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9 Trilepton signals:the golden hannel for seesaw searhes at LHC ∗F. del Aguila, J.A. Aguilar-Saavedra and J. de BlasDepartamento de Físia Teória y del Cosmos and CAFPE,Universidad de Granada, E-18071 Granada, SpainThe omparison of samples with di�erent number of harged leptonsshows that trilepton signals are the most signi�ant ones for seesaw medi-ators. As previously pointed out, this is indeed the ase for salar ∆ (typeII) and fermion Σ (type III) triplets at LHC, whih an be disovered inthis hannel for masses up to 500 − 700 GeV and an integrated luminosityof 30 fb−1; whereas fermion singlets N (type I) are marginally observable ifthere are no further new physis near the TeV sale. However, if there arenew gauge interations at this sale oupling to right-handed neutrinos, asin left-right models, heavy neutrinos are observable up to masses ∼ 2 TeVfor new gauge boson masses up to ∼ 4 TeV, as we disuss in some detail.PACS numbers: 14.60.St, 13.35.Hb, 14.60.Pq, 13.15.+g1. IntrodutionLarge hadron olliders an not diretly test light neutrino masses beausethe energies they probe are of order of several hundreds of GeV, and thenmuh larger than mν ∼ 0.1 eV. However, they an be sensitive to them inde�nite models (see, for instane, [1℄). In partiular, they an produe theseesaw messengers generating the observed neutrino masses, if they have amass near the eletroweak sale v ≃ 246 GeV.The type I seesaw mehanism [2℄ invokes very heavy neutrino singlets
N slightly mixed with the Standard Model (SM) lepton doublets in orderto explain the tiny neutrino masses observed in neutrino osillation exper-iments. Their leading e�ets at low energy an be desribed by the lepton

∗ Presented by F. del Aguila at �NuFat09", 11th International Workshop on NeutrinoFatories, Superbeams and Beta Beams, Chiago, Illinois (U.S.A.), July 20-25, 2009,and the XXXIII International Conferene of Theoretial Physis �Matter To TheDeepest: Reent Developments in Theory of Fundamental Interations", Ustro«,Poland, September 11-16, 2009. (1)
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νcν . (1)However, this operator an be also generated by the tree-level exhange ofsalar ∆ (type II seesaw) [5℄ and fermion Σ (type III seesaw) [6℄ triplets.In Fig. 1 we gather the orresponding diagrams and the oe�ients ofthe dimension 5 e�etive operator α5/Λ resulting from the heavy partileintegration. In order to reprodue the observed neutrino masses, mν ≃

(α5/Λ)v2/2, the e�etive oupling α5 must be quite small, of the order of
10−12 if the seesaw mediator has a mass M = Λ near the eletroweak sale(to be eventually at the LHC reah). This implies an e�etively small leptonnumber violation at low energy: rather small λ and/or µ (in the salar ase),and/or a large anellation between di�erent ontributions. (See for furtherdisussion and referenes [7, 8℄.)If seesaw messengers are produed and deteted at LHC, the mehanismfor neutrino mass generation will be unveiled. The LHC disovery poten-tial for seesaw mediators has been studied in detail for the minimal type Iseesaw [9℄, as well as for extra harged [10, 11℄ and neutral gauge intera-tions [12℄; whereas simulations for type II seesaw have been performed inRef. [13℄, and for type III in Refs. [13�15℄. (Parton-level alulations anbe found in Refs. [16�19℄.) In general seesaw messenger prodution resultsin multilepton signals, with the signi�ane of eah �nal state dependingnot only on the signal ross setion but also on its SM bakgrounds. Atthis point, it is important to emphasize that there is no new physis pro-ess whih is bakground free, even if it violates lepton number or �avour.



Trilepton printed on Otober 15, 2009 3For example, within the SM a �nal state with two harged leptons of thesame-sign an be produed in assoiation with two neutrinos balaning thetotal lepton number plus extra jets, as required by harge onservation. Forinstane,
uu → W+W+dd → ℓ+νℓ+νdd , (2)with ℓ = e, µ. If the neutrinos have small transverse momenta their presene(via an observable missing energy pT6 ) is unnotied, and the proess appar-ently violates lepton number. The same an be said about lepton �avourviolating (LFV) �nal states, whih an be mimiked by SM proesses involv-ing opposite-harge W bosons. Apparently LNV bakgrounds an be alsoprodued if one harged lepton is missed by the detetor, for example, in WZprodution with the lepton of di�erent harge from Z deay undeteted. Athird, less trivial example is tt̄ prodution with t̄ deaying semileptonially,

qq̄, gg → tt̄ → W+bW−b̄ → jjb ℓ−ν̄b̄ , (3)and b giving an isolated harged lepton, or vieversa. There is some smallprobability that harged leptons from b → cℓν deays have sizeable trans-verse momenta and small energy depositions in their viinity, being notpossible to e�etively distinguish them in suh a ase from a harged leptonresulting from W or Z deay, exept for their typially smaller transversemomenta. 1 Sine the tt̄ ross setion is so large, this proess is a sizeablesoure of same-sign dileptons, being the dominant bakground in most ases.This makes ompulsory to properly take it into aount in the simulation.A more detailed and enlightening disussion about how these bakgroundsarise an be found in Refs. [9, 20℄.As a general rule, it an be said that LNV signals, for instane same-sign dileptons ℓ±ℓ±, have muh smaller bakgrounds than lepton numberonserving (LNC) signals with equal number of harged leptons, in this ase
ℓ+ℓ−. (Signals whih onserve lepton but violate �avour number, suh as
ℓ+ℓ′−, have bakgrounds of intermediate size.) But this does not apply whenomparing signals and bakgrounds with di�erent harged lepton multipli-ities, e.g., ℓ±ℓ±, ℓ±ℓ±ℓ∓ and ℓ+ℓ+ℓ−ℓ−, as follows from simple argumentsand it is on�rmed by detailed simulations.In next setion we show with some examples why trilepton signals arethe best suited ones for disovery of type II and type III seesaw messengers,as well as of type I if heavy neutrinos ouple to a new Z ′ boson. This is dueto their good sensitivity, the best one in most ases, for all seesaw models.(This broad sensitivity in turn implies that the observation or not of other

1 Note that isolation riteria for eletrons and muons must be relaxed at LHC exper-iments, allowing for a small amount of �alorimeter noise� in order to keep a goodaeptane for leptons from W , Z deays.



4 Trilepton printed on Otober 15, 2009signals suh as same-sign dileptons or four lepton �nal states is ruial todisriminate between models.) In Setion 3 we study multilepton signalsfrom single heavy neutrino prodution in left-right (LR) models [21℄, in thelarge parameter spae region where heavy neutrinos predominantly deayinto SM bosons N → lW/νZ/νH. This proess has not been previouslystudied in the literature, whih fouses on the region where the three-bodydeay N → lW ∗
R → ljj and dilepton �nal states dominate [10, 11℄.2. Trilepton versus same-sign dilepton signals and bakgroundsDilepton and trilepton signals an appear in a variety of produtionproesses involving seesaw messengers. In type I seesaw we an have single

N prodution
qq̄′ → W ∗ /W ′ → ℓ+N , (4)with either a LNC deay N → ℓ−W+ or a LNV one N → ℓ+W−. Thesubsequent W boson deay results in only two leptons for W → qq̄′ or threefor W → ℓν. N pair prodution is also possible if the heavy neutrinos oupleto a new Z ′ boson,

qq̄ → Z ′ → NN , (5)with NN → ℓ±W∓ ℓ∓W± (LNC) or NN → ℓ±W∓ ℓ±W∓ (LNV). Thefully hadroni deay WW → qq̄′qq̄′ gives dilepton signals; whereas if one Wdeays leptonially, three harged leptons are produed. In type II seesawthe proesses
qq̄ → Z∗ → ∆++∆−− → l+1 l+2 l−3 l−4 ,

qq̄′ → W ∗ → ∆++∆− → l+1 l+2 l−3 ν , (6)with li = e, µ, τ , produe up to four harged leptons ℓ = e, µ. Finally, intype III seesaw we have, for example,
qq̄′ → W ∗ → E+N , (7)with E+ → ℓ+Z/ℓ+H and N → ℓ−W+, ℓ+W− as in type I seesaw, and thesubsequent deays of Z,H → qq̄′, νν̄ and W into hadrons or leptons. Inorder to understand the relative signi�ane and relevane of the di�erentmultilepton signals, several points have to be kept in mind:First. Not all seesaw models involve heavy Majorana states and largelepton number violation. In partiular, inverse type I, III seesaw models [7,14,22℄ involve quasi-Dira heavy neutrinos whih in the proesses in Eqs. (4),(5) and (7) do not produe �nal states with same-sign dileptons and no



Trilepton printed on Otober 15, 2009 5missing energy, but only opposite-sign ones. Still, trilepton signals do notrequire LNV neutrino deays N → ℓ+W−, and are always present.Seond. In some ases, the branhing ratio into three leptons is largerthan into two same-sign leptons. For instane, in Z ′ → NNBr(ℓ±ℓ±ℓ∓) ≃ 1

2
× 1

2
× 2

9
× 6

9
× 2 ≃ 0.074 ,Br(ℓ±ℓ±) ≃ 1

4
× 1

4
× 2 × 6

9
× 6

9
≃ 0.055 . (8)Salar triplet prodution and deay provides another example. In the lightneutrino inverted mass hierarhy the ∆++ → l+i l+j , ∆+ → liνj deays haveapproximate branhing ratiosBr(ℓ+ℓ+) ≃ Br(ℓ+νℓ) ≃ 0.65 ,Br(ℓ+τ+) ≃ 2Br(ℓ+ντ ) ≃ 2Br(τ+νℓ) ≃ 0.25 ,Br(τ+τ+) ≃ Br(τ+ντ ) ≃ 0.1 . (9)(For studies of the dependene of these branhing ratios on neutrino mixingparameters and the determination of neutrino data from ollider observablessee Refs. [23℄.) Then, with a simple ounting we obtainBr(∆++∆−− → ℓ+ℓ+ℓ−ℓ−) ≃ 0.65 × 0.65 ≃ 0.42 ,Br(∆++∆−− → ℓ±ℓ±ℓ∓) ≃ 0.65 × 0.25 × 2 ≃ 0.32 ,Br(∆++∆−− → ℓ±ℓ±) ≃ 0.65 × 0.1 × 2 ≃ 0.13 ,Br(∆±±∆∓ → ℓ±ℓ±ℓ∓) ≃ 0.65 × (0.65 + 0.12) ≃ 0.5 ,Br(∆±±∆∓ → ℓ±ℓ±) ≃ 0.65 × (0.125 + 0.1) ≃ 0.14 , (10)showing that trilepton �nal states dominate over four lepton and same-signdilepton ones. For the normal hierarhy the trend is the same, also whenseondary leptons from τ deays are inluded and simple event seletionriteria imposed [13℄.Third. Even in proesses where the branhing ratio for ℓ±ℓ±ℓ∓ is smallerthan for ℓ±ℓ± �nal states, as for instane in minimal type III seesaw (Eq. (7)),the larger bakgrounds in the latter ase require more stringent uts to re-due them making up for the di�erene in the signal ross setions. Inorder to illustrate these statements numerially, we ollet in Table 1 thenumber of same-sign dilepton and trilepton events evaluated with a fastdetetor simulation, and after typial seletion uts to enhane the signalsigni�ane for the proesses in Eqs. (5) and (7). For omparison, we showboth the Majorana and Dira lepton triplet (labelled ΣM and ΣD, respe-tively) signals, as well as the type I seesaw ones with an extra Z ′ and a



6 Trilepton printed on Otober 15, 2009Majorana or Dira heavy neutrino (labelled Z ′
λNM and Z ′

λND). We assume
mE,N = 300 GeV and MZ′

λ
= 650 GeV. It is apparent that for these utssame-sign dilepton and trilepton bakgrounds are quite similar, altough theirrelative size depends on the uts applied. In partiular, we observe thatthe main bakground for same-sign dileptons (trileptons) omes from thesemileptoni (dileptoni) hannel in tt̄ prodution, when a b quark gives anisolated harged lepton. As it has been already stressed in the introdution,the fat that a signal violates lepton number does not automatially guaran-tee the absene of SM bakgrounds, nor imply that its bakground is muhsmaller than those for other LNC signals with more harged leptons. WeSignals ℓ±ℓ± ℓ±ℓ±ℓ∓ Bakgrounds ℓ±ℓ± ℓ±ℓ±ℓ∓

E+E− (ΣM) 1.6 26.3 tt̄nj 194 156
E±N (ΣM) 240.0 192.2 tW 6 6
NN (Z ′

λNM) 202.1 252.6 Wtt̄nj 12 47
Ztt̄nj 3 20

E+
i E−

i (ΣD) 4.2 80.9 WWnj 15 0
E±

i N (ΣD) 12.3 398.3 WZnj 24 38
NN (Z ′

λND) 8.1 481.9 ZZnj 4 5
WWWnj 7 12Table 1. Number of events in the ℓ±ℓ± and ℓ±ℓ±ℓ∓ �nal states for some signalsand their main bakgrounds and a luminosity of 30 fb−1, from Ref. [15℄.an also observe that, as indiated above, in models with heavy Dira neu-trinos same-sign dileptons are pratially absent, but trilepton signals are afator of two larger than in the Majorana ase. In next setion we omparedilepton and trilepton �nal state prodution for the proess mediated by theextra harged boson WR of a LR model in Eq. (4).3. Heavy neutrino prodution in left-right models at LHCEletroweak preision data onstrain heavy neutrino singlets to mix littlewith SM leptons, |VeN (µN)| < 0.05 (0.03) [24℄, 2 making them di�ult toobserve at LHC [9℄. In models with extra Z ′ bosons heavy neutrino pair pro-dution is possible, leading to dilepton and trilepton signals as shown in theprevious setion. An alternative widely studied is the LR model, extendingthe SM gauge symmetry SU(2)L × U(1)Y to SU(2)L × SU(2)R × U(1)B−Land its matter ontent to inlude right-handed neutrinos N [21℄. Heavy neu-trinos an then be produed by WR exhange with a relatively large ross

2 This new limit is derived inluding the CKM onstraint, and reent data.



Trilepton printed on Otober 15, 2009 7setion, as in Eq. (4), without any mixing suppresion. The ross setion, as-suming gR = gL and only one neutrino lighter than the WR boson, is plottedin Fig. 2 (left). Available studies of the LHC reah for this proess [10, 11℄
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Fig. 2. Left: pp → WR → lN ross setion at LHC. Right: N deay branhingratio to W ∗
R
and SM bosons (see the text).assume that N only has a three-body deay N → lW ∗

R → ljj. However,this may not be the dominant mode for a relatively large range of LR modelparameters. As a matter of fat, N an mainly deay into lW , νZ, νH if
VlN or/and the W −WR mixing sWWR

are sizeable, of order 10−4 or larger.The orresponding leptoni harged urrents read
J− µ

WR
≃ − gL√

2
sWWR

νLγµlL +
gR√

2

(

−VlNνc
LγµlR + NRγµlR

)

,

J− µ
W ≃ gL√

2

(

νLγµlL + VlNN c
RγµlL

)

+
gR√

2
sWWR

NRγµlR , (11)where we only keep the leading terms in the small mixings and omit the�avour indies; and similarly for neutral urrents. One an de�ne the branh-ing ratio BrR =
Γ(N → lW ∗

R → ljj)

Γ(N → lW ∗
R → ljj) + Γ(N → lW, νZ, νH)

, (12)with
Γ(N → lW ∗

R → ljj) ≃ Nc
g4
R

1024π3

m5
N

M4
WR

, (13)



8 Trilepton printed on Otober 15, 2009where we neglet quark masses and sum both lepton hannels Γ(N →
l+W−∗

R ) = Γ(N → l−W+∗
R ); whereas

Γ(N → lW ) ≃
g2
L |VlN |2 + g2

Rs2
WWR

32π

m3
N

M2
W

(

1 − M2
W

m2
N

)2 (

1 + 2
M2

W

m2
N

)

, (14)and anagolously for νZ, νH deays. In Fig. 2 (right) we draw the urvesfor onstant BrR = 1/2 in the MWR
− mN plane, whih depend on thevalue of |VlN |2 + s2

WWR
. The urve orresponding to the present bound on

|VeN | < 0.05 (for sWWR
= 0) is in the mN > MWR

upper-half out of the�gure. For a given value of |VlN |2 +s2
WWR

, the region on the left of the urveorresponds to BrR > 1/2, where W ∗
R deays start to dominate.The senario with BrR ∼ 1 has been widely studied, and we present inFig. 3 (left) the limits obtained in Ref. [11℄, assuming a 100 % branhingratio into N → ljj. For the senario with BrR ∼ 0 we have performed a newsimulation extending the generator Triada [13℄ with this proess and usingAlpgen [25℄ to generate the SM bakgrounds. The parton shower MonteCarlo Pythia 6.4 [26℄ is used to add initial and �nal state radiation and pile-up, and perform hadronisation. The fast detetor simulation AerDET [27℄is used to simulate a generi LHC detetor. Analyses have been performedfor di�erent neutrino masses in steps of 100 GeV, using WR masses of 2.5or 3 TeV, lose to the limits obtained. The seletion riteria (with smallmodi�ations at some points) are:

ℓ±ℓ±ℓ∓: three leptons, the same-sign pair with pT > 30 GeV and thethird one with pT > 10 GeV; invariant mass of opposite-sign pairs
|mℓ+ℓ− − MZ | > 10 GeV; total invariant mass (adding the missingmomentum) mtot > 1.5 TeV.
ℓ±ℓ±: two same-sign leptons with pT > 30 GeV; two jets with pT > 20GeV; missing energy pT6 < 50 GeV; leading lepton with pT > 400 GeV;
mtot > 1.5 TeV.
ℓ+ℓ−: two opposite-sign leptons with pT > 30 GeV and mℓ+ℓ− > 500GeV; two jets with pT > 20 GeV; leading lepton with pT > 750 GeVand leading jet with pT > 200 GeV; pT6 < 50 GeV; mtot > 2.5 TeV.The limits for the dilepton and trilepton �nal state are presented in Fig. 3(right), as well as their ombination. We observe that same-sign dilepton andtrilepton signals have very similar signi�anes despite the larger branhingratio into the former. This is beause dilepton bakgrounds are also largerand the signal e�ieny for mN ≪ MWR

with a highly boosted N is smallerin the dilepton hannels, in whih the harged lepton from N deay is often
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