors of three components ~r and ~p), all of them
are valid for arbitrary dimensionality [59, 176].

Such uncertainty relations are physically relevant, not only because of their importance
in a theoretical quantum-mechanical framework [204, 205, 206], but also in the devel-
opment of quantum information and computation [8, 207]. In this sense, the studies of
entropic uncertainty relations [68] and their connection with entanglement [69] are also
remarkable.

The aim of this study is to present uncertainty inequalities, in the form of bounds on a
frequency moment (quantity defined in Section 1.1) in a given space (position or momen-
tum) in terms of two radial expectation values in the conjugate space. Such inequalities can
handle radial expectation values of positive or negative orders. The bounds provided here
are of universal validity (i.e. for any d-dimensional quantum mechanical system). By way
of example, we carry out a numerical study for selected inequalities of physical interest in
atomic systems, and the results are interpreted taking into account that some radial expec-
tation values for atomic densities, in both position and momentum spaces, are physically
relevant and/or experimentally accessible.

The term “frequency moments“ is usually employed in probability and statistics. Sichel
[208, 209] employed them for the fitting of certain frequency curves. It happens that esti-
mators based on frequency moments are, at times, much better than the ordinary moment
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estimates. Moreover, the frequency moments are fairly efficient in the range where the or-
dinary moments are very inefficient. This is so in some cases where the range is unlimited
and the density is poorly known [44].

The quantities ωq are called also ”entropic moments“ of the density function, because
they are closely connected to the so-called Rényi and Tsallis entropies [43, 135]. The
entropic adjective and the frequency term allow us to identify more appropriately the mo-
ments ωq from the other type of moments [44]: moments around the origin, central mo-
ments, factorial moments, absolute moments,... of a distribution.

The frequency moments play a central role in the description of many-fermion systems
in terms of the one-particle density. In this sense, it is worth remarking the relevance of
those with orders q = 4/3 and 5/3, within a DFT framework. They correspond, essentially,
to the exchange and kinetic energy terms of the energy functional [36]. The frequency
moment of order 2 is the disequilibrium of the probability distribution as we have shown
in previous chapters. In addition, the problem of fully characterizing the distribution by
frequency moments was also addressed by considering the so-called Hausdorff entropic
moment problem [210].

This chapter is structured as follows: In Section 4.1, the uncertainty relations associated
to the main quantities we will deal with (frequency moments) are provided, as universal
bounds on frequency moments in terms of radial expectation values in the conjugate space.
Particular cases of physical interest are detailed in Section 4.2, by providing rigorous in-
equalities whose accuracy is numerically analyzed in Section 4.3 for atomic one-particle
densities. Some concluding remarks are finally given.

4.1 Upper bounds on frequency moments in terms of radial ex-
pectation values

Using Eq. (1.5), the Rényi uncertainty relation (1.20) can be expressed in terms of
frequency moments as follows:

ωq[ρ] ≤
(

(q/π)q−1

(2q − 1)
2q−1

2

)d
ω

1
2t−1

t [γ], for q ≥ 1 ≥ t with
1

q
+

1

t
= 2, (4.1)

and the opposite inequality holds for q ≤ 1 ≤ t.
Many expectation values are well-known relevant quantities which can be accessed or

estimated from experiments (diamagnetic susceptibility, electron-nucleus attraction energy,
height of the peak of the Compton profile, kinetic energy and its relativistic correction due
to mass variation,...) [211]. That is not the case of frequency moments, in spite of their
physical significance, especially in a Density Funtional Theory (DFT) framework. Let us
mention the relevant role played by the exchange and kinetic terms in the expansion of the
functional for the total energy [36], the Shannon entropy [41] (as a limiting case having its
roots in information theory, statistical mechanics and thermodynamics), or the disequilib-
rium [49] in the study of organization patterns in statistical mechanics, to mention a few
of them. Additionally, let us remark that some of the previous functionals are essential
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ingedients in defining a variety of further information-theoretic concepts (e.g. complexity
[50], similarity [48], divergence [137, 212, 213]).

The key point here, from a physical point of view, is that the radial expectation values
of the one-particle densities (in position or momentum spaces) are physical observables,
while the density functionals do not. It appears consequently of high interest to have at
our disposal useful tools to get relevant information from density functionals by using
the information we could get at the laboratory, or through alternative ways (theoretical,
computational,..).

Due to the physical interest of the frequency moments, the variational procedure has
been also employed in order to bound them in terms of physical observables. In Ref. [214],
lower (upper) bounds on the d-dimensional frequency moments of order above (below)
unity are given in terms of two radial expectation values, not necessarily of positive order.
Regarding Eq. (4.1), let us take into account the upper bound ω∗t [γ] to the frequency
moment ωt[γ] with order below unity, as provided in Ref. [214] in terms of two radial
expectation values:

ωt[γ] ≤ ω∗t [γ] ≡ G(α, β, t, d)
[
〈pα〉−t(β+d)+d〈pβ〉t(α+d)−d

]1/(α−β)
(4.2)

where

α > d
1− t
t

> β

This bound is given in the aforementioned work, together with similar lower ones for order
t > 1. Their analytical expressions, as well as that of the function G(α, β, t, d) can be
found there.

The joint use of Eq. (4.1) and its ’opposite version’ for q ≤ 1, together with the above
mentioned variational upper and lower bounds on frequency moments [214], provide us
with a variety of bounds (upper or lower) on ωq[ρ] in terms of 〈pα〉 and 〈pβ〉. The symbol
B(x, y), in the equations below, stands for the beta function.

(a) Upper bounds for q > 1 with α > d
q − 1

q
> β:

ωq[ρ] ≤ (α− β)
(
π
q

)d(1−q)
qq(2q − 1)d

1−2q
2

[
ΩdB

(
d+q(α−d)

(q−1)(α−β) ,
q(d−β)−d

(q−1)(α−β)

)]q−1
×

×
{[

〈pβ〉
d+q(α−d)

]d+q(α−d) [ 〈pα〉
q(d−β)−d

]q(d−β)−d
} 1
α−β

,

(4.3)
where Ωd = 2πd/2/Γ(d/2) and α > 0, while β can be either positive or negative.

(b) Lower bounds for q < 1 with α > β > −d1− q
q

:

ωq[ρ] ≥ (α− β)
(
π
q

)d(1−q)
qq(2q − 1)d

1−2q
2

[
ΩdB

(
q(β−d)+d

(α−β)(1−q) ,
1

1−q

)]q−1
×

×
{[

〈pβ〉
d−q(d−α)

]d−q(d−α) [
q(β−d)+d
〈pα〉

]q(β−d)+d
} 1
α−β

(4.4)
In this case, each order α and β can be either positive or negative.
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(c) Lower bounds for q < 1 with β < α < −d1− q
q

:

ωq[ρ] ≥ (α− β)
(
π
q

)d(1−q)
qq(2q − 1)d

1−2q
2

[
ΩdB

(
q(d−α)−d

(α−β)(1−q) ,
1

1−q

)]q−1
×

×
{[

〈pα〉
q(d−β)−d

]q(d−β)−d [
q(d−α)−d
〈pβ〉

]q(d−α)−d
} 1
α−β

(4.5)
Now, both orders α and β of the radial expectation values are negative necessarily.

The same inequalities apply after exchanging the conjugated variables and densities,
giving rise to bounds on frequency moments ωq[γ] in momentum space in terms of radial
expectation values in the position one.

4.2 Particular cases of physical interest

For atomic systems, the expectation values 〈rn〉 and 〈pn〉 have been extensively used
to bound and/or estimate other global quantities [215, 214] and the density itself [216].
Among those quantities, let us remark the frequency moments of both ρ(~r) and γ(~p). Ad-
ditionally, different uncertainty-like inequalities, in terms of radial expectation values, have
been derived by using information-theoretical tools [71, 217].

It is worth mentioning that some of these expectation values are physically relevant
and/or experimentally accessible in three-dimensional N -electron atoms. Some examples
are the following [211]:

(a) The kinetic energy T , given by T = N
〈p2〉

2
, with its relativistic correction being pro-

portional to 〈p4〉.

(b) The height of the peak of the Compton profile J(q), experimentally accessible from

electron scattering experiments, is J(0) = N
〈p−1〉

2
.

(c) The diamagnetic susceptibility χ, proportional to 〈r2〉.

(d) The electron-nucleus attraction energy (absolute value) EeN = NZ〈r−1〉, with Z be-
ing the nuclear charge.

Concerning the frequency moments, Eq. (1.6), and their corresponding Rényi entropies,
Eq. (1.5), they have been considered as essential tools in a wide variety of fields, includ-
ing the study of three-dimensional (d = 3) many-electron systems and physical processes.
Many of those studies have emphasized the role played by the order ’q’ of the aforemen-
tioned density functionals, as also done in more recent applications based on the concepts
of Jensen-Rényi [137], Jensen-Tsallis [212] and Kullback-Leibler [30] divergences, the
quantum similarity index [118, 143] and its generalization [218] or the generalized shape
complexity [86], among others. In most of these applications, considering low enough val-
ues (usually below unity) of the order q appears very important in order to get non-trivial
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information, based on the features of the one-particle density in position space, regarding
a variety of relevant properties of e.g. atomic systems.

However, the main applications in the present chapter deal with frequency moments of
order above unity. For N-fermion systems, it is known [36] that the frequency moments
ω4/3[ρ] and ω5/3[ρ] are related to the local density approximations to the exchange and
kinetic energies, K0 and T0 respectively, as

K0 =
(3N)4/3

4π1/3
ω4/3[ρ], (4.6)

T0 =
(3N)5/3π4/3

10
ω5/3[ρ], (4.7)

It is worth mentioning the upper bound

〈ρ〉 ≤ (8/3π2)(2/3)1/2(T/N)3/2 ≈ 0.2206(T/N)3/2, (4.8)

due to Gadre and Chakravorty [203], and derived within a DFT framework by considering
the relationship between the total kinetic energy functional T and its Weizsäcker term TW .
Moreover, T is proportional to the radial expectation value 〈p2〉.

4.3 Numerical analysis with atomic one-particle densities

The accuracy of the universal bounds on frequency moments and, in particular, to rel-
evant physical quantities expressed in terms of them (shown in Section 4.2), will be an-
alyzed in this section for ground-state neutral atoms throughout the whole Periodic Table
(nuclear charge Z = 1 − 103). In doing so, accurate near-Hartree-Fock wavefunctions
[219, 220] will be employed, from which the one-particle densities in position and mo-
mentum spaces are built up, see also Appendix A

Let us remind the normalization to unity of both densities, a condition expressed as
ω1[ρ] = ω1[γ] = 1 or, equivalently, 〈r0〉 = 〈p0〉 = 1. The systems considered in this
numerical applications are three-dimensional ones, so that d = 3 and Ω3 = 4π.

4.3.1 Disequilibrium or information energy

The disequilibrium D of a probability distribution [49] is defined as its mean value or,
equivalently, the second-order frequency moment as given by Eq. (1.7). In order to bound
from above the disequilibrium in terms of radial expectation values in the conjugate space,
we must choose q = 2 in Eq. (4.3). Due to the validity of these bounds in both conjugate
spaces, we will deal with equations for the disequilibriumD[ρ] of the position space density
ρ(~r). Similar inequalities are obtained for D[γ] after exchanging the conjugate variables
and their corresponding distributions.

We consider first the general inequality

D[ρ] ≤ Dρ(α, β) =
128(α− β)

39/2π2
Γ

(
2α− 3

α− β

)
Γ

(
3− 2β

α− β

)
× (4.9)

×
{[ 〈pα〉

3− 2β

]3−2β [ 〈pβ〉
2α− 3

]2α−3
} 1

α−β

,
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providing an upper bound, denoted as Dρ(α, β), in terms of any two moments 〈pα〉
and 〈pβ〉 with orders constrained as α >

3

2
> β. We observe that the order α is posi-

tive necessarily, while β can be positive, negative or zero. The notation of the bound as
Dρ(α) ≡ Dρ(α, 0) is employed for the particular choice β = 0, namely

D[ρ] ≤ 128α

(2α− 3)2− 3
α 3

9
2

+ 3
απ2

Γ

(
2− 3

α

)
Γ

(
3

α

)
〈pα〉3/α ≡ Dρ(α) (4.10)

Apart from normalization, the bound D(α) is defined in terms of a unique expectation
value 〈pα〉 with α > 3/2. Especially interesting are the cases α = 2 and α = 4, with
the corresponding bounds determined, respectively, by the kinetic energy (proportional to
〈p2〉) and its relativistic correction (essentially 〈p4〉) due to mass variation.

In Figure 4.1a, the disequilibrium D[ρ] for the charge density of neutral atoms is dis-
played, together with the aforementioned two upper bounds, namely Dρ(2) and Dρ(4).
These bounds are given by

Dρ(2) =
128

729π
〈p2〉3/2 ≈ 0.05589〈p2〉3/2 (4.11)

and

Dρ(4) =
215/2

321/455π
〈p4〉3/4. (4.12)

It is worth remarking that our boundDρ(2) improves Gadre’s one [63] in Eq. (4.8), rewriten
as

D[ρ] ≤ 4

33/2π2
〈p2〉3/2 ≈ 0.07800〈p2〉3/2, (4.13)

after taking into account that 〈ρ〉 = D[ρ] and T = N〈p2〉/2. The improvement is quanti-
fied by a factor of 72% of Gadre’s one.
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Figure 4.1: Upper bounds on the disequilibrium D[ρ] in position space (neutral atoms with
nuclear charge Z = 1− 103), in terms of (a) one, and (b) two radial expectation values in
momentum space.

It should be noticed also the functional dependence on the nuclear charge Z of the
disequilibrium and the above discussed upper bounds of the systems under study. Such a
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dependence is (roughly) a power-like one as Zc, with c a constant. An approximate value
c = 1.3 is induced numerically for the disequilibrium D[ρ], and c = 2.1 and c = 2.4 for
the upper bounds Dρ(2) and Dρ(4), respectively. Those values of the power c imply a
higher accuracy of the upper bounds for light atomic systems as compared to the heavier
ones.

Considering non-zero orders α and β in Eq. (4.9) provides us with upper bounds on
D[ρ] in terms of two radial expectation values, constrained by the inequality α > 3/2 > β.
Consequently the order β can be either positive or negative. Some examples are displayed
in Figure 4.1b, corresponding to the analytical expressions given below:

Dρ(2, 1) =
128

39/2π2
〈p〉〈p2〉, (4.14)

Dρ(2,−1) =
512

3555/3π
〈p−1〉1/3〈p2〉5/3, (4.15)

Dρ(4, 1) =
32Γ2(1/4)

37/255/3π2
〈p〉5/3〈p4〉1/3 (4.16)

It is observed in Figure 4.1b the similar behavior of the three bounds above mentioned,
as also that of the own disequilibrium. To have an idea of the dependence on the nuclear
charge Z of all bounds, the power-like dependence corresponds roughly to the constant
c = 2.1. Attending to the value c = 1.3 for D[ρ] as observed in Figure 4.1a, similar
comments apply in what concerns the accuracy of these bounds for light, medium or heavy
systems.

We now consider the study of the momentum-space disequilibrium D[γ], with upper
bounds expressed in terms of radial expectation values, now in position space. As done
above regarding the numerical analysis of the bounds on D[ρ], we study also the cor-
responding ones Dγ(α) and Dγ(α, β) for the momentum space one-particle distribution
γ(~p).

The analytical expressions of these bounds, denoted as Dγ(α) and Dγ(α, β), are
straightforwardly obtained from the previous ones, by only exchanging the conjugate vari-
ables ~r and ~p, as well as the one-particle densities ρ(~r) and γ(~p). One- and two-moment
upper bounds are considered, with the orders of the involved moment(s) constrained as
discussed previously.

The disequilibrium D[γ] of the atomic momentum density, together with the one-
moment bounds Dγ(2) and Dγ(4), are displayed in Figure 4.2a, and two-moment bounds
are shown in Figure 4.2b. As compared to the position-space case (Figs. 4.1a and 4.1b), a
very rich structure is observed for both the disequilibrium and its bounds, regarding their
dependence on the atomic nuclear charge Z. The presence of local extrema (maxima or
minima) is very apparent in the figures. On a physical basis, the reason for finding a so rich
structure is the enhancement, in the evaluation of the expectation values, of the contribu-
tion arising from the outermost (valence) region. The absolute maximum of the momentum
densities occur (most usually) at the origin p = 0, or in its surrounding. The low-speed
electrons (i.e. those with p ≈ 0) correspond to the valence ones. Let us remark that the
shell-filling pattern constitutes one of the main characteristics in atomic systems, determin-
ing most of their physical and chemical properties.
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Figure 4.2: Upper bounds on the disequilibrium D[γ] in momentum space (neutral atoms
with nuclear charge Z = 1−103), in terms of (a) one, and (b) two radial expectation values
in position space.

In this sense, it is worth pointing out that the local minima of D[γ] correspond to sys-
tems Z = 2, 10, 18, 24, 29, 36, 42, 46, 54, 58, 64, 79, 86, 90, 93, 97, which can be classified
as follows: (i) noble gases (Z = 2, 10, 18, 36, 54, 86), and (ii) systems suffering from
the so-called ’anomalous shell filling’ (Z = 24, 29, 42, 46, 58, 64, 79, 90, 93, 97). Similar
sets of extrema and their classification are also found for the one- and two-moment upper
bounds. Additionally, let us mention the systematic presence of local maxima for most
alkaline earths (Z = 12, 20, 38, 56, 88).

4.3.2 Thomas-Fermi kinetic energy

One of the earliest tractable schemes for solving the many-electron problem was pro-
posed by Thomas [221] and Fermi [222]. In this model the electron density ρ(~r) is the
central variable rather than the wavefunction, and the total energy of a system is a func-
tional of the density. The Thomas-Fermi energy functional is composed of three terms,
one of them the electronic kinetic energy T0 associated with a system of non-interacting
electrons in a homogeneous electron gas. Its form, as provided in Eq. (4.7), is obtained by
integrating the kinetic energy density of a homogeneous electron gas.

The expression of T0 in terms of the frequency moment ω5/3[ρ] allows to perform a
bounding procedure as done in previous sections. In this way we obtain a variety of upper
bounds in terms of radial expectation values in momentum space, as follows:

T0 ≤ N5/3 (α−β)25/335/258/3

77/2π1/3

[
Γ
(

5α−6
2(α−β)

)
Γ
(

6−5β
2(α−β)

)]2/3
×

×
{[
〈pα〉
6−5β

]6−5β [ 〈pβ〉
5α−6

]5α−6
} 1

3(α−β)

≡ T0(α, β),
(4.17)

for any α >
6

5
> β.
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Choosing β = 0 gives rise to one-moment bounds,

T0 ≤ N5/3 α2
5
3
− 2
α 3

5
2
− 2
α 58/3

77/2(5α− 6)
5
3
− 2
απ1/3

[
Γ

(
5

2
− 3

α

)
Γ

(
3

α

)]2/3

〈pα〉2/α ≡ T0(α), (4.18)

for any α >
6

5
. Figure 4.3a displays the value of the functional T0, together with the one-

moment upper bounds T0(α) for α = 2 and α = 4, namely in terms of 〈p2〉 and 〈p4〉,
respectively:

T0(2) = N5/3 33/258/3

21/377/2
〈p2〉 ≈ 0.3322N5/3〈p2〉 (4.19)

and

T0(4) = N5/3 22/358/3Γ4/3(3/4)

38/3714/3π1/3
〈p4〉1/2 ≈ 0.0139556N5/3〈p4〉1/2 (4.20)

As one should expect, the bound T0(2) is more accurate because of its dependence on 〈p2〉,
a quantity proportional to the exact kinetic energy.
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Figure 4.3: Upper bounds on the Thomas-Fermi kinetic energy T0 (neutral atoms with
nuclear charge Z = 1− 103), in terms of (a) one, and (b) two radial expectation values in
momentum space.

Similar comments to those provided in the discussion of results for disequilibrium in
position space (Fig. 4.1a) apply for the results on T0, regarding the power-like functional
dependence Zc on the nuclear charge Z. While T0 posseses a fit with c = 4.1, the corre-
sponding values are c = 4.7 for T0(2) and c = 5.0 for T0(4). These values justify (i) the
higher accuracy of T0(2) as compared to T0(4), and (ii) the higher accuracy of both bounds
for light systems as compared to heavy ones.

A similar behavior is observed in Figure 4.3b, where two-moment bounds are consid-
ered, in particular

T0(2, 1) = N5/3 35/258/3

2 · 77/2
〈p〉4/3〈p2〉1/3 (4.21)
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and

T0(2,−1) = N5/3 27/937/258/3

77/21111/9π1/3
[Γ(2/3)Γ(11/6)]2/3 〈p−1〉4/9〈p2〉11/9, (4.22)

both including the kinetic energy via 〈p2〉. The exponent of the nuclear charge have the
values c = 4.7 and c = 4.9 for the respective fits.

4.3.3 Dirac exchange energy

Shortly after the introduction of Thomas-Fermi theory, Dirac [223] developed an ap-
proximation for the exchange interaction K0 based on the homogeneous electron gas. The
resulting formula is simple, and is also a local functional of the density, as given by Eq.
(4.6).

The bounds on the frequency moment ω4/3[ρ] translate into upper bounds on K0:

K0 ≤ N4/3 8(α−β)35/2

55/2π

[
Γ
(

4α−3
α−β

)
Γ
(

3−4β
α−β

)]1/3
×

×
{[
〈pα〉
3−4β

]3−4β [ 〈pβ〉
4α−3

]4α−3
} 1

3(α−β)

≡ K0(α, β),
(4.23)

for any α >
3

4
> β. The one-moment bounds, obtained with the choice β = 0, are given

by

K0 ≤ N4/3 8α3
5
2
− 1
α

55/2(4α− 3)
4
3
− 1
απ

[
Γ

(
4− 3

α

)
Γ

(
3

α

)]1/3

〈pα〉1/α ≡ K0(α), (4.24)

for any α >
3

4
. Interesting particular cases are

K0(2) = N4/3 8 · 37/3

510/3π2/3
〈p2〉1/2 ≈ 0.2265N5/3〈p2〉1/2 (4.25)

and

K0(4) = N4/3 32 · 39/4

55/21313/12π
[Γ(13/4)Γ(3/4)]1/3 〈p4〉1/4, (4.26)

displayed in Figure 4.4, together with the bound

K0(1,−1) = N4/3 8 · 317/6

513/677/6π2/3
〈p−1〉1/6〈p〉7/6 (4.27)

as an illustrative example of the two-moment ones. In this figure, the power-like depen-
dence on Z is emphasized, by using a logarithmic scale in both axes. These bounds behave
as Zc with c = 3.4, 3.5, 3.3 for K0(2), K0(4) and K0(1,−1) respectively, values to be
compared with that for K0, namely c = 3.0. Similar comments to those given in dis-
cussing results for T0 apply now, also.
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Figure 4.4: Upper bounds on the Dirac exchange energy K0 (neutral atoms with nuclear
charge Z = 1 − 103), in terms of one and two radial expectation values in momentum
space.

Conclusions

The uncertainty inequality for Rényi entropies of conjugate distributions allowed us
to perform a bounding procedure, whose main achievement is to provide upper and lower
bounds on q-th order frequency moments in terms of radial expectation values in the conju-
gate space. The procedure here employed provides results of universal validity, in the sense
of being applicable to arbitrary one-particle densities arising from wavefunctions related
through a Fourier transform.

We apply the above procedure to the study of physically relevant density function-
als, defined in terms of the position and momentum one-particle densities of neutral atoms
throughout the Periodic Table. Emphasis is laid on the one- and two-moment upper bounds
on the position and momentum disequilibria, the Thomas-Fermi kinetic energy and the
Dirac exchange energy. These bounds are expressed also in terms of physically meaning-
ful and/or experimentally accessible expectation values. The power-like dependence of the
position-space functionals and their upper bounds has been observed, and analyzed numer-
ically in detail. On the other hand, the results for the momentum-space disequilibrium are
interpreted according to shell-filling patterns, a feature shared by the corresponding upper
bounds in terms of radial expectation values in position space.

Further applications are planned to be carried out in a near future. In this sense, we
will take into account that the frequency moments and the Rényi and Tsallis entropies,
including the Shannon one as a particular case, have been shown to play a fundamental role
in the definition and applications of information-theoretical concepts such as complexity,
similarity and divergence. Additionally, other extensions of the present study will concern
more sophisticated atomic models (e.g. configuration interaction), many-fermion systems
(e.g. molecules) and physico-chemical processes (ionization, excitation, reaction).





CHAPTER 5

Generalized quantum similarity
index

Recently, different divergence measures have been used in the framework of quantum
information theory. In particular, the Jensen-Shannon divergence [102] was applied as a
measure of entanglement [24, 25], and also together with other similarity measures in the
study of multielectronic systems [115, 145, 116, 30]. Chemical similarity is often described
as an inverse of a measure of distance or divergence in the appropriate space.

Quantifying the dissimilarity among two or more many-electron systems by means
of their one-particle densities is also a hot topic within the physical applications of the
information theory. Some fundamental measures of information have been used with this
aim: Shannon (1.4), Rényi (1.5) and Tsallis [224] entropies and Fisher information (1.9), as
well as their associated divergences [31, 212, 137, 29]. Among those divergence measures,
susceptible of being employed to study atomic or molecular systems, especially relevant
are the “Kullback-Leibler or relative entropy” (1.28), and the quantum similarity index
(QSI) [118, 144, 139, 115] defined in Eq. (1.36).

The aim of this work is to present a new general similarity measure. Its definition,
as compared to the pioneering QSI , constitutes a generalization modifying the number
of functions to be compared and the weights of each of them in different regions of their
domain of definition. The usefulness of the new comparative quantifier is illustrated with
applications for one-particle densities in position and momentum spaces. These densities
are used as a benchmark to study a known but extremely hierarchical and complex [53] set
of quantum objects: atoms, but the universality and versatility of this technique allows its
application to other more complex or less known molecular or nuclear systems.

The quantum similarity index constitutes a particular case of a one-parameter “general-
ized quantum similarity index” QSI(q). The analysis of the QSI(q) here provided general-
izes and improves some previous results on the QSI of atomic systems. Such an improve-
ment mainly arises from the capability of QSI(q) to modify, by means of its characteristic
parameter, the relative contribution of relevant specific regions of the atomic densities in
both conjugated spaces. The QSI(q) allows a deep introspection within the structure of
the atomic one-particle densities, capturing relevant differences in any of the conjugated
spaces. This is not the case of other measures of divergence or similarity employed with
multielectronic systems as, for instance, the own QSI .

The structure of this Chapter is the following. Section 5.1 is devoted to define the gen-
eralized quantum similarity index, and to analyze its main theoretical features, including its
advantages with respect to the original similarity index QSI . In Section 5.2, applications
to the similarity-based study of atomic one-particle densities are carried out, dealing with
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neutral (Section 5.2.1) and ionized species (Section 5.2.2). Concluding remarks and open
problems are given.

5.1 Generalized quantum similarity index

Let us consider a couple of functions, f(~r) and g(~r), with identical domain ∆ in the
d-dimensional space Rd. In what follows, all integrations are understood to be performed
over the common domain ∆. The Hölder’s inequality [141] establishes the relationship∫

fgd~r ≤
(∫

fpd~r

)1/p(∫
gqd~r

)1/q

(5.1)

for any p, q > 1 verifying
1

p
+

1

q
= 1. Equality in the above expression is reached if and

only if f(~r) = g(~r).
The definition of the quantum similarity indexQSI[f, g], given by Eq. (1.36), together

with Hölder’s inequality for the particular case p = q = 2, allows to assert thatQSI[f, g] ∈
[0, 1], with QSI[f, g] = 1 if and only if f(~r) = g(~r).

The Hölder’s inequality in Eq. (5.1) constitutes a particular case of the “generalized
Hölder’s inequality” [141], given by[∫

(fg)md~r

]1/m

≤
(∫

fpd~r

)1/p(∫
gqd~r

)1/q

, (5.2)

with p, q > m > 0 verifying
1

p
+

1

q
=

1

m
. The particular case m = 1 provides Hölder’s

inequality, namely Eq. (5.1).
An iterative use of the above expression allows to generalize the inequality for an arbi-

trary number n ≥ 2 of functions {f1, f2, . . . , fn}:[∫
(f1 · · · fn)md~r

]1/m

≤
(∫

fp1
1 d~r

)1/p1

· · ·
(∫

fpnn d~r

)1/pn

, (5.3)

with
1

p1
+ . . .+

1

pn
=

1

m
. Raising to ’m’ and defining λi ≡ m/pi the inequality reads as

∫
(f1 · · · fn)md~r ≤

(∫
fp1

1 d~r

)λ1

· · ·
(∫

fpnn d~r

)λn
, (5.4)

with
n∑
i=1

λi = 1. We now define new functions gi(~r) through the identity fi = g
q/pi
i for an

arbitrary q > 0, so that∫
(gλ1

1 · · · gλnn )qd~r ≤
(∫

gq1d~r

)λ1

· · ·
(∫

gqnd~r

)λn
. (5.5)
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The left- and right-hand-side terms in the last inequality give rise to a quotient not greater
than 1, as also occurred when defining QSI . This is the essential ingredient that allows to
define the ’qth order generalized quantum similarity index’:

QSI(q) [{gi, λi}ni=1] ≡
∫

(gλ1
1 · · · gλnn )qd~r(∫

gq1d~r
)λ1 · · ·

(∫
gqnd~r

)λn with
n∑
i=1

λi = 1, (5.6)

and 0 < λi < 1 for all i = 1, . . . , n. It is worthy to remark that (i) QSI(q) ∈ [0, 1]

for any q > 0, and (ii) the quantity QSI(q) does not depend on the normalization of the
chosen functions gi(~r), as also happens with the usual QSI . The last point implies that
the similarity index constitutes a measure of how similar the distributions are according to
their shapes rather than to their absolute values or sizes, contrary to the aforementioned
divergences.

The definition of the above similarity index, as compared to the original QSI measure,
constitutes a generalization in three different ways, namely:

• The number ’n’ of functions gi(~r) under comparison, not necessarily n = 2 as for
the QSI which constitutes a measure of overlap between two densities, while its
generalization quantifies the total overlap among an arbitrary number of them.

• The order q, which allows to enhance or diminish the contribution of the ’tails’ and,
in general, the surroundings of the local extrema of each function, by considering
higher or lower values of q.

• The ’weights’ λi, a set of parameters which control the relative importance of each
function in performing the comparison among themselves by means of the general-
ized similarity index.

For the sake of simplicity in notation, the weights λi will be omitted as arguments
of QSI(q) unless necessary. Relevant particular cases of the generalized similarity index
QSI(q) are detailed below:

(a) Similarity between two densities.

The usual QSI in Eq. (1.36) is obtained from the general expression in Eq. (5.6) by
choosing a number of densities n = 2, the second order q = 2, and equal weights
λ1 = λ2 = 1/2. That is,

QSI(2)[g1, g2] = QSI[g1, g2] (5.7)

For arbitrary order and weights, the generalized similarity index reads as

QSI(q)[g1, g2] =

∫ (
gλ1 g

1−λ
2

)q
d~r

(
∫
gq1d~r)

λ(
∫
gq2d~r)

1−λ (5.8)

for any 0 < λ < 1.
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(b) Uniformly weighted similarity.

Choosing uniform weights λi = 1/n in Eq. (5.6) gives rise to

QSI(q)[g1, . . . , gn] =

∫
(g1 · · · gn)q/nd~r

n

√∫
gq1d~r · · ·

∫
gqnd~r

, (5.9)

in particular

QSI(q)[g1, g2] =

∫
(g1g2)q/2d~r√∫
gq1d~r

∫
gq2d~r

(5.10)

(c) Relationship among generalized QSI(q) of different order.

From the definition in Eq. (5.6), we check that

QSI(q)[g1, . . . , gn] = QSI(t)[g
q/t
1 , . . . , gq/tn ] (5.11)

for arbitrary orders q and t. The particular case t = 2 provides, in the right-hand-
side, the usual QSI , and consequently

QSI(q)[g1, . . . , gn] = QSI[g
q/2
1 , . . . , gq/2n ] (5.12)

This means that, in what concerns the dependence on the order q, considering the
generalizationQSI(q) is equivalent to evaluateQSI not among the considered func-
tions, but instead among them raised, each one, to the power q/2. It is in that way that
we better understand the role played by the order q: considering different values of
the order implies to carry out a comparative study based on a higher or lower similar-
ity in the short- and long-range domains, in a similar fashion as done in divergence-
based previous studies [212, 137, 225].

5.2 Numerical analysis with atomic one-particle densities

In this section we analyze the similarity among atomic one-particle densities, in both
position and momentum spaces. In doing so, accurate near-Hartree-Fock wavefunctions
[219, 220] are employed as a benchmark, for both neutral and ionized species with a num-
ber of electrons up to 103 and 54, respectively. Atomic units (a.u.) will be used throughout
the section.

For the sake of brevity, we will restrict the analysis of the results according to the
dependence of the generalized similarity on its order q, dealing with uniformly weighted
couples of functions. This description corresponds to the functional

QSI(q)[g1, g2] =

∫
(g1g2)q/2d~r√∫
gq1d~r

∫
gq2d~r

(5.13)

in order to go far beyond the well-known results provided by QSI as obtained for the
particular case q = 2 [115, 145].
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5.2.1 Pairs of neutral atoms

Let us consider two neutral atoms, A and B, with respective nuclear charges ZA and
ZB and electron charge densities ρA(~r) and ρB(~r). In previous studies, the problem of
checking the extent to which the similarity between the one-particle densities of systems A
and B implies a similarity among their physico-chemical properties, and conversely, was
afforded by quantifying the similarity between ρA and ρB according to the QSI measure
given by Eq. (1.36). The pioneering and very succesful results obtained in comparing
molecular densities [48] appeared to be very poor when dealing with atomic densities [115].
The main conclusion was that similarity between atoms A and B is roughly determined by
the difference |ZA − ZB| among their nuclear charges. So, the quantity QSI(Z,Z ′) =

QSI[ρZ , ρZ′ ] as function of Z for fixed Z ′ displays an unimodal shape, firstly increasing
until reaching the extremal value 1 for Z = Z ′ and decreasing hereinafter. This kind of
information regarding similarity is very far from the physical one, where one should expect
the presence of properties such as periodicity or shell-filling patterns, among others. A
relevant improvement was provided in Ref. [144], where periodicity patterns are displayed
by means of QSI with respect to closed-shell systems.

A complete displayment of periodicity patterns was achieved for arbitrary systems A
and B throughout the Periodic Table by considering the atomic momentum densities γA(~p)

and γB(~p), instead of the position space ones [115]. Within this context, the results ob-
tained were extremely rich, in the sense discussed above: similarity between A and B was
strongly determined by the atomic shell-filling patterns, and periodicity was clearly dis-
played.
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Figure 5.1: Generalized quantum similarity index QSI(q)
r (Z ′, Z) (for q = 0.4 and 2.0) in

position space among each of Argon (Z ′ = 18) and Calcium (Z ′ = 20) with respect to all
neutral atoms with nuclear charge Z = 1− 103.

In this section, however, we show that the position-space generalized quantum simi-
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larity index QSI(q) makes possible to get similar information as that provided by QSI =

QSI(2) in momentum space, by dealing with appropriate values of q other than q = 2. For
illustration, the QSI(Z ′, Z) and QSI(q)(Z ′, Z) measures in position space (with q = 0.4)
among each of Z ′ = 18, 20 (Ar and Ca) and all other atoms throughout the Periodic Table
(Z = 1− 103) are displayed in Fig. 5.1.

As previously mentioned, both curves for QSI behave in an unimodal way, almost
overlaping one with each other because of the closeness of the nuclear charges Z ′ = 18, 20.
Such a similarity between curves disappears progressively as far as q becomes smaller.
Changes are dramatic for a value as low as q = 0.4, not only attending to the different
paths followed by each curve, but also because of their higher level of structure, displaying
numerous local extrema which location is determined by shell-filling patterns. Let us have
in mind that Z = 18 corresponds to a noble gas (Argon) while Z = 20 to an alkaline-
earth (Calcium), groups of the Periodic Table characterized by extremely different physical
properties. In this sense, it is worthy to remark that the main maxima of QSI(0.4)

r (Ar,Z)

occur for noble gases while those of QSI(0.4)
r (Ca,Z) for alkaline-earths. In both cases,

additional minor extrema are usually associated to comparisons with systems suffering
from an anomalous shell-filling. Similar effects are observed for systems other than Z ′ =

18, 20.

In order to test the usefulness of the generalized index QSI(q) as compared to the
usual one QSI , let us observe Fig. 5.2 where the generalized QSI(q)(Kr,Z) for Krypton
(Z ′ = 36) is displayed for different values of q, in position (Fig. 5.2a) and momentum (Fig.
5.2b) spaces. The fundamental reason for QSIr (i.e. q = 2) to display a so unstructured
curve arises from the exponential long-range behaviour of the charge density ρ(~r). This
fact makes the three integrals included in the definition ofQSI to be mainly determined by
the values of the densities in the surrounding of the origin, the contribution from outermost
regions being almost negligible. Such a quick decrease can be attenuated by raising the
density to a low power, as controlled by the parameter q in the definition of QSI(q). Con-
sequently, decreasing q makes the relative contribution of the outermost regions (’tails’)
in the evaluation of similarity to increase. Let us keep in mind that the main physical and
chemical properties of atomic systems, including the shell-filling pattern, are determined
by the structure of the density in the valence region, most usually the outermost one. This
effect is clearly observed in Fig. 5.2a, with a very apparent increase in the number of local
extrema within the curves with q ≤ 1 as compared to the q = 2 one. Such an increase is
progressive, especially in going from q = 2 to q = 1, but also for q < 1.

Let us notice the main features of systems for which QSI
(q)
r (Kr,Z) with q ≤ 1

displays local maxima: (i) other noble gases (e.g. Z = 54, 86 systematically, the
rest occasionally), (ii) closed-subshell atoms (Z = 12, 30, 48, 70, 80), (iii) half-filled-
subshells (Z = 7, 15, 43, 75), and (iv) systems with anomalous shell-filling (Z =

24, 41, 42, 44, 46, 58, 64, 78, 90, 93, 96, 97).

Concerning momentum space (Fig. 2b), highly structured curves were obtained in the
recent past by using QSI . A detailed analysis of the number and location of local maxima
allows to assert that: (i) a similar structure is obtained for values of the order within the
interval 1.5 ≤ q ≤ 3, which includes QSI as q = 2; these maxima correspond to the same
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Figure 5.2: Generalized quantum similarity index QSI(q)(Kr,Z) between Krypton (Z ′ =
36) and all neutral atoms with nuclear charge Z = 1 − 103 for different orders q, in a)

position and b) momentum spaces.

systems as in the position case, (ii) in going below such a range, a number of local extrema
disappears progressively, as e.g. Z = 2, 7, 29, 78 (systems characterized in the previous
position-space analysis) for the value q = 1, and (iii) an order as low as q = 0.5 provides
an unimodal curve with the unique maximum at Z = 36.

Fig. 5.3 showsQSI(0.4)
r , a position space index displaying extremely structured curves

for all noble gases. The location of local extrema in each curve is determined according to
similar patterns to those just discussed. All curves appear (roughly) ordered according to
the nuclear charges of the reference systems. This behavior was emphasized in previous
works dealing with the momentum space similarity QSI , instead of the position one as in
the present figure. Specially remarkable are (i) the closeness to unity of the main maxima
of QSI(0.4)

r when comparing a couple of noble gases, and (ii) the very apparent minima
when a noble gas is compared with an alkaline system.
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space of each noble gas with respect to all neutral atoms with nuclear charge Z = 1− 103.

5.2.2 Ionization processes

The results obtained by means of the similarity indexes and their physical interpretation
motivated us to ask ourselves about the following questions: to which extent the ionization
of a neutral atom modifies its one-particle densities, in both conjugated spaces? Is the sim-
ilarity measure an appropriate tool to quantify the modifications in the densities? Is there
a connection between neutral-ion similarity and relevant physical properties in describing
ionization processes?

All those questions are afforded here, employing the generalized measure
QSI(q)(N,C) for different values of the order q. In doing so, a number of neutral atoms
and their singly-charged cations are considered in order to compare the respective one-
particle densities of the neutral system (N) and its cation (C). The results are interpreted
according to shell-filling patterns (in particular the subshell from which the electron is
ejected) as well as in terms of the first atomic ionization potential. Such a study is per-
formed in both conjugated spaces. Previous works [145] employing the quantum similarity
index QSI(N,C) provided more limited results.

We first analyze Fig. 5.4, corresponding to the position space index QSI(q)
r (N,C)

for different values of q, together with the atomic ionization potential (AIP) of the neutral
system. The most remarkable feature is the increase of structure, according to the number
and enhancement of local extrema, as the parameter q becomes smaller. In some cases,
most local minima of QSI(q)

r (N,C) correspond to systems displaying local minima in the
AIP curve. Such a resemblance does not occur for the position space QSI .

Restricting ourselves to 0.4 ≤ q ≤ 1, the following comments are in order:
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Figure 5.4: Generalized quantum similarity index QSI
(q)
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neutral-cation pairs (nuclear charge Z = 3 − 55) with different orders q, and atomic ion-
ization potential AIP.

1. The systematic appearance of minima in q-similarity for systems Z =

3, 8, 11, 19, (23−24), 31, 37, 42, 45, 47, 49 is associated to ionization processes pro-
voking the disappearance of a subshell (a ’s’ one, except for Z = 31), or a ’p’ sub-
shell which becomes half-filled (Z = 8).

2. The closeness of the above list with that of AIP minima: Z =

3, 5, 8, 11, 13, 16, 19, 23, 28, 31, 34, 37, 47, 49. Values included in this list but not in
the previous one are Z = 5, 13, 16, 28, 34, corresponding again to the disappearance
of subshells (Z = 5, 13, 28) or half-filled ’p’ ones in the cation (Z = 16, 34).

3. Nevertheless, most of the just mentioned ’additional systems’ are detected by low
enough values of q (0.8 for Z = 13, 16, 34 and 0.4 for Z = 5). Such a detection
occurs also for Z = 52 (half-filled ’p’ subshell in cation) with q = 0.8, in spite of
not displaying a minimum of AIP.

4. Most usually, the steepest peaks in the curves are associated to ionization ejecting a
s-subshell electron, as compared to the ’p’ or ’d’ ones. This means that the s-like ion-
ization produces stronger changes in the electron charge density, appreciably more
relevant than those produced by removing electrons from other types of subshells.

Conclusions from the analysis in momentum space are roughly the same as those aris-
ing from the position space study. A few additional comments are in order: (i) a strong
resemblance among lists of minima in generalized similarity for different q’s is observed,
even for an interval as wide as 0.5 ≤ q ≤ 3.0, and (ii) those lists share many systems
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enclosed in the lists of minima of both position-space generalized similarity for low q and
the atomic ionization potential. The interpretation of the physical properties characterizing
the systems displaying a minimum in momentum space can be done in a similar fashion as
in the position one.

Conclusions

The capability of a generalization of the pioneering quantum similarity index to gain
physical insight within the structural properties of many-electron systems has been shown.
In doing so, we have taken advantage of its characteristic parameter in order to enhance
or diminish the short- and long-range contributions in a similarity-based analysis. The
generalized index allows to deal with a set of an arbitrary number of density functions,
assigning different weights to each one in accordance with their role within the comparative
purpose considered.

For atomic systems, a study based on one-particle densities in position space provides
clearly an interpretation in terms of shell structure. The generalization introduced in this
work allows to deal with densities of any of the conjugated spaces by choosing appropri-
ately the value of its characteristic parameter.

A detailed numerical analysis has been presented, from which it is clearly established
the relationship between valence subshell properties of the systems under comparison and
the generalized similarity values, as well as the detection of the presence of systems suf-
fering from anomalous shell-filling.

The usefulness of the tool here defined has been shown in the study of ionized systems,
by considering the analysis of atomic pairs neutral-cation. It appears a strong resemblance
among the extrema of similarity and those of the atomic ionization potential, mostly deter-
mined by occupancy numbers of the outermost subshell in neutral and cationic systems. In
fact, it is observed that the angular momemtum quantum number ’l’ of the electron ejected
plays a relevant role in terms of similarity.

Further applications of the generalized index, arising from its rigorous mathematical
properties here described, are planned to be carried out in a near future, including studies
(i) on the ability in comparing different quantum models (e.g. configuration interactions,
relativistic effects), (ii) comparing more that two functions, e.g. sequence anion-neutral-
cation, groups/periods of the Periodic Table, isoelectronic series, ’parts’ of a given compos-
ite system, (iii) assigning appropriate weights to each system according to relevant phys-
ical/chemical properties, such as mass, number of electrons, volume. Additional studies
of quantum systems (e.g. molecules) and processes (reaction, excitation) will be provided
elsewhere.
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Geometric Rényi divergence

The aim of this chapter is to propose, study and apply a new one-parameter general-
ized divergence measure, the “geometric Rényi divergence” GRD(q), which has important
advantanges over other studied divergences. Particularly, we can not assert that the one-
parameter Jensen-Rényi divergence, Eq. (1.34), is always positive as required for a measure
of distance, fact that meets the GRD(q). Such improvement mainly arises from the capa-
bility of GRD(q) to modify, by means of its characteristic parameter, q, the relative contri-
bution of relevant specific regions of the probability densities. The mathematical definition
and properties of GRD(q) allows to deal with arbitrary probability distributions, indepen-
dently of their meaning or the specific fields of research, including all those previously
mentioned.

We show the main mathematical properties as well as the physical properties of this
divergence by comparing and studying a simple but highly hierarchical and organized set
of quantum systems. We study the one-particle densities of atomic systems, in both con-
jugated spaces, which contain all the physical and chemical information through Density
Funcional Theory [36].

In this sense, especially remarkable are the applications carried out in this chapter by
means of GRD(q), namely (i) comparison among neutral atoms and interpretation in terms
of shell-filling-patterns, (ii) study of ionization processes by analyzing the geometric di-
vergence between the initial and final systems (neutral and cation) and its connection with
the value of the ionization potential, (iii) divergence among densities, for a given system,
computed within different models, and (iv) to discriminate if an atom belongs or not to a
set of systems with identical nuclear charges. The results here provided improve some of
the aforementioned applications performed by using other measures, such as e.g. the quan-
tum similarity index [115] or the Jensen-Shannon divergence [136]. Further applications to
other systems and/or processes of physico-chemical relevance (e.g. molecules, reactions)
will be provided elsewhere.

In Section 6.1 of this chapter we define the geometric Rényi divergence, showing its
main mathematical properties. Section 6.2 is devoted to the application of GRD(q) to the
study of one-particle densities of atomic systems. Finally we summarize the main results
of this chapter.
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6.1 Geometric Rényi divergence

Regarding the definition of JRD(q), Eq. (1.34), any order 0 < q 6= 1 can be considered,
as far as the involved frequency moments converge. The limiting case q → 1 provides the
so-called “Jensen-Shannon divergence” [134, 133], JSD = JRD(1), Eq. (1.30), defined
as JRD(q) but in terms of the Shannon entropy S[ρ] in Eq. (1.4), instead of the Rényi one.
This is due to the limiting equality S[ρ] = R1[ρ] among entropies.

However, an essential constraint in performing studies by means of JRD(q) has been
the necessary condition of considering the order q not above unity. The reason is that non-
negativity of JRD(q) is guaranteed only for q ≤ 1, while for q > 1 it does not have a defi-
nite sign. According to the interpretation of JRD(q) as a measure of ’distance/divergence’
among distributions, we must avoid values below zero, as usually done for arbitrary metrics
in a given space.

Let us recall Eqs. (1.5) and (1.34): we can express the generalized JRD(q), for a set
of densities ρ1(~r), . . . , ρn(~r), in terms of frequency moments as

JRD(q)[ρ1, . . . , ρn] =
1

1− q ln
ωq [
∑n

k=1 αkρk]

(ωq[ρ1])α1 · · · (ωq[ρn])αn
(6.1)

The nonnegativity of JRD(q) for q < 1 arises from the value above unity of the fraction
within the logarithm. The same property of JRD(q) for q > 1 would be verified in case of
the fraction being below unity, what is not necessarily true. We will deal with {ρi(~r)}ni=1

d-dimensional normalized-to-unity distributions, a condition which can be expressed as
ω1[ρi] = 1.

In order to get a Rényi-like divergence measure, nonnegative for arbitrary order, we
apply the procedure shown in the previous chapter, Section 5.1. The inequality qiven in
Eq. (5.5), coming from the “generalized Hölder’s inequality” [141], provide a quotient
above unity, for arbitrary q > 0. This quotient has been defined in Eq. (1.36) as the
“generalized quantum similarity index” QSI(q), and extensively characterized throughout
previous Chapter 5. Applying logarithms to both sides of the inequality (5.5) we get, in
terms of frequency moments,

λ1 lnωq[ρ1] + · · ·+ λn lnωq[ρn]− lnωq[ρ
λ1
1 · · · ρλnn ] ≥ 0 (6.2)

where
n∑
i=1

λi = 1. We can now define a novel measure of divergence in terms of the Rényi

entropies, Eq. (1.5), as

GRD(q)[ρ1, . . . , ρn] ≡ (q − 1)

(
Rq[ρ

λ1
1 · · · ρλnn ]−

n∑
i=1

λiRq[ρi]

)
≥ 0. (6.3)

The quantity GRD(q) will be refered as “geometric Rényi divergence” of order q for
the set of distributions {ρi} with weights {λi}. Given the relationship between this new
measure GRD(q) and the QSI(q), just through a logarithm GRD(q) = − lnQSI(q), one
could interpret the Geometric Rényi Divergence as a “logarithmic similarity”.

Some comments are in order:
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1. Let us notice the strong resemblance between the terms within parenthesis in
Eq. (6.3) and those of the definition of the Jensen-Rényi divergence JRD(q) in
Eq. (1.34). In fact, all terms associated to individual distributions are identical,
the difference between both expressions being determined by the multicomponent
term. That term corresponds to the frequency moment of the arithmetic mean
(λ1ρ1 + . . .+ λnρn) of the distributions in the JRD(q) case, while to the geometric
mean (ρλ1

1 · · · ρλnn ), instead, in GRD(q).

2. The additional factor (q−1) guarantees the nonnegativity of GRD(q) for any q > 0,
including the non-zero and finite-valued limiting case q = 1. Adding the same factor
in the definition of JRD(q) would not solve the problem of the undefiniteness of sign
for q > 1, as will be shown in Section 6.2.1

3. A particular case, of physical relevance, is obtained for q = 2:

GRD(2)[ρ1, . . . , ρn] = ln
(D[ρ1])λ1 · · · (D[ρn])λn

D
[
ρλ1

1 · · · ρλnn
] (6.4)

where the funtional D[ρ] is the disequilibrium, Eq. (1.7). So, GRD(2) for a set of
distributions is expressed in terms of the quotient between the geometric mean of
their respective disequilibria and the disequilibrium of the geometric mean of the
distributions.

4. For the sake of clarity, we give below the simplest case of two densities with uniform
weights, namely

GRD(q)[ρ1, ρ2] = (q − 1)

{
Rq[
√
ρ1ρ2]− 1

2
(Rq[ρ1] +Rq[ρ2])

}
, (6.5)

to be compared with Eq. (1.33). The arithmetic mean is replaced by the geometric
one, obtaining a nonnegative divergence measure once including the factor (q − 1).

5. GRD(q) keeps other relevant properties of JRD(q), including (i) invariance under
exchange of distributions, (ii) additivity, and (iii) they reach the minimal value zero
if and only if all distributions are identical.

6. Nevertheless, GRD(q) possesses an additional property not shared with JRD(q).
The geometric divergence of a set of distributions is independent of the normaliza-
tion of each one within the set. Such an invariance under changes of normalization
also holds for JRD(q) as far as those changes be identical for all distributions. In
this sense, the comparison among distributions established by means of GRD(q)

is based on a dissimilarity according to the shapes of the distributions, rather than
on sizes, masses, charges or any other quantity for which normalization is relevant.
This means that, in what concerns the measure GRD(q) it is not necessary to con-
sider normalized-to-unity functions, contrary to the JRD(q) case as pointed out after
Eq. (6.1).
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7. The main usefulness of the geometric Rényi divergence arises from its ability to
modify the relative contribution of specific regions within the domain of definition
in obtaining the divergence value, by varying appropriately the order q. This is a
fundamental feature in the applications to atomic systems, as will be discussed in the
numerical analysis performed in next section.

An illustrative example will allow us to understand better the role played by the order
q of GRD. Let us consider two one-dimensional gaussians, one of them centered at the
origin, f(x) = e−x

2
, and the other one with center at an arbitrary point, g(x) = e−(x−a)2

.
Both them have identical long-range behavior, but short-range dissimilarity will be deter-
mined by the length of the shift a. Computing straightforwardly GRD(q)(f, g) = a2q/4,
we can notice that, for fixed a 6= 0, the geometric divergence increases as q does, because
of the “emphasis” in the comparison based on short-range values. For any fixed q, the
saturation GRD(q)(f, g) = 0 occurs for a = 0, that is f = g.

6.2 Numerical analysis with atomic one-particle densities

The geometric divergence introduced in this work possesses useful features, especially
relevant when compared to previous measures of divergence. Let us remark, on one hand,
the characteristic parameter q (“order”) which enables us to modify the relative contribu-
tion of specific regions for the comparative process among densities. On the other hand, its
nonnegativity makes possible the interpretation as a “mean distance” (not in a strict math-
ematical sense) among the distributions under comparison. The latter is true for any q > 0.
Such is not the case of the pioneering measure of divergence built up by means of the Rényi
entropy, namely the Jensen-Rényi divergence JRD(q). In Section 6.1 we mentioned that
its nonnegativy (necessary to be interpreted as a divergence) is guaranteed only for q ≤ 1.

For illustration, both the Jensen-Rényi and the geometric-Rényi divergences between
the one-particle densities of neutral atoms He and Fr (Z = 2 and Z = 87, respectively) are
displayed in Figure 6.1 for 0 < q ≤ 6, in both position and momentum spaces. The proce-
dure for calculating the one-particle densities of these N -electron systems is described in
Appendix A. Atomic units (a.u.) will be used.

It is observed in Figure 6.1 that, as we should expect, GRD(q)(He, Fr) remains
positive (in both spaces) within the whole interval, in fact for any q > 0. How-
ever, JRD(q)(He, Fr) becomes negative for q above unity. In this example, negativ-
ity of the Jensen-Rényi divergence is observed for q ≥ 1.26 in position space, and
1.08 ≤ q ≤ 3.00 in the momentum one. Let us notice the existence of values of q for
which JRD(q)(He, Fr) = 0, in spite of dealing with two different distributions. So, the
requirement of having null divergence if and only if the distributions under comparisons
are identical is violated.

6.2.1 Neutral atoms

At a first stage, we consider two significantly different atoms, such as Argon (noble
gas, nuclear charge Z = 18) and Calcium (alkaline-earth, Z = 20). We compare, in Figure
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Figure 6.1: Jensen-Rényi, JRD(q), and Geometric Rényi, GRD(q), divergences between
densities of He and Fr (Z = 2 and Z = 87, respectively) neutral atoms in position and
momentum spaces, for q = 0.4 and q = 2.

6.2, each one of their charge densities ρ(~r) with all those of neutral atoms throughout the
whole Periodic Table (Z = 1 − 103), and similarly with momentum densities γ(~p). In
doing so, the uniformly weighted Geometric Rényi Divergence GRD(q) in Eq. (6.5) is
employed for orders q = 0.4 and q = 2. Differences among the results obtained for each
value of q are apparent: very “soft” and almost identical curves for both Ar and Ca are
obtained with q = 2, while numerous local extrema appear for q = 0.4 with the structure
of the curves being extremely different one from each other.

In order to justify these results from a physical point of view, it is worthy to remark
that the main atomic physical and chemical properties are determined by the shell structure
and, in particular, by the characteristics (quantum numbers, occupancy,...) of the outermost
subshell (valence region). The computation of GRD(q) requires that of the qth order fre-
quency moments of each density and also of their geometric mean. Due to the exponential
long-range behavior of the atomic charge densities, the relative contribution of the outer-
most region to the evaluation of the integrals involved is very small as compared to that of
the core. Such a contribution can be enhanced by raising the density to a relatively small
power, as done when considering frequency moments of lower orders. Diminishing the
value of q = 2 up to q = 0.4 allows to gain enough information regarding valence features,
so that GRD(q) reveals in most cases if the systems under comparison share or not the
above mentioned features (e.g. if they belong to the same group of the Periodic Table).
However, the closeness between both curves for q = 2 is due to the similar values of their
nuclear charges (18 and 20), together with the enhancement, for the computation of inte-
grals, of the surround of the nuclei, where the attractive potential governed by the nuclear
charge Z determines (roughly) the shape and magnitude of the electronic cloud. A detailed
analysis on the patterns for the appearance of extrema is carried out in the discussion of
next Figure 6.3.
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space, for q = 0.4 and q = 2 of both Argon and Calcium with respect to all neutral atoms
1 ≤ Z ≤ 103.

Six curves are displayed in Figure 6.3, corresponding to the position-space GRD(q)
r

with q = 0.4 between each alkaline metal (group IA) and all neutral atoms with 1 ≤ Z ≤
103. It is clearly observed the similar structure of all curves, appearing almost perfectly
embedded. A detailed analysis of the location of maxima and minima brings on the fol-
lowing observations:

• Almost systematic appearance of local minima when comparing any of the
above mentioned systems with another one belonging to its own group (Z =

3, 11, 19, 37, 55, 87). These minimum values should be interpreted as a low diver-
gence among systems with share the fundamental features at the valence region and,
consequently, with similar physico-chemical properties. Those minima correspond
to the main ones observed in Figure 6.3.

• The opposite occurs when comparing alkalines with noble gases, with higher values
(local maxima) of divergence. Let us remind the prediposition for reactivity of alka-
lines, while noble gases (Z = 2, 10, 18, 36, 54, 86) are conformed so as to keep their
closed shell structure. According to the meaning of the divergence measure here
considered, it should be expected a high divergence, based on the one-particle den-
sities, when comparing a pair of so different systems from a physical point of view.
The appearance of local maxima when comparing alkaline-noble atoms is absolutely
systematic now.

• A number of additional extrema, not so apparent as compared to the above dis-
cussed, appear in each curve. The systems corresponding to minima can be classi-
fied, roughly, in two different groups: (i) non-alkaline systems with a unique electron
at the valence subshell (Z = 13, 31, 49, 81), and (ii) systems suffering from anoma-
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Figure 6.3: Geometric Rényi divergence GRD(q)
r (Z,Z ′) of order q = 0.4, in position

space, between each alkaline (Z ′ = 3, 11, 19, 37, 55, 87) and all neutral atoms 1 ≤ Z ≤
103.

lous shell-filling (Z = 29, 79, 93). Similarly occurs for maxima, most of them cor-
responding to: (i) closed-subshell systems (Z = 12, 30, 48, 80) and (ii) anomalous
shell-filling again (Z = 42, 44, 46, 58, 64, 90, 97).

The display (or not) of local extrema when comparing a density for a given neutral
atom with the rest of them depends on the order q considered. This fact has been empha-
sized when discussing Figure 6.2 which includes two different orders: q = 2 (curves with
no extrema at all) and q = 0.4 (with numerous extrema). The apperance of extrema is
progressive in going from q = 2 to q = 0.4.

This fact is clearly observed in Figure 6.4, where divergence among the charge densities
of Krypton (Z = 36) and each of the systems 1 ≤ Z ≤ 103 are provided by means of
GRD

(q)
r for different values of q. The structural features of the curves, in what concerns

number and enhancement of extrema, is very apparent as far as q decreases from 2.5 to 1.
There exists a group of atoms for which a extremum appears in all the four curves, while
other systems compared with Kr requiere a low enough value of q in order to be displayed
as a extremum.

The opposite trend is observed in the momentum-space comparison (not shown here),
in the sense of having curves with a higher structure as fas as q becomes higher. The
reason for those trends in opposite spaces requires again to consider the enhancement of
the relative contributions of the valence and core regions. While increasing q provokes the
enhancement of the core for the comparison of densities in position space, due to the their
maximal values at the origin, the enhancement in momentum space occurs for low-speed
electrons (surround of p = 0), that is those of the outermost spatial region. Consequently,
similar conclusions are obtained from the analysis in position and momentum space. This
comment spplies also to all other figures discussed in this subsection.
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Krypton (Z = 36) and all neutral atoms 1 ≤ Z ≤ 103, for orders q = 1.0, 1.5, 2.0, 2.5.

6.2.2 Ionization processes

Our next purpose is to analyze the effects arising from the physical process of atomic
ionization, attending to the changes experienced by the one-particle densities of the system
considered. In doing so, we employ the geometric Rényi divergence in order to compare
the respective densities of the ’initial and final products’ (that is, the neutral atom and the
singly-charged cation) involved in this physical process. Within this context, we employ
the notation GRD(q)(NC) for the neutral-cation comparison in a given space.

For illustration, we consider the analysis in position space, i.e. for the quantity
GRD

(q)
r (NC), with NC pairs of nuclear charges 3 ≤ Z ≤ 55, and consequently each

system containing a number of electrons up to 54. This quantity is displayed in Figure 6.5
for different values of q, together with an algebraic function of the atomic ionization po-
tential (AIP). This function of AIP is considered, instead of the own AIP, in order to make
easier the interpretation of the correlation observed among the divergence and AIP values.

In what concerns GRD(q)
r (NC) for the considered q’s, some comments are in order:

1. Systems displaying (in Figure 6.5) higher values (local maxima) of divergence be-
tween the neutral and ionized species can be classified as follows:

• Z = 3, 11, 19, 37, 55 (alkalines) for which the ionization left empty the valence
’s’ subshell of the neutral atom, and the resulting cation possesses a closed-shell
structure. These maxima occur in all curves with the exception q = 2, a value
too high in order to avoid the masking effect arising from the relatively small
information on the valence features, as compared to the core ones.

• Similarly for Z = 5, 13, 31, 49, now disappearing a ’p’ subshell. Previous
comment regarding the exception q = 2 applies also for these systems. Ad-
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atom (N) and its singly-charged cation (C) with 3 ≤ Z ≤ 55, and phenomenological
correspondence with the atomic ionization potential AIP of the neutral system.

ditionally, a ’d’ subshell becomes empty for Z = 39, but a value as low as
q = 0.2 is needed in order to “detect it” as a local maximum. Each of these
systems provides (or not) a maximum according to the value of q.

• Z = 8, 16, 34, 52 correspond to systems for which the outermost ’p’ sub-
shell becomes half-filled. In this sense, we should emphasize the capability
ofGRD(q)(NC) to ’discrimate’ systems with hall-filled valence subshell from
others with a number of electrons (there) different from half the occupation
number. These systems are displayed as maxima for all q < 1, while no one
for q = 2.

• Additional maxima are found for Z = (23 or 24), (one of 27, 28, 29), 42, 45,
47, depending on the curve. All these systems are characterized by an ioniza-
tion process with the ejection of an electron from an inner ’s’ subshell, instead
of the outermost one (3d or 4d). The only ones associated to maxima for q = 2

are Z = 23, 27, 42. The other ones require values of q below unity.

2. Display of low divergence (some local minima) in Figure 6.5 corresponds to closed-
shell and closed-subshell systems (Z = 4, 10, 12, 18, 30, 36, 48, 54), the range of
q for which they appear as minima depending on the specific systems considered.
The subshell from which the electron is ejected remains occupied in the cation and,
consequently, changes in one-particle densities, arising from the ionization, are not
so strong because of the presence of exactly the same occupied orbitals in the neutral
atom and its cation.

3. There exists a clear resemblance between the divergence of pairs NC and the
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value of the AIP of the neutral system. The complete list of the 15 local min-
ima of AIP for the systems here considered (displayed in Figure 6.5 as max-
ima in the corresponding curve, due to the functional of the AIP employed), is:
Z = 3, 5, 8, 13, 16, 19, 23, 28, 31, 34, 37, 47, 49, 55. Let us notice that all these sys-
tems are included in the whole list of large divergence pairs.

To justify these results, let us notice that most systems with low AIP possess a va-
lence subshell (independently of being or not the outermos one) containing a unique
electron. Their ionization provokes the disappearance of that subshell, what trans-
lates, in terms of changes experienced by the one-particle densities, to a large value
of the neutral-cation divergence.

Regarding the ionization analysis, we finally mention that similar conclusions to those
here discussed, on the basis of the position-space densities, are obtained from the same
analysis in momentum space.

6.2.3 Atomic models

In this subsection, we study to which extent the use of more simplified/sophisticated
models for computing the wavefunction provokes more or less significant differences
among the corresponding one-particle densities. In order to give a well-posed answer,
it is firstly necessary to establish a quantitave measure of difference among densities. The
GRD(q) divergence has been employed, both theoretically and numerically through this
work, with the aim of quantifying how different two (or more) densities are.

In this sense, we could assert with a quantitative basis if, for instance, to take into
account relativistic effects or correlations is worth or not for the study of multielectronic
systems in terms of one-particle densities. Perhaps differences could be relevant when
comparing wavefunctions, but not so important dealing with densities. Similar analyses
would be useful also for a comparative study of relevant distributions in physical systems
(e.g. molecules, clusters), arising from different theoretical and/or numerical frameworks.

The aim of the application here discussed is to analyze the effect of the interelectronic
repulsion in the structural properties of the atomic charge and momentum densities. In
doing so, we compute the densities using different models: the accurate near-Hartre-Fock
(HF) one employed for previous applications in this work, and the bare Coulomb field
(BCF) one [226], in which the interelectronic repulsive term of the Hamiltonian is ne-
glected. This simplification provides a description of the multielectronic system as a su-
perposition of hydrogen-like orbitals, in both spaces. The BCF system consists of a number
of electrons within the attractive nuclear attraction, but not interacting among themselves
via repulsive forces.

Neglecting the interelectronic repulsion will provoke more or less significant changes in
going from the HF situation to the BCF one. The extent of these changes are quantified by
means of the momentum space GRD(q)

p (HF,BCF ), displayed in Figure 6.6 for different
values of q. According to the previous description of these models, one should expect a
more significant divergence among the HF and BCF densities as the number of electrons
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N increases (with N = Z for neutral atoms, that is, those here considered). This would be
due to the much higher neglection of interelectronic repulsive forces occuring for high N .
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Figure 6.6: Geometric Rényi divergence GRD(q)
r (HF,BCF ) between the Hartree-Fock

(HF) and bare Coulomb field (BCF) charge densities of neutral atoms with 1 ≤ Z ≤ 103.

Certainly an increasing trend is observed, for all curves of HF-BCF divergence in Fig-
ure 6.6. However, no one is strictly increasing, but local extrema appear with their number
an enhancement depending on the order q considered. Location of maxima and minima
are determined by the shell structure, as also observed in the two previous applications.
Similar results are obtained when performing the same study in momentum space.

The main conclusion, regarding the present comparison among densities computed
within the HF and BCF models, is that the effects of the interelectronic repulsion on the
atomic one-particle densities depends not only on the total number of electrons, but also on
shell-filling features of the systems considered.

6.2.4 Discrimination of nuclear charges

It is worthy to remember the capability of the geometric Renyi divergence to quantify
the divergence of a number of functions higher than two. The interpretation as a ’mean
distance’ among two or more functions remains, independently of the number of densities
considered. For the sake of simplicity, we have restricted all previous applications in this
chapter to one-to-one comparisons.

Nevertheless, there exists additional applications of GRD(q) among a set of distribu-
tions. We find interesting to show one of them in the present work, but additional applica-
tions will be provided elsewhere.

Let us consider a number of atomic one-particle densities corresponding to systems
sharing an specific property. Now we include in that set an additional distribution. A new
question appears appropriate within this context: could we assert, attending to the GRD(q)
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values, if the system added to the initial set shares or not the specific feature(s) which
characterize(s) the initial set?

We provide here an example for which GRD(q) appears able to discriminate if the
system added belongs or not to the initial set according to the features which characterize
the set.

Consider a pair of cations with identical nuclear charge Z, one of them singly-charged
and the other doubly-charged. We denote them as Z+1 and Z+2, where the superscripts
correspond to the respective global charges. Let us notice that a pair of systems as cho-
sen above share the property of having the same nuclear charge Z. Now we add to
this two-element set a third system: a neutral atom (global charge zero) with nuclear
charge Z ′. To perform the study of the uniformly-weighted three-density divergence
GRD

(q)
r (Z+1, Z+2, Z ′), we choose q = 2 for illustration. For the doubly-charged ion,

the near-Hartee-Fock wavefunctions of Ref. [227] for isoelectronic series with a number
of electrons N = 2 − 10 are considered. They allow us to consider, for the present com-
parative purpose, values of the nuclear charges in the range Z = 3 − 12 for the systems
conforming the initial set.

In Figure 6.7, each curve corresponds to the election of Z for the initial two cations.
Consequently, ten curves are displayed (Z = 3− 12), each one as a function of the nuclear
charge of the neutral atom added to the previous set (1 ≤ Z ′ ≤ 103). The first observation
from Figure 6.7 is the unimodal shape of all curves, decreasing quickly as Z’ increases,
until reaching a minimum value (which appears amplified in the framebox inserted), and
increasing hereinafter. It is observed that the absolute minima occurs when Z ′ = Z in
each curve. The horizontal line establishes a threshold in the following sense: values
of GRD(2)

r (Z+1, Z+2, Z ′) above the aforementioned threshold allows to assert that the
neutral system added does not share the nuclear charge of the first two cations, that is
Z ′ 6= Z. However, any value below the line corresponds, necessarily, to the comparison of
three systems with the same nuclear charge, what means that Z ′ = Z.

Summarizing this application, it has been shown the usefulness of GRD(q) as a tool
to discrimate atomic systems, in the sense of its ability to determine if a system added to
a set of atoms characterized by some physical property(ies) belongs or not to that set. Or,
in other words, if the new atom included shares or not the aforementioned property(ies),
common to all initial systems.

Further applications will be provided elsewhere. They should include (i) the use of
different values of q, (ii) employment of weights other than the uniform ones, and (iii) a
study based on properties (e.g. long range behaviors) associated to the outermost regions,
instead of the inner ones as done here.

Conclusions

A new measure of dissimilarity among probability distributions, the geometric Rényi
divergence GRD, has been introduced in the present work. It is expressed in terms of the
Rényi entropy, as also happens with the well-known Jensen-Rényi divergence JRD. Both
them include a characteristic parameter in their definitions. The interpretation of JRD as a
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Figure 6.7: Geometric Rényi divergence in position space GRD(q)
r (Z+, Z2+, Z ′) among

singly and doubly charged cations with nuclear charge 3 ≤ Z ≤ 12, together with a neutral
system of nuclear charge 1 ≤ Z ′ ≤ 103. A threshold of GRD values appears amplified.

divergence measure constraints the parameter to values below unity, but such a constraint
is not a requirement for GRD.

The GRD statistical measure of divergence is used to compare atomic one-particle den-
sities. The capability of GRD to gain physical insight within the structural properties of
many-electron systems has been shown. In doing so, we have taken advantage of its char-
acteristic parameter in order to enhance or diminish the short- and long-range contributions
in a divergence-based analysis. The geometric Rényi divergence allows to deal with a set of
an arbitrary number of density functions, assigning different weights to each one in accor-
dance, e.g. with their role within the comparative purpose considered. For atomic systems,
a study based on one-particle densities in both position and momentum spaces provides
clearly an interpretation in terms of shell structure.

From a detailed numerical analysis, it is clearly established the relationship between
valence subshell properties of the systems under comparison and the GRD values, as well
as the detection of the presence of systems suffering from anomalous shell-filling. The
usefulness of the tool here defined has been shown in the study of ionized systems, by
considering the analysis of atomic pairs neutral-cation. It appears a strong resemblance
among the extrema of divergence and those of the atomic ionization potential, mostly de-
termined by occupancy numbers of the outermost subshell in neutral and cationic systems.
Further applications of the generalized index, arising from its rigorous mathematical prop-
erties here described, have been carried out in this work, including studies on (i) the ability
in comparing different quantum models, and (ii) the detection of systems which not share
specific physical properties with their partners within an atomic set.

Additional studies are planned to be performed in a near future: (i) use of more so-
phisticated atomic models including relativistic effects and/or correlations, (ii) comparing
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more that two functions, e.g. sequences anion-neutral-cation, groups/periods of the Peri-
odic Table, isoelectronic series, subsystems of a given composite system, (iii) assigning ap-
propriate weights to each system according to relevant physical/chemical properties, such
as mass, number of electrons, volume, and (iv) to consider other quantum systems (e.g.
molecules) and processes (reaction, excitation). It is worthy to remark that the universality
of GRD, in what concerns its definition and mathematical properties, allows its use in a
wide variety of fields. systems and processes, far beyond atoms, molecules or reactions.
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Generalized relative complexity

A thorough discussion on the meaning and properties of atomic and molecular com-
plexities can be found in Refs. [54, 86, 53, 228] and Chapter 6 of Ref. [4] where relevant
results were obtained. In the atomic case, it is clearly established the connection between
the complexity values of the electron densities and physically relevant properties. It has
been paid particular attention to the interpretation in terms of the organization of electrons
into shells and subshells, for both neutral and ionized systems. Additionally, the complex-
ity analysis of atomic ionization processes provides further connections with the value of
the ionization potential, as well as with the quantum numbers of the electron(s) ejected
or added. In all these studies, a more complete information is achieved when dealing si-
multaneously with the one-particle densities in both conjugate spaces, namely position and
momentum.

Complementary with the just mentioned numerical studies, rigorous bounds on the
complexity in terms of physical observables are also known [86]. Specially relevant are
those expressed in terms of radial expectation values of both the position and momentum
electron densities. Some of these observables are related to relevant physical quantities,
such as e.g. the kinetic energy and its relativistic correction, the electron-nucleus attraction
energy or the diamagnetic susceptibility, among others.

Very recently new statistical relative complexities have been defined [229, 230], and
the pioneering LMC-like one has been applied to atomic densities [229]. This is an intrin-
sic measure that compares more efficiently the complexity of two electronic distributions,
rather than merely the difference of their absolute complexities. Important properties have
been also shown for this relative complexity, but the numerical tests are limited to some
selected cases.

In this chapter we define a two-parameter generalized relative complexity, which con-
tains the above mentioned relative complexity in Ref. [229] as a particular case and fulfils
the most important properties for a measure of relative complexity. Furthermore this rela-
tive complexity is extended and applied to more than two densities, their relative weights
can be modulated if desired, and also allows, by using appropriate values of its parameters,
to enhance more or less different regions of the densities according to specific properties
of the distributions. Some numerical difficulties of the original relative complexity are also
marked.

The chapter is organized as follows. In Section 7.1 the generalized relative complexity
is defined and its main properties are shown. In Section 7.2 numerical tests are carried out
for atomic electron densities. Finally, conclusions and open questions are presented.
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7.1 Relative complexity: a two-folded generalization

The recently introduced [229] LMC-like relative complexity of system A with respect
to system B,

C(A,B) = D(A,B) ·H(A,B) (7.1)

is based on the definition of the pioneering LMC complexity for a unique system [50],
namely

C(A) = D(A) ·H(A). (7.2)

For the most general definition of a product-like complexity, the factor H(A) is a mea-
sure of disorder or delocalization of the representative probability distribution ρA(~r) (of
a random d-dimensional variable ~r) of the system A, while the factor D(A) constitutes a
measure of its “disequilibrium”. In the case of the LMC complexity defined in Eq. (1.23),
the delocalization factor is the Shannon length, Eq. (1.12),

H(A) ≡ N [ρA] = exp{S[ρA]}, (7.3)

and the disequilibrium D(A) = D[ρA] is that given by Eq. (1.7). Normalized to unity
distributions will be considered throughout this chapter.

The complexity C(A) given by Eq. (7.2) constitutes a measure of pattern, structure and
correlation in systems and processes. Its relative versionC(A,B) quantifies the complexity
of system A with respect to that of an a priori or reference system B. An appropriate
symmetrization of the composing factors will allow us to consider the relative complexity
amongA andB, avoiding the use of an a priori reference in order to deal with a “distance in
complexity”, in some sense. To define C(A,B) in this way, let us consider the two factors
of the complexity itself C(A), building up then the relative complexity C(A,B) in terms
of the relative functionals D(A,B) and H(A,B), in a similar way as done in Ref. [229]:

D(A,B) ≡ D[
√
ρAρB]√

D[ρA]D[ρA]
=

∫
ρAρBd~r√∫
ρ2
Ad~r

∫
ρ2
Bd~r

(7.4)

is the relative disequilibrium of A with respect to B, and

H(A,B) ≡ exp

{
1

2
(KL[ρA, ρB] +KL[ρA, ρB)]

}
(7.5)

is the relative exponential entropy, given in terms of the symmetrized Kullback-Leibler
entropy, Eq. (1.29). This definiton ofD(A,B) in Eq. (7.4) provides a symmetric functional
per se, being identical to the quantum similarity index QSI[ρA, ρB] defined in Eq. (1.36).
Its main properties allows to be considered as a measure of distance among probability
distributions. Let us remark that the QSI values are restricted to the finite interval [0, 1],
with QSI[ρA, ρB] = 1 only for ρA = ρB .

A straightforward definition of the factor H(A,B) from that of H(A) is proposed
in Ref. [229] by replacing the Shannon entropy in Eq. (7.3) by the relative entropy
KL[ρA, ρB]. This is done, there, in such a way because the Shannon entropy S[ρA] is,
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except for a sign, the relative entropy of system A with respect to an uniform distribution
for system B.

However, such a definition does not provide a symmetric factor, becauseKL[ρA, ρB] 6=
KL[ρB, ρA] in general. This fact justifies the symmetrization carried out in Eq. (7.5), in
order to consider H(A,B) as an unbiased measure of relative disorder between systems A
and B, and then preserving in the relative complexity C(A,B) the symmetry just achieved
for D(A,B).

The main purpose in this section is to provide a generalization of the relative complexity
functional C(A,B) = QSI[ρA, ρB] · H(A,B), by taking advantage of monoparametric
generalizations for each of the composing factors QSI and H . In our recent work [218],
reviewed in Chapter 5, the definition of the quantum similarity indexQSI[ρA, ρB] given by
Eq. (1.36) has been generalized by means of the qth order generalized quantum similarity
index, Eq. 5.6:

Dq({ρi, λi}Ni=1}) ≡ QSI(q)[{ρi, λi}Ni=1}] =

∫ (
ρλ1

1 · · · ρλNN
)q
d~r(∫

ρq1d~r
)λ1 · · ·

(∫
ρqNd~r

)λN , (7.6)

with the sum of positive numbers
N∑
i=1

λi = 1.

For the case of two distributions (N = 2) with identical weights (λ1 = λ2 = 1/2), the
generalized similarity index reads as Eq. (5.10)

Dq(A,B) =

∫
(ρAρB)q/2d~r√∫
ρqAd~r

∫
ρqBd~r

, (7.7)

which includes the similarity QSI = D in Eq. (7.4) for the particular case q = 2. The
generalized QSI(q) = Dq preserves, for arbitrary q, the relevant properties of QSI .

Let us now focus on the disorder/uncertainty factor H(A,B), expressed in Eq. (7.5)
in terms of Kullback-Leibler entropies KL. The KL functional is a limiting case of the
“relative Rényi entropy” [231] of order t defined in Eq. (1.35) as

Rt[ρA, ρB] =
1

t− 1
ln

∫
ρtA
ρt−1
B

d~r, (7.8)

so that KL[ρA, ρB] = R1[ρA, ρB]. Then, the H(A,B) symmetrized factor admits the
generalization

Ht(A,B) ≡ exp

{
1

2
(Rt[ρA, ρB] +Rt[ρB, ρA])

}
(7.9)

verifying H1(A,B) = H(A,B). A further generalized measure Ht({ρi, λi}Ni=1}) of
weighted relative uncertainty can be defined from an appropriate combination of relative
Rényi entropies.

Now we are ready to define a two-parametric relative complexity from the joint use of
the two generalized factors described above:
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Cq,t(A,B) ≡ Dq(A,B)Ht(A,B), (7.10)

for any q, t > 0 whenever the involved integrals converge. Attending to the descriptions
provided below, the quantity Cq,t(A,B) constitutes a generalized measure of complexity
among distributions. Some comments are in order:

(i) The identity Cq,t(A,A) = 1 holds for any orders q, t. This means that the relative
complexity among a given system and itself is 1.

(ii) The particular case C2,1(A,B) corresponds to the LMC-like relative complexity, with
QSI as the first factor and the exponential of the mean KL as the second one. Rele-
vant properties verified by C2,1(A,B) (e.g. invariance under translation and rescal-
ing transformations) are preserved in Cq,t(A,B).

(iii) The generalization can be straightforwardly extended by considering a number of
functions higher than two, as well as by including arbitrary weights for each of them.

The just introduced definition can be applied to the study of complexity for arbitrary
probability distributions. Let us keep in mind that the methodology employed through-
out this section is universal, having its grounds in the use of well-known mathematical
techniques and information-theoretical functionals.

Next section is devoted to the analysis of the generalized relative complexity among the
probability distributions arising from the electron charge density of neutral atoms, through
the whole Periodic Table. This kind of study has been already carried out by using both
the complexity itself [53, 232, 82, 186, 228], and more recently by means of the relative
complexity [229]. In those cases, as also in next section, computations are carried out
within a Hartree-Fock framework [219, 220]. Atomic units (a.u.) are used throughout.

7.2 Numerical analysis with atomic electron charge densities

Accordingly with the interpretation of the complexity and the relative complexity as
measures of structure, we wonder about the possible connection among their values for
atomic systems and their main physical properties. Let us mention that recent studies were
carried out, by using the LMC complexity and a variety of other complexities as well
[53, 232, 82, 186, 228, 90, 85, 91, 86] (e.g. Fisher-Shannon, Cramér-Rao or Rényi-like
ones). A clear evidence of the aforementioned connection is provided, mainly in terms of
the atomic shell-filling patterns, for both neutral and ionized atomic species.

More recently, a similar interpretation has been provided for the LMC-like relative
complexity measure C(A,B) proposed in Ref. [229]. The numerical study was performed
there as follows: first the system A is chosen as the initial element when filling a given
subshell (of ’p’, ’d’ or ’f’ type), and then system B runs over the subshell, starting with
B = A, until the subshell is completely filled, that is, when B becomes a closed-subshell
system.

We give here a summary of the main conclusions derived from that work: (i) for each
subshell, characterized by the reference system A, the initial value is C(A,B = A) = 1,
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(ii) the relative complexity C(A,B) increases monotonically as far as B runs over the
subshell, and (iii) the rate of such an increase becomes progressively smaller for subshells
with heavier atoms, as compared to that of lighter ones.

Consequently, the only evidence of periodicity, as displayed in the figures enclosed in
Ref. [229], arises from the choice ad hoc of the reference systems, namely, just those en-
closing a new subshell as compared to the previous element, throughtout the whole Periodic
Table for neutral atoms with nuclear charges Z = 1− 103.

We have extended the previous study, at a first step, by choosing one of the aforemen-
tioned reference systems, namely Boron (system A with ZA = 5, the initial one as filling
the 2p subshell), but considering B running all over the Periodic Table (ZB = 1 − 103),
instead of constraining A and B to the same subshell. The results obtained in this
way for Cq,t(A,B) are displayed in Figs. 7.1a and 7.1b, as curves in red for the values
(q, t) = (2, 1).

Some comments are in order: (i) the results are roughly the same independently of
using for C(A,B) the unsymmetrized definition of Ref. [229] or the symmetrized one
C2,1(A,B) as in the present work, (ii) the aforementioned monotonic behavior is clearly
observed when both A and B have the same valence subshell (ZB = 5− 10), and (iii) for
most systems with different valence subshell, the relative complexity falls below unity.

Last comment is extremely important, in order to consider C(A,B) as an appropriate
measure of relative complexity. For a pair of systems A and B with relative complexity
lower than 1, and keeping in mind that C(A,A) = 1, we get the inequality C(A,B) <

C(A,A) for many elements B, This inequality holds not only for the illustrative example
ZA = 5, but for any other ZA also.

Considering complexity, in this context, as a measure of structure and organization of
the underlying distribution, the inequality C(A,B) < C(A,A) introduces a strong diffi-
culty from a conceptual point of view, as clarified by the following comment: ’the relative
complexity of A with respect to B is lower than that of A with respect to itself’. This
reading of the above inequality forbbides to consider C(A,B) as a measure of structure in
B as compared to that of A. In this sense, one should expect to obtain, for fixed A, the
minimizer of the relative complexity C(A,B) for B = A or, in other words, the inequality
C(A,A) ≤ C(A,B), with the equality being reached if and only if A = B.

This interpretation is used, in fact, within the comments on the results obtained in
Ref. [229] for systems belonging to the same subshell, then interpreting C(A,B), in some
sense, as a measure of ’distance in complexity’ of A from B. The results displayed in Fig.
7.1 provide us with the evidence that such an interpretation fails, in general, when dealing
with systems from different subshells.

We consider now the generalization Cq,t(A,B) of the relative complexity. All previous
discussions on the behavior of the red lines for C(A,B) regard, in fact, the particular case
q = 2 and t = 1. The difficulties arising from this choice of (q, t) have been corroborated,
unless restricting the analysis to systems with identical valence subshell. We wonder now
about the existence of (q, t) values, different from (2, 1), allowing us to avoid the previ-
ous difficulties. The answer regarding their existence is affirmative, as shown by the blue
and gray lines in Figs. 7.1a and 7.1b. The generalized relative complexity C1,1(A,B) is
considered in Fig. 7.1a, enclosing the similarity factor QSI1 instead of the QSI one. It
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Figure 7.1: Comparison among the electron charge density of Boron (nuclear charge Z ′ =
5) and those of all neutral atoms with Z = 1 − 103, by means of the generalized relative
complexities Cq,t(Z,Z ′) with (q, t) = (2, 1) and (in red) and (a) (q, t) = (1, 1) (in blue)
and (b) (q, t) = (1, 2) (in gray).

is observed that the measure C1,1(A,B) never crosses the unity frontier for the illustrative
example here considered, as also occurs for the rest of systems in the Periodic Table. The
same conclusion arises from the analysis of C2,2(A,B) in Fig. 7.1b, where the exponential
of the symmetrized relative Rényi entropy of order t = 2 replaces the limiting factor KL
corresponding to t = 1.

Consequently, it is numerically observed that the generalized comparative functionals
C1,1(A,B) and C2,2(A,B) comply with the desirable properties for a measure of relative
complexity, contrary to the pioneeringC(A,B) ∼ C2,1(A,B) one. In addition, the display
of numerous local extrema in all curves is related to the atomic shell structure of the systems
under comparison, as will be discussed later.

And, what about other arbitrary (q, t) values? For several pair of systems, with nuclear
charges ZA and ZB , a plane substended by q and t has been drawn, according to the
condition Cq,t(A,B) ≥ 1. The condition divides the plane into two regions, the ’allowed’
and ’forbbiden’ ones. An illustrative example is provided in Fig. 7.2 for systemsZ = 5, 17.
The upper area, in colour, is the allowed region when dealing with the (q, t)-generalized
relative complexity. Let us notice the star in the white forbidden area, located at (q =

2, t = 1), i.e. just the values corresponding to the particular case C(A,B) as defined in
Ref. [229].

Other planes for different pairs of atomic systems have been also analyzed. The main
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Figure 7.2: Region (coloured) in the (q, t) plane where the generalized relative complexity
between Boron (Z = 5) and Chlorine (Z = 17) verifies Cq,t(5, 17) ≥ 1.

comments regarding all those planes are: (i) the shape of the frontier between the afore-
mentioned regions strongly depends on the choice of systems, most usually because of their
shell structure, and (ii) in spite of the different shapes, a common feature is the existence
of thresholds, which translate into the condition t > tmin(q) for a given q.

It still remains the problem of determing a rigorous (and desirable) analytical condition
on the parameters (q, t) in order to guarantee that the value of the relative complexity
between two arbitrary distributions is not below 1. Nevertheless, some achievements are
noteworthy:

• for the particular case q = 1, the inequality C1,t(f, g) ≥ 1 holds with arbitary prob-
ability distributions f, g for any t ≥ 1/2 (as far as the integrals involved converge);
in particular, we have proven the existence of a value 0 < tmin ≤ 1/2 so that the
condition reads as t ≥ tmin,

• for ground-state d-dimensional hydrogenic atoms (one-electron systems), with re-
spective nuclear charges ZA and ZB , the above inequality is fulfilled for arbitrary
q > 0 and 1/4 ≤ t ≤ max{ZA, ZB}/|ZA − ZB|. Let us remark that this condition
(i) depends upon the nuclear charges through their quotient ZA/ZB , and (ii) does not
depend on the dimensionality d.

Continuing with the numerical analysis of the atomic relative complexity, we com-
pare now two curves of C1,1(Z ′, Z) throughtout the Periodic Table (Z = 1 − 103), for
Z ′ corresponding to extremely similar (Fig.7.3a) or different (Fig. 7.3b) systems from
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physical and chemical points of view. As an illustrative example, two noble gases are
chosen in Fig. 7.3a: Helium (Z ′ = 2) and Neon (Z ′ = 10). In spite of the differ-
ences based on their absolute values, the curves C1,1(2, Z) and C1,1(10, Z) display a
very similar structure, accordingly with the fact that both Helium and Neon belong to
the same group of the Periodic Table. In this sense, it is worthy to mention that they
share most local minima, at Z = 2, 10, 18, 24, 29, 36, 42, 46, 54, as well as the close ones
Z = 78 − 79 for Helium and Neon respectively. Let us notice that the list encloses (i)
the noble gases Z = 2, 10, 18, 36, 54, and (ii) systems suffering from the anomalous shell-
filling: Z = 24, 29, 42, 46, 78 − 79. So, the value of the relative complexity provides
information on relevant features regarding the shell-structure of the systems compared.
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Figure 7.3: Generalized relative complexity C1,1(Z,Z ′), for Z = 1 − 103, and (a) two
noble gases (Helium and Neon, Z ′ = 2, 10), and (b) a noble gas (Helium, Z ′ = 2) and an
alkaline-earth (Beryllium, Z ′ = 4).

We find just the opposite behavior when dealing with two systems as different as He-
lium (noble gas, Z ′ = 2) and Beryllium (alkaline-earth, Z ′ = 4), shown in Fig. 7.3b. While
different minima of Helium’s curve occurs for the comparison with other noble gases, the
same comment applies for alkaline-earths with respect to Beryllium. In fact, most minima
for one system corresponds to maxima of the other, and conversely. For instance, systems
Z = 2, 10, 18, 24, 29, 36, 42, 46 are minima of Helium and maxima of Beryllium. Addi-
tionally, the same occurs for the close ones Z = 54− 55, 62− 63, 78− 79. As discussed
previously, most of them are either noble gases or systems with anomalous shell-filling.
But now, they are displayed as minima or maxima depending on the performance of a
comparison with a noble gas or an alkaline-earth.

Similar comments to those here provide apply also for the numerical study by choosing
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other elements belonging to different groups of the Periodic Table. The shell-filling patterns
are clearly displayed, as provided by the location of local maxima or minima for the curves
considered.

To conclude the numerical study, we provide here an application of the relative com-
plexity among a set of systems. In doing so, we consider the filling process of the different
atomic subshells. In Ref. [229], this kind of analysis is carried out in terms of the ’one-to-
one’ relative complexity, by fixing a reference system as the initial one of a given subshell,
the second one running over such a subshell. Here, instead, we consider the relative com-
plexity among all systems belonging to the same subshell. For illustration, uniform weights
are chosen for both factors of the relative complexity, namely QSI(q) and the exponential
of relative Rényi entropies between each density within the set and their arithmetic mean
(the mean obtained by employing uniform weights also). Nevertheless, different criteria
could be considered in order to establish the weights, such as e.g. relative number of elec-
trons, masses or sizes.

The results obtained are shown in Table 7.1. It is observed a rough decreasing trend of
the values, as far as heavier systems are considered. This comment is in accordance with
those regarding the aforementioned analysis in Ref. [229], where the relative complexity
with respect to the initial system increases through the subshel, but at a progressively slower
rate. This means that differences in terms of relative complexity become smaller for heavy
systems as compared to the lighter ones, as induced from the results on that work and the
present one.

Subshell n,l C2,1(nl)

2p 1.448005
3p 1.192296
3d 1.152400
4p 1.046343
4d 1.102025
5p 1.024107
4f 1.065817
5d 1.028909
6p 1.010805
5f 1.045200

Table 7.1: Generalized relative complexity C2,1(nl) among the electron densities of all
neutral atoms filling the subshell characterized by the quantum numbers (n, l).

Deviations from the decreasing trend occur for subshell 3d, 4f and 5f. These subshells
contain a relevant number of elements with anomalous shell-filling. Their high values of
relative complexity are interpreted according to a mix of elements with relevant differences
regarding their shell-structure. This fact is clearly revealed in the values of Table 1. Let
us point out that these comments, regarding relative complexities of whole subshells, also
hold for other values of the parameters q and/or t.
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Conclusions

In order to define an appropriate measure of relative complexity among two or more
distributions, it is essential to take into account the desirable properties which should be
verified. This is so because of the aim of dealing with a physically meaningful measure.
Such is not the case of the pionnering definition, which leads to a contradictory interpreta-
tion from a conceptual point of view.

Those difficulties can be avoided by dealing with the generalized relative complexity
defined in the present work. Furthermore, this generalization allows to introduce the con-
cept of relative complexity among an arbitrary number of functions, with the option of
considering different weights for each of them.

The numerical analysis for the comparison of two neutral atoms, located anywhere at
the Periodic Table, has allowed us to provide a clear interpretation in terms of a so relevant
feature of atomic systems as their shell structure is. This kind of interpretation is even more
efficient when expressed in terms of the different groups which the systems belong to. In
this sense, it is worthy to remark that these groups are characterized by the main physical
and chemical atomic properties.

There are several open problems regarding both the definition and applications here
considered. Let us remark the following: (i) the determination of rigorous conditions on
the characteristics parameters in order to guarantee values of the relative complexity not be-
low unity, and (ii) the application to more sophisticated systems (e.g. molecules), physical
processes (ionization, excitation), distributions (e.g. momentum space) or models (rela-
tivistic effects, configuration interactions).
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Introduction

Coined by Einstein as “spukhafte Fernwirkung” (“spooky action at a distance”), entan-
glement describes an inherently nonlocal correlation between detached quantum systems
that is predicted by quantum theory, and which cannot be adequately described or explained
in the language of classical physics, at least without making assumptions about hidden vari-
ables [21]. Entanglement is an essential ingredient of the quantum mechanical description
of Nature [233, 5, 234]. Besides its central role for the basic understanding of the quan-
tum world, entanglement constitutes a physical resource admitting numerous technological
applications. The study of entanglement sheds new light on the mechanisms behind the
quantum-to-classical transition [235] as well as on the foundations of statistical mechanics
[236]. On the other hand, the controlled manipulation of entangled states of multipartite
systems is fundamental for the implementation of quantum information processes, such as
quantum computation [8, 237].

Quantum entanglement is also relevant in connection with the physical characterization
of atoms and molecules. The exploration of the entanglement features exhibited by atoms
and molecules is a captivating field of enquiry because these composite quantum objects
play a central role in our understanding of both Nature and technology. In point of fact, the
entanglement properties of atomic systems have been the subject of considerable research
activity in recent years [5, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249].
This line of research is contained within the more general one aimed at the application of
information-theoretic concepts and methods to the study of atomic and molecular systems
[250, 251, 31, 252, 253, 76, 254, 228, 255, 256, 257, 258, 259].

Some of the most detailed results on the entanglement properties of atomic systems,
particularly in the case of excited states, have been obtained from analytical investigations
of soluble two-electron models [238, 245]. Partial results were also obtained numerically
for the eigenstates of helium-like systems [245], employing high quality wave functions
[248] or configuration-interaction variational methods [249]. Some general trends are be-
ginning to emerge from these investigations. It is observed that the entanglement increases
with the strength of the interaction among the constituent particles. The amount of entan-
glement of the atomic eigenstates also tends to increase with the concomitant energy. For
example, in the case of Helium it was observed that the entanglement increases with the
energy of the singlet-states, but not in the case of triplet-states [248] which is still an open
question. On the other hand, the entanglement of excited states shows an apparent dis-
continuous behavior: it does not necessarily vanish in the limit of very small interactions
[238]. This has been shown to be closely related to the degeneracy of the energy levels
of the associated independent particle model obtained in the limit of vanishing interaction
[260].

An analytically solvable model that can be carried to virtually any number of particles
is the Moshinsky atom [261, 262] (sometimes referred to as “harmonium” [263]), for which
all appearing potentials are set to be harmonic. This model admits exact analytical solu-
tion and constitutes a valuable “testing bench” for the study of diverse aspects of atomic
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and molecular physics. Indeed, it has been used for assessing the quality of the Hartree-
Fock approximation [261], for investigating low-order density matrix descriptions of the
ground state of atomic systems [264] and for exploring the entanglement-related features
[241, 244, 263, 238, 265] and other manifestations of quantum correlations [259] in atomic
systems. The application of harmonium as a tractable model for elucidating some aspects
of the behavior of more realistic systems has a long history, that goes back almost to the
very begining of quantum mechanics [266]. This model has also been found useful for the
study of other subjects beyond atomic physics, such as the thermodynamics of black holes
[267].

It would be desirable to extend the above studies to more general scenarios, particularly
to models consisting of more than two electrons, or involving magnetic fields. The aim of
the Chapter 9 is to investigate the entanglement properties of the eigenstates of the exactly
soluble Moshinsky model [261], extending previous works to the cases of a three-electron
system and a three-dimensional two-electron system in an uniform external magnetic field.

Quantum entanglement renders efficient simulations of many-particle systems impos-
sible and entails the breakdown of efficient numerical treatments. With the help of analyti-
cally solvable models, one can use entanglement to assess the validity and scope of approxi-
mation techniques. In Chapter 10, we show that the entanglement, present in many-particle
systems, can be understood to wide range from purely kinematic considerations, which
permit to assess the validity of the Born-Oppenheimer approximation. For this purpose,
we choose the many-electron many-nuclei Moshinsky atom (or molecule) in an external
harmonic potential. We also investigate the entanglement properties of the eigenstates of
this many-particle Moshinsky-like model, for different bipartitions of the system, through
the parameters that characterize it, namely the strengths interaction between particles the
number of particles and their corresponding masses.

First of all, let us review in Chapter 8 the basic concepts of quantum correlation empha-
sizing aspects concerning to entanglement and the measures we use for its quantification.
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Quantum entanglement: Basics

In this chapter, we review some elementary concepts from the theory of quantum en-
tanglement and quantum information. This is by no means a comprehensive overview, but
rather a selection of those aspects that will be of particular importance in this thesis. For a
comprehensive and recent review of quantum entanglement, it is suggested to consult the
monographs [8, 10].

Quantum systems exhibit properties that are unknown in the classical theories. Su-
perposition of states, interference or tunneling are some of such one-particle quantum ef-
fects, but there are also further differences that manifest themselves in composite systems,
i.e. in the correlations among the different subsystems which compose the whole system.
Whereas the classical correlations can always be described in in terms of classical proba-
bilities, for quantum systems is not true.

Entanglement is the quintessential quantum phenomenon according to which quantum
states of bipartite systems are correlated in such a way that the states of one of the subsys-
tems can not be completely determined (in the sense of being describable by a pure state)
even if the state of the total system is. Such a non-classical correlations gave rise to the
celebrated EPR (Einstein, Podolsky and Rosen) paradoxes [21] which is the argument for
incompleteness of the quantum mechanics. For them, entanglement was a spooky action
at distance and a Local Hidden Variables Model (LHVM) is needed. In defense of quan-
tum mechanics, Schrödinger emphasized the key role of the entanglement in this theory
[20, 268] which coined the term for such correlations. Thrity years later, in 1965, John S.
Bell showed that no LHVM can reproduce the non local nature of entangled states [269].
He also proposed a test that was experimentally verified by Alain Aspect et al [270]. This
is, therefore, one of the pillars supporting quantum theory as a non-classical theory.

The recipe of this chapter is the following. In Section 8.1, we use systems of one and
two qubits, which are the simplest systems that display this essential feature of quantum
mechanical systems, for easy understanding of the quantum correlation of pure and mixed
states. The concept of separable and entangled quantum states are drawn in Section 8.2,
and its essential decomposition Schmidt theorem in Section 8.3. Finally, in Section 8.4 we
present the measure of entanglement we use as well as their main features and implications
for pure states and many identical fermions.

8.1 Quantum correlations: The qubit

In classical information theory the bit represents the natural elementary unit for stor-
ing information, corresponding to a classical variable that takes two possible values: 0 or
1. Quantum systems can also be used to codify information, usually in systems with two
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possible and well defined states i.e. the qubit. The qualitative difference among classi-
cally and quantum-mechanically correlated states can be appreciated upon these system
with two spatially well-separated constituents (i.e. a bipartite system), which carry a two-
dimensional (qubit) internal degree of freedom each, such as spin or polarization.

The main difference between bit and qubit is that while a bit has only two possible
values {0, 1}, a qubit can be in a state different to |0〉 or |1〉. It can be in a more general
state |Ψ〉 which is a linear combination os the two previous states:

|Ψ〉 = α |0〉+ β |1〉 (8.1)

where α and β are complex numbers. The state |Ψ〉 is said to be in a superposition of
the two states that together form a single-particle basis. When we measure the state of the
qubit, it will be in the state |0〉 with probability |α|2, or the state |1〉 with probability |β|2
whenever the normalization condition |α|2 + |β|2 = 1 is fulfilled.

8.1.1 Correlations in two qubit systems

The simplest example of a composite quantum system is given by a coupling of two
qubitsA andB. The Hilbert space of such a system is then HA,B = HA⊗HB , where HA

and HB denote the Hilbert space describing each qubit. Considering that the systems A
and B are qubits, i.e. the pairs of states {|0〉A , |1〉A} and {|0〉B , |1〉B} are two orthogonal
bases, the general state of the two qubit system is given by a coherent superposition of all
tensorial products |Φ〉A ⊗ |Φ〉B = |A,B〉 that is

|Ψ〉 = a |0, 0〉+ b |1, 1〉+ c |0, 1〉+ d |1, 0〉 (8.2)

where now |a|2 + |b|2 + |c|2 + |d|2 = 1.
If we perform a projective measurement of a non-degenerate observable associated

with one of the qubits e.g. A, the outcome will give us full information about the state of
the other qubit if it is satisfied that

c = d = 0 → |Ψ1〉 = a |0, 0〉+ b |1, 1〉 (8.3)

or

a = b = 0 → |Ψ2〉 = c |0, 1〉+ d |1, 0〉 , (8.4)

otherwise the qubit B is in a superposition state. In such a states, |Ψ1〉 and |Ψ2〉, no
prediction is possible for single outcomes since results of a projective measurement are
determined with probabilities

P|Ψ1〉(0) = 〈Ψ1| (|0〉 〈0|A ⊗ IB) |Ψ1〉 = |a|2

P|Ψ1〉(1) = 〈Ψ1| (|1〉 〈1|A ⊗ IB) |Ψ1〉 = |b|2

P|Ψ2〉(0) = 〈Ψ2| (|0〉 〈0|A ⊗ IB) |Ψ2〉 = |c|2

P|Ψ2〉(1) = 〈Ψ2| (|1〉 〈1|A ⊗ IB) |Ψ2〉 = |d|2 (8.5)
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However, the combined measurement results on the two subsystems are perfectly corre-
lated: once a measurement is obtained on the first subsystem, e.g. |0〉A, the two-body state,
e.g. |Ψ1〉, is projected onto the state |0, 0〉; consequently, one can predict the measurement
result of the other subsystem, which is 0.

For a system of two qubits a set of maximally entangled states, characterized by maxi-
mally mixed subsystems, are given by the so-called Bell states:

|Ψ±1 〉 =
|0, 0〉 ± |1, 1〉√

2
; |Ψ±2 〉 =

|0, 1〉 ± |1, 0〉√
2

(8.6)

which forms a orthonormal base in the Hilbert space of two qubits. The states |Ψ+
1,2〉

describe a correlated pair, whereas |Ψ−1,2〉 are anti-correlated.

8.1.2 Mixed states and quantum correlations

A pure quantum state is a state which can be described by a single ket vector |Ψ〉 and it
associated density matrix is fully defined as ρ = |Ψ〉 〈Ψ|. Contrary, a mixed quantum state
is a statistical ensemble of pure states,

ρ =
∑
s

ps |Ψs〉 〈Ψs| , (8.7)

where ps is the fraction of the ensemble in each pure state |Ψs〉 fulfilling
∑

s ps = 1 with
ps ≥ 0, and cannot be described with single ket vector, i.e. ρ 6= |Ψ〉 〈Ψ|.

Many classical stochastic processes are thinkable for which individual outcomes are
fully unpredictable, whereas the correlations are definite. Consider, for example, a random
mechanism that distributes two particles prepared in the states |0〉 and |1〉, respectively, to
two observers, or parties. Each observer is given one of the particles, and the parties do
not know which particle (the one prepared in |0〉 or the one prepared in |1〉) they are given.
In each run of the experiment, the choice of which particle is given to which observer
is completely random, i.e. the probability to find the state |1, 0〉 or |0, 1〉 is 1/2. This
mechanism thus creates a mixed state,

ρ =
1

2
(|0, 1〉 〈0, 1|+ |1, 0〉 〈1, 0|) (8.8)

Following the prescription we have applied on the entangled state |Ψ+
2 〉 in Eq. (8.6),

exactly the same correlations of measurement results emerge. Such correlations do not
require quantum mechanics at all to occur. However a mixed state such as Eq. (8.8) can
only explain correlations that are observed in one specific single-particle basis, whereas the
entangled state |Ψ+

2 〉 exhibits correlations for all common choices of orthogonal local basis
settings. Since the exhibited correlations cannot be explained by a random mechanism,
they are attributed “non-classical” character, and named quantum correlations. They are a
consequence of the entanglement carried by the system.
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8.2 Entangled and separable states

We shall focus on bipartite sytems, i.e. systems composed by two distinct subsystems.
Let us consider a pure bipartite quantum state |Ψ〉 ∈H1⊗H2; it is called separable if and
only if it can be written as a tensor product of pure states of the parts, i.e. if one can find
the subsystem states |Φ〉i ∈Hi such that

|Ψ〉sep = |Φ〉1 ⊗ |Φ〉2 (8.9)

It is completely determined in terms of the single-subsystem states |Φ〉1 and |Φ〉2. The
outcomes of measurements on a pure separable state are therefore not correlated at all:
They are fully defined by the pure states of the subsystems; measurements or any other
operation performed on the other subsystem do not change the probabilities of possible
outcomes. Indeed, the reduced density matrices

ρ1 = Tr2[ρ] and ρ2 = Tr1[ρ], (8.10)

where ρ = |Ψ〉 〈Ψ| is the density matrix of the whole, describe pure states. The above
reduced density matrices are given by the partial trace over the first or second subsystem,
i.e.

Tr1[ρ] =

n2∑
j

〈φj |2 ρ |φj〉2 and Tr2[ρ] =

n1∑
j

〈φj |1 ρ |φj〉1 (8.11)

where ni denotes the dimension of the Hilbert space of |Φ〉i. More specifically,

ρ1 = |Φ〉1 〈Φ|1 and ρ2 = |Φ〉2 〈Φ|2 (8.12)

such that the density matrix can be written as a tensor product of the reduced ones, ρ =

ρ1 ⊗ ρ2 , i.e. all information about possible measurement outcomes is contained in the
reduced density matrices.

Contrary, entangled states cannot be written as direct products, Eq. (8.9), of two single-
particle states. The information carried by an entangled state is not completely specified
in terms of the states of the subsystems: For the reduced density matrices, we have that
Tr[(ρi)2] 6= 1, i.e. the states of the subsystems are mixed. Furthermore, for an entangled
state |Ψ〉 , one finds ρ = |Ψ〉 〈Ψ| 6= ρ1 ⊗ ρ2, i.e. the two-particle state contains more
information on measurement outcomes than that contained in the two single-particle states
ρ1 and ρ2 together, in contrast to the above separable state in Eq. (8.9). Moreover, distinct
entangled states can give rise to the same reduced density matrices: The states in Eq. (8.3)
and in Eq. (8.4) lead to the same reduced density matrices if a = d and b = c, which are
maximally mixed for the particular case of Bell states, Eq. (8.6), from which it follows that

ρ1 = Tr2

[
|Ψ±i 〉 〈Ψ±i |

]
=

1

2
(|0〉 〈0|+ |1〉 〈1|) . (8.13)

Formally, the separability (and, correspondingly entanglement) underlies on the ques-
tion of whether the coefficient matrix αi,j in the state representation

|Ψ〉 =
∑
i,j

αi,j |i, j〉 (8.14)
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admits a product representation, i.e. αi,j = α
(1)
i · α

(2)
j , in which case the state |Ψ〉 would

be separable.

Mixed states

For mixed two-body states the notion of separability and entanglement can also be
defined but, in this case, the mixedness of the reduced density matrices is not equivalent to
entanglement. Separable states can be written as mixtures of product states,

ρsep =
∑
s

ρ
(s)
1 ⊗ ρ

(s)
2 (8.15)

being ρ(i)
1 and ρ(i)

2 the sets of single-particle states of the first and of the second subsys-
tem, respectively, and associated probabilities ps. Such separable states imply correlations
between measurement results on the different subsystems, but these correlations can be
explained in terms of the probabilities ps , and, therefore, do not qualify as quantum corre-
lations, e.g. the state (8.8) is separable. Entangled states, in contrast, are those for which
there is no representation as in Eq. (8.15). They thus need to be described as in Eq. (8.7)
where at least one state |Ψs〉 is entangled.

8.3 Schmidt decomposition

By the application of suitable reversible local transformations, i.e. unitary operations,
one can prove the Schmidt decomposition theorem [271].

• Theorem: Schmidt decomposition. Let H1 and H2 be n- and m-dimensional
Hilbert spaces with n ≥ m. For any vector v ∈ H1 ⊗H2, there exist orthonormal
sets {u1, . . . , un} ⊂ H1 and {v1, . . . , vm} ⊂ H2 such that v =

∑m
j=1 λjuj ⊗ vj ,

with λj ≥ 0 for j = 1, . . . ,m and λj = 0 for j = m+ 1, . . . , n.

This algebraic tool allows us to rewrite a general quantum state of the form given by
Eq. (8.14) as

|Ψ〉 =

S∑
j=1

√
λj |φj〉1 |φj〉2 (8.16)

where one summation index suffices, in contrast to the general form of Eq. (8.14). The
Schmidt coefficients λj coincide with the eigenvalues of the reduced density matrices given
in Eq. (8.12). Since the states {|φi〉1} and {|φi〉2} constitute a orthogonal basis, they are
indeed the eigenstates of the reduced density matrices

ρ1 =

S∑
j=1

λj |φj〉1 〈φj |1 and ρ2 =

S∑
j=1

λj |φj〉2 〈φj |2 , (8.17)

with the λj the associated eigenvalues.



118 Chapter 8

Equivalent states are motivated by the fact that parties which are in possession of the
subsystems can perform local unitary operations without any mutual communication. So,
equivalent states can be related one to each other via unitary operations that are applied
locally and independent on both subsystems as follows:

|Φ〉1 = Û |Φ〉2 , |Φ〉2 = Û † |Φ〉1 , (8.18)

where Û = Û1 ⊗ Û2 = e−
i
~ τ(H1⊗I+⊗I⊗H2) and I is the identity operator. Then, two

equivalent quantum states have the same amount of entanglement and possess the same
Schmidt decomposition. The distribution of the Schmidt coefficients λj therefore fully
determines the entanglement of a state.

8.4 Entanglement quantification of pure states

The entanglement of a pure bipartite system is “essentially” given by the mixedness
of the marginal density matrices associated with each subsystem. A pure bipartite state is
entangled if and only if its subsystems are in a mixed state. This means that the disorder of
the reduced density matrix is clear indicator that the state is entangled. This feature allows
to introduce quantitative measures for the entanglement exhibited by pure states.

• The von Neumann entropy of a density matrix [272, 273], given by

S(vN)[ρ] = −Tr[ρ ln ρ], (8.19)

can be used for such a quantification. The von Neumann entropy of the reduced
density matrix, ρi, receives the name of entanglement entropy or entanglement of
formation [274] and is the canonical measure to quantify the entanglement of pure
bipartite states, that is

ε(vN)(|Ψ〉) = S(vN)[ρi] = −Tr[ρi ln ρi], (8.20)

which, for bipartite systems, fulfills that S(vN)[ρ1] = S(vN)[ρ2]. Entanglement of
formation boils down to the original Shannon entropy [41] of a probability distribu-
tion defined by the Schmidt coefficients λj :

ε(vN)(|Ψ〉) = S[{λ1, · · · , λS}] = −
S∑
j=1

λj lnλj . (8.21)

It is maximized by the maximally mixed state, so maximally entangled states are
characterized by maximally mixed subsystems. An example of maximally entangled
states is given by the Bell states |Ψ±i 〉, defined in Eq. (8.6), for which the reduced
density matrix given by Eq. (8.13), provides the maximum possible value of the von
Neumann entropy for two qubit systems:

ε(vN)(|Ψ±i 〉) = ln 2. (8.22)
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• Another practical quantitative indicator of the amount of entanglement of pure bi-
partite systems is given by the linear entropy,

ε(L)(|Ψ〉) =
Ni

Ni − 1

(
1− Tr[ρ2

i ]
)
, (8.23)

where Ni is the dimension of the reduced density matrix ρi so that the linear entropy
belongs to the interval [0, 1]. The quantity

P = Tr[ρ2
i ] (8.24)

is the purity of the subsystem ρi which, for a probability distribution defined by the
weights λj (or a Schmidt coefficients ditribution) is given by P =

∑S
j=1 λ

2
j .

The purity of the reduced density matrix is known to be a proper measure of the
degree of mixedness of ρi. That is, we can restate the separability criterion for pure
states:

P = Tr[ρ2
i ] = 1⇒ ρi is pure ⇒ |Ψ〉 is separable

P = Tr[ρ2
i ] < 1⇒ ρi is mixed⇒ |Ψ〉 is entangled. (8.25)

For Bell states, Eq. (8.6), the maximum possible value of the linear entropy,
ε(L)(|Ψ±i 〉) = 1, is obtained.

Although the linear entropy is not a strictly measure of entanglement –it does not
meet all the axioms for the monotonicity under local operations and classical com-
munication (LOCC) [275], as the entropy of formation does– it is an useful indicator
of the entanglement in the sense that it quantify the degree of mixedness of the re-
duced density matrix. The linear entropy in Eq. (8.23) coincides, up to multiplicative
and additive constants, with the concurrence (see [276]).

There are some other measures of entanglement for pure bipartite state in the literature,
such as the Schmidt rank S [277] or the concurrence [276, 278], however the linear entropy
has several computational advantages from both analytical and numerical points of view. In
particular, and contrary to those measures as well as the entropy of formation in Eq. (8.20),
the computation of the linear entropy, does not require the diagonalization of the reduced
density matrix ρi. In the course of the Part II and Part III of this thesis, we will characterize
the entanglement content of a pure bipartite quantum state via linear entropy, which proved
to be a powerful tool for elucidating many aspects of the entanglement properties of pure
states (see, for instance, [5, 279, 238, 260, 265, 280, 281, 282]).

8.4.1 Entanglement for identical fermions

Correlations between two identical fermions that are only due to the antisymmetric
nature of the two-particle state do not contribute to the state’s entanglement [233, 283, 284,
285, 286, 287, 288]. The entanglement of the two-fermion state is given by the quantum
correlations existing on top of these minimum ones. Quantum correlations in systems of
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indistinguishable fermions arise if more than one Slater determinant (a fully antisymmetric
combination of all orthogonal single-particle states) is involved. Therefore, a pure state of
identical fermions is entangled if and only if its Slater rank is above 1 and the definition
of a separable system given by Eq. (8.9) is useless because the Hilbert space of the system
can not be expressed as the tensor product of the single particle Hilbert spaces.

In a system composed by two identical fermions, for example, a separable state can be
defined as

|Ψ〉sep =
1√
2

(|Φ1〉 |Φ2〉 − |Φ2〉 |Φ1〉) (8.26)

where |Φ〉1 and |Φ〉2 are two orthogonal and normalized single-particle states.
The Schmidt decomposition admits a natural generalization for a system of two

identical fermions. Given a pure state |Ψ〉, it is possible to find an orthonormal basis
{|φj〉 , j = 1, 2, . . .} of the single-particle states, such that the two-fermions pure state
|Ψ〉 can be written as

|Ψ〉 =
S∑
j=1

√
λj
2

(
|φ2j〉1 |φ2j−1〉2 − |φ2j−1〉1 |φ2j〉2

)
. (8.27)

The simplest fermionic system admitting entanglement is composed by two fermions with
a single-particle Hilbert space of dimension four.

When the Slater rank of aN -fermions pure state |Ψ〉N is one, i.e. the state is separable,
the purity of the single-fermion reduced density matrix, ρr, is P = Tr[ρ2

r ] = 1/N , which
leads to the separability criterion [280]

P = Tr[ρ2
r ] =

1

N
⇒ |Ψ〉N has Slater rank = 1 ⇒ |Ψ〉N is separable

P = Tr[ρ2
r ] <

1

N
⇒ |Ψ〉N has Slater rank > 1 ⇒ |Ψ〉N is entangled. (8.28)

Thereby, practical quantitative measure for the amount of entanglement exhibited by a
pure state |Ψ〉N of a system of N identical fermions (see [280] and references therein) is
that given by the linear entropy of the single-fermion reduced density matrix ρr,

ε(L)(|Ψ〉N ) = 1−NTr[ρ2
r ], (8.29)

This measure is normalized to adopt values in the interval [0, 1].

In Chapter 9, we study systems of identical fermions so we will use this measure as
given by Eq. (8.29), however in Chapter 10 the system studied consists of many distin-
guishable particles, so that the appropriate measure to carry out such a study is that given
in Eq. (8.23).



CHAPTER 9

The Moshinsky model with three
electrons, and with two electrons in

an uniform magnetic field

In this chapter we investigate the entanglement-related features of the eigenstates of
two exactly soluble atomic models: a one-dimensional three-electron Moshinsky model,
and a three-dimensional two-electron Moshinsky system in an external uniform magnetic
field. The amount of entanglement exhibited by the wavefunctions corresponding to the
ground, first and second excited states of the three-electron model are analytically com-
puted. We found that the amount of entanglement of the system tends to increase with
energy and, in the case of excited states, a finite amount of entanglement in the limit of
vanishing interaction. We also analyze the entanglement properties of the ground and first
few excited states of the two-electron Moshinsky model in the presence of a magnetic field.
The dependence of the eigenstates’ entanglement on the energy, as well as its behavior in
the regime of vanishing interaction, are similar to those observed in the three-electron sys-
tem. On the other hand, the entanglement exhibits a monotonically decreasing behavior
with the strength of the external magnetic field. For strong magnetic fields the entangle-
ment approaches a finite asymptotic value that depends on the interaction strength. For
both systems studied here we consider a perturbative approach in order to shed some light
on the entanglement’s dependence on energy and also to clarify the finite entanglement
exhibited by excited states in the limit of weak interactions.

The chapter is organized as follows. In Section 9.1 entanglement in systems of identi-
cal fermions in a continuous variable framework is briefly discussed. The measure used in
order of quantify the amount of entanglement of pure states is reviewed, focusing on ap-
propriate measure for two- and three-electrons systems. In Section 9.2, the entanglement
properties of the eigenstates of the Moshinsky model with three electrons are investigated.
The entanglement features of the three-dimensional Moshinsky model with two electrons
in the presence of a uniform magnetic field are studied in Section 9.3. Then, in Section 9.4
we consider a perturbative approach to clarify some entanglement features found in the
previous models. Finally, some conclusions are drawn.

9.1 Entanglement measure

We shall apply the measure given by Eq. (8.29) to a pure state |Ψ〉 of a one dimen-
sional system consisting of three spin-1

2 fermions (electrons). We deal with infinite-
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dimensional Hilbert spaces and, since the maximal value of the entanglement in a d-
dimensional space is 1 − 1/d, the measure in Eq. (8.29) adopts values within the in-
terval [0, 1). This pure state has an associated wave function given, in self-explanatory
notation, by Ψ(x1σ1, x2σ2, x3σ3) = 〈x1σ1, x2σ2, x3σ3|Ψ〉 with |x1σ1, x2σ2, x3σ3〉 =

|x1, x2, x3〉 ⊗ |σ1, σ2, σ3〉. Here x1,2,3 are the coordinates of the three electrons, and the
dichotomic variables σ1,2,3 (each adopting the possible values ± and corresponding to the
Sz component of spin) describe the spin degrees of freedom of the three electrons. In order
to evaluate the amount of entanglement of the system we have to compute the following
integrals:

〈x1σ1|ρr|x′1σ′1〉 =
∑

σ2,σ3=±

∫ ∞
−∞
〈x1σ1, x2σ2, x3σ3|ρ|x′1σ′1, x2σ2, x3σ3〉dx2dx3 (9.1)

where 〈x1σ1|ρr|x′1σ′1〉 are the elements of the one-particle reduced density matrix
ρr(x1, x

′
1), ρ = |ψ〉〈ψ| and

〈x1σ1, x2σ2, x3σ3|ρ|x′1σ′1, x2σ2, x3σ3〉 = Ψ(x1σ1, x2σ2, x3σ3)Ψ∗(x′1σ
′
1, x2σ2, x3σ3).

The square reduced spin density matrix is given by

〈x1σ1|ρ2
r |x′1σ′1〉 =

∑
σ=±

∫ ∞
−∞
〈x1σ1|ρr|xσ〉〈xσ|ρr|x′1σ′1〉dx

and finally the expression for the trace is

Tr[ρ2
r ] =

∑
σ=±

∫ ∞
−∞
〈xσ|ρ2

r |xσ〉dx.

In the three-electron case it is not possible to find totally antisymmetric wave functions
factorizable into coordinate and spin parts; however in the two-electron case, following
Ref. [238] we focus on states with factorized wave functions. The corresponding density
matrix takes the form

ρ = ρ(c) ⊗ ρ(s) (9.2)

and then, the entanglement measure evaluated on these states is given by

ε = 1− 2Tr[(ρ(c)
r )2]Tr[(ρ(s)

r )2], (9.3)

where ρ(c)
r and ρ(s)

r are the single-particle reduced coordinate and spin density matrices. So,
in the case of two-electron system studied in section 4, we consider separately the cases of
parallel and antiparallel spin wave function. In the case of parallel spins, described by |++〉
or | − −〉, the coordinate wave function must be antisymmetric and we have Tr[(ρ(s)

r )2] =

1. On the other hand, if we have antiparallel spins we can distinguish two cases: symmetric
coordinate wave function with spin wave function of the form 1√

2
(| + −〉 − | − +〉) or

antisymmetric coordinate wave function with spin wave function 1√
2
(| + −〉 + | − +〉),
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both of them with Tr[(ρ(s)
r )2] = 1

2 . And finally, to calculate the amount of entanglement
we will compute the integrals

〈r1|ρ(c)
r |r′1〉 =

∫
R3

〈r1r2|ρ(c)|r′1r2〉dr2 =

∫
R3

Ψ(r1, r2)Ψ∗(r′1, r2)dr2 (9.4)

and the trace of the coordinate part is

Tr[(ρ(c)
r )2] =

∫
R3

|〈r1|ρ(c)
r |r′1〉|2dr1dr

′
1 (9.5)

9.2 The three-electron Moshinsky atom

The Moshinsky atom [261] is a system formed by harmonically interacting particles
confined in a common external isotropic harmonic potential. The total Hamiltonian of the
one-dimensional Moshinsky atom with three electrons is

H = −1

2

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
+

1

2
ω2(x2

1 + x2
2 + x2

3)±

±1

2
λ2[(x1 − x2)2 + (x2 − x3)2 + (x3 − x1)2] (9.6)

where x1, x2 and x3 are the coordinates of the three particles, ω is the natural frequency of
the external harmonic field, and λ is the natural frequency of the interaction harmonic field.
The positive sign in the last term describes an attractive interaction between the electrons
and the negative a repulsive interaction. We use atomic units (me = 1, ~ = 1) throughout,
unless indicated otherwise.

Introducing the Jacobi coordinates for three particles,

R1 =
1√
3

(x1 +x2 +x3), R2 =
1√
6

(−2x1 +x2 +x3) and R3 =
1√
2

(x2−x3), (9.7)

the Hamiltonian separates in the following way:

H =

(
−1

2

∂2

∂R2
1

+
1

2
β1R

2
1

)
+

(
−1

2

∂2

∂R2
2

+
1

2
β2R

2
2

)
+

(
−1

2

∂2

∂R2
3

+
1

2
β3R

2
3

)
(9.8)

where β1 = ω2, β2 = β3 = Λ2 = ω2 ± 3λ2 (again, the + sign corresponds to an attrac-
tive interaction, while the − sign corresponds to a repulsive one) and Λ is the frequency
corresponding to the coordinatesR2, andR3. In the case of a repulsive interaction it is nec-
essary to impose the constraint λ < ω√

3
in order to obtain bound eigenstates. The general

eigenfunctions of the system are

Ψ(x1, x2, x3) = Ψ(R1, R2, R3) = ΨnR1
(R1)ΨnR2

(R2)ΨnR3
(R3) (9.9)

with

ΨnRi
(Ri) =

(
β

1/4
i

2nRinRi !π
1/2

) 1
2

e−
1
2

√
βiR

2
iHnRi

(
β

1/4
i Ri

)
, (9.10)
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whereHn(x) denote the Hermite polynomials. The eigenenergies of these states are

E = ER1 + ER2 + ER3 = ω

(
nR1 +

1

2

)
+ Λ (nR2 + nR3 + 1) (9.11)

We will denote by |nR1nR2nR3〉 the eigenstates of the Hamiltonian in Eq.(9.8), which
are characterized by the three quantum numbers nR1 , nR2 and nR3 . To fully define the
three-electron system’s eigenstates we must take into account combinations of such func-
tions of the coordinates together with the spin ones |σ1σ2σ3〉 to obtain total antisymmetric
wave functions. In this case the wave functions corresponding to the energy eigenstates
never can be chosen to be separable into coordinates and spin, there are no spin functions
totally antisymmetric by themselves. The Hamiltonian commutes with the spin observ-
ables, since it does not explicitly involve the spins. In particular, it commutes with the total
z-component of spin angular momentum Sz . Consequently, it is possible to choose energy
eigenstates that are also eigenstates of Sz . It is plain that the wave functions associated
with these eigenstates can always be written (up to a global normalization constant) in one
of the forms

|Φ(++−)〉|+ +−〉 + |Φ(+−+)〉|+−+〉 + |Φ(−++)〉| −++〉, (9.12)

|Φ(+++)〉|+ ++〉, (9.13)

or in the forms obtained substituting + by − (and viceversa) in the above expres-
sions. In Eqs. (9.12)-(9.13) the kets |Φ(σ1,σ2,σ3)〉 correspond to the translational de-
grees of freedom and have associated coordinate wave functions Φ(σ1,σ2,σ3)(x1, x2, x3) =

〈x1, x2, x3|Φ(σ1,σ2,σ3)〉. For the states givrn by Eqs. (9.12-9.13) to be fully antisymmet-
ric the coordinate wave functions Φ(σ1,σ2,σ3)(x1, x2, x3) must satisfy the following set of
relations. If σ1 = σ2 we must have Φ(σ1,σ2,σ3)(x2, x1, x3) = −Φ(σ1,σ2,σ3)(x1, x2, x3),
(that is, in this case the coordinate wave function Φ(σ1,σ2,σ3)(x1, x2, x3) has to be anti-
symmetric with respect to x1 and x2). On the other hand, if σ1 = −σ2 we must have
Φ(σ1,σ2,σ3)(x2, x1, x3) = −Φ(σ2,σ1,σ3)(x1, x2, x3). Similar relations hold in connection
with the pairs of labels (σ2, σ3) and (σ3, σ1). These relations imply, in particular, that
the wave function Φ(+++)(x1, x2, x3) (and also Φ(−−−)(x1, x2, x3)) must be fully an-
tisymmetric with respect to the three coordinates x1, x2, x3. Finally it is clear that, in
order to be energy eigenstates, the states (9.12)-(9.13) must involve spatial wave func-
tions Φ(σ1,σ2,σ3)(x1, x2, x3) that are themselves eigenfunctions of the Hamiltonian given
by Eq. (9.6). In particular, the three coordinate eigenfunctions associated with Eq. (9.12)
have to be eigenfunctions of Eq. (9.6) corresponding to the same energy eigenvalue. The
ground state and few excited eigenstates of the three-electron system that we are going to
study in the present work do not correspond to the form (9.13). Thus, we are going to
restrict our considerations to eigenstates of the form (9.12). A direct way to construct the
ground and first few excited states according to the structure (9.12) is to use combinations
of the forms
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|n1n2n3〉 = N
[(
|nR1nR2nR3〉 − |nR′1nR′2nR′3〉

)
|+ +−〉+

+
(
|nR′′1nR′′2nR′′3 〉 − |nR1nR2nR3〉

)
|+−+〉+

+
(
|nR′1nR′2nR′3〉 − |nR′′1nR′′2nR′′3 〉

)
| −++〉

]
(9.14)

or

|n1n2n3〉 = N ′
[
|nR′′1nR′′2nR′′3 〉|+ +−〉+ |nR′1nR′2nR′3〉|+−+〉+

+|nR1nR2nR3〉| −++〉
]
, (9.15)

where

R1 = R′1 = R′′1 , R′2 =
1√
6

(x1 − 2x2 + x3), R′′2 =
1√
6

(x1 + x2 − 2x3),

R′3 =
1√
2

(x3 − x1), R′′3 =
1√
2

(x1 − x2), (9.16)

n1 = nR1 = nR′1 = nR′′1 , n2 = nR2 = nR′2 = nR′′2 , n3 = nR3 = nR′3 = nR′′3 ,

and N , N ′ are appropriate normalization constants. Note that the three spatial wave
functions corresponding respectively to the three kets |nR1nR2nR3〉, |nR′1nR′2nR′3〉 and
|nR′′1nR′′2nR′′3 〉 (which appear in (9.14) and in (9.15)) are obtained via cyclic permutations
of the particles coordinates {x1, x2, x3} in the definition of the Jacobi coordinates. There-
fore, it is evident that these three spatial wave functions are eigenfunctions of (9.6) sharing
the same eigenenergy. We will use combinations of type (9.14) if the quantum number
n3 is even, and of type (9.15) when it is odd, ensuring in this way the antisymmetry of
the wave function. As already mentioned, we have chosen these states because they are
also special in the sense that they all are eigenstates of Sz . States of the forms (9.14) and
(9.15) correspond to a wave function with total spin Sz = S

(1)
z + S

(2)
z + S

(3)
z = +1

2 of
the three-electron system but one can also construct eigenstates of the same type with total
spin Sz = −1

2 . As the entanglement of the Sz = −1
2 states is the same as the entanglement

of states with Sz = +1
2 , in the rest of this chapter we will mainly focus on states with

Sz = +1
2 .

We must remember that these states are written in Jacobi relative coordinates of a three-
particle system and the quantum numbers n1, n2 and n3 refer to these coordinates. How-
ever, to determine the amount of entanglement between the particles we have to express
the wave functions associated with the eigenstates in terms of the coordinates and spins of
the particles,

Ψn1n2n3(x1σ1, x2σ2, x3σ3) = 〈x1σ1, x2σ2, x3σ3|n1n2n3〉 (9.17)

In the case of the eigenfunctions (9.17) of the Moshinsky system the entanglement mea-
sure ε can be computed in an exact analytical way. However, for highly excited states
the corresponding expressions become very awkward. For the sake of simplicity, we are
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going to calculate this quantity only for the ground state and the first and second excited
states. In each case we shall provide the final closed expressions for ε (arising from the
evaluation of the aforementioned integrals) and discuss the behavior of the eigenstate’s en-
tanglement. The value of ε corresponding to the state |n1n2n3〉 (with Sz = +1

2 ) will be
denoted by εn1n2n3 . As a compact alternative notation for the alluded state we shall also
use |n1n2n3〉R1R2R3 .

We compute the state’s entanglement in terms of the dimensionless parameter τ = λ
ω ,

which constitutes a measure of the relative strength of the interaction between two particles
in the Moshinsky system. Remark that the system is decoupled when τ = 0. The larger the
value of τ , the larger is the (relative) contribution of the interaction term in the Moshinsky
atom.

9.2.1 Ground state

Let A =
√

1± 3τ2. Using the right spin combination given by (9.14) we can express
the entanglement of the ground state in terms of the parameter τ as

ε010 = 1−
√

2A+ 5A2 + 2A3

4 (2 + 5A+ 2A2)3

(
59 + 232A+ 390A2 + 232A3 + 59A4

)
, (9.18)

We see from (9.18) that the entanglement of the ground state depends upon the param-
eters of the Moshinsky atom only through the dimensionless quantity τ . Decoupling the
system, that is, making τ → 0 (which corresponds, for instance, to λ → 0 or equivalently
Λ → ω) makes ε010 = 0 showing that in the decoupled system the ground state is not
entangled. On the other hand, with maximum coupling τ → ∞ (τ → 1√

3
) for attractive

(repulsive) interactions we find that ε010 = 1, that is, the entanglement measure adopts its
maximum possible value.

9.2.2 First excited states

The first excited state in energy, when the system is coupled (τ > 0) and with attractive
interaction, is |110〉R1R2R3 and the next one with higher energy is |011〉R1R2R3 , the exci-
tation order being reversed in the case of repulsive interaction. Both states have the same
energy when we decouple the system, that is, when τ → 0. For these states, using (9.14)
and (9.15) respectively, we have

ε110 = 1− A1/2

4 (2 +A)9/2 (1 + 2A)9/2

(
177 + 1034A+ 6213A2 + 12582A3+

+15392A4 + 12582A5 + 6213A6 + 1034A7 + 177A8
)

(9.19)

and

ε011 = 1− A1/2

640 (2 +A)9/2 (1 + 2A)9/2

(
3057 + 24608A+ 93180A2+

+196704A3 + 251366A4 + 196704A5 + 93180A6 + 24608A7 + 3057A8
)
. (9.20)
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Decoupling the system makes ε011 = ε110 =
8

27
, so in the limit of a decoupled system

the first excited states are entangled. On the other hand, with maximum coupling we find
that ε011 = ε110 = 1, that is, the entanglement is maximum.

To both states (|011〉R1R2R3 and |110〉R1R2R3) having Sz = +1
2 , which we will denote

by |011〉+ and |110〉+, one can associate the states |011〉− and |110〉− respectively with
the same energy and same entanglement but with Sz = −1

2 . Then, as these are degen-
erate states because the energy does not depend on the spin, we compute the amount of
entanglement of a combination of them in the following way:

|Ψ011〉 = cos θ |011〉+ + sin θ |011〉−

|Ψ110〉 = cos θ |110〉+ + sin θ |110〉− (9.21)

where 0 ≤ θ < 2π. These states exhibit an amount of entanglement that is independent of
the parameter θ. To understand this behavior let us consider the unitary transformation U
(acting on the single-particle Hilbert space) defined by

U |φk〉|+〉 = |φk〉|p〉, k = 1, 2, . . . ,

U |φk〉|−〉 = |φk〉|n〉, k = 1, 2, . . . , (9.22)

where (|εk〉 = |φk〉|±〉, k = 1, 2, . . .) is a single-particle orthonormal basis (with the kets
|φk〉 corresponding to the spatial degrees of freedom) and

|p〉 = cos θ|+〉 − sin θ|−〉,
|n〉 = sin θ|+〉+ cos θ|−〉. (9.23)

It can be verified after some algebra that

|Ψ011〉 =
(
U ⊗ U ⊗ U

)
|011〉+,

|Ψ110〉 =
(
U ⊗ U ⊗ U

)
|110〉+. (9.24)

Now, it is clear that the amount of entanglement of a three-fermions state does not change
under the effect of unitary transformations of the form U ⊗ U ⊗ U and, consequently, the
entanglement of the states defined in Eq. (9.21) does not depend upon θ.

9.2.3 Second excited states

For these states we have that the lowest-energy second excited state when the system
is coupled and with attractive interaction is |210〉R1R2R3 , the next one with higher en-
ergy is |111〉R1R2R3 , and the following three states, all of them with the same energy, are
|012〉R1R2R3 , |021〉R1R2R3 and |003〉R1R2R3 . All these states have the same energy when
the system is decoupled.

Defining the parameter B = A1/2

(2+A)13/2(1+2A)13/2 , using Eq. (9.14) for the states

|210〉R1R2R3 and |012〉R1R2R3 , and Eq. (9.15) for the states |111〉R1R2R3 , |021〉R1R2R3
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and |003〉R1R2R3 , we found

ε210 = 1− B

16

(
2419 + 19480A+ 218138A2 + 564200A3 + 1466241A4+

+2943840A5 + 3743124A6 + 2943840A7 + 1466241A8 +

+564200A9 + 218138A10 + 19480A11 + 2419A12
)
,

ε111 = 1− B

64

(
9171 + 80546A+ 700555A2 + 2659770A3 + 6668841A4+

+11416740A5 + 13615794A6 + 11416740A7 + 6668841A8 +

+2659770A9 + 700555A10 + 80546A11 + 9171A12
)
,

ε012 = 1− B

256

(
42739 + 506008A+ 3123242A2 + 11179160A3 + 26922957A4+

+44982480A5 + 53234988A6 + 44982480A7 + 26922957A8 +

+11179160A9 + 3123242A10 + 506008A11 + 42739A12
)
,

ε021 = 1− B

4096

(
727363 + 8982520A+ 54219206A2 + 196856600A3+

+469858317A4 + 776694000A5 + 915625428A6 +

+776694000A7 + 469858317A8 + 196856600A9 +

+54219206A10 + 8982520A11 + 727363A12
)
,

and

ε003 = 1− B

4096

(
762395 + 9419160A+ 61156086A2 + 232139320A3+

+576896949A4 + 982782000A5 + 1171448436A6 +

+982782000A7 + 576896949A8 + 232139320A9 +

+61156086A10 + 9419160A11 + 762395A12
)
,

Taking the limit for the decoupling case of the system makes ε111 = ε210 = ε012 =
4

9
,

ε021 =
43

108
and ε003 =

1

4
, showing again that these excited states are entangled in the

decoupled system. In the maximum coupling limit we find for all second-excited states
that the entanglement reaches again its maximum value.

The behavior of the eigenstates’ entanglement as a function of the parameter τ (which
corresponds to the relative strength of the interaction between the two particles) is depicted
in Figure 9.1 for an attractive interaction and in Figure 9.2 for a repulsive interaction.

Comparing Figures 9.1 and 9.2 one observes that in the repulsive case (Fig. 9.2) max-
imum entanglement is reached when the parameter τ approaches the finite limit value

1√
3
≈ 0.577. In the attractive case (Fig. 9.1) entanglement behaves in a different way:

maximum entanglement corresponds to the limit τ → ∞. This difference between the
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Figure 9.1: Entanglement of the ground, first and second excited states of one-dimensional
Moshinsky atom with three electrons attractively interacting. All depicted quantities are
dimensionless.

attractive and the repulsive cases is due to the fact that the Moshinsky model with repulsive
interaction admits bound states only for τ -values in the finite range [0, 1√

3
). On the other

hand, in the attractive case the Moshinsky model admits bound states for all τ ≥ 0. In
the case of the repulsive interaction the eigenstates of the system are no longer bounded
for τ ≥ 1√

3
. Thus, the eigenstates exhibit a qualitative structural change at the “critical”

value τc = 1√
3
, resembling a quantum phase transition. A similar situation occurs in the

case of the Moshinsky atom with two electrons in a uniform magnetic field studied in the
next section (see Figure 9.4). This system, when the interaction is repulsive, admits bound
states only for τ -values smaller than the critical value τc = 1.

9.3 Two-electron Moshinsky atom in a magnetic field

The Hamiltonian of the two-electron Moshinsky atom in a three dimensional space is

HM =
p2

1

2me
+

p2
2

2me
+

1

2
meω

2(r2
1 + r2

2)± λ2

2
(r1 − r2)2

where subscripts 1 and 2 denote each of the electrons. As before, the positive (negative)
sign refers to an attractive (repulsive) interaction between the electrons. To study the pres-
ence of an uniform magnetic field acting on the system, we perform the following change
in the Hamiltonian:

p1 → p1 +
e

c
A and p2 → p2 +

e

c
A with A =

1

2
(B ∧ r),
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Figure 9.2: Entanglement of the ground, first and second excited states of one-dimensional
Moshinsky atom with three interacting electrons for the repulsive case. All depicted quan-
tities are dimensionless.

being B the magnetic field. Assuming that the magnetic field is homogeneous and have
z-axis direction, that is B = Bẑ, we can write:

p2
i → p2

i +

(
eB

2c

)2

(x2
i + y2

i ) +
eB

c
(xipyi − yipxi) with i = 1, 2. (9.25)

By replacing (9.25) in the Hamiltonian HM and setting atomic units (me = ~ = 1,
c = 1/α), we obtain

H =
1

2
(p2

1+p2
2)+

ω2

2
(r2

1+r2
2)+

b2

2
(x2

1+y2
1+x2

2+y2
2)+b(L1z+L2z)±

λ2

2
(r1−r2)2 (9.26)

where

b =
B

2c
; Liz = (xipyi − yipxi) and ri = (xi, yi, zi) with i = 1, 2. (9.27)

We change the variables to the center of mass (CM) and relative coordinates, i.e.

R =
1√
2

(r1 + r2) and r =
1√
2

(r1 − r2) (9.28)

respectively. This transformation satisfies the relations

p2
1 + p2

2 = p2
R + p2

r

and

L1z + L2z = LRz + Lrz = (RxpRy −RypRx) + (rxpry − ryprx), (9.29)
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and therefore, introducing Eqs. (9.28) and (9.29) in the Hamiltonian (9.26) we obtain

H =
1

2
(p2
R+p2

r)+
ω2

2
(R2 +r2)+

b2

2
(R2

x+R2
y+r2

x+r2
y)+b(LRz+Lrz)±

λ2

2
r2, (9.30)

which is separable in the CM and relative coordinates, so that we can express the Hamilto-
nian H as

H = HR +Hr

where

HR =
1

2
(p2
Rx + p2

Ry) +
ω2 + b2

2
(R2

x +R2
y) +

1

2
(p2
Rz + ω2R2

z) + bLRz (9.31)

and

Hr =
1

2
(p2
rx + p2

ry) +
ω2 + b2

2
(r2
x + r2

y) +
1

2
(p2
rz + ω2r2

z) + bLrz ±
λ2

2
r2. (9.32)

Introducing a dilation canonical transformation for the Hamiltonian HR, namely

p′Ri = (ω2 + b2)−
1
4 pRi, R

′
i = (ω2 + b2)

1
4Ri with i = x, y

p′Rz = ω−
1
2 pRz, R

′
z = ω

1
2Rz, (9.33)

and
p′ri = (ω2 + b2 ± λ2)−

1
4 pri, r

′
i = (ω2 + b2 ± λ2)

1
4 ri with i = x, y

p′rz = (ω2 ± λ2)−
1
4 prz, r

′
z = (ω2 ± λ2)

1
4 rz, (9.34)

we obtain

H ′R =
HR

ω
=

1

2

(
1 +

b2

ω2

) 1
2

(p′Rx
2

+ p′Ry
2

+R′x
2

+R′y
2
) +

1

2
(p′Rz

2
+R′z

2
) +

b

ω
LR′z,

(9.35)

H ′r =
Hr

(ω2 ± λ2)
1
2

=
1

2

(
1 +

b2

ω2 ± λ2

) 1
2

(p′rx
2

+ p′ry
2

+ r′x
2

+ r′y
2
) +

+
1

2
(p′rz

2
+ r′z

2
) +

b

(ω2 ± λ2)
1
2

Lr′z. (9.36)

The Hamiltonian describing the whole system will be therefore

H = ωH ′R + (ω2 ± λ2)
1
2H ′r. (9.37)

Using cylindrical coordinates, that is

ρR = (R′x
2

+R′y
2
)

1
2 , ϕR = arctan

(
R′y
R′x

)
, zR = R′z, (9.38)

ρr = (r′x
2

+ r′y
2
)

1
2 , ϕr = arctan

(
r′y
r′x

)
, zr = r′z, (9.39)
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we immediately have the eigenfunctions of H ′R y H ′r, given by [262]

ΨνRmRnR(R) =
1√
2π
RνR|mR|(ρR)eimRϕRχnR(zR), (9.40)

ΨνRmRnR(r) =
1√
2π
Rνr|mr|(ρr)e

imrϕrχnr(zr), (9.41)

where Rν|m|(ρ) are the two-dimensional oscillator radial eigenstates, whose normalized
expressions are

Rν|m|(ρ) =

(
2 ν!

(ν + |m|)!

) 1
2

ρ|m|e−
ρ
2L|m|ν (ρ2) (9.42)

being L|m|ν the Laguerre polynomials, with the quantum numbers ν andm taking the values
ν = 0, 1, 2, ... and m = 0,±1,±2, ... respectively. The functions χτ (z) are the eigenstates
of the unidimensional harmonic oscillator which are given by

χn(z) =

(
1

2nn!π
1
2

) 1
2

e−
z2

2 Hn(z) (9.43)

whereHn(z) are the Hermite polynomials and n takes the values n = 0, 1, 2, ...

The final eigenstates of the Hamiltonian (9.37) will be

|νRmRnR, νrmrnr〉 = |νRmRnR〉 ⊗ |νrmrnr〉 (9.44)

and the wave function

ΨνRmRnR,νrmrnr(r1, r2) = ΨνRmRnR,νrmrnr(R, r)|J | =
= 〈r1; r2|νRmRnR, νrmrnr〉 (9.45)

where J is the Jacobian of the canonical transformation given by Eqs. (9.33) and (9.34).
The eigenvalues of the harmonic oscillators in one and two dimensions are (n+ 1

2) and
(2ν + |m|+ 1), respectively. Defining the quantities

yR =

(
1 +

b2

ω2

) 1
2

+
b

ω
and yr =

(
1 +

b2

ω2 ± λ2

) 1
2

+
b

(ω2 ± λ2)
1
2

, (9.46)

we obtain the eigenvalues of the Hamiltonians H ′R and H ′r in the form

E′νRmRnR(yR) =
yR
2

(2νR + |mR|+mR + 1) +

+
1

2yR
(2νR + |mR| −mR + 1) +

(
nR +

1

2

)
, (9.47)

E′νrmrnr(yr) =
yr
2

(2νr + |mr|+mr + 1) +

+
1

2yr
(2νr + |mr| −mr + 1) +

(
nr +

1

2

)
. (9.48)
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Then, the total energy of the system, which is the eigenvalue of the HamiltonianH , is given
by

EνRmRnRνrmrnr(ω, b) = ωE′νRmRnR(yR) + (ω2 ± λ2)
1
2E′νrmrnr(yr). (9.49)

We calculate the exact form of the trace of the reduced density matrix associated to a
general eigenfunction (9.44) of the two-electron Moshinsky system with magnetic field for
the ground and the first excited states in nR, nr, νR and νr. Next we are going to provide
and discuss the corresponding amounts of entanglement exhibited by each eigenstate (aris-
ing from the evaluation of the aforementioned integrals). In what follows, ενRmRnR,νrmrnr
denotes value of ε when evaluated on the state |νRmRnR, νrmrnr〉 that we also will de-
note |νRmRnR, νrmrnr〉Rr. In order to obtain physically acceptable solutions in the case
of a repulsive interaction between the particles we have to take into account the constraint
λ < ω.

9.3.1 Ground state

The ground state is symmetric in coordinates, so we must combine it with the only

antisymmetric spin function to ensure the antisymmetry of the wave function. Let σ =
b

ω

and τ =
λ

ω
as before. In this case we have

ε000,000 = 1− 2 + 2σ2 + τ2 − 2
√

1 + σ2
√

1 + σ2 + τ2

τ4
(

1 +
√

1 + τ2
)√

1

1− 4
τ2 + 4+5τ2

τ2
√

1+τ2

√
τ2+2(1+3

√
1+τ2)

1+
√

1+τ2

×

×8
√

1 + σ2
√

1 + τ2
√

1 + σ2 + τ2. (9.50)

Decoupling the system makes ε000,000 = 0, therefore in the decoupled system the
ground state is not entangled. With maximum coupling τ → ∞ (τ → 1) in the attractive
(repulsive) case, we find that ε000,000 = 1; that is, the entanglement measure is maximum.
The behavior of entanglement as a function of the parameters τ and σ is shown in Fig-
ure 9.3. Figures 9.3a and 9.3b correspond, respectively, to the attractive and the repulsive
cases. More detailed information concerning the asymptotic behavior of entanglement is
provided in Figure 9.4.

From Fig. (9.3) it can be observed that in the limit of large magnetic fields, that is
σ →∞, the entanglement reaches a constant value which depends on the relative strength
of interaction given by the parameter τ , i.e.

lim
σ→∞

ε000,000 = 1−
8
(
1 + τ2

) (
2 + τ2 − 2

√
1 + τ2

)
τ4
(

1 +
√

1 + τ2
)√

2+τ2+6
√

1+τ2

1+
√

1+τ2

√
1

1− 4
τ2 + 4+5τ2

τ2
√

1+τ2

(9.51)
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Figure 9.3: Entanglement of the ground state of the three-dimensional Moshinsky atom
with two interacting electrons and a magnetic field. a) Attractive interaction, b) Repulsive
interaction. All depicted quantities are dimensionless.

9.3.2 First excited states

We study the excited states in νR, νr and nR that have symmetric coordinates wave
functions and therefore must be combined with the antisymmetric or antiparallel spin func-
tion. We also study in this section the excited state in nr which is antisymmetric in coordi-
nates and therefore, it can be combined with parallel or antiparallel spin functions. Excited
eigenstates in νR and νr and in nR and nr have the same energy respectively when the
system is decoupled. In this case we obtain

ε000,100 = ε100,000 = 1−
(
8 + 8σ4 + 8τ2 + τ4 + 8σ2

(
2 + τ2

))√
1+τ2+

√
1+τ2

2+τ2+6
√

1+τ2

√
2+τ2+6

√
1+τ2

1+
√

1+τ2

×

× 4
√

1 + σ2
√

1 + τ2
√

1 + σ2 + τ2(
1 +
√

1 + τ2
)(√

1 + σ2 +
√

1 + σ2 + τ2
)6 , (9.52)

ε000,001 = ε001,000 = 1− α
2
√

1 + σ2
√

1 + σ2 + τ2
(

6 + 3τ2 + 2
√

1 + τ2
)

(
1 +
√

1 + τ2
)3 (√

1 + σ2 +
√

1 + σ2 + τ2
)2 ×

×
√

1 + τ2 +
√

1 + τ2

2 + τ2 + 6
√

1 + τ2

√
2 + τ2 + 6

√
1 + τ2

1 +
√

1 + τ2
(9.53)

where α = 1(2) for antiparallel (parallel) spins.
Taking the decoupled limit system, we obtain the following entanglement values re-

gardless of the magnetic field value: εa100,000 = εa000,100 =
3

4
and εa001,000 = εa000,001 =

1

2
for the first excited states with antiparallel spin, which are entangled, and εp000,001 = 0 for
the only possible state with parallel spin. We have used εa (εp) to indicate the entanglement
of states with antiparallel (parallel) spin.

On the other hand, with maximum coupling we find that εa100,000 = εa000,100 =

εa001,000 = εa000,001 = εp000,001 = 1, so the entanglement is maximum.
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Figure 9.4: Entanglement of the ground state of the three-dimensional Moshinsky atom
with two interacting electrons in a uniform magnetic field, a) as a function of τ for different
values of σ with attractive interaction, b) as a function of σ for different values of τ with
attractive interaction, c) as a function of τ for different values of σ with repulsive interaction
and d) as a function of σ for different values of τ with repulsive interaction. All depicted
quantities are dimensionless.

In the limit for large magnetic fields, i.e. σ →∞, we obtain

lim
σ→∞

ε100,000 = lim
σ→∞

ε000,100 = 1− 3
√

1 + τ2

2
(

1 +
√

1 + τ2
) ×

×

√ 1 + τ2 +
√

1 + τ2

2 + τ2 + 6
√

1 + τ2

√
2 + τ2 + 6

√
1 + τ2

1 +
√

1 + τ2

−1

, (9.54)

lim
σ→∞

ε001,000 = lim
σ→∞

ε000,001 = 1− α
3
(

6 + 3τ2 + 2
√

1 + τ2
)

(
1 +
√

1 + τ2
)3 ×

×
√

1 + τ2 +
√

1 + τ2

2 + τ2 + 6
√

1 + τ2

√
2 + τ2 + 6

√
1 + τ2

1 +
√

1 + τ2
(9.55)

which, as we observe, depends on the value of the interaction.
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Figure 9.5: Entanglement of the first excited state in νR and νr of the three dimensional
Moshinsky atom with two interacting electrons and magnetic field. a) Attractive interac-
tion, b) Repulsive interaction. All depicted quantities are dimensionless.

The behavior of the entanglement exhibited by these states is shown in Figure 9.5 (for
excited states with νr = 1 and νR = 1) and in Figure 9.6 (for excited states with nr = 1

and nR = 1).

It transpires from the calculations summarized in Figures 9.3-9.6 that the amount of en-
tanglement exhibited by the eigenstates of the Moshinsky atom tends to decrease with the
strength of the magnetic field. To understand the physics behind this trend let us first recall
the general way in which entanglement depends on the strength of the interaction between
the two particles constituting the system. Entanglement tends to increase with the relative
strength of the interaction. However, it is important to stress that the determining factor
here is not the “absolute” strength of the interaction, but its strength as compared with the
strength of the external confining potential. In other words, entanglement increases both
if one increases the strength of the interaction keeping constant the external potential or,
alternatively, if the strength of the confining potential is weakened while keeping constant
the interaction. These general trends have been observed in all the atomic models where
entanglement has been studied in detail: the Moshinsky model, the Crandall model, and
also in Helium and in Helium-like atomic systems [238, 245]. For instance, when one con-
siders decreasing values of the nuclear charge Z in Helium-like systems (weakening the
Coulombic confining potential) the entanglement of the system’s ground state increases
[245]. These general patterns admit a clear and intuitive physical interpretation. When
the external confining potential becomes physically dominant (as compared with the in-
teraction) the behavior of the system resembles the behavior of a system of independent,
non-interacting particles, and entanglement tends to decrease. On the other hand, when
the interaction is dominant (as compared with the confining potential) the system’s behav-
ior departs from that of a system of non-interacting particles and entanglement tends to
increase.
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Figure 9.6: Entanglement of the first excited state in nR and nr of the three dimensional
Moshinsky atom with two interacting electrons and magnetic field. a) Attractive interac-
tion, antiparallel spin, b) Repulsive interaction, antiparallel spin, c) Attractive interaction,
parallel spins, d) Repulsive interaction, parallel spins. All depicted quantities are dimen-
sionless.

9.3.3 Confining effect of the magnetic field

The dependence of entanglement with the magnetic field can now be physically under-
stood. This dependence follows the same general patterns explained above. Indeed, the
basic fact about the magnetic field in the Moshinsky model (which of course is a common
external field acting on both particles) determining its effect upon entanglement is the fol-
lowing: increasing the strength of the magnetic field tends to increase the confining effect
of the combined external fields (that is, the harmonic external field and the magnetic field
characterized by ω and b respectively). To illustrate this basic property let us briefly con-
sider the behavior of a single particle (in 3D-space) under the combined effects of the ex-
ternal fields (harmonic field plus uniform magnetic field) involved in the Moshinsky model
that we study here. The probability density, in cylindrical coordinates, corresponding to a
pure state |νmn〉 of the one-particle system is given by

ρν,m,n(rc, θ, z) =
2−nν!

√
ωΛ

(1+|m|)
b

π3/2n!(ν + |m|)! e
−z2ω−r2

cΛbr2|m|
c

(
Hn(z

√
ω)L|m|ν (Λbr

2
c )
)2

(9.56)

where Λb =
√
b2 + ω2, rc =

√
x2 + y2 and θ = arctan

( y
x

)
.
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A direct way to study the dependence of the confinement of this particle on the strength
of the magnetic field is to compute the entropy of the spatial probability density and deter-
mine its behavior with the magnetic field (decreasing values of the entropy correspond to
increasing confinement). The linear and von Neumann entropy for single-particle density
functions correspond to the disequilibrium, Eq. (1.7), and the Shannon entropy, Eq. (1.4),
discussed in Part I of the Thesis, as follows:

S(L) = 1− Tr[ρ2]→ 1−D[ρ] = 1−
∫

[ρ(r)]2dr (9.57)

S(vN) = −Tr[ρ ln(ρ)]→ S[ρ] = −
∫
ρ(r) ln[ρ(r)]dr. (9.58)

For the ground state |gs〉 = |000〉 of the probability density (9.56), the above quantities are
given, respectively, by

S
(L)
|gs〉(ω, b) = 1−

√
ω
√
b2 + ω2

2
√

2π3/2
(9.59)

and

S
(vN)
|gs〉 (ω, b) =

1

2

[
3 (1 + lnπ)− lnω − ln

(
b2 + ω2

)]
. (9.60)

The entropies S(L)
|gs〉 and S

(vN)
|gs〉 describing the spatial “spreading” of the probability

density associated with ground state wave function are plotted against the magnetic field
in Figure 9.7a. We can see from this figure how the entropy is a monotonically decreasing
function of the magnetic field. This also occurs for the firsts excited states where we found
for the lineal entropies

SL|001〉(ω, b) = 1− 3
√
ω
√
b2 + ω2

8
√

2π3/2
(9.61)

SL|100〉(ω, b) = SL|010〉(ω, b) = 1−
√
ω
√
b2 + ω2

4
√

2π3/2
, (9.62)

see figure Figure 9.7b. As shown in these expressions, Eqs. (9.59)-(9.62), the entropy is
a decreasing function of b as well as of ω, showing that the harmonic potential is also
confining. Since they are information measures of a single-particle density functions de-
scribing not only correlation properties between two subsystems, as entanglement does, but
describing the global spreading of the density within the whole space, it is not surprising
that the parameters ω, b and λ (as we shall see in Eq. (9.65) below), can not be rescaled
in such entropies as in the entanglement obtained in previous Sections 9.3.1 and 9.3.2.
These linear (9.58) and von Neumann (9.57) entropies, in contrast to those computed using
single-particle reduced density matrices quantifying the entanglement, can assume values
in the range S(L) ∈ [1,−∞] and S(vN) ∈ R respectively.
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Figure 9.7: a) Linear (dashed lines) and von Neumann (solid lines) entropies of the ground
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In what follows, we show how the confinement also occurs in the system given by
Eq. (9.26) studied in the previous sections where more than one particle are involved. The
ground state, describing this system, is given by the equation (9.44) as |gs〉 = |000, 000〉.
Computing the single-particle density function as described in Appendix A, given in this
case by

ρ(1)
gs (r1) =

∫
R
|Ψ000,000(r1, r2)|2dr2 (9.63)

where Ψ000,000 is the wavefunction (9.45), we obtain

ρ(1)
gs (r1c, θ1, z1) =

2
√

2

π3/2

√
ωΛλΛbΛbλ√

ω + Λλ(Λb + Λbλ)
e
− 2r21cΛbΛbλ

Λb+Λbλ
−

2z21ω(λ2+ω(ω−Λλ))
λ2 , (9.64)

where Λλ =
√
λ2 + ω2, Λbλ =

√
b2 + λ2 + ω2 and r1c =

√
x2

1 + y2
1 and whereby the

linear entropy is obtained as follows:

SL|000,000〉(ω, b, λ) = 1−
(
λ2ωΛ2

bΛλΛ2
bλ

)√
ω(λ2+ω(ω−Λλ))

λ2

× (9.65)

×
(
π3/2(ω + Λλ)(Λb + Λbλ)2

(
λ2Λb + b2(Λb − Λbλ) + ω2(Λb − Λbλ)

))−1
.

It can be clearly appreciated that confinement increases with the intensity of the mag-
netic field b and with the harmonic potential ω as shown in Fig. 9.8a) and b). On the
contrary, the interaction between particles λ has a confining ability limited by both the
magnetic field and the harmonic potential. As we can see in Fig. 9.8c), the linear entropy
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SL|000,000〉 decreases with interaction to a finite limit which depends on b. A similar be-
havior is observed for different values of ω. According to what we saw in the previous
sections 9.3.1 and 9.3.2, the confinement effect of the interaction does not jeopardize the
correlations between the two particles since for large values of λ the entanglement is large
and confinement finite.
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Figure 9.8: Linear entropy of the single-particle ground state density describing the system
(9.26) a) as a function of b with λ = 100 for different values of ω, b) as a function of
ω with λ = 100 for different values of b, and c) as a function of the interaction between
particles λ with ω = 25 for different values of b.

The single-particle spatial probability densities of the two-particle system, correspond-
ing to the eigenfunctions of the Moshinsky system (9.26), also become more confined
when the magnetic field becomes more intense. As already explained in the previous Sec-
tion 9.3.2, this behavior is consistent with the decrease of entanglement with an increasing
magnetic field.

9.4 Perturbative Approach

In this section we consider a perturbative approach to the two previously studied mod-
els, regarding the term that describe the interaction (between the three or two electrons) as
a small perturbation (λ2 ∼ 0). Let us consider both systems governed by a Hamiltonian of
the form

H = H0 + λ2H ′, (9.66)

where the unperturbed Hamiltonian H0 takes different forms for each case (see Eqs. (9.70)
and (9.80)). H0 corresponds to three independent (non-interacting) particles and two in-
dependent particles in a magnetic field, respectively, and λ2H ′ describes the interaction
between the electrons, being λ a small parameter. A perturbative treatment of this system
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involves an expansion of its eigenenergies and eigenstates in terms of powers of λ2. If this
approach is valid we expect the gross properties of the energy spectrum to be given by the
eigenvalues of the unperturbed Hamiltonian. It is clear that within this scenario the leading
zeroeth-order contribution to the energy spectrum is independent of the detailed structure
of the perturbation H ′. However, the situation is different when, instead of the energy,
we calculate the entanglement of the system’s eigenstates. When the unperturbed energy
eigenvalues are degenerate the leading (zeroeth-order) contribution to the eigenfunction’s
entanglement does depend, in general, on the details of the perturbation.

Let us consider an m-fold degenerate energy level of H0, with an associated set of m
orthonormal eigenstates |ψj〉, j = 1, . . .m. Since H0 describes non-interacting particles,
the m eigenstates |ψj〉 can always be chosen to be Slater determinants written in terms of
a family of orthonormal single-particle states |φ(1,2,3)

j 〉 in the case of three particles and in

terms of |φ(1,2)
j 〉 in the case of two particles. So we have for a three-particle system

|ψj〉 =
1√
6

(
|φ(1)
j 〉|φ

(2)
j 〉|φ

(3)
j 〉 − |φ

(1)
j 〉|φ

(3)
j 〉|φ

(2)
j 〉+ |φ(2)

j 〉|φ
(3)
j 〉|φ

(1)
j 〉−

|φ(2)
j 〉|φ

(1)
j 〉|φ

(3)
j 〉+ |φ(3)

j 〉|φ
(1)
j 〉|φ

(2)
j 〉 − |φ

(3)
j 〉|φ

(2)
j 〉|φ

(1)
j 〉
)
,

and for a two-particle system

|ψj〉 =
1√
2

(
|φ(1)
j 〉|φ

(2)
j 〉 − |φ

(2)
j 〉|φ

(1)
j 〉
)
.

All the members of the subspace Hs spanned by the states |ψj〉 are eigenstates of H0

corresponding to the same eigenenergy. The different members of this subspace have,
in general, different amounts of entanglement. Typically, the interaction H ′ will lift the
degeneracy, at least partially, of the degenerate energy level. If we solve the eigenvalue
problem corresponding to the (perturbed) Hamiltonian H and take the limit λ → 0, the
perturbation H ′ will “choose” one particular basis {|ψ′k〉λ→0} among the infinite possible
basis of Hs. The states constituting this special basis will be entangled in general. These
states are of the form [289]

|ψ′k〉λ→0 =
m∑
j=1

ckj |ψj〉, (9.67)

where the m-dimensional vectors vTk = (ck1, ..., ckm) are the eigenvectors of the m ×m
H̃ matrix with elements given by

H̃ij = 〈ψi|H ′|ψj〉. (9.68)

It is then clear that, in the limit λ→ 0, the eigenstates of H will in general be entangled.
Let m̃ be the number of different single-particle states within the family

{|φ(1,2,3)
j 〉, 1, . . . ,m} or {|φ(1,2)

j 〉, 1, . . . ,m}. m̃ tends to increase with m which, in turn,
tends to increase with energy; that is, m̃ tends to increase as one considers higher excited
states. This explains (at least in part) why the range of entanglement values available to the
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eigenstates {|ψ′k〉λ→0} tends to increase with energy. Indeed, the amount of entanglement
that can be achieved for a given energy of a N -fermion system admits an upper bound
given by

εSL = 1− N

m̃
, (9.69)

9.4.1 Moshinsky model with three electrons

Let the unperturbed Hamiltonian be

H0 = −1

2

∂2

∂x2
1

− 1

2

∂2

∂x2
2

− 1

2

∂2

∂x2
3

+
1

2
ω2x2

1 +
1

2
ω2x2

2 +
1

2
ω2x2

3 (9.70)

and the perturbation

λ2H ′ = λ2 1

2
[(x1 − x2)2 + (x2 − x3)2 + (x1 − x3)2]. (9.71)

Then, we have H = H0 + λ2H ′. When λ = 0 the model consists of three-independent
harmonic oscillators with the same natural frequency. Let |n±〉 (n = 0, 1, 2...) be the
eigenstates of each of these oscillators. For the first excited state which is four-fold de-
generate, let {|0,±〉, |1,±〉, |2,±〉} be the single-particle orthonormal basis. Then, for
λ = 0, we can choose the four eigenstates with zero entanglement, all of them with the
same energy as |011〉R1R2R3 and |110〉R1R2R3 :

|ψ1〉 = |0+, 0−, 2 + |
|ψ2〉 = |0+, 0−, 2− |
|ψ3〉 = |0+, 1+, 1− |
|ψ4〉 = |0−, 1+, 1− |

(9.72)

where we have introduced the notation

|i, j, k| = 1√
6

(|i, j, k〉 − |i, k, j〉+ |j, k, i〉 − |j, i, k〉+ |k, i, j〉 − |k, j, i〉)

and i, j, k = 0±, 1±, 2±.
For the first excited energy level of H0 (E = 7

2ω), we have

H̃ ∝


4 0 1√

2
0

0 4 0 1√
2

1√
2

0 7
2 0

0 1√
2

0 7
2

 , (9.73)

and the corresponding eigenvectors can be written as
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|ψ′1〉 =

√
2

3
(− 1√

2
|ψ2〉+ |ψ4〉)

|ψ′2〉 =

√
2

3
(− 1√

2
|ψ1〉+ |ψ3〉)

|ψ′3〉 =
1√
3

(
√

2|ψ2〉+ |ψ4〉)

|ψ′4〉 =
1√
3

(
√

2|ψ1〉+ |ψ3〉). (9.74)

In the decoupled limit the eigenstates |011〉R1R2R3 and |110〉R1R2R3 tend to the above
states (or any combination of them) which have ε = 8

27 . This value coincides with the
entanglement for the first excited state obtained from the exact calculation in the limit
τ → 0 (equivalently λ→ 0).

The states |ψ′1〉 and |ψ′2〉 (|ψ′3〉 and |ψ′4〉) share the same energy eigenvalue. A linear
combination of eigenstates sharing the same eigenenergy is also a valid energy eigenstate.
Then, let us consider for instance |ψ′34〉 = cos θ |ψ′3〉+sin θ|ψ′4〉, (0 ≤ θ < 2π). As already
discussed at the end of Subsection III.B, the entanglement of these linear combinations does
not depend on θ.

We have seen that in the case of some excited states of the Moshinsky model an ar-
bitrarily weak interaction between the particles leads to a finite amount of entanglement.
This naturally suggests the following issues: to what extent is this weak-interaction entan-
glement robust? What happens with this entanglement if some other small perturbation
acts upon the system? The detailed entanglement features of the eigenstates corresponding
to this scenario will evidently depend on the precise form of the new perturbation. There-
fore, these entanglement properties can only be studied in a case-by-case way. However, it
is possible to gain some valuable insights on the robustness of the weak-interaction entan-
glement by recourse to a statistical approach. We can consider the typical features of the
weak-interaction entanglement corresponding to a random perturbation.

Let us consider again the four eigenstates in Eq. (9.72) of the unperturbed (with no
interaction) system. Any weak perturbation acting on top of the already considered weak
interaction will lead (in the lowest order of perturbation theory for a degenerate eigenen-
ergy) to a new set of four perturbed energy eigenstates that will be linear combinations
of the four unperturbed states (9.72). That is, the new perturbed states are orthonormal
states belonging to the four-dimensional linear space spanned by the states (9.72). We
can consider the statistical distribution of entanglement values corresponding to random
states in this subspace uniformly distributed according to the Haar measure (see [290, 291]
and references therein). To this end we generate three-electron states randomly distributed
according to the Haar measure of the form

|ψ′〉 =
4∑
i=1

ci|ψi〉, (9.75)

with |ψi〉, i = 1, . . . , 4 as given in Eq. (9.72). A state of the form |ψ′〉 can be thought as
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an eigenvector corresponding to an arbitrary perturbation. The entanglement of the state
|ψ′〉 is

ε(|ψ′〉) = 1− 1

3

[
2
(
|c1|2 + |c2|2

)2
+ 2

(
|c3|2 + |c4|2

)2
+ 1
]
. (9.76)

Optimizing Eq. (9.76) we obtain the maximum possible value of entanglement εm(|ψ′〉) =
1
3 associated to the state with coefficients satisfying: |c1|2 + |c2|2 = |c3|2 + |c4|2 = 1

2 .
In Table 9.1 we show the percentual number of three-electron pure states belonging to

the linear subspace spanned by the states (9.72) that have entanglement values in different
ranges. To compute these percentual values we generated 107 random states distributed ac-
cording to the Haar measure. The average and maximum entanglement values correspond-
ing to perturbed states spanned by (9.72) are also given in Table 9.1. These results consti-
tute suggestive evidence for the robustness of the entanglement exhibited by excited eigen-
states of the Moshinsky atom in the weak-interaction limit. Indeed, the statistical study
summarized in Table 9.1 suggests that any new perturbation is likely to produce a small
decrease in the entanglement of the excited state considered here (ε = 8/27 ≈ 0.2963)
but, in the typical case, it will still result in an appreciable amount of entanglement in the
weak-interaction limit.

% of states in 0 < ε ≤ 1/9 4.75%

different 1/9 < ε ≤ 2/9 18.25%

entanglement ranges 2/9 < ε ≤ 1/3 77%

average entanglement 〈ε〉 = 0.26667

maximum entanglement εm = 1/3

Table 9.1: Entanglement distribution for perturbed excited states of a three-electron
Moshinsky system. These states correspond to a four-fold degenerate unperturbed energy
level.

Let us now study the entanglement properties for the second excited state of the
Moshinsky atom. In this case, we have ten-fold degenerate eigenstates, (all of them with
E = 9

2ω). The single-particle orthonormal basis is given by {|0,±〉, |1,±〉, |2,±〉, |3,±〉}.
The matrix of the harmonic perturbation can be expressed as follow:

H̃ ∝



9
2 0 0 0 −

√
3

2 0
√

3
2 0 0 0

0 9
2 0 0 0 −

√
3

2 0
√

3
2 0 0

0 0 6 0 0 0 0 0 0 0

0 0 0 5 1 0 0 0 0 0

−
√

3
2 0 0 1 9

2 0 1
2 0 0 0

0 −
√

3
2 0 0 0 11

2 0 1
2 0 0√

3
2 0 0 0 1

2 0 11
2 0 0 0

0
√

3
2 0 0 0 1

2 0 9
2 1 0

0 0 0 0 0 0 0 1 5 0

0 0 0 0 0 0 0 0 0 6



. (9.77)
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Following a similar procedure and after a laborious algebra we compute the entangle-
ment of the eigenvectors of H̃:

ε(|ψ′1〉) = ε(|ψ′6〉) = 0

ε(|ψ′7〉) = ε(|ψ′8〉) = ε(|ψ′9ngle) = ε(|ψ′10〉) =
4

9

ε(|ψ′3〉) = ε(|ψ′4〉) =
1

4

ε(|ψ′2〉) = ε(|ψ′5〉) =
20

49
(9.78)

where |ψ′j〉 (j = 1, ..., 10) are the eigenvectors of the H̃ matrix. The states |ψ′j〉 with
j = 1, ..., 6 share the same eigenvalue. The same occurs for the state pairs (|ψ′7〉, |ψ′8〉) and
(|ψ′9〉, |ψ′10〉). As we mentioned before, the interaction lift only partially the degeneracy.
The degeneracy due to the spin degree of freedom (Sz = ±1

2 ) is present in all the states.
The obtained values agree with some of those calculated in section 3. Different combina-
tions of the states sharing eigenvalues result in the non-coincident entanglement ε021 = 43

108

For instance, let |ψ′56〉 = pψ′5 +
√

1− p2ψ′6, (0 ≤ p ≤ 1); then,

ε(p) =
4

147
p2(8p2 + 7), (9.79)

and ε021 is re-obtained for p ∼ 0.992.

9.4.2 Moshinsky model with two electrons in an uniform magnetic field

We consider also a perturbative approach for a three-dimensional Moshinsky atom with
two electrons in a magnetic field. Let the unperturbed Hamiltonian be

H0 =
1

2
(p2

1 + p2
2) +

ω2

2
(r2

1 + r2
2) +

b2

2
(x2

1 + y2
1 + x2

2 + y2
2) + b(L1z + L2z) (9.80)

and the perturbation,

λ2H ′ =
λ2

2
(r1 − r2)2. (9.81)

The eigenenergies of H0 are given by Eq. (9.49), taking νR = ν1, νr = ν2, mR = m1,
mr = m2, nR = n1, nr = n2 and setting λ = 0. Then, for the excited states of H0 with
energy given by

Eνm = ω

(
2y +

2

y
+ 1

)
, y =

(
1 +

b2

ω2

) 1
2

+
b

ω
,

τ1,2 = 0 or ν1,2 = 0, m1 = {±1, 0}, m2 = {0,±1} and τ1,2 = 0, we obtain resulting of
setting one of the quantum numbers ν1, ν2, |m1|, |m2| equal to one and the rest equal to
zero. So,
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H̃ ∝



c1 0 0 0 0 0 0 0

0 c1 0 0 0 c2 −c2 0

0 0 c1 0 0 −c2 c2 0

0 0 0 c1 0 0 0 0

0 0 0 0 c1 0 0 0

0 c2 −c2 0 0 c1 0 0

0 −c2 c2 0 0 0 c1 0

0 0 0 0 0 0 0 c1


,

where c1 = 1
2ω + 2√

b2+ω2
and c2 is obtained numerically, its exact numerical value being

not relevant for the next calculations.
H̃ has six degenerate eigenvectors and two non-degenerate ones that take the following

entanglement values: {0, 1
2 ,

3
4}. The entanglement value obtained from the exact computa-

tions in the limit λ→ 0 of the states with the same energy, |100, 000〉Rr and |000, 100〉Rr,
coincide with one of the above values (ε = 3

4 ).
We consider also states setting n1 = 1 or n2 = 1 and the rest equal to zero, with energy

given by

En = ω

(
y +

1

y
+ 2

)
and with y defined as before. For these excited states we obtain

H̃ ∝


d1 + d2 0 0 0

0 d1 d2 0

0 d2 d1 0

0 0 0 d1 + d2

 ,

where d1 = 1
ω + 1√

b2+ω2
and d2 = 1

2ω . This matrix has three eigenvectors corresponding

to the same eigenvalues and with entanglement {0, 1
2} and one non-degenerate eingevec-

tor with entanglement 1
2 . Again the obtained results are in perfect accordance with the

entanglement obtained for states |001, 000〉Rr and |000, 001〉Rr in the decoupled regime.

Conclusions

We explored the entanglement properties of two versions of the Moshinsky model: one
comprising three electrons and another one consisting of two electrons in a uniform exter-
nal magnetic field. The eigenstates entanglement of the three-electron system considered
here depends only on the dimensionless parameter τ describing the relative strength of the
interaction between the particles (as compared with the strength of the external confining
potential). We obtained closed analytical expressions for the entanglement of the ground,
first and second excited states. As a general trend we found that the entanglement exhibited
for these states tends to increase both with the state’s energy and with the strength of the
interaction between the particles (that is, with τ ). Non-vanishing entanglement is obtained
in the limit of vanishing interaction in the case of excited states. This (apparent) discontin-
uous behavior of the entanglement is related to the degeneracy of the energy levels of the
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“unperturbed” Hamiltonian describing non-interacting particles. The non-vanishing entan-
glement in the limit of zero interaction is determined by the particular basis ofH0 “chosen”
by the interaction. We also found that in the case of an attractive interaction the eigen-
states’ entanglement approaches its maximum possible value in the limit of an infinitely
large interaction. On the other hand, in the case of a repulsive interaction the maximum
possible entanglement is obtained when the interaction strength approaches a finite, critical
limit corresponding to τc = 1√

3
. The system does not admit bound eigenstates when the

strength of the (repulsive) interaction is equal or larger than the one corresponding to τc.
As far as the entanglement’s dependence on the interaction strength and the energy

are concerned, the behavior of the Moshinsky model with two electrons in an uniform
magnetic field is similar to the one observed in the three-electron model. With regards to
the external magnetic field, we found that the eigenstates’ entanglement decreases when
considering increasing magnetic fields. In the limit of very strong magnetic fields the en-
tanglement approaches a finite asymptotic value that depends on the interaction strength.
The essential aspect of the magnetic field in the Moshinsky model that determines its effect
upon the amount of entanglement exhibited by the system’s eigenstates is the following:
increasing the intensity of the magnetic field tends to increase the confining effect of the
combined external fields (that is, the harmonic external field and the magnetic field). For
a given strength of the interaction between the particles, this increasing confinement leads
(according to a general pattern that has been observed in all atomic models where entangle-
ment was studied in detail) to a decrease in the eigenstates’ entanglement. As happens in
the case of the three-electron model, a perturbative treatment highlights the essential role
played by the degeneracy of the energy levels of the interactionless system in determining
how the eigenstates’ entanglement depends on the interaction strength and on the energy.





CHAPTER 10

Entanglement and
Born-Oppenheimer approximation

in an exactly solvable quantum
many-body system

The very definition of entanglement relies on the partitioning of a system into sub-
systems, such that one physical system can exhibit very different entanglement properties,
depending on the assumed convention [5]. Efficiently solvable systems permit to find a par-
ticular partition for which the wavefunction is separable, even in the presence of otherwise
entangling interaction. For example, the hydrogen atom is naturally treated in the center-of-
mass and relative coordinates, in which the wavefunction factorizes, instead of the electron
and proton coordinates, in which the wavefunction appears to be highly entangled [292].
Such beneficial change of coordinates is, however, impossible for non-integrable systems,
and entanglement in quantum many-body systems comes along typically with unconquer-
able complexity, which represents a serious challenge to any numerical or analytical ap-
proach. In a quantum chaotic system, there is no basis in the Hilbert space that permits
an efficient description, by definition. Quantities developed in quantum information re-
flect the failure of any strategy that relies on the truncation of the Hilbert space, e.g. by the
statistics of Schmidt coefficients of the wavefunction described under any bipartition [293].
Conversely, fundamental restrictions on entanglement, e.g. by area laws [294], can render
efficient simulations of quantum-many-body systems possible [295]. An understanding of
entanglement can, thus, be of great importance for practical numerical solutions.

A system that is particularly prone to complexity is a many-electron atom, in which the
long-range Coulomb interaction renders any exact solution impossible, already for helium
[296]. For such a system, entanglement is, on the one hand, tantamount to the enormous
complexity present in the system. On the other hand, the clear hierarchy between the
masses of the atomic constituents (electrons and the nucleus) suggests that most of the
entanglement properties can already be understood from purely kinematic considerations,
and that they are also featured by simple integrable models.

One well established computational technique in physical chemistry and molecular
physics is the Born-Oppenheimer approximation [297, 298, 299], which allows an efficient
treatment of many-nuclei many-electron systems by exploiting the intrinsic separation of
scales that is rooted in the mass ratio between electrons and nuclei. The range of validity
of the Born-Oppenheimer approximation has been studied and tested for different systems,
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e.g. in atomic models with respect to the variation of the mass of a negative charged particle
[300], in molecules under magnetic fields [301] or as well as in chemical reactions [302].

Here, we study the correlations between different bipartitions of the one-dimensional
Moshinsky few-body model, that consists ofNn “nuclei” and Ne “electrons”. The external
confinement and all particle-particle interactions are harmonic, which allows an analyti-
cal approach. We study the dependence of entanglement in the ground and the first few
excited states on the particle-particle interaction strength, on the number of particles, and
on the particle masses. Consistent with kinematic intuition, the entanglement between
two subsystems vanishes when the subsystems have very different masses, while it attains
its maximal value for comparable masses. The validity and the break-down of the Born-
Oppenheimer Ansatz can be understood from a quantum information point of view.

The chapter is organized as follows. In Section 10.1 we describe the Moshinsky model
we are going to study, and we briefly review the entanglement measures to be used through-
out the chapter, as well as the Born-Oppenheimer approximation. In Section 10.2 we
present the exact solution of the many-particle Moshinsky model with masses mn and
me. Based on this solution, we investigate the entanglement properties of the eigenstates
of the three-particle case in Section 10.3 and, in Section 10.4, we extend the study of entan-
glement to systems with an arbitrary number of particles. In Section 10.5 we deal with the
Born-Oppenheimer approximation for this many-particle Moshinsky model. We explore
its validity with the parameters of the theory and analyze the entanglement computed with
this approximation. Finally, some conclusions are drawn.

10.1 Preliminaries

10.1.1 Moshinsky-like many-particle model

The system here considered consists of N = Nn + Ne distinguishable particles, Nn

“nuclei” with mass mn and Ne “electrons” with mass me. All particles interact harmoni-
cally with each other and with the external confining potential.

The particle-particle interaction strengths between a nucleus and an electron, between
two electrons, and between two nuclei are denoted by τne, τee and τnn, respectively; they
are measured in units of the confining potential strength k. All masses are measured in units
of the electron mass me, i.e. the nucleus mass is adjusted via the mass ratio M = mn/me,
and all actions are measured in units of ~.

The dimensionless Hamiltonian of the system is

Hx =

Nn∑
i=1

Pxi
2

2M
+

Ne∑
j=1

pxj
2

2
+

1

2

Nn∑
i=1

Xi
2 +

Ne∑
j=1

xj
2

+

+
τnn
2

(
Nn∑
i=1

Nn∑
k=i+1

(Xi −Xk)
2

)
+
τee
2

 Ne∑
j=1

Ne∑
k=j+1

(xj − xk)2

+

+
τne
2

Nn∑
i=1

Ne∑
j=1

(Xi − xj)2

 , (10.1)
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where (Xj , Pxj ) and (xj , pxj ) denote the positions and momenta of the nuclei (in upper-
case letters) and electrons (in lowercase letters), respectively.

10.1.2 Quantum entanglement

In this chapter we focus on the entanglement in eigenstates of the many-particle system
described above, for which we consider different bipartitions. The entanglement of a pure
bipartite system is essentially given by the mixedness of the marginal density matrices as-
sociated with each subsystem. We study the two following partitions: First, we consider the
partition of the system into a single-particle subsystem and a (N − 1)-particle subsystem,
where the single particle can be a nucleus or an electron. Second, we study the partition of
the system into the two groups of all Nn nuclei and all Ne electrons. Comparing the corre-
lations exhibited in the different partitions, we can characterize the degree of entanglement
between particles of the same and of different types.

A practical quantitative indicator for the entanglement in a pure bi-partite system of
distinguishable particle is the linear entropy given in Eq. (8.23). In the present applications
as in the previous chapter, we deal with infinite-dimensional Hilbert spaces, such that the
measure in Eq. (8.23) adopts values within the interval [0, 1), since the maximal value of
the entanglement in a d-dimensional space is 1− 1/d.

Given a bipartition (A,B) of a system of N particles into (NA, NB) particles, we
compute the trace that appears in Eq. (8.23) as

Tr[ρ2
A] =

∫
R
|〈xA|ρA|x′A〉|2dxAdx′A, (10.2)

with the ρA matrix elements,

〈xA|ρA|x′A〉 =

∫
R
〈xAxB|ρ|x′AxB〉dxB =

∫
R

Ψ(xA,xB)Ψ∗(x′A,xB)dxB, (10.3)

where xA (xB) are NA-dimensional (NB-dimensional) position coordinates denoting the
global set of coordinates {x1 · · ·xNA} ({xNA+1 · · ·xN}) of the particles that belong to the
subsystem A (B).

For the many-particle system Hx, we denote hereafter the (Nn-nuclei)-(Ne-electrons)
entanglement (or nuclei-electrons entanglement) by ε(Nn, Ne), the (1-nucleus)-((N −
1)-particles) entanglement (or single-nucleus entanglement) by εn(Nn, Ne) and the
(1-electron)-((N − 1)-particles) entanglement (or single-electron entanglement) by
εe(Nn, Ne). The single-electron (single-nucleus) entanglement captures the uncertainty
that a single electron (nucleus) has due to correlations with other particles. These correla-
tions can be of very distinct qualitative nature, since electrons can be correlated one with
each other, or with the nuclei. This is also reflected in the nuclei-electrons entanglement.

10.1.3 Born-Oppenheimer approximation

As already mentioned in the Introduction, the study of the mass effects on the entan-
glement features of composite systems naturally leads to consider the connection between
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entanglement and the celebrated Born-Oppenheimer approximation. Here we provide a
brief review of this important approach.

The Born-Oppenheimer (BO) approximation [297] is probably the most fundamental
approximation in quantum chemistry [298] and in molecular physics [299]. From a prac-
tical point of view, it allows one to determine the electronic structure of a molecule in a
given particular configuration of its nuclear part. The physical motivation behind the BO
approximation is that the nuclei are much heavier than the electrons. If we denote by x

and X all of the electron positions {xi} and nuclear positions {Xi}, respectively, we can
consider X as a “parameter” that define the effective Hamiltonian for the electrons. For any
fixed configuration of the molecule one has to solve a Schrödinger equation that involves
only the electronic degrees of freedom. The eigenvalues and eigenfunctions depend on
the particular nuclear configuration. Once one has solved the electronic Schrödinger equa-
tion, the effective Hamiltonian for the nuclei can be obtained by adding the corresponding
one-nucleus Hamiltonian terms.

In order to gaim a more detailed insight, let us apply the approximation to the here-
considered “molecule” composed of Nn nuclei and Ne electrons. The time-independent
Schrödinger equation for the system associated to Eq. (10.1) is

[Tn + Te + V ]ψ(X;x) = Eψ(X;x), (10.4)

where Tn and Te denote the kinetic energy operator for the nuclei and electrons, respec-
tively, and V the total potential energy of the system. In the BO approximation [297] one
sets the Ansatz wave function

ΨBO
s,q = Fs(X)φq(X;x), (10.5)

where s and q denote the nuclei and electrons quantum state, respectively.
The time-independent Schrödinger equation for the electrons moving in the field of

fixed nuclei at the positions {Xi}, known as the electronic wave equation, is given by

(Te + V )φq(X;x) = Eelecq (X)φq(X;x), (10.6)

where Eelecq and the wave function φq for each electronic state q depend parametrically on
the nuclear coordinate X. The nuclear wave function Fs(X) satisfies[

Tn + Eelecq (X)− E
]
Fs(X) = 0. (10.7)

10.2 Exact solution of the many particle system

In this section we solve the Schrödinger equation Hx|Ψ〉 = Ex|Ψ〉 analytically, being
Hx the Hamiltonian in Eq. (10.1) described in the previous section. For this purpose we
introduce the dilatation coordinate change

Xj →
X ′j√
M

(10.8)
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for nuclei, which allows us to express the one-dimensional Hamiltonian, H ′x = Hx, in
terms of the N ×N interaction matrix A as follows:

H ′x =

Nn∑
j=1

P ′j
2

2
+

Ne∑
i=1

pi
2

2
+

1

2

Nn∑
j=1

Ai,iX
′
j
2

+ (10.9)

+
1

2

Ne∑
i=1

ANn+i,Nn+ixi
2 −

Nn∑
j=1

Ne∑
i=1

Aj,Nn+iX
′
jxi −

−
Ne∑
i=1

Ne∑
j=i+1

ANn+i,Nn+jxixj −
Nn∑
i=1

Nn∑
j=i+1

Ai,jX
′
iX
′
j .

The elements of A are given by

Aj,j =
(1 +Neτne + (Nn − 1)τnn)

M
,

Ai+Nn,i+Nn = (1 +Nnτne + (Ne − 1)τee),

Aj,i+Nn = − τne√
M
,

Aj,l = −τnn
M

for j 6= l,

Ai+Nn,m+Nn = −τee for i 6= m. (10.10)

where the indices j and l (i and m) run between 1 and Nn (1 and Ne) and refer to nuclear
(electronic) coordinates.

The coordinate changes which makes the Hamiltonian (10.9) separable are given by
the eigenvectors of the interaction matrix A. This matrix has Ne − 1 and Nn − 1 de-
generate values in the electron and nuclei cases. Now, for the corresponding eigenvector
we choose the Jacobi variables {r1, . . . , rNe−1} and {R1, . . . , RNn−1}, for electrons and
nuclei, respectively, as follows:

ri(x1, ..., xi+1) =

i∑
k=1

xk − xi+1√
i+ i2

,

Rj(X
′
1, ..., X

′
j+1) =

j∑
k=1

X ′k −X ′j+1√
j + j2

, (10.11)

with i = 1, . . . , Ne−1 and j = 1, . . . , Nn−1. This particular choice of Jacobi coordinates
makes the Hamiltonian to be separable as independent harmonic oscillator in those Jacobi
coordinates given in Eq. (10.11) without any prefactor. Moreover it makes the single-
particle entanglement dependent only on the last quantum number of these coordinates
(see Table 10.1). The remaining two eigenvalues of A are not degenerated, so that, their
corresponding eigenvectors are predefined, and give the coordinate changes

U1(X ′1, ..., X
′
Nn , x1, ..., xNe) =

Nn(a+ b)√
Ne +Nn(a+ b)2

RNn +

+
Ne√

Ne +Nn(a+ b)2
rNe , (10.12)
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U2(X ′1, ..., X
′
Nn , x1, ..., xNe) =

Nn(a− b)√
Ne +Nn(a− b)2

RNn +

+
Ne√

Ne +Nn(a− b)2
rNe , (10.13)

where

rNe(x1, ..., xNe) =
1

Ne

Ne∑
i=1

xi,

RNn(X ′1, ..., X
′
Nn) =

1

Nn

Nn∑
j=1

X ′i (10.14)

are the centers of mass of electrons and nuclei, respectively, and

a =
M − 1− 2τne +Mτne

2
√
Mτne

,

b =

√
−4M (1 + 3τne) + (1 +M + 2τne +Mτne)

2

2
√
Mτne

. (10.15)

The coordinates U1 and U2 are linear combinations of the center-of-mass of the nuclei,
RNn , and the center-of-mass of the electrons, rNe , with pre-factors that depend on the
electron-nucleus interaction strength τne, the mass ratio M , and the number of electrons
and nuclei, Ne and Nn. In the limit of large electron-nucleus interaction, τne → ∞, the
coordinates become the center-of-mass and the relative coordinates of the set of nuclei and
electrons:

lim
τne→∞

U1 =
√
Ne +MNn

NerNe +MNnRNn
Ne +MNn

,

lim
τne→∞

U2 =

√
MNeNn

Ne +MNn
(rNe −RNn). (10.16)

When electrons and nuclei have the same mass, i.e. M → 1, the coordinates allow again
the above natural interpretation:

UM→1
1 =

√
Ne +Nn

NerNe +NnRNn
Ne +Nn

,

UM→1
2 =

√
NeNn

Ne +Nn
(rNe −RNn), (10.17)

for any value of the interaction τne.
In the transformed coordinates {r1, . . . , rNe−1}, {R1, . . . , RNn−1} and {U1, U2}, the

Hamiltonian (10.9) separates as

H ′x =
∑
l=1,2

(
−1

2

∂2

∂U2
l

+
1

2
βlU

2
l

)
+

+

Nn−1∑
j=1

(
−1

2

∂2

∂R2
j

+
1

2
β(n)R2

j

)
+

Ne−1∑
i=1

(
−1

2

∂2

∂r2
i

+
1

2
β(e)r2

i

)
, (10.18)
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where

β1/2 =
1 +M +Neτne +NnMτne

2M
∓ Nnbτne√

M
, (10.19)

β(n) =
1 +Neτne +Nnτnn

M
, (10.20)

β(e) = 1 +Nnτne +Neτee. (10.21)

In other words, the system has been decomposed into a set of independent harmonic os-
cillators in the variables U1, U2, Rj and ri, with frequencies

√
β1,
√
β2,
√
β(n),

√
β(e),

respectively. The eigenfunctions of the Hamiltonian

Ψ′u1,u2,n,e(X ′1, ..., X
′
Nn , x1, ..., xNe) =

2∏
l=1

Φβl
ul

(
Ul(X

′
1, ..., X

′
Nn , x1, ..., xNe)

)
×

×
Nn−1∏
j=1

Φβ(n)

nj

(
Ri(X

′
1, ..., X

′
i+1)

)
×

×
Ne−1∏
i=1

Φβ(e)

ei (ri(x1, ..., xi+1)) , (10.22)

are expressed in terms of the one-dimensional harmonic oscillator solution

Φβ
ν (y) =

(
β1/4

2nn!π1/2

) 1
2

e−
1
2

√
βy2Hn

(
β1/4y

)
, (10.23)

whereHν(y) denote the Hermite polynomials.
The quantum numbers u1, u2,n, e correspond to the excitation of each collective co-

ordinate (10.11)-(10.13) described above; that is, the quantum numbers ui are associ-
ated to the excitation of coordinates Ui, and n (e) denotes the set of quantum numbers
{n1, ..., nNn−1} ({e1, ..., eNe−1}) associated to the excitation of the nuclei (electrons) rel-
ative coordinates {R1, ..., RNn−1} ({r1, ..., rNe−1}) All correlations between nuclei and
electrons are defined via the correlations between their respective centers of mass RNn and
rNe , which are coupled only through the coordinates U1 and U2, as shown in Eqs. (10.12)
and (10.13).

The eigenfunctions of the initial HamiltonianHx are obtained by undoing the dilatation
coordinates change (10.8) in the eigenfunction given in Eq. (10.22), i.e.

Ψu1,u2,n,e(X,x) = M−
Nn
4 Ψ′u1,u2,n,e

(√
MX1, ...,

√
MXNn , x1, ..., xNe

)
. (10.24)

While the above eigenfunctions depend on the rescaled interactions between particles with
the strength of the confining potential k, as well as the mass ratio, the eigenenergies are
explicitly dependent on all parameters governing the physical scale of the system, that is,
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the energy of the system, Ex =
√

k
me
E′x, is given by

Ex =

√
k

me

(
2∑
l=1

√
βl

(
ul +

1

2

)
+

+

Nn−1∑
j=1

√
β(n)

(
nj +

1

2

)
+

Ne−1∑
i=1

√
β(e)

(
ei +

1

2

) . (10.25)

Hereafter, we denote the pure states of the system (10.1) by |u1, u2,n, e〉, resulting the
wavefunction in Eq. (10.24) corresponding to this state, that is

Ψu1,u2,n,e(X,x) = 〈X,x|u1, u2,n, e〉. (10.26)

Then, the density matrix of an arbitrary state of the many-particle system is given by

ρu1,u2,n,e = |u1, u2,n, e〉〈u1, u2,n, e|. (10.27)

Besides the mass and number of particles, the values of the entanglement of the three
different types discussed (nuclei-electrons, single-nucleus and single-electron entangle-
ment) additionally depend on the parameters and quantum numbers shown in Table 10.1.

Parameters ε εn εe
Interactions τne τne, τnn τne, τee

Quantum numbers u1,u2 u1,u2,nNn−1 u1,u2,eNe−1

Mass and # particles M,Nn, Ne M,Nn, Ne M,Nn, Ne

Table 10.1: Parameters which the different types of entanglement depend on.

As shown in this table the single-particle entanglements εn and εe depend on the quan-
tum number u1,u2,nNn−1 for any nucleus, and on u1,u2,eNe−1 for any electron. So, single-
particle entanglement is unaffected by the excitation of any of the remaining quantum num-
bers.

Intuitively, one would read off from table 10.1 that we can really treat the system of
nuclei and the system of electrons as two entities that interacts one with the other, since
the interactions between the electrons or between the nuclei do not matter, and similarly
for each kind of entanglement here. But surprisingly, this does not happen. One can see
from the change of variables U1 and U2 that only in the limiting cases of τne → ∞ and
M → 1 (see Eqs. (10.16) and (10.17)), the correlations between nuclei and electrons are
induced by coordinates which are precisely the center of mass and the relative coordinate
of the corresponding center of mass RNn and rNe (the center of mass of the nuclei and
electrons, respectively). Otherwise, the coordinates U1 and U2 depends on RNn and rNe in
a flamboyant way, and this intuitive reading is wrong.

10.3 Entanglement of the three-particle model

We turn here to the particular case of a three-particle system with one nucleus (Nn = 1)
and two electrons (Ne = 2). The possibility of choosing different particle mass ratio M
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allows us to qualitatively model two different physical systems: A helium-like atom for
M � 1 and a diatomic molecule (H+

2 type) with one “electron” for M � 1 as shown in
Figs. 10.1a) and b), respectively. We keep the notation for the nuclei mn and electrons me

even though me � mn (M � 1).

b)a)

xx

Figure 10.1: Three harmonically interacting particles in a confining external harmonic
potential, namely Nn = 1 and Ne = 2, which roughly describes a) He-like system for
M � 1 and b) H+

2 -like system for M � 1. The sizes of the circles symbolize the masses
of the particles.

The eigenstates of this three-particle system depend on the quantum numbers
|u1, u2, e1〉. In this case, the coordinates U1 and U2, Eqs. (10.12) and (10.13), are a specific
linear combination of the nuclear coordinate X1 and the center of mass of the electrons,
and r1 is the relative coordinate of the two electrons.

In the limit of vanishing interactions (τne → 0, τee → 0) the energy of the state
|u1, u2, e1〉, Eq. (10.25), simplifies to

E0 =

√
k

me
×
{

1 + 1√
M

(
1
2 + u1

)
+ u2 + e1 for M ≥ 1,

1 + u1 + 1√
M

(
1
2 + u2

)
+ e1 for 0 < M < 1.

(10.28)

The energy in Eq. (10.28) will be necessary to understand the physics of the states en-
tanglement in this limit of vanishing interactions. In the following subsection we determine
analytically the entanglement amount given by Eq. (8.23), for various low-lying states of
these three systems; namely, the ground state |000〉 and the first excited states |100〉, |010〉
and |001〉.

10.3.1 Nucleus-electrons entanglement

The nucleus-electrons entanglement ε shows the correlations between the nucleus and
the two electron subsystem. It depends on the quantum numbers u1 and u2 and the inter-
action strength τne , but it does not depend neither on the excitation of the electron relative
coordinate e1 nor the interaction between them τee, as shown in Table 10.1, i.e. the nucleus
does not care about the inter-electronic structure. Therefore, the nucleus entanglement of
the states |000〉 and |00e1〉, for any exication e1, are precisely the same and, which in turn,
are less entangled than any excited state in u1 or u2 (see Fig. 10.2).

As the general trend shown in Refs. [238, 245, 265], here the entanglement increases
with the interaction, τne, for all states. Decoupling the nucleus of the rest of the system
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Figure 10.2: Nuclei-electrons entanglement of the three-particle case as a function of the
nuclei-electrons interaction strength τne of the ground state and first few excited states, for
different mass ratio M . Mass ratios M > 1 describe a He-like system, M < 1 a H+

2 -like
system and M = 1 a systems with three particles with the same mass.

(i.e., taking the limit τne → 0) makes entanglement to vanish except for M = 1 in the
case of states |010〉 and |100〉, which exhibit a finite amount of entanglement. Due to the
degeneracy of the energy in this limit given by Eq. (10.28) (energy is degenerate in u1

and u2 when M = 1), a very tiny interaction is enough to provoke high entangled states.
This finite amount of entanglement can be related via perturbation theory to the alluded
degeneracy of the energy levels of the Hamiltonian describing non-interacting particles
(see Ref. [260]). The finite entanglement in the vanishing interaction limit is determined
by a particular basis of the degenerated sates of the non interacting particles Hamiltonian.

So, while in the limit of vanishing interaction one can only understand the physics of
this system within a quantum framework, in the case of strongly interacting particles one
can appeal to the classical kinematic intuition. In Fig. 10.3 we plot ε as a function of the
mass ratio M for different values of the interaction τne. For τne → ∞ the maximum
entanglement occurs when M = 2, which corresponds to subsystems with the same mass
and, as masses become more different the entanglement between those particles gradually
fades. A kinematic interpretation is in order: The more equal masses two coupled systems
have, the more they will influence each other reciprocally. So, in terms of the physical
limits: For a weak interaction, particles are independent, even if they have the same mass
(if there is no degeneracy in this limit, see in Fig 10.3 the jump in entanglement for τne =

0.01). For very large or very small masses, the heavy particles are not influenced much by
the light ones and, additionally, the light particles still are in a rather pure state.
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Figure 10.3: Nucleus-electrons entanglement of the three-particle case as a function of the
ratio mass M for the ground state and first few excited states and for different values of the
interaction τne.

10.3.2 Electron entanglement

The electron entaglement εe shows the correlations between one electron and the re-
maining particles of the system, namely the other electron and the nucleus. It depends on
both relative interaction strengths τne and τee, and on all quantum numbers, u1, u2 and e1.

In the limit of vanishing interactions, τne → 0 and τee → 0, a finite amount of en-
tanglement is observed for the states |100〉 (|010〉) and |001〉 if M ≤ 1 (M ≥ 1). From
Eq. (10.28) we note that the energy level of the state |100〉 (|010〉) is degenerate with
M ≤ 1 (M ≥ 1) but not with M > 1 (M < 1). The energy level of the state |001〉 is de-
generate for all M and a finite amount of entanglement is always obtained in the vanishing
interactions limit (see Fig. 10.4).

We plot in Figs. 10.5a) and b) the electron entanglement εe as a function of τne. As a
general trend, the entanglement again increases with the strength of the interaction. How-
ever, two well-defined behaviors can be observed depending on the strength of the inter-
action τee: For vanishing values of τee (see Fig. 10.5b) the entanglement monotonically
increases as a function of τne. A finite amount of entanglement is obtained in the limit
τne → 0 for both excited states |001〉 and |010〉, which can be explained with alluded
degeneracy in u2 and e1 of the energy in Eq. (10.28).

In Fig. 10.5a) we plot the single-electron entanglement with finite value of τne = 50.
In the limit τne → 0 the entanglement remains finite for all states; this finite amount of
entanglement is due to the interelectron interaction, the electron being solely entangled
with the other electron via τee. As τne increases, there is a kind of competition between
the interactions τne and τee followed by a decrease of the entanglement amount. This
occurs because, with the increasing interaction τne, the nucleus becomes relevant in the
system, as well as the mass difference between the two subsystems. Note that the minimum
entanglement is obtained in the region τne ∼ τee.
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Figure 10.4: One-particle entanglement of the systems of three identical particles (M = 1)
as a function of τee with τne → 0 for the ground state and first few excited states.

The entanglement εe(1, 2) of the state |010〉 tends to the entanglement of the ground
state in the limit M → 0 and to the entanglement of the excited state |001〉 for M → ∞
as shown in Figs. 10.5 c) and d). The entanglement of the state |100〉 behaves in the oppo-
site way, approaching the entanglement value of the state |001〉 when M → 0 and to the
ground-state entanglement value in the limit M → ∞. In addition, when the interactions
are strong and comparable (see Fig. 10.5cwhere τne = τee = 1000) a kinematic interpreta-
tion is in order: In the limiting case M → 0, i.e. the mass of the two subsystems (electron
vs. nucleus-electron) becomes comparable, all states exhibit a finite and large amount of
entanglement; the entanglement is that given by the electron-electron correlation and the
effect of the nucleus (very light particle) on the electrons is negligible which just follow
the kinematics of electrons. On the other hand, in the limit of M →∞ the nucleus acts on
electrons as a confining external potential which tends to reduce the entanglement amount
between electrons, see Section 9.3.3.

10.4 Entanglement of the many-particle model

A great advantage of the model at issue here is that one can determine analitically the
entanglement. By using the Hamiltonian (10.1) of the system and its exact eigenstates
given in Section 10.2, we can evaluate analytically the entanglement by means of the lin-
ear entropy defined by Eq. (8.23). In this section we determine the ground-state entan-
glement values for various bi-partitions of the many-particle Moshinsky model described
in Section 10.1.1. As already pointed out, we are going to consider the following three
types of entanglement: the nuclei-electron entanglement ε(Nn, Ne), which corresponds to
the entanglement between all the nuclei and all the electrons, the nucleus entanglement
εn(Nn, Ne), which gives the entanglement between a single nucleus and the rest of the
system, and the electron entanglement εe(Nn, Ne), which quantifies the entanglement be-
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Figure 10.5: Electron entanglement of the three-particle ground state and first few excited
states. On the left side as a function of the nucleus-electron interaction τne with finite
interaction τee = 50 (a), with vanishing interaction τee = 0 (b). On the right side, as a
function of the mass ratio M for different values of the interaction strengths τne = τne =

1000 (c), and τne = 0.4, τee = 0 (d).

tween a single electron and the rest of the system.

10.4.1 Nuclei-electrons entanglement

Let us here study the ground-state entanglement ε(Nn, Ne) between nuclei and elec-
trons. For non negligible interaction τne we have found that this entanglement displays a re-
markable general trend: it is maximum when the mass ratioM almost fulfillM ' Ne/Nn.
This is illustrated in Figure 10.6, where we plot ε(Nn, Ne) for different pairs (Nn, Ne).
This behavior can be understood from the coordinate change U1 and U2 in the limit of
large interaction in Eq. (10.16). The coordinates U1 and U2 present all possible correla-
tions between nuclei and electrons, and the coefficients of the linear combination in RNn
and rNe take the same value when M = Ne/Nn is fullfilled.

For any interaction τne, the maximum of entanglement lies down exactly at M =

Ne/Nn only when Nn = Ne (M = 1), that is for systems with equal numbers of nuclei
and electrons. When the number of nuclei and electrons are the same the nuclei-electrons
entanglement behaves as the entanglement of a two-particle system with unequal masses
m1 = mnNn and m2 = meNe and with some interaction strength τ . However, this does
not happen if the considered subsystems have a different number of particles even when the
entanglement does not depend on the inter-electron interaction, nor on the inter-nuclei in-
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Figure 10.6: Nuclei-electrons entanglement ε(Nn, Ne) for different number of nuclei and
electrons (Nn, Ne) as a function of M with the interaction value τne = 100. Maximum of
ε(Nn, Ne) is obtained when M ' Ne/Nn.

teraction. The parameters M , Ne and Ne can not be rescale and one cannot consider each
subsystem as a single entity. In systems with Nn 6= Ne the maximum of entanglement
depends on the relative nucleus-electron interaction strength τne. In Figure 10.7 we show
the mass ratio M vs. nucleus-electron interaction τne which makes maximum the entan-
glement ε(Nn, Ne). For small values of τne the maximum entanglement is always located
when M < Ne/Nn.On the other hand, when τne increases, the maximum of entanglement
moves up to the extreme value M = Ne/Nn (i.e. the two subsystems have equal masses)
which occurs when at the limit τne →∞.

The potential function appearing in the Hamiltonian (10.1) is a quadratic function
of the complete set of vector positions X1, . . . XNn , x1, . . . xNe . Notice that the coeffi-
cients corresponding to Xi

2 and x2
j , which are respectively Λn/2 = (1/2) + (τne/2)Ne +

(τnn/2)(Nn − 1) and Λe/2 = (1/2) + (τne/2)Nn + (τee/2)(Ne − 1), grow linearly with
Nn and Ne, while the coeffiecients corresponding to cross terms like Xi ·Xj , Xi · xj , and
xi · xj , do not (indeed, these coefficients are independent of Nn and Ne). In the case of
the nuclei-electron entanglement, ε(Nn, Ne), the number of correlations cross terms which
contribute effectively to the reduced density matrix,Xi ·xj , increases asNn ·Ne. Therefore,
the reduced density matrix can not be approximated by the ground state associated with the
independent many-particle potential. That is why entangled states are obtained increasing
both Nn and Ne in the case of nuclei-electrons entanglement shown in Fig 10.8.

Regarding the size of the system in terms of the number of particles, Nn and Ne, the
region of higher-entanglement states is always located at the neighbourhood of the points
where NnM = Ne is fulfilled, see Fig. 10.8. As we gradually increase the number of
particles of one of the two species, electrons or nuclei, the entanglement fades away. How-
ever for larger number of nuclei Nn (electrons Ne) a wider number of electrons (nuclei)
range gives highly entangled states, which is consistent with the above explanation. If we
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Figure 10.7: Maximum nuclei-electrons entanglement for two nuclei, Nn = 2, and dif-
ferent number of electrons Ne = 2, 4, 6, 8, 10 as a function of the mass ratio M and the
interaction τne

increase both the number of nuclei and the number of electrons to infinity, the entangle-
ment reaches its maximum possible value. For very large number of nuclei (electrons), i.e.
Nn >> Ne/M (Ne >> MNn) and the masses of the subsystems become very different
if M is not very large, the entanglement tends to zero because the contribution of the cor-
relation cross terms, Xi · xj , to the reduced density matrix become negligible as compared
to the independent particles terms (Λn/2)

∑Nn
i=1Xi

2 + (Λe/2)
∑Ne

j=1 xj
2.

As shown Figs. 10.8 a), b) and c), the entanglement is enhanced with τne for all sys-
tems following Nn = MNe; moreover, the higher the mass, the greater is the number of
electrons than nuclei needed to obtain high entangled states, as it is illustrated in Figs. 10.8
b) and d).

10.4.2 Single-particle entanglement: Nucleus and electron entanglement

We study here the nucleus entanglement εn(Nn, Ne) and the electron entanglement
εe(Nn, Ne), which give the entanglement between a single particle and the rest of the
many-particle system, in terms of the numbers of nuclei and electrons. In Figure 10.9
we show the dependence of these two types of entanglement on the number of nuclei and
electrons for a fixed set of values of the parameters M , τne, τee and τnn (in particular,
M = 1000) to highlight the entanglement behavior. The left (right) graphs give the values
of the nucleus (electron) entanglement. Let us also point out that the solid red line in the left
graphs of the figure corresponds to the entanglement values of the systems where the two
subsystems have equal masses, what implies thatNn = 2−Ne/M , so that 1 < Nn < 2. In
this case of equal subsystem masses one always deal with highly entangled states. Notice
that in the electron case, such a red line does not trivially appears because we are implicitly
assuming that M > 1.

For large values of either Nn or Ne (or both) the leading part of the potential function,
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Figure 10.8: Nuclei-electrons entanglement as a function of the number of particles, Nn

nuclei and Ne electrons, of the system for various relative nucleus-electron interaction
strengths and mass ratios. In panel a) τne = 1, M = 1, b) τne = 100, M = 1, c)
τne = 10000, M = 10, and d) τne = 100, M = 10000. Solid red lines correspond to
systems where M ≡ mn

me
= Ne

Nn
, so that the two subsystems (nuclei and electrons) have

equal masses.

which effectively contributes to the single-particle reduced density matrix (obtained by
integrating in the positions of the remaining Nn − 1 or Ne − 1 particles), is of the form
(Λn/2)

∑Nn
i=1Xi

2 + (Λe/2)
∑Ne

j=1 xj
2. This form of the potential function describes a set

of Nn + Ne independent harmonic oscillators. Due to this, as Nn or Ne inceases, the
single particle reduced density matrix corresponding to a nucleus (electron) approaches
the density matrix describing the ground state associated with the single particle potential
(Λn/2)X2 ((Λe/2)x2). This means that for large values of Nn or Ne the reduced single
particle density matrices of nuclea and electrons approach pure states disentangled from
the rest of the system.

We observe in Fig. 10.9 that both nucleus and electron entanglements decrease (the
color is getting less dark) when the number of nuclei and/or electrons are increasing. This
decreasing rate is much larger for the electron entanglement than for the nucleus entangle-
ment. This behavior is due to the diference between the masses of the subsystems which is
much larger when we consider a single-electron as one of the subsystems. So, in Figs. 10.9a
and 10.9b, we note that the nucleus entanglement is larger than the electron entanglement
for the same set of relative parameters (M = 1000, τne = 100 and τee = τnn0100) . In
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Figure 10.9: Nucleus entanglement (left panels) and electron entanglement (right panels)
as a function of the number nuclei Nn and electrons Ne of the system for some relative
interaction τne, τee, τnn and for the mass ratio M = 1000. Solid red lines contain the
entanglement values of the subsystems with the number of nuclei and electrons fulfilling
the equal subsystem masses relationship M = (Nn − 1)M +Ne.

both cases the entanglement decreases larger when the number of nuclei is increasing than
when the number of electron does.

In Figs. 10.9c and 10.9d we shows both single-article entanglement when the particle-
particle interaction strength is a thousand times stronger (namely, τnn = 100000 and τee =

100000 in the former and latter cases, respectively), keeping fixed the other two parameters
(M = 1000, τne = 100). In both cases we found higher entangled states than the exhibited
in Figs. 10.9a) and b) respectively, indicating that the entanglement becomes much more
robust when the interparticle interaction strength is increasing.

Finally, in Figs. 10.9e and 10.9f , the relative nucleus-electron interaction strength τne
is enhanced by a thousand factor (namely, τne = 100000) with respect to the cases a) and
b). We find that the increasing τne provokes a more robust entanglement in the two cases,
although the enhancement rate is much larger for the nucleus entanglement than for the
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electron entanglement when either the number of nuclei and/or the number of electrons is
increasing. This effect is especially pronounced in the nucleus entanglement when Ne is
increasing.

In order to clarify the entanglement behaviour for incresing size of the system we intro-
duce the following dimensionless parameters describing the total mass ratios of the three
different bipartitions of the system:

γ =
NnM

Ne
, (10.29)

γn =
(Nn − 1)M +Ne

M
, (10.30)

γe = NnM +Ne − 1. (10.31)

As we have seen in this section the entanglement strongly depends on the relation
between the masses of the consider subsystems. For very large or vanishing values of the
total mass ratios γ, γn and γe entanglement tends to zero, and for finite values of these
parameters the entanglement exhibits a finite value. Therefore, we can conclude that these
total mass ratios are the decisive parameters that tell us how the entanglement behaves in
the limit of very large system size. In table 10.2 we summarize the relation between the
entanglement and the total mass ratio in those limits.

Parameters γ γn γe ε εn εe
M →∞ ∞ Nn − 1 ∞ 0 finite 0
Nn →∞ ∞ ∞ ∞ 0 0 0
Ne →∞ 0 ∞ ∞ 0 0 0

Nn →∞ Ne →∞ M ∞ ∞ maximum 0 0

Table 10.2: Asymptotic behavior of the entanglement with the size of the system.

10.5 Born-Oppenheimer approximation in the many-particle
Moshinsky model

To find the approximate eigensolutions of the Hamiltonian Hx given by Eq. (10.1) we
also use the Born-Oppenheimer approximation described in Section 10.1.3. In order to
solve the diferential equations for nuclei and electrons under the BO approximation we use
again the dilatation coordinate change given in Eq. (10.8). The eigenfunctions ΨBO

s,q (X;x)

and eigenenergies EElecq (X) are obtained introducing in Eqs. (10.6) and (10.7) the Jacobi
coordinates change given by Eqs. (10.11) and (10.14). The nuclear and electronic quantum
numbers sets {s1, ..., sNn} and {q1, ..., qNe} have been denoted for convenience by s and
q, respectively. This treatment of the problem allows us to find a simple expression for the
many-particle eigenfunctions of the Hamiltonian (10.1) in terms of Jacobi coordinates, as

ΨBO
s,q (X;x) = Fs (X)φq (X;x) , (10.32)
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being the nuclear eigenfunctions

Fs(X) =

Nn−1∏
i=1

Φβ(n)

si

(√
MRi(X1, ..., Xi+1)

)
×

× Φ
βnNn
sNn

(√
MRNn(X1, ..., XNn)

)
(10.33)

and the electronic eigenfunctions

φq(X;x) =

Ne−1∏
j=1

Φβ(e)

qj (rj(x1, ..., xj+1))×

× Φ
βeNe
qNe (rNe(x1, ..., xNe)− δRNn(X1, ..., XNn)) (10.34)

with δ = τne
√
NnNe

1+Nnτne
and {rj , Ri} being the Jacobi variables defined in Eqs. (10.11) and

(10.14). The one-dimensional harmonic eigenfunctions Φβ
n are given by Eq. (10.23), like-

wise, the frequencies β(n) and β(e) are the same as obtained in the previous exact solution,
as given by Eqs. (10.20) and (10.21), and the frequencies corresponding to the center of
mass coordinates are given by

β
(n)
Nn

=
1 + (Nn +Ne)τne
M(1 +Nnτne)

, β
(e)
Ne

= 1 +Nnτne, (10.35)

The energy of the hamiltonian system (10.1) under the Born-Oppenheimer approximation
is

EBOs,q =
k√
me

Nn∑
j=1

√
β

(n)
j

(
1

2
+ sj

)
+

Ne∑
i=1

√
β

(e)
i

(
1

2
+ qi

) . (10.36)

We denote from now on the state associated to the wavefunction in Eq. (10.32) by
|s;q〉 = |s1, ..., sNn ; q1, ..., qNe〉, i.e.

ΨBO
s,q (X;x) = 〈X;x|s;q〉, (10.37)

so, the density matrix associated to the system Hx is given by

ρs,q = |s;q〉〈s;q|, (10.38)

As in the exact solution case all correlations between nuclei and electrons are induced
by their respective centers of mass but in a different way.

The validity of the Born-Oppenheimer approach is closely related to the mass of the
particles. It assumed that the motion of heavy particles (nuclei) is much slower than light
ones (electrons). In this model it is straightforward to interpret that the independent har-
monic frequencies of nuclei,

√
β(n), decreases with M , which fits the contribution of the

counterpart (nuclei and electron) to the wavefunction, but not the electron ones,
√
β(e).

When the particles are affected by an external potential with the same strength, the approx-
imation becomes increasingly accurate as the mass difference of the particles (between
nuclei and electrons) is increases.
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As we have seen in previous Sections 10.3.1 and 10.4.1 the entanglement between
nuclei and electrons vanishez for large M (also for small M ). In the exact solution of
the many-particle system, this is not evident given the complex dependence of the wave
function on the mass M , but using the Born-Oppenheimer approximation one clearly re-
alizes that this dependence is embedded in the nuclear frequencies of the independent har-
monic oscillators,

√
β(n) and

√
βnNn , of the wave function. Thus, when M increases (with

M > 1), the contribution of nuclei to the total wavefunction becomes more relevant than
the electronic one. For very large mass ratio (M → ∞), the nuclear density |Fs(X)|2
is getting closer to a delta-like function at the nuclear positions. Therefore, the electrons
“feel” the nuclei as an external confining potential, and nuclei are virtually unaffected by
electrons, thus losing any possibility of generating entangled states between nuclei and
electrons.

The overlap is actually the toughest test that we can do, because it is not only relate
to observables, but to the wave function. The overlap between the exact and approximate
one-dimensional wavefunctions in Eqs. (10.26) and (10.37) is given by the integral

Θu1,u2,n,e|s;q = 〈u1, u2,n, e|s;q〉 =

∫ ∞
−∞

dXdxΨu1,u2,n,e(X,x)ΨBO
s;q (X;x). (10.39)

Here, we merely study the ground state, Θgs = Θ0,0,0,0|0;0. All the wave function
components Φβ

ν of the exact and approximate wave functions are the same, except those
corresponding to the quantum numbers u1 and u2 of the exact wave function as well as sNn
and qNe of the approximate one. So the overlap is independent of all quantum numbers
except u1 = sNn and u2 = qNe , as well as independent of the electron-electron τee and
nucleus-nucleus τnn interaction strengths.

In this section we compare the many-particle nuclei-electrons entanglement of the
ground state computed with both methods, exact and approximate, as well as the overlap
between the exact and approximate wavefunctions.

10.5.1 Helium-like atoms

We compare here the exact solution of the Helium-like atom (Nn = 1 and Ne = 2)
obtained in Section 10.3 with the the Born-Oppenheimer ones. In Figure 10.10 we show
the ground-state case of the overlap measure Θgs in Eq. (10.39) and compare the values of
the entanglement ε exactly computed with the Born-Oppenheimer approximation.

From Figure 10.10 one can infer that: For large value of the interaction τne the approx-
imation is able to describe high entanglement states over a wide range of masses M � 1,
being more accurate for increasing values of M until entanglement disappears. The atom
size is of the order of the Bohr radius a0 and the smaller atomic trap size of b ∼ 106a0, so,
the relative interaction strength is of the order of τne = λne/k ∼ 1012. Taking into account
this and that the proton-electron mass ratio is of the orderMHA ≈ 1836.15, one finds that a
Helium atom in a commonly harmonic trap has a highly (nucleus-electron) entangled state.
The trace of the square marginal density matrix is of the order of Tr[ρ2

n] = 6.09507 · 10−6,
and the result provided by the BO approach has a relative error of 0.054%.
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Figure 10.10: Nucleus-electrons entanglement ε(1, 2) exactly computed (solid lines) and
with the Born-Oppenheimer approximation (dashed lines) as well as the overlap Θ0,0 (inset
figure) of the ground state as a function of the mass ratio M for different values of the
relative nuclei-electrons interaction strengths τne = 1, 10, 1000. Shaded areas symbolize
the deviation from the exact computed entanglement.

In addition to the BO approximation, when M is not very large, one may employ an-
other commonly used approach to compute the linear entropy, as shown in Ref. [303].
Considering the integrals in Eq. (10.2) and using Eq. (10.5) one can assume that the nu-
clear wave function F (X′) can be approximated by F (X) when |X −X′| is of the order
of the atom size, whenever the relative nuclei-electrons interaction strength τne is large
enough. Moreover, we do not loose sight of the short mass range which is valid for both
approximations; For very largeM this last approximation gets worse and forM closer to 1

BO Approximation fails (see Fig. 10.11). This approach could simplify the computations
of the entanglement in more complex and realistic systems. For the Helium atom, using
both approaches, we found that the accuracy is mainly that given by the BO approxima-
tion, the relative error is almost the same that the relative error obtained using only the BO
approximation, being able to describe high entangled sates as shown in Fig. 10.11.

10.5.2 N-particles system

As noted in previous sections (see Figure 10.10) the accuracy of the Born-Oppenheimer
approach is closely related to the mass ratio of the particles; we found as well a strong de-
pendence on the number of particles composing the system. Besides the mass ratio M ,
in the system Hx studied here the accuray of the Born-Oppenheimer approximation is
strongly dependent on the numbers of nuclei Nn and electrons Ne; more specifically, the
accuracy of the approximation is better when the mass ratio between nuclei and electrons
is large (i.e., when γBO = MNn

Ne
>> 1). This parameter can be increased in three different

ways: IncreasingM andNn, in which case γBO can reach the maximum value γBO →∞,
or decreasing Ne in which case the maximum value is given by γBO = MNn. Fixing
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Figure 10.11: Dependence of the nuclei-electrons entanglement on the mass ratioM , com-
puted exactly (solid lines) and with the Born-Oppenheimer approximation together with
the further assumption that |R − R′| is of the order of the atom size (dashed lines) for
different values of the relative nucleus-electron interaction strength τne = 103, 106, 109.

any two parameters out of (Nn, Ne and M ), the ground state overlap Θgs tends to 1 when
γBO → ∞ and all curves collapse (see Fig. 10.12 a)). Then, the three types of entan-
glement analyzed here, ε(Nn, Ne), εn(Nn, Ne) and εe(Nn, Ne), are well described by the
Born-Oppenheimer approximation whenever the parameter γBO is large enough.

The decisive parameter for the accuracy of the BO approximation in Eq. (10.37) is the
total mass ratio γBO which coincides with the parameter γ = γBO defined in Eq. (10.29).
Therefore, in the limit of γBO →∞ one can assume that the approximation is correct, the
nuclear component of the density is given by delta functions of the nuclei positions and
there are no correlations between electrons and nuclei; entanglement ε(Nn, Ne) must be
null. On the other hand, this does not happen in the cases of εn(Nn, Ne) and εe(Nn, Ne)

whose subsystems mass relation fulfills γn 6= γBO 6= γe. Finite or vanishing amount
of εn(Nn, Ne) and εe(Nn, Ne) (see Figs. 10.12c) and d)) are according to the criteria of
vanishing entanglement for γn,e →∞ and finite amount of entanglement for finite γn,e.

Conclusions

In this chapter we have investigated the entanglement properties of an one-dimensional
N -particle system consisting ofNn nuclei andNe electrons that interact harmonically with
each other and, moreover, they are confined by an harmonic external potential. We have
obtained closed analytical expressions for the amount of entanglement of (i) the ground
and a few low lying excited states when N = 3, and (ii) the ground-state of the N -
particle system. We focus on the entanglement associated with three different ways of
partitioning the system. On the one hand, we consider the entanglement between all the
electrons (regarded as one subsystem) and all the nuclei. On the other hand, we study the
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entanglement between one electron (nucleus) and the rest of the system.
While the nuclei-electrons entanglement depends upon the relative strength of the

nucleus-electron interaction τne, the nucleus (electron) entanglement depends on both τne
and τnn (τee) that measures the relative nucleus-nucleus (electron-electron) interaction
strength. As a general trend in all three cases, we found that entanglement increases as
a function of the (corresponding) interaction parameter, approaching its maximum possi-
ble value in the limit of an infinitely large interaction. When the mass ratio is M = 1,
excited states exhibit a finite amount of entanglement even in the case of arbitrarily weak
interaction. The latter is related to the degeneracy of the energy levels of the Hamiltonian
describing non-interacting particles.

For the N -particle system we computed the entanglement exhibited by the three dif-
ferent bipartitions of the ground state as a function of the system size and the mass ratio.
For the three bipartitions we studied the adequate relationship between the number of par-
ticles and the mass ratio in order to obtain highly entangled states. We found that for large
enough values of τne, the nuclei-electrons entanglement is maximum when the mass of the
two considered subsystems is (almost) the same. However, when the interaction strength
tends to zero τne → 0, the maximum entanglement is obtained when M = 1. All the
three studied entanglements vanish when the corresponding subsystems have very differ-
ent masses. We explored the connection of this fact, when M >> 1, and the validity of the
BO approximation. To estimate the quality of this approximation we studied the overlap
between the exact wave functions and the BO ones. We have also compared the entangle-
ment of the exact wave functions of the system and the entanglement provided by the BO
approximation. We found that the overlap increases for increasing values of M . The decay
of the entanglement due to the increasing difference of the masses of the subsystems is well
described by the entanglement of the wavefunctions corresponding to the BO approxima-
tion, which gives rise to a nuclear density approaching a Dirac delta function located at the
nuclei positions.

The main mass effects on the entanglement properties of the system investigated here
comprise two regimes: On the one hand we have subsystems of widely different masses,
and on the other hand we have subsystems having comparable masses. In the first case we
found that the entanglement between the two parts tends to vanish when the mass ratio goes
to infinity (or to zero). This result is fully consistent with what happens in quantum chem-
istry and molecular physics, where the mass of nuclei is indeed much larger than the elec-
tron mass. In this regime the Born-Oppenheimer approximation applies. It is worth stress-
ing, however, that the Born-Oppenheimer Ansatz does not constitute a zero-entanglement
approximation. In fact, we have shown in the present work that the Born-Oppenheimer
approximation provides a good description of the system even in cases where it exhibits an
appreciable amount of entanglement. The second of the aforementioned regimes, where the
masses of the subsystems are approximately equal, is the one where entanglement takes its
maximum value. In summary, when it comes to mass end entanglement, interacting parts
of the model studied here exhibit a “like-to-like" behavior: when the system is partitioned
in two interacting subsystems, these parts tend to be highly entangled with each other when
they have similar masses. It would be interesting to investigate to what extent this is a uni-
versal trend verified by composite quantum systems with continuous degrees of freedom.
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Introduction

The composition principle, based on the treatment of composite particles as elementary
objects despite their underlying structure, is a fundamental pillar of natural science [304].
In the microscopic world governed by quantum mechanics, from hadrons at the highest
achievable energies [305] to ultracold molecules [306], the composition principle allows
us to treat particles with integer spin as elementary bosons. This treatment can greatly sim-
plify the understanding of the many-body behavior and the statistical physics of composite
bosons; but when can we confidently apply it and reliably treat two bound fermions as a
boson?

The hierarchy of energy scales in nature would appear to provide an answer, and one in-
tuitively expects that the bosonic behavior of bound fermions relies on their strong binding.
For example, weakening the bound between fermions indeed leads to the Bose-Einstein-
Condensates Bose-Superconductivity (BEC-BCS) crossover [307]. However, even when
the constituents of cobosons [308], i.e. of compounds constituted of two fermions, are per-
fectly bounded, it is not granted that the creation and annihilation operators of cobosons
obey the bosonic commutation relations and exhibit perfect bosonic behavior: The Pauli
principle for the underlying constituents may become relevant and thus jeopardize bosonic
dynamics [309, 303, 310, 311, 308, 312, 313, 314]. For good bosonic behavior, the occupa-
tion probability of any single-fermion state must be low enough, such that the constituent
fermions of the cobosons do not compete for available single-fermion states.

A satisfactory answer to the above question was given by C.K. Law [309] using the
tools of quantum information: Independently of the actual physical system and of the
binding strength between the constituents, the bosonic behavior of cobosons is intimately
related to the entanglement between the constituting fermions, and the impact of the Pauli
principle fades away with increasing entanglement. This result was substantially improved
by C. Chudzicki, O. Oke and W.K. Wootters, who obtained rigorous upper and lower
bounds on the “non-ideal” bosonic behavior in terms of the entanglement in Ref. [303].
Recently, several works have been done in this direction, e.g. the validity of Pauli principle
in composite systems of two identical fermions, one of them entangled with a distinguish-
able particle, where the exclusion principle cannot be applied have been studied in [315].
The necessary conditions for systems composed by two distinguishable fermions to exhibit
bosonic behavior based on the entanglement, local operations, classical communication
and the majorization criterion for probability distributions have been studied in Ref. [316]
or regarding composite bosons as deformed oscillators enabling to study non-ideal boson
states and their inter-component entanglement in [317].

Then, two bound and entangled fermions form a composite boson, which can be treated
as an elementary boson as long as the Pauli principle does not affect the behavior of many
of such composite bosons. The departure of ideal bosonic behavior is quantified by the
normalization ratio of multi-composite-boson states. In Chapter 12, we derive the two-
fermion-states that extremize the normalization ratio for a fixed single-fermion purity P ,
and establish general tight bounds for this indicator. For very small purities, P < 1/N2
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with N being the number of such composite bosons, the upper and lower bounds converge,
which allows to quantify accurately the departure from perfectly bosonic behavior, for any
state of many composite bosons.

The concept of matter waves represents a cornerstone of quantum physics. It was pro-
posed by de Broglie in 1923 [318] and, since then, many experiments have demonstrated
diffraction of electrons [319], atoms [320] and molecules [321]. These early achievements
led to the field of atom optics and interferometry [320, 322].

Sources of macroscopically coherent matter waves became available with the realiza-
tion of Bose-Einstein condensates (BECs) [323]. The interference between two BECs
was first observed by Andrews et al [324]. This landmark experiment evidenced interfer-
ence between two independent sources and revealed the relative phase between them as
described thoretically in Ref. [325]. Trapped ultracold atoms typically feature very large
electron-state entanglement [303, 311] and interferometers with large entangled atomic en-
sembles are also achievable using Bose-Einstein condensates [326]. However, the impact
of imperfect bosonic behavior is greater the lower the entanglement is between fermions.
Macroscopically coherent molecular matter waves was found in molecular Bose-Einstein
condensates (mBECs) of two bound fermionic atoms [327, 306], whose interaction is tun-
able by Feshbach resonance [328]. The interference of two such mBECs have been con-
ducted to demonstrate interference as a tool for investigating condensates of atom pairs
[329]. Feshbach molecules are constituted by artificially bound atoms in a lower interac-
tion regime and, therefore, constituting one of the composite two-fermion systems in which
the non-ideal bosonic character will be necessarily patent.

In Chapter 13 we demonstrated that the composite character of two-fermion bosons
manifests itself in the interference of many composites as a deviation from the ideal bosonic
behavior. We represent a state of many composite as a superposition of different numbers
of perfect bosons and fermions, which allows us to provide the full Hong-Ou-Mandel-like
counting statistics of interfering composites. Our theory quantitatively relates the deviation
from the ideal bosonic interference pattern to the entanglement of the fermions within a
single composite boson.

First of all, in Chapter 11, we review the concepts and methods that are necessary
for an accurate treatment of composite particles and for the understanding of its quantum
statistics.
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Composite bosons: Foundations

In this chapter we review some fundamental concept related to composite bosons which
consist of two elementary particles, fermions or bosons. Their commutation relations,
states of many of these composite particles and the framework in which they endorse, i.e.
second quantization are drawn.

11.1 Second quantization

In this part of the thesis we use the second quantization framework which by construc-
tion admits only states that possess the required symmetry property and, consequently, all
information about the state is already contained in the mere indication of the occupation
number of each single particle state. Fermionic and bosonic states can thus be represented
in the occupation representation of the state |Ψ〉 of the system, corresponding to Fock
states, as follows:

|r1, r2, . . . , rN 〉F/B ≡ |Ψ〉F/B = |φ1, . . . , φ1︸ ︷︷ ︸
r1

;φ2, . . . , φ2︸ ︷︷ ︸
r2

, . . . , φN , . . . , φN︸ ︷︷ ︸
rN

〉F/B (11.1)

where ri is the the number of particles which are in a state labeled by i. We use the bosonic
particle creation operator, ĝ†k, for the construction of Fock states of bosons, which increases
by one the number of particles in a specific single-particle quantum state,

ĝ†k |r1, . . . , rk, . . . , rN 〉B =
√
rh + 1 |r1, . . . , rk + 1, . . . , rN 〉B . (11.2)

These properties lead to the bosonic commutation relations,

[ĝi, ĝ
†
j ] = δi,j , and [ĝi, ĝj ] = [ĝ†i , ĝ

†
j ] = 0. (11.3)

For fermions, the Pauli principle prohibits the multiple occupation of any single-particle
state such that the fermionic creation operator must fulfil

f̂ †k |r1, . . . , rk, . . . , rN 〉F = δrk,0(−1)r1+···+rk−1 |r1, . . . , rk + 1, . . . , rN 〉F (11.4)

where we use the fermionic creation operator f̂ †k and which leads to the anti-commutation
relations for fermions,

{f̂i, f̂ †j } = δi,j , and {f̂i, f̂j} = {f̂ †i , f̂
†
j } = 0. (11.5)

Particularly, adding one and two fermions to the vacuum state |0〉 provides

f̂ †i |0〉F = |1〉F , and f̂ †i |1〉F = − |1, 1〉F (11.6)

respectively.
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11.2 Many-coboson states

To describe states of many-composite bosons, we follow the formalism of [309, 303].
We examine the composite representation of two-particle systems in a pure state in terms
of the creation ĉ† and annihilation ĉ operators. The state of many-cobosons is defined and
its non-ideal bosonic character is pointed out and related to the normalization factor χN ,
which we analyze for maximally entangled states.

11.2.1 Composite boson operator

Consider a composite boson formed from two distinguishable particles A and B de-
scribed by wavefunction Ψ(xa, xb), where xa/b are vectors in any dimensions. As seen
in previous section, we can always write this wave function in its Schmidt decomposition,
Eq. (8.16), yields

Ψ(xa, xb) =

S∑
j=0

√
λjφ

(a)
j (xa)φ

(b)
j (xb)

(11.7)

i.e. a sum over only one index j, being φ(a)
j (xa) and φ(b)

j (xb) the Schmidt modes, which
constitute orthonormal bases for the states of particles A and B. Schmidt coefficients λi
are the non-negative eigenvalues of each of the single-particle reduced density matrices
satisfying

∑
j λj = 1, and the number of Schmidt coefficients is denoted by S.

In the second quantized representation, the state generated by the coboson creation
operator

ĉ† =
S∑
j=0

√
λj â
†
j b̂
†
j (11.8)

acting on the vacuum, |1〉 = ĉ† |0〉, corresponds to the wavefunction in Eq. (11.7). The
operator â† creates a particle A in the state (or Schmidt mode) φ(a)

j (xa) and b̂† creates

a particle B in the state φ(b)
j (xb). Thereby, the bound particles, â†j and b̂†j , compose the

coboson ĉ† as a arbitrary superposition of all single-particle state j weighted by λj . The
creation and annihilation cobosons operators, ĉ† and ĉ, obey the commutation relations

[ĉ, ĉ] = [ĉ†, ĉ†] = 0 (11.9)

always, for both bound fermions and bound bosons. On the other hand, we find that

[ĉ, ĉ†] = (1 + s∆), (11.10)

where s = −1 if A and B are fermions and s = +1 if they are bosons. The operator ∆ is
defined by

∆ =

S∑
j=1

λj

(
â†j âj + b̂†j b̂j

)
, (11.11)
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which has nonzero matrix elements, depending on the states involved. Therefore, ĉ and ĉ†

are not strictly bosonic operators (∆, in Eq. (11.10), does not necessarily adopts the value
∆ = 1).

11.2.2 Non-ideal behavior of many-coboson states

To examine the properties of ĉ and ĉ†, we consider a system containing two or more
composite bosons which state is obtained by (anti)symmetrizing the product state of single-
composite bosons, Ψ(x1,a, x2,b) · · ·Ψ(xN,a, xN,b), if the constituent particles are (fermion)
boson. In terms of the creation operator c†, we can write the properly (anti)symmetrized
state of N composite bosons as

|N〉 = (χN )−1/2

(
ĉ†
)N

√
N !
|0〉 . (11.12)

where χN is a normalization constant such that 〈N |N〉 = 1, necessary because ĉ† is not
a perfect bosonic creation operator. For N composite bosons,

(
ĉ†
)N

= ĉ†1 · · · ĉ†N , and the
commutation relations are given by

[ĉm, ĉk] = [ĉ†m, ĉ
†
k] = 0, and [ĉm, ĉ

†
k] = δm,k(1 + s∆), (11.13)

so, in this case

∆ =
S∑
j=1

λj

(
â†k,j âk,j + b̂†k,j b̂k,j

)
, (11.14)

being â†k,j and b̂†k,j the operators of the bound particles which compose the coboson ĉ†k as

an arbitrary superposition of the ĉ†k =
∑S

j=1

√
λj â
†
k,j b̂
†
k,j .

The state that results from adding a coboson to the state |N〉 does not necessarily be-
have as a boson operator fulfilling ĉ† |N〉 →

√
N + 1 |N + 1〉. Rather, in Ref. [309], it

follows from the definition in Eq. (11.12) that

ĉ† |N〉 = αN
√
N + 1 |N + 1〉 , (11.15)

where

αN =

√
χN
χN−1

(11.16)

is a constant. Similarly, instead of ĉ |N〉 →
√
N |N − 1〉, for the annihilation operator one

has

ĉ† |N〉 = αN
√
N |N − 1〉+ |εN 〉 , (11.17)

where the correction term |εN 〉 is orthogonal to |N〉. Such a correction term is necessary
because the set of states {|1〉 , . . . , |N〉} is a subset of the entire Hilbert space associated
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with the constituent particles. A nonideal bosonic operator would inevitably cause transi-
tions into the states not described by Eq. (11.12).

From Eq. (11.17), one can assume that the annihilation operator ĉ is bosonic if the
following two conditions are satisfied:

αN = 1, (11.18)

〈εN |εN 〉 = 0. (11.19)

The actual value 〈εN |εN 〉 is given by [309, 330, 331]

〈εN |εN 〉 = 1− χN
χN−1

+ (N − 1)
χN+1

χN
. (11.20)

Therefore, the conditions (11.18) and (11.19) are controlled by the ratio of normalization
constants. An ideal composite boson emerges in the limit χN+1

χN
→ 1. We will explain in

detail the relation of this normalization ratio with the entanglement in Chapter 12.

11.2.3 Normalization factor: Fermions and bosons

The quantity χN is given by [331, 309]

χN =
1

N !
〈0| ĉN (ĉ†)N |0〉 =

∑
p1,...,pN

λp1λp2 · · ·λpN (11.21)

The sum runs over all the indices appearing in the summand, with the different restriction
if the constituent are fermions or bosons. By counting the states allowed for fermions and
bosons, it can be shown that χFN and χBN are given by [309]

χFN = N !
∑

0≤p1<···<pN≤S
λp1λp2 · · ·λpN , if A,B are fermions, (11.22)

χBN = N !
∑

0≤p1≤···≤pN≤S
λp1λp2 · · ·λpN , if A,B are bosons. (11.23)

The computation of these summations can be rather complicated for an arbitrary distribu-
tion of Schmidt coefficients in general and exact analytical expressions in closed forms,
for both fermions and bosons, are rare. Nevertheless, in the case of fermions, χFN , useful
methods have been discussed in Refs. [332, 333]. These expressions give χFN = 0 if the
number N of two-fermion composite bosons exceeds the number of Schmidt modes with
nonzero Schmidt coefficients. In that case (ĉ†)N |0〉 = 0 and we cannot define the state
|N〉.

For a given number S of Schmidt coefficients, the maximally entangled state is known
to be the uniform state, i.e. all the Schmidt modes are occupied with the same probability
(λi = 1

S for i = 1, . . . , S). In such state the normalization constants are easily analytically
determined as follows:

χFN =
S!

SN (S −N)!
, and χBN =

(N + S − 1)!

SN (S − 1)!
(11.24)
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The uniform state of a composite boson is above-normalized when the compounds are
fermions, that is, the normalization factor is above unity χFN ≥ 1, which increases with N
and decreases with S. On the other hand, for bosons, it is below-normalized, 0 < χBN ≤ 1,
and is increasing (decreasing) with S (N ). In the limit of a very large number of Schmidt
coefficients, the normalization of the state is well preserved, that is lim

S→∞
χFN = lim

S→∞
χFN =

1. This means that by adding a coboson to the state |N〉, normalization is not preserved
unless the number of accessible single-particle states S is large enough.
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Bosonic behavior of entangled
Fermions

As an indicator for the entanglement between the fermions, one may use the purity P
of the reduced states of each fermion [5]: 1/P is the effective number of Schmidt modes,
i.e. of populated single-fermion states. To treat cobosons as ideal bosons, evading the
Pauli principle, there need to be many more single-particle states (1/P ) than composites
(N ), i.e. N · P � 1 [309]. The original argument in Ref. [309] was based on specific
wavefunctions, and generalized to arbitrary states in Ref. [303], where general upper and
lower bounds to the indicator of bosonic behavior (the ratio of normalization constants of
many-coboson states that will be introduced in previous chapter) were found.

Here, we strength further the relationship between entanglement, as characterized by
the purity of the single-fermion states, and the compositeness character of cobosons: We
improve existing bounds and derive the explicit form of those quantum states that maximize
and minimize the normalization ratio for a given purity P . Our bounds are optimal, since
they are saturated by the extremal states found. The tight upper bound comes close to the
lower bound when N2 · P � 1, i.e. in this regime, not only the deviation from perfectly
bosonic behavior is small, but it can also be bounded very tightly via the purity.

In Section 12.1, we first present the formalism for the treatment of N -coboson states
and review previous results on the normalization ratio related to the entanglement. Our
main result, tight bounds for the normalization ratio, are derived in Section 12.2. Examples
and a discussion of limiting extremal cases are then given in Section 12.3. We conclude
with a combinatorial interpretation of the findings and an outlook on possible extensions
and applications.

12.1 Normalization factor of two-fermion composite bosons

In what follows we consider that cobosons are constituted by two fermions. In this
section we show the relationship between the power sum of the Schmidt coefficients dis-
tribution, which contains the particular case of the purity, and the normalization factor χN .
We also present the normalization ratio, χN+1/χN , as a power series of the purity and
review the original bound on this normalization ratio found in Ref. [303].

12.1.1 Normalization and entanglement

The creation operator given in Eq. (11.8), for a coboson constituted of distinguishable
fermions can always be written in the Schmidt decomposition [309, 303], as described in
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Section 11.2. Moreover, it is useful to write it in a Slater form [334] as

ĉ† =
S∑
j=1

√
λj f̂

†
2j f̂
†
2j−1, (12.1)

i.e. as a sum over only one index, where the λj are the Schmidt coefficients, and f̂ †j creates

a fermion in the Schmidt mode j. When we set âj = f̂ †2j and b̂j = f̂ †2j−1 the form (11.8) is
recovered.

The coboson normalization factor χN (χFN in Eq. (11.22)), of a state of N composite
bosons, Eq. (11.12), witnesses the possible departure from the familiar bosonic behav-
ior [332, 309, 303, 313, 335]. The factor χN , leading to the normalization of the many-
coboson state, 1 = 〈N |N〉, is a completely symmetric polynomial in the Schmidt coeffi-
cients λj [336],

χN = N !
∑

1≤j1<···<jN≤S

N∏
m=1

λjm . (12.2)

For ideal bosons, χN = 1 for all N , while χN = 0 when the number of cobosons N is
larger than the number of available fermionic single-particle states, S.

The probability distribution ~λ is characterized by its power-sums [336, 316, 332]

M(m) =

S∑
j=1

λmj , (12.3)

where M(1) = 1 due to normalization, and 0 < M(2) = P ≤ 1 is the purity of the
distribution ~λ. Power-sums are also called frequency moments, which are directly related
to the Rényi entropy of the distribution ~λ, Hm

Rényi(
~λ) = ln (M(m)) /(1−m), which is the

discrete version of the Rényi entropy Rq[ρ] given in Eq. (1.5). The M(m) are independent
among themselves, but Jensen’s and Hölder’s inequalities [337] apply:

M(k − 1)
k−1
k−2 ≤M(k) ≤M(k − 1)

k
k−1 . (12.4)

Using power-sums, the normalization constant can be expressed recursively [316],

χN = (N − 1)!

N∑
m=1

(−1)1+m

(N −m)!
M(m) · χN−m, (12.5)

where we set χ0 = 1 for convenience.
Combinatorially speaking, the quantity χN is the probability that, given a set of N

objects which are each randomly assigned a property j (with 1 ≤ j ≤ S) with probability
λj , all objects carry different properties. For example, for S = 365 and λj = 1/365,
we obtain the solution to the “birthday problem”, i.e. the likelihood that all members of a
group of N people have a different birthday. The power-sum M(m) is the probability that,
selecting m objects that each carry a property distributed according to λj , all m objects
have the same property. Therefore, we have the simple relationship χ2 = 1−M(2), while
the χN with N ≥ 3 are functions of all M(m) with m ≤ N , as given by Eq. (12.5).
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12.1.2 Normalization ratio as a measure of bosonic behavior

The normalization factor χN of a N -coboson state reflects the probability to create a
state of N cobosons by the N -fold application of the coboson creation operator on the
vacuum as pointed out in Section 11.2.2. The resulting state reads(

ĉ†
)N

√
N !
|0〉 =

1≤jm≤S∑
j1 6=j2···6=jN

(
N∏
k=1

√
λjk f̂

†
2jk
f̂ †2jk−1

)
|0〉 , (12.6)

i.e. it is a weighted superposition of all possibilities to distribute the pairs of fermions
among the pairs of Schmidt modes (for fermion species a and b). Every pair of Schmidt
modes f †2j f̂

†
2j−1 |0〉 is – at most – occupied by one fermion pair, in close analogy to the

birthday problem.
The normalization ratio, χN+1/χN , has emerged as a decisive indicator for the bosonic

behavior of a state of N cobosons. For example, adding an additional coboson to a N -
coboson state, i.e. applying the coboson creation operator, leads to the state (11.15)

ĉ† |N〉 =

√
χN+1

χN

√
N + 1 |N + 1〉 , (12.7)

i.e. the state is below-normalized: It is possible that the addition of the (N+1)st coboson be
inhibited by the Pauli principle, which occurs with probability 1− χN+1/χN . Similarly,
the departure of the expectation value of the commutator [ĉ, ĉ†], which is unity in the ideal
case, reads [309]

〈N | [ĉ, ĉ†] |N〉 = 2
χN+1

χN
− 1. (12.8)

The evaluation of χN scales prohibitively as the number of particles N increases, even
when using the recursive formula (12.5) [338]. Approximations to the normalization factor
in terms of easily accessible quantities, such as the purity P ≡ M(2), are thus desirable.
From Eq. (12.5) and for small N · P , a series expansion can be derived [316, 314],

χN+1

χN
≈ 1−N · P +N2(M(3)− P 2) +

+O
(
N3(M(4) + 2P 3 − 2P M(3))

)
. (12.9)

On the other hand, an upper and a lower bound to the normalization ratio were found [303],

1− P ·N ≤ χN+1

χN
≤ 1− P. (12.10)

However, the upper bound 1 − P is independent of N and cannot be saturated, and the
form of typical states that maximize the ratio is not known.

12.2 Tight bounds on the normalization ratio

Here, we derive tighter bounds, find the quantum states that saturate these bounds, and
give a physical interpretation for their optimality.
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12.2.1 Extremal entangled states

We are interested in the possible values of the normalization ratio χN+1/χN for a
given P . In order to find the extremal values of χN+1/χN , we maximize and minimize
this quantity under the constraints M(1) = 1,M(2) = P .

Given a finite P , the number S of non-vanishing λj is bound from below by L, the
smallest integer that is equal to or larger than 1/P :

S ≥ L =

⌈
1

P

⌉
. (12.11)

Distributions ~λ with S − 1 equal coefficients [339] constitute extremal states, and will
turn out to minimize or maximize χN+1/χN . We thus define

λ
(±)
1 =

1±
√

(S − 1)(SP − 1)

S
,

λ
(±)
j∈{2...S} =

1− λ(±)
1

S − 1
. (12.12)

When we choose S = L, we obtain the uniform distribution ~λ(u) = ~λ
(−)
(S=L) with λ(u)

1 ≤
λ

(u)
j∈{2,...,L}. This distribution minimizes the number of non-vanishing Schmidt coefficients.

!λ(u) !λ(p)!λ

Figure 12.1: Visualization of probability distributions ~λwith a maximal number of Schmidt
coefficients S ≤ 16 and purity P = 1/5. The diameter of each filled circle represents the
probability λj , its area is proportional to λ2

j . The diameters sum to unity, while the total area
adds up to P . Distributions with the same occupied gray area thus have the same purity P ,
the three distributions shown cannot be distinguished via their purity P , but only through
higher-order power-sums. Given P = 1/5, different distributions ~λ can lead to different
normalization factors χN . The uniform distribution ~λ(u) minimizes the normalization ratio,
while the peaked distribution ~λ(p) maximizes it under the chosen constraint S ≤ 16.

For S ≥ L, we find a peaked distribution ~λ(p) = ~λ
(+)
(S≥L) that satisfies λ(p)

1 ≥
λ

(p)
j∈{2,...,S}. In the limit S → ∞, the peaked coefficient λ(p)

1 converges to
√
P , while all

other coefficients become vanishingly small, while the distribution always remains normal-
ized and possesses the purity P . Choosing P = 1/S implies L = S and ~λ(p) = ~λ(u), all
coefficients are then identical and a maximally entangled state is obtained. In Fig. 12.1, we
illustrate the uniform distribution ~λ(u), a randomly chosen distribution ~λ, and the peaked
distribution ~λ(p) with the same purity P = 1/5 and S ≤ 16.
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The peaked and the uniform distributions have extremal properties: For example, they
saturate the bounds on the higher-order power-sums M(k ≥ 3), given by Eq. (12.4). In the
limit S →∞, we have

M (p)(k) =
√
P ·M (p)(k − 1), (12.13)

and, for fractional values P = 1/L, we find for the uniform distribution:

M (u)(k) = P ·M (u)(k − 1). (12.14)

Combinatorially speaking, given the probability to find a pair of objects with the same prop-
erty (i.e. given the value P = M(2)), the probability M(3) to find three objects with the
same property for three randomly chosen objects is maximized by the ~λ(p) and minimized
by the ~λ(u) distributions.

12.2.2 Normalization ratio for extremal states

Since only two different non-vanishing values of λj appear for the uniform and the
peaked distributions, the normalization ratio can be computed explicitly for these extremal
distributions:

χ
(p)
N+1

χ
(p)
N

=
(S −N)(1− P )

(
S − 1 +N

√
(S − 1)(SP − 1)

)
(S − 1)

(
S + S(N − 1)P −N

[
1−

√
(S − 1)(SP − 1)

]) , (12.15)

χ
(u)
N+1

χ
(u)
N

=
(L−N)(1− P )

(
L− 1−N

√
(L− 1)(LP − 1)

)
(L− 1)

(
L+ L(N − 1)P −N

[
1 +

√
(L− 1)(LP − 1)

]) , (12.16)

where χ(u/p)
N is the normalization factor for the uniform/peaked distribution. We can now

formulate our tight bounds on χN+1/χN , given an arbitrary distribution ~λ of S Schmidt
coefficients:

1− P ·N
(i)

≤
χ

(u)
N+1

χ
(u)
N

(ii)

≤ χN+1

χN

(iii)

≤
χ

(p)
N+1

χ
(p)
N

≤ lim
S→∞

χ
(p)
N+1

χ
(p)
N

(iv)
= UN (P )

(v)

≤ 1− P ,(12.17)

where χ(p)
N+1/χ

(p)
N is computed for the finite S defined by ~λ, and we define the upper bound

UN (P ) = 1− P ·N
1 + (N − 1)

√
P
. (12.18)

The inequalities in Eq. (12.10) are represented here by the extremal lower and upper bounds
(i) and (v), which were first shown in Ref. [303], for an alternative proof see Ref. [335]. We
prove the new bounds (ii) to (iv) in Appendix B, and discuss their physical implications
in the following Section 12.3.
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12.3 Illustration and interpretation of bounds

All bounds for N = 2 are illustrated in Fig. 12.2.
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Figure 12.2: Bounds for the normalization ratio χ3/χ2 as a function of the purity P . The
red solid lines indicate the extremal bounds in Eq. (12.17) found in Ref. [303]. The solid
blue lines denote the tight bounds in Eq. (12.17) that can be achieved for any value of
P . For a given maximal number of Schmidt-coefficients S, the black dashed lines are the
corresponding upper bounds (for peaked states λ(p)), which merge with the lower bound
at P = 1/S . Inset (a): The scale in P is logarithmic, the (black dashed) upper bound for
S = 50 is close to the total upper bound at P = 1/10, but it merges with the lower bound
at P = 1/50. The distributions show the values numerically obtained for the normalization
factor and the purity, for different fixed Schmidt numbers, S = 3 (main figure) and S = 4, 5

(insets (b), (c)).

12.3.1 Upper and lower bounds

The authors of Ref. [303] showed that the lower bound 1−N · P in Eq. (12.10) is at-
tained for fractional values of P , i.e. for P = 1/L = 1/S. Setting L = 1/P in Eq. (12.16)
reproduces the bound, and χ(u)

N+1/χ
(u)
N = 1 −N · P . The saturation can also be observed
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in Fig. 12.2: The tight lower bound (blue line) coincides with 1 − N · P (red line) for
fractional values of the purity P = 1/S. When P � 1, and thus P ≈ 1/L, the tight
bound (12.16) differs only marginally, while for large purities P . 1/N the tight bound
can differ significantly from 1−N ·P . In the limit P → 1/N , the tight bound (12.16) and
the previous bound 1−N · P differ by a factor (1 +N)/2.

In contrast to the previously established upper bound 1 − P , our tight upper bound
(12.17),iv depends on the number of particles N . When the number of non-vanishing
Schmidt coefficients S is finite, the bound (12.15) is more efficient than the limiting case
S → ∞: In Fig. 12.2, the dashed black lines show the upper bound for finite S, while the
blue line indicates the absolute upper bound. When the purity is decreased for a constant
S, the upper and lower bounds eventually merge when P = 1/S is attained (see also inset
(a)).

The upper bound can be expanded in powers of
√
P :

UN (P ) = 1−
∞∑
k=2

P k/2
(1−N)kN

(N − 1)2
(12.19)

= 1− lim
n→∞

N
[
(N − 1)P + (1−N)nP (n+1)/2

]
(N − 1)(1 + (N − 1)

√
P )

,

with convergence radius P < 1/(N − 1)2. To second order, we then find

UN (P ) ≈ 1− P ·N + P 3/2(N2 −N) +O(P 2), (12.20)

i.e. the upper and lower bounds coincide in the limit P → 0. Indeed, for P �
1/(N − 1)2 ≈ 1/N2, the denominator in Eq. (12.18), 1 + (N − 1)

√
P , is of the or-

der of unity. This behavior is illustrated in Fig. 12.3, where we plot the deviation from
perfect bosonic behavior, 1− χN+1/χN . The N -dependence of the new upper bound is
apparent, as well as the convergence of the upper bound to the lower bound. In particular,
the purity essentially defines the normalization ratio in the range P ·N2 � 1.

In order to illustrate the typical behavior of random cobosons, we generated 3 · 108

random distributions ~λ [340], sampled according to the Haar measure [341, 340, 342].
Pairs (P, χ3/χ2) are counted in a grid with 1000×1000 bins, which is translated to a color-
code in Fig. 12.2. We generated states with S = 3 (main figure), S = 4 (inset (b)) and
S = 5 (inset (c)) non-vanishing Schmidt coefficients. The bounds for finite S are indeed
reached by randomly generated states. We also observe a concentration of states around
the peak value of (P, χ3/χ2) when the number of Schmidt modes S is increased: The vast
majority of randomly generated states in high dimensions share very similar entanglement
properties [343].

12.3.2 Limit of many particles

Surprisingly, increasing the number of particles at constant purity P does not always
fully destroy bosonic behavior: The lower bound 1 −N · P admittedly decreases with N
when P > 0 and vanishes for P = 1/N – the corresponding uniform state λ(u) consists of
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Figure 12.3: Deviation of the normalization ratio from unity, 1−χN+1/χN , as a function
of the purity P , in log-log-representation. The red dashed line is the N -independent upper
bound to χN+1/χN , i.e. here it represents the lower bound P to the deviation. The black
dot-dashed, green solid and blue dotted lines indicate the tight bounds for N = 1000,
N = 100, and N = 10, respectively. The previously found bound 1 − N · P [303]
and the tight bound (12.16) do not differ significantly in the present regime P � 1, they
thus cannot be distinguished in the plot. The normalization ratio can take any value in the
respective shaded areas. The deviation from ideal behavior as well as the gap between the
upper and lower bound decrease with decreasing P .

a finite number L = d1/P e of Schmidt modes, such that at most L particles can be accom-
modated and χL+1 = 0. The peaked state, however, leads to non-vanishing χN+1/χN for
arbitrarily large particle numbers: In the limit N →∞, we have

UN (P )
N→∞→ 1−

√
P . (12.21)

That is to say, for the peaked state the departure from bosonic behavior, as quantified
by the ratio χN+1/χN , amounts to at most

√
P , for any number of particles N . This

counter-intuitive result can be understood by the extremal form of the distribution ~λ(p):
When a fermion pair populates a Schmidt mode other than the first one (which is populated
with probability

√
P ), it can essentially be neglected for the impact of the Pauli principle

on the next fermion pair, since there are arbitrarily many such modes that are occupied
with vanishing probability (in the limit S → ∞). Assuming that N � 1 particles were
successfully prepared, the probability that the first pair of Schmidt modes is populated by
some fermion pair is 1 −

√
P
N

, i.e. very close to unity. Adding an (N + 1)st particle
is thus successful when this last particle does not end in the first Schmidt mode, i.e. the
success probability is 1 −

√
P , just as given in (12.21). Colloquially speaking, there are

always enough Schmidt modes to accommodate another particle. The last added particle
must not, however, end in the first Schmidt mode, since the latter is occupied with nearly
unit probability.
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Although an N -coboson state still behaves bosonic to a certain degree, the normaliza-
tion factor for such a state, given the peaked distribution ~λ(p), is

χ
(p)
N =

(
1−
√
P
)N−1 (

1 + (N − 1)
√
P
)
, (12.22)

which converges to zero for any 0 < P ≤ 1 in the limit N → ∞. The analogous normal-
ization factor for a uniform distribution (assuming P = 1/L) reads

χ
(u)
N =

1

LN
L!

(L−N)!
, (12.23)

which decays faster in N than χ(p)
N and vanishes identically for N > L.

Conclusions and outlook

The N -coboson normalization ratio χN+1/χN was established as an important indica-
tor for the composite behavior of non-elementary bosons [309]. Our main result is a new,
N -dependent upper bound for χN+1/χN , and the explicit representation of the states that
saturate this bound.

In the limit of small purities P < 1/N2, the bosonic behavior of an N -coboson state
is very tightly defined by P , since the lower and upper bounds merge. In practice, the
purity of a bound pair of particles often satisfies P � 1/N2, e.g. for atoms in a trapped
BEC [311, 303]. Our bounds thus provide a simple and reliable way to quickly check the
departure of bosonic behavior of any type of cobosons. With a combinatorial argument, we
can understand this clear determination of bosonic behavior: For small purities PN2 < 1,
the probability to not finding N objects with different properties is essentially determined
by the probability to find exactly one pair of objects with the same property, which is
defined by M(2). Triplets and larger combinations that depend on higher-order M(k) are
then essentially negligible.

When the purity is not very small, P ≈ 1/N , however, the form of the wavefunction
does play a role for bosonic behavior, which is then not entirely defined by P . It might be
possible to access entanglement properties of bound fermions via the higher power-sums
M(m), which can be obtained by measuring χN [344].

Formally speaking, we found bounds to the completely symmetric polynomial (12.2)
in terms of the first and second power-sums (12.3), M(1) = 1 and M(2) ≡ P . For tighter
bounds, one could specify also the third power-sum, M(3), and repeat the maximizing-
and minimizing procedure of Appendix B to find those states that minimize/maximize
χN+1/χN for given M(1),M(2),M(3); this procedure could be extended to even higher
orders. It is, however, not immediate how operations that are analogous to (B.3) and (B.4)
but which leave M(3) invariant can be constructed. In the typically encountered domain
of small purities, P � 1/N2, this endeavor is not an urgent desideratum, since the en-
countered bounds as a function of P are already tight. On the other hand, using relations
between Rényi entropies of different orders [345, 346], our bounds can be re-formulated in
terms of other indicators for entanglement, such as the Shannon entropy of ~λ.



194 Chapter 12

Given a fixed purity P , the uniform distribution ~λ(u) minimizes the probability that the
Pauli principle is irrelevant, while the peaked distribution maximizes it. In other words, the
N2-coefficient (M(3)− P 2) in the expansion (12.9) is maximized. Although a peaked or
canyon distribution leads, in general, to a normalization ratio that is smaller than for the
uniform distribution [335], this is mainly due to the consequent change of purity. For fixed
purity P , the bosonic behavior of the uniform distribution is actually inferior with respect
to the peaked one.

Combinatorially speaking, we have considered a variant of the birthday problem with
non-uniform probabilities [338]. Here, Schmidt modes or single-particle quantum states
take the role of birthdays [338, 347] or surnames [348]. Rather counter-intuitively, the op-
timal bosonic behavior for a fixed purity P ≡M(2) is found by maximizing the probability
to find three objects with the same properties, i.e. M(3). This result can be understood as
follows: Any pair of objects that have the same property is as deleterious as any triplet
(or any other m-tuplet). The probability to find a pair, however, decreases with increas-
ing M(3). This decrease has a larger impact on the overall probability to find all objects
with different properties than the consequent increase of the probability to find triplets with
M(3). For example, for N = 3, the probability to find a pair amounts to 3(P −M(3)),
the probability to find a triplet is M(3). The overall probability to find all objects with
different properties amounts to 1− 3P + 2M(3).

To complement the analytical bounds, we have numerically generated random states,
which do not only show a concentration around the most probable value of the purity P
[343], but they also cluster around a certain value of the normalization ratio, consistent with
the concentration-of-measure phenomenon. It remains to be studied how random states in
higher dimensions behave in general, i.e. what is the typical normalization ratio and the
distribution of states with a given purity.



CHAPTER 13

Collective interference of composite
two-fermion bosons

The quantum statistics of bosons is most apparent in correlation functions and count-
ing statistics. Characteristic bosonic signatures are encountered for thermal states, which
feature the Hanbury Brown and Twiss effect [349, 350, 351, 352], as well as in metic-
ulously prepared Fock-states [353, 354, 355, 356], which exhibit Hong-Ou-Mandel-like
(HOM) interference. Deviations from the ideal bosonic pattern in HOM setups are often
caused by inaccuracies in the preparation of Fock-states and in the alignment of the setup,
which induce partial distinguishability between the particles [353, 357, 358, 359]. Another
source for deviations from perfect bosonic behavior has received only little attention, lim-
ited to mixed states [360, 344]: Since most bosons are composites (“cobosons”) made of
an even number of fermions, reminiscences of underlying fermionic behavior are expected
in many-coboson interference. In analogy to partially distinguishable particles [358, 359],
one can intuitively anticipate that the many-coboson wave-function partially behaves in a
fermionic way, with impact on the resulting counting statistics.

Here, we investigate such compositeness effects in HOM interferometry of cobosons.
The ideal bosonic interference pattern is jeopardized by the Pauli principle that acts on
the underlying fermions, an effect that becomes relevant when the constituents populate
only a small set of single-fermion states. The effective number of single-fermion states
can be related to the entanglement between the fermions, via the Schmidt decomposition.
Not only does entanglement thus guarantee the irrelevance of the Pauli-principle for co-
boson states, but it also constitutes the very many-body coherence property that ensures
that many-coboson interference matches the ideal bosonic pattern [355, 356]. The many-
coboson wavefunction can be described as a superposition of different numbers of perfect
bosons and fermions, with weights that are determined by the Schmidt coefficients. Using
that intuitive representation, we compute the exact counting statistics in many-coboson in-
terference and thus provide direct experimental observables for compositeness. Properties
of the collective wave-function of the fermionic constituents can thus be extracted from
coboson interference signals, while in the limit of truly many particles, particularly simple
forms for the interference pattern emerge.

The bottomline of our discussion, the observable competition of fermions for single-
particle states, is a rather general phenomenon that is not restricted to any particular phys-
ical system. To render our analysis of many-coboson interference tangible, however, we
focus on an interferometric setup that can be realized with trapped ultracold atoms.

The agenda of this chapter is the following. In Section 13.1 we present the original
Hong-Ou-Mandel effect on a beam splitter dynamics and the tangible two particle (of dif-
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ferent nature) interference as well as the many-bosons interference and its macroscopic ap-
proach. We characterize the physical interference model of cobosons by a Fermi-Hubbard
lattice model in Section 13.2 and in Section 13.3 argue the cobosons ground state prepara-
tion of this system. In Section 13.4 we show how the cobosons state describing the behavior
of cobosons under beam-splitter dynamics is imitated exactly by a superposition of states
with a different number of perfect bosons and fermions, and in Section 13.5 we carry out its
corresponding valuation of counting statistics on the beam splitter dynamics as well as its
macroscopic approach in Section 13.6. Finally the most important conclusions are given.

13.1 Beam splitter dynamics: Hong-Ou-Mandel (HOM) effect

The nature of bosons and fermions manifests itself impressively in the interference
processes. Beam splitters are the simplest scattering setup, an essential component of many
experiments designed to observe quantum effects [355]. When two identical particles are
brought into a beam splitter and impinge on two opposite output ports simultaneously, one
intuitively expects to find coincident events, i.e. events with one particle at each output
port.

From the standpoint of classical probability theory, in a many particles interference one
should expect that the counting statistic is governed by a binomial distribution in each of the
output, occurring coincident events. Since fermions obey the Pauli principle, two fermions
will never exit at the same mode of the beam splitter, and coincident events always occur.
However, bosons always leave the setup together leading to an opposite effect. The original
theoretical prediction and experimental realization were performed by C.K. Hong, Z.Y.
Ou and L. Mandel in 1987 (Ref. [353]) where they predicted that coincidence rate of the
output events will drop to zero when the input photons are perfectly identical regarding all
properties and overlap perfectly in time, see Fig. 13.1. When the two photons are perfectly
distinguishable, the “dip” completely disappears.

This correlated behavior, for both fermions and bosons, stems from the indistinguisha-
bility of the particles alone; no interaction between them takes place, which underlines the
intriguing and intrinsically quantum character of the effect.

13.1.1 Two particles interference

Here we show the simplest cases of two particles that are scattered on a perfect beam
splitter. The physical behavior can be understood in terms of an interplay of static two-path
interference and the state space structure of bosons and fermions. We present four different
scenarios which depend on the nature of the particles, distinguishable or indistinguishable
(for identical particles we presents the cases where α̂†q corresponds to elementary bosons
and fermions) as well as composites of two perfectly bound distinguishable fermions.

• Distinguishable particles

We can apply classical probability theory since no many-particle quantum effects
take place. For a balanced beam splitter setup the probability for a single particle
that is prepared in one input mode to fall into one of the output modes is p = 1/2
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FIG. 2. The measured number of coincidences as a function
of beam-splitter displacement c Bi, superimposed on the solid
theoretical curve derived from Eq. (11) with R/T =0.95,
Aco =3 x 10 ' rad s '. For the dashed curve the factor
2RT/(R +T ) in Eq. (11) was multiplied by 0.9. The verti-
cal error bars correspond to one standard deviation, whereas
horizontal error bars are based on estimates of the measure-
ment accuracy.

time spread of the photoelectric pulses and the slewing of
the discriminator pulses, a range of time intervals cen-
tered on zero delay was obtained with a spread of several
nanoseconds. For the purpose of the measurement, pulse
pairs received within a 7.5-ns interval were treated as
"coincident. " Pulse pairs received within an interval of
35 to 80 ns were regarded as accidentals, and when
scaled by the factor 7.5/45 provided a measure of the
number of accidental coincidences that occur within any
7.5-ns interval.

The results of the experiment are presented in Fig. 2,
which is a plot of the number of observed photon coin-
cidences, after subtraction of accidentals, as a function
of the displacement of the beam splitter. It will be seen
that for a certain symmetric position of the beam spli-
tter, the two-photon coincidence rate falls to a few per-
cent of its value in the wings, by virtue of the destructive
interference of the two two-photon probability ampli-
tudes. The width of the dip in the coincidence rate pro-
vides a measure of the length of the photon wave packet.
It is found to be about 16 pm at half height, correspond-
ing to a time of about 50 fs, which should really be dou-
bled to allow for the greater movement of the mirror im-

age. This time is about what is expected from the
passband of the interference filters.

Direct measurements of the beam-splitter reAectivity

and transmissivity show that R/T = 0.95, which makes
the combination 2RT/(R + T ) = 0.999, and implies
that iV, should fall close to zero when 6~=0. That it
does not fall quite that far is probably due to a slight
lack of overlap of the signal and idler fields admitted by
the two pinholes, causing less than perfect destructive in-
terference. The solid curve in Fig. 2 is based on Eq. (11)
with R/T=0. 95 and Ato=3x10' rad/s =5x10' Hz,
if we identify c6'i with the beam-splitter displacement
(x —302.5) in micrometers. For the dashed curve the
factor 2RT/(R + T ) was multiplied by 0.9 to allow for
less than perfect overlap of the signal and idler photons.
It will be seen that, except for the minimum, Eq. (11) is

obeyed quite well, corresponding to a coherence time of
about 100 fs.

We have therefore succeeded in measuring sub-
picosecond time intervals between two photons, and by
implication the length of the photon wave packet, by
a fourth-order interference technique. Unlike second-
order interference, this method does not require that
path differences be kept constant to within a fraction of a
wavelength. The method is applicable to other situations
in which pairs of single photons are produced, but be-
comes less e%cient for more intense pulses of light, be-
cause the "visibility" of the interference is then reduced
and cannot exceed 50% at high intensities. In principle,
the resolution could be better than 1 pm in length or 1 fs
in time.
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Figure 13.1: a) Beam splitter (BS) setup. b) Original prediction shown in [353] where
variation of the position of the beam splitter gives rise to a vanishing coincidence events.
The solid line denotes the ideal theoretical predictions, the dotted line takes into account
experimental imperfections which reduce the visibility.

and hence the probability PD(s1, s2) to find s1 and s2 particles in the first and in the
second output mode, respectively, is given by a binomial distribution

PD(s1, s2) =

(
s1 + s2

s1

)
ps1(1− p)s2 . (13.1)

For two particles one obtains the following possible probabilities

PD(2, 0) = PD(0, 2) =
1

4
, and PD(1, 1) =

1

2
. (13.2)

Since this situation can be fully understood in terms of classical probabilities, we
will refer to it as the classical or distinguishable-particle situation.

• Identical particles

Let us consider α̂†q the creation operator of a indistinguishable particle in mode q.
Then, the initial state of two particles in the two input ports, as depicted in Fig-
ure 13.1, can be written as

|Ψin〉 = α̂†1α̂
†
2 |0〉 . (13.3)

The action of the perfect beam splitter amounts to redirecting the incoming particles
into a coherent superposition of the output modes [356, 358, 355]. The creation
operators for particles in the input modes consequently evolve as follows:

α̂†1 →
1

2

(
β̂†1 + β̂†2

)
, and α̂†2 →

1

2

(
β̂†1 − β̂†2

)
. (13.4)

Implementing this single-particle dynamics to the initial state in Eq. (13.3), we find
the final state

|Ψfin〉 =
1

2

(
(β̂†1)2 − (β̂†2)2 + β̂†1β̂

†
2 − β̂†2β̂†1

)
|0〉 , (13.5)
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where we did not yet make any assumption on the species of the particles (bosons
or fermions). While first two terms of this equation describes the situation in which
one particle is reflected and the other is transmitted, the third and fourth terms de-
scribe two distinct processes: Both particles are either reflected or both particles are
transmitted by the beam splitter.

– Fermions
For fermions, β̂†q = f̂ †q , the anti-commutation relation given in Eq. (11.5), lead-
ing to f̂ †1 f̂

†
2 = −f̂ †2 f̂ †1 which is compatible with Pauli principle, inducing con-

structive interference between the terms describing coincident events. The first
two terms cancel each other, in such a way that always one particle is located
in each output in the final state

|ΨF
fin〉 =

1

2

(
f̂ †1 f̂

†
2 − f̂ †2 f̂ †1

)
|0〉 = f̂ †1 f̂

†
2 |0〉 = |1, 1〉 (13.6)

and PF (1, 1) = |〈ΨF
fin|1, 1〉F |2 = 1.

– Bosons
From the commutation relation given in Eq. (11.3), for bosons β̂†q = ĝ†q , one
has that ĝ†1ĝ

†
2 = ĝ†2ĝ

†
1. Consequently, the third and fourth terms in Eq. (13.5)

interfere destructively. For two bosons interference we obtain the final state

|ΨB
fin〉 =

1

2

(
(ĝ†1)2 − (ĝ†2)2

)
|0〉 =

1√
2

(|2, 0〉 − |0, 2〉) (13.7)

which describes a coherent superposition of both particles in port 1, and in port
2, so that PB(2, 0) = PB(0, 2) = |〈ΨB

fin|2, 0〉B|2 = 1
2 . As we have already

pointed out, there are no coincident events.

• Composite Two-Fermion Bosons

As motivation, and in order to get a deeper understanding of the interference pro-
cesses with many-coboson, we present here the simplest case, i.e. two interfering
compositie bosons which consist of two distinguishabile bound fermions. The cre-
ation operator given in Eq. (11.8), for a coboson constituted of two distinguishable
fermions, can always be written in a Slater form [334], just as given in Eq. (12.1),

ĉ†q =
S∑
j=1

√
λj f̂

†
q,2j−1f̂

†
q,2j :=

S∑
j=1

√
λj d̂
†
q,j , (13.8)

where q is the number of external modes and j runs over all (S) internal degrees of
freedom of the elementary fermions f̂ †q,2j and f̂ †q,2j−1. This last subscript includes
spin-like degree of freedom used to distinguish the two particles, even subscript, 2j,
could be understood as up spin and odd subscript, 2j−1, as spin down or vice versa.
Two fermions of different species that are always bound to a bi-fermionic particle
can be described by

d̂†q,j = f̂ †q,2j f̂
†
q,2j−1, (13.9)
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which fulfils the algebraic properties of a hardcore-boson operator [361] given by

for p 6= q or j 6= k : [d̂†p,j , d̂
†
q,k] = 0, (13.10)

∀q, j :
(
d̂†q,j

)2
=
(
d̂q,j

)2
= 0, {d̂†q,j , d̂

†
q,j} = 1, (13.11)

and

[d̂p,j , d̂
†
q,k] = δp,qδj,k

(
1− f̂ †k,2qf̂k,2q − f̂

†
k,2q−1f̂k,2q−1

)
, (13.12)

which is fully consistent with Eq. (11.13), under the assumption that the numbers of
fermions of each species coincide. In other words, d̂†q,j creates a pair of bound bosons
or fermions in the external mode q and in the internal state j. For bound fermions,
the (typically repulsive) interaction between pairs in the same state is irrelevant, since
the Pauli principle inhibits such population.

The state prepared in the two input modes of a beam splitter reads

|ΨC
in〉 = c†1c

†
2 |0〉 =

S∑
j,k=1

√
λjλkd

†
1,jd
†
2,k |0〉 , (13.13)

which is already normalized, since
∑S

j=1 λj = 1. The dynamics of bound particles
through the beam-splitter is described by

d̂†1,j →
1√
2

(
d̂†1,j + d̂†2,j

)
and d̂†2,j →

1√
2

(
d̂†1,j − d̂

†
2,j

)
, (13.14)

i.e., we indentify α̂†q and β̂†q with the two bound fermion opertators d̂†q,j in which
there are also S internal degrees of freedom.

It will turn out useful to decompose the initial state in two orthogonal components,

|ΨC
in〉 = |Ψ⊥in〉+ |Ψ‖in〉 , (13.15)

where

|Ψ‖in〉 =

S∑
j=1

λj d̂
†
1,j d̂
†
2,j , (13.16)

describes the part of the wave-function where bound pairs in the two different modes
are in the same internal state, and

|Ψ⊥in〉 =
S∑

k 6=j=1

√
λjλkd̂

†
1,j d̂
†
2,k, (13.17)

describes the part of the wave-function where two bound pairs in different external
modes are also in different internal states always. This component of the wave-
functions depends on the purity P of the single-particle-states since

〈Ψ‖in|Ψ
‖
in〉 =

S∑
j=1

λ2
j = P. (13.18)
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During time-evolution, |Ψ‖〉 does not change, since the Pauli principle inhibits the
multiple occupation of any spatial mode, i.e.

|Ψ‖in〉 → |Ψ
‖
fin〉 = |Ψ‖in〉 , (13.19)

is the component which exhibits perfect fermionic behavior. Much in contrast, the
other component can be re-written as

|Ψ⊥in〉 =
S∑

k>j=1

√
λjλk

(
d̂†1,kd̂

†
2,j + d̂†2,kd̂

†
1,j

)
, (13.20)

displaying a perfect bosonic behavior: Every single summand is manifestly fully
symmetric under the exchange of the “labels” j and k, so that

|Ψ⊥in〉 → |Ψ⊥fin〉 =
S∑

k>j=1

2
√
λjλk

(
d̂†1,kd̂

†
1,j − d̂

†
2,kd̂

†
2,j

)
|0〉

=

(
ĉ†1ĉ
†
1

2
− ĉ†2ĉ

†
2

2

)
|0〉 . (13.21)

Finally we obtain

|ΨC
in〉 → |ΨC

fin〉 = |Ψ⊥fin〉+ |Ψ‖fin〉 =

=

(
ĉ†1ĉ
†
1

2
− ĉ†2ĉ

†
2

2

)
|0〉+ |Ψ‖in〉 , (13.22)

from which we can infer the probability PC(s1, s2) to find s1 and s2 composite
bosons in the first and in the second output mode, respectively. Taking into account
that

PC(1, 1) = |〈1, 1|ΨC
in〉|2 = |〈Ψ‖in|Ψ

‖
fin〉|2 = P (13.23)

one follows that

PC(2, 0) = PC(0, 2) =
1− P

2
. (13.24)

The perfect bosonic behavior is almost attained, just the correction |Ψ‖〉 remains,
which can also be understood as kind of partial distinguishability [362]. Since the
counting statistics of |Ψ‖〉 gives always one composite particle in each mode, it im-
mediately jeopardizes the Hong-Ou-Mandel dip that would be expected for perfect
bosons. From the population imbalance after beam splitter dynamics, Eqs. (13.23)
and (13.24), one can immediately read off the purity of the fundamental fermions in
the HOM-dip. In other words, the full composite-particle wavefunction behaves as a
superposition of a bosonic part and a fermionic one, and the perfect bosons HOM-dip
is obtained for maximally entangled states.
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13.1.2 Many bosons interference

Our purpose is to provide a general formalism of the interference process for many
composite bosons. In general, as we have seen in previous section, the many-particle state
space structure prohibits multiple populations of fermions whereas it privileges that for
bosons. The description of the interference process for many-bosons is, therefore, much
more complicated. Here, we generalize the discussion above, and consider the case where
a beam splitter receives groups of particles described by Fock states of elementary bosons.
In such case, the dynamics of the unbalanced beam splitter is governed by the evolution of
the creation operator α̂†q as follows:

α̂†1 →
1√
2

(√
Rĝ†1 − i

√
T ĝ†2

)
, and α̂†2 →

1√
2

(√
Rĝ†1 − i

√
T ĝ†2

)
(13.25)

where R and T are the reflection and transmission coefficients of the beam splitter. When
it receives two beams of bosons described by the quantum state

|ΨB
in(N1, N2)〉 =

1√
N1!N2!

(
ĝ†1

)N1
(
ĝ†2

)N2 |0〉 (13.26)

(Fock states in Bose-Einstein condensates at very low temperatures), the amplitude for find-
ing m1 and m2 particles in the output mode, given the sources with N1 and N2 particles,
respectively, is given by the overlap of the state in Eq. (13.26) with the final state

|ΨB
fin(m1,m2)〉 =

1√
m1!m2!

(
α̂†1

)m1
(
α̂†2

)m2 |0〉 , (13.27)

to which we apply the operator evolution described by Eq. (13.25), that is

A(m1,m2;N1, N2) =
1√

m1!m2!N1!N2!
〈0| (α̂1)m1 (α̂2)m2

(
ĝ†1

)N1
(
ĝ†2

)N2 |0〉 .(13.28)

The general expression of this amplitude after time evolution is found in the work of
Laloë and Mullin [363], which is given by

A(m1,m2;N1, N2) =

√
N1!N2!√
m1!m2!

∑
p,q

m1!m2!(
√
T )p+m2−q(i

√
R)q+m1−p

p!(m1 − p)!q!(m2 − q)!
×

×δp+q,N1δm1+m2−p−q,N2 . (13.29)

This is a somewhat complicated expression that can be solved by several methods as de-
scribed in Ref. [355]; here we compute the δ-functions to eliminate the sumation variable
p as follows:

A(m1,m2;N1, N2) =

=
√
m1!m2!N1!N2!

min{n1,m2}∑
q=max{0,n1−m1}

(
√
T )n1+m2−2q(i

√
R)m1−n1+2q

(n1 − q)!(m1 − n1 + q)!q!(m2 − q)!
(13.30)

Therefore, the probability of finding m1 and m2 bosons in the first and second output
modes, respectively, reads

PB(m1,m2;N1, N2) = |A(m1,m2;N1, N2)|2. (13.31)
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A single beam splitter is sufficient to obtain interesting quantum effects, provided it
receives Fock states at its two inputs. The “population oscillations” related to the Hong-
Ou-Mandel effect in Eq. (13.31) take place, but they cannot be understood as a simple su-
perposition of many separate two-photon-experiments. Actually, many-boson effects take
place as a consequence of quantum statistics, what can be understood as a consequence of
the tendency of two Fock states to acquire a relative phase under the effect of quantum mea-
surement. Since this phase is completely unknown, quantum oscillations are superimposed.
Experimentally, the major difficulty for observing these effects is the production of Fock
states with well-defined populations. However, the experimental techniques that have been
developed for BECs seem well suited for experiments on such input states. This expression
will be use in Section 13.5 for probability distributions of many-cobosons corresponding
to the purely bosonic behavior terms.

13.1.3 Bosons macroscopic approach

To obtain efficient approximation of the many-bosons (N � 1000) counting statis-
tics, and taking also into account dynamical interference effects up to a certain extent, we
use the macroscopic wavefunction (MWF) Ansatz [355, 362]. It is a suitable tool moti-
vated physically by the experimentally confirmed interference fringes in the scattering of
independent BECs and, as recently proven, even in molecular systems [329].

For two modes, and in order to model the relative phase of two BECs as a random
variable, we use the interference of two Fock states at a two-mode beam splitter, as was
described in Refs. [362, 355, 364, 365, 366, 367, 368]. A first Ansatz for the description
of a initial product state of two Fock states is given by

|ψMWF
in 〉 =

√
I1 |φg1〉+

√
I2 |φg2〉 , (13.32)

where the |φgj 〉 are the two single-particle input states. This MWF is a superposition of the
two different input mode wavefunctions, weighted with the fraction of particles Ij = Nj/N

in the respective input mode j, where N = N1 + N2. This representation of the state
in Eq. (13.32), however, contains a fixed relative phase between the components in the
different modes. In order to describe a situation which corresponds to scenario in which
exactly Nj particles are prepared in modes j and a random phase emerges at every run of
the experiment, we introduce explicitly this random phase between the components of the
wavefunction, and consider the state given in Ref. [355]

|ψMWF
in (~γ)〉 = eiγ1

√
I1 |φg1〉+ eiγ2

√
I2 |φg2〉 , (13.33)

where the γj are random phases. After the scattering on the unbalanced beam splitter, with
the time-evolution of the single-particle states similarly governed by Eq. (13.25), the MWF
reads

|ψMWF
fin (~γ)〉 =

(
eiγ1
√
R
√
I1 − i

√
Teiγ2

√
I2

)
|φg1〉+

+
(
eiγ1
√
R
√
I1 − i

√
Teiγ2

√
I2

)
|φg2〉 . (13.34)
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Since the global phase of the state is not relevant, we can set γ1 = 0, so that the
probability of finding the amplitude I of the wavefunction in the first output mode is given
by

P(I) =
1

2π

∫ 2π

0
δ

(
I −

∣∣∣√RI1 − ieiγ2
√
TI2

∣∣∣2) dγ2. (13.35)

This expression corresponds to a random walk in the complex plane with two steps [362],
and in that case one can solve the integral analytically, resulting

PMWF(I; I1, I2) =

 0 1 < (I−RI1−TI2)2

4RTI1I2(
π
√

4RTI1I2 − (I −RI1 − TI2)2
)−1

1 ≥ (I−RI1−TI2)2

4RTI1I2

(13.36)

The probability distribution PMWF(I; I1, I2) is called “classical calculation” in Ref. [355],
since it can be interpreted as a result of the interference of classical electromagnetic fields
with amplitudes

√
Ij . The MWF approach is later generalized to many-cobosons scenarios

in Section 13.6.

13.2 Physical model

For a tangible model of composite bosons, we consider fermions of two distinguishable
species, a and b, which interact attractively via a contact interaction U , and which are
prepared in two weakly coupled one-dimensional lattices, as depicted in Fig. 13.2.

The single-particle tunnelling rates between the wells in horizontal (vertical) direction
are denoted by J0,h (J0,v), such that the Hamiltonian on the level of the individual fermions
is given by

Ĥ = −U
2∑
q=1

S∑
j=1

â†q,j b̂
†
q,j b̂q,j âq,j +

1

2

2∑
q=1

S∑
j=1

εj

(
â†q,j âq,j + b̂†q,j b̂q,j

)
−

−J0,h

2

2∑
q=1

S−1∑
j=1

(
â†q,j âq,j+1 + b̂†q,j b̂q,j+1 + H.c.

)
−

−J0,v

2

S∑
j=1

(
â†1,j â2,j + b̂†1,j b̂2,j + H.c.

)
, (13.37)

where q = 1, 2 denotes the two one-dimensional sublattices, and j = 1, . . . , S the potential
wells along each lattice. The attractive interaction U is always strong, U � J0,v, J0,h.
Therefore, two fermions of the two different species are always bounded to a bi-fermionic
particle described by

d̂†q,j = â†q,j b̂
†
q,j = f̂ †q,2j f̂

†
q,2j−1, (13.38)

as provided before in Eq. (13.9), which fulfils the algebraic commutation properties given
in Eqs. (13.10) and (13.11).
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q = 1

q = 2

j = 1 j = 2 j = S

...

...

...

✏1 ✏2 ✏S

✏1 ✏2 ✏S

Jh

Jh Jh

Jh Jh

Jh

Figure 13.2: Setup for the interference of engineered cobosons. N1 (N2) strongly bound
bi-fermions are prepared in the upper (lower) lattice at Jv � Jh, such that each bi-fermion
is governed by the local energies εj and the tunneling rate Jh. The barrier between the
lattices is then ramped down, such that Jv � Jh and vertical tunnelling takes place. The
total number of bi-fermions in the upper and lower lattice is then counted.

Due to the strong attractive interaction between the fermions, they can only tunnel as a
pair through off-resonant processes, with rates

Jh =
J0,h

2

U
, Jv =

J0,v
2

U
, (13.39)

for the interlattice and intralattice directions, respectively. We thus obtain the effective
Hamiltonian of strongly bound bi-fermion pairs that are trapped in a two-dimensional po-
tential landscape with different horizontal and vertical coupling rates [369], as depicted in
Fig. 13.2, which is described by the Hamiltonian

Ĥ = −Jh
2

2∑
q=1

S−1∑
j=1

d̂†q,j d̂q,j+1 −
Jv
2

S∑
j=1

d̂†1,j d̂2,j + h.c.

+
2∑
q=1

S∑
j=1

εj

(
d̂†q,j d̂q,j

)
, (13.40)

where d̂†q,j = f̂ †q,2j f̂
†
q,2j−1 creates a bi-fermion consisting of an a- and a b-type (or even-

and odd-type) fermions in the jth site of the upper or lower lattice (q = 1, 2); Jh (Jv) is
the effective tunneling strength along (between) the lattices, and εj defines a local energy
landscape.

13.3 Coboson state, preparation

We assume that, initially, Jh � Jv, and multi-coboson states are prepared in the hori-
zontally extended lattice q by Eq. (13.8), that is

ĉ†q =

S∑
j=1

√
λj d̂

†
q,j =

S∑
j=1

√
λj f̂

†
q,2j f̂

†
q,2j−1. (13.41)
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A coboson is thus a horizontally delocalized bi-fermion, and the S coefficients λj are then
the Schmidt coefficients of the two-fermion state. As already highlighted, the distribution
~λ is conveniently characterized by its moments

M(m) =

S∑
j=1

λmj , (13.42)

where normalization implies M(1) = 1 and M(2) = P is the purity of either reduced
single-fermion state. We consider an initial state of N1 cobosons in the upper and N2

cobosons in the lower one,

|Ψ〉 =

(
ĉ†1

)N1√
χN1 ·N1!

(
ĉ†2

)N2√
χN2 ·N2!

|0〉 , (13.43)

where we assume N1 ≥ N2, and χN is the coboson normalization factor [332, 309, 303,
312, 282], a symmetric polynomial [336] given by χN = Ω({1, . . . , 1︸ ︷︷ ︸

N

}), with

Ω({x1, . . . , xN}) =

i6=j⇒pi 6=pj∑
p1,...,pN
1≤pj≤S

N∏
q=1

λ
xq
pq . (13.44)

While the main purpose of our analysis is the investigation of compositeness for the
collective interference exhibited by the state in Eq. (13.43), it is worthwhile to indicate a
procedure by which such a state with many cobosons in the same state may be produced as
the result of an experimental protocol.

We may start with an extended lattice with a total of SN1 sites (remember N1 ≥ N2

by assumption), such that site kS (with k = 1, . . . , N1 − 1) is coupled to site kS + 1 with
a strength Js � Jh, and εkS+j = εj for k = 1, . . . , N1. We exploit the exact mapping
of hardcore-bosons to fermions in one dimension to obtain the ground-state of N1 and N2

bi-fermions in the first and second extended lattices as a direct product of the lowest N1

and N2 single-particle states, respectively,

|GS(N1, N2)〉 =

N1∏
j=1

(
SN1∑
l=1

ωj,ld̂
†
1,l

)N2∏
j=1

(
SN1∑
l=1

ωj,ld̂
†
2,l

) |0〉 , (13.45)

where the matrix ωj,l contains the coefficients l = 1 . . . SN1 of the jth single-particle
eigenfunction in one sublattice. After preparing the ground state with N1 and N2 particles
in each sublattice, we project away the component of the many-body wavefunction in which
particles are present in the sites S + 1, . . . , SN1 of either lattice. Consequently, a particle
initially prepared in the jth eigenstate in lattice q is projected (with finite probability) onto
the state created by

S∑
l=1

ωj,ld̂
†
q,l. (13.46)
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Our choice above of the potential landscape with Js � Jh ensures that theN1 energetically
lowest single-particle wave-functions have a node around l = S and that the coefficients
ωj,l with 1 ≤ l ≤ S are very similar for the first N1 eigenfunctions,

ωj,l ≈ ω1,l ∀j, l / 2 ≤ j ≤ N1, 1 ≤ l ≤ S. (13.47)

After projecting out components that populate the auxiliary sites j = S + 1, . . . , SN1,
the many-particle-state is consequently very close to a state of Nq-fold population of the
co-boson state

ĉ†q = α

S∑
l=1

ω1,ld̂
†
q,l =

S∑
l=1

√
λld̂
†
q,l, (13.48)

where α ensures normalization and we thus set λl = |αω1,l|2. Note that the Pauli principle
ensures that, unlike for hardcore bosons, the preparation of fermions into this state is im-
possible: One then always finds at least one particle in the sites S + 1, . . . , SN1, and the
projection always fails.

We take the initial state as given in Eq. (13.43), and thus consider coboson operators
for the two lattices q = 1, 2 as given by Eq. (13.48). By appropriately modelling the local
energies εj , the resulting distribution of Schmidt coefficients λl can be controlled to a wide
extent.

13.4 Behavior of cobosons under beam-splitter dynamics

To assess the behavior of the cobosons, we let the bi-fermions tunnel vertically between
the two lattices by setting Jv � Jh and letting the system evolve for a time of the order
1/Jv. Thus, beam-splitter-like dynamics couples the two lattices, while tunneling pro-
cesses within the lattices, induced by Jh, can be neglected on this time-scale. The Schmidt
modes j are therefore left unchanged. Time-evolution until t implements a beam-splitter
with reflectivity R = cos2 (tJv/2). In principle, the counting statistics of bi-fermions in
the two lattices can be obtained by integrating the dynamics induced by Eq. (13.40) for
the initial state |Ψ〉 given in Eq. (13.43) and taking the expectation values of the counting
operators

Ân1,n2 =

1≤jk,lm≤S∑
j1 6=j2 6=···6=jn1 ,
l1 6=l2 6=···6=ln2

n1∏
k=1

d̂†1,jk d̂1,jk

n2∏
m=1

d̂†2,lm d̂2,lm
, (13.49)

which witness the probability to find exactly n1 (n2) bi-fermions in the first (second) lat-
tice. This procedure, however, is computationally expensive and does not offer an intuitive
physical picture. By exploiting the symmetry properties of the state in Eq. (13.43), one can
show that the behavior of cobosons is imitated exactly by a superposition of states with
a different number of perfect bosons and fermions, in analogy to partially distinguishable
particles [358, 359].



13.4. Behavior of cobosons under beam-splitter dynamics 207

We would like to describe the counting statistics of the state |Ψ〉 of Eq. (13.43) in an
efficient manner. For that purpose, we insert the definition of the coboson creation operator,
Eq. (13.48), into the initial state, Eq. (13.43):[

ĉ†1

]N1
[
ĉ†2

]N2√
χN1 N1! χN2 N2!

|0〉 =
1√

χN1 N1! χN2 N2!
×

×
1≤kj ,lj≤S∑
k1 6=···6=kN1
l1 6=···6=lN2

[
N1∏
m=1

√
λkm d̂

†
1,km

][
N2∏
n=1

√
λln d̂

†
2,ln

]
|0〉 . (13.50)

All indices km (ln) appertain to the upper (lower) lattice. It may occur that km = ln for
some m,n, i.e. two bi-fermions can occupy the same well j in the two different lattices.
The sum in Eq. (13.50) can be written in terms of a given number of pairs of indices p that
fulfil km = ln. There can be between none and N2 of such pairs (remember N1 ≥ N2): In
the former case, km 6= ln for all m, n; in the latter, km = lm for all m ≤ N2 (disregarding
permutation of indices). The state initial state |Ψ〉 thus becomes

|Ψ〉 =

N2∑
p=0

|Φ(p)〉 , (13.51)

where

|Φ(p)〉 =

√(
N2

p

)(
N1

p

)
p!

χN1 N1! χN2 N2!
×

×
(N2,p)∑ [

N1∏
m=1

√
λkm d̂

†
1,km

][
N2∏
n=1

√
λln d̂

†
2,ln

]
|0〉 , (13.52)

and the sum
∑(N2,p) runs over all indices km, ln (1 ≤ m ≤ N1, 1 ≤ n ≤ N2) that fulfil

i 6= j : ki 6= kj , li 6= lj , (13.53)

1 ≤ m ≤ p : km = lm, (13.54)

p < m ≤ N1, p < n ≤ N2 : km 6= ln. (13.55)

Reordering indices and setting Ñ = N1 +N2 − 2p, we can rewrite the sum in Eq. (13.52)
as

|Φ(p)〉 =

√(
N2

p

)(
N1

p

)
p!

χN1 N1! χN2 N2!

1≤sj≤S∑
s1 6=s2 6=···6=sp

∀l,m:rl 6=sm∑
1≤r1<···<rÑ≤S

∑
σ∈S{r1,...,rÑ} p∏

j=1

λsj d̂
†
1,sj

d̂†2,sj


︸ ︷︷ ︸

fermionic

 Ñ∏
j=1

√
λσ(j)

[N1−p∏
m=1

d̂†1,σ(m)

][
N2−p∏
n=1

d̂†2,σ(N1−p+n)

]
︸ ︷︷ ︸

bosonic

, (13.56)
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where the indices r1 . . . rÑ replace the km>p and lm>p, the indices l1, . . . , lp replace the
km≤p, and S{r1,...,rÑ} denotes the permutations of the rj .

By inspecting Eq. (13.56), we can infer the time-evolution of each |Φ(p)〉-component
of the many-coboson state (13.51), as it is induced by the Hamiltonian (13.40) in the here-
considered limit Jh � Jv: Each summand in (13.56) contains p pairs of bi-fermions
that occupy the same well in the two lattices – they take into account the summands with
km = lm (1 ≤ m ≤ p) of Eq. (13.52). Due to the Pauli principle, these bi-fermions cannot
tunnel and thus behave in a fermionic way. The other bi-fermions, described by the indices
r1, . . . , rÑ (which correspond to the indices n,m > p in Eq. (13.52)), always occupy
different wells, such that the Pauli principle does not apply and tunneling is possible. One
such summands of Eq. (13.56) is depicted in Fig. 13.3. Since the state of the bi-fermions
that can tunnel is fully symmetric under the exchange of any two bi-fermions between the
lattices (note the sum over all permutations of the lattice indices in Eq. (13.56)), such state
is manifestly bosonic, as also illustrated in Fig. 13.4.

q = 1

q = 2

...

...

l1 l2r1 r2 r3

Figure 13.3: One summand of Eq. (13.56), withN1 = 4, N2 = 3: Two pairs of bi-fermions
(p = 2) are located in the same wells l1 and l2, and cannot tunnel. All other bi-fermions
can tunnel, and interfere with other terms in the sum (see Fig. 13.4).

The total state |Φ(p)〉 thus exhibits the same counting statistics as a state |φ(p)〉 of p
pairs of distinct fermions and N1 +N2 − 2p perfect bosons:

|φ(p)〉 =

 2∏
q=1

(
ĝ†q
)Nq−p√

(Nq − p)!


 p∏
j=1

f̂ †1,j f̂
†
2,j

 |0〉 , (13.57)

where ĝ†q (f̂ †q,j) creates a boson (j-type fermion) in the sublattice q while the actual loca-
tion along the lattice is omitted (remember that the number of bi-fermions in each lattice
is counted, independently of the location of the bi-fermions along the lattice). Since no
interference between different p occurs, the initial state |Ψ〉 (Eq. (13.43)) behaves like a
superposition of states |φ(p)〉 with different numbers of ideal fermions, in analogy to par-
tially distinguishable particles [358]:

|ψ〉 =

N2∑
p=0

√
wp |φ(p)〉 , (13.58)
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Figure 13.4: Emergence of Hong-Ou-Mandel-like bunching for bi-fermions. Each com-
ponent of the wave-function in (13.56), corresponding to a permutation σ1, interferes with
another component σ2 in which the bi-fermions swap the wells they occupy. (a) Destruc-
tive interference: The two processes (both bi-fermions remain in the same lattice, or both
bi-fermions tunnel) lead to the same final state with one particle in each lattice. The right-
hand-side process, however, acquires a phase of i2 = −1 due to tunneling, such that the
two processes interfere destructively. (b) Constructive interference: The final state with
both bi-fermions in the same lattice is fed by two processes with one tunnelling event, i.e.
both paths acquire the same phase and constructive interference takes place.

where

wp = 〈Φ(p)|Φ(p)〉 =

(
N1

p

)(
N2

p

)
p!

χN1χN2

Ω({2, . . . , 2︸ ︷︷ ︸
p

, 1, . . . , 1︸ ︷︷ ︸
N1+N2−2p

}), (13.59)

is the weight of the component with p pairs of fermionically behaving bi-fermions, and
Ω({x1, . . . xN}) is given by Eq. (13.44). The quantity Ω({x1, . . . xN}) can be evaluated
using the power-sums (13.42) of the distribution ~λ,

Ω({x1, . . . xN}) = M(x1)Ω({x2, . . . , xN︸ ︷︷ ︸
N−1

})−

−
N∑
m=2

Ω({x1 + xm, x2, . . . , xm−1, xm+1, . . . , xN︸ ︷︷ ︸
N−1

}), (13.60)

i.e. Ω({x1, . . . xN}) depends on power-sums M(m) up to order m = N .
Combinatorially speaking, wp is the probability that, given two groups of N1 and N2

objects with properties distributed according to ~λ, and assuming that all objects in either
group carry different properties, one finds p pairs of objects with the same property when
the two groups are merged. In the present context, wp denotes the population of the state
components in which the Pauli principle affects p pairs of bi-fermions. The term |φ(0)〉 thus
describes perfect bosonic behavior, its weight w0 = χN1+N2

/(χN1
χN2

) can be bounded
via the purity P and the particle numbers N1, N2 [303, 282]:

(L−N1)!(L−N2)!

(L−N1 −N2)!L!
≤ w0 ≤

(1−
√
P )(1 +

√
P (N1 +N2 − 1))

(1 +
√
P (N2 − 1))(1 +

√
P (N1 − 1))

, (13.61)

where L =
⌈

1
P

⌉
.
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13.5 Evaluation of counting statistics

The counting statistics that is exhibited by the substitute state |ψ〉, Eq. (13.58),
can be inferred by inserting the single-particle time-evolution for the creation operators,
Eq. (13.25) for bosons and similarly for fermions, into each state |φ(p)〉,

ĝ†q →
√
Rĝ†q − i

√
T ĝ†3−q (13.62)

f̂ †q,j →
√
Rf̂ †q,j − i

√
T f̂ †3−q,j , (13.63)

where q = 1, 2, and R = cos2(Jvt/2) and T = sin2(Jvt/2) are the reflection and trans-
mission coefficients of the beam-splitter dynamics.

The evaluation of the overlap can be done following the methods presented in
Refs. [355, 356, 358]. We can now derive the counting statistics of cobosons after
time-evolution until t = π/2/Jv, which corresponds to a balanced beam-splitter with
R = T = 1/2. The probability Ptot(m) to find m cobosons in the upper lattice is the
sum of the resulting probabilities from the different contributions in Eq. (13.58),

Ptot(m) =

N2∑
p=0

wp · P (m, p), (13.64)

where P (m, p) is the probability to find m particles of any species in the upper lattice,
given the state |φ(p)〉 defined in Eq. (13.57) and the beam-splitter reflectivity R = 1/2.

The probability P (m, p) to find m particles in the upper lattice can then be inferred by
taking the overlap of the state in Eq. (13.57) with

|φfin(p)〉 =

(
ĝ†1

)m−p (
ĝ†2

)N−m−p
√

(m− p)!(N −m− p)!

p∏
j=1

f †1,jf
†
2,j |0〉 , (13.65)

i.e. with the Fock-state of m− p bosons and p fermions in the first mode and N −m− p
bosons and p fermions in the second mode, after time-evolution as described by Eq. (13.62).
Since fermions obey the Pauli principle and coincident events always occur leading to p
fermions in each ouput mode, the probability is given by Eq. (13.31) as follows:

P (m, p) = |〈φ(p)|φfin(p)〉|2 = PB(m− p,N −m− p;N1 − p,N2 − p). (13.66)

The simplest case is given by two interfering cobosons (N1 = N2 = 1), recovering the
expressions in Eqs. (13.23) and (13.24), for which we find w0 = P and w1 = 1− P :

Ptot(1) = P, Ptot(0) = Ptot(2) =
1− P

2
. (13.67)

For P → 1, the Pauli principle dominates and one always finds one particle in each lattice.
In contrast to the interference of unbound boson pairs that can break up dynamically [370],
a perfect bosonic dip emerges here in the limit of vanishing purity, P → 0.
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Higher-order power sums M(m) with m ≥ 3 become relevant when more than two
cobosons interfere. For example, the interference of N2 = 1 with N1 cobosons reflects the
normalization ratio χN+1/χN [335, 332, 309, 303, 316]:

Ptot(m) =
χN1+1

χN1

P (m, 0) +

(
1−

χN1+1

χN1

)
P (m, 1). (13.68)

In general, the balance among all the weights w0, . . . , wN2 governs the counting statis-
tics. Since the weights wp depend on power-sums M(m) up to order N1 + N2, the
characteristics of the distribution ~λ can be established through interference signals. For
N1 = N2 = 2, we illustrate the decomposition given by Eq. (13.58) in Fig. 13.5. The ideal
boson interference pattern P (m, 0) is jeopardized by the finite purity P = 1/4, and the
contributions of the single fermion-pair and double fermion-pair part in the wave-function
lead to the altered signal Ptot(m).
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Figure 13.5: Counting statistics for the coboson-state |Ψ〉 with N1 = N2 = 2, and of its
components with different numbers of bosons and fermions |φ(p)〉, p = 0, 1, 2. Dark blue
circles represent bosonically behaving bi-fermions, light orange symbols stand for fermion-
ically behaving bi-fermions. The total counting statistics Ptot(m) is the weighted sum in
Eq. (13.64) over the different components of the wave-function. While |φ(0)〉 exhibits per-
fect bosonic behavior, |φ(p ≥ 1)〉 are partially fermionic, which leaves a signature in the
counting statistics. Here, R = 1/2 and λ1 = · · · = λ4 = 1/4, such that w0 = w2 = 1/6,
w1 = 2/3.

Distributions with the same purity P may have different higher-order power sums
M(m), with consequently distinct counting statistics. Keeping P constant, the counting
statistics is extremized by two particular distributions: the upper bound in Eq. (13.61) is
saturated by peaked distribution ~λ(p) with λ(p)

1 > λ
(p)
2 = · · · = λ

(p)
S , in the limit S → ∞;

the lower bound is saturated by the uniform distribution ~λ(u) with λ(u)
1 ≤ λ

(u)
2 = · · · =

λ
(u)
L≡d1/P e, for fractional purities P = 1/L [282]. The counting statistics for N1 = N2 = 6

is shown in Fig. 13.6. The weights w(u/p)
j of the uniform (peaked) distributions differ
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considerably (see lower panel), which is reflected by the counting statistics (upper panel;
note that P (m) = P (12 − m) due to symmetry). Only one Schmidt coefficient in the
peaked distribution is finite in the limit S → ∞, thus only the weights w(p)

0 and w(p)
1 are

non-vanishing: the interference patterns of 12 and of 10 bosons take turns. Instead, all
weights w(u)

0≤j≤6 alternate for the uniform distribution. Kinks emerge at fractional values of
P , when a new non-vanishing Schmidt coefficient emerges. For P → 1/6, fully fermionic
behavior is attained, and one always finds six cobosons in each lattice.
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Figure 13.6: Upper panel: Counting statistics Ptot(m) as a function of the purity, for the
uniform (u) (right-hand part) and peaked (p) (left-hand part) distributions ~λ(u/p). Lower
panel: Corresponding weights w(p/u)

j of the coboson wavefunction in Eq. (13.58). We set
N1 = N2 = 6, R = 1/2. The counting statistics is perfectly bosonic for vanishing purity,
P → 0, while cobosons behave as fermions for the uniform distribution and P = 1/6. The
number of non-vanishing Schmidt-coefficients in the uniform distribution is L = d1/P e,
hence the weights w(u)

l with l > N −L− 1 vanish: There are at least N1 −L− 1 pairs of
fermions, which results in the kinks in the weights. The binomial distribution corresponds
to the statistics of distinguishable particles.

The dependence of Ptot(k) on the power-sums M(m) can be used to infer the latter
from measured counting statistics for different N1, N2. The purity P follows immediately
for N1 = N2 = 1 via Eq. (13.67); in general M(m) is inferred by the counting statistics
of a total of N1 + N2 = m cobosons. Since higher-order power-sums are constrained by
Jensen’s and Hölder inequalities [337],

M(m− 1)
m−1
m−2 ≤M(m) ≤M(m− 1)

m
m−1 , (13.69)



13.6. Many cobosons interference in the macroscopic approach 213

bounds for higher-order M(m) become tighter with increasing knowledge of M(m), as
depicted in Fig. 13.7.
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Figure 13.7: Normalized power-sums and constraints. The normalization to Pm/2 is cho-
sen such that the upper bound is constant. A randomly chosen distribution ~λ leads to a
certain hierarchy of power-sums (black stars). The measurement of interference signals
with N1 and N2 cobosons reveals the power-sums up to order N1 +N2, which leads to the
indicated constraints on higher-order M(m) with m ≥ N1 +N2 + 1 (blue, orange, green
and red symbols), according to Eq. (13.69).

13.6 Many cobosons interference in the macroscopic approach

When the exact counting statistics cannot be retrieved and many (N & 1000) cobosons
are brought to interference, such as in the interference of BECs [326], the granular structure
of the interference pattern becomes secondary. The impact of imperfect bosonic behavior
can then be incorporated into a macroscopic wavefunction approach [355], i.e. the number
of particles is treated as the amplitude of a single-particle wavefunction. Fock-states are
modeled by a random phase between the different components of the wavefunction as
described in Section 13.1.3. When the fractions Ij = Nj/(N1 + N2) of ideal bosons are
prepared in the two lattices, the particle fraction I in the upper lattice after beam-splitter
dynamics obeys the probability distribution given in Ref. [355], as in Eq. (13.36),

PMWF(I; I1, I2) =
1

π
√

4RTI1I2 − (I −RI1 − TI2)2
,

for 4RTI1I2 > (I −RI1 − TI2)2, while it vanishes otherwise. For cobosons, a finite
fraction of fermions needs to be accounted for in each lattice. The probability distribution
for the particle fraction I then becomes

P(I) =

∫ I2

0
dIf W(If ) PMWF (I − If ; I1 − If , I2 − If ) ,
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where W(If ) is the probability distribution of the fraction of fermions If in each lattice.
For the uniform state ~λ(u) with S Schmidt coefficients (P = 1/S),

w(u)
p =

N1!N2!(S −N1)!(S −N2)!

S!(S + p−N1 −N2)!(N1 − p)!(N2 − p)!p!
. (13.70)

The continuous limitW(u)(If ) is obtained for N1 +N2 = N →∞, when N1, N2, p and
S are scaled linearly with N :

W(u)(If ) = lim
N→∞

(
N · w(u)

(p=If ·N)

)
= δ (If − ρI1I2) , (13.71)

and the total number of bi-fermions per Schmidt mode is constant, ρ = N/S. Since the
number of bi-fermions in either lattice is limited by S, it holds 0 < ρ ≤ 1/I1 ≤ 2. The
fraction of perfect fermions is thus exactly the fraction of expected pairs of bi-fermions in
the same Schmidt-mode, ρI1I2, which gives

P(u)(I) = PMWF (I − ρI1I2; I1(1− ρI2), I2(1− ρI1)) .

The width W of this distribution is closely related to the fraction of fermions,

W = 4
√
RTI1I2(1− ρI1)(1− ρI2), (13.72)

and becomes narrower with increasing number of bi-fermions per Schmidt mode, ρ. In
principle, this may jeopardize Fock-state-interferometry with non-elementary particles
such as neutral atoms or molecules, since the width of the intensity distribution is used
to infer a small phase (which translates here into a reflectivity R).

Conclusions

Trapped ultracold atoms typically feature very small electron-state purities of the or-
der of 10−13 [311, 303], such that atom interferometers are not sensitive to the compos-
iteness of the atoms. With attractively interacting fermionic atoms in tunable external
potentials [328, 371], the transition between fully bosonic (P → 0) and fully fermionic
(P → 1) behaviors may be implemented experimentally by varying the size of the available
single-fermion space and observing the resulting interference pattern when bi-fermions are
brought to interference.

In conclusion, even though two fermions may be arbitrarily strongly bound to a cobo-
son with no apparent substructure, deviations from ideal bosonic behavior can be observ-
able in many-coboson interference. Not the binding energy, but the entanglement between
the fermions is observable on the level of the cobosons. The superposition in Eq. (13.58)
allows to understand the partially fermionic behavior of cobosons, and ultimately leads to
simple expressions for the interference of BEC and mBEC given by Eq. (13.72). The meth-
ods that we have exposed can be extended immediately to larger numbers of sublattices and
to more complex interference scenarios [356].
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Cobosons always constitute indistinguishable particles; two cobosons in the two lat-
tices share the same distribution of Schmidt coefficients ~λ. The impact of partial dis-
tinguishability and the effects of compositeness can actually be discriminated in the ex-
periment: While partially distinguishable particles can be described as a superposition of
perfect bosons and distinguishable particles [358, 359], cobosons exhibit the behavior of a
superposition of bosons and fermions, which naturally leads to differing interference pat-
terns in the two cases (see also the binomial distribution in Fig. 13.6, which is attained for
distinguishable particles).

The role of entanglement for bosonic behavior is twofold: It circumvents the Pauli
principle for composite bosons [309, 303, 332, 316, 282], and it maintains many-particle
coherence. Quantum correlations between the fermions are necessary for the bosonic ex-
change symmetry in the relevant parts of the wave-function that allows the representation
in Eq. (13.58). If mixed states of bi-fermions are prepared instead of entangled states,
the exchange symmetry and the encountered bosonic behavior break down – even though
the combinatorial argument that relates to the number of accessible states remains valid.
The visibility of correlation signals of, e.g. large molecules, is thus not only affected by
the mixedness of the molecules at finite temperatures, but also by the consequent loss of
many-particle coherence.





APPENDIX A

Single-particle densities

Here, let us define the two notions of single-particle probability densities used in this
Thesis, particularly in Part I and Part II. We refer to the single-particle (or one-particle)
density function and single-particle density matrix. The entropy associated to these density
functionals gives rise to two very different interpretations of the entropic concepts that
allow us to quantify different properties of the particles imbibed in the system.

We consider a system of N indistinguishable fermions (with spin S = 1
2 ) described by

the wavefunction

Ψ(σ1~r1, . . . ;σN~rN ) = 〈σ1~r1, . . . , σN~rN |Ψ〉, (A.1)

associated with a pure state |Ψ〉, within a d-dimensional domain ∆ ⊂ Rd, being σi di-
chotomic variables adopting the possible values σi = ±, corresponding to the Sz com-
ponent, which describes the fermioms spin degrees of freedom. The density matrix
ρ = |Ψ〉 〈Ψ| is given by

ρ(σ1~r1, . . . , σN~rN , σ
′
1 ~r1
′, . . . , σ′N ~rN

′) =

= 〈σ1~r1, . . . , σN~rN | ρ |σ′1 ~r1
′, . . . , σ′N ~rN

′〉 =

= Ψ(σ1~r1, . . . , σN~rN ) ·Ψ∗(σ′1 ~r1
′, . . . , σ′N ~rN

′). (A.2)

Performing the partial trace of ρ over N − 1 particles of the system, we obtain the
single-particle reduced density matrix (of one arbitrary particle, e.g. ~r1)

ρr(σ1~r1, σ
′
1 ~r1
′) = 〈σ1 ~r1| ρr |σ′1 ~r1

′〉 = TrN−1[ρ] =

=
∑
σi=±

i=2,...,N

∫
∆

Ψ(σ1~r1, σ2 ~r2, . . . , σN~rN )Ψ∗(σ′1 ~r1
′, σ2 ~r2, . . . , σN ~rN )d~r2 . . . d~rN(A.3)

which is a two point density containing all correlations of the particle ~r1 with the rest of
the system. We use in Part II this density to compute the amount of entanglement. The
qualitative difference between classically and quantum-mechanically correlated states can
be appreciated upon these densities with two spatially well-separated constituents.

On the other hand, diagonal elements of ρr(σ1~r1, σ
′
1 ~r1
′) represent the single-particle

density function of the particle ~r1,

ρ(1)(σ1~r1) = 〈σ1 ~r1| ρr |σ1 ~r1〉 =

=
∑
σi=±

i=2,...,N

∫
∆
|Ψ(σ1~r1, σ2 ~r2, . . . , σN~rN )|2d~r2 . . . d~rN , (A.4)
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and whose meaning differs markedly. This density is interpreted classically as the prob-
ability distribution of finding a fermion in the position ~r1, within its domain ∆, and with
spin σ1 for a given state |Ψ〉 of the system. Since the probabilities to obtain the fermion
spin states + and − are the same, the single-particle density function is given just in terms
of the fermion position ρ(~r1) = 2ρ(1)(σ1~r1), as densities used in Part I. In the information-
theoretic study carried out on the first part of the Thesis, we also use the single-particle
density function in momentum space γ(~p); this basic function is given in terms of the
d-dimensional Fourier transform of the position wavefunction

Ψ̃(σ1~p1, . . . ;σN~pN ) =

1

(2π~)3N/2

∫
∆

Ψ(σ1~r1, . . . ;σN~rN )e−
i
~
∑N
i=1 ~pi·~rid~rd~r2 · · · d~rN . (A.5)

It is understood that for all atomic systems and models considered in this Thesis, all
integrals are performed over the whole three-dimensional space ∆ = R3. Normalization to
unity is also considered, so that

∫
ρ(~r)d~r =

∫
γ(~p)d~p = 1. Computations of ρ(~r) and γ(~p)

for neutral and ionized atomic systems are done, throughout Part I, by means of accurate
near-Hartree-Fock wavefunctions given in Refs. [219, 220].
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Proof of bounds on the cobosons
normalization ratio

In order to shows Eq. (12.17) (ii) and (iii), we construct operations on the distribution
~λ, in Section B.1. These leave the sum of the λj and the purity P invariant, while they
increase or decrease the normalization ratio, as shown in Section B.2. Since only the ex-
tremal distributions ~λ(p) and ~λ(u) remain invariant under the application of the operations,
these distributions maximize and minimize, respectively, the normalization ratio.

B.1 Uniforming and peaking operations

We construct uniforming and peaking operations on the distributions ~λ that act only on
three selected λj , with the indices 1 ≤ j1 < j2 < j3 ≤ S. The operations will leave

K1 = λj1 + λj2 + λj3 , (B.1)

K2 = λ2
j1 + λ2

j2 + λ2
j3 , (B.2)

invariant, and, consequently, also the total sum of the λj and of the λ2
j . The third power-

sum, M(3), however, will be changed by the operations.
In analogy to an analysis of the birthday-problem with non-uniform birthday probabil-

ities [347], we define the two operations, Γu and Γp, on the probability distribution ~λ:

Γp/u(λj1) =
1

3

(
K1 ±

√
6K2 − 2K2

1

)
,

Γp/u(λj2) = Γp/u(λj3) =
1

6

(
2K1 ∓

√
6K2 − 2K2

1

)
,

Γp/u(λk 6=j1,j2,j3) = λk, (B.3)

where the upper (lower) sign in ± and ∓ refers to the peaking (uniforming) operation Γp

(Γu). For K2
1 < 2K2, we formally have Γu(λj1) < 0, and we alternatively set

Γu(λj1) = 0,

Γu(λj2/j3) =
1

2

(
K1 ±

√
2K2 −K2

1

)
. (B.4)

For convenience of notation, we set

λ̃uj = Γu(λj), λ̃
p
j = Γp(λj). (B.5)
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Colloquially speaking, Γu levels out the three coefficients λj1 , λj2 , λj3 and thus makes
the distribution more uniform, whereas Γp makes the distribution more peaked. In both
cases, the purity P is kept constant. The operations push a distribution ~λ towards the
uniform and peaked distribution, respectively, as illustrated in Fig. B.1.

→Γ(u) Γ(p)→

(λ̃u
j1 , λ̃

u
j2 , λ̃

u
j3) (λj1 ,λj2 ,λj3) (λ̃p

j1
, λ̃p

j2
, λ̃p

j3
)

Figure B.1: Action of uniforming and peaking operations Γu and Γp. The tuple
(λj1 , λj2 , λj3) is leveled out by Γu, and made more peaked by Γp. We show only the
coefficients λj with indices j1, j2, j3, all other coefficients λk remain constant under the
application of the operations, for the choice of indices j1, j2, j3. The gray area represents
the sum of the squared coefficients, being the same for all three distributions.

The uniform (peaked) distribution ~λ(u) (~λ(p)) is the only one that remains invariant
under the application of Γp (Γu), for all choices of j1, j2, j3 (disregarding permutations of
the indices), which can be seen by applying the operations on the distributions.

B.2 Normalization ratio under operations

We now show that the uniforming (peaking) operation Γu(p) reduces (increases) the
normalization ratio, i.e. we conjecture

χN+1(Γu(~λ))

χN (Γu(~λ))
≤ χN+1(~λ)

χN (~λ)
≤ χN+1(Γp(~λ))

χN (Γp(~λ))
, (B.6)

where we made the dependence of χN on the distributions explicit.
Without restrictions of generality and for convenience of notation, we set j1 = 1, j2 =

2, j3 = 3, i.e. we let the operations act on the first three Schmidt coefficients.
We define

χ̃N = χN (λ4, . . . , λS), (B.7)

Λ = λ1λ2λ3 (B.8)

i.e. formally χ̃N is a normalization factor, but for an unnormalized distribution
{λ4, . . . , λS}. With these definitions, we rewrite χN as

χN = Λ · χ̃N−3 + (λ1λ2 + λ3λ2 + λ1λ3)χ̃N−2 +

+(λ1 + λ2 + λ3)χ̃N−1 + χ̃N . (B.9)

The terms

λ1λ2 + λ3λ2 + λ1λ3 =
1

2

(
K2

1 −K2

)
, (B.10)

λ1 + λ2 + λ3 = K1, (B.11)
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and χ̃k with k ∈ {N − 3, . . . , N} do not change upon application of Γu/p, i.e. only the
product Λ is affected by the operations.

Conjecture: It holds

λ̃u1 λ̃
u
2 λ̃

u
3 ≤ Λ ≤ λ̃p1λ̃p2λ̃p3, (B.12)

where λ̃u/pj is the result of the operation Γu/p on λj .

Proof: We re-write the products in terms of K1,K2 and λ1

λ1λ2λ3

λ̃p
1λ̃

p
2λ̃

p
3

λ̃u
1 λ̃

u
2 λ̃

u
3

λ1,min

λ1,max
λ2

λ3

λ1

λ1,min

λ1 λ1,max

Figure B.2: Upper panel: Possible values of λ1, λ2 and λ3, given K1 and K2, as a function
of λ1, in arbitrary units. Lower panel: Behavior of λ1λ2λ3 as a function of λ1, and lower
and upper bounds. The lower (upper) bounds are attained if and only if the configuration
fulfills λj1 > λj2 = λj3 (λj1 < λj2 = λj3), where {j1, j2, j3} is a permutation of {1, 2, 3}.
These points are marked by thin dotted vertical lines.
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(B.13)
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For given K1 and K2, we can find the possible λ2/3, leaving λ1 as a free parameter,

λ2/3 =
1

2

(
K1 − λ1 ±

√
2λ1K1 −K2

1 − 3λ2
1 + 2K2

)
The requirement λ2/3 ≥ 0 gives

λ1,max/min =
1

3

(
K1 ±

√
2
√

3K2 −K2
1

)
, (B.14)

λ1,min ≤ λ1 ≤ λ1,max (B.15)

Given K1,K2, all possible values of λ1 then fulfill Eq. (B.12).
The inequalities in Eq. (B.12) are saturated for λ̃u/pj = λj (modulo permutation of the

indices). Possible values of λj and the behavior of the product λ1λ2λ3 = Λ are shown in
Fig. B.2. With Eq. (B.9), it immediately follows that

χ
(u)
N ≤ χN ≤ χ

(p)
N . (B.16)

Using Eq. (B.12), we can set

λp1λ
p
2λ

p
3 =: Λ(1 + ε),

λu1λ
u
2λ

u
3 =: Λ(1− δ),

with ε, δ ≥ 0, and

BN = (λ1λ2 + λ3λ2 + λ1λ3)χ̃N−2

+(λ1 + λ2 + λ3)χ̃N−1 + χ̃N .

For any distribution ~λ (which does not need to fulfill
∑

j λj = 1), the Newton-Maclaurin
inequality holds [336, 303], which reads

χ̃N+1

χ̃N
≤ χ̃N
χ̃N−1

. (B.17)
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We thus have

χ̃N−3 ≥ χ̃N−2, BN ≥ BN+1. (B.18)

Our original conjecture as given by Eq. (B.6) is equivalent to

Λ(1− δ)χ̃N−2 +BN+1

Λ(1− δ)χ̃N−3 +BN
≤ Λχ̃N−2 +BN+1

Λχ̃N−3 +BN

≤ Λ(1 + ε)χ̃N−2 +BN+1

Λ(1 + ε)χ̃N−3 +BN
, (B.19)

and follows from Eq. (B.18).
Consequently, ~λ(p) (~λ(u)) maximizes (minimizes) the normalization ratio χN+1/χN

for given P and S, which proves (ii) and (iii). The inequality (iv) then follows by taking
the indicated limit, S →∞.





Concluding remarks

The aim of the work presented in this Thesis was to gain insight into the quantification
of the informational content of the quantum many-body systems by means of information-
theoretic measures of entropic and complexity types, as well as via entanglement measures.

A.- In Part I we have first used some known one- and two-component information-
theoretic measures to quantify various facets of the internal disorder of some non-
relativistic and relativistic systems, such as uncertainty, randomness, correlation, organi-
zation, complexity, information and delocalization. Beyond the introductory Chapter 1, we
began in Chapter 2 with two elementary quantum systems (the Dirac-delta-like models),
analytically solvable, to gain insight into the meaning of the previous information-theoretic
quantities. These Dirac models have been used as prototypes to describe and interpret nu-
merous phenomena and processes in many scientific fields, including atomic and molec-
ular physics, condensed matter and quantum computation. Then, in Chapter 3, we have
analysed the three main relativistic effects of the hydrogenic atom (electronic charge con-
traction towards the nucleus, nodal disappearance and charge gradient reduction) by means
of the entropic and complexity measures as well as via some information planes. Here
the main role is played by the Fisher information and the Fisher-Shannon and LMC com-
plexity measures. This is basically because the Fisher information measures the gradient
content of the density and the (dimensionless) composite information-theoretic quantities
grasp two-fold facets of the electronic distribution: The Fisher-Shannon complexity quan-
tifies the combined balance of the gradient content and the total extent of the electronic
charge, and the LMC complexity quantifies the disequilibrium jointly with the spreading
of the density in the configuration space. The behavior of these three quantities with re-
spect to the energy and the quantum numbers characterizing the Dirac states have been
determined and discussed in detail. Later in Chapter 4, some general upper bounds to the
entropic moments of the position and momentum single-particle densities of an arbitrary
quantum many-body system are derived in terms of the radial expectation values in the
conjugate space. They are also applied to some macroscopic energy functionals, such as
e.g. of Thomas-Fermi and Dirac exchange types, and their validity and accuracy is further
examined throughout the periodic table for all neutral atoms.

Secondly, we have introduced in Chapters 5, 6 and 7 three new tools to study
how diverse are two or more quantum many-body systems among each other from an
information-theoretical point of view; namely, the one-parameter generalised quantum
similarity index, the one-parameter generalised divergence measure or geometric Rényi
divergence, and the two-parameter generalised relative complexity. They generalised
and improve all the previous corresponding ones published in the literature, including
them as particular instances. We have applied these new tools to all neutral atoms as
well as cations and anions from hydrogen to lawrencium, what allow to cluster them in
an information-theorical way, allowing their discussion in terms of the corresponding
shell-filling patterns.
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B.- Quantum entanglement renders efficient simulations of many-particle systems im-
possible and entails the breakdown of efficient numerical treatments. With the help of
analytically solvable models, one can use entanglement to assess the validity and scope
of approximation techniques. In Part II we investigated the quantum entanglement in
ground and excited states of various Moshinsky-like models formed by two, three and
many harmonically interacting particles confined in a harmonic potential. The models are
solvable which allows an exact determination of entanglement for different bi-partitions
of the system. Beyond the opening Chapter 8, we studied in Chapter 9 the 3D two-
particle Moshinsky system in presence of a uniform magneic field and the isolated 1D

three-particle cases. Therein, we found and discussed the dependence of the entanglement
on the energy of the system and the field strength. The entanglement of the three-particle
system considered here depends only on the dimensionless parameter τ describing the rel-
ative strength of the interaction between the particles (as compared with the strength of the
external confining potential). As a general trend, we found that the entanglement exhibited
for these states tends to increase both with the state’s energy and with the relative strength
τ . Non-vanishing entanglement is obtained in the limit of vanishing interaction in the case
of excited states. Moreover, this (apparent) discontinuous behavior of the entanglement
is related to the degeneracy of the energy levels of the unperturbed Hamiltonian describ-
ing non-interacting particles. As far as the entanglementâs dependence on the interaction
strength and the energy are concerned, the behavior of the Moshinsky model with two par-
ticles in a uniform magnetic field is similar to the one observed in the three-particle model.
With regards to the external magnetic field, we found that the entanglement of the eigen-
states decreases when considering increasing magnetic fields. In the limit of very strong
magnetic fields the entanglement approaches a finite asymptotic value that depends on the
interaction strength.

In Chapter 10, we analysed the entanglement features of the many-particle Moshinsky
model which is formed by Nn heavy particles (nuclei) and Ne ligth particles (electrons).
We focussed on the entanglement associated with three different ways of partitioning the
system: the entanglement between all the electrons (regarded as one subsystem) and all
the nuclei, the entanglement between one electron and the rest of the system, and the en-
tanglement between one nucleus and the rest of the system. We studied the dependence of
entanglement in the ground and the first few excited states on the relative particle-particle
interaction strength, on the number of particles, and on the particle masses. While the
nuclei-electrons entanglement depends upon the relative strength of the nucleus-electron
interaction τne, the nucleus (electron) entanglement depends on both τne and τnn (τee)
that measures the relative nucleus-nucleus (electron-electron) interaction strength. As a
general trend in all three cases, we found that entanglement increases as a function of
the (corresponding) interaction parameter, approaching its maximum possible value in
the limit of an infinitely large interaction. When the mass ratio is M = 1, excited states
exhibit a finite amount of entanglement even in the case of arbitrarily weak interaction.
The latter is related to the degeneracy of the energy levels of the Hamiltonian describing
non-interacting particles. Finally, our work realized that, consistent with kinematic
intuition, the entanglement between two subsystems vanishes when the subsystems have
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very different masses, while it attains its maximal value for comparable masses. Moreover,
the validity and the breakdown of the Born-Oppenheimer Ansatz can be understood from
a quantum information point of view.

B.- In Part III we have examined in detail the deviations from the ideal bosonic be-
havior of the cobosons (i.e., bosons formed by two bound and entangled fermions), which
are shown to be observable in many coboson interferences. These cobosons can be treated
as elementary bosons as long as the Pauli principle does not affect the behavior of many
of such composite bosons. The departure of ideal bosonic behavior is quantified by the
normalization ratio of multi-composite-boson states. Beyond the opening and introductory
Chapter 11, we have investigated in Chapter 12 the relationship between the compos-
iteness character of cobosons and the entanglement, as characterized by the purity of the
single-fermion states. More precisely, we have derived the two-fermion states that extrem-
ize the normalization ratio for a fixed single-fermion purity P , and establish general tight
bounds for this indicator. For very small purities, P < 1/N2 with N being the number
of such composite bosons, the upper and lower bounds converge, which allows to quantify
accurately the departure from perfectly bosonic behavior, for any state of many composite
bosons.

In Chapter 13 we have shown that the composite character of two-fermion bosons
manifests itself in the interference of many composites as a deviation from the ideal
bosonic behavior. We have described a state of many composites as a superposition
of different numbers of perfect bosons and fermions, which allows us to provide the
full Hong-Ou-Mandel-like counting statistics of interfering composites. Our theory has
quantitatively related the deviation from the ideal bosonic interference pattern to the
entanglement of the fermions within a single composite boson. Even though two fermions
may be arbitrarily strongly bound to a coboson with no apparent substructure, deviations
from ideal bosonic behavior can be observable in many-coboson interference. Not the
binding energy, but the entanglement between the fermions is observable on the level of
the cobosons. This theory can be achieved experimentally with attractively interacting
fermionic atoms in tunable external potentials, the transition between fully bosonic
(P → 0) and fully fermionic (P → 1) behaviors may be implemented experimentally
by varying the size of the available single-fermion space and observing the resulting
interference pattern when bi-fermions are brought to interference. Cobosons always
constitute indistinguishable particles; two cobosons in the two lattices share the same
distribution of Schmidt coefficients ~λ. The impact of partial distinguishability and the
effects of compositeness can actually be discriminated in the experiment: While partially
distinguishable particles can be described as a superposition of perfect bosons and
distinguishable particles, cobosons exhibit the behavior of a superposition of bosons and
fermions, which naturally leads to differing interference patterns in the two cases.

This thesis as a whole provides a step forward in setting a number of classical and quan-
tum information-theoretic tools to describe and quantify the internal disorder of fermionic
and bosonic systems as characterized by means of the single-fermion density and the matrix
density.





Conclusiones

En líneas generales esta Tesis trata de contribuir a la cuantificación del contenido
informacional de los sistemas cuánticos de muchos cuerpos por medio de varias medidas
entrópicas, de complejidad, similitud y divergencia, así como por medio de medidas de
entrelazamiento.

A.- En la Parte I de la Tesis se ha realizado un estudio teórico-informacional de los sis-
temas cuánticos desde un punto de vista estadístico clásico, mediante el cual se cuantifican
varias facetas de las densidades de probabilidad en los espacios de posiciones y momentos.
Para ello se han usado algunas medidas entrópicas (Shannnon, Rényi, Fisher y momentos
de frecuencia) y de complejidad (Fisher-Shannon, LMC y Cramér-Rao). Además, se han
introducido tres nuevas medidas relativas que permiten comparar entre sí dos o más densi-
dades de probabilidad, que extienden y generalizan las medidas de este tipo existentes en
la literatura.

Tras el Capítulo 1 de carácter introductorio, en el Capítulo 2 hemos llevado a cabo un
estudio de las medidas teórico-informacionales antes mencionadas en dos modelos físicos
que involucran potenciales de tipo delta de Dirac, que son analíticamente resolubles. Estos
modelos suelen usarse como prototipos para la descripción de numerosos fenómenos de
distintos sistemas cuánticos. Este estudio nos ha permitido una mayor introspección en el
significado y utilidad de las medidas entrópicas y de complejidad.

En el Capítulo 3 hemos analizado los tres efectos relativistas principales del átomo
hidrogenoide (la contracción de la carga electrónica hacia el núcleo, la desaparición de
los nodos y la reducción del gradiente de la carga) por medio de las medidas entrópicas
y de complejidad, así como de algunos planos de información. Hemos encontrado que la
información de Fisher y las medidas de complejidad de Fisher-Shannnon y LMC juegan
un papel muy relevante. Básicamente, esto se debe a que la información de Fisher mide
el contenido de gradiente de la densidad y que las medidas de complejidad cuantifican
cada una de ellas una doble faceta de la distribución electrónica: la medida de Fisher-
Shannnon cuantifica el balance combinado del contenido de gradiente y la dispersión de
la carga electrónica, y la medida LMC cuantifica el desquilibrio junto con la dispersión
de la densidad en el espacio de configuración. Además, hemos determinado y discutido
en detalle el comportamiento de estas tres magnitudes con respecto a la energía y a los
números cuánticos que caraterizan los estados de Dirac del sistema.

En el Capítulo 4 hemos obtenido cotas superiores de validez general a los momentos
entrópicos de las densidades de probabilidad monoparticulares en los espacios de posi-
ciones y de momentos para un sistema cuántico arbitrario, en términos de los valores es-
perados radiales en el espacio conjugado. Estas cotas son aplicadas más tarde a algunos
funcionales macroscópicos de carácter energético, tales como las energías de Tomas-Fermi
y de intercambio de Dirac, y su validez y precisión es analizada a lo largo de la tabla
periódica para todos los átomos neutros.

A continuación, en los tres capítulos siguientes hemos introducido tres nuevas her-



230 Conclusiones

ramientas para estudiar cuán diferentes son dos o más sistemas cuánticos de muchos cuer-
pos entre sí en un marco teórico-informacional; a saber, el índice de similitud cuántico
generalizado monoparamétrico, la medida de divergencia geométrica de Rényi, y la com-
plejidad relativa generalizada biparamétrica. Estas nuevas medidas generalizan y mejoran
las que existían previamente en la literatura. Además hemos aplicado estas medidas a todos
los átomos neutros y cationes, desde el hidrógeno al lawrencio, lo que permite agruparles
teórico-informacionalmente, permitiendo así una discusión entrópica común en relación a
los patrones de llenado de capas correspondientes y los potenciales de ionización.

En el Capítulo 5 hemos generalizado el concepto de similitud cuántica existente para
densidades de probabilidad monoparticulares en varios sentidos. El índice de similitud
cuántico generalizado nos ha permitido (i) enfatizar diferentes regiones de las densidades
de probabilidad a comparar mediante un parámetro de orden, (ii) comparar un número
arbitrario de densidades monoparticulares y (iii) asignar pesos específicos a cada una de
las densidades involucradas. Estas tres extensiones hacen de esta medida un instrumento
mucho más útil que su predecesora a la hora de cuantificar similitudes entre diferentes
densidades de probabilidad. Por ejemplo, hemos mostrado que esta generalización permite
detectar la estructura de capas atómica mediante la comparación de densidades atómicas en
espacio de posiciones escogiendo valores apropiados del parámetro de orden, mientras que
el índice de similitud cuántico primitivo no era capaz. Es más, nos ha permitido incluso
detectar aquellos átomos con un llenado anómalo de capas en el estudio general llevado a
cabo, relacionando las subcapas de valencia de los diferentes átomos con la similitud entre
ellos.

Las medidas de divergencia de tipo Jensen definidas hasta el momento están basadas en
la media aritmética de las densidades para su simetrización. En el Capítulo 6 se propone
una medida alternativa de divergencia de Rényi entre densidades de probabilidad basada en
la media geométrica de las mismas (GRD de ahora en adelante) y que incluye un parámetro
de orden q positivo, al igual que la divergencia de Jensen-Rényi usual (JRD). La inter-
pretación de JRD como medida de divergencia acota los posibles valores del parámetro de
orden a valores comprendidos entre 0 y 1, mientras que para GRD no existe dicha restric-
ción. En este capítulo hemos usado la medida GRD para comparar densidades monopar-
ticulares atómicas. A partir de un análisis numérico detallado, se establece claramente la
relación entre las propiedades de la capa de valencia de los sistemas objeto de compara-
ción y los valores de GRD, así como la detección de la presencia de los sistemas que
sufren un llenado anómalo de capas. Hemos mostrado la relación existente entre los val-
ores extremos de divergencia y los del potencial de ionización atómica en la comparación
de sistemas neutros y catiónicos. Otras aplicaciones también se han llevado a cabo satis-
factoriamente, incluyendo los estudios de la capacidad para comparar diferentes modelos
cuánticos, y la detección de sistemas atómicos que comparten la misma carga nuclear den-
tro de un conjunto de tres átomos distintos.

Para definir una medida adecuada de la complejidad relativa entre dos o más distribu-
ciones, es esencial tener en cuenta las propiedades deseables que ha de verificar. Este no
es el caso de la definición primitiva, ya que conduce a una interpretación contradictoria
desde un punto de vista conceptual. Esta contradicción radica principalmente en el hecho
de que puede tomar valores menores que la unidad; es decir, al valor de la complejidad
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de un sistema respecto de sí mismo. Estas dificultades pueden evitarse mediante una
generalización de la complejidad relativa tal como hemos hecho en el Capítulo 7, la
cual posee dos parámetros de orden que pueden ser fijados de manera que sea siempre
mayor que la unidad. Por otra parte, esta generalización permite introducir el concepto de
complejidad relativa entre un número arbitrario de funciones, con la opción de considerar
diferentes pesos para cada una de ellas. En este capítulo vemos que la interpretación de la
estructura de capas es aún más eficiente cuando se expresa en términos de los diferentes
grupos que pertenecen a los sistemas.

B.- El entrelazamiento cuántico hace muy difícil, cuando no imposible, la tarea de
simular de forma eficiente los sistemas cuánticos de muchos cuerpos, y constituye la
razón principal de que no existan tratamientos numéricos suficientemente precisos. Con
la ayuda de modelos analíticamente resolubles, el entrelazamiento puede usarse para esti-
mar la validez y el alcance de las técnicas de aproximación. En la Parte II de esta Tesis,
hemos investigado el entrelazamiento cuántico tanto en el estado fundamental como en
los estados excitados de varios modelos de tipo Moshinsky constituidos por dos, tres y
muchas partículas armónicamente interaccionantes que se hallan confinadas en un poten-
cial armonico. Estos modelos resultan ser matemáticamente resolubles, lo que permite una
determinación exacta del entrelazamiento para diferentes biparticiones del sistema.

Tras el capítulo introductorio 8, hemos estudiado en el Capítulo 9 los dos casos si-
guientes: el sistema 3D de dos partículas bajo la acción de un campo magnético uniforme,
y el sistema 1D de tres partículas aislado.

Brevemente, hemos encontrado y discutido la dependencia del entrelazamiento con la
energía y con la intensidad del campo externo aplicado. Además, resulta que el entrelaza-
miento del sistema de tres partículas solamente depende del parámetro adimensional τ que
describe la intensidad relativa de la interacción partícula-partícula con respecto a la inten-
sidad del potencial confinante externo. Es más, como tendencia general hemos encontrado
que el entrelazamiento que presentan estos estados aumenta tanto con la energía del estado
como con la intensidad relativa τ . El entrelazamiento de los estados excitados se anula en
el límite de interacción nula, lo cual está estrechamente relacionado con la degeneración
de los niveles de energía del hamiltoniano no-perturbado correspondiente a las partículas
no-interaccionantes.

En cuanto al comportamiento del entrelazamiento con respecto a la energía y a la in-
tensidad de la interacción, hemos observado que el sistema de dos partículas en un campo
magnético uniforme es similar al caso de las tres partículas. Con respecto al campo mag-
nético externo, hemos encontrado que el entrelazamiento de los autoestados disminuye
cuando crece el campo. En el límite de campos muy fuertes, el entrelazamiento tiende a un
valor finito que depende de la intensidad de la interacción.

En el Capítulo 10, hemos analizado las características del entrelazamiento del mod-
elo de Moshinsky de muchas partículas que está formado por Nn partículas de gran masa
(núcleos) y Ne partículas de masa pequeña (electrones). Nos hemos centrado en el en-
trelazamiento asociado con las tres siguientes particiones del sistema: el entrelazamiento
entre todos los electrones (considerados como un subsistema) y todos los núcleos, el en-
trelazamiento entre un electrón y el resto del sistema, y el entrelazamiento entre un nú-
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cleo y el resto del sistema. Hemos estudiado la dependencia del entrelazamiento tanto
en el estado fundamental como en varios estados excitados con respecto a la intensidad
partícula-partícula relativa, al número de partículas y a sus masas.

Hemos encontrado que mientras el entrelazamiento núcleos-electrones depende de la
intensidad relativa de la interacción núcleo-electrón τne, el entrelazamiento del núcleo
(electrón) con el resto del sistema depende tanto de τne como de τnn (τee) que mide la
intensidad relativa de la interacción núcleo-núcleo (electrón-electrón). En los tres casos
hemos encontrado una tendencia general, el entrelazamiento crece en función de los corres-
pondientes parámetros de interacción, alcanzando el máximo valor posible en el límite de
interacción infinitamente grande. Cuando el cociente de masa (núcleo-electrón) es M = 1,
los estados excitados exhiben una cantidad de entrelazamiento finito incluso en el límite de
interacción nula. Este hecho está relacionado con la degeneración de los niveles de energía
del Hamiltoniano que describe un sistema de partículas sin interacción.

Por último, en esta parte de la Tesis se mostró que, consistentemente con una intuición
cinemática, el entrelazamiento entre los dos subsistemas desaparece cuando dichos subsis-
temas tienen una masa total muy diferente, mientras que alcanza su valor máximo cuando
las masas son comparables. Además, la validez de la aproximación de Born-Oppenheimer
se puede entender desde un punto de vista de la información cuántica. Se ha mostrado que
esta aproximación es capaz de describir correctamente estados altamente entrelazados y
que la validez de este Ansatz está caracterizada por el parámetro de masas γ = MNn/Ne

y no únicamente por el cociente de las masas de las partículas (M ).

C.- El principio de composición, basado en el tratamiento de las partículas compuestas
como objetos elementales a pesar de su estructura subyacente, es un pilar fundamental de
la ciencia. Los sistemas compuestos por un número par de fermiones son tratados en física
cuántica como bosones perfectos, pero ¿hasta que punto podemos hacer esta suposición
sin tener en cuenta la estructura fermiónica de las partículas constituyentes?. Dar una
respuesta más precisa a esta cuestión mejorando las cotas ya existentes al comportamiento
ideal bosónico, así como buscar el marco experimental donde pueda observarse la no-
idealidad de bosones compuestos (o cobosones) ha sido el objetivo de la Parte III de esta
Tesis.

El cociente de los factores de normalización, χN+1/χN , de un estado de N cobosones
resulta ser un importante indicador para el comportamiento de bosones no elementales. En
el Capítulo 12 mostramos las cotas superior e inferior óptimas al cociente χN+1/χN , que
depenten N , y la representación explícita de los estados que saturan estas cotas.

En el límite de purezas muy pequeñas (alto entrelazamiento), P < 1/N2, el com-
portamiento bosónico de un estado de N cobosones está prácticamente definido por P ,
puesto que las cotas superior e inferior coinciden. En la páctica las partículas ligadas
suelen satisfacer que P � 1/N2, por ejemplo, los átomos en condensados de Bose-
Einstein. Las cotas descritas en este capítulo proporcionan por lo tanto una forma sim-
ple y fiable para comprobar la desviación del comportamiento bosónico de cualquier tipo
de cobosones. Sin embargo, cuando la pureza no es muy pequeña, P ' 1/N , la forma
de la función de onda desempeña un papel esencial en el comportamiento bosónico, y no
puede describirse exclusivamente por P . En ese caso, para describir el estado y su com-
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portamiento bosónico, es necesario recurrir a sumas de potencias de los coeficientes de
Schmidt (M(m), siendo P = M(2)) con orden mayor que 2.

Para una pureza dada P , la distribución uniforme de coeficientes de Schmidt minimiza
la probabilidad de que el principio de Pauli sea irrelevante, o sea, del comportamiento
bosónico, mientras que una distribución picuda (todos los coeficientes de Schmidt iguales
excepto uno que es mayor) lo maximiza. A pesar de que la distribución picuda da como re-
sultado, en general, un cociente de normalización menor que para la distribución uniforme,
esto es debido principalmente al cambio consecuente de la pureza. En realidad, si se fija un
valor de la pureza P , el comportamiento bosónico de la distribución uniforme es inferior
con respecto a la picuda.

En el Capítulo 13 investigamos un formalismo general para el estudio del proceso de
interferencia tipo Hong-Ou-Mandel de muchos bosones compuestos por dos fermiones.
En él mostramos que el estado de N cobosones, en la dinámica de un beam-splitter, puede
ser descrito por una superposición de estados con un número determinado de bosones y
fermiones perfectos. Esta superposición permite entender el comportamiento parcialmente
fermiónico de los cobosones obteniendo, a su vez, expresiones sencillas para el proceso de
interferencia.

Los átomos atrapados ultrafríos, en general, poseen purezas de su estado electrónico
muy pequeñas, del orden de 10−13, de manera que los interferómetros de átomos no son
sensibles al carácter compuesto de los átomos. Sin embargo, con átomos fermiónicos que
interactúan atractivamente en potenciales externos manipulables, la transición entre el co-
portamiento bosónico perfecto (P → 0) y totalmente fermiónico (P → 1) puede im-
plementarse experimentalmente variando el número de estados accesibles por un único
fermión, y observarse en el patrón de interferencia resultante cuando los bifermiones son
detectados despues del proceso de interferencia.

En este capítulo demostramos que, a pesar de que dos fermiones pueden estar fuerte-
mente ligados en un coboson sin subestructura aparente, las desviaciones del compor-
tamiento ideal bosónico pueden ser observadas en la interferencia de muchos cobosones.
Por tanto no es la energía de enlace lo que determina la escala observable en la com-
posición de las partículas sino el entrelazamiento entre los fermiones que constituyen el
cobosón. La superposición antes mencionada permite entender el comportamiento parcial-
mente fermiónico de los cobosones, y en última instancia conduce a expresiones simples
para la interferencia de un número muy grande (N & 1000) de cobosones en BEC y en
BEC moleculares. Los métodos que hemos expuesto se pueden extender de inmediato a un
mayor número de sublattices y para casos de interferencia más complejos.

Los cobosones constituyen siempre partículas indistinguibles; dos cobosones en dos
lattices comparten la misma distribución de coeficientes de Schmidt. El impacto de la
distinguibilidad parcial y los efectos de composición en realidad pueden ser discernidos en
el experimento: mientras que las partículas parcialmente distinguibles pueden ser descritas
como una superposición de bosones perfectos y partículas distinguibles, los cobosones
exhiben el comportamiento de una superposición de bosones y fermiones, lo que conduce
naturalmente a diferentes patrones de interferencia en los dos casos.

El papel del entrelazamiento en el comportamiento bosónico es doble: se evita el prin-
cipio de Pauli para bosones compuestos, y mantiene la coherencia de muchas partículas.
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Las correlaciones cuánticas entre los fermiones son necesarias para que la simetría de inter-
cambio bosónico en las partes pertinentes de la función de onda permita escribir el estado
como una superposición. Si se preparan estados mixtos de bifermiones en lugar de esta-
dos entrelazados, la simetría de intercambio y el comportamiento bosónico se pierden; a
pesar de que el argumento combinatorio, que se relaciona con el número de estados acce-
sibles, sigue siendo válido. La visibilidad en las señales debidas a las correlaciones de, por
ejemplo, las moléculas grandes, se ve afectada por lo tanto no sólo por la mezcla de las
moléculas a temperaturas finitas, sino también por la consiguiente pérdida de coherencia
de muchas partículas.
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[247] P. Kościk, Phys. Lett. A 375, 458 (2011). (Cited on page 111.)

[248] J. S. Dehesa, T. Koga, R. J. Yáñez, A. R. Plastino, and R. O. Esquivel, J. Phys. B:
At. Mol. Opt. Phys. 45, 015504 (2012), Corrigendum, J. Phys. B: At. Mol. Opt.
Phys. 45, 239501 (2012). (Cited on page 111.)

[249] G. Benenti, S. Siccardi, and G. Strini, Eur. Phys. J. D 67, 83 (2013). (Cited on
page 111.)



Bibliography 249

[250] C. Das and K. Bhattacharyya, Phys. Rev. A 79, 012107 (2009). (Cited on page 111.)

[251] R. González-Férez and J. S. Dehesa, Phys. Rev. Lett. 91, 113001 (2003). (Cited on
page 111.)

[252] A. Nagy, Chem. Phys. Lett. 449, 212 (2007). (Cited on page 111.)

[253] A. Nagy, Chem. Phys. Lett. 425, 154 (2006). (Cited on page 111.)

[254] A. Plastino and A. Plastino, Phys. Lett. A 181, 446 (1993). (Cited on page 111.)

[255] A. Nagy and K. Sen, Phys. Lett. A 360, 291 (2006). (Cited on page 111.)

[256] S. Liu, J. Chem. Phys. 126, 191107 (2007). (Cited on page 111.)

[257] N. L. Guevara, R. P. Sagar, and R. O. Esquivel, J. Chem. Phys. 119, 7030 (2003).
(Cited on page 111.)

[258] M. L. Glasser and L. M. Nieto, J. Phys. A: Math. Gen. 38, L455 (2005). (Cited on
page 111.)

[259] H. G. Laguna and R. P. Sagar, Phys. Rev. A 84, 012502 (2011). (Cited on pages 111
and 112.)

[260] A. P. Majtey, A. R. Plastino, and J. S. Dehesa, J. Phys. A: Math. Theor. 45, 115309
(2012). (Cited on pages 111, 119 and 158.)

[261] M. Moshinsky, Am. J. Phys. 36, 52 (1968), Erratum: Am. J. Phys. 36, 763 (1968).
(Cited on pages 111, 112 and 123.)

[262] M. Moshinsky, N. Méndez, and E. Murow, Ann. Phys. 163, 1 (1985). (Cited on
pages 111 and 132.)

[263] C. L. Benavides-Riveros, J. M. Gracia-Bondía, and J. C. Várilly, Phys. Rev. A 86,
022525 (2012). (Cited on pages 111 and 112.)

[264] C. Amovilli and N. H. March, Phys. Rev. A 67, 022509 (2003). (Cited on page 112.)

[265] P. A. Bouvrie, A. P. Majtey, A. R. Plastino, P. Sánchez-Moreno, and J. S. Dehesa,
Eur. Phys. J. D 66, 1 (2012). (Cited on pages 112, 119 and 157.)

[266] W. Heisenberg, Z. Phys. 38, 411 (1926). (Cited on page 112.)

[267] M. Srednicki, Phys. Rev. Lett. 71, 666 (1993). (Cited on page 112.)

[268] E. Schrödinger, Math. Proc. Camb. Phil. Soc. 32, 446 (1936). (Cited on page 113.)

[269] J. Bell, Physics 1, 195 (1964). (Cited on page 113.)

[270] A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 47, 460 (1981). (Cited on
page 113.)



250 Bibliography

[271] D. S. Bernstein, Matrix Mathematics (Princeton University Press, Princeton, 2009).
(Cited on page 117.)

[272] J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer,
Berlin, 1955). (Cited on page 118.)

[273] J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton
University Press, Princeton, 1996). (Cited on page 118.)

[274] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Phys. Rev. A 53,
2046 (1996). (Cited on page 118.)

[275] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81,
865 (2009). (Cited on page 119.)

[276] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998). (Cited on page 119.)

[277] B. M. Terhal and P. Horodecki, Phys. Rev. A 61, 040301 (2000). (Cited on
page 119.)

[278] P. Rungta, V. Bužek, C. M. Caves, M. Hillery, and G. J. Milburn, Phys. Rev. A 64,
042315 (2001). (Cited on page 119.)

[279] F. Buscemi, P. Bordone, and A. Bertoni, Phys. Rev. A 75, 032301 (2007). (Cited on
page 119.)

[280] A. R. Plastino, D. Manzano, and J. S. Dehesa, Europhys. Lett. 86, 20005 (2009).
(Cited on pages 119 and 120.)

[281] M. C. Tichy, P. A. Bouvrie, and K. Mølmer, Phys. Rev. A 86, 042317 (2012). (Cited
on page 119.)

[282] M. C. Tichy, P. A. Bouvrie, and K. Mølmer, Phys. Rev. Lett. 109, 260403 (2012).
(Cited on pages 119, 205, 209, 211 and 215.)

[283] K. Eckert, J. Schliemann, D. Bruß, and M. Lewenstein, Ann. Phys. 299, 88 (2002).
(Cited on page 119.)

[284] G. Ghirardi and L. Marinatto, Phys. Rev. A 70, 012109 (2004). (Cited on page 119.)

[285] G. Ghirardi, L. Marinatto, and T. Weber, J. Stat. Phys. 108, 49 (2002). (Cited on
page 119.)

[286] J. Naudts and T. Verhulst, Phys. Rev. A 75, 062104 (2007). (Cited on page 119.)

[287] A. Borras, A. R. Plastino, M. Casas, and A. Plastino, Phys. Rev. A 78, 052104
(2008). (Cited on page 119.)

[288] V. C. G. Oliveira, H. A. B. Santos, L. A. M. Torres, and A. M. C. Souza, Int. J.
Quantum Inf. 06, 379 (2008). (Cited on page 119.)



Bibliography 251

[289] B. R. Desai, Quantum Mechanics with Basic Field Theory (Cambridge University
Press, Cambridge, 2010). (Cited on page 141.)

[290] J. Batle, M. Casas, A. Plastino, and A. Plastino, Phys. Lett. A 296, 251 (2002).
(Cited on page 143.)

[291] A. Hamadou-Ibrahim, A. R. Plastino, and C. Zander, J. Phys. A: Math. Theor. 43,
055305 (2010). (Cited on page 143.)

[292] P. Tommasini, E. Timmermans, and A. F. R. de Toledo Piza, Am. J. Phys. 66, 881
(1998). (Cited on page 149.)

[293] H. Venzl, A. J. Daley, F. Mintert, and A. Buchleitner, Phys. Rev. E 79, 056223
(2009). (Cited on page 149.)

[294] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277 (2010). (Cited on
page 149.)

[295] D. Perez-Garcia, F. Verstraete, M. Wolf, and J. I. Cirac, Quantum Inf. Comput. 7,
401 (2007). (Cited on page 149.)

[296] G. Tanner, K. Richter, and J.-M. Rost, Rev. Mod. Phys. 72, 497 (2000). (Cited on
page 149.)

[297] M. Born and J. R. Oppenheimer, Ann. Phys. (Leipzig) 84, 457 (1927). (Cited on
pages 149 and 152.)

[298] D. A. McQuarrie, Quantum Chemistry, 2nd ed. (University Science Books, 2007).
(Cited on pages 149 and 152.)

[299] W. Demtröder, Molecular Physics: Theoretical Principles and Experimental Meth-
ods (Wiley-VCH, Weinheim, 2007). (Cited on pages 149 and 152.)

[300] S. Takahashi and K. Takatsuka, J. Chem. Phys. 124, 144101 (2006). (Cited on
page 150.)

[301] P. Schmelcher, L. S. Cederbaum, and H. D. Meyer, J. Phys. B: At. Mol. Opt. Phys.
21, L445 (1988). (Cited on page 150.)

[302] M. H. Alexander, G. Capecchi, and H.-J. Werner, Science 296, 715 (2002). (Cited
on page 150.)

[303] C. Chudzicki, O. Oke, and W. K. Wootters, Phys. Rev. Lett. 104, 070402 (2010).
(Cited on pages 169, 177, 178, 180, 185, 186, 187, 189, 190, 192, 193, 205, 209,
211, 214, 215 and 222.)

[304] R. Healey, Studies In History and Philosophy of Science Part B: Studies In History
and Philosophy of Modern Physics (2012). (Cited on page 177.)



252 Bibliography

[305] CMS Collaboration, V. Khachatryan et al., Phys. Rev. Lett. 105, 032001 (2010).
(Cited on page 177.)

[306] M. W. Zwierlein et al., Phys. Rev. Lett. 91, 250401 (2003). (Cited on pages 177
and 178.)

[307] T. Bourdel et al., Phys. Rev. Lett. 93, 050401 (2004). (Cited on page 177.)

[308] M. Combescot, O. Betbeder-Matibet, and F. Dubin, Phys. Rev. A 76, 033601 (2007).
(Cited on page 177.)

[309] C. K. Law, Phys. Rev. A 71, 034306 (2005). (Cited on pages 177, 180, 181, 182,
185, 186, 187, 193, 205, 211 and 215.)

[310] S. S. Avancini, J. R. Marinelli, and G. Krein, J. Phys. A: Math. Gen. 36, 9045
(2003). (Cited on page 177.)

[311] S. Rombuts, D. Van Neck, K. Peirs, and L. Pollet, Mod. Phys. Lett. A 17, 1899
(2002). (Cited on pages 177, 178, 193 and 214.)

[312] M. Combescot, O. Betbeder-Matibet, and F. Dubin, Phys. Rep. 463, 215 (2008).
(Cited on pages 177 and 205.)

[313] M. Combescot and O. Betbeder-Matibet, Phys. Rev. Lett. 104, 206404 (2010).
(Cited on pages 177 and 186.)

[314] M. Combescot, S.-Y. Shiau, and Y.-C. Chang, Phys. Rev. Lett. 106, 206403 (2011).
(Cited on pages 177 and 187.)

[315] P. Sancho, J. Phys. A: Math. Gen. 39, 12525 (2006). (Cited on page 177.)
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[344] P. Kurzyński, R. Ramanathan, A. Soeda, T. K. Chuan, and D. Kaszlikowski, New J.
Phys. 14, 093047 (2012). (Cited on pages 193 and 195.)



254 Bibliography

[345] P. Harremoës and F. Topsøe, IEEE Trans. Inf. Theor., 47, 2944 (2001). (Cited on
page 193.)
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