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Abstract

Current uses of the Internet are mostly built on request-response exchanges be-
tween pairs of computers. This model has been very successful at providing shared
remote access to resources and point-to-point communications for applications in-
cluding email, remote file and database access, web access, etc. The advent of ubiq-
uitous Internet connectivity and cheap network-connected devices has greatly ex-
panded the communication needs of applications using the Internet. For these new
kinds of applications the request-response communications model, which is highly
coupled to the location of the information, is cumbersome and limited whereas
other communication models, such as publish-subscribe, provide a more natural
fit.

In contrast to the request-response interaction model, in which a client sends a
request and a server returns a response, in the publish-subscribe model information
producers (publishers) are decoupled from information consumers (subscribers)
via the publish-subscribe service. One of these services is Data Distribution Ser-
vice (DDS), an standardized solution for data-centric publish-subscribe data distri-
bution.

This Thesis describes the design and evaluation of a set of discovery and sig-
naling enhancements for Data-Centric Publish-Subscribe (DCPS) systems. In par-
ticular, this Thesis focus on solving the following open issues of DDS: data-spaces
interconnection, data transformation, Quality of Service (QoS) adaptation, univer-
sal DCPS entity and data-content naming, end-to-end session establishment, and
discovery scalability in large deployments.

We have divided our solution in three parts.
First, we propose the DDS data-space Interconnection Service (DDS-IS), a fully

DDS-compliant service for DDS data-spaces interconnection which also provides
transparent data transformation and QoS adaptation. We demonstrate that the
DDS-IS can improve the scalability of DDS systems by reducing the network traffic
load between the interconnected data-spaces.

Secondly, we define a mechanism for universal identification of DCPS entities
and data-content, and we propose the rationale and design of a protocol for ses-
sion signaling in DCPS environments. This protocol allows applications to perform
DCPS entity and data-content discovery in medium-scale environments. It also
allows the creation of sessions between nodes, which eases the creation of DCPS
routes and enables the enforcement of QoS at end-to-end level.

Finally, we propose a scalable Peer-to-Peer (P2P) solution for performing con-
tent discovery and data transfer. This solution is based on the REsource LOcation
And Discovery (RELOAD) framework, one of the latest standards of the Internet
Engineering Task Force (IETF). This solution provides rendezvous function for lo-
cating sensors, actuators, and applications that share a common data-space or topic



ii

of interest using a DCPS approach. Once the rendezvous is complete, nodes use ex-
isting RELOAD features for exchanging information. We demonstrate the proposed
solution scales well for large deployments and it is robust against node failures.



Resumen

En la actualidad, las aplicaciones distribuidas en Internet interaccionan e in-
tercambian información usando mayoritariamente relaciones del tipo solicitud-res-
puesta. Este modelo de interacción ha demostrado ser adecuado para comunica-
ciones punto a punto y más concretamente, para aplicaciones tales como el correo
electrónico, la descarga de archivos, el acceso a bases de datos y los servicios web,
entre otras. Sin embargo, la proliferación de múltiples dispositivos dotados de
conectividad permanente a Internet y la aparición de nuevas aplicaciones, con difer-
entes necesidades, han motivado la consideración de otros modelos de interacción,
ya que no siempre el modelo solicitud-respuesta tiene que ser el más adecuado. En
este sentido, más recientemente han surgido otros modelos de interacción alterna-
tivos, como el de publicación-suscripción.

A diferencia del modelo solicitud-respuesta, en el que un cliente envı́a una solici-
tud, y un servidor devuelve una respuesta, en el modelo publicación-suscripción los
productores de información (publicadores) están desacoplados de los consumidores
de información (suscriptores) mediante un servicio publicación-suscripción. Uno
de estos servicios es Data Distribution Service (DDS), una solución estandarizada
para la distribución de datos mediante un paradigma publicación-suscrición cen-
trada en datos.

Esta Tesis describe el diseño y evaluación de un conjunto de mejoras de des-
cubrimiento y señalización para sistemas Data-Centric Publish-Subscribe (DCPS).
En concreto, esta Tesis se centra en resolver los siguientes problemas de DDS: inter-
conexión de dominios, transformación de datos, adaptación de Quality of Service
(QoS), identificación universal de contenidos y entidades DCPS, establecimiento de
sesión extremo a extremo y escalabilidad del descubrimiento en sistemas de gran
escala.

Nuestra solución ha sido dividida en tres partes.
En primer lugar, se propone el DDS data-space Interconnection Service (DDS-IS),

un servicio para la interconexión de dominios DDS que soporta la transformación
transparente de datos y la adaptación de QoS, todo ello manteniendo la compati-
bilidad con el estándar. Además, se demuestra experimentalmente que el DDS-IS
puede mejorar la escalabilidad de los sistemas DDS mediante la reducción del tráfico
de red existente entre los dominios interconectados.

En segundo lugar, se define un mecanismo para la identificación universal de
contenidos y entidades DCPS, y se propone el diseño y lógica subyacente de un pro-
tocolo para la señalización de sesión en entornos DCPS. Este protocolo permite a las
aplicaciones descubrir contenidos y entidades DCPS en entornos de escala media.
Además, permite la creación de sesiones entre nodos, lo que facilita la creación de
rutas DCPS y permite la provisión de QoS extremo a extremo.

Por último, se propone una solución Peer-to-Peer (P2P) escalable para el descu-
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brimiento de contenidos y la transferencia de información. Esta solución se basa
en el framework REsource LOcation And Discovery (RELOAD), uno de los últimos
estándares de la Internet Engineering Task Force (IETF). La solución propuesta pro-
porciona la función de rendezvous para localizar mediante una aproximación DCPS
sensores, actuadores y aplicaciones que comparten un espacio de datos común o
un tópico de interés. Una vez se completa el rendezvous, los nodos utilizan la fun-
cionalidad de RELOAD para intercambiar información. Por último, se demuestra
experimentalmente que la solución propuesta es escalable y robusta.
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Capı́tulo 1
Introducción

En la actualidad, las aplicaciones distribuidas en Internet interaccionan e inter-
cambian información usando mayoritariamente relaciones del tipo solicitud-res-
puesta. Este modelo de interacción ha demostrado ser adecuado para comunica-
ciones punto a punto y más concretamente, para aplicaciones tales como el correo
electrónico, la descarga de archivos, el acceso a bases de datos y los servicios web,
entre otras.

La arquitectura de Internet, caracterizada por la sencillez y eficacia de su diseño,
se concibió para facilitar la interconexión de redes –independientemente de las tec-
nologı́as subyacentes– y para permitir ası́ el intercambio de información entre las
aplicaciones finales, como las anteriormente citadas.

Para proporcionar comunicaciones fiables (sin errores), con control de flujo y
con mecanismos de control de congestión, se especificó el protocolo de transporte
Transmission Control Protocol (TCP), el cual provee estos servicios exclusivamente
para comunicaciones punto a punto. TCP adopta una aproximación orientada a
conexión (full-duplex) que implica un fuerte acoplamiento temporal y espacial entre
el emisor y el receptor de la información.

La proliferación de múltiples dispositivos dotados de conectividad permanente
a Internet y la aparición de nuevas aplicaciones, con diferentes necesidades, han
motivado la consideración de otros modelos de interacción, ya que no siempre el
modelo solicitud-respuesta tiene que ser el más adecuado. En este sentido, más
recientemente han surgido otros modelos de interacción alternativos, como el de
publicación-suscripción [21].
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La naturaleza y el contexto histórico de la cuestión aquı́ planteada quedan clara-
mente expresados en el trabajo pionero de Van Jacobson et al. [41], que traducido al
español dice:

Los principios de ingenierı́a y la arquitectura de Internet –tal y como la conocemos
hoy– fueron creados en los años 60 y 70, cuando la compartición de recursos era el pro-
blema que las redes de ordenadores pretendı́an resolver [...]. El modelo de comunicación
que se concibió entonces consistı́a en una conversación entre dos máquinas, una solici-
tando un recurso y otra facilitándolo. Consecuentemente, los paquetes IP contienen dos
identificadores (direcciones), uno para el equipo origen y otro para el equipo destino, y
casi todo el tráfico de Internet consiste en conversaciones (TCP) entre pares de equipos.

En los 50 años que han pasado desde la creación de las primeras redes de paquetes,
los ordenadores y otros dispositivos relacionados se han abaratado y se han convertido
en productos de uso cotidiano. La conectividad que ofrece Internet y el coste reducido
del almacenamiento permiten el acceso a una cantidad de contenido asombrosa – solo en
2008 se han generado 500 exabytes de información [24]. La gente valora Internet por
qué contenido le ofrece, no por dónde se encuentra dicho contenido.

Hemos identificado una serie de problemas que afectan a los usuarios y cuyo origen se
encuentra en la incompatibilidad entre estos dos modelos:

Disponibilidad: El acceso rápido y fiable al contenido requiere mecanismos especı́ficos
de aplicación incómodos y preplanificados como pueden ser las redes CDNs y P2P, ası́
como imponer costes de ancho de banda excesivos.

Seguridad: Dado que los equipos confı́an en la información de localización y conexión
para identificar los contenidos, es fácil suplantar dichos contenidos.

Dependencia espacial: Asociar contenido a la localización de los equipos complica la
configuración y la implementación de servicios en red. La forma directa y unificada de
resolver estos problemas es reemplazar el dónde con el qué. Las conversaciones equipo a
equipo son una abstracción que se ajustaba a los problemas que existı́an en los años 60.
Creemos que para los problemas de comunicación de actuales nombrar los datos es una
mejor abstracción que nombrar los equipos.

A diferencia del modelo solicitud-respuesta, en el que la entidad denominada
cliente envı́a una solicitud y la entidad denominada servidor le devuelve la res-
puesta, esta Tesis –en este sentido alineada con la visión de Jacobson– se centra
en el modelo de interacción publicación-suscripción. En este modelo, unas enti-
dades denominadas publicadores generan eventos o actualizan un espacio de datos
compartido, mientras que otras, los suscriptores expresan su interés en ciertos pa-
trones de eventos o partes del espacio de datos. Además, un servicio de publi-
cación-suscripción se encarga de entregar la información desde los publicadores a
los suscriptores.
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Esta misma visión es igualmente compartida por varios proyectos de investi-
gación recientes –encuadrados en la denominada Internet del futuro– cuyo objetivo
es sustituir al actual modelo de Internet adoptando el paradigma de publicación-
suscripción. En concreto, por su relevancia son dignos de mención los proyectos
Publish-Subscribe Internet Routing Paradigm (PSIRP) [20] [22] y Publish Subscribe
Internet Technology (PURSUIT) [82].

1.1 Motivación

En 2004, el Object Management Group (OMG) [73] adoptó Data Distribution Ser-
vice (DDS) [67], una especificación que estandariza el modelo de comunicación
publicación-suscripción centrado en datos (DCPS). Esta especificación define una
Interfaz de Programación de Aplicación (API) estandarizada para intercambiar in-
formación siguiendo una aproximación DCPS. Bajo este modelo, los publicadores
y suscriptores intercambian datos a través de una caché distribuida conocida como
espacio de datos (también conocida como dominio DDS). Otra caracterı́stica signi-
ficativa de DCPS es que los datos intercambiados no son ajenos al middleware. En
este sentido, DDS es capaz de proporcionar funciones avanzadas tales como caching
de los datos o filtrado basado en contenido.

El estándar DDS está todavı́a en expansión. En particular, y como prueba de la
actividad existente en el estándar, en los últimos dos años el OMG ha publicado cua-
tro de los seis documentos que conforman la familia de estándares DDS. Una con-
secuencia de la relativa novedad de DDS es que –como se explicará más adelante–
aún quedan varios problemas por resolver.

DDS fue originalmente concebido para su uso en redes de área local (LANs) ais-
ladas, de tal forma que publicadores y suscriptores comparten una infraestructura
de red común.

Si un suscriptor desea acceder a datos que se originan en un espacio de datos
diferente, especialmente si dicho espacio de datos está separado por una red en
desventaja, si hay implı́cito un servicio de traducción de nombres (NAT) o si un
cortafuegos está presente, surgen nuevos problemas.

1.1.1 Interconexión de dominios

A modo de escenario de ejemplo sea una empresa que utiliza DDS para la dis-
tribución interna de contenidos. Supóngase que esta empresa ofrece ciertos servi-
cios que requieren el acceso parcial a dichos contenidos por parte de otra compañı́a.
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Una solución simplista al caso de uso anterior consistirı́a en interconectar los
dos espacios de datos (el de la empresa proveedora y el de la empresa consumidora)
directamente. Es decir, los administradores de la empresa proveedora podrı́an im-
plementar un servicio que publique y anuncie todos los tópicos de su espacio de
datos al otro. Sin embargo, el hecho de unir los dos espacios de datos sin más,
generarı́a los siguientes problemas no desdeñables.

El primer problema estarı́a relacionado con la escalabilidad, ya que cada publi-
cación disponible en un espacio de datos serı́a anunciada indiscriminadamente en
el otro espacio de datos. Este comportamiento puede malgastar recursos en situa-
ciones donde no haya consumidores de dicha información en el segundo espacio de
datos.

Otros problemas estarı́an relacionados con la compatibilidad de datos. Cada
espacio podrı́a tener definido su propio (y quizás diferente) modelo de datos (i.e.,
nombres de datos, tipos, y/o definiciones). Estos modelos podrı́an ser incompatibles
incluso si se refieren a la misma información. Por ejemplo, la temperatura podrı́a
estar expresada en grados centı́grados en un espacio de datos y en Fahrenheit en
el otro. Por tanto, para no tener que cambiar la lógica extremo a extremo de las
aplicaciones implicadas, los datos deberı́an ser transformados automáticamente por
la infraestructura publicación-subscripción durante su transmisión entre los dos
dominios. Como ventaja adicional, esto facilitarı́a la integración de aplicaciones
DDS nuevas con otras ya existentes.

El control de acceso y la confidencialidad de la información añaden otra di-
mensión al problema: cierta información deberı́a mantenerse como exclusiva de
un dominio, mientras que cierta información deberı́a ser pública.

Otro problema significativo está relacionado con hacer compatibles los diferen-
tes requerimientos de los distintos flujos de información entre los dominios inter-
conectados. En concreto, los administradores deberı́an disponer de mecanismos
para establecer los requerimientos de calidad de servicio (QoS) que los dominios
deben cumplir para ser interconectados.

La especificaciones de DDS actuales no abordan todos estos problemas. Conse-
cuentemente, parte de nuestra investigación se centra en el diseño de un servicio
que conecte espacios de datos DDS disjuntos (i.e., un servicio de bridging) y que a su
vez resuelva los problemas anteriormente descritos.

1.1.2 Señalización

DDS modela el intercambio de información mediante seis entidades diferentes: Do-
mainParticipant, Tópico, Publicador, Suscriptor, DataWriter (DW), y DataReader
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(DR).

DomainParticipant representa la conexión entre una aplicación y un espacio de
datos compartido.

Tópic representa un flujo de información de interés, tiene asociados un nombre de
tópico y un tipo de datos.

Publicador es el objeto encargado de enviar información.

Suscriptor es el objeto encargado de recibir información.

DataWriter (DW) es el objeto que utiliza la aplicación para escribir datos en un
tópico. Cada DW está vinculado a un tópico concreto (y por tanto, a un tipo
de datos) y pertenece a un publicador.

DataReader (DR) es el objeto que utiliza la aplicación para recibir datos de un
tópico. Cada DR está vinculado a un tópico concreto (y por tanto, a un tipo de
datos) y pertenece a un suscriptor.

Todas estas entidades DDS tienen QoS asociadas que especifican los aspectos no
funcionales del intercambio de información.

Antes de intercambiar contenidos, las entidades DDS deben completar el discov-
ery. En DDS, discovery es el procedimiento por el que el servicio de publicación-
suscripción descubre las entidades que comparten un tópico y que además cumplen
una serie de requerimientos de QoS.

Una vez que un DW descubre un DR compatible, las aplicaciones asociadas
pueden comenzar a intercambiar información.

La especificación original de DDS estandarizaba un modelo de programación
y una API para desarrollar aplicaciones DCPS. Pese a que DDS definı́a las enti-
dades necesarias para intercambiar la información de discovery, ésta no especificaba
el protocolo de red que las diferentes implementaciones de DDS debı́an usar para
poder interoperar. El OMG abordó este problema con la especificación del proto-
colo Real-time Publish-Subscribe Wire Protocol DDS Interoperability Wire Proto-
col (DDS-RTPS) [69].

Para realizar el discovery la especificación DDS-RTPS define el denominado DDS
Simple Discovery Protocol (SDP). Este protocolo fue concebido para entornos relati-
vamente pequeños (hasta algunos miles de nodos conectados a través de una LAN).
Además, un hecho relevante es que las actuales especificaciones de DDS no definen
una metodologı́a de identificación universal de entidades ni de datos.
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Otro problema existente afecta a la escalabilidad. Para llevar a cabo el discovery
la mayor parte de las implementaciones de DDS actuales se basan en usar comunica-
ciones multicast o alternativamente, usan un servidor centralizado. En este sentido,
DDS-RTPS no aborda el problema del descubrimiento de entidades o contenidos
en escenarios de gran escala, ni tampoco proporciona ningún mecanismo para atra-
vesar NATs (siempre presentes en la interconexión de redes con direccionamiento
público y privado). Afortunadamente, la especificación DDS-RTPS permite a las
implementaciones de DDS definir sus propios protocolos de discovery, y por tanto
es posible definir nuevos protocolos que solucionen los problemas planteados.

La introducción de un servicio de bridging entre dos entidades DDS (como el
propuesto en esta Tesis) origina nuevos problemas. En concreto, las actuales polı́ticas
de QoS de DDS fueron diseñadas para escenarios basados en un único dominio, y
quizá no tengan el comportamiento esperado en entornos en los que hay un servi-
cio de bridging presente. Además, las aplicaciones requieren de nuevos mecanismos
para negociar qué contenidos se propagan entre los espacios de datos interconecta-
dos.

En definitiva, la introducción de nodos intermediarios en DDS crea la necesidad
de nuevos mecanismos que soporten la negociación de polı́ticas de QoS entre nodos
remotos, ası́ como la creación de publicaciones y suscripciones a través de servicios
de bridging para DDS. Con objeto de abordar estas cuestiones, esta Tesis define y
propone el uso de un protocolo de señalización para DDS.

1.2 Objetivos

Para una mayor claridad, los objetivos de esta Tesis se han dividido en dos bloques:
interconexión de espacios de datos DDS y señalización de sesión en DDS.

• Interconexión de espacios de datos DDS:

– Objetivo: Diseñar un servicio de interconexión de espacios de datos DDS.

– Objetivo: Incrementar la extensibilidad y flexibilidad de los sistemas
DDS, facilitando la evolución de los sistemas basados en dicho estándar.

– Objetivo: Implementar y evaluar el servicio diseñado.

– Objetivo: Estudiar el impacto del servicio propuesto sobre las polı́ticas
de QoS de DDS.

• Señalización de sesión en DDS:

– Objetivo: Diseñar un formato de identificación universal de entidades y
contenidos en entornos DCPS.
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– Objetivo: Diseñar un protocolo para el descubrimiento de entidades DCPS
y para el establecimiento de sesiones en DDS.

– Objetivo: Evaluar la escalabilidad y robustez de la solución propuesta.

1.3 Resumen de la solución propuesta

La solución que se propone en esta Tesis consta de tres partes:

1. Servicio de Interconexión de Dominios DDS (DDS-IS): Proponemos una
solución para la interconexión de dominios DDS que satisfaga el estándar
DDS. Tras la evaluación realizada, se demuestra experimentalmente que la
solución propuesta soporta la transformación de datos entre dominios y el fil-
trado basado en contenido, a la vez que aumenta la escalabilidad de DDS y
adapta los requisitos de QoS entre las entidades comunicadas.

2. SIP Centrado en Datos(DCSIP): Proponemos las bases y lógica subyacente de
un protocolo para la señalización de sesiones en entornos DCPS. Este proto-
colo resuelve el descubrimiento de contenidos y entidades DCPS en escenarios
basados en DDS-IS. Además, permite la creación de sesiones entre nodos, lo
que facilita la creación de rutas DCPS y el cumplimiento de QoS extremo a
extremo. También proponemos un mecanismo para la identificación universal
de contenidos y entidades DCPS.

3. Uso DCPS para REsource LOcation And Discovery (RELOAD): Proponemos
una solución Peer-to-Peer (P2P) para el descubrimiento y acceso a contenidos
mediante una aproximación DCPS. La solución propuesta se basa en el frame-
work RELOAD, uno de los últimos estándares de la Internet Engineering Task
Force (IETF). Nuestra solución no está limitada a escenarios basados en DDS,
sino que es válida incluso si sólo algunos nodos (o incluso ningún nodo) del
overlay soporta DDS. Se demuestra experimentalmente que nuestra solución,
basada en una arquitectura P2P, proporciona una gran escalabilidad y ro-
bustez para desplegar sistemas basados en DCPS.

1.4 Estado del arte y trabajo relacionado

Esta sección estudia el estado del arte que define el contexto en el que se ha desa-
rrollado la Tesis.
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1.4.1 Modelo de interacción publicación-suscripción

La caracterı́stica principal de las arquitecturas basadas en publicación-suscripción
es que los consumidores de información (suscriptores) y los productores de infor-
mación (publicadores) están desacoplados en tiempo, espacio y sincronización [65]
[21].

Basados en el modelo de publicación-suscripción existen varios ejemplos rele-
vantes de implementaciones de Message Oriented Middleware (MOM) [7] como
Java Messaging Service (JMS) [74] y Advanced Message Queuing Protocol (AMQP)
[3].

Otros ejemplos destacables son [96] y [95], trabajos en los que se propone una ar-
quitectura publicación-suscripción para sistemas distribuidos de tiempo real basada
en el middleware CORBA [68]. En [107] se propone una solución para el despliegue
de sistemas publicación-suscripción basada en XML. Otra contribución destaca-
ble es SIENA [12], un servicio de notificación de eventos mediante publicación-
suscripción basado en una arquitectura P2P. En la siguiente sección se describirán
las caracterı́sticas de éste y otros trabajos basados en P2P.

Directamente relacionado con nuestro trabajo, los autores de [75] [93] propo-
nen DDS, un middleware que proporciona distribución de contenidos DCPS. Como
se ha comentado previamente, DDS fue adoptado en 2004 por el OMG [73] [67]
como middleware estándar de comunicaciones DCPS. Desde la estandarización de
la especificación original en 2004, han aparecido más de ocho implementaciones
diferentes del estándar [72].

DDS está en continua evolución, y en los últimos años se han adoptado varias
extensiones a la especificación original. Por ejemplo, DDS-RTPS [69] define el pro-
tocolo que permite la interoperabilidad de diferentes implementaciones DDS. Otro
ejemplo destacable es la especificación Extensible And Dynamic Topic Types For
DDS (DDS-XTypes) [71], que permite a las aplicaciones DDS definir nuevos tipos
en tiempo de ejecución.

1.4.2 Escalabilidad de los sistemas publicación-suscripción

Las tecnologı́as de publicación-suscripción se implementan normalmente como ser-
vicios basados en brokers, lo que conlleva una serie de problemas asociados a las
arquitecturas centralizadas, tales como la aparición de cuellos de botella o la falta
de robustez frente a errores.

Con objeto de superar estos problemas, se han propuesto muchas soluciones en
la literatura. Por ejemplo, [23] propone una solución jerárquica multinivel (clusters
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y super-clusters) basada en el estándar JMS para interconectar grids. Esta solución
distribuye la carga entre los distintos clusters, con lo que consigue una federación
de clusters escalable y robusta frente a fallos. Sin embargo, esta aproximación no
soporta la transformación de datos, que es uno de los objetivos de nuestro trabajo.
Además, esta solución no aborda el problema de la provisión de QoS, lo que dificulta
su implantación en escenarios con requisitos crı́ticos.

Los autores de [12] proponen SIENA, un servicio publicación-suscripción de no-
tificación de eventos que utiliza dos arquitecturas para la distribución de notifi-
caciones: cliente-servidor jerárquica y P2P. Con respecto al esquema de encami-
namiento utilizado, (i.e., el criterio que aplica el sistema en cada salto para tomar la
decisión de transmitir los eventos desde los publicadores a los suscriptores), SIENA
utiliza una aproximación basada en filtros (i.e., toma la decisión de encaminamiento
mediante un filtro basado en contenido situado en cada nodo). Sin embargo, este
trabajo no soporta encaminamiento basado en multicast, que es uno de los esquemas
de comunicación que soporta DDS. Además, este trabajo no considera la transfor-
mación de datos ni la provisión de QoS.

Los autores de SIENA en [13] proponen un esquema de encaminamiento que
combina broadcast y filtrado basado en contenido para mejorar la escalabilidad del
sistema. Como ocurrı́a en el anterior trabajo, en este último tampoco se considera
la transformación de los datos ni la provisión de QoS.

De forma similar, [11] propone Kyra, un esquema de encaminamiento que uti-
liza filtros basados en contenido y que aplica mecanismos de distribución de carga.
Nuevamente, este trabajo no soporta encaminamiento basado en multicast, ni trans-
formación de datos, ni provisión de QoS.

Todos los trabajos anteriormente citados utilizan filtros basados en contenido
para el encaminamiento de los eventos.

A continuación se comentan otros trabajos que se basan en multicast para rea-
lizar el encaminamiento. Los autores de [15] proponen HOMED, un overlay P2P
para soportar sistemas distribuidos de publicación-suscripción. HOMED organiza
a los participantes de acuerdo a sus intereses con objeto de construir un árbol de
distribución de eventos flexible y eficiente. Otra alternativa es [98], en la que se
propone asociar suscripciones y eventos a nodos de rendezvous. Esta asociación se
realiza en base a una combinación del identificador de dominio con el número de
atributos en las suscripciones y eventos. Sin embargo, ninguna de las dos soluciones
anteriores considera el problema de la transformación de datos o la provisión de
QoS.

Los autores de [104] proponen particionar el espacio de eventos entre los peers en
el sistema, y enviar los eventos y suscripciones mediante broadcast a todos los nodos.
El coste de estos broadcast se reduce mediante la instalación en los nodos de filtros
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asociados a las suscripciones. Como contrapartida, esta aproximación requiere en
ciertos casos que todos los nodos del sistema sean contactados para instalar una
suscripción. Con objeto de reducir el número de peers contactados, [25] propone
Meghdoot, un sistema de publicación-suscripción basado en contenido basado en
una infraestructura Content Addressable Network (CAN). Nuevamente ninguna de
estas dos soluciones considera el problema de la transformación de datos ni la pro-
visión de QoS.

Más recientemente, el proyecto Apache QPiD [4] propone un mecanismo de fe-
deración para AMQP [3] que incrementa la escalabilidad del sistema mediante el
establecimiento de rutas dedicadas entre brokers. También relacionado con AMQP,
[60] propone un método sistemático para configurar federaciones de brokers basadas
en AMQP. Una aproximación diferente es propuesta en [108], donde los autores
combinan clustering, encaminamiento basado en contenido e inundación para con-
seguir un sistema escalable de publicación-suscripción para MANETs. Todos los
casos anteriores cubren únicamente el problema de la escalabilidad, dejando abier-
tas cuestiones tales como la transformación de datos.

Relacionado con DDS, los autores de [16] y [17] presentan REliable and VErsa-
tile News delivery support for aGEncies (REVENGE). REVENGE es un middleware
para la distribución de noticias entre clientes heterogéneos, a la vez que garantiza
QoS, disponibilidad y fiabilidad. Este trabajo consta de dos contribuciones princi-
pales: un sustrato de encaminamiento P2P auto-organizable para facilitar la entrega
fiable de datos entre nodos móviles, y una infraestructura de soporte DDS basada en
relays. Esta infraestructura de soporte se caracteriza por un overhead reducido que
permite la distribución de datos escalable en Internet. Los nodos relay de REVENGE
permiten el intercambio de información entre distintos dominios DDS. Sin em-
bargo, este intercambio está limitado a tópicos y tipos de datos especı́ficos, lo que
limita la flexibilidad del sistema.

Finalmente, en [77] los autores proponen una arquitectura para interconectar
dominios DDS con Enterprise Service Bus (ESB), permitiendo el intercambio de
información entre el mundo de los equipos empotrados y el mundo empresarial.
Este trabajo se centra principalmente en incrementar la interoperabilidad de DDS
mediante un sustrato de encaminamiento entre ESB y DDS. Sin embargo, no pro-
porciona ningún mecanismo para incrementar la escalabilidad de DDS (tal como la
agregación de datos propuesta en esta Tesis), ni proporciona mecanismos para la
transformación de datos DDS (salvo los estrictamente necesarios para integrar ESB
y DDS).
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1.4.3 Descubrimiento de recursos y RELOAD

Uno de los problemas existentes de DDS es la escalabilidad de su protocolo de dis-
covery en escenarios de gran escala (escenarios con miles de nodos).

En la literatura se pueden encontrar múltiples propuestas que se aprovechan de
arquitecturas basadas en P2P para llevar a cabo el descubrimiento de recursos. Por
ejemplo, [90] propone Spider, un framework para el descubrimiento de servicios Web
que soporta la localización de servicios utilizando palabras clave, ontologı́as y pa-
trones de comportamiento. También relacionado con el descubrimiento de servicios
Web, los autores de [94] proponen un sistema de indexado escalable que incorpora
mecanismos de distribución de carga para arquitecturas basadas en P2P. Sin em-
bargo, estos dos trabajos se centran en descubrimiento de servicios Web, y por tanto
no son adecuados para soportar los requerimientos especı́ficos de los middleware
de publicación-suscripción (por ejemplo, DDS requiere tratar a los publicadores,
suscriptores y participantes de forma diferente).

SOLAR [14] propone el concepto de Descubrimiento de Recursos Sensible al
Contexto (CSRD). Este trabajo, principalmente centrado en arquitecturas de tipo
context-aware, no aborda la provisión de QoS, lo que dificulta su implantación en
escenarios con requisitos crı́ticos.

Con respecto al discovery de DDS, la publicación [92] propone utilizar filtros
de Bloom para solucionar el problema de la escalabilidad del discovery en entornos
DDS. Sin embargo, este trabajo no aborda otras cuestiones como el mantenimiento
de un overlay para lograr una mayor robustez frente a fallos, o el paso a través de
NATs.

En el momento de escritura de estas lı́neas, RELOAD [44] se encuentra en pro-
ceso de aprobación como estándar por la IETF. RELOAD es un protocolo de la IETF
para el despliegue y mantenimiento de sistemas P2P en Internet.

En concreto, este protocolo facilita mecanismos para el descubrimiento de recur-
sos y el almacenamiento y obtención de contenidos.

Con el fin de demostrar la viabilidad de RELOAD como una arquitectura P2P
estable y fiable, varios trabajos han sido publicados. Por ejemplo, las prestaciones
de RELOAD en entornos inalámbricos han sido evaluadas en [58], mientras que en
[56] se lleva a cabo un estudio de las prestaciones de RELOAD en entornos basa-
dos en Interactive Connectivity Establishment (ICE) para el paso a través de NATs.
Otra contribución es [28], que aborda el problema del descubrimiento de recursos y
notificaciones en entornos Constrained Application Protocol (CoAP).

Por último, y estrechamente relacionado con nuestro trabajo, los autores de [2]
proponen un protocolo de publicación-suscripción basado en RELOAD. Aunque
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este trabajo proporciona las caracterı́sticas básicas que requiere un sistema de pu-
blicación-suscripción, está totalmente basado en el tunneling de las muestras, lo que
limita su flexibilidad y extensibilidad. Además, este trabajo no cubre el descubri-
miento de entidades especı́ficas de DDS, tales como son los participants.

1.4.4 DDS y SIP

Con objeto de proveer DDS de un protocolo de señalización, inicialmente se consi-
deró la posibilidad de usar Session Initiation Protocol (SIP). SIP [83] es un proto-
colo especificado por la IETF [39] para la señalización de sesiones en arquitecturas
cliente-servidor.

Al inicio de esta Tesis, no existı́an otras publicaciones que integrasen SIP y DDS.
En [51] propusimos un gateway básico DDS-SIP para la conexión de dominios DDS.
Ésta fue la primera publicación en definir el concepto de sesión DDS. En concreto,
este trabajo definı́a una sesión DDS como un canal lógico que conecta dos domi-
nios DDS remotos. Sin embargo, finalmente decidimos usar RELOAD –una aproxi-
mación P2P– en lugar de SIP –una aproximación cliente-servidor– porque aportaba
una mayor escalabilidad al sistema.

En [26] se encuentra otro ejemplo de integración entre SIP y DDS. Este trabajo
propone un sistema que integra el protocolo SIP y DDS para desplegar aplicaciones
basadas en DDS sobre redes de área amplia (WANs) IP con soporte de QoS. Además,
define una extensión a Session Description Protocol (sdp) que soporta la descripción
de medios asociados a sesiones DDS. Como punto negativo, esta solución está limi-
tada por la arquitectura cliente-servidor a la que SIP está ligado.

1.5 Contribuciones principales

Las principales contribuciones de esta Tesis son:

1. El diseño, implementación y evaluación de prestaciones de DDS data-space
Interconnection Service (DDS-IS).

2. Un estudio del impacto de DDS-IS en la provisión de QoS.

3. La definición de identificadores universales para los dominios y tópicos DDS.

4. El diseño de un protocolo orientado a DCPS para el establecimiento de se-
siones, denominado Data-Centric SIP (DCSIP).
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5. El diseño, implementación y evaluación de una extensión (un usage) de
RELOAD para proveer el descubrimiento de contenidos y entidades DCPS.

Consideramos que estas contribuciones constituyen un paso importante en la
dirección de convertir DDS en una tecnologı́a madura y sin fisuras, alineada con la
visión de una Internet basada en nombres.

1.5.1 Trabajos publicados

Parte de nuestro trabajo se encuentra ya disponible para la comunidad cientı́fica
a través de varias comunicaciones y publicaciones en revistas indexadas en el JCR.
Adicionalmente, y como resultado del trabajo realizado, se ha solicitado una patente
que se encuentra actualmente en explotación por Real-Time Innovations Inc..

Contribuciones directamente relacionadas con esta Tesis:

1. G. Pardo-Castellote, F. Sanchez, and J. M. Lopez-Vega, ”Deploying DDS on
a WAN and the GIG: The DDS router,” in Real-time and Embedded Systems
Workshop. OMG, Jul. 2009. [Online]. Disponible: http://www.omg.org/news/
meetings/GOV-WS/pr/rte.htm [76]

2. J. M. Lopez-Vega, J. Povedano-Molina, and J. M. Lopez-Soler, ”DDS/SIP inter-
working: A DDS-SIP gateway,” in Real-time and Embedded Systems Workshop,
May 2010. [Online]. Disponible: http://omg.org/news/meetings/SMCS/rt/

pr/pdf/Lopez-VegaPovedano-MolinaLopez-Soler_DDS-SIP.pdf [51]

3. A. De-Campos-Ruiz, G. Pardo-Castellote, J. M. Lopez-Vega, and F. Crespo-
Sanchez, ”Patent US20110295923 - bridging data distribution services do-
mains based on discovery data,”, May 2011. [Online]. Disponible: http:

//www.google.com/patents/US20110295923 [18].

4. J. M. Lopez-Vega, J. Povedano-Molina, G. Pardo-Castellote, and J. M. Lopez-
Soler, ”A content-aware bridging service for publish/subscribe environments,”
Journal of Systems and Software, vol. 86, no. 1, pp. 108-124, Jan. 2013. [On-
line]. Disponible: http://dx.doi.org/10.1016/j.jss.2012.07.033 [53]

5. J. Jimenez, J. M. Lopez-Vega, J. Maenpaa, and G. Camarillo, ”A constrained
application protocol (CoAP) usage for REsource LOcation and discovery (RE-
LOAD),” Working Draft, IETF Secretariat, Fremont, CA, USA, Feb. 2013. [On-
line]. Disponible: http://rfc-editor.org/internet-drafts/draft-jimenez-
p2psip-coap-reload-03.txt [45]

Otras contribuciones parcialmente relacionadas con esta Tesis:

http://www.omg.org/news/meetings/GOV-WS/pr/rte.htm
http://www.omg.org/news/meetings/GOV-WS/pr/rte.htm
http://omg.org/news/meetings/SMCS/rt/pr/pdf/Lopez-VegaPovedano-MolinaLopez-Soler_DDS-SIP.pdf
http://omg.org/news/meetings/SMCS/rt/pr/pdf/Lopez-VegaPovedano-MolinaLopez-Soler_DDS-SIP.pdf
http://www.google.com/patents/US20110295923
http://www.google.com/patents/US20110295923
http://dx.doi.org/10.1016/j.jss.2012.07.033
http://rfc-editor.org/internet-drafts/draft-jimenez-p2psip-coap-reload-03.txt
http://rfc-editor.org/internet-drafts/draft-jimenez-p2psip-coap-reload-03.txt
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1. J. M. Lopez-Vega, J. Sanchez-Monedero, J. Povedano-Molina, and J. M. Lopez-
Soler, ”QoS policies for Audio/Video distribution over DDS middleware,” in
Workshop on Distributed Object Computing for Real-time and Embedded Systems,
Jul. 2008. [Online]. Disponible: http://omg.org/news/meetings/workshops/
rt_embedded_2008.htm [50]

2. J. Sanchez-Monedero, J. Povedano-Molina, J. M. Lopez-Vega, and J. M.
Lopez-Soler, ”An XML-based approach to the configuration and deployment
of DDS applications,” in Workshop on Distributed Object Computing for Real-
time and Embedded Systems, Jul. 2008. http://omg.org/news/meetings/

workshops/Real-time_WS_Final_Presentations_2008/Session2/02-

03_Monedero_et_al.pdf [91]

3. J. M. Lopez-Vega, J. Povedano-Molina, J. Sanchez-Monedero, and J. M. Lopez-
Soler, ”Polı́ticas de QoS en una plataforma de trabajo colaborativo sobre mid-
dleware DDS,” in XIII Jornadas de Tiempo Real, Feb. 2010. [52]

4. J. Povedano-Molina, J. M. Lopez-Vega, J. Sanchez-Monedero, and J. M. Lopez-
Soler, ”Instant messaging based interface for data distribution service,” in XIII
Jornadas de Tiempo Real, 2010. [79]

5. J. Povedano-Molina, J. M. Lopez-Vega, and J. M. Lopez-Soler, ”EMDS: an ex-
tensible multimedia distribution service,” in Real-time and Embedded Systems
Workshop, May 2010. [Online]. Disponible: http://omg.org/news/meetings/
SMCS/rt/pr/pdf/Povedano-MolinaLopez-VegaLopez-Soler_EMDS.pdf [78]

6. J. Sanchez-Monedero, J. Povedano-Molina, J. M. Lopez-Vega, and J. M. Lopez-
Soler, ”Bloom filter based discovery protocol for DDS middleware,” Journal of
Parallel and Distributed Computing, vol. 71, no. 10, pp. 1305-1317, May 2011.
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Munoz, ”Performance evaluation of Publish/Subscribe middleware technolo-
gies for ATM (air traffic management) systems,” in Workshop on Real-time, Em-
bedded and Enterprise-Scale Time-Critical Systems, 2012. [49]

1.6 Estructura del documento

A continuación se describe como se ha estructurado el presente documento.

En el Capı́tulo 2 se estudian las tecnologı́as que supusieron el punto de partida
de esta Tesis.
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La solución propuesta ha sido dividida en tres capı́tulos que se corresponden
a la división descrita en la Sección 1.3. Cada uno de dichos capı́tulos incluye su
propia introducción, casos de uso, diseño, experimentos, resultados, discusión de
los resultados y conclusiones. Esta estructura facilita la lectura del documento, ya
que cada capı́tulo está autocontenido y puede ser leı́do de forma independiente.

En concreto, el Capı́tulo 3 incluye el diseño, implementación y evaluación de
prestaciones de un servicio de interconexión de dominios DDS; asimismo incluye
un estudio del impacto del servicio en la provisión de QoS.

En el Capı́tulo 4 se presenta el diseño de un protocolo orientado a DCPS para el
establecimiento de sesiones, llamado DCSIP.

En el Capı́tulo 5 se presenta el diseño, implementación, y evaluación de una
nueva extensión (usage) para RELOAD que proporciona mecanismos para el des-
cubrimiento de contenidos y entidades DCPS.

Por último, en el Capı́tulo 6 se discuten trabajos relacionados, y en el Capı́tulo 7
se resumen las principales conclusiones de nuestro trabajo.





Chapter 1
Introduction

Current uses of the Internet are mostly built on request-response exchanges be-
tween pairs of computers. This model has been very successful at providing shared
remote access to resources and point-to-point communications for applications in-
cluding email, remote file and database access, web access, etc.

Transmission Control Protocol (TCP), the most widely used Internet protocol, is
also geared towards provided reliable point-to-point communications, to the extent
that each TCP message embeds the location of the sending and receiving endpoints.

The advent of ubiquitous Internet connectivity and cheap network-connected
devices has greatly expanded the communication needs of applications using the
Internet. For these new kinds of applications the request-response communications
model is cumbersome and limited whereas other communication models, such as
publish-subscribe [21], provide a more natural fit. The nature and historical context
of this problem is well described in Van Jacobson et al. seminal work [41]:

The engineering principles and architecture of today’s Internet were created in the
1960s and 70s. The problem networking aimed to solve was resource sharing [...]. The
communication model that resulted is a conversation between exactly two machines, one
wishing to use the resource and one providing access to it. Thus IP packets contain two
identifiers (addresses), one for the source and one for the destination host, and almost all
the traffic on the Internet consists of (TCP) conversations between pairs of hosts.

In the 50 years since the creation of packet networking, computers and their attach-
ments have become cheap, ubiquitous commodities. The connectivity offered by the In-
ternet and low storage costs enable access to a staggering amount of new content – 500
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exabytes created in 2008 alone [24]. People value the Internet for what content it con-
tains, but communication is still in terms of where.

We see a number of issues that affect users arising from this incompatibility between
models.

Availability: Fast, reliable content access requires awkward, pre-planned, application-
specific mechanisms like CDNs and P2P networks, and/or imposes excessive bandwidth
costs.

Security: Trust in content is easily misplaced, relying on untrustworthy location and
connection information.

Location-dependence: Mapping content to host locations complicates configuration
as well as implementation of network services. The direct, unified way to solve these
problems is to replace where with what. Host-to-host conversations are a networking
abstraction chosen to fit the problems of the 60s. We argue that named data is a better
abstraction for today’s communication problems than named hosts.

In contrasts to the request-response interaction model, in which a client sends
a request and a server returns a response, this Thesis –that in a sense is aligned
with Jacobson’s vision– focuses on the publish-subscribe interaction model. In the
publish-subscribe model information producers (publishers) are decoupled from
information consumers (subscribers) via the publish-subscribe service. Publishers
generate events or update a shared information space, subscribers express their
interest in certain patterns of events or parts of the information space, and the
publish-subscribe service delivers the desired information from publishers to sub-
scribers.

This vision is well aligned with recent projects aimed at defining a future publish-
subscribe-based Internet that substitutes the current Internet design, in particular
Publish-Subscribe Internet Routing Paradigm (PSIRP) [20] [22] and Publish Sub-
scribe Internet Technology (PURSUIT) [82].

1.1 Motivation

In 2004, the Object Management Group (OMG) [73] adopted Data Distribution
Service (DDS) [67], a specification that standardizes data-centric publish-subscribe
communications. This specification defines a standardized Application Program-
ming Interface (API) for exchanging information following a Data-Centric Publish-
Subscribe (DCPS) model. In this model, publishers and subscribers exchange in-
formation through a distributed cache known as data-space (also known as DDS
domain). Another relevant characteristic of DCPS is that exchanged information
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is not opaque to the middleware. In this way, DDS is able to provide advanced
functionalities such as data-caching or content-based-filtering.

The DDS standard is still growing. Proof of the activity around this standard
is the fact that just in the last two years the OMG has published four of the six
documents currently constituting the DDS standard family. As a consequence of
the relative novelty of DDS, there are still several problems to solve.

DDS was originally designed for isolated Local Area Networks (LANs) in which
data sources (publishers) and data consumers (subscribers) are located in the same
geographical location.

Problems arise if a subscriber has interest in data being originated in a different
data-space, especially if that data-space is separated by a bandwidth-constrained
network, or if a Network Address Translation (NAT) or firewall service is present.

1.1.1 Domain interconnection

Consider an example scenario with a company that relies on DDS for delivering
some data-content internally. In addition, this company provides certain services
that require to expose a subset of that data-content to another company.

A simplistic solution to the previous use case would be to merge the two data-
spaces. That is, to implement a service that publishes and announces all the topics
from one data-space to the other. However, the direct merging of the data-spaces
would create some significant problems.

The first problem is related to scalability. Every publication available in one
data-space will be indiscriminately announced in the other data-space. This may be
wasteful in resources in situations where there are no consumers to that information
on the second data-space.

Other problems are concerned to data compatibility. For instance, each data-
space may have its own (possibly different) data model (i.e., data names, types,
and/or definitions). These models could be incompatible even if they refer to the
same data items. For example, temperature data might be expressed in Celsius in
one data-space and in Fahrenheit in the other one. Therefore, in order to keep the
end-to-end application logic unchanged, data should be automatically transformed
by the publish-subscribe infrastructure when bridging data-spaces with different
data models. As an additional benefit, this will ease the integration between new
and legacy DDS applications.

Access control and information confidentiality adds another dimension to this
problem: Some parts of the data should be confined in a data-space whereas other
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data should be public.

Another relevant issue is related to the possibility of having different delivery
requirements for the information that flows between and within the different inter-
connected data-spaces. For example, system administrators should be able to estab-
lish the Quality of Service (QoS) requirements that domains must meet in order to
be bridged.

The current DDS specifications do not address any of these domain interconnec-
tion issues. Consequently, one aspect of this research focused on the design of a
service that connects disjoint DDS data-spaces (i.e., a bridging service) while also
solving the problems stated above.

1.1.2 Signaling

DDS models information exchange using six different entities: DomainParticipant,
Topic, Publisher, Subscriber, DataWriter (DW), and DataReader (DR).

DomainParticipant represents the connection from an application to a shared data-
space.

Topic represents a stream of information of interest, it has an associated topic name
and data-type.

Publisher is the object responsible for sending information.

Subscriber is the object responsible for receiving information.

DataWriter (DW) is the object the application uses to write data to a specific topic.
Each DW is bound to a specific topic (and therefore data-type) and belongs to
a publisher.

DataReader (DR) is the object the application uses to receive data on a specific
topic. Each DR is bound to a topic (and therefore data-type) and belongs to a
subscriber.

All these DDS entities have QoS attached to them specifying non-functional as-
pects of the information exchange.

In order to exchange data-content, DDS entities must discover each other. DDS
includes a discovery mechanism. DDS discovery is the process used by the publish-
subscribe service to find the entities which share a particular topic and meet a set
of QoS requirements.
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Once a DW discovers a matching DR the corresponding applications can start
exchanging data.

Originally, the DDS specification standardized the programming model and API
for developing DCPS applications. Despite of the fact that it defined the entities
for exchanging discovery information, it did not specify the network protocol used
by DDS implementations in a way that would allow different implementations to
interoperate. The OMG addressed this issue by specifying the Real-time Publish-
Subscribe Wire Protocol DDS Interoperability Wire Protocol (DDS-RTPS) [69].

The DDS-RTPS specification defines the so called DDS Simple Discovery Pro-
tocol (SDP) to perform the discovery. This discovery protocol was designed for
relatively small environments (up to a few thousands nodes connected through a
LAN). In this regard, the current DDS specifications do not address the problem of
universal entity identification and universal data-content identification.

Another existing limitation impacts scalability. Most of current DDS imple-
mentations rely on using multicast or a centralized server for discovery. In this
sense, DDS-RTPS does not address the problem of entity or data-content discov-
ery in large-scale deployments, nor provides any mechanism for performing NAT
traversal. Fortunately, the DDS-RTPS specification allows DDS implementations to
define their own discovery protocols, therefore is possible to define new protocols
that address these issues.

The introduction of a bridging service between DDS entities (as the one pro-
posed in this Thesis) creates new problems. In particular, current DDS QoS policies
were designed for single-domain-based scenarios, and they may behave unexpect-
edly in environments were a bridging service is present. In addition, applications
need new mechanisms for negotiating what contents are propagated through dif-
ferent data-spaces. In short, the introduction of intermediate nodes in DDS creates
the need of new mechanisms that support the negotiation of QoS policies among
remote nodes, along with the creation of publications and subscriptions across DDS
bridging services. In order to address these issues, this Thesis defines and proposes
the use of a signaling protocol for DDS.

1.2 Goals

The main objectives of the Thesis are organized in two categories: DDS data-space
interconnection and session signaling.

• DDS data-space interconnection:

– Objective: To design a data-space bridging service for DDS.
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– Objective: To increase the extensibility and flexibility of DDS systems,
easing DDS systems evolution.

– Objective: To implement and evaluate the designed data-space bridging
service for DDS.

– Objective: To study the impact of the proposed service in DDS QoS.

• Session signaling in DDS:

– Objective: To design an universal entity and data-content naming format
for DCPS environments.

– Objective: To design a protocol for DCPS entities discovery and session
establishment in DDS.

– Objective: To evaluate the scalability and robustness of the proposed
solution.

1.3 Solution overview

The solution proposed in this Thesis consists of three parts:

1. DDS data-space Interconnection Service (DDS-IS): We propose a solution
for the interconnection of DDS data-spaces that is compliant with DDS speci-
fication. We experimentally demonstrate that it provides data transformation
between data-spaces, performs content-based filtering, increases DDS scala-
bility, and provides QoS adaptation between remote entities.

2. Data-Centric SIP (DCSIP): We propose the fundamentals and rationale of a
protocol for session signaling in DCPS environments. This protocol solves
DCPS entity and data-content discovery in DDS-IS-based deployments. It
also allows the creation of sessions between nodes, which eases the creation of
DCPS routes and the enforcement of QoS at end-to-end level. We also propose
a mechanism for universal identification of DCPS entities and data-content.

3. DCPS usage for REsource LOcation And Discovery (RELOAD): We propose
a Peer-to-Peer (P2P) solution for discovering and accessing to content using a
DCPS approach. Our solution is based on the RELOAD framework, one of the
latest standards of the Internet Engineering Task Force (IETF). Our solution is
not limited to DDS-based scenarios, and it is valid even if only a few (or none)
of the nodes in the overlay supports DDS. We experimentally demonstrate
that our solution, based on a P2P architecture, features great scalability and
robustness for deploying DCPS-based systems.
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1.4 State of the art and related work

This section studies the state of the art that provides the context for the research
carried out in this Thesis.

1.4.1 Publish-subscribe interaction model

The key feature of publish-subscribe-based architectures is that information con-
sumers (subscribers) and information producers (publishers) are decoupled in time,
space, and synchronization [65] [21].

Several Message Oriented Middleware (MOM) [7] implementations, which are
based on asynchronous message-passing, use the publish-subscribe model for ex-
changing data. For example, Java Messaging Service (JMS) [74] and Advanced Mes-
sage Queuing Protocol (AMQP) [3] are MOM-based technologies that allow appli-
cations to deliver messages using a publish-subscribe approach.

Other relevant approaches are also remarkable. For instance, [96] and [95] pro-
pose a publisher-subscriber architecture for distributed real-time systems based on
CORBA middleware [68], and [107] proposes an XML-based solution for deploying
publish-subscribe systems. Another interesting solution is SIENA [12], a publish-
subscribe event notification service that takes advantage of a P2P architecture. We
will study this and other P2P-based approaches in the next section.

Directly related to our work, the authors of [75] [93] propose DDS, a middleware
that provides data-centric publish-subscribe content distribution.

DDS was adopted in 2004 by the OMG [73] [67] as the standard middleware for
DCPS communications. Since the original DDS specification in 2004, more than
eight different implementations of the standard have appeared [72].

The DDS standard is still growing, and several extensions to the original specifi-
cation have been adopted over the last years. For example, DDS-RTPS [69] defines a
protocol that allows different DDS implementations to interoperate. Another note-
worthy example is the Extensible And Dynamic Topic Types For DDS (DDS-XTypes)
[71] specification, which allows DDS applications to define new types in runtime.
However, and due to the novelty of the standard, several problems, such as the in-
terconnection of disjoint domains, remain unsolved.
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1.4.2 Scalability in publish-subscribe systems

Publish-subscribe technologies are usually implemented as brokered services. This
leads to well known issues that derive from centralized architectures such as single
point of failure and bottlenecks.

To cope with these issues, many solutions have been proposed in the literature.
For instance, [23] proposes a hierarchical multi level (clusters and super-clusters)
JMS compliant approach for interconnecting grids. It features scalability, load-
balancing, and fault-tolerant federation. However, this approach does not support
data transformation, which is one of our initial objectives. Moreover, it does not
take into account QoS related issues, making difficult its usage in critical scenarios.

The authors of [12] propose SIENA, a publish-subscribe event notification ser-
vice that utilizes two different architectures for distributing event notifications: hi-
erarchical client-server and P2P. Regarding the routing scheme (i.e., the criteria that
the system follows in each hop to decide how forward samples from publishers to
subscribers), SIENA uses a filter-based approach (i.e., it makes routing decisions via
successive content-based filtering at all nodes from source to destination). However,
this work does not support multicast-based routing, which is one of the communi-
cation schemes that DDS supports. Moreover, this work does not consider data
transformation nor QoS enforcement.

From the authors of SIENA, [13] proposes a routing schema that combines broad-
cast and content-based filtering for improving the scalability of the system. As in
the previous work, it does not consider data transformation nor QoS enforcement.

Similarly, [11] proposes Kyra, a routing scheme based on content-based filter-
ing that applies load balancing mechanisms. Again, this work does not support
multicast-based routing, data transformation, nor QoS enforcement.

All the above-mentioned work utilize a content-based filtering approach.

There are also existing approaches that use a multicast-based routing scheme.
For example, the authors of [15] propose HOMED, a P2P overlay for supporting
distributed publish-subscribe systems. It constructs a flexible and efficient event
dissemination tree by organizing participants based on their interest. Another in-
teresting work is [98], which proposes an alternative for creating the multicast dis-
semination tree. In particular, it proposes to map subscriptions and events to ren-
dezvous nodes; for that, it uses a combination of the domain schema identifier and
the numbers of attributes in the subscriptions or the events. None of the above two
solutions considers the problem of data transformation nor QoS enforcement.

The authors of [104] propose to partition the event space among the peers in
the system, and to broadcast events and subscriptions to all nodes in the system.



1.4. State of the art and related work 25

These broadcasts are attenuated by filters installed at peer nodes depending on the
subscriptions stored in the system. However, this approach may require all peers
in the system to be contacted to install a subscription. To reduce the number of
peers to be contacted, [25] proposes Meghdoot, a content-based publish-subscribe
system built on top of Content Addressable Network (CAN) infrastructure. Again,
none of these two solutions considers the problem of data transformation nor QoS
enforcement.

More recently, the Apache QPiD project [4] includes a federation mechanism
for AMQP [3] that increases the scalability of the system by establishing dedicated
routes between brokers. Also related to AMQP, [60] provides a systematic method
for configuring broker federation in AMQP-based systems. A different approach
is included in [108], where the authors combine clustering, content-based routing,
and document flooding for providing scalable publish-subscribe communications
for MANETs. In all these cases, they deal only with scalability problem, leaving
open issues such as data transformation.

Related to DDS, the authors of [16] and [17] present REliable and VErsatile News
delivery support for aGEncies (REVENGE). REVENGE is a middleware used to dis-
tribute breaking news among heterogeneous clients while guaranteeing QoS, avail-
ability, and reliability. This work has two main contributions: a self-organizing P2P
routing substrate to facilitate reliable data delivery between mobile nodes, and a
relay-based DDS support infrastructure with limited overhead to enable scalable,
Internet-wide data dissemination. REVENGE relay nodes allow for the exchange of
information among different DDS domains. However, this communication is bound
to a specific topic/data-type, which limits the flexibility of the system.

Finally, in [77] the authors propose an architecture to interconnect DDS data-
spaces with Enterprise Service Bus (ESB), thus allowing to exchange information
between the embedded world and the enterprise system. This work is mainly fo-
cused on increasing the interoperability of DDS by providing a routing substrate
between ESB and DDS. However, it does not provide any mechanism to increase
the scalability on the DDS system (like the data aggregation proposed in this The-
sis), and does not provide mechanisms for performing DDS data transformations
(except the strictly necessary for integrating ESB and DDS).

1.4.3 Resource discovery and RELOAD

One of the current issues of DDS is the scalability of its discovery protocol in large-
scale deployments (deployments with thousands of nodes).

In the literature we can find several proposals that take advantage of P2P-based
architectures for performing resource discovery. For example, [90] proposes Spi-
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der, a framework for Web Service discovery. It supports the lookup of Web Services
based on keywords, ontologies, or behavior. Also related to Web Service discovery,
the authors of [94] propose a scalable indexing system for P2P-based architectures
that incorporates load-balancing mechanisms. However, these two works are fo-
cused in Web Service discovery, and therefore they are not suited to support the spe-
cific requirements of a publish-subscribe middleware (for example, DDS requires to
treat publishers, subscribers, and participants differently).

SOLAR [14] proposes the Context-Sensitive Resource Discovery (CSRD). This
work, mainly focused on context-aware architectures, does not take into account
QoS related issues, making it difficult to be used in more critical scenarios.

Regarding discovery in DDS, the paper [92] addresses the problem of scalable
discovery in DDS environments by applying Bloom filters. However, this work only
focuses on the discovery problem itself, not addressing other issues such as main-
taining an overlay to provide fault-tolerance, or NAT-traversal.

In the time of writing, the IETF is in the process of approving RELOAD [44] as
standard. RELOAD is an IETF protocol for building and maintaining P2P systems
on the Internet. In particular, it provides mechanisms for resource discovery and
for data-content storage and retrieval.

A number of papers have aimed to demonstrate the feasibility of RELOAD as
an stable and reliable P2P architecture. For instance, RELOAD performance in
wireless environments has been studied in [58]. In [56], a study of the perfor-
mance of RELOAD on an Interactive Connectivity Establishment (ICE)-based en-
vironment for NAT traversal is done. Another contribution is [28], which addresses
the problem of resource discovery and notification in Constrained Application Pro-
tocol (CoAP) environments.

Finally, and very close to our work, the authors of [2] propose a publish-subscribe
protocol built atop of RELOAD. Although it provides the basic features needed
for a publish-subscribe system, it relies completely on tunneling publish-subscribe
samples, which hinders its flexibility and extensibility. Moreover, this work does
not cover the discovery of specific DDS entities, such as participants.

1.4.4 DDS and SIP

In order to provide DDS of a signaling protocol, we initially consider using Session
Initiation Protocol (SIP). SIP [83] is an IETF [39] protocol specification for session
signaling in client-server-based architectures.

At the beginning of this Thesis, there were no other publications that integrated
SIP and DDS. In [51] we proposed a basic DDS-SIP gateway to connect remote DDS
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domains. This was the first publication that defined the concept of DDS session.
This work defined DDS session as a logical channel that connects two remote DDS
domains. However, we finally decided to use RELOAD –a P2P approach– instead of
SIP –a client-server approach– because it provides greater scalability.

We can find another example of SIP-DDS integration in [26]. This paper pro-
poses a system that integrates SIP and DDS for supporting DDS-based applications
over QoS-enabled IP WANs. It also defines an extension to Session Description Pro-
tocol (sdp) that supports the media description of DDS sessions. As a downside,
this solution is limited by the client-server architecture SIP is bound to.

1.5 Main contributions

The main contributions of the Thesis are:

1. The design, implementation, and performance evaluation of a DDS data-space
Interconnection Service (DDS-IS).

2. A study of the impact of DDS-IS in QoS enforcement.

3. The definition of universal identifiers for DDS domains and topics.

4. The design of a DCPS-oriented protocol for session establishment, Data-Centric
SIP (DCSIP).

5. The design, implementation, and evaluation of a new RELOAD usage for pro-
viding DCPS entity and data-content discovery.

We definitively believe these contributions constitute an important step toward
making DDS a mature and seamless technology, aligned with the envisaged named-
based Internet.

1.5.1 Published works

Part of our work is already available to the research community through several
publications in indexed journals and conference proceedings. In addition, as a re-
sult of the conducted work we have applied for a patent that is currently being
pursued by Real-Time Innovations Inc.

Contributions directly related to this Thesis:
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1. G. Pardo-Castellote, F. Sanchez, and J. M. Lopez-Vega, ”Deploying DDS on
a WAN and the GIG: The DDS router,” in Real-time and Embedded Systems
Workshop. OMG, Jul. 2009. [Online]. Available: http://www.omg.org/news/
meetings/GOV-WS/pr/rte.htm [76]

2. J. M. Lopez-Vega, J. Povedano-Molina, and J. M. Lopez-Soler, ”DDS/SIP inter-
working: A DDS-SIP gateway,” in Real-time and Embedded Systems Workshop,
May 2010. [Online]. Available: http://omg.org/news/meetings/SMCS/rt/

pr/pdf/Lopez-VegaPovedano-MolinaLopez-Soler_DDS-SIP.pdf [51]

3. A. De-Campos-Ruiz, G. Pardo-Castellote, J. M. Lopez-Vega, and F. Crespo-
Sanchez, ”Patent US20110295923 - bridging data distribution services do-
mains based on discovery data,”, May 2011. [Online]. Available: http://

www.google.com/patents/US20110295923 [18].

4. J. M. Lopez-Vega, J. Povedano-Molina, G. Pardo-Castellote, and J. M. Lopez-
Soler, ”A content-aware bridging service for publish/subscribe environments,”
Journal of Systems and Software, vol. 86, no. 1, pp. 108-124, Jan. 2013. [On-
line]. Available: http://dx.doi.org/10.1016/j.jss.2012.07.033 [53]

5. J. Jimenez, J. M. Lopez-Vega, J. Maenpaa, and G. Camarillo, ”A constrained
application protocol (CoAP) usage for REsource LOcation and discovery (RE-
LOAD),” Working Draft, IETF Secretariat, Fremont, CA, USA, Feb. 2013. [On-
line]. Available: http://rfc-editor.org/internet-drafts/draft-jimenez-
p2psip-coap-reload-03.txt [45]

Other contributions partially related to this Thesis:

1. J. M. Lopez-Vega, J. Sanchez-Monedero, J. Povedano-Molina, and J. M. Lopez-
Soler, ”QoS policies for Audio/Video distribution over DDS middleware,” in
Workshop on Distributed Object Computing for Real-time and Embedded Systems,
Jul. 2008. [Online]. Available: http://omg.org/news/meetings/workshops/
rt_embedded_2008.htm [50]

2. J. Sanchez-Monedero, J. Povedano-Molina, J. M. Lopez-Vega, and J. M.
Lopez-Soler, ”An XML-based approach to the configuration and deployment
of DDS applications,” in Workshop on Distributed Object Computing for Real-
time and Embedded Systems, Jul. 2008. http://omg.org/news/meetings/

workshops/Real-time_WS_Final_Presentations_2008/Session2/02-

03_Monedero_et_al.pdf [91]

3. J. M. Lopez-Vega, J. Povedano-Molina, J. Sanchez-Monedero, and J. M. Lopez-
Soler, ”Politicas de QoS en una plataforma de trabajo colaborativo sobre mid-
dleware DDS,” in XIII Jornadas de Tiempo Real, Feb. 2010. [52]

http://www.omg.org/news/meetings/GOV-WS/pr/rte.htm
http://www.omg.org/news/meetings/GOV-WS/pr/rte.htm
http://omg.org/news/meetings/SMCS/rt/pr/pdf/Lopez-VegaPovedano-MolinaLopez-Soler_DDS-SIP.pdf
http://omg.org/news/meetings/SMCS/rt/pr/pdf/Lopez-VegaPovedano-MolinaLopez-Soler_DDS-SIP.pdf
http://www.google.com/patents/US20110295923
http://www.google.com/patents/US20110295923
http://dx.doi.org/10.1016/j.jss.2012.07.033
http://rfc-editor.org/internet-drafts/draft-jimenez-p2psip-coap-reload-03.txt
http://rfc-editor.org/internet-drafts/draft-jimenez-p2psip-coap-reload-03.txt
http://omg.org/news/meetings/workshops/rt_embedded_2008.htm
http://omg.org/news/meetings/workshops/rt_embedded_2008.htm
http://omg.org/news/meetings/workshops/Real-time_WS_Final_Presentations_2008/Session 2/02-03_Monedero_et_al.pdf
http://omg.org/news/meetings/workshops/Real-time_WS_Final_Presentations_2008/Session 2/02-03_Monedero_et_al.pdf
http://omg.org/news/meetings/workshops/Real-time_WS_Final_Presentations_2008/Session 2/02-03_Monedero_et_al.pdf


1.6. Document structure 29

4. J. Povedano-Molina, J. M. Lopez-Vega, J. Sanchez-Monedero, and J. M. Lopez-
Soler, ”Instant messaging based interface for data distribution service,” in XIII
Jornadas de Tiempo Real, 2010. [79]

5. J. Povedano-Molina, J. M. Lopez-Vega, and J. M. Lopez-Soler, ”EMDS: an ex-
tensible multimedia distribution service,” in Real-time and Embedded Systems
Workshop, May 2010. [Online]. Available: http://omg.org/news/meetings/

SMCS/rt/pr/pdf/Povedano-MolinaLopez-VegaLopez-Soler_EMDS.pdf [78]

6. J. Sanchez-Monedero, J. Povedano-Molina, J. M. Lopez-Vega, and J. M. Lopez-
Soler, ”Bloom filter based discovery protocol for DDS middleware,” Journal of
Parallel and Distributed Computing, vol. 71, no. 10, pp. 1305-1317, May 2011.
[Online]. Available: http://dx.doi.org/10.1016/j.jpdc.2011.05.001 [92]

7. J. M. Lopez-Soler, J. M. Lopez-Vega, J. Povedano-Molina, and J. J. Ramos-
Munoz, ”Performance evaluation of Publish/Subscribe middleware technolo-
gies for ATM (air traffic management) systems,” in Workshop on Real-time, Em-
bedded and Enterprise-Scale Time-Critical Systems, 2012. [49]

1.6 Document structure

The remainder of the document is organized as follows.

In Chapter 2 we study the technologies that provided the starting point of this
Thesis.

We have divided the proposed solution in three chapters that correspond to the
division described in Section 1.3. Each one of these chapters includes its own in-
troduction, motivating use cases, design, experiments, results, discussion of results,
and conclusions. This structure eases the reading of the document, as each chapter
is self-contained.

In particular, Chapter 3 includes the design, implementation, and performance
evaluation of a DDS data-space Interconnection Service; it also includes an study of
the impact of this service in QoS enforcement.

In Chapter 4 we present the design of a DCPS-oriented protocol for session es-
tablishment, named DCSIP.

In Chapter 5 we present the design, implementation, and evaluation of a new
usage for RELOAD that provides DCPS entity and data-content discovery.

Finally, in Chapter 6 we discuss related work, and in Chapter 7 we summarize
the main conclusions of our work.
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Chapter 2
Background

In this chapter we study the technologies that provided the starting point of this
Thesis.

First, we study the publish-subscribe interaction model, which is an alternative
to the request-response model. In particular, we study the DDS specification, which
is a standardized publish-subscribe middleware for data dissemination on real-time
distributed systems.

Regarding signaling and resource discovery, we study SIP, an application pro-
tocol for session signaling, and RELOAD, a standardized P2P-based framework for
highly scalable resource discovery.

Finally, we introduce CoAP, a HTTP-inspired protocol for exchange data-content
between highly constrained devices.

2.1 Publish-subscribe interaction model

Over the last few years, publish-subscribe communication systems are gaining mo-
mentum and popularity, as verified beyond doubt by the existence of successful
projects like PSIRP [20] [22], and PURSUIT [82], which is a continuation of PSIRP.
These projects are aimed to define a future publish-subscribe-based Internet that
substitutes the current Internet design, based on TCP/IP [101].

In contrasts to the request-response interaction model, in which a client sends
a request and a server returns a response, in the publish-subscribe interaction model
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Figure 2.1: Request-response and publish-subscribe interaction models.

information producers (publishers) are decoupled from information consumers (sub-
scribers) via the publish-subscribe service. Publishers generate events or update a
shared information space, subscribers express their interest in certain patterns of
events or parts of the information space, and the publish-subscribe service delivers
the desired information from publishers to subscribers. (see Figure 2.1 [48]).

The key feature of publish-subscribe-based architectures is that information con-
sumers (subscribers) and information producers (publishers) are triply decoupled
[21].

In particular, publish-subscribe applications are decoupled in space (publishers
and subscribers can be located anywhere), in time (there is no need of simultane-
ous end-point availability), and in synchronization/flow (publishers are not blocked
while producing events, and subscribers can get notified about the occurrence of
some event while performing some concurrent activity).

We can classify publish-subscribe systems according to the mechanism that they
use for specifying what are the events of interest [21] (i.e., the scheme). The most
widely used schemes are topic-based, content-based, and type-based. In topic-
based schemes, events are classified according to a label, the topic. In content-based
schemes, events are classified using the content of the events. Finally, in type-based
schemes, events are distinguished according to their structure.

Several MOM [7] implementations, which are based on asynchronous message-
passing, use the publish-subscribe model for exchanging data. For example, JMS
[74] and AMQP [3] are MOM-based technologies that allow applications to deliver
messages using a publish-subscribe approach.

Other relevant approaches are also remarkable. For instance, [96] and [95] pro-
pose a publisher-subscriber architecture for distributed real-time systems based on
CORBA middleware [68], and [107] proposes an XML-based solution for deploy-
ing publish-subscribe systems. Another relevant work is SIENA [12], a publish-
subscribe event notification service which was studied in Section 1.4.2.

Directly related to our work, the authors of [75] [93] propose DDS, a middleware
that provides data-centric publish-subscribe content distribution. In the next sec-
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tion we study OMG DDS, which is the standard specification for this middleware.

2.2 Data Distribution Service (DDS)

DDS [67] is a specification adopted by the OMG [73]. DDS standardizes DCPS com-
munications in distributed scenarios. For more information about the DCPS model,
please refer to Section 2.2.1.

Since the original DDS specification in 2004, several implementations of the
standard have appeared [72]: RTI Connext [89], a COTS implementation of DDS
which supports multiple languages and platforms; OpenSplice [81], a partially open
implementation of DDS which also supports multiple languages and platforms;
OpenDDS [62], an open source C++ implementation; MilSOFT DDS [61], a COTS
implementation of DDS; OCERA ORTE [63], an open source implementation of
RTPS 1.0.; CoreDX [105], a COTS implementation of the DDS specification; Inter-
COM DDS [47], an implementation of the DDS minimum profile; MicroDDS [30],
a DDS implementation for small devices, micro-controllers and embedded systems;
and BEE-DDS [100], a Java implementation of the OMG DDS standard.

Over the last few years, DDS has been deployed in many contexts ranging from
mission critical systems to financial environments [85] [86] [19] [87] [80]. All these
scenarios have in common that different collocated entities exchange data sam-
ples coming from different sources (for example, position sensors, stocks, etc.) in
a well controlled environment (i.e., a data-space). In addition, this information is
exchanged with certain guarantees such as reliability or deterministic time-delivery.

DDS uses a data-centric publish-subscribe model along with a rich set of QoS
profiles that can be tuned to fit the communication demands of each specific sce-
nario.

DDS specification defines two different interface levels [75] and an interoper-
ability layer [69]:

• The Real-time Publish-Subscribe Wire Protocol DDS Interoperability Wire
Protocol (DDS-RTPS) interoperability layer. This layer is based on the Real
Time Publish Subscribe (RTPS) protocol, and allows different DDS implemen-
tations to interoperate. This layer defines the discovery protocol, data repre-
sentation format, and message format DDS applications must use in order to
interoperate.

• The mandatory Data-Centric Publish-Subscribe (DCPS) interface level. This
defines a programming model and API for developing applications using a
data-centric publish-subscribe approach.
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• The optional Data Local Reconstruction Layer (DLRL) interface level. This
layer acts as an interface between the application layer and the DCPS layer.
DLRL is object oriented and was specified to ease the integration of DCPS in
user applications. This level allows developers to access to DDS data-content
through object attributes.

In what follows under this section, we focus on studying the DCPS layer and the
DDS-RTPS protocol, which have a key role in our research.

2.2.1 Data Centric Publish Subscribe layer (DCPS)

The DCPS layer specification [67] defines the Data-Centric Publish-Subscribe
(DCPS) programming model and its associated API for developing distributed
applications. DCPS programming model is based in two main concepts: data-
centricity and publish-subscribe.

Data-centric oriented middleware, such as DDS, contrasts with MOM in that
message content is not opaque to the middleware. Using the functionality provided
by the DCPS layer, DDS is able to interpret exchanged data-samples. In this way,
DDS is able to provide advanced functionalities such as data-caching or content-
based-filtering.

The DCPS programming and communication model is based on the publish-
subscribe paradigm, and therefore DCPS-based applications are decoupled in space,
time, and synchronization.

In addition, DCPS-based applications are also decoupled in platform: DCPS de-
velopers can deploy distributed systems using diverse operating systems, hardware
architectures, and languages.

The DCPS layer defines the following concepts:

Data-space: Also known as domain, it is an aggregation of data of different data-
types and sources. More precisely, a data-space is a distributed cache, whose content
is accessed and updated by subscribers and publishers.

Topic: A portion of a data-space that groups data of the same data-type. Al-
though we could think that DDS uses a topic-based scheme, this is not strictly true,
since topics are usually associated to a type, which is typical of type-based schemes.
Moreover, DDS supports the use of content-based filtering, which is a typical char-
acteristic of content-based schemes.

Publisher: An entity that pushes data-content updates to one or more topics.

Subscriber: An entity that is interested in data-content updates from one or
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Figure 2.2: DDS concepts and entities.

more topics.

According to DCPS, publishers and subscribers exchange data-content within a
particular shared data-space. DDS applications access and update the data-content
in this data-space using topic-specific endpoint entities, respectively called DRs and
DWs. Applications access to all these entities through DomainParticipants, which
are the interface between applications and DDS data-spaces.

Under the DCPS model, when a publisher wants to update data-content belong-
ing to certain topic, the middleware assumes responsibility for managing its deliv-
ery to the proper interested peers (i.e., to the associated subscribers). As a result,
since DDS relieves the application from burden of transmitting and managing the
data, the application logic is drastically simplified. Figure 2.2 illustrates main DDS
concepts and relationships.

DDS states that within a data-space data objects are completely identified by
a topic name, a data-type, and optionally by a key. This key is useful to identify
different instances of the same topic.

In order to exchange data-content, DWs and DRs (referred to as endpoints) have
to find compatible endpoints. The process of finding compatible entities is known
as discovery. DDS performs discovery using a set of built-in publications (i.e., a set
of mandatory-to-implement publications), which are handled using the so-called
Built-in DataReaders (B-DRs) and Built-in DataWriters (B-DWs) (see Figure 2.3).

The discovery function allows DDS applications to automatically discover avail-
able (and compatible) publications and subscriptions.

Another feature of DCPS is the support of QoS policies. A QoS policy repre-
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sents an agreement among a group of DDS entities. This agreement determines
the behavior of the middleware, and releases the application logic of certain tasks,
such as communication reliability. In case of QoS infringement, DDS detects it and
optionally triggers proper actions. Each DDS entity has its own QoS policies and
data-caching attributes. As an example, a DW and a DR can negotiate the level of
reliability of the communications (best effort or reliable delivery) by using the RE-
LIABILITY QoS. It is also possible to guarantee a maximum period between data
updates (DEADLINE QoS), or to filter samples according to their content or timing.

2.2.2 Real-time Publish-Subscribe Wire Protocol DDS Interoper-
ability Wire Protocol (DDS-RTPS)

The original DDS specification did not enforce any particular lower level implemen-
tation requirement or recommendation, such as the use of a particular underlying
transport protocol. For the sake of vendors interoperability, the OMG defined the
so-called Real-Time Publish-Subscribe Wire Protocol Real-time Publish-Subscribe
Wire Protocol DDS Interoperability Wire Protocol (DDS-RTPS) [69].

DDS-RTPS is based on Real-Time Publish-Subscribe (RTPS), a protocol origi-
nally approved by the International Electrotechnical Commission (IEC) [32] as part
of the Real-Time Industrial Ethernet Suite IEC-PAS-62030 [31]. After applying
some modifications, the OMG adopted RTPS as the standard wire protocol for DDS.
DDS-RTPS specifies the data representation, message format, and discovery proto-
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col that DDS implementations must use in order to interoperate.

In order to exchange data-content, DDS entities must discover each other. DDS
includes a discovery mechanism. DDS discovery is the process used by the publish-
subscribe service to find the entities which share a particular topic and meet a set
of QoS requirements. One of the goals of DDS-RTPS is to allow entities belonging
to different DDS implementations to perform discovery. DDS-RTPS discovery re-
utilizes most of the existing DDS core entities. Specifically, the correspondence
between DDS-RTPS and DDS entities is shown in Table 2.1.

Table 2.1: Correspondence DDS and DDS-RTPS entities.

DDS entity DDS-RTPS entity

DomainParticipant Participant

DataWriter Writer

DataReader Reader

Built-in DataWriter ENTITYID SPDP BUILTIN * WRITER

Built-in DataReader ENTITYID SPDP BUILTIN * READER

According to DDS-RTPS, any discovery protocol must include the following
phases: Participant Discovery Protocol (PDP) and Endpoint Discovery Protocol
(EDP). The purpose of PDP is to discover new participants in the data-space. When-
ever a new participant is discovered, the EDP procedure is triggered to exchange
local and remote endpoints information between two participants.

Different implementations may choose to support multiple PDPs and EDPs, pos-
sibly vendor-specific. As long as two participants have at least one PDP and EDP in
common, they can exchange the required discovery information.

For the sake of interoperability, every DDS-RTPS implementation must support
at least the SDP. This protocol consist of the Simple Participant Discovery Protocol
(SPDP) as PDP protocol, and the Simple Endpoint Discovery Protocol (SEDP) as
EDP protocol.

Figure 2.4 depicts the typical SDP sequence diagram. It consists of the following
phases:

Bootstrapping: SDP discovery starts using a list of known hosts. This list contains
the locators (typically unicast or multicast Internet Protocol (IP) addresses)
for which a participant will announce its presence. Alternatively, if there are
no specified IP addresses, default addresses will be used. Both options can be
used together.
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Figure 2.4: SDP sequence diagram.

Participant Announcement: Using the list of nodes obtained during bootstrap-
ping, participants start the process of discovering other participants. This dis-
covery, restricted to participants in the same DDS domain, is done via SPDP.

In SPDP, nodes periodically send a special message called SPDPdiscoveredPar-
ticipantData or simply Participant DATA. If multicast is available, each partic-
ipant sends a unique Participant DATA message.

When a participant receives a Participant DATA message, it sends back another
Participant DATA with its own information. Then, the participant stores the
received participant information locally.

Participant DATA contains information for establishing communication be-
tween two participants, that is, information related to the protocol version,
vendor identification, unicast and multicast locators (transport protocol to
use, IP address and port combinations), and information about how to track
participant liveliness. Also, the information specifies what EDPs the remote
participant supports.

Endpoint Announcement: Once a participant checks that the remote participant



2.2. Data Distribution Service (DDS) 39

participant A DATA

Node A Node B

participant B DATA

DataWriter A1 created
DataWriter A2 created

DataWriter An created

Participant DATA heartbeat / BF Refresh period

participant A Bloom filter

Participant DATA heartbeat / BF Refresh period

Participant DATA heartbeat / BF Refresh period

participant A Bloom filter

DataWriter A3 created

                   participant A BF

B creates A2, A4 and F subscriptions
B can match A1-N topics, topic F is a false positive

...

B can not match any topic

B deduces it was a false 
possitive and annotates it

Subscribe A2

Subscribe A4

Subscribe F

   I have not F

B matchs A2, A4, F and tries to 
subscribe A2,A4,F

Node B's storage

SDP SDPBloom

● Participant A whish to inform about its 
Endpoints

● Participant B whish to mach A2, A4 and F
● We omit PDP information
● The HB is the same for both Participants

Network messages

SDPBloom 
filter

SDP

SDPBloom 
matched 
Endpoints
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supports SEDP, they exchange endpoint information. Endpoint information
consists of a topic name, a topic type, and a set of QoS parameters. Using
this information, each participant checks if local and remote endpoints are
compatible, and if so, they start a publish-subscribe communication.

2.2.3 SDP Bloom

In this section we introduce SDP-Bloom, an alternative SDP that helps to under-
stand the flexibility and potential of the DDS-RTPS specification.

Due to the pure distributed nature of SDP, each participant stores information
about discovered participants, associated publications, and subscriptions in a local
database. According to SEDP, each participant sends the description of its associ-
ated endpoints to every discovered remote participant. Therefore, each participant
receives all the discovered participants’ endpoint information, which can generate
a high number of messages.

In this regard, in [92] we proposed a new discovery protocol for DDS, the SDP-
Bloom. Figure 2.5 depicts the typical SDP-Bloom discovery sequence diagram. Dur-
ing PDP phase, participants using SDP-Bloom send a Bloom-filter summarizing
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their associated endpoint information. This allows participants to avoid performing
the EDP discovery phase when the received remote participant’s Bloom filter does
not match with any of the local endpoints.

In this way, SDP-Bloom takes advantage of using Bloom-filters for reducing the
network overhead in terms of number of messages and total traffic, at the cost of
a small false positive endpoint matching rate. For a more in depth study of SDP-
Bloom functionality and its impact on DDS performance, please refer to [92].

2.2.4 Extensible Topic Types

As mentioned before, the DDS specification states that a topic has an associated
data-type. However, binding a data-type with a publication:

• hinders system evolution and backward compatibility

• makes impossible to use a priori unknown data-types

• prevents from maintaining different data-types views

The OMG has recently standardized the DDS-XTypes specification [71]. This spec-
ification, among other features, relaxes the requirement of using compilation time
static topic data-types.

The use of static topic data-types is simple, efficient, and provides compile-time
type-safety. However, it requires types to be known a priori and compiled into the
code. This characteristic prevents the implementation of generic bridging services
for DDS, such as the one proposed in Chapter 3. In this regard, the main functional-
ity of a bridging service is to subscribe to certain data-content in a data-space and to
publish the received data-content to a different data-space. The use of static topic
data-types requires developers to declare the data-types that the bridging service
will use for each data-space. Consequently, it is not possible to implement a generic
DDS bridging service (i.e., one that accepts topics of any data-type) by using static
topic data-types.

In DDS, type schemas –that is, the names and definitions of a type and its fields–
are represented by TypeObjects. A TypeObject consists of a TypeObjectKind and a list
of members.

In addition to using locally serialized TypeObjects, the DDS-XTypes specification
states that a serialized form of these (called DataRepresentation) must also be pub-
lished (and therefore can be received) automatically during DDS discovery.
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This mechanism allows applications to dynamically discover topic data-types.
Once the types have been discovered, participants can use the DDS Dynamic Topic
Types API (also defined in the DDS-XTypes specification) to publish and to subscribe
to topics of types unknown at compilation time.

Since the OMG has recently published the final version of the specification, some
of the results presented in this Thesis (in particular, the ones presented in Chapter
3) are based on the current (and preliminary) version of the specification.

2.3 Session Initiation Protocol (SIP)

SIP [83] is an IETF [39] protocol specification. SIP was originally specified within
the Multiparty MUltimedia SessIon Control working group (MMUSIC WG) [33],
and later within the Session Initiation Protocol working group (SIP WG) [34] and
the Session Initiation Protocol Project INvestiGation working group (SIPPING WG)
[35]. Currently, the Session Initiation Protocol Core working group (SIPCore WG)
[37] is maintaining and continuing the development of the core SIP specifications.

SIP is an application-layer signaling protocol for creating, modifying, and ter-
minating sessions with one or more participants. These sessions usually include
VoIP calls, multimedia streaming, and multimedia conferences. SIP also provides a
registration function that allows users to upload their current location.

In this section we study the fundamentals of SIP, which is one of the protocols
our work is based on. In this regard, in Chapter 4 we propose a protocol for session
signaling in data-centric publish-subscribe environments; and in Chapter 5 we pro-
pose an extension to RELOAD, which is a specification originally [44] conceived as
an evolution of SIP.

2.3.1 Overview of SIP functionality

SIP is an application-layer signaling protocol that can establish, modify, and termi-
nate multimedia sessions (conferences) such as Internet telephony calls or videocon-
ferences, among others. In this regard, SIP supports sdp, a protocol for describing
the details of the session, such as the type of media, codec, or sampling rate.

SIP dynamically manages sessions –such as multicast conferences– that is, it al-
lows applications to invite participants to already existing sessions. In addition,
it allows to negotiate and add (or remove) new media and formats to an existing
session.

SIP transparently supports name mapping and redirection services, which en-
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ables personal mobility. The SIP architecture –originaly designed with a client-
server model– also defines application servers to make the session highly config-
urable.

SIP supports five facets of establishing and terminating multimedia communi-
cations:

• User location: determination of the end system to be used for communication.

• User availability: determination of the willingness of the called party to en-
gage in communications.

• User capabilities: determination of the media and media parameters to be
used.

• Session setup: ”ringing”, establishment of session parameters at both called
and calling party.

• Session management: including transfer and termination of sessions, modi-
fying session parameters, and invoking services.

From the previous facets, in next sections we focus on user location, session
setup, and session management; which are the facets this Thesis is focused on.

2.3.2 Basic concepts of SIP

The following terms have special significance for SIP [83]:

• Address-of-Record: A SIP or SIPS Uniform Resource Identifier (URI) that
points to a domain with a location service. It can map the URI to another
URI where the user might be available. Typically, the location service is pop-
ulated through registrations. An address-of-record is frequently thought of as
the ”public address” of the user.

• Message: Data sent between SIP elements as part of the protocol. SIP mes-
sages are either requests or responses.

• Method: The method is the primary function that a request is meant to invoke
on a server. The method is carried in the request message itself. INVITE and
BYE are SIP method examples.

• Request: A SIP message sent from a client to a server, for the purpose of in-
voking a particular operation.
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• Response: A SIP message sent from a server to a client, for indicating the
status of a request sent from the client to the server.

• Session: From the sdp specification [40]: ”A multimedia session is a set of
multimedia senders and receivers and the data streams flowing from senders
to receivers. A multimedia conference is an example of a multimedia session”.

• SIP URI and SIPS URI: A SIP URI is a URI that identifies a communications
resource. SIPS URIs use the same syntax than SIP URIs, but they specify that
the resource must be contacted securely using Transport Layer Security (TLS)
[6].

• User Agent Client (UAC): A logical entity that creates a request, and then
uses the client transaction state machinery to send it. The role of UAC lasts
only for the duration of that transaction. In other words, if a piece of software
initiates a request, it acts as a UAC for the duration of that transaction. If it
receives a request later, it assumes the role of a User Agent Server (UAS) for
the processing of that transaction.

• User Agent Server (UAS): A logical entity that generates a response to a SIP
request. The response accepts, rejects, or redirects the request. This role lasts
only for the duration of that transaction. In other words, if a piece of software
responds to a request, it acts as a UAS for the duration of that transaction. If
it generates a request later, it assumes the role of a UAC for the processing of
that transaction.

• User Agent (UA): A logical entity that can act as both a UAC and UAS.

2.3.3 User location

SIP offers a discovery capability [83]. In this regard, whenever a user wants to initi-
ate a multimedia session, SIP discovers the current host(s) at which the target user
is reachable. This is similar to the DDS discovery previously studied, where DDS
entities (instead of users) discover compatible entities for exchanging DDS data-
samples. In this regard, DDS application developers can take advantage of SIP lo-
cation service for performing DDS discovery as we will see in Chapter 6.

According to the Request For Comments (RFC) [83], the discovery process is fre-
quently accomplished by SIP network elements, such as proxy servers and redirect
servers, which are responsible for receiving a request, determining where to send it
–based on knowledge of the location of the user– and then sending it there.

To do this, SIP network elements consult an abstract service known as location
service, which provides address bindings for a particular domain. These address
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bindings map an incoming address-of-record (e.g., sip:bob@biloxi.com) to one or
more URIs that are somehow closer to the desired user (e.g., sip:bob@engineering.
biloxi.com). Ultimately, a proxy will consult a location service that maps a received
URI to the UA(s) at which the desired recipient is currently residing.

Registration creates bindings in a location service for a particular domain. A
registration associates an address-of-record URI with one or more contact addresses.
Thus, when a proxy for that domain receives a request whose Request-URI matches
the address-of-record, the proxy will forward the request to the contact addresses
registered to that address-of-record.

There are many ways for establishing the contents of the location service. One
way is administratively. In the above example, an existing corporate database is the
source of the information about Bob. However, SIP provides a mechanism for a UA
to create a binding explicitly. This mechanism is referred to as registration.

Registration entails sending a REGISTER request to a special type of UAS known
as a registrar. A registrar acts as the front end to the location service for a domain,
reading and writing mappings based on the contents of REGISTER requests. The
location service is then typically consulted by a proxy server that is responsible for
routing requests for that domain.

Figure 2.6 illustrates the overall registration process, where a user named carol
registers her location. Note that the registrar and proxy server are logical roles that
can be played by a single device in a network; for the sake of clarity the two are
separated in this illustration. Also note that UAs may send requests through a proxy
server in order to reach a registrar if the two are separate elements. In the figure we
can also observe how the proxy sip.chicago.com requests for carol’s location upon
bob’s INVITE request.

SIP does not mandate a particular mechanism for implementing the location
service. The only requirements are that a registrar for some domain must be able to
read and write data to the location service, and a proxy or redirect server for that
domain must be capable of reading those data.

A registrar may be co-located with a particular SIP proxy server for the same
domain.

The location service is just an abstract concept. It generally contains information
that allows a proxy to input a URI and receive a set of zero or more URIs. This
information indicates the proxy where to send the request.

Registrations are one possible way to create this location information, but not
the only one. Alternatively, the administrator can also configure arbitrary mapping
functions at his discretion.

sip:bob@biloxi.com
sip:bob@engineering.biloxi.com
sip:bob@engineering.biloxi.com
sip.chicago.com
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Figure 2.6: SIP registration and invitation example.

In addition, SIP registrations are not limited to only one device per user. For
instance, a single user can register to the same URI both his SIP phone at home and
the one in the office.

2.3.4 Session setup and management

According to the RFC [83], whenever a UAC desires to initiate a session (for exam-
ple, audio, video, or a game) it formulates an INVITE request (see Figure 2.7).

The INVITE request asks a server for establishing a session. This request may be
forwarded by proxies, eventually arriving at one or more UAS that can potentially
accept the invitation.

If the UAS accepts the session, it will send a 2xx response (which means success)
back to the UAC. If the the invitation is not accepted, the UAS will send a 3xx, 4xx,
5xx or 6xx response (which respectively mean redirection, client error, server error,
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Figure 2.7: SIP invitation dialog.

and global failure). For more information about SIP responses, please refer to the
RFC [83].

After possibly receiving one or more provisional responses, the UAC will get
one or more 2xx responses or one non-2xx final response. The the UAC sends an
ACK for every final response it receives. A 2xx response to an INVITE establishes
a session. It also creates a dialog between the UA that issued the INVITE and the
UA that generated the 2xx response. Therefore, when a UA receives multiple 2xx
responses from different remote UAs (because the INVITE forked), each one of these
2xx responses establishes a different dialog. However, all these dialogs are part of
the same call.

A UA that supports INVITE must also support ACK, CANCEL, and BYE; as they
are closely related to the INVITE request.
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ACK confirms the reception of a 2xx response. CANCEL requests for the cancel-
lation of an INVITE request. BYE requests for the finalization of an active session.

SIP also provides mechanisms for modifying an existing session. The modifi-
cation can involve changing addresses or ports, adding a media stream, deleting a
media stream, and so on. This is accomplished by sending a new INVITE request
within the same dialog that established the session. An INVITE request sent within
an existing dialog is known as a re-INVITE.

2.4 REsource LOcation And Discovery (RELOAD)

RELOAD [44] is an IETF protocol for building and maintaining P2P systems on
the Internet. It provides a generic, self-organizing overlay network service, allow-
ing nodes to efficiently route messages to other nodes and to efficiently store and
retrieve data in the overlay.

The working group responsible of the RELOAD specification is the Peer-to-Peer
Session Initiation Protocol working group (P2PSIP WG) [36]. The original name of
RELOAD was Peer-to-Peer Session Initiation Protocol (P2P-SIP).

P2P-SIP was initially conceived as an evolution of SIP that replaced the relatively
fixed hierarchy of SIP servers with a P2P overlay network [9]. The main objective
of P2P-SIP was to increase the scalability of SIP by taking advantage of using a P2P
approach instead of a client-server one. In this regard, the authors of [66] propose a
mechanism for eliminating the need for the sign-up process and the servers for this
purpose.

RELOAD’s original usage was focused on providing user registration, call setup,
and instant messaging [99] [8]. In subsequent versions of the specification RELOAD
was generalized in order to provide a P2P-based resource location and discovery
service to any application (instead of only supporting the ones based on SIP).

2.4.1 Main features

RELOAD provides several features that are critical for a successful P2P protocol for
the Internet [44] :

- Security framework: P2P networks are often established among untrusted
peers. RELOAD leverages a central enrollment server to provide credentials for
each peer which can then be used to authenticate each operation. These credentials
consist of a certificate assigned to each node that joins the overlay.



48 Chapter 2. Background

- NAT Traversal: RELOAD is designed to function in environments where many
(if not most) of the nodes are behind NATs or firewalls. RELOAD uses ICE [84] for
providing NAT traversal functionality.

- High Performance Routing: RELOAD has been defined with a simple, light-
weight forwarding header, thus minimizing the amount of effort required by inter-
mediate peers.

- Pluggable Overlay Algorithms: For the sake of extensibility, RELOAD de-
fines an abstract interface to the overlay layer to simplify implementing a variety
of structured and unstructured overlay algorithms. Additionally, RELOAD uses a
Chord-based Distributed Hash Table (DHT) [102] [103] as its default overlay algo-
rithm.

- Usage Model: RELOAD is designed to support a variety of (existent and fu-
ture) applications. RELOAD allows the definition of new application usages, each of
which can define its own data types, along with the rules for their use. In RELOAD,
a Kind is the definition of a data type and its accessing rules. Therefore, new usages
must define the Kinds they store in the RELOAD overlay.

These properties allow RELOAD to adapt to different scenarios, while providing
efficient and secure resource discovery.

2.4.2 Architecture and types of nodes

A RELOAD overlay instance consists of a set of nodes arranged in a partly connected
graph. Each node in the overlay is assigned a numeric Node-ID for the lifetime of
the node which determines –together with the specific overlay algorithm in use– its
position in the graph and the set of nodes it connects to. The Node-ID is also tightly
coupled to a certificate. Figure 2.8 shows a trivial example of RELOAD overlay
included in [44].

RELOAD defines two different types of nodes:

- Peer: A host that is participating in the overlay. Peers are responsible for hold-
ing some portion of the data that has been stored in the overlay and also route
messages on behalf of other hosts as required by the overlay algorithm.

- Client: A host that is able to store data in and retrieve data from the overlay
but does not perform routing or data storage for the overlay.
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+--------+ +--------+ +--------+

| Node 10|--------------| Node 20|--------------| Node 30|

+--------+ +--------+ +--------+

| | |

| | |

+--------+ +--------+ +--------+

| Node 40|--------------| Node 50|--------------| Node 60|

+--------+ +--------+ +--------+

| | |

| | |

+--------+ +--------+ +--------+

| Node 70|--------------| Node 80|--------------| Node 90|

+--------+ +--------+ +--------+

|

|

+--------+

| Node 85|

|(Client)|

+--------+

Figure 2.8: Trivial example of RELOAD overlay.

2.4.3 Operations

As a P2P protocol, RELOAD defines a set of operations for joining, leaving, and
maintaining the overlay. There are also operations for storing and retrieving data.

In addition, RELOAD defines two new operations for interacting with other over-
lay nodes: Attach and AppAttach.

Attach allows nodes to establish a direct TCP or User Datagram Protocol (UDP)
connection to other overlay nodes. This connection is a direct channel between two
Nodes exchanging RELOAD messages.

AppAttach is similar to Attach, but in this case nodes use the generated connec-
tion for exchanging application data (and not RELOAD traffic). In this sense, one
of the parameters of AppAttach is the Application-ID, which identifies connection’s
target application.

RELOAD nodes send both Attach and AppAttach requests using the destination
Node-ID (and not the IP address). In this sense, RELOAD allows nodes for estab-
lishing direct connections to any member of the overlay. This is feasible even if the
target node is behind a NAT.



50 Chapter 2. Background

+--------------------------------+

| Resource-ID |

| |

| +------------+ +------------+ |

| | Kind 1 | | Kind 2 | |

| | | | | |

| | +--------+ | | +--------+ | |

| | | Value | | | | Value | | |

| | +--------+ | | +--------+ | |

| | | | | |

| | +--------+ | | +--------+ | |

| | | Value | | | | Value | | |

| | +--------+ | | +--------+ | |

| | | +------------+ |

| | +--------+ | |

| | | Value | | |

| | +--------+ | |

| +------------+ |

+--------------------------------+

Figure 2.9: Example of data stored in RELOAD.

2.4.4 Data storage

RELOAD references the location of the data stored in the overlay by using an identi-
fier which is known as Resource-ID, and its format depends on the particular DHT
algorithm the overlay uses.

Each location in the overlay may contain data elements corresponding to multi-
ple Kinds. In addition, a resource location may contain multiple elements of a given
Kind. Each Kind is identified by a Kind-ID, which is a code point either assigned by
Internet Assigned Numbers Authority (IANA) or allocated out of a private range.
Figure 2.9 depicts an example of resource location [44].

The RELOAD specification defines the following data models for storing data,
though developers can define their own structures as part of a new RELOAD usage:

• single value: There can be at most one item in the set and any value overwrites
the previous item.

• array: Many values can be stored and addressed by a numeric index.

• dictionary: The values stored are indexed by a key. Often this key is one of
the values from the certificate of the peer sending the Store request.
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2.4.5 Usages

RELOAD’s original usage was focused in providing a rendezvous service for SIP. In
this way, communicating peers use RELOAD for establishing a connection, and then
they perform the usual SIP negotiation [43].

There are other RELOAD usages like [42], which allows federating different SIP
domains; or [27], which enables for managing the RELOAD overlay using Simple
Network Management Protocol (SNMP). However, there is still no usage for sup-
porting DDS.

2.5 Constrained Application Protocol (CoAP)

CoAP [97] is an ongoing IETF protocol specification. The working group respon-
sible of its specification is the Constrained RESTful Environments working group
(CoRE WG) [38].

According to the current IETF draft [97], CoAP is a specialized web transfer
protocol for use with constrained nodes and constrained (i.e., low-power, lossy) net-
works. CoAP provides a request-response interaction model between application
endpoints, supports built-in discovery of services and resources, and includes key
concepts of the Web such as URIs and Internet media types.

CoAP can be used not only between nodes on the same constrained network, but
also between constrained nodes and nodes on the Internet. The latter is possible
since CoAP can be translated to HyperText Transfer Protocol (HTTP) for integration
with the web.

Application areas of CoAP include different forms of Machine-to-Machine (M2M)
communication, such as home automation, construction, health care or transporta-
tion. Areas with heavy use of sensor and actuator devices that monitor and interact
with the surrounding environment.

Although CoAP is conceived for using a request-response interaction model, [29]
specifies a simple protocol extension for CoAP that enables CoAP clients to sub-
scribe to certain resources. Once a client subscribes to a particular resource, the
corresponding server will send notifications upon changes on the subscribed re-
source.





Chapter 3
DDS data-space Interconnection
Service (DDS-IS)

In this chapter, we consider the problem of communicating disjoint data-spaces
that may use different schemas to refer to similar information. In this regard, we
propose a DDS interconnection service capable of bridging DDS domains as well as
adapting between different data schemas. These features constitute a first step for
deploying DDS in large-scale deployments.

A key benefit of our approach is that is compliant with the latest OMG specifi-
cations, thus the proposed service does not require any modifications to DDS appli-
cations.

The chapter identifies the requirements for DDS data-spaces interconnection,
presents an architecture that responds to those requirements, and concludes with
experimental results gathered on our prototype implementation.

3.1 Motivation

DDS was originally designed for isolated LANs in which data sources (publishers)
and data consumers (subscribers) are located in the same geographical location.

Problems arise if a subscriber has interest in data being originated in a different
data-space, especially if that data-space is separated by a bandwidth-constrained
network. This is the case of a company that relies on DDS for delivering some data-



54 Chapter 3. DDS data-space Interconnection Service (DDS-IS)

content internally, and needs to share a subset of that data-content with another
company.

A simplistic solution to the previous use case would be to merge the two data-
spaces. That is, to implement a service that publishes and announces all the topics
from one data-space to the other. However, the direct merging of the data-spaces
would create some significant problems.

The first problem is related to scalability. Every publication available in one
data-space will be indiscriminately announced in the other data-space. This may be
wasteful in resources in situations where there are no consumers to that information
on the second data-space.

Other problems are concerned to data compatibility. For instance, each data-
space may have its own (possibly different) data model (i.e., data names, types,
and/or definitions). These models could be incompatible even if they refer to the
same data items. For example, temperature data might be expressed in Celsius in
one data-space and in Fahrenheit in the other one. Therefore, in order to keep the
end-to-end application logic unchanged, data should be automatically transformed
by the publish-subscribe infrastructure when bridging data-spaces with different
data models. As an additional benefit, this will ease the integration between new
and legacy DDS applications.

Access control and information confidentiality adds another dimension to this
problem: Some parts of the data should be confined in a data-space whereas other
data should be public.

Finally, another relevant issue is related to the possibility of having different de-
livery requirements for the information that flows between and within the different
interconnected data-spaces. For example, system administrators should be able to
establish the QoS requirements that domains must meet in order to be bridged.

In this chapter we propose a novel solution for inter-domain entity and data-type
signaling, and data-content exchange in DDS environments.

Our solution, named DDS-IS, is fully compatible with the current DDS standard
specification and allows for advanced content-centric operations, like content-based
filtering and data transformations.

DDS-IS establishes a content-aware interconnection service between different
data-spaces with the following distinctive features:

a) Scalability. The overall traffic load is drastically reduced in comparison with
direct data-space merging;

b) Data model compatibility and confidentiality. The seamless communication
between data-spaces with dissimilar data models (topics of different names or data-
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types) was not possible so far. DDS-IS solves this issue by properly transforming
and/or isolating topic samples, if necessary.

c) Delivery guarantees. DDS-IS establishes QoS requirements for bridged data-
spaces;

d) Standards compliance. The design of DDS-IS is fully compliant with the
OMG DDS specification, hence it is implementation agnostic.

e) Performance. Conducted experiments demonstrate that the impact of the pro-
posed service on communications performance is well within the acceptable limits
for most real-world uses of DDS.

The remainder of the chapter is organized as follows. In Section 3.2 we present a
motivating use case scenario for the proposed service. In Section 3.3 we identify the
service requirements. In Section 3.4 we describe the proposed DDS-IS architecture.
In Section 3.5 we study the interactions among DDS-IS architectural elements. In
Section 3.6 we include relevant implementation details. In Section 3.7 we address
the conducted experiments and analyze the obtained results. In Section 3.8 we con-
duct a study of the impact of the service in DDS QoS policies. Finally, in Section 3.9
we summarize the main conclusions of our work and discuss some open issues that
are treated in next chapters.

3.2 Motivating use case example

DDS is a middleware for solving information sharing and data-exchange on real-
time distributed systems. In this sense, DDS-based solutions are often deployed
in industrial and mission critical applications. Two problems associated to these
deployments are system heterogeneity and scalability.

As systems grow in complexity, incompatibility problems arise among different
software versions or among applications of different providers. In the same way, the
natural evolution of enterprises generates scalability problems, and it is necessary
to support bigger scenarios, perhaps even deployed among distant locations.

From these problems, it emerges the need of defining DDS bridging service that
improves DDS scalability and eases the interoperation of heterogeneous DDS-based
applications.

To identify the requirements of this service, we now detail a motivating scenario
that requires the functionality of a DDS bridging service.

Figure 3.1 includes an example deployment scenario for the DDS-IS. Specifi-
cally, this example shows how DDS-IS can be used in an olive oil factory. Although



56 Chapter 3. DDS data-space Interconnection Service (DDS-IS)

Figure 3.1: Example deployment scenario.

other scenarios are possible, this example illustrates the functionalities of the pro-
posed service.

The olive oil factory in our example generates data-content in two different en-
vironments, namely centrifugation system and storage system. In addition, there
is a third environment (accounting and general supervision system) that stores the
most relevant data-updates.

Decanter centrifugation is the part of olive oil production that separates olive
oil from vegetation water and solid materials. In order to produce high quality
oil, operators must control the centrifugation speed, centrifuge temperature, and
oil density. The centrifugation system of our example has three centrifuges. Each
one publishes viscosimetric information and temperature information (with a ratio
of one update per second). Each centrifuge is also subscribed to two topics: one
for controlling centrifugation speed, and other for controlling the input and out-
put valves. A local coordination node controls the decanter centrifugation system,
by subscribing to temperature and viscosimetric topics, and controlling centrifuge
speed and valves.

Storage is the part of olive oil production where the oil is stored until its bottling
and distribution. In order to conserve the quality of the oil, the system must monitor
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the pressure, temperature, humidity and light exposure of the storing tanks. In
our example, we have assumed three oil tanks. Each one of these tanks publishes
pressure, temperature, humidity, and light exposure information (with a rate of one
update per second), and subscribes to a valve control topic (i.e., three publishers
per topic for a total of 14 publishers, and three subscribers). A local coordination
node controls the valve status, and monitors published metrics (using four different
subscribers and one publisher). Local coordination node can react to received values
if necessary (for example, by activating a refrigeration system).

Although the generated data-content is mainly useful within its associated sys-
tem (centrifugation or storage), the administrators of this factory want to store the
most relevant events of each system in a central data-base, generating alerts if cer-
tain trigger values are reached. However, administrators do not want to modify
either the current sensor deployment or the local coordination nodes logic. More-
over, it is desirable to keep the data-content of each system isolated (in order to
avoid overflowing local networks with unnecessary information).

Figure 3.1 presents a solution to the described scenario requirements. In partic-
ular, this solution is based on deploying two DDS-IS nodes: one for bridging and
filtering data-content from the storage system (i.e., from LAN A to LAN C), and the
other for bridging and filtering data-content from the centrifugation system (i.e.,
from LAN B to LAN C). Using this deployment, DDS-IS nodes bridge only relevant
data-samples to the accounting and general supervision system, while they avoid
overflowing storage and centrifugation systems with unnecessary updates.

3.3 Requirements

From the previous example, we identify the following requirements that are not
currently covered by DDS, and which the proposed service must fulfill:

R1: Domain bridging. DDS-IS must connect different DDS data-spaces. These
data-spaces are groups of publishers and subscribers that exchange data using com-
patible DDS middleware implementations and transport configuration.

R2: Topic bridging. DDS-IS must connect different DDS topics. A topic has as-
sociated a data-type. Consequently, in order to bridge different topics our service
must be able to adapt data-samples between different data-schemas.

R3: Type-based transformations. In order to adapt data-samples between different
data-schemas, DDS-IS must be able to perform type-based data transformations.
As an additional requirement, the service must allow users for defining their own
transformations.
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R4: Content-based filtering. DDS-IS must be able to use samples’ content for
determining if a sample should be bridged, or silently dropped such that it does not
flow through the bridge.

R5: QoS policies consistence. DDS-IS must be compatible with existent DDS QoS
profiles. DDS-IS must allow administrators for establishing what QoS requirements
domains must met in order to be bridged. The service must ensure that the QoS
policies of the interconnected entities are fully compatible with the ones configured
for the DDS-IS. In addition, DDS-IS must allow administrators for integrating data-
spaces with different (perhaps even incompatible) sets of QoS.

R6: Transparency. DDS-IS must not require modifications to existing DDS appli-
cations. This feature will enable legacy and new DDS applications to communicate
through the proposed service. In this sense, our service will be an interoperability
solution for connecting dissimilar data-spaces.

R7: Standards compliance. DDS-IS must be compliant with DDS standards fam-
ily. This will ensure the interoperability of the service with any DDS-compliant
middleware implementation.

R8: Performance and scalability. DDS-IS must have a low impact on DDS appli-
cations performance, mainly in terms of latency overhead. In addition, the system
should improve DDS deployments scalability in terms of overall network traffic
load.

R9: Information confidentiality. DDS-IS must provide mechanisms for filtering
out sensitive information from bridged data-samples. Specifically, DDS-IS must be
able to use data-samples’ content for determining what data-samples should be dis-
carded (this functionality is covered by R4). DDS-IS must also be able to selectively
filter specific data-sample fields (instead of the whole sample) using the functional-
ity covered by R3.

In the following section we describe the architecture of our system, which satis-
fies the identified requirements.

3.4 Internal architecture

DDS-IS architecture adopts a layered design based on the following motivations.
First, it increases system modularity, by allowing the specific implementation of
each layer to be changed without impacting the rest of the layers.

Second, it allows existing applications to remain independent of new proposed
DDS-IS entities while benefiting from the service.
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Figure 3.2: Layered DDS-IS architecture.

And third, it simplifies the overall understanding of the system, because it clas-
sifies entities of different functionality in different layers.

Figure 3.2 depicts the architecture of our solution. It can be seen as composed
of a set of components located on different nodes. The components of each node
are arranged in four layers, namely, application, routing, pub/sub, and network
layer. In the following subsections we explain the functionality of each layer and its
contained components.

3.4.1 Application layer

The application layer is the topmost layer of our architecture, and it is populated
by DDS applications. These applications exchange information through DDS data-
spaces by means of the underlying DDS middleware.

In our design, entities on this layer do not communicate directly with the rout-
ing layer. Instead, applications exchange data through the pub/sub layer using the
existing standard DDS API (i.e., in the same way as if the DDS-IS was not present).
This feature allows applications to remain independent of the DDS-IS, and there-
fore they do not require any changes.

DDS-IS operation is totally transparent to the application layer. From the per-
spective of application layer entities, the only noticeable change is the increase in
the data-content that they can access. This is because the DDS-IS enables the inter-
operation of applications associated with different data-spaces (i.e., different DDS
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domains), virtually combining the content of the involved data-spaces.

The DDS-IS also enables applications with different data models to exchange
data-content. This is provided by the ability of the DDS-IS to transform data on
the fly. Again, these transformations are independent of the application layer, and
therefore existing applications require no modifications for benefiting from the in-
terconnection service.

As we have stated before, our solution does not modify the interactions between
applications and DDS data-spaces. This is also valid for DDS compatibility checks.
In this sense, if a DW (e.g. an application DW) and a DR (e.g. a DDS-IS DR)
determine that they are not fully compatible (by performing the necessary DDS
discovery-checks), they will not start exchanging data-content. Consequently, in or-
der to bridge two applications with different data-types, or associated to different
data-spaces, the DWs and DRs of the DDS-IS have to be properly configured.

In the same way, the QoS profiles associated to bridged entities must be com-
patible with the QoS profiles configured for the DDS-IS. As we will discuss later
in Section 3.6.5, DDS-IS administrators can configure the service for enforcing the
same QoS configuration for the two interconnected data-spaces. Alternatively, sys-
tem administrators can configure DDS-IS for integrating two domains with different
(perhaps even incompatible) sets of QoS policies.

3.4.2 Routing layer

The routing layer is the core of our design. This new layer extends the functionality
of the DDS specification: it allows for bridging DDS information between different
DDS domains (i.e., between DDS data-spaces). It enables information flow across
different DDS topics, optionally transforming and filtering the exchanged data.

As a result, from the application layer perspective, two different (perhaps even
remote) data-spaces appear as a single (and extended) DDS data-space. This func-
tionality is provided by the Routing Engine (see Figure 3.3), which contains the
following components:

Discovery Monitor: This component processes the discovery events generated
by the underlying DDS middleware (i.e., by B-DRs). Whenever a change occurs in
the DDS discovery information, the DDS middleware notifies the Discovery Moni-
tor. The Discovery Monitor then retrieves the received discovery information from
B-DRs and delivers it to the proper Domain Route.

Data Engine: This component controls one or more DRs and DWs in the pub/-
sub layer. The Data Engine has two missions. First, it takes received data samples
from the pub/sub layer, and pushes those samples to the proper Topic Route. Sec-
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Figure 3.3: DDS-IS Routing Engine.

ond, it delivers resulting samples (from Topic Routes) to DWs so that they can be
published. There is one Data Engine associated with each Domain Route.

Domain Route: A mapping between two different DDS domains (i.e., data-
spaces). A Domain Route contains multiple Auto Topic Routes and Topic Routes.
The Domain Route interacts with the Discovery Monitor in order to obtain discov-
ery information from a set of B-DRs in the pub/sub layer. After receiving discovery
updates from the Discovery Monitor, the Domain Route triggers the creation of DDS
and DDS-IS entities according to the service configuration. A DDS-IS instance can
contain multiple Domain Route instances, each bridging a pair of DDS domains.

Topic Route: A mapping between an input topic (i.e., the topic from where the
DDS-IS receives data) and an output topic (i.e., the topic where the DDS-IS pub-
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lishes data). Therefore, a Topic Route is defined by an input topic name and type,
and an output topic name and type. Additionally, a Topic Route can apply transfor-
mations to data-samples using the Transformation Engine (explained below). The
behavior of a Topic Route is as follows: first, it receives data from its associated Data
Engine; then, it applies transformations (if any); and finally, it delivers processed
data to the Data Engine for publication. A Domain Route instance can contain mul-
tiple Topic Route instances, each one bridging a pair of DDS topics.

Transformation Engine: This element receives input data samples from a Topic
Route, applies a set of transformations to those samples, and returns the resulting
data samples. If a Topic Route requests for multiple transformations, the Transfor-
mation Engine processes them in sequence and following a predefined order (this is
important because the output of a transformation and the input of the subsequent
transformation must be type-compatible). Supported transformations are defined
through multiple Transformation Extensions.

Transformation Extension: This element receives input data samples, applies a
transformation to those samples, and returns the result of the transformation. To
be able to process data of any type, Transformation Extensions use DDS Dynamic
Topic Types. In order to increase system flexibility, A DDS-IS instance can contain
multiple Transformation Extension instances, each one describing a particular data
transformation. Transformation Engine can load external Transformation Exten-
sions implemented by DDS-IS users.

Auto Topic Route: A generic Topic Route that bridges a range of topics. The
topic name and type for bridged topics need not be known a priori, and therefore
Auto Topic Route provides auto-configurable topic bridging. Auto Topic Routes are
configured with a subset of topic names and/or topic types for which the automatic
setup is allowed. A Domain Route instance can contain multiple Auto Topic Route
instances, each one covering a different set of topics.

Configuration and QoS Manager: Following the philosophy of the DDS stan-
dard, our design relies on a set of QoS policies for configuring the behavior of rout-
ing layer elements. Indeed, some of these QoS policies also control the configuration
of entities belonging to the DDS core layer (for example, Topic Route QoS profiles
also control the configuration of the associated DW and DR). The Configuration
and QoS Manager is the component that controls the proper configuration of the
DDS-IS.

3.4.3 Pub/Sub and network layers

The pub/sub layer (see Figure 3.2) contains the entities associated to the DDS mid-
dleware (described in Section 2.2.1), and interacts with system’s upper layers using
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the standard DDS API.

The pub/sub layer allows the DDS-IS to access to DDS data-spaces. In order to
provide this functionality, the pub/sub layer perform the following tasks:

(1) it notifies the routing layer about changes in discovery information,

(2) it receives new data samples and delivers these samples to the routing layer,
and

(3) it publishes data obtained from the routing layer to DDS data-spaces.

In addition to the entities already introduced in Section 2.2.1, this layer includes
two DDS WaitSets. A DDS WaitSet is an standard DDS entity that can be used
to wait for specific DDS Events. DDS WaitSets are awaken whenever certain pre-
defined trigger conditions are met. Specifically, our system uses the following two
DDS WaitSets:

Discovery WaitSet: This element receives updates from B-DRs (see Section 2.2.1).
It notifies the Discovery Monitor in the routing layer when a change occurs to dis-
covery. This allows the DDS-IS to react to the appearance and disappearance of
entities to/from the connected data-spaces.

Data WaitSet: This element notifies its associated Data Engine in the routing
layer about the reception of new data samples in one of its DRs. This allows the
DDS-IS to process DDS samples from the DDS core layer as soon as they are re-
ceived.

The network layer is the lowest layer of the proposed architecture (see Figure
3.2). It represents the platform-dependent components that are necessary for ex-
changing data-samples (such as the operating system, computer hardware, or com-
munication network). One of the advantages of using a network middleware (such
as DDS) is that it decouples the application logic from the particularities of the net-
work layer. Consequently, we do not need to define any requirements for this layer,
except that the chosen DDS implementation must be DDS-RTPS-compliant.

3.5 System operation

In order to illustrate the interactions among the previously described entities, in
this section we provide sequence diagrams for the two main system use cases.
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Figure 3.4: Discovery sequence diagram.

3.5.1 Discovery of new DDS entities

DDS discovery notifies DDS-IS about the creation or deletion of DDS entities in any
of the interconnected domains. This information enables DDS-IS to react to the
changes in the input and output data-spaces.

The sequence diagram of the discovery procedure is depicted in Figure 3.4.
Specifically, this sequence diagram describes how the discovery of DDS entities trig-
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gers the initialization of a Topic Route and all its associated entities.

A B-DR initiates the process when it receives a change in the discovery infor-
mation of a DDS entity located in the same data-space (but associated to a different
node). This event triggers a Discovery WaitSet (studied in Section 3.4.3), which then
sends a notification to the Discovery Monitor.

Once the Discovery Monitor receives a discovery notification, it retrieves the
nature of the originating B-DR (participant, publication or subscription), and the
discovery information received by the B-DR.

At this point, the Discovery Monitor delivers all the received discovery samples
to the Domain Route associated to the originating B-DR. Received samples can
contain multiple changes in the discovery, which are processed separately. These
changes can refer either to the creation or removal of remote DDS entities.

Using the received information, the Domain Route updates an internal register
that stores information of previously discovered DDS entities and topics. This regis-
ter enables the DDS-IS for determining if it is necessary to create new Topic Routes
upon the reception of discovery information.

Then the Domain Route checks if any of its active Auto Topic Routes matches
with the received discovery information. If necessary, the Domain Route creates
new Topic Routes according to Auto Topic Routes’ configuration.

Finally, the Domain Route checks the existing Topic Routes, and then determines
if the discovered DDS entity is associated to any of them. If the Domain Route finds
a matching Topic Route, the Domain Route will check if the Topic Route is already
active. If the Topic Route is not active, the Domain Route starts the Topic Route
(i.e., the Topic Route requests the Data Engine to create the necessary DR and DW
for performing topic bridging).

3.5.2 Data bridging

Data Bridging is the process of communicating data-samples between two differ-
ent DDS data-spaces. If the input and output data-spaces share the same topic,
the DDS-IS can bridge data-samples without performing any modifications to data-
samples’ structure.

However, the DDS-IS can also bridge data-samples between two data-spaces that
do not share the same data-model. In this case, the DDS-IS must transform input
data-samples for adapting them to the format required at the output data-space.

Figure 3.5 depicts the sequence diagram of the data bridging process. A DR
(located in the pub/sub layer) initiates the process when it receives a new data-
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Figure 3.5: Data bridging sequence diagram.

sample from a DW located in the same data-space (but in a different node). This
event triggers a Data WaitSet, also located in the pub/sub layer, which then sends a
notification to the Data Engine associated to the DR.

After receiving the notification from DDS, the Data Engine retrieves all of the
received samples from the originating DR, and delivers those samples to the Topic
Route associated to that DR.

At this point, the Topic Route applies configured transformations (if any) to the
input data-samples (using the Transformation Engine). Data Bridging then finishes
with the publication of resulting data-samples to the output data-space by means
of the proper Data Engine’s DW (located in the pub/sub layer).
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3.6 Implementation

After defining the DDS-IS architecture and its design, we have implemented a proof-
of-concept prototype. This prototype was used to validate the proposed design, to
perform field-testing, and to evaluate the performance impact of our service (for
further information regarding conducted experiments and obtained results, please
refer to Section 3.7). In this section, we explain the most relevant implementation
decisions that we have taken during the prototype development.

3.6.1 Dynamic types

As we studied in Section 2.2.4, the DDS-XTypes API allows DDS applications to
publish and subscribe topics with types unknown at the time the application was
compiled.

Since DDS-IS needs to interact with DDS applications not known a priori (in-
cluding DDS applications to be developed in the future), the DDS-IS makes an ex-
tensive use of the DDS-XTypes API in order to discover and manipulate previously
unknown data types, including performing any necessary data transformations.

3.6.2 DDS middleware implementation

The DDS-IS prototype was implemented using Real Time Innovations Inc. (RTI)’s
DDS version 4.4d [88]. We have chosen this implementation because it supports
the DDS Dynamic Topic Types extension. This extension is a new API for the DDS
standard family that was recently standardized by the OMG [70].

Nevertheless, our design is implementation-independent, as it only uses stan-
dardized DDS features plus the DDS Dynamic Topic Types extension. Consequently,
the proposed design can be implemented using any other DDS-compliant imple-
mentation. Indeed, the implemented prototype is also compliant with the DDS-RTPS
[69].

Regarding the used programming language and bindings, we have implemented
our prototype in C, and we have compiled the source code using gcc version 4.4.3.

3.6.3 DDS signaling propagation

As we have mentioned, a Topic Route connects an input data-space’s topic (i.e., a
set of application DWs) with an output data-space’s topic (i.e., a set of application
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DRs). To enable the interoperation of these DWs and DRs, the DDS-IS must create
both a DR at the input domain and a DW at the output domain.

In this scenario, the question naturally arises: when should the service create
the input/output DR/DW? The answer to this question depends on the particular
application requirements.

If system resources (memory and CPU) are scarce, DDS-IS should not create the
paired DW-DR until a match between the input topic and the output topic is found
(i.e., both the matched DR and DW have been discovered).

However, if we need all of the DDS signaling information (i.e., DDS discovery
information) to propagate through the DDS-IS, the service should create both the
DR and DW as soon as a matched publication or subscription is discovered.

Alternatively, it may be preferable for the system to set up Topic Route’s entities
as soon as the user configures a Topic Route (even if the DDS-IS does not find any
matching DWs or DRs).

In order to support scenarios with different requirements and constraints, we
decided that the prototype should allow the user to configure the triggering con-
ditions for the creation of Topic Route’s entities. In Section 3.6.6, we provide an
example of how to configure the creation for the input and output of a Topic Route.

3.6.4 Propagating DataWriter information

By default, DDS middleware generates an unique IDentifier (ID) (using hosting ma-
chine information and implementation specific parameters) for each DW. In the
early stages of DDS-IS prototype implementation, this was also the behavior of the
service. However, after some testing we concluded that this behavior prevents ap-
plication DRs from distinguishing between original data-samples and replicas of
those data-samples.

The ability of distinguishing between original data-samples and their replicas
is especially critical for deployments with redundant DDS-IS nodes. In these sce-
narios, this functionality may significantly impact system resources consumption,
given that it avoids the delivery of duplicated samples to final applications.

Consequently, we decide to enable the DDS-IS to maintain the original DW in-
formation, which is contained in input data-samples. The implemented prototype
allows configuring if the original DW information is maintained, or if it is replaced
by the DDS-IS DW information. In this way, the DDS-IS administrator is able to
configure the system behavior according to the specific scenario requirements.
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3.6.5 Quality of Service

As we described in Section 3.4.2, DDS-IS relies on DDS QoS profiles for configur-
ing the behavior of the service. Consequently, DDS-IS also relies on DDS built-in
compatibility-checking mechanisms for ensuring that QoS profiles of communicat-
ing entities are fully compatible.

DDS-IS QoS checking is performed on a hop-by-hop basis (i.e., between DDS-IS
entities and application entities located within the same domain). This feature
allows system administrators for decoupling QoS for different domains, enabling
the integration of heterogeneous (and perhaps even incompatible) scenarios. Of
course, administrators can configure the same QoS policies for the two intercon-
nected domains, which guarantees that QoS remain invariant across interconnected
data-spaces.

Regarding QoS enforcement, DDS QoS policies were initially intended for work-
ing within single domains. Consequently, the behavior of DDS QoS policies in
DDS-IS-based deployments is currently unknown. In this regard, in Section 3.8
we include an analysis of the impact of DDS-IS on each DDS QoS policy.

3.6.6 XML configuration format

The DDS-IS uses eXtensible Markup Language (XML) files to load its configuration.
XML is a set of rules for encoding documents. These rules are defined in the XML
1.0 Specification produced by the W3C [106].

Figure 3.6 provides an example of a basic XML configuration file; specifically, it
includes the following XML tags:

dds: The root of the XML document; it can also include the definition of QoS
policies for the system.

dds is: This tag includes the configuration of a DDS-IS instance. Therefore,
every other DDS-IS should be included as a child of the dds is tag.

domain route: This contains the configuration for a Domain Route and must
contain a participant 1, a participant 2, and a session tag.

participant 1 and participant 2: These tags define the input and output DDS
domain for the service using the domain id tag.

session: This contains the configuration for a set of Topic Routes and Auto Topic
Routes that share the same Data Engine instance. Session tag can contain multiple
topic route and auto topic route tags.
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<?xml version="1.0"?>

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../schema/dds_is.xsd">

<dds_is>

<domain_route name="DefaultDomainRoute" enabled="true">

<participant_1>

<domain_id>0</domain_id>

</participant_1>

<participant_2>

<domain_id>1</domain_id>

</participant_2>

<session name="DefaultSession" enabled="true">

<auto_topic_route name="All" enabled="true">

<publish_with_original_info>

true

</publish_with_original_info>

<publish_with_original_timestamp>

true

</publish_with_original_timestamp>

<input participant="1">

<creation_mode>IMMEDIATE</creation_mode>

</input>

<output>

<creation_mode>IMMEDIATE</creation_mode>

</output>

</auto_topic_route>

</session>

</domain_route>

</dds_is>

</dds>

Figure 3.6: XML configuration file example.
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auto topic route and topic route: The system uses these tags to set up the Auto
Topic Routes and Topic Routes.

publish with original info: This determines if the DDS-IS maintains the origi-
nal DW information for publishing data to the output.

publish with original timestamp: This determines if the DDS-IS maintains the
original timestamp information for bridged data-samples.

input: This defines the configuration of the route input. It allows configuring
filters for topic routing, the QoS policies for the input DR, and the creation mode,
which is defined below.

output: This defines the configuration of the route output. It allows configuring
filters for topic discovery at the output, the QoS policies for the output DW, and the
creation mode, which is defined below.

creation mode: This configures the way discovery information is propagated
from the input to the output (or vice versa). In this way, when a DR is discovered at
the output, the system can set up the corresponding Topic Route immediately (as in
the example) or wait until a DW is discovered at the input.

3.7 Validation and performance evaluation

To study the operation and performance of the DDS-IS prototype, we conducted
a set of experiments in a controlled LAN environment. Specifically, we measured
the impact of the DDS-IS in terms of round-trip latency, throughput, and network
traffic load.

3.7.1 Experimental set-up

The test-bed was composed of six Core i5 at 2.40GHz-2.66GHz machines (named
lab01, lab02, lab03, lab04, lab05, and lab06) running Linux Kernel 2.6.32-22 x86 64
(Ubuntu 10.04) and the RTI DDS 4.4d middleware. These machines communicate
through a 24-port Gigabit switch with Virtual Local Area Network (VLAN) support.

In our experiments, these nodes receive one of three possible roles:

Source-node: A node that generates DDS samples, receives responses for those
samples, and calculates experimental statistics.

Echo-node: A node that receives DDS samples from source-nodes and generates
responses.
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Routing-node: A node that bridges two different networks.

We developed a benchmarking tool for conducting our experiments. This bench-
marking tool consists of two components:

PerformanceTest tester: This application runs in the source-nodes. It publishes
samples into a topic called Ping and receives them from a subscribed topic, called
Pong. Ping samples contain a sequence number, the publication timestamp, and a
variable size payload as well. The structure complexity of Ping payload is variable.
Pong samples only contain a sequence number and the original Ping publication
timestamp. This timestamp is compared with the sample reception time for ob-
taining samples round trip time. Each Ping and Pong sample is sent in a separate
message.

PerformanceTest remote: This application runs in echo-nodes. It takes samples
from the Ping topic and republishes their sequence number and timestamp field
content into the Pong topic.

In the conducted tests, published samples performed a round trip between sour-
ce-nodes and echo-nodes. This approach allows for the precise measurement of the
sending and reception times without performing any clock synchronization. Con-
sequently, at least two different routes have to be configured in the DDS-IS: the
outgoing route (for bridging Ping samples) and the incoming one (for bridging Pong

samples).

For all the reported evaluations, our benchmarking tool uses RTPS over UDP
protocol, and sends each sample separately (i.e., each UDP datagram contains only
one RTPS sample).

Regarding sample sizes, Ping samples contain a payload whose size ranges from
256 to 8192 bytes and a protocol overhead of 118 bytes. Pong samples have the same
protocol overhead as Ping samples, but their payload has a size of 12 bytes because
they only contain a sequence number and a timestamp.

We considered the following metrics for the DDS-IS performance evaluation:

Throughput: The average number of samples per time interval (seconds) re-
ceived from the data-space by subscribers.

Round-trip Latency: The average end-to-end elapsed time for delivering sam-
ples from the original source-node to the echo-node plus the elapsed time for de-
livering samples back to the original source-node. Our tool measures the latency
at application level. In this sense, publishers measure the time before delivering
data-samples to DDS middleware, whereas subscribers measure the time after DDS
delivers data-samples to the benchmarking tool.

Generated traffic load: The total generated traffic (in bytes) for a specific net-
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work segment in a particular scenario. This includes the payload plus all the over-
heads generated by the whole protocol stack.

In order to evaluate the proposed service performance, we conduct all the exper-
iments in two different scenarios. Namely,

No-DDS-IS Scenario: Publishers and subscribers associated to source-nodes
and echo-nodes were located in the same data-space, but in different networks. DDS
entities communicate through one or more Layer-3 Linux Routers.

DDS-IS Scenario: Publishers and subscribers associated to source-nodes were
located in a different data-space (also in a different network) than the ones associ-
ated to echo-nodes. DDS-IS interconnects the involved data-spaces.

In both scenarios, samples were published using the DDS Reliability QoS policy
set to RELIABLE, which guarantees that the data sent by DWs is received by DRs.

Additionally, we have configured the QoS policy KEEP_HISTORY to ALL_HISTORY,
which guarantees no sample is dropped from DDS buffers.

This configuration will force the DDS middleware to ensure the delivery of all
the samples. However, it can cause that few samples have an extremely high latency,
potentially biasing the average results. In this respect, the reported results only
include the 95th percentile latency.

As part of the RELIABLE Reliability QoS configuration, DW send heartbeat mes-
sages to their DR. Each heartbeat message contains the sequence number of the
most recent sample sent by the DW. We have set DDS DR heartbeats low-period
(i.e., the one used when DRs’ cache has less than 5 samples) to 100 milliseconds,
and we have set DDS DR heartbeats high-period (i.e., the one used when DRs’ cache
has more than 15 samples) to 10 milliseconds.

We have also configured the DDS middleware for discovering DDS entities only
in the interfaces of interest for each particular experiment. In this respect, all the
experiments use a secondary network for launching the benchmarking tools without
interfering on the tests.

As we explained in Section 3.6, the DDS-IS prototype has been implemented
using RTI’s C API. On the other hand, the benchmarking tool has been implemented
using C++.

Regarding Linux kernel configuration parameters, we have used the default val-
ues associated to Ubuntu 10.04 for all the machines.
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LAN BLAN A
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Data Space 1 Data Space 2

Figure 3.7: DDS-IS scenario for 1 to 1 performance experiments. In the N to N case, lab01 and
lab03 run multiple publishers and subscribers.

3.7.2 DDS-IS Impact in N to N communications

In this section, we evaluate the impact of the DDS-IS in terms of round-trip latency
and throughput for different payload (sample sizes), data types, and DDS-IS con-
figurations when N publishers and N subscribers communicate following a 1 to 1
relationship.

To make the results comparable, both no-DDS-IS and DDS-IS scenarios used the
same network topology: two LAN networks (A and B) connected through a com-
puter (lab02) with two Ethernet interfaces.

In the no-DDS-IS scenario, lab02 is a single layer-3 Linux Kernel Router (we
use just one data-space), whereas in the DDS-IS scenario, lab02 interconnects two
different data-spaces and provides the proposed DDS-IS (see Figure 3.7).

Each test consisted of publishing 500,000 samples per topic and using a spe-
cific payload size. These samples were published at source-node (lab01) into the
Ping topic; after being received by Ping subscriber at echo-node (lab03), they were
published back using the Pong topic.

To avoid transitory behavior (warm-up) effects, before starting the tests we force
some samples to be exchanged after the DDS entities discovery.
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Figure 3.8: DDS-IS impact for different data types in 1 to 1 communications.

3.7.2.1 Performance impact in simple 1 to 1 communications

This first set of experiments aims at the evaluation of the performance impact for
different data types and DDS-IS configurations when only one topic for Ping and
one for Pong is active. Although the Pong topic was always the same, this experiment
uses the following Ping topic types:

SimpleType (ST) 512, 1024 bytes: These contain a sequence of random bytes, a
sequence number, and a timestamp.

ComplexType (CT) 512 bytes: This structure contains two levels of nesting. It
includes a SimpleType (256 bytes) data, four 64byte-string fields (two of them in a
nested struct), a long field, and eight Boolean fields.

ComplexType (CT) 1024 bytes: This structure contains three levels of nesting.
It includes two ComplexType-512 byte structs.

Figure 3.8 shows the performance results of both no-DDS-IS and DDS-IS scenar-
ios. In this experiment neither transformations nor filtering are enabled.

The results show that although the DDS-IS introduces approximately a round-
trip latency overhead of 250 microseconds, it has no a significant impact on through-
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Figure 3.9: DDS-IS performance for filtering and transforming data.

put.

We can also conclude that in this case data complexity does not have a signifi-
cant performance impact on DDS-IS scenario in comparison to no-DDS-IS scenario.
Consequently, in the remainder experiments we focus our study on testing different
sample sizes.

3.7.2.2 Performance impact of data transformation and filtering features

The DDS-IS allows loading external data transformations and applying these trans-
formations to the output data. In this sense, the performance degradation is highly
dependent on the complexity of the transformation. Therefore, rather than report-
ing an exhaustive analysis, this section aims to evaluate the cost of using simple
data transformations, which will show the overhead introduced by inclusion of an
additional function call to the datapath.

Figure 3.9 shows the incurred latency and throughput for a simple data trans-
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formation definition (labeled as CT size transf.).

In particular, we have set up the DDS-IS for changing a long field and a Boolean
field to a specific configured value. In this experiment, we observe that the complex-
ity of the transformed structure degrades the throughput (see the obtained results
for labels CT 512B transf. and CT 1024B transf.).

However, simple transformations have no significant negative impact on latency.
Indeed, for CT512 samples, using transformations reduces the average latency. This
behavior is because the additional processing time introduced by transformations
reduces the number of context switches in the routing-node Central Processing Unit
(CPU), what reduces the average latency overhead.

To test impact of data filtering we configured a filter that drops samples accord-
ing to the content of the samples. Published samples are labeled with a number ran-
domly obtained from a uniform distribution for the interval 0 to 999. The DDS-IS
filters the samples according to the following definitions. For CT512 case (labeled
in Figure 3.9 as CT 512B filt.) the filter was:

(long_cond_00 < 500) or (nested_ping.sequence_number = 4294967295)

Whereas for CT1024 case (labeled in Figure 3.9 as CT 1024B filt.) it was:

(nested_complexping_02.long_cond_00 < 500)

or (nested_complexping_01.nested_ping.sequence_number = 4294967295)

The first condition on each filter drops approximately the 50% of the samples. The
second condition ensures the warm-up signaling samples traverse the DDS-IS filter.

According to the obtained results (see Figure 3.9), the filter introduces an average
overhead of 110 microseconds when it uses a filtering condition on the first level of
the type CT512, and 140 microseconds for evaluating the condition in a second level
of nesting of the CT1024.

In addition, DDS-IS approximately halves the throughput compared to a scheme
without filtering, as expected from the fact that this filter drops 50% of the samples.

This experiment validates the filtering and data transformation features of the
DDS-IS. We can conclude that for the evaluated conditions DDS-IS accomplishes
these tasks without a significant degradation of system performance.

3.7.2.3 Performance impact in N to N communications with multiple topics

In this section, we study how DDS-IS affects performance as the number of concur-
rent distinct topics (and Topic Routes) increases.



78 Chapter 3. DDS data-space Interconnection Service (DDS-IS)

In this case, we use the same topology of Figure 3.7 but now we increase the
number of bridged topics (up to 16). We always use an even number because our
benchmarking tool utilizes two types of topics: Ping for outgoing samples and Pong

for incoming ones.

This experiment is a worst-case scenario for the DDS-IS operation, as the capa-
bilities of data multiplexing of DDS-IS are not used. Indeed, the DDS-IS has to
maintain a pair of DR/DW per route.

More particularly, the last case studied in this section creates 16 DWs and 16 DRs
in the same DDS-IS. Although this is not an appropriate scenario of DDS-IS oper-
ation (multiple 1-1 routes), these experiments provide some insight on the DDS-IS
limits.

Figure 3.10 depicts the average round-trip latency as a function of the payload
size. The results show that the DDS-IS performs reasonably well for samples with a
size up to 6144 bytes when 2 to 16 concurrent routes (topics) are active. Specifically,
the DDS-IS introduces an overhead from 250 to 400 microseconds for the round-trip
latency.

For the 8192-sized payload, the scenarios with 8 and 16 concurrent topics reveal
a performance degradation. In these cases the round-trip latency overhead intro-
duced by the DDS-IS increases to 450 microseconds and 1.3 ms respectively. Addi-
tionally, the standard deviation for round-trip latency reaches 2 ms, which indicates
the DDS-IS performance degrades for this load level.

Regarding throughput, the results in Figure 3.11 show that DDS-IS has an in-
significant impact on the throughput for the scenarios with 2-4 concurrent topics.

For the 8 and 16 topics cases, the DDS-IS throughput achieves at most 30,000
samples per second (for the 64-byte payload), whereas the scenario without DDS-IS
reaches 50,000 samples per second in the 8-topic case, and almost 75,000 samples
per second in the 16-topic case (both for the 64-byte payload).

It is important to remark that in the 16-topic case the DDS-IS is publishing
30,000 samples in both directions (Ping samples from source-nodes to echo-nodes
and Pong samples from echo-nodes to source-nodes). This is especially relevant in
the 64-byte scenario, in which the size of Pong samples is similar to the size of Ping
samples. In this scenario, while source-nodes and echo-nodes just manage one DW
(for publishing Ping samples or for publishing Pong samples) and one DR (for re-
ceiving Pong samples or for receiving Ping samples), the routing-node has to manage
a pair of DW/DR per topic.

We have also measured the impact on CPU consumption for the routing-node
(i.e., for lab02). Figure 3.12 shows that the maximum CPU consumption is obtained
for the experiments using small packets, which are the ones with a highest rate of
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samples per second. The obtained results also show that the degradation in per-
formance for bigger sizes is not due to CPU saturation. Instead, it is mainly due
to synchronization problems between the middleware and the used Ethernet in-
terfaces, along with the increased cost of packet disassembling, assembling, and
loss-recovery.

3.7.3 DDS-IS impact in M to N communications

In the previous section, we studied the limits of the DDS-IS in a scenario where no
data multiplexing is present. The following experiments analyze the performance
of the DDS-IS when it delivers several copies of certain published data to multiple
subscribers.
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Figure 3.13: System topology used in 1 to N performance experiments.

3.7.3.1 DDS-IS performance impact

Figure 3.13 shows the topology used in this set of experiments. Specifically, we run
a Ping topic publisher and a Pong topic subscriber on node lab01, a DDS-IS in node
lab02 (for the no-DDS-IS scenario, IP forwarding was enabled at this node), and 0-4
subscribers in each of the nodes lab03, lab04, lab05, lab06.

To avoid overloading the DDS-IS with Pong samples, only one Pong publisher at
node lab03 publishes Pong samples back to lab01 (for measuring average round-trip
latency and throughput on lab01 node).

Figure 3.14 depicts average round-trip latency results obtained for this set of
experiments. The obtained maximum overhead is 330 microseconds (for the 8192-
bytes payload, 1 to 1 experiment). For the 4096-bytes, 1 to 4 case, the DDS-IS sce-
nario obtains almost zero round-trip latency overhead (852 and 846 microseconds
for the cases with and without DDS-IS respectively).

Indeed, for a number of subscribers greater than 4, and a payload greater than
4096 bytes, we have obtained lower round-trip latencies values for the DDS-IS sce-
nario than for the no-DDS-IS one. This is because the latency overhead introduced
by the DDS-IS logic is offset by the reduction of the load on lab01 (the original pub-
lisher), the reduction of traffic in LAN A (this will be studied in next section), and
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Figure 3.16: System topology used in M to N scalability experiments.

the fact that it is more efficient to re-send lost samples from lab02 (in the same LAN)
than from lab01 (located at two hops).

Regarding throughput, the results in Figure 3.15 show that the DDS-IS scenario
beats the no-DDS-IS scenario for all the experiments with a number of subscribers
greater or equal than 4. This is especially relevant for the 64-byte, 1 to 16 scenario,
where the DDS-IS maintains a rate of 10,000 samples per second per subscriber,
while in the no-DDS-IS case the rate drops to 5400 samples per subscriber.

The explanation for this behavior is the same we stated for latency experiment:
network usage reduction on LAN A, reduction of load for original source-node, and
the fact that re-sending from lab02 is cheaper than re-sending from lab01.

3.7.3.2 DDS-IS scalability impact

Earlier in this chapter we stated that the DDS-IS can help in reducing the network
traffic load.

The following experiment (Figure 3.16) supports our claim. The experimental
set-up consists of 1-4 Ping publishers (running on lab01), 1-15 Ping subscribers
(uniformly distributed among lab04, lab05, and lab06), and two DDS-IS (running
on lab02 and lab03). To avoid overloading the DDS-IS with Pong samples, only one
Pong publisher at node lab04 publishes Pong samples back to lab01.
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Although many other alternative settings can be envisaged, this simple scenario
is useful for our goal. The configuration for the no-DDS-IS scenario is almost the
same, although lab02 and lab03 just forward the samples between LAN A and LAN
B.

The scenario without DDS-IS exchanges all the samples through a unique DDS
domain (this case corresponds to just one data-space with no interconnection ser-
vice), whereas the DDS-IS scenario presents three different data-spaces: one be-
tween lab01 and lab02; another one between lab02 and lab03; and another one
among lab03, lab04, lab05, and lab06.

This configuration allows checking the potential of the DDS-IS, its ability to mul-
tiplex (aggregate) and demultiplex (separate) DDS traffic. In this respect, with this
experiment we evidence that DDS-IS eases the integration of DDS systems across
Wide Area Networks (WANs).

Particularly, we point out that DDS-IS can isolate individual applications from
WAN transport. For example, local applications can communicate using IP mul-
ticast for efficient data distribution while DDS-IS bridges remote sites using WAN
infrastructures (maybe using reliable TCP connections).

The potential of the DDS-IS for reducing the network traffic can be explained
using a simplistic example: assuming M publishers and N subscribers, a network
without loss, and S number of samples published by each publisher, the number of
total samples to the LAN C would be equal to MxNxS in the scenario without DDS-
IS. On the other hand, if we use the configuration shown in Figure 3.16, the traffic
in LAN C decreases to MxS, given that only one copy of each published sample is
sent.

Additionally, according to the OMG standard DDS entities (publishers and sub-
scribers) exchange discovery traffic. Whereas in the no-DDS-IS scenario this is a
MxN problem, the DDS-IS only creates a DW on lab03 and a DR on lab02, what
evidence that DDS-IS can reduce the complexity in LAN C to a much simpler dis-
covery problem (1x1 for the particular setting considered).

Figure 3.17 shows the total generated DDS traffic load on LAN C for the scenar-
ios with and without DDS-IS. As expected, the obtained results show the traffic in
the no-DDS-IS scenario increases almost linearly with the number of subscribers,
whereas the traffic in DDS-IS scenario is constant for a growing number of sub-
scribers. Thus, finally we conclude that the DDS-IS can help in saving network
resources.
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3.8 Impact on DDS QoS policies

To finish this section, we now study the impact of the DDS-IS on DDS QoS policy
enforcement.

Table 3.8 studies the level of enforcement for each QoS policy: local (if a partic-
ular QoS is enforced locally by DDS middleware), hop-by-hop (if a particular QoS
is enforced within a particular DDS domain), or end-to-end (if a particular QoS is
enforced across interconnected domains). The table also contains a description of
each QoS policy, and its corresponding compatibility checks.

In general, QoS enforcement is applicable only among entities within a partic-
ular domain (i.e., hop-by-hop) for most of DDS QoS policies. There are, however,
two exceptions: LIVELINESS and LIFESPAN. These two DDS QoS policies can be
enforced on a end-to-end basis (i.e., across multiple interconnected domains).
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Table 3.1: Study of the level impact of DDS-IS on DDS QoS policies.
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Name Description Compatibility re-
quirements

Level of enforcement

DEADLINE Maximum time
between two
updates

Offered dead-
line period <=
requested dead-
line period

Local
According to the standard,
each individual publisher
and subscriber enforces
this QoS. In this sense,
if DEADLINE period is
missed, the particular
publisher or subscriber
generates a notification to
its associated application.

DESTINATION -
ORDER

Controls how
each subscriber
resolves the
final value of
a data instance
that is written
by multiple
publishers.

Offered kind >=
requested kind
(BY SOURCE- -
TIMESTAMP >
BY RECEPTION-
TIMESTAMP)

Local
Each individual subscriber
will ensure samples are de-
livered to application ac-
cording to this QoS.

DURABILITY Controls
whether DDS
will make data
available to late-
joining readers.
If this QoS is set
to PERSISTENT,
publishers send
a set of past val-
ues (the actual
number of sam-
ples depends on
HISTORY QoS)
to late joining
subscribers.

Offered kind >=
requested kind
(PERSISTENT >
TRANSIENT >
TRANSIENT LO-
CAL > VOLATILE)

Hop-by-hop
Historic samples are sent
between publishers and
subscribers within the
same domain.
Although samples pub-
lished within a domain
will be normally bridged
by the DDS-IS, there is not
mechanisms for ensuring
that those samples arrive
to their final destination
(see RELIABILITY QoS),
even if both domains
have DURABILITY set to
PERSISTENT.

DURABILITY -
SERVICE

Configures both
HISTORY and
RESOURCE -
LIMITS

None N/A

Continuing next page
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continued from previous page

Name Description Compatibility re-
quirements

Level of enforcement

ENTITY FAC-
TORY

Controls the
behavior of a
DDS Entity as a
factory for other
DDS entities.

None N/A

GROUP DATA Attaches ad-
ditional infor-
mation to the
created pub-
lishers and
subscribers.

None N/A

HISTORY Controls the
number of his-
toric samples
stored by pub-
lishers.

None N/A
Each individual publisher
will store the a number of
historic samples equal to
the value of this policy.

LATENCY -
BUDGET

Provides a
hint about the
priority of data-
communications

Offered duration
<= requested
duration

N/A (hint)
According to the standard,
this policy is considered a
hint. There is no specified
mechanism as to how the
service should take advan-
tage of this hint.

LIFESPAN Limits the va-
lidity of each
individual
update (com-
paring samples
timestamp with
reception date).

None Hop-by-hop/End-to-end
The level of enforce-
ment of this QoS depends
on the configuration of
the publish with orig-
inal timestamp DDS-IS
parameter. publish -
with original timestamp
controls whether sam-
ples maintain the original
timestamp or if the times-
tamp is regenerated with
each hop.

Continuing next page
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continued from previous page

Name Description Compatibility re-
quirements

Level of enforcement

LIVELINESS Controls the
mechanism and
parameters used
by the Service to
ensure that par-
ticular entities
on the network
are still alive.

Offered kind
>= requested
kind (MANUAL -
BY TOPIC >
MANUAL BY -
PARTI-CIPANT >
AUTOMATIC)
Offered lease -
duration <=
requested lease -
duration

Hop-by-hop/End-to-end
DDS-IS supports the prop-
agation of DDS entities cre-
ation and disposal across
the bridged domains.
In addition, the DDS-IS
could be configured for
maintaining DDS-IS pub-
lishers and subscribers in-
dependently of the liveli-
ness state of the entities
within bridged domains.

OWNERSHIP Controls
whether DDS
allows multiple
publishers to
update the same
instance

Offered ownership
== requested own-
ership (SHARED
or EXCLUSIVE)

Hop-by-hop

OWNERSHIP -
STRENGTH

Determines the
ownership of a
data-instance.

None Hop-by-hop
Each individual subscriber
delivers to the application
only the samples generated
by the publisher with a
higher OWNERSHIP -
STRENGTH.

PARTITION Subdivides a do-
main into subdo-
mains.

Publishers and
subscribers must
use the same
partition for
communicating.

Hop-to-Hop
DDS-IS entities and DDS
application entities only
communicate if they are
associated to the same
PARTITION.

Continuing next page
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continued from previous page

Name Description Compatibility re-
quirements

Level of enforcement

PRESENTATION Defines the de-
pendence across
updates

Offered access -
scope >= re-
quested access -
scope (GROUP
> TOPIC > IN-
STANCE)

Local
Each individual subscriber
ensures that samples are
delivered to the corre-
sponding application
according to this QoS.

READER -
DATA LIFECY-
CLE

Controls the
behavior of the
subscriber with
regards to the
lifecycle of the
data-instances it
manages

None N/A

RELIABILITY Ensures pub-
lished samples
are delivered to
subscribers.

Offered kind >=
requested kind
(RELIABLE >
BEST EFFORT)

Hop-by-hop
Although DDS will ensure
that samples published in
a particular domain arrive
to all the subscribers within
that domain, there is not
mechanisms for ensuring
end-to-end enforcement of
this policy.
In this sense, if a DDS-IS
along the datapath crashes,
the original publisher has
not means for checking that
samples have been received
across bridged domains.
Fortunately, this problem
can be mitigated using re-
dundant DDS-IS nodes.

Continuing next page
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continued from previous page

Name Description Compatibility re-
quirements

Level of enforcement

RESOURCE -
LIMITS

Controls the
resources con-
sumed by DDS.

None N/A
Each individual publisher
or subscriber will limit
the maximum allocated
resources according to this
policy.

TIME BASED -
FILTER

Indicates the
minimum sepa-
ration between
two updates
delivered by
DDS to the
application.

deadline period
>= minimum sep-
aration

Local
Each individual subscriber
ensures that samples are
delivered to application ac-
cording to this QoS.

TOPIC DATA Attaches ad-
ditional infor-
mation to the
created Topics.

None N/A

TRANSPORT -
PRIORITY

Allows the ap-
plication to
take advantage
of transports
capable of send-
ing messages
with different
priorities.

None N/A (hint)
According to the standard,
this policy is considered a
hint. There is no specified
mechanism as to how the
service should take advan-
tage of this hint other than
perhaps propagate it.

USER DATA Attaches ad-
ditional infor-
mation to the
created Entities.

None N/A

WRITER -
DATA LIFECY-
CLE

Controls the
behavior of the
publisher with
regards to the
lifecycle of the
data-instances it
manages

None N/A

* For the sake of simplicity, we have assumed that publisher = DataWriter and subscriber =
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DataReader.

End-to-end QoS enforcement for all of the DDS QoS policies is out of the scope of
DDS-IS, as it would require modifying the behavior of the DDS middleware itself.
Besides, it would break backwards compatibility, which is stated in requirement
R6. However, in the next chapter we propose a protocol for providing end-to-end
signaling, and which allows DDS entities to enforce QoS policies at end-to-end level.
For an analysis of the impact of DDS-IS on each DDS QoS policy please refer to
Section 3.8.

3.9 Conclusions

In this chapter we propose the DDS-IS, a solution to address one of the key limita-
tions in DDS deployments: the interconnection of DDS data-spaces.

In addition to the interconnection problem, the DDS-IS also addresses three un-
resolved issues of DDS: data transformation between data-spaces, system scalabil-
ity, and QoS adaptation between remote entities. Moreover, following the data-
centric philosophy of DDS, the proposed service is able perform content-based fil-
tering of the exchanged data.

The design of the DDS-IS features an efficient data transforming capability, which
transforms data as it flows between applications. As a result, multiple versions of
the same application, or even applications of different vendors, can now interoper-
ate, without change, despite differences in data structures and interface definitions.

DDS-IS also supports content-based filtering, which can be used for avoiding
sensitive information of a given data-space to be exposed to other data-spaces.

Regarding DDS QoS profiles, the DDS-IS relies on DDS QoS compatibility checks,
enforcing the compatibility among bridged applications. In order to keep QoS con-
sistent across bridged data-spaces, the DDS-IS does not connect DDS applications
whose QoS are not fully compatible with the ones configured for the DDS-IS.

One of the key benefits of our solution is its standards compliance. The DDS-IS
is fully compliant with the latest specifications of the DDS standard family. As a
result, our design is not implementation-dependent, and hence it is applicable to
any existing or future DDS implementation. Namely, the DDS-IS benefits from the
DDS-XTypes, a new OMG specification that is in the latest stages of its acceptance,
for accessing to topic types discovered at execution time.

We have implemented a DDS-IS prototype that demonstrates the advantages of
our proposal. This prototype is compliant with the DDS-RTPS [69]. Based on this
prototype, we report experimental results to evaluate the performance impact of the
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proposed service. The reported results show that the DDS-IS has a very low impact
on DDS performance, in terms of overhead latency and achievable throughput.

We have also demonstrated that the DDS-IS can improve the scalability of DDS
systems by reducing the network traffic load between remotely interconnected data-
spaces.

Despite of the novel features of DDS-IS, several DDS issues remain unsolved. In
particular, end-to-end entities and data-content signaling and QoS enforcement are
not solved yet. In addition, DDS systems does not scale well for big scale deploy-
ments. In the following chapters we propose solutions to those identified problems.





Chapter 4
Data-Centric SIP (DCSIP)

After the design, implementation and evaluation of the DDS-IS in Chapter 3,
in the following two chapters we address relevant DDS issues that deserve further
consideration.

In particular, in this chapter we propose a universal naming scheme for DCPS
entities and resources. In addition, we establish the basis of a protocol for session
signaling and resource discovery in medium-scale DCPS environments.

In the next chapter we focus in solving a still open issue in DCPS environments:
their scalability in big-scale deployments.

4.1 Motivation

Originally, the DDS specification standardized the programming model and API
for developing DCPS applications. Despite of the fact that it defined the entities
for exchanging discovery information, it did not specify the network protocol used
by DDS implementations in a way that would allow different implementations to
interoperate. The OMG addressed this issue by specifying the DDS-RTPS [69].

The DDS-RTPS specification defines the so called DDS SDP to perform the dis-
covery. This discovery protocol was designed for relatively small environments (up
to a few thousands nodes connected through a LAN). In this regard, the current
DDS specifications do not address the problem of universal entity identification
and universal data-content identification.
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Another existing limitation impacts scalability. Most of current DDS implemen-
tations rely on using multicast or a centralized server for discovery. In this sense,
DDS-RTPS does not address the problem of entity or data-content discovery in big
deployments, nor provides any mechanism for performing NAT traversal. Fortu-
nately, the DDS-RTPS specification allows DDS implementations to define their
own discovery protocols, therefore is possible to define new protocols that address
these issues.

The introduction of the DDS-IS creates new problems. As we studied in Chapter
3, current DDS QoS policies were designed to work in LAN-based scenarios, and
they do not work correctly in environments were a DDS-IS node is present.

Another problem is the control of data propagation across different data-spaces.
The DDS-IS provides mechanisms for controlling what data is bridged between
two data-spaces. However, systems administrators have to configure DDS-IS nodes
manually, as there are no standard mechanisms that allow applications to negotiate
DDS-IS routes.

In short, the introduction of DDS-IS nodes creates the need of new mechanisms
that support the negotiation of QoS policies among remote nodes, along with the
creation of publications and subscriptions across DDS-IS nodes. In order to address
these issues, this chapter defines and proposes the use of a signaling protocol for
DDS.

The remainder of the chapter is organized as follows. In Section 4.2 we present
a motivating use case. In Section 4.3 we identify the limitations of DDS and DDS-IS
we need to overcome. In Section 4.4 we discuss multiple considerations and adopted
design decisions. In Section 4.5 we study the fundamentals of the proposed proto-
col, and in Section 4.6 we define the format for addressing content and DCPS en-
tities. In Section 4.7 we define the different roles nodes can adopt in our proposal,
and in Section 4.9 we study the system operation. In Section 4.10 we compare our
proposal and SIP, and in Section 4.11 we compare our proposal and current DDS
specifications. Finally, in Section 4.12 we summarize the main conclusions of the
chapter.

4.2 Motivating use case example

In this section we provide a motivating use case scenario that helps to understand
the functionality and advantages of our solution.

The chosen use case scenario is the Spanish Public Health Service (SPHS). Specif-
ically, we will focus on the medical record databases, which store known allergies
and past health problems of each patient.
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Figure 4.1: Topology of the Health Service use-case.

The current SPHS is divided in districts (each one managed by a regional gov-
ernment). The problem that arises in this scenario is the lack of an unified medical
record database. Consequently, when a patient changes his place of residence he has
to start a new medical record (sometimes even repeating expensive medical tests).
Even worse, medical records of different hospitals belonging to the same district are
not unified either.

Althought it is clearly an inefficient system, its perpetuation is mainly due to
two reasons: first, hospital administrators do not want to lose the control of their
databases; and second and most important, each hospital uses its own database,
thus making them incompatible.

We claim that data-centric approaches, and particularly DDS and DDS tools, can
help to solve the interoperability problem while maintaining the autonomy of each
hospital. This will enable the exchange of medical information between hospitals,
saving the cost of unnecessary redundant medical tests.
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Figure 4.2: DDS-IS are able to integrate incompatible information data-bases.

Figure 4.1 includes a hypothetical topology of a DDS-based solution for a par-
ticular SPHS scenario. In this example, we have considered four hospitals (referred
to as hvn, hsc, htc, and hch) belonging to the SAS (Andalusian Health Service, one
of the Spanish Public Health districts). In this scenario, each hospital contains mul-
tiple databases (images, medicalrecords, meddiag) which are a priori incompatible,
but which can be adapted using DDS-IS functionality for bridging heterogeneous
data-spaces (see Figure 4.2).

However, as we described in the previous section, current DDS specification and
implementations have some limitations. In particular, current DDS signaling (i.e.,
DDS discovery) was meant for working within a particular data-space, and there-
fore there is no way for maintaining a common state across different data-spaces
(i.e., across DDS-IS). This fact generates multiple problems, like the lack of end-to-
end samples acknowledgment, the lack of end-to-end QoS enforcement, the impos-
sibility of globally naming resources, or the requirement of human intervention.

Although DDS-IS administrators can mitigate the human intervention problem
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Figure 4.3: Current solutions provoke unnecessary and redundant traffic in the higher levels of
the DDS-IS hierarchy.

by defining generic route creation rules, this solution is not scalable and does not
adapt well to system evolution (i.e., if system requirements change, the administra-
tor will have to modify the existing rules in each affected DDS-IS to meet the new
set of requirements).

Figure 4.3 depicts an example of the discussed limitations. In this example, sys-
tem administrator has configured DDS-IS for creating upward routes upon simple
discovery match (i.e., after discovering a DDS entity in one of the bridged data-
spaces), while downward routes are created only after a double match (i.e., after
discovering compatible DDS entities in the two bridged data-spaces). This avoids
configuring routes manually, while avoiding to flood all the data-spaces with un-
necessary samples.

We can see in the example scenario that the hch hospital images-publisher gener-
ates data-content (represented as a blue arrow) consumed by a medrec-subscriber in
the same hospital. We can see that –as a result of the permissive DDS-IS configura-
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tion– this data-content is adapted and forwarded to the highest-level of our topology
(named sas.ddscloud.com/). We can see also that the red arrow does not follow the
optimal way from hsc to hvn, as it also traverses the data-space associated to node
sas.ddscloud.com/ (instead of using the LAN segment these hospitals share). Re-
garding the green arrow, it represents a topic that is being forwarded between two
data-spaces, even if the subscriber does not currently need more information than
the generated in its local data-space.

In order to solve these DDS limitations, in this chapter we propose DCSIP, a
protocol for resource discovery and session control in DCPS systems.

Figure 4.4 shows how using DCSIP improves DDS scalability. In particu-
lar, DCSIP avoids flooding data-spaces with unrequested samples (in our exam-
ple, the blue and green arrows do not reach the data-space associated to node
sas.ddscloud.com/). In addition, our solution allows for sending data-content
samples over optimized routes, avoiding to overload unconditionally the nodes lo-
cated in a higher hierarchy level. In our example, the system directly bridges sam-
ples from sas.ddscloud.com/hsc/images/ to sas.ddscloud.com/hvn/meddb with-
out traversing sas.ddscloud.com/hsh/.

The proposed DCSIP-based solution solves the studied problems, as it provides
a means for negotiating a transient DDS-RTPS flow between publishers and sub-
scribers located in remote data-spaces. Local DDS entities can continue using
regular DDS discovery for exchanging data-content. In the same way, DDS enti-
ties that communicate through very static and immutable routes and do not need
end-to-end QoS enforcement can keep using regular DDS discovery. On the other
hand, applications that need to create dynamic routes for establishing temporal
DCPS/DDS-RTPS sessions with end-to-end QoS constraints (for example, for trans-
ferring a backup of a data-base, a set of values upon request, or a multimedia session
over DDS) can greatly benefit of a signaling protocol for DDS.

4.3 New required features

4.3.1 Limitations of DDS and DDS-IS

The DDS-IS proposed in the previous chapter provides the service for bridging dif-
ferent DDS domains and topics. However, the following problems remain unsolved:

1. Universal topic and domain identifiers: Neither the DDS specification nor
any existing DDS implementation defines a universal resource locator for nam-
ing DDS entities and data-content. DDS deployments have been tradition-

sas.ddscloud.com/
sas.ddscloud.com/
sas.ddscloud.com/
sas.ddscloud.com/hsc/images/
sas.ddscloud.com/hvn/meddb
sas.ddscloud.com/hsh/
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Figure 4.4: Our solution allows for a better usage of the resources.

ally bound to small/medium distributed scenarios with a relative small spa-
tial widespread (typical examples are unmanned vehicles, control systems in
frigates, or financial data distribution frameworks). However, in order to use
DDS in WANs, and particularly in a future name-based Internet (as the one
described in Section 6.5), we need to define universal identifiers for DDS enti-
ties and data.

2. Dynamic deployment of DDS Routes: DDS-IS supports remote configura-
tion. However, this feature is insufficient for deploying high scalable DDS
architectures. This is mainly because it requires the intervention of a admin-
istrator who must know the topology of the deployment. Although adminis-
trators can mitigate this problem by configuring very generic route creation
rules, this solution is not necessarily efficient and could generate unnecessary
traffic. Besides, there are no mechanisms that provide dynamic load balancing
among existing DDS-IS nodes.

3. Data-types and topics negotiation: Traditional DDS deployments are mainly
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developed by using static topics and data-types. Although the definition of
DDS-XTypes (see Section 2.2.4) allows applications to register topics and data-
types on run-time, there are no mechanisms that allow applications for dy-
namically negotiating topics, data-types, and QoS policies.

4. End-to-end DDS QoS enforcement: DDS QoS approach is more focused on
reactive mechanisms (such as dropping expired samples or retransmitting lost
samples) than on proactive mechanisms (resource provisioning). In fact, the
only proactive mechanism provided by the service is QoS compatibility check-
ing (i.e., DDS middleware just checks if the QoS associated to two commu-
nicating DDS entities are compatible, not establishing the communication if
they are not fully compatible). In this regard, there is not a mechanism for
QoS negotiation beyond the DDS QoS compatibility checks. Another related
problem is the lack of end-to-end QoS support (given that QoS is enforced in
a hop-by-hop basis).

4.3.2 Solution requirements

In order to solve the stated problems we propose DCSIP, a signaling protocol de-
signed for working over DDS systems. DCSIP must fulfill the following requeri-
ments:

R1: Interdomain entities discovery. The proposed protocol must provide mech-
anisms for announcing DDS publishers and subscribers among different DDS
domains. This feature will allow DDS entities located in different (and possi-
bly remote) DDS domains to discover each other. The announcement samples
should traverse DDS-IS.

R2: DCPS session signaling. The proposed protocol must provide session signal-
ing for DDS systems. A DCPS session is an abstraction that defines a common
state between multiple applications/participants that share one or more top-
ics. The negotiation of a DCPS session between two remote nodes will provide
intermediate DDS-IS nodes the necessary information for creating topic routes
according to application requirements.

R3: Topic negotiation. The proposed solution must provide mechanisms for nego-
tiating the topic names and types associated to a DCPS session. In particular,
a DCPS session must allow applications to control the creation and destruc-
tion of a group of publish-subscribe associations among multiple participants.
This will allow developers to deploy multimedia applications over DDS by us-
ing mechanisms similar to the ones used in SIP systems.
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R4: End-to-end QoS negotiation and enforcement. Our signaling protocol will be
able to negotiate QoS between remote DDS applications, and to enforce QoS
in a end-to-end basis.

R5: DDS-based design. Our solution will be completely based on DDS standard
family. This will allow our solution to benefit from existing DDS/DDS-IS
features (content-based filtering, data-content history, data transformations).
Moreover, this will ease its integration in existing deployments, as it will work
without modifying existing NAT and firewall configurations.

4.4 Design decisions

To solve the evidenced issues in the use case introduced in the previous section,
we present a solution for medium-scale DCPS deployments that covers information
management, signaling, and routing. For each one of these aspects, in this section
we discuss multiple considerations and adopted design decisions.

4.4.1 Information management

Prior to specifying a signaling protocol, we need to define how to organize the in-
formation. In particular, we adopted the following design decisions:

• Hierarchy: Our system is organized into a tree-like structure, being the realm
root the highest hierarchical level. At the realm root, a rendezvous server
manages the registration of DCPS entities and resources. Each node (apart
form the root) has at least one parent and any number of children.

• Named-based: System administrator assigns a local identifier (a label) to each
node. This label is announced both to node’s parents and to node’s children
in order to build a unique label chain. The use of labels is compatible with
the Named Data Networking (NDN) [109], and will allow to use DDS over NDN
networks in the future.

• Autoconfiguration: Using labels, nodes dynamically build a unique name that
identifies the location of each node in the system (the label chain). A label
chain describes the logical path from the realm root to a specific node, and it
is updated each time a node changes its location.

• Mobility: Since the label chain is built dynamically, our information man-
agement model supports mobility. In this way, if a node identified by label
meddb and label chain sas.ddscloud.com/hvn/meddb moves to the data-space
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associated to hch node, the label chain for meddb will dynamically change to
sas.ddscloud.com/hch/meddb. The only requirement is that the label is not
already in use in the same data-space by another node.

• Scalability: Our solution increases DDS scalability, as it allows applications to
limit the number of data-samples that are flooded to the network. This is be-
cause the system does not propagate DDS discovery and data-content informa-
tion until two endpoints have declared their intention to share data-content.
However, this proposal relies on a centralized server for storing rendezvous
information. In this regard, in Chapter 5 we will propose a complementary
P2P-based solution for big-scale deployments.

4.4.2 Signaling

Once we have defined how the information is structured, we must define how to
control the information exchange. To fulfill this goal, in the following sections we
define DCSIP, a signaling protocol for announcing data-content, data consumers,
and data producers; and for establishing DCPS sessions.

We have considered two approaches for solving signaling propagation, both sup-
ported by our solution:

• Using a dedicated logical topology for signaling: This approach isolates the
propagation of signaling and data-content by using a specific DDS domain
for signaling information. This approach is similar to the one adopted in
SIP, where the end-to-end media packets (usually transmitted over Real-time
Transport Protocol (RTP)) take a different path from the SIP signaling mes-
sages.

Since the signaling domain is well-known a priori, DDS-IS nodes can start
exchanging signaling information without any additional configuration. In
fact, nodes can exchange signaling information even with nodes not associated
to the same data-content domain. This allows the system to keep existing
data-content flows isolated, even using different port ranges for data-content
and signaling, while administrators are still able to create optimized routes, if
necessary.

In addition, as every single node is connected through a global signaling data-
space, it is possible to calculate the optimal route at signaling level, and then to
open the proper routes for data exchange. However, these routes may require
the creation of new participants when the involved DDS-IS nodes do not share
any existing domain, and this is expensive.
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• Using the same logical topology for both signaling and data-content routes:
This approach eases the integration of DCSIP with existing deployments, as it
does not require creating new dedicated signaling domains. Moreover, it con-
sumes less resources, as it does not require creating the additional pair of par-
ticipants needed to handle signaling domains. It also prevents DDS-IS nodes
sharing the same physical network from communicating without an explicit
permission.

However, the level of isolation between data-content and signaling is lower
than in the previous case. In addition, and since there is no global signaling
data-space, the achievable level of route optimization is limited by the num-
ber of alternative connections that the system administrator defines for each
node (e.g., an administrator can configure two DDS-IS nodes for using inde-
pendent domains by default while they use a common domain for establishing
optimized routes).

4.4.3 Routing

Once two remote entities decide to communicate, there are multiple alternatives for
establishing a route, all supported by the proposed DDS-IS (described in Chapter
3). These alternatives have to be supported by DCSIP:

• Using dedicated domains: This is the most expensive alternative, as it re-
quires to create a new dedicated participant for each new route a DDS-IS cre-
ates. This approach does not allow DDS-IS nodes to send multiple flows using
the same participant (i.e., using the same DDS domain), since flows would not
be distinguishable after their aggregation.

However, this approach has also advantages. It eases the isolation between
DDS entities (participants, DWs and DRs) that have access to different data-
content. Since it uses an independent domain for each route, neither the data
nor the discovery information will be accessible to entities not included in the
route. In addition, since sessions are isolated at domain level, two applications
can share multiple topics within the same session by just configuring the same
domain for all the involved topics.

• Using dedicated topics: This approach uses a dedicated topic for each route.
This approach is less expensive than using domains, as it does not require cre-
ating additional participants. However, the level of isolation is lower than in
the previous case because entities that do not have any common route can still
exchange discovery messages at participant level. Since this approach uses
topics for identifying routes, the topic name for intermediate hops is associ-
ated to the session and is different to the original topic name. Therefore, it
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is necessary that the first and last DDS-IS perform a conversion to the origi-
nal topic name. This approach does not allow DDS-IS nodes to send multiple
flows using the same DW/DR (i.e., using the same topic), since flows would
not be distinguishable after their aggregation. However, routes are multiplex-
able at participant level, and multiple flows can share the same data-spaces
within certain sections of the route-path.

• Using content-filters and topic keys: This uses a combination of content-
filters and topic-keys for routing the data-content. The level of isolation of
this approach is similar to the one using topics, as entities that do not have
any common route can exchange discovery messages at participant level. Since
this approach relies neither on domains nor on topics for flows identification,
it is not necessary to perform any conversion to the exchanged data. Although
this approach increases the CPU load in DDS-IS nodes due to content-filter
evaluation costs, it decreases the network traffic. This approach allows for
multiplexing flows without mixing them up. This enables to aggregate mul-
tiple flows that share the same routing path, therefore reducing the overall
discovery and data-content traffic.

In the following sections we focus on the information management and signal-
ing aspects of our solution. Regarding routing, it is mostly based on the existing
DDS-IS, and it only requires to add DCSIP support to existing DDS-IS functional-
ity.

4.5 DCSIP fundamentals

DCSIP takes multiple ideas from the SIP protocol [83], hence, it eases the integration
of DCSIP-based systems with SIP-based environments, or even with future P2P-SIP
based deployments.

Despite of the similarities between DCSIP and SIP, there is one major differ-
ence: while SIP has been designed to operate within the request-response paradigm,
DCSIP follows a DCPS approach. As described in Section 2.2.1, the DCPS approach
provides time, space, and synchronization decoupling as well as the advantage of
that data are not opaque to the DDS middleware. Below, we further explain the
implications of the DCPS approach.

In order to understand the proposed protocol, in the following sections we define
the set of basic concepts around DCSIP has been designed.
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4.5.1 Realm

A realm is a set of nodes with a common Domain Name System (DNS) names-
pace and rendezvous server. The highest level of the realm hierarchy is the
realm root, identified by a DNS domain name followed by the ’/’ character (e.g.,
sas.ddscloud.com/).

4.5.2 Scope, scope-label, and scope-path

In SIP, resource locations are defined by DNS names or IP addresses. Our solution,
as we stated in see Section 4.4.1, specifies location by using a concatenation of labels.
In this section we specify how we use those labels to define a particular location or
a route between two locations.

Scope-label is a string that identifies a node within a DDS data-space (e.g. hvn).
System administrators must set the scope-label during the system initial deploy-
ment.

Scope-path is a concatenation of scope-labels (each one associated to a node),
and it represents a route between two nodes. Scope-path has two objectives. First,
it determines how to route DCSIP messages; second, it limits the propagation of
both signaling messages and data-content samples, avoiding the need of flooding
the network with unnecessary messages.

Scope is an identifier that univocally identifies a node within a realm, therefore
allowing other nodes to send samples to that particular node. A scope is a scope-
path representing the sequence of nodes located between the root of the realm and
the node identified by the scope.

4.5.3 Full Qualified Data-space and Topic Names

In SIP, users and UAs are identified using a DNS name or an IP address. However,
this approach is not valid for a DCPS system (which is focused on data-content
instead of data-location). In this section we propose a unique identifier for DCPS
domains and topics, and in the next section we focus on DCPS entities identification.

As we stated in 4.3.1, DDS lacks of a universal identifier for topics and domains.
To solve this, we propose the concept of Full Qualified Domain Name (FQDN).
FQDN is an identifier that uniquely identifies a particular data-space. It consists
of two parts. First, a DNS namespace associated to a particular realm; second, a
data-space name. We study the specific format of the FQDN later in Section 4.6.
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Full Qualified Topic Name (FQTN) is an identifier that univocally identifies a
data topic. Since a topic is a segment of a data-space, we decided that each FQTN
must explicitly reference the FQDN the topic belongs to. We study the specific
format of the FQDN later in Section 4.6.

4.5.4 DCPS Entity Group and DCPS Entity Name

We can group DCPS entities using two characteristics: their kind (i.e., participant,
publisher, or subscriber), and the data-segment they access (i.e., a data-space or a
particular topic). This classification is relevant for our system, since entities of the
same kind and data-segment will be usually interested in discovering the same set
of DCPS entities.

In order to identify groups of nodes with the same interests we have defined
the DCPS-Entity-Group. It is an identifier shared among a group nodes that host
a particular group of DCPS entities. Specifically, each group contains either a set
of publishers of the same topic, a set of subscribers of the same topic, or a set of
participants of the same data-space.

DDS-RTPS defines the GUID, a sequence of 16 bytes, for univocally identifying
DDS entities within a data-space. DDS-RTPS GUID is not human readable, and it
can not include descriptive information for an entity. Consequently, GUID is not
suited to create lists of sensors and actuators that are readable and meaningful for
human administrators.

To overcome the limitations of DDS-RTPS GUID, we propose the concept of
DCPS-Entity-Name for identifying DCPS entities. As we will study in Section
4.6, DCPS-Entity-Name is a URI that univocally identifies a participant, pub-
lisher, or subscriber within a scope. Consequently, it can include a meaning-
ful name that helps human administrators to identify the associated entity (e.g.,
../temperature-sensor01).

4.5.5 DCPS session

DCPS session defines a common state between two nodes. This common state is
associated to a set of QoS policies and other DDS parameters (topics, data-types).
It is an abstraction that defines a common state between multiple DCPS entities
that share data-content. A DCPS session allows applications to manage the creation
and destruction of groups of publish-subscribe exchanges among multiple DCPS
entities.

A DCPS session is similar to a SIP session. However, DCPS sessions are adapted
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to the unique characteristics of DCPS environments. In this way, a DCPS session
is associated to a set of FQDN/FQTN and data types rather than the IP addresses,
ports, and codecs associated with a typical SIP session. In the same manner, a DCPS
session is bound to a set of publications, subscriptions, and possibly DCPS routes
between two participants, whereas a SIP session is generally associated to a set of
RTP streams exchanged between two peers.

4.6 Resource naming format

In our proposal, we use an URI-based format for identifying DCPS resources. This
decision is due to the following reasons:

• The format is flexible enough to support scenarios with different hierarchy
levels (from scenarios where only one data-space is associated to the realm, to
scenarios where there are several sub-levels of data-space).

• This format is easily readable and intuitive.

• The proposed URI format is easy to map into CoAP URI format [97], which is
an IETF solution for accessing to constrained devices’ (i.e., sensors and actua-
tors) information.

In our proposal, the URI for a FQDN is built as follows:

dcps:// < realm > / < data-space-name > /

Where dcps stands for ”Data-Centric Publish-Subscribe” and data-space-name

could be a hierarchy of data-space names (separated by forward slashes), for exam-
ple:

dcps://ugr.es/labs/microwaves/

Since a topic is a segment of a data-space, the URI for a FQTN is built by attach-
ing the topic-name to the FQDN of the topic’s data-space:

dcps:// < realm > / < data-space-name > / < topic-name > /
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DCPS-Entity-Group URIs are built by adding /.pub/, /.sub/, or /.par/ suffixes
to a FQDN or FQTN URI. As an example, the URI for accessing to the information
published to temperature topic from the microwaves lab within the University of
Granada, could be:

dcps://ugr.es/labs/microwaves/temperature/.pub/

This unique URI address refers to all the discoverable publishers that send up-
dates to the temperature topic within the ugr.es/labs/microwaves data-space.

Our design also uses this URI format for the DCPS-Entity-Names (see Section
4.5.4). In order to save storage space and traffic load, our system stores DCPS-
Entity-Names as relative URIs (using the scope URI as base). For example, if the
following DCPS-Entity-Name

./temperature-sensor01

is associated to the scope with URI dcps://ugr.es/labs/wmnlab/, the absolute
URI for the entity will be:

dcps://ugr.es/labs/wmnlab/temperature-sensor01

4.7 Node roles

Prior to explain message functionality and format, we identify the different roles
that nodes can assume within a DCSIP dialog:

• Endpoint Nodes: Nodes that run DCPS applications and that do not necessary
perform system maintenance operations. We define two types of endpoint
nodes:

– I-Node: This is the initiator of a DCSIP request. It usually requests for the
establishment of a DCPS session, or the location of a particular resource.

– T-Node: This is the target of a DCSIP request.

• Network Nodes: Nodes that perform system maintenance operations, and that
route data-content. We define two types of network nodes:

– R-Node: This is an intermediate node that processes DCSIP messages and
routes those messages according to their content. This role is usually
performed by a DDS-IS node.

ugr.es/labs/microwaves
dcps://ugr.es/labs/wmnlab/


4.8. DCSIP messages 111

– Rvz-Node: This is the rendezvous server of the realm. It stores a dictio-
nary table containing pairs of FQDN/FQTN and a list of scopes.

4.8 DCSIP messages

In this section we define the set of messages that DCSIP nodes can exchange. We
describe the format of DCSIP request and response messages.

Responses are preceded by “R_“, and are routed using their forwarding_scope_-
path field. In a response, the I-Node and T-Node are the same than in the original
request.

In following subsections we provide a brief explanation for each DCSIP method
and we list its associated fields. However, for the sake of clearness, we do not include
the definition of the fields. For more information about DCSIP field definitions,
please refer to Table 4.1 in Section 4.10.

4.8.1 Joining and registration

In this section we describe the DCSIP methods for node joining and content regis-
tration.

• SCOPE ANNOUNCEMENT: This method announces a node’s scope-label and
scope to other nodes during node joining. It includes the following fields:
scope label and scope.

• CONTENT REGISTRATION: This method registers a particular content (i.e.,
a FQDN or FQTN) to a scope. This registration allows nodes interested in a
particular content to obtain a list of scopes updating (or consuming) that con-
tent. R-Nodes forward this message towards the Rvz-Node associated to the
realm, which will generate R CONTENT REGISTRATION. It includes the fol-
lowing fields: target content, forwarding scope path history, registered -
scope, c seq, and max forwards.

• R CONTENT REGISTRATION: Upon receiving an CONTENT REGISTRA-
TION request, the Rvz-Node responsible for the target content will send an
R CONTENT REGISTRATION response. It includes the following fields: for-
warding scope path, target scope, source scope, status, c seq, and max for-
wards.
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4.8.2 Resource location

In this section we describe the DCSIP methods for finding other nodes prior to ex-
change data-content with those nodes.

• OBTAIN SCOPE: This method requests for a list of scopes bound to a particu-
lar FQDN or FQTN. This list enables I-Nodes for performing rendezvous with
T-Nodes associated to the requested FQDN or FQTN. R-Nodes forward this
message towards the Rvz-Node associated to the realm, which will generate
R OBTAIN SCOPE. It includes the following fields: target content, forward-
ing scope path history, source scope, c seq, and max forwards.

• OBTAIN SCOPE SUBSCRIPTION: This method creates a subscription to the
rendezvous information of a particular FQDN or FQTN. An I-Node uses this
procedure for keeping its information updated without flooding the network
with OBTAIN SCOPE messages. It includes the following fields: target con-
tent, forwarding scope path history, source scope, expiration, c seq, and
max forwards.

• R OBTAIN SCOPE: Upon receiving an OBTAIN SCOPE request, the Rvz-Node
responsible for the target content will send an R OBTAIN SCOPE response. A
Rvz-Node also sends this message to nodes subscribed to OBTAIN SCOPE up-
dates. It includes the following fields: forwarding scope path, target scope,
source scope, r scope list, status, c seq, and max forwards.

• OBTAIN SCOPE PATH: This method requests for a scope-path (i.e., a set of R-
Nodes identified by a scope-label) which allows for reaching a particular target
scope. It includes the following fields: target scope, forwarding scope path -
history, source scope, request id, n hops, c seq, and max forwards.

• R OBTAIN SCOPE PATH: Upon receiving an OBTAIN SCOPE PATH request,
the T-Node responsible for the target scope will send an R OBTAIN SCOPE -
PATH response. It includes the following fields: forwarding scope path, tar-
get scope, source scope, r scope path, status, c seq, and max forwards.

4.8.3 Session establishment and maintenance

In this section we describe the DCSIP methods for creating and maintaining a DCSIP
session between two nodes.

• CREATE SESSION (INVITE): This method requests for establishing a DCPS
session between two scopes. It includes the following fields: forwarding -
scope path, target content, target scope, source scope, session scope path,
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session heartbeat period, pdp data, edp data, session id, c seq, and max -
forwards.

• ACCEPT SESSION: This method confirms the establishment of a DCPS ses-
sion between two scopes. This method is usually sent by T-Nodes, but it can be
also sent by a I-Node after receiving a MODIFY SESSION message. It includes
the following fields: forwarding scope path, target content, target scope,
source scope, session scope path, session heartbeat period, pdp data, edp -
data, session id, c seq, and max forwards.

• MODIFY SESSION: This method requests to amend a particular DCPS ses-
sion. Currently, the only two parameters that are modifiable are the ses-
sion scope path and the session heartbeat period. It includes the following
fields: forwarding scope path, target content, target scope, source scope,
session scope path, session heartbeat period, pdp data, edp data, session -
id, c seq, and max forwards.

• CANCEL SESSION: This method cancels an existing session or rejects the es-
tablishment of a session between two scopes. It includes the following fields:
forwarding scope path, target content, target scope, source scope, session -
cancel description, session id, c seq, and max forwards.

• HEARTBEAT: DCSIP nodes use this method for keeping a session alive. Addi-
tionally, it piggybacks information about end-to-end QoS violations and sam-
ple acknowledgments. It includes the following fields: forwarding scope -
path, target content, target scope, source scope, qos status, ack, nack, ses-
sion id, c seq, and max forwards.

4.9 DCSIP operation

In this section we describe the general operation of DCSIP through an example
based on the health service use case of Section 4.2.

4.9.1 Joining and registration

The first step a node must perform is joining the system. R-Nodes joining consists
of three steps:

1. Announcing their scope-label upstream.

2. Receiving their scope from a R-Node located upstream.
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I-Node

R-Node Rdvz

SCOPE_ANNOUNCEMENT

r = scope_label

SCOPE_ANNOUNCEMENT
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r = scope_label

CONTENT_REGISTRATION

r = target_content

r = registered_scope

R_CONTENT_REGISTRATION

r = status

SCOPE_ANNOUNCEMENT

r = scope

CONTENT_REGISTRATION

r = target_content

r = registered_scope

R_CONTENT_REGISTRATION

r = status

Figure 4.5: Node joining and content registering.

3. Announcing their scope downstream.

Endpoint nodes (I-Nodes and T-Nodes) does not own any scope-label, and there-
fore they just wait for receiving a SCOPE_ANNOUNCEMENT message from their upstream
R-Node in order to know their scope.

Once a node knows its scope, it can register the content it wants to share by
sending a CONTENT_REGISTRATION message to the Rdz-Node. In our example, an I-
Node associated to the medical records database of the hvn hospital registers the
following information:

TARGET-CONT: dcps://sas.ddscloud.com/sas/medrecords/.par/

REG-SCOPE: dcps://sas.ddscloud.com/hvn/meddb/
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DESCRIPTION: "Hosp. Virgen de las Nieves - Records"

If the Rdz-Node accepts the registration, it will send back a R_CONTENT_REGIS-

TRATION notifying the I-Node that the request was successfully processed. The pro-
cess (sequence diagram) of joining the system and registering a content is depicted
in Figure 4.5. In this figure, the relevant information that each node sends is re-
ferred to as r=.

4.9.2 Resource location and session establishment

Figure 4.6 depicts the sequence diagram for session creation in DCSIP. In this fig-
ure, the relevant information that each node sends is referred to as r=, whereas the
information used for message routing is referred to as d:. The creation starts with
an I-Node sending an OBTAIN_SCOPE message, which requests the list of scopes asso-
ciated to a particular content (i.e., a particular DCPS-Entity-Group). In particular,
in our example the I-Node requests the following target_content:

TARGET-CONT: dcps://sas.ddscloud.com/sas/medrecords/.par/

Upon receiving this message, each R-Node in the network forwards it towards
the Rvz-Node. This node controls a database that contains all the target_content-
registered_scope associations.

The rendezvous node then processes the request and generates an R_OBTAIN_-

SCOPE message. This message contains a list of scopes that are associated to the
requested content, and it is forwarded towards the I-Node using the fwd_scope_-

path field. In our example, the content of that list is:

TARGET-CONT: dcps://sas.ddscloud.com/sas/medrecords/.par/

SCOPE_LIST:

1. SCOPE: dcps://sas.ddscloud.com/hch/medrec/

DESCRIPTION: "Hosp. Carlos Haya - Records"

2. SCOPE: dcps://sas.ddscloud.com/hvn/meddb/

DESCRIPTION: "Hosp. Virgen de las Nieves - Records"

3. SCOPE: dcps://sas.ddscloud.com/hsc/diag/

DESCRIPTION: "Hosp. San Cecilio - Records"

4. SCOPE: dcps://sas.ddscloud.com/htc/record/

DESCRIPTION: "Hosp. Torrecardenas - Records"
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Figure 4.6: Session creation diagram.

Using the previous list, the I-Node can request for the scope-path associated to
a particular scope. In our example, the application sends an OBTAIN_SCOPE_PATH

message with the following scope:

TARGET_SCOPE: dcps://sas.ddscloud.com/hch/medrec/
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R-Nodes forward the message towards the T-Node whose scope matches with
the target scope field. Upon reception, the T-Node sends an R_OBTAIN_SCOPE_PATH

message back to the I-Node. This message includes an r_scope_path field. This field
specifies a set of hops that a message sent from the I-Node can traverse to reach the
T-Node. In our example, the content of the r_scope_path field is:

R_SCOPE_PATH: dcps://meddb/hvn/hch/medrec/

After receiving the R_OBTAIN_SCOPE_PATH message, the I-Node knows a valid
scope-path to the T-Node, and can start a session negotiation using an INVITE mes-
sage addressed to that scope-path. This INVITE also includes a set of DCPS QoS
parameters that both I-Node and T-Node must negotiate. If the T-Node accepts the
session, it sends back an ACCEPT message. Upon receiving an ACCEPT message, each
R-Nodes within the scope-path will create the proper route, which completes the
session establishment.

A session will be active as long as the involved endpoint nodes receive HEARTBEAT
messages or until one of them explicitly cancels the session. In addition, one of the
communicating nodes can change session parameters by using a MODIFY_SESSION

request.

4.10 SIP and DCSIP comparison

To complete the explanation of DCSIP, in this section we include Table 4.1. It com-
pares one by one the differences between SIP and DCSIP. In particular, it con-
tains general comparisons, together with message and field comparisons (and defi-
nitions).

Table 4.1: Comparison of SIP and DCSIP features.

SIP DCSIP

General

Continuing next page
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continued from previous page

SIP DCSIP

User Agent. Node. Each node can contain one or more
DDS participants.

User Agent Client. I-Node.

User Agent Server. T-Node.

Registrar. Rdz-Node.

Proxy. R-Node.

Content is addressed using UAs location. Content is addressed using data-content
name and DCPS-Entity-Group name.

Address-of-Record identifies a location. FQDN, FQTN, and DCPS-Entity-Group
identify data-content.

For routing purposes, scope, scope label,
and scope path identify a location.

SIP URI.
It does not support DCPS entities.

A variation of CoAP URI that supports
DCPS entities.

Typically, content consists of multimedia
streams. The details of the session, such
as the type of media, codec, or sampling
rate, are not described using SIP. Rather,
the body of a SIP message contains a de-
scription of the session, encoded in some
other protocol format, such as sdp.

Content consists of DDS topics. The de-
tails of the session, such as the topic name,
topic type, or QoS policies, are described
using PDP and EDP.

Continuing next page
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continued from previous page

SIP DCSIP

Typically, content sent over RTP. Content sent over DDS-RTPS.

Message comparison

There are no methods that allow nodes to
automatically build their URI according to
their location in the system.

DCSIP defines a method for automatically
obtain the scope of a node. Since each
node can automatically (i.e., without
human intervention) re-calculate its scope
after a change in realm’s topology, this
eases the evolution of DCSIP-based sys-
tems.

SCOPE ANNOUNCEMENT.

REGISTER method for registering a SIP
URI to a user.

CONTENT REGISTRATION method for
registering a scope to a content.

There are no methods for performing re-
source location. Resources (UAs) are
located automatically during invitation.
Consequently, calling to a specific device
is not supported.

DCSIP defines methods for locating nodes
that share a particular data-content.

Methods for obtaining a list of scopes
associated to a given content:

OBTAIN SCOPE.

OBTAIN SCOPE SUBSCRIPTION.

Method for obtaining the scope path (i.e.,
the route) to a given scope:

OBTAIN SCOPE PATH.

Continuing next page
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SIP DCSIP

Method for creating, modifying, and
maintaining a session:

INVITE.

Response for accepting a session:

200 Ok.

Methods for creating, accepting, modify-
ing, and maintaining a session:

CREATE SESSION.

ACCEPT SESSION.

MODIFY SESSION.

HEARTBEAT.

Methods for session cancelation:

BYE.

CANCEL.

Method for session cancelation:

CANCEL SESSION.

There are six classes of responses accord-
ing to the obtained result:

1xx: Provisional.
2xx: Success.
3xx: Redirection.
4xx: Client Error.
5xx: Server Error.
6xx: Global Failure.

There are three classes of responses ac-
cording to the original request. The result
is indicated in the status field:

R CONTENT REGISTRATION.
R OBTAIN SCOPE.
R OBTAIN SCOPE PATH.

Continuing next page
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SIP DCSIP

Field comparison

Request-URI: This header identifies the
domain of the location service for which
the registration is meant (e.g., ”sip:chicago-
.com”). The ”userinfo” and ”@” compo-
nents of the SIP URI must not be present.

Not used.

Not used. Fields specific to SCOPE ANNOUNCE-
MENT:

scope label: The scope-label associated to
the node.

scope: The scope associated to the node.

To: This field contains the address-of-
record whose registration is to be created,
queried, or modified. The To header field
and the Request-URI field typically differ,
as the former contains a user name. This
address-of-record must be a SIP URI or
SIPS URI.

target content: A FQDN, FQTN, or
DCPS-Entity-Group URI that identifies
the data-segment to share.

target scope: The scope associated to the
T-Node. R-Nodes use this field for per-
forming access control checks. T-Nodes
use this field for checking if the message
is addressed to them.

From: This field contains the address-of-
record of the person responsible for the
registration. The value is the same as
the To header field unless the request is a
third-party registration.

source scope: The scope associated to the
I-Node. R-Nodes and T-Nodes use this
field for performing access control checks.

Continuing next page
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SIP DCSIP

Call-ID: All registrations from a UAC
should use the same Call-ID header field
value for registrations sent to a particular
registrar.

session id: This is an unique hash that
identifies a session negotiation request
across the realm.

CSeq: The CSeq value guarantees proper
ordering of requests. A UA must incre-
ment the CSeq value by one for each re-
quest with the same Call-ID.

c seq: This field identifies and orders
transactions. A I-Node must increment c -
seq value by one for each request with the
same session id.

Record-Route (optional): The Record-
Route header field is inserted by proxies
in a request to force future requests in the
dialog to be routed through the proxy.

forwarding scope path history: This
field contains a scope-path describing the
R-Nodes that the message has already
traversed. This is used as a reverse route
for delivering the message’s response. In
order to achieve this behavior, R-Nodes
add their scope-label to this field before
forwarding the message.

Via: The Via header field indicates the
transport used for the transaction and
identifies the location where the response
is to be sent.

r scope path: This field contains a scope-
path describing the sequence of R-Nodes
that a message from I-Node has to tra-
verse in order to reach the target scope.
Initially, this field is set with a reversed
version of the forwarding scope path his-
tory field. This field can not be modified
by intermediate R-Nodes.

forwarding scope path: This field con-
tains a scope-path describing the set of
R-Nodes the message has to traverse in
order to reach a particular I-Node. This
field is used as the route for delivering the
message. In order to determine the next
hop, R-Nodes remove their scope-label
from the scope-path before forwarding
the message.

session scope path: This field contains
the sequence of R-Nodes that I-Node is us-
ing for reaching the T-Node. If the T-Node
confirms the session, the session will be es-
tablished using this scope-path.

Continuing next page
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Max-Forwards: This field limits the num-
ber of hops a request can transit on the way
to its destination. It consists of an integer
that is decremented by one at each hop. If
the Max-Forwards value reaches 0 before
the request reaches its destination, it will
be rejected.

max forwards: This field contains the
maximum number of hops the message
can traverse before being discarded. It
consists of an integer that is decremented
by one at each hop. If the max forwards
value reaches 0 before the request reaches
its destination, it will be rejected.

Expires (optional): This field specifies the
relative time after which the message (or
content) expires.

session heartbeat period: This field spec-
ifies the relative time after which the ses-
sion expires. The value of the parameter is
an integer indicating a number of seconds.

Body (optional): This field contains the pa-
rameters of the session. Typical parame-
ters are used ports and supported codecs.

pdp data: The participant discovery
information. This field contains data
associated to SPDP or another alternative
discovery protocol.

edp data: The endpoint discov-
ery information. Among other
information, it includes the
DataRepresentationQosPolicy, which
describes the used data-types. It also in-
cludes QoS policies that are enforced in a
end-to-end basis. This field contains data
associated to SEDP or another alternative
discovery protocol.

Continuing next page
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Contact: This field includes zero or more
values containing address bindings. Con-
tact contains a SIP or SIPS URI that repre-
sents a direct route to contact Alice, usu-
ally composed of a username at a FQDN.

Field specific to CONTENT REGISTRA-
TION:

registered scope: This field includes one
address binding. It contains a URI that
represents a direct route to contact the reg-
istered node (i.e., the node’s scope). It can
optionally contain a scope description (a
string describing the scope). It can also
optionally contain a list of DCPS-Entity-
Names.

Not used. Field specific to responses:
status: This field indicates if the operation
was successfully completed or not. In case
of an error, it indicates the causes.

Not used. Field specific to OBTAIN SCOPE SUB-
SCRIPTION:
expiration: This field specifies the dura-
tion of the subscription. The value of the
parameter is an integer indicating seconds.

Not used. Fields specific to OBTAIN SCOPE PATH:

request id: This is an unique hash that
identifies an OBTAIN SCOPE PATH
request across the realm. This enables
to avoid overflooding the system with
OBTAIN ROUTE messages.

n hops: The number of R-Nodes an
OBTAIN SCOPE PATH message has tra-
versed. When a new OBTAIN SCOPE -
PATH messages arrives to an R-Node, the
values of its n hops and request id fields
are stored. When a subsequent OBTAIN -
SCOPE PATH message arrives to the same
node, the R-Node compares the new n -
hops field with the stored value. If the
new value is equal or greater than the
stored value, the message is discarded. In
this way, messages associated to non opti-
mal routes (i.e., the ones that require more
hops) do not overflood the system.

Continuing next page
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Not used. Field specific to R OBTAIN SCOPE:

r scope list:
The list of scopes containing entities in-
terested in the target FQDN/FQTN. This
field can not be modified by intermediate
R-Nodes.

Not used. Field specific to CANCEL SESSION:

session cancel description: This field de-
scribes cancelation’s causes.

Not used. Fields specific to HEARTBEAT:

qos status: This field contains informa-
tion about QoS violations.

ack: This field specifies the next expected
sample sequence number.

nack: This field contains a list of samples
not received.

From this table we can conclude that DCSIP is more suited than SIP for the
unique requirements of DCPS scenarios.

First, DCSIP addresses content using a name that is not bound to any specific
location, whereas SIP uses the UA location. In addition, DCSIP supports DCPS
entities and have mechanisms for univocally identifying DCPS content, which are
not supported by SIP.

DCSIP messages are routed using scope, scope label, and scope path, which are
concepts well aligned with the NDN model (see Section 6.5), whereas SIP messages
are routed by using an IP address or name associated to a particular location. In
this regard, DCSIP provides mechanisms for automatically creating an hierarchical
architecture for routing data. This architecture is able to adapt to the changes of the
system topology.

Finally, DCSIP have mechanisms for discovering all the publications and sub-
scriptions associated to a particular topic or data-space, which is not supported by
SIP.
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4.11 DDS and DCSIP features comparison

Finally, in this section we compare the differences between current DDS standard
family and the proposed DCSIP. More precisely, Table 4.2 includes discovery and
signaling differences and similarities.

Table 4.2: Comparison of current DDS and DCSIP features.

DDS DCSIP

Discovery

DDS-RTPS defines a mandatory-to-
implement discovery protocol, the SDP.
DDS-RTPS allows implementations to use
alternative discovery protocols.

Regarding discovery, DCSIP is compati-
ble with DDS-RTPS, since it supports ex-
changing SPDP and SEDP information as
a parameter of the session.

DDS defines the domainId for identifying
DDS domains. SDP uses the domainId (an
integer) to calculate the ports that DDS
uses.

domainId is not valid for universally iden-
tifying DDS domains.

DCSIP defines FQDN for identifying DDS
domains. FQDN is a URI that consists of a
DNS namespace associated to a particular
realm and a data-space name.

FQDN universally identifies DDS do-
mains.

DDS uses topic name and type name for
identifying DDS topics. DDS applications
that use SDP exchange this information
through SEDP.

topic name and type name are not valid
for universally identifying DDS domains.

DCSIP defines FQTN for identifying DDS
topics. FQTN is a URI that consists of a
FQDN (associated to topic’s data-space)
and a topic name.

FQTN universally identifies DDS topics.

Continuing next page
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DDS-RTPS defines the GUID, a sequence
of 16 bytes, for univocally identifying
DDS entities within a data-space.

DDS-RTPS GUID is not human readable,
and it can not include descriptive informa-
tion for an entity. Consequently, GUID is
not suited to create lists of sensors and ac-
tuators that are readable and meaningful
for human administrators.

DCSIP defines DCPS-Entity-Name for
identifying DDS entities. DCPS-Entity-
Name is a URI that univocally identifies
a participant, publisher, or subscriber
within a scope.

DCPS-Entity-Name can include a mean-
ingful name that helps human administra-
tors to identify the associated entity (e.g.,
./temperature-sensor01).

Since existing identifiers for domains, top-
ics, and entities are not universal, it is not
possible to discover all the DDS entities as-
sociated to a particular topic or domain in
a WAN environment.

DCSIP allows DDS applications to obtain
a list with all the participants, publish-
ers, or subscribers associated to a partic-
ular data-space or topic. This list is stored
in a Rdz-Node.

DDS-RTPS does not define a specific ad-
dressing scheme for describing entities lo-
cation.

In addition to FQDN, FQTN, and DCPS-
Entity-Name, which identify content,
DCSIP defines scope and scope label for
univocally identifying the location of a
DDS entity in the realm.

Signaling

DDS sessions are not standardized. DCSIP is a DDS session control protocol.

DDS session defines a common state
where applications share data-content.
This common state is characterized by a
set of QoS.

Applications use DCSIP to negotiate the
characteristics of DDS sessions (topics,
QoS policies).

Continuing next page
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DDS DCSIP

DDS-IS is not standardized, therefore DDS
does not define mechanisms for negotiat-
ing the creation of DDS-IS routes.

DCSIP allows DDS applications to negoti-
ate the creation of DDS-IS routes.

Using DCSIP, applications can select the
optimal route for sharing data-content.

Since DDS-IS nodes do not propagate DDS
discovery and data-content information
until two endpoints have declared their in-
tention to share data-content, DCSIP helps
to increase the scalability of DDS-IS based
systems.

4.12 Conclusions

In this chapter we have proposed the the rationale and fundamentals of a protocol
for session signaling in DCPS environments. This protocol allows applications to
perform DCPS entity and data-content discovery in medium-scale environments. It
also allows the creation of sessions between nodes, which eases the creation of DCPS
routes and enables the enforcement of QoS at end-to-end level.

The protocol has not yet been implemented nor integrated with the DDS-IS at
the time of writing. However, one of the main implementors of DDS, RTI [89],
has already shown its interest in DCSIP implementation, which envisages a very
promising future for the proposal.

In spite of its benefits, the proposed solution is not suitable for very large DCPS
environments, as the presence of a unique rendezvous server may not scale for very
high-scale scenarios (deployments with thousands of nodes). Moreover, DCSIP sig-
naling is conceived for working in a DDS/DDS-IS-based scenario, and it does not
contain information for its routing in non-DDS scenarios. For overcome these is-
sues, in the next chapter we propose a solution based on P2P-SIP/RELOAD for re-
source discovery and connection establishment between DCPS nodes.



Chapter 5
DDS usage for RELOAD

In the previous chapter we defined an information model for deploying DCPS sys-
tem in medium-scale scenarios. We also proposed a protocol for resource discovery
and session establishment in medium-scale scenarios.

In this chapter we focus in solving a still open issue in DCPS environments: their
scalability in large-scale deployments. In particular, and taking advantage of the
resource naming format proposed in the previous chapter, we define an extension
to the RELOAD standard [44] for providing resource discovery and NAT traversal
in DCPS environments.

To motivate the need of solving the scalability issues of DCPS for large-scale
deployments, we study a set of use cases that are based on the concept of Internet
of Things (IoT).

5.1 Motivation

The IoT [5] has been gaining momentum in the last years. The reduction of technol-
ogy costs and the great market penetration of handsets have allowed people to stay
permanently connected to the Internet. In this context –where people already make
an extensive use of the Internet–, the next step is to connect every device that gen-
erates relevant information to the Cloud [10], such that any object becomes smart
and accessible.

In this new approach, users and applications will be able to interact among
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themselves and their intelligent environment. For instance, users will receive alerts
about expired food from their fridge, or will check whether their garage door is
closed; it will even be possible for coffee machines to automatically prepare the cof-
fee in the morning when the alarm goes off.

The core of IoT is the data-content shared by non-traditional-Internet devices,
such appliances, doors, alarm-clocks, cars, etc. These devices can generate a lot
of data-content –e.g., temperature updates, device status reports, car metrics, and
many others– Hence, IoT deployments demand efficient and robust communica-
tions with special scalability support.

IoT scenarios are especially suited for taking advantage of DCPS approaches.
As we studied in Section 2.2.1, DCPS is a programming model that is not focused
on data location, but instead on the data-content itself. In DCPS deployments,
data-content flows between data sources (i.e., publishers) and data sinks (i.e., sub-
scribers).

Publishers and subscribers access to data-content in a DCPS basis. That is, in-
stead of requesting for a resource location, they create a publication (or a subscrip-
tion) to a segment of a data-space (i.e., a topic). Topics are decoupled spatially,
and therefore subscribers can access to topic’s content without a prior knowledge of
publishers’ location.

Another advantage of DCPS systems is that they are not data-agnostic, on the
contrary DCPS allows for performing advanced operations over data-content, such
as content-based filtering, data transformation, and data composition.

However, prior to sharing data, publishers and subscribers must discover each
other (i.e., a rendezvous function is needed). This rendezvous function has to sup-
port multiple publishers and subscribers sharing a particular topic from several
different locations.

A simple solution for small LAN deployments is to use multicast for discovering
publishers and subscribers. However, this solution does not scale well and is not
suitable for environments with NATs and firewalls.

Another possible solution is to set up a server for keeping all the rendezvous
information, as the one proposed in Chapter 4. The use of a properly configured
server avoids the NAT traversal problem for discovery, but does not scale in large-
scale deployments, does not solve NAT for information exchange, and introduces a
single point of failure.

A third solution is to distribute the discovery information among the members
of a P2P overlay. P2P deployments are highly scalable because they distribute com-
puting and traffic load among all the members of the overlay. In addition, some
P2P solutions support advanced functionalities like NAT traversal. One of these



5.2. Motivating use case examples 131

solutions is RELOAD [44], an IETF specification for building and maintaining P2P
systems on the Internet. RELOAD provides an abstract overlay service that can
be extended to support specific application usages. For more information about
RELOAD, please refer to Section 2.4.

In this chapter we propose a scalable RELOAD-based solution to the discovery
problem in DCPS environments. Our proposal demonstrates the extensibility of
RELOAD by proposing a RELOAD usage that adapts it for performing rendezvous
in DCPS-based deployments. We define the Resource Naming Format, the data
types for storing the rendezvous information, and the interactions among the enti-
ties performing the rendezvous.

Once two particular nodes complete the rendezvous, they can establish a di-
rect connection by means of existing RELOAD mechanisms. Using this connection,
nodes can exchange IoT data-content using a protocol for constrained nodes, such
as CoAP [97]; or a DCPS middleware, such as the OMG DDS [67].

We have implemented a proof of concept prototype and conducted a set of exper-
iments over a simulated network of 10000 nodes. Our results show that the average
and 95 percentile latency for storing and retrieving the discovery information of a
DCPS follow a logarithmic growth as a function of network size.

The remainder of the chapter is organized as follows. In Section 5.2 we present a
set of motivating use cases. In Section 5.3 we identify the limitations of RELOAD we
need to overcome. In sections 5.4 and 5.5 we study the system design and operation.
In sections 5.6 and 5.7 we address the experimental setup and the conducted exper-
iments, and we analyze the obtained results. Finally, in Section 5.8 we summarize
the main conclusions of the chapter.

5.2 Motivating use case examples

In this section we provide a set of use cases we considered when designing the
RELOAD usage for DCPS-based IoT systems. Each use case requires performing
rendezvous with a different set of DCPS entities.

5.2.1 User data-space

In this use case, a user is able to obtain information of his ”user data-space”, which
is the set of data related to him.

A typical user data-space contains information about user’s vitals, car position,
gas remaining at his car, status of his fridge, and status of user’s house doors. All
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this information is relevant to a particular user, and should be accessible only by
him.

This use case will allow a user to discover and subscribe to any piece of informa-
tion within his data-space. Consequently, it is necessary to discover both publishers
and subscribers associated to certain data-space, without restrictions on the types
of exchanged data-content.

5.2.2 N permanent stock-shares publishers, M variable stock-shares
subscribers

In this scenario, a constant number of stock-shares publishers publish information
of share prizes to a data-space. A variable number of subscribers (users who want
to obtain the latest share values) subscribe to this information.

This scenario requires subscribers to be able to discover stock-shares publishers
associated to a certain market. Once discovered, the subscriber is able to subscribe
to the publishers of interest.

5.2.3 N variable temperature sensors, 1 permanent temperature
monitor

In this use case, a set of temperature sensors publish temperature values to a data-
space. These values must reach a temperature monitor that is subscribed to the
temperature updates. A temperature monitor is a node that gathers and stores tem-
perature values and may generate alerts. These alerts could be used for triggering
automatic responses or they can just generate a notification to an human operator.
A temperature monitor node is always available, but new temperature-publishers
may be added later.

This scenario requires the temperature monitor to be able to subscribe to temper-
ature sensors, even if they are not yet active. In this sense, once a new temperature
sensor joins the system, it will discover the temperature monitor that is subscribed
to its temperature updates.

5.2.4 N variable planes (entering and leaving the airspace), M vari-
able air traffic controllers

In this use case, an Air Traffic Controller (ATC) receives the information of planes
flying in his Flight Information Region (FIR). As planes enter and exit the FIR, their
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associate publishers (in this example, with information about the sensors in the
plane) join and leave respectively the FIR data-space. Additionally, an authorized
ATC could join latter to the data-space, so the system should deliver the existing
planes information to this new ATC.

This use case requires both publishers (planes) and subscribers (ATCs) to be able
to discover already existing data-space participants. As an additional constraint,
the information about existing publishers (planes) should be visible only to the au-
thorized ATCs. Similarly, information about subscribers should be only visible to
allowed publishers.

5.3 New required features

In Section 2.4.5, we studied the existing RELOAD usages. In all of those usages, the
system was user- or service-centric. That is, it stores the location of a particular user
agent or of a peer providing a service.

However, DCPS systems –and specifically the use cases described in the previous
section–, require the following functionality not currently supported by RELOAD:

- Discovery of multiple publishers updating a particular topic. This feature
will allow subscribers to perform rendezvous with compatible publishers.

- Discovery of multiple subscribers interested in a particular topic. This feature
will allow publishers to locate subscribers interested in their data updates.

- Discovery of multiple data-participants associated to certain data-space. This
feature will allow applications for locating other applications associated to a partic-
ular data-space (i.e., to a collection of topics).

5.4 System design

In the this section we study the characteristics of the proposed architecture and the
adopted design decisions.

5.4.1 A DCPS approach

The proposed design has been developed around the DCPS model already studied
in Section 2.2.1.
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Since our proposal is data-centric, the relation between nodes and overlay is
based on the data that they publish or subscribe. Consequently, nodes should be
discoverable only if they have some piece of data to share. However, all the nodes
sharing information do not necessarily had to be discoverable (see use cases in Sec-
tions 5.2.2 and 5.2.3).

Note that with ”discoverable” we mean that a given node is available for ren-
dezvous at the application level. Therefore, this has no impact on maintenance or
routing operations of the underlying layers.

5.4.2 A RELOAD based architecture

We have selected RELOAD for performing the rendezvous among DCPS entities
because it provides high scalability, robustness, and NAT traversal. High scalability
is a requirement, as our system must be suitable for large-scale deployments. NAT
traversal is also necessary, as it allows administrators to deploy our architecture
in WAN environments that include NATs and firewalls. Robustness is also a main
concern, as we assume that nodes in the overlay can fail, and a single point of failure
is not admissible.

Figure 5.1 depicts the proposed layer architecture, which is divided in three lay-
ers: RELOAD, Discovery-and-Data, and DCPS application. This architecture adopts
a layered design based on the following motivations. First, it increases system mod-
ularity, by allowing the specific implementation of each layer to be changed without
impacting the rest of the layers. Second, it allows existing applications to remain
independent of new proposed entities while benefiting from the system. And third,
it simplifies the overall understanding of the system, because it classifies entities of
different functionality in different layers.

The bottom layer is named RELOAD, and contains RELOAD nodes (peers and
clients). In order to identify these nodes, each node has a unique Node-ID, ob-
tained during the process of joining the overlay (see Section 5.5.1). Node-ID allows
RELOAD to locate and deliver messages to any member of the overlay infrastruc-
ture.

On top of RELOAD we define the Discovery-and-Data layer. This layer enables
publishers, subscribers, and data-participants at the DCPS Application layer for
performing rendezvous and for exchanging data-content. Discovery-and-Data layer
is populated by D-Nodes and S-Nodes, both defined in Section 5.4.3. As we will see
in Section 5.4.4, these nodes form groups according to the DCPS Application layer
entities that they host.

Finally, the DCPS Application layer contains the DCPS entities (publishers, sub-
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Figure 5.1: Architecture layers.

scribers, and data-participants) that exchange data-content using a DCPS approach.

As part of our design, we propose a new RELOAD usage that is adapted to the
unique requirements of DCPS systems. This new DCPS usage for RELOAD consists
of three different aspects:

1. The creation of new Kinds that respond to DCPS system requirements, pro-
posed in Section 5.4.5.

2. The specification of a format for addressing data-content, described in Section
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5.4.6.

3. The description of the usage operation, detailed in Section 5.5.

5.4.3 Discovery-and-Data node roles

Our proposal defines two different node roles for the Discovery-and-Data-layer.
These roles cover two different relations between nodes and the overlay.

- Discoverable Node (D-NODE): A member of the overlay that is visible to other
nodes. It can act as subscriber, publisher, or data-participant. Since its rendezvous
information is available to the nodes of certain DCPS Entity Group (see Section
5.4.4), those nodes can dialogue with it.

- Spectator Node (S-NODE): A member of the overlay that does not share its
presence and it is not discoverable. Consequently, S-NODEs can access D-NODEs
discovery information, but their own information is not visible to other nodes. S-
NODEs may eventually become a D-NODE (and vice versa).

These roles are independent of RELOAD node types: clients and peers can both
act as D-NODEs or as S-NODEs. These roles are also independent of the hosted
DCPS entities: D-NODEs and S-NODEs can both host publishers, subscribers, and
data-participants.

5.4.4 DCPS Entity Groups

The proposed RELOAD usage takes advantage of the concept of DCPS-Entity-Group,
defined in Section 4.5.4. In the context of this usage for RELOAD, DCPS-Entity-
Group is an identifier shared among a group of Discovery-and-Data-layer nodes
that host a particular group of DCPS Application layer entities.

We use DCPS-Entity-Group to determine if a given node is authorized to com-
plete a store over a particular Resource-ID, as we study in next sections.

5.4.5 RELOAD Kinds for DCPS

S-NODEs can turn into D-NODEs (and vice versa). Once a S-NODE turns into a
D-NODE, it becomes discoverable by a particular set of nodes.

Specifically, for dealing with the use cases in Section 5.2, we identify three dif-
ferent discovery types:
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- Topic publisher discovery: This is the procedure of discovering all the nodes
associated to certain topic as publishers (i.e., those nodes that publish data data of
certain type).

- Topic subscriber discovery: This is the procedure of discovering all the nodes
interested in certain topic (i.e., those nodes subscribed to data of certain type).

- Data-space discovery: This is the procedure of discovering nodes running ap-
plications that interact with a certain data-space. The discovered nodes can contain
multiple publishers and/or multiple subscribers of different data types.

In our system, the conversion between S-NODE and D-NODE is performed
through a DataRegistration. We use DataRegistration for enabling discovery and
for starting a publication or a subscription. A DataRegistration is a RELOAD store
request of a specific RELOAD Kind (see Section 2.4).

In the following sections we propose three new RELOAD Kinds that constitute a
new RELOAD Usage for DCPS systems. These new Kinds cover the three different
discovery types we have described above.

5.4.5.1 TopicPublisher and TopicSubscriber Registrations

Topic publisher discovery and topic subscriber discovery are respectively the pro-
cedures of locating publishers and subscribers of a particular topic. In our system,
these discovery types are accomplished by means of TopicPublisher and TopicSub-
scriber Registrations.

TopicPublisher Registration is a new RELOAD Kind for storing lists of publish-
ers. Specifically, each list contains all the nodes declared as publishers of a particu-
lar topic. Any node that is able to access to a particular TopicPublisher Registration
will also be able to perform rendezvous with the publishing nodes contained in that
Registration. In this sense, a node that creates a TopicPublisher Registration en-
try is implicitly allowing a group of subscribers for subscribing to the publishers
associated to that node.

TopicSubscriber Registration is a new RELOAD Kind for storing lists of sub-
scribers. A node that registers into a TopicSubscriber Registration is implicitly cre-
ating a subscription to a topic, and therefore is allowing topic publishers for deliv-
ering topic updates to the subscribers associated to that node.

One of the benefits of this approach is that nodes can create an entry to a par-
ticular TopicSubscriber Registration even if there is not any active publisher for the
associated topic. In this way, as soon as a publisher joins the overlay, it can perform
rendezvous (and start sending topic updates) using the TopicSubscriber Registra-
tion information.
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We have adopted RELOAD dictionary [44] (see Section 2.4.4) as the data model
for storing TopicPublisher and TopicSubscriber Registrations. The dictionary model
allows for univocally identifying each list entry with a key. In our design, the dictio-
nary key for an entry is the Node-ID of the storing node. This characteristic avoids
the duplication of entries, as each node can have at most one entry stored for a
particular TopicPublisher (or TopicSubscriber) Registration.

Regarding content addressing, each dictionary record is univocally identified by
a Resource-ID. This Resource-ID identifies the topic and type (publisher or sub-
scriber) of the DCPS entities stored in the dictionary. We will explain how the
Resource-ID is calculated in Section 5.4.6.

As we have explained above, each node can store at most one entry per dictio-
nary record. However, there are cases where a given node contains multiple DCPS
entities of the same type and data-segment (e.g. a node that contains multiple tem-
perature publishers). In order to univocally identify the entities associated to a
particular node, each dictionary entry contains a list of DCPS-Entity-Names (see
Section 4.5.4), each one associated to an entity.

In order to preserve the integrity and authenticity of the information, the overlay
processes a given store request only if the storing node’s certificate has an adequate
Node-ID (i.e., the same as the one used as storing key), and if the certificate contains
a DCPS-Entity-Group that matches with the Resource-ID of the store request.

If the application requires privacy, nodes can encrypt stored data by using a
key associated to the DCPS-Entity-Group. In this way, only nodes belonging to the
right DCPS-Entity-Group will be able to successfully read the content of a given
dictionary record.

5.4.5.2 DataSpaceParticipant Registration

In addition to publisher and subscriber discovery, our system supports rendezvous
among applications bound to a particular data-space. These applications can in-
teract with multiple topics of a given data-space, using multiple publishers and/or
subscribers.

DataSpaceParticipant Registration enables nodes for performing rendezvous with
all the discoverable nodes that host applications associated to a particular data-
space. In this way, applications do not have to create multiple TopicPublisher and
TopicSubscriber Registrations, instead they access to a unique DataSpaceParticipant
Registration.

DataSpaceParticipant is especially useful for deployments where one or more
monitors access to data associated to several different topics (an example of this
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scenario is the use case described in Section 5.2.1).

DataSpaceParticipant Registration is similar to TopicPublisher/TopicSubscriber
Registrations. However, it includes a DCPS-Entity-Descriptor associated to each
DCPS-Entity-Name to indicate if the entity is a publisher, a subscriber, or a data-
participant.

DataSpaceParticipant uses the same mechanisms as the TopicPublisher and Top-
icSubscriber Registrations for providing integrity, authenticity, and privacy.

5.4.6 Resource naming format

In RELOAD, stored information is accessed by its Resource-ID. In this section we
explain how our system calculates the Resource-ID for each DataRegistration type.

In our proposal, a Resource-IDs is generated from an URI that identifies certain
data-space segment. The format for this URI is very similar to the one proposed in
Section 4.6.

In particular, in our RELOAD usage the URI for a given FQDN is built as follows:

dcps:// < overlay > / < data-space-name > /

Where dcps stands for Data-Centric Publish-Subscribe, overlay is a DNS do-
main name identifying a P2P overlay, and data-space-name could be a hierarchy of
data-space names (separated by forward slashes), for example:

dcps://ugr.es/labs/microwaves/

Since a topic is a segment of a data-space, the URI for a FQTN is built by attach-
ing the topic-name to the FQDN of the topic’s data-space:

dcps:// < overlay > / < data-space-name > / < topic-name > /

The URI associated to TopicPublisher, TopicSubscriber, and DataSpacePartici-
pant Registration is a DCPS-Entity-Group URI. In this regard, nodes build Top-
icPublisher, TopicSubscriber, and DataSpaceParticipant Registration by adding
/.pub/, /.sub/, or /.par/ suffixes to a FQDN or FQTN URI.

Our design also uses this URI format for the DCPS-Entity-Names (see sections
4.5.4 and 5.4.5.1). In order to save storage space and traffic load, our system stores
DCPS-Entity-Names as relative URIs (using the dictionary record’s URI as base).
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5.5 System operation

In this section we describe the operation of our system through an example. In
particular, we will use user data-space use case from Section 5.2.1. We have chosen
this use case because it covers all the different DataRegistration types.

In this example we assume that RELOAD uses Chord [102] [103] as DHT algo-
rithm. Chord uses SHA-1 [46] as the base hash function for assigning each node and
resource a unique m-bit identifier (respectively called Node-ID and Resource-ID).
These identifiers are used for creating a ring of 2m nodes, which is called the Chord
ring.

Each member of the ring maintains a routing table consisting of a finger ta-
ble and a neighbor table, which allows nodes for locating resources on the overlay.
The neighbor table contains a list of node’s immediate successors and predecessors.
The finger table stores information about O(logN ) nodes distributed along the ring.
Specifically, in Chord the ith entry in the finger table at node n contains the identity
of the first node, s, that succeeds n by at least 2(i−1) on the ring. In RELOAD, finger
table entries are indexed in opposite order (i.e., finger[0] is the node 180 degrees
around the ring from the original node).

As we have no made modifications to the underlying Chord DHT, in this section
we will describe the operation from a RELOAD-level point of view. For more infor-
mation about how RELOAD functions are mapped to Chord DHT, please refer to
RELOAD specification [44].

5.5.1 Joining the overlay

Prior to joining an overlay (in our example scenario, iotugr.es), any joining node
must know at least one node which is currently a member of the overlay. This is a
common issue in P2P networks and is referred to as the bootstrapping process.

In RELOAD, the bootstrapping nodes (i.e., the nodes used to form the first con-
nection to the overlay) must have public IP addresses so that new nodes can reach
them. Once a peer has connected to one or more bootstrap nodes, it can form con-
nections using existing RELOAD operations.

In our system, the bootstrap node also acts as the certificate authority (located at
iotugr.es/bootstrap), providing the joining node a Node-ID (an integer, e.g. 1234567)
and a certificate associated to that Node-ID.

Once a peer has connected to the overlay for the first time, it can cache a list of
public IP addresses the peer has successfully reached, and use these addresses as
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Figure 5.2: Example of overlay prior to any DataRegister.

future bootstrap nodes.

After joining is completed (see Figure 5.2), the joining peer is a full member of
the overlay and can process Store/Fetch requests.

5.5.2 Registering entities

In this section we explain the procedures for registering the three different types of
DataRegistration: TopicPublisher, TopicSubscriber, and DataSpaceParticipant.

5.5.2.1 Registering a new publisher using TopicPublisher

Continuing with our example, when the user jmlvega installs a IoT-enabled alarm
clock, the clock registers itself into the tevent topic as a publisher (in our example,
this topic contains time-driven events, such as calendar alerts or alarm clock events).
In order to register, the alarm clock performs a RELOAD Store using the following
URI:
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dcps://iotugr.es/jmlvega/home/tevent/.pub/

Since Chord uses SHA-1 hashes for addressing resources, the node calculates the
SHA-1 of the URI and then performs a store of the Kind ”TOPIC PUBLISHER REG”
with the following data:

Resource-ID: 53b573958039726dec72d3ce0e06367f569be4db

DICTIONARY-KEY: 1234567

VALUE: {../alarmclock}

After performing a successful store, this information is available in the overlay
and can be fetched later by any node. In order to provide data privacy, stored data-
content can be encrypted using a public key. In this way only authorized nodes (the
ones with the proper private key) will be able to read the stored data later.

5.5.2.2 Registering a new subscriber using TopicSubscriber

Locked doors that are accessible to the user jmlvega (his own house’s doors, and cer-
tain doors at his workplace) can use TopicSubscriber for registering their discovery
information. In this way, the user can connect to a particular lock and then publish
the proper open/close signal. Since door locks are usually constrained devices, they
are typically accessed through a proxy. In our example, garage and front doors of
the user’s house register through the domopc node, which acts as a proxy. In order
to register the locks, domopc performs a RELOAD store using the following URI:

dcps://iotugr.es/jmlvega/lock/.sub/

Once the SHA-1 has been calculated, the node performs an store of the Kind
”TOPIC SUBSCRIBER REG” with the following data:

Resource-ID: d15138ddbf356e8e6726c6985cea423c9cae7a28

DICTIONARY-KEY: 0000000

VALUE: {../../home/domopc/garaged ;

../../home/domopc/frontd }

As in the previous case, this information will be available for any member of the
overlay, and therefore it should be encrypted in order to provide data confidential-
ity.

The fact of registering both publishers and subscribers (instead of registering
only publishers) enable nodes to discover matching nodes as soon as they join the
network, without relying in periodic fetches from subscribers. Additionally, it eases
the balancing of load and requests among the overlay.
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5.5.2.3 Registering a new data-participant using DataSpaceParticipant

There are situations where nodes need access to a significant number of topics or
even to a complete data-space. For example, a domotic house central computer
should be able to discover all the sensors of the house, even if those sensors pub-
lish information through different topics. For these cases, we have designed DataS-
paceParticipant Registration.

Continuing with our example, the computer at the domotic house could register
itself to the data-space jmlvega/home using the following URI:

dcps://iotugr.es/jmlvega/home/.par/

Once the SHA-1 has been generated, the node performs an store of the Kind
”DATA SPACE REG” with the following data:

Resource-ID: 4bffc1a6f31a40b054584f27464f84ba2ac32316

DICTIONARY-KEY: 0000000

VALUE: {../domopc [DP]}

In this store, the node has registered only one URI as a data-participant (DP).
Registering the type of the DCPS entity (in this case, data-participant) eases the
processing of rendezvous information. Thus, the fetching nodes can filter dictionary
entries according to their interests.

Our system also supports nodes that host several DCPS entities. Consider a
mobile device that simultaneously maintains a calendar, a domotic house control
panel, and a application for registering alerts generated by a domotic house. This
device will perform the following store for registering three publishers (in this case,
it uses the same Resource-ID, but a different Node-ID):

Resource-ID: 4bffc1a6f31a40b054584f27464f84ba2ac32316

DICTIONARY-KEY: 5996172

VALUE: {../mobile/calendar [PB];

../mobile/domocontrol [PB];

../mobile/domoalerts [PS]}

Figure 5.3 depicts the overlay after performing the DataRegistrations described
in our example. In the following sections we study how nodes can retrieve this
information.
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Figure 5.3: Example of overlay after several DataRegister.

5.5.3 Entity Discovery

In this section we explain the procedures for discovering nodes in the overlay using
the three available DataRegistration types: TopicPublisher, TopicSubscriber, and
DataSpaceParticipant.

5.5.3.1 Publisher discovery

Continuing with our example, a calendar application needs to retrieve planned
events from a user data-space. After joining the overlay, the node that hosts the
application calculates the SHA-1 for the following URI:

dcps://iotugr.es/jmlvega/home/tevent/.pub/

Once the SHA-1 is obtained, the node sends a fetch using the SHA-1 as the
Resource-ID, and ”TOPIC PUBLISHER REG” as the Kind-ID. This operation re-
turns the following entries:
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Resource-ID: 53b573958039726dec72d3ce0e06367f569be4db

1. DICTIONARY-KEY: 1234567

VALUE: {../alarmclock}

2. DICTIONARY-KEY: 5996172

VALUE: {../mobile/calendar}

3. DICTIONARY-KEY: 6352145

VALUE: {../calendarservice}

The fetch has returned three results. The first one is the one in the example
at Section 5.5.2.1. The other two entries correspond to calendar services that had
registered its presence information later. With this information, the application is
able to access those publishers through the overlay and then request for the data-
content.

5.5.3.2 Subscriber discovery

After joining the overlay, a user application for managing multiple locked doors per-
forms a fetch to the Resource-ID associated to the URI dcps://iotugr.es/jmlvega/
lock/.sub/. Since the application is looking for subscribers, it uses ”TOPIC SUBS-
CRIBER REG” as Kind-ID. As a result, it obtains the discovery information of sub-
scribers associated to that data-space and topic:

Resource-ID: d15138ddbf356e8e6726c6985cea423c9cae7a28

1. DICTIONARY-KEY: 0000000

VALUE: {../../home/domopc/garaged ;

../../home/domopc/frontd }

2. DICTIONARY-KEY: 9456721

VALUE: {../../ugr/lab01/lock}

From this point, the application is able to connect to those nodes using RELOAD
AppAttach method, and then the user can select what door lock he wants to activate.

5.5.3.3 Data-participant discovery

Continuing with the example in Section 5.5.2.3, if the computer at the domotic
house performs a fetch to the Resource-ID associated to the URI dcps://iotugr.

dcps://iotugr.es/jmlvega/lock/.sub/
dcps://iotugr.es/jmlvega/lock/.sub/
dcps://iotugr.es/jmlvega/home/.par/
dcps://iotugr.es/jmlvega/home/.par/
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es/jmlvega/home/.par/ using ”DATA SPACE REG” as Kind-ID, the obtained re-
sult will be:

Resource-ID: 4bffc1a6f31a40b054584f27464f84ba2ac32316

1. DICTIONARY-KEY: 0000000

VALUE: {../domopc [DP]}

2. DICTIONARY-KEY: 5996172

VALUE: {../mobile/calendar [PB];

../mobile/domocontrol [PB];

../mobile/domoalerts [PS]}

Where the first entry corresponds to its own discovery information. Using these
results, the computer is now able to connect to those nodes and, therefore, to ex-
change information with them.

5.5.4 Data transfer

Once a node has obtained a list with Node-IDs and URIs associated to matching
nodes, it can establish a connection to those nodes. This connection is established
using RELOAD AppAttach (see Section 2.4.3).

Our system has been designed to be generic. In this sense, nodes can perform
data transfer using any publish-subscribe based protocol. For example, applications
can use CoAP [97] for exchanging data-content over an existing RELOAD AppAt-
tach connection. CoAP is an emerging protocol suited for working with low-power
devices (the ones typically used in IoT deployments). Consequently, a CoAP-based
solution allows for integrating these constrained devices to the overlay.

Another possible alternative is to use DDS-RTPS [69]. DDS-RTPS is part of the
DDS standard family [67] and it is defined for transferring data in DCPS systems.
DDS-RTPS solution is adequate for medium to high complexity distributed systems
that require advanced features as data reliability, QoS negotiation, or data persis-
tence.

In the following sections we describe the process of data transferring using these
two protocols.

dcps://iotugr.es/jmlvega/home/.par/
dcps://iotugr.es/jmlvega/home/.par/
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5.5.4.1 Data transfer using CoAP

Once a node that hosts a subscriber (referred to as I-Node) receives the rendezvous
information of a node that hosts a publisher (referred to as T-Node), I-Node sends
an AppAttach request to T-Node. Upon AppAttach reception, T-Node generates an
AppAttach response that establishes a connection between I-Node and T-Node.

Using this connection, the I-Node sends a subscription request to the T-Node.
This request follows the procedure described in [28]. In particular, I-Node sends
a GET request (using the open connection) to the URI associated to a partic-
ular DCPS-Entity-Name (e.g., coap://iotugr.es/jmlvega/home/tevent/mobile/

calendar). This URI is the one obtained during the rendezvous process, after re-
placing ”dcps://” with ”coap://”. From this point, the publisher mobile/calendar
delivers its updates to the monitoring node using CoAP notifications over the active
connection.

If the initiator of the dialog is a publisher, the procedure is almost the same
as the described for a subscriber, but an additional step is necessary: the node that
contains the publisher must notify subscriber’s node about the existence of an active
publication.

5.5.4.2 Data transfer using DDS-RTPS

Once a node that hosts a DDS participant (referred to as I-Node) receives the ren-
dezvous information of a node that hosts another DDS participant (referred to as T-
Node), I-Node sends an AppAttach request to T-Node. Upon AppAttach reception,
T-Node generates an AppAttach response that establishes a connection between I-
Node and T-Node.

Once rendezvous is finished, DDS implementations can perform their own PDP
and EDP procedure (for more information about DDS/DDS-RTPS discovery, please
refer to Section 2.2.2). After completing the DDS-RTPS discovery process, nodes
are able to push updates from DWs to matching DRs. This data flow continues as
long as the AppAttach connection remains active and both matching DW and DR
are active.

5.6 Prototype and experimental setup

To validate our proposal, we have implemented a prototype. It is an extension to
the one used in [58], [59], and [57], which is a Java Standard Edition (J2SE) imple-
mentation of RELOAD owned by ERICSSON-RESEARCH.

coap://iotugr.es/jmlvega/home/tevent/mobile/calendar
coap://iotugr.es/jmlvega/home/tevent/mobile/calendar
dcps://
coap://


148 Chapter 5. DDS usage for RELOAD

Our prototype implements the three different Registrations proposed in Section
5.4.5. In this regard, it allows overlay peers to discover three different kinds of
DCPS entities (data-participants, publishers, and subscribers). Regarding content
addressing, we have used the URI format proposed in Section 5.4.6.

In order to perform stores and fetches, the URIs are encoded using SHA-1. The
prototype implements a CoAP-based procedure for transferring data between peers.

We have conducted a series of experiments to validate our prototype. In the next
subsection, we detail the experimental setup.

5.6.1 Experimental setup

Our prototype includes the same code base as the RELOAD/P2P-SIP prototype used
by ERICSSON-RESEARCH in [54], [55], and [56] to run experiments in PlanetLab
[64]. For the experiments reported in this chapter we ran multiple instances of our
prototype over a simulated overlay. We decided to use a simulated overlay to be
able to experiment with large-scale overlays (up to 10000 nodes). The validity of
the measures of the used simulator has been already demonstrated in [57], which
includes a comparison between simulation and real PlanetLab deployment results.

Our simulator uses a topology generator that assigns peers randomly to 206 dif-
ferent locations around the world. These locations correspond to PlanetLab sites.
The pairwise delays between peers were set based on real pairwise delays that we
measured between nodes at these PlanetLab sites.

We have chosen Chord as the DHT algorithm for creating and organizing the
overlay. The reason to use Chord is because RELOAD specifies it as the mandatory-
to-implement DHT. The size of Chord’s successor list and finger table were set to
log2N , while the size of predecessors list were set to 0.5 ∗ log2N . Where N is the
maximum network size for each experiment (as we will see later, it ranges from 500
to a maximum of 10000 nodes).

We have assumed an unreliable transport protocol for peer communications.

We have also assumed a 90% of peers were located behind a NAT that uses
endpoint-independent mapping and filtering behavior. In this sense, our simula-
tions consider the time of ICE negotiation for performing NAT traversal when nec-
essary.

In our system, data reliability and system robustness is a main concern, as dis-
covery information loses prevent nodes for being discovered at Discovery-and-Data
layer.

In order to provide robustness against node failures and ungraceful disconnec-
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tions, we configured our prototype for replicating among multiple peers the infor-
mation stored in the overlay. We have chosen a replication factor equal to 3 for the
stored DCPS registers (i.e., information is replicated in three additional nodes). We
have assumed a 10% of peer leaves are crashes.

In Section 5.4.3 we defined two node roles: S-NODES and D-NODES. In or-
der to test the worst-case-scenario, we have assumed all the nodes in the overlay
are D-NODES (i.e., every node stores its discovery information in the overlay, and
therefore generates the associated additional traffic).

In the experiments, each D-NODE registers one DCPS entity to the overlay. The
kind for this entity is generated randomly. Specifically, 20% of the nodes register a
DCPS data-participant, 40% of the nodes register a DCPS publisher, and 40% of the
nodes register a DCPS subscriber.

The simulator generates the URI associated to each register randomly from a
pool of URIs. Since the URI format is different for each new RELOAD Kind, the
simulator has three different URI pools: one for data-participants, one for publish-
ers, and one for subscribers.

We have tested both the rendezvous and AppAttach procedures. In this sense,
each node performs a lookup for a randomly generated URI and starts an AppAttach
with all the obtained entries (i.e., all the entities of the same DCPS-Entity-Group).
This is also a worst-case scenario, as in the typical use-case the node will not nec-
essarily open a connection with all the discovered nodes, but a subset of them. The
simulator obtains lookup URIs from the same three pools used during the store;
however, in this case Publishers use the Subscriber URI pool and vice versa.

In order to obtain comparable experimental data from different network sizes,
the average number of entries per Resource-ID should be the same for all the exper-
iments (if not, the different size of lookup responses will impact on the results). Our
simulator achieves this behavior by adjusting the URI pool sizes proportionally to
the maximum network size.

In our experiments, we have assumed an average of 20 entries per Resource-ID.
This means a node will connect an average of 20 nodes after a successful lookup
result (i.e., the nodes that share a particular segment of the DCPS data-space).

We have conducted two different types of experiments for testing the system
scalability and robustness. In the first set of experiments, we study how the number
of nodes in the overlay (from 500 to 10000) impacts the system performance (i.e.,
the average latency for stores, lookups, and inter-peer connection establishment).

In the second set of experiments, we evaluate how the churn rate (modeled as the
rate at which nodes join and leave the overlay) impacts the reliability of the system.
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5.7 Experimental results

The first set of experiments evaluates the scalability of the system. In particular,
we measure the incurred latencies for storing and obtaining the proposed RELOAD
Kinds in different network sizes (specifically 500, 1000, 5000, and 10000 nodes).

We have also measured the time necessary for discovering a particular DCPS-
Entity-Group and establishing a connection with a node associated to that group.

In order to measure these latencies, the simulations have two phases: overlay
creation and measurement.

During the overlay creation phase, the simulator creates an overlay with approx-
imately N nodes, where N is the tested network size. In this phase, the simulator
creates new nodes, whose locations are randomly chosen from our PlanetLab data-
base, and joins them to the overlay.

Once a particular node has joined to the overlay, it performs a store to one of
the three new proposed RELOAD Kinds (chosen randomly as we describe in the
previous section).

Once the ring is created, the measurement phase starts: during this phase new
nodes join the network, perform a store, obtain the discovery information for a ran-
domly chosen DCPS-Entity-Group, and open a connection with all the obtained
nodes.

The join rate during this phase has been modeled as a Poisson process with an
average of 0.5 joins per second. The simulated time for this phase was 3600 seconds,
and each experiment has been repeated three times (for a total simulation time of
10800 seconds per experiment).

Figure 5.4 depicts the average and 95% percentile latency associated to the store
and lookup processes of the new proposed RELOAD Kinds, for multiple network
sizes. The results show that the system scales well in terms of latency as the num-
ber of nodes in the network increases. The average and 95% percentile latency for
storing the discovery information of a DCPS entity follows a logarithmic growth as
a function of network size.

In the same way, the average and 95% percentile latency for retrieving the dis-
covery information of all the nodes associated to a particular DCPS-Entity-Group
also follows the same trend.

In addition to the store and lookup latency, we have measured the total time
from the request of a particular DCPS-Entity-Group (i.e., after starting the ren-
dezvous) until the creation of a AppAttach connection (using ICE if necessary) and
the arrival of the first CoAP update. Figure 5.5 shows the average delays for dif-



5.7. Experimental results 151

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

500
1000

5000
10000

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Number of nodes

Delay
95% Percentile

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

500
1000

5000
10000

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Number of nodes

Delay
95% Percentile

Figure 5.4: A) Average latency for storing DCPS entities discovery information. B) Average
latency for obtaining all the discovery information of a particular DCPS-Entity-Group.
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Figure 5.5: Average latency for obtaining the discovery information for a particular DCPS-Entity-
Group and start exchanging data with a node of that group.

ferent network sizes. Although the average presents certain deviation (due to a
reduced number of measures with a very high latency), the 95% percentile grows
logarithmically as a function of the network size. From the obtained results we can
conclude that the average time for discovering and connecting to a set of nodes of
interest scales well as the total size of the network increases.

In the second set of experiments, we have studied the robustness of our system,
evaluating the impact of the churn rate on reliability. We have measured the per-
centage of lookup fails when the overlay is suffering a particular churn rate, mod-
eled as a combination of join rate and leave rate. Specifically, we have simulate rates
of 0.1, 0.2, 1, and 2 join/leaves per second.

As in the case of the scalability experiments, each simulation has two phases:
overlay creation and measurement.

During the first phase, the simulator creates an overlay of approximately 5000
nodes. After the overlay creation, the simulator simulates a particular churn rate
(i.e., a particular join and leave rate). After each new join, the joined node performs a
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Figure 5.6: Percentages of lookup failures per different churn levels.

lookup. The simulator stores the result of this lookup and calculates the percentage
of lookup fails once the simulation is over. During the simulation, as we stated in
the previous section, a 10% of leaves are node crashes.

In the Figure 5.6 we include the different lookup failures percentages for the
simulated churn rates. As expected the system is robust, and the percentage of
failures for even high levels of churn (we have stressed the system with rates up
to 2 joins and 2 leaves per second, which makes the topology of the system very
unstable) remains below 18.17% of failures.

5.8 Conclusions

In this chapter, we have proposed a solution for performing content discovery and
data transfer on large-scale DCPS systems.

Our solution is based on the RELOAD framework, one of the latest standards
of the IETF. In particular, we have defined three new RELOAD Kinds that ex-
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tend its functionality. These new Kinds cover three different DCPS entities: data-
participants, publishers, and subscribers.

Our system provides rendezvous function for locating sensors, actuators, and
applications that share a common data-space or topic of interest.

Once the rendezvous is complete, nodes use existing RELOAD features for es-
tablishing a connection (our solution provides NAT traversal using ICE). User ap-
plications can use this connection for transferring data using a publish-subscribe
approach.

Our proposal is extensible, and any publish-subscribe application can benefit
from it, for instance, those based on CoAP or on DDS.

In order to validate our proposal –and evaluate its scalability and robustness–,
we have conducted a series of experiments over a simulated network of 500 to 10000
peers. The topology of this network is based on real-world data, specifically from
the PlanetLab network.

The obtained results show that our proposal is scalable, as the average delay for
the main operations of our system follows a logarithmic growth as a function of the
network size.

Regarding robustness, we have stressed a 5000-sized network with different
churn rates. The obtained experimental results show that the percentage of lookup
failures remains low even for very high churn levels. In this sense, for a level of
churn equivalent to 2 joins and 2 leaves per second (i.e., the 25% of the nodes change
every 10 minutes), the percentage of lookup failures is lower than 18.17%.



Chapter 6
Related Work

In this chapter we select some of the works presented in Section 1.4 that are spe-
cially related to our work, and we compare their strengths and weaknesses in rela-
tion to our work.

In particular, we review a number of publications that address the system fed-
eration and domain bridging problems, with special attention to the ones focused
on DDS. We also study research works focused on the integration of DDS and SIP
and compare these works to our DCSIP-based solution. We review several research
works that study the deployment of publish-subscribe scenarios using P2P-based
architectures. We also study a RELOAD usage that is very close to the one proposed
in Chapter 5. Finally, we compare the NDN model with the solution proposed in
Chapter 4.

6.1 System federation and domain bridging in DDS

In this Thesis, we have addressed the problem of system federation and domain
bridging for DDS systems. As we studied in Section 1.4.2, In the literature we can
find other research works that also address this problem. In this section we review
those works, and compare with the proposed DDS-IS.

First, we studied the Apache QPiD project [4], which is an implementation of
the AMQP [3] that includes a broker-based federation mechanism. This federation
mechanism increases the scalability of AMQP-based messaging systems by estab-
lishing dedicated routes between Apache QPiD brokers. These routes are similar
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to DDS-IS routes, as they establish virtual channels between applications that ex-
change information. However, Apache QPiD is not data-centric, and consequently
does not support content-based filtering nor data transformation as the DDS-IS
does.

Also related to AMQP, we studied [60], which provides a systematic method for
configuring broker federation in AMQP-based systems and they conduct a set of
experiments for evaluating their method. In one of their experiments, they evaluate
a single broker that sends messages to a variable number of consumers. Although
the results are no directly comparable to the obtained for the DDS-IS (they use a dif-
ferent testbed), we can evaluate the degradation of the performance when scaling
from 1 to N consumers. In particular, for the case of eight consumers and data-sizes
ranging 64B to 512B (the most common in DDS applications), they experimented
a degradation of the performance of the 90%, while in our experiments this degra-
dation is only of 25%. In addition, they do not support data-centric features like
content-based filtering or data transformation.

In Section 1.4.2 we also studied [108], an scalable publish-subscribe architecture
for Mobile ad hoc network (MANET)s. In this work the authors deal only with
scalability problem and, although they perform content-based routing, they leave
open issues such as data transformation, which is covered by the DDS-IS.

Related to DDS, we studied REVENGE [16] [17], which is a middleware for dis-
tributing breaking news among heterogeneous clients. Although this work allows
nodes located in different domains to exchange information, the interconnected
nodes have to use a specific topic/data-type. Our proposal does not have this lim-
itation, as it takes advantage of the DDS-XTypes specification for exchanging data-
types unknown at compilation time.

Finally, our work is complementary to [77], which proposes an architecture to
interconnect DDS data-spaces with ESB, because DDS-IS provides mechanisms for
transforming and aggregating the exchanged information beyond the adaptation
between ESB and DDS that this work provides.

The work presented in this Thesis is complementary to these works in the sense
that it simultaneously solves three issues that currently exists in DDS: system scal-
ability, data transformation between data-spaces, and QoS adaptation between re-
mote entities. To the authors knowledge, it is the first work (compliant with OMG
standard) that solves such issues by proposing a topic bridging architecture for
DDS.
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6.2 DDS and SIP

As we mentioned in Section 1.4.4, in [51] we proposed the concept of DDS ses-
sion. This Thesis extends this work by defining an architecture that supports DDS
sessions and by proposing unique identifiers for DCPS entities and content. In ad-
dition, this Thesis proposes a P2P-based architecture for solving DDS discovery,
instead of the client-server architecture [51] is based on.

We also studied [26], which proposes a system for integrating SIP and DDS. This
solution is limited by the client-server architecture SIP is bound to. In addition,
SIP is not a protocol designed for data-centric publish-subscribe environments, and
therefore is not so suited for session signaling in DDS environments as the proposed
DCSIP is.

6.3 RELOAD and publish-subscribe scalability

A number of papers have aimed to demonstrate the feasibility of RELOAD as an
stable and reliable P2P architecture. For instance, RELOAD performance in wire-
less environments has been studied in [58]. In [56], a study of the performance of
RELOAD on ICE-based environment for NAT traversal is done. Another contribu-
tion is [28], which addresses the problem of resource discovery and notification in
CoAP environments.

Scalability in publish-subscribe systems is an important issue. Discovery and
dissemination of publications in large deployments are challenging problems, spe-
cially due to the great amount of resources required to maintain a database of all
the publications and subscriptions. The paper [92] addresses the problem of scal-
able discovery in DDS environments by applying Bloom filters. However, this work
only focuses on the discovery problem itself, not addressing other issues such as
maintaining an overlay to provide fault-tolerance, or NAT-traversal.

To provide fault-tolerance, the authors of REVENGE [16] propose a self-
organizing P2P substrate built atop of DDS to support DCPS communications. In
REVENGE, instead of maintaining direct communication between publishers and
subscribers, an overlay is utilized for routing the publications, thus alleviating the
data sources from the responsibility of disseminating publication updates to each
interested subscriber. REVENGE relies in the deployment of relay nodes that man-
age different data-spaces. Our proposal supports this behavior, and it also allows
for distributing the same data-space across multiple peers in the overlay, regardless
of their location.

Finally, in Section 1.4.3 we studied [2], which proposes a publish-subscribe pro-
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tocol built atop of RELOAD. This proposal relies on tunneling mechanisms for in-
formation exchange. Our work, instead, relies on RELOAD AppAttach mechanism:
once the publications are discovered and matched to interested subscriptions, the
communication phase is done either by CoAP or DDS, thus ensuring all the fea-
tures of these technologies (such as minimal resource usage o QoS requirements).
Moreover, this work does not cover, as our work does, the discovery of specific DDS
entities, such as participants.

6.4 CoAP usage for RELOAD

We proposed a new CoAP usage for RELOAD in [45]. This usage provides the func-
tionality to federate Wireless Sensor Networks (WSN) in a P2P fashion. It also
provides a rendezvous service for CoAP Nodes, and supports the caching of sen-
sor information. This usage takes advantage of the RELOAD AppAttach method
to establish a direct connection between nodes through which CoAP messages are
exchanged.

The CoAP usage for RELOAD (proposed in [45]) and the DCPS usage for
RELOAD (proposed in this thesis) use the same data model (a dictionary) and URI-
building mechanism. However, the CoAP usage for RELOAD does not support the
three DCPS registrations that the DCPS usage supports (TopicPublisher, TopicSub-
scriber, and DataSpaceParticipant), and which are necessary for supporting DCPS
environments.

6.5 Named Data Networking (NDN)

The current Internet design, mostly based on request-response exchanges, is now
opening to completely different paradigms. In particular, the authors of the seminal
work [41] state that one of the issues of the current Internet design is the location-
dependence. In this sense, they consider that mapping content to host locations
complicates configuration as well as implementation of network services.

To address this and other issues associated to the current Internet design, they
proposed the NDN model [109]. In contrast to the ’conversational’ nature of IP,
in which IP datagrams can only name communication endpoints (the IP destina-
tion and source addresses), NDN proposes to generalize the Internet architecture
by removing this restriction. In this regard, NDN networks route datagrams using
names, which are hierarchically structured identifiers.

NDN names are compatible with the concept of scope and scope-path we pro-
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posed in Chapter 4. In this sense, scope and scope-path organize content hierar-
chically by using names associated to each node. Consequently, we believe that the
proposed DCSIP protocol will allow to use DDS over NDN networks in the future.

6.6 Conclusions

In this chapter we have presented some related works to our research. In partic-
ular, we have studied some works that address the problem of system federation
on publish-subscribe systems, we have reviewed some research works focused on
the integration of SIP and DDS, we have studied a set of works focused on deploy-
ing publish-subscribe systems over P2P architectures, and we have compared our
solution with the NDN model.

We can conclude that our work is complementary to the ones found in the litera-
ture, as it provides a complete solution for several currently unresolved DDS issues.
In particular, we have proposed an efficient platform for data-centric routing and
data transformation (the DDS-IS) that is compliant with existing DDS specifications.
Although we can find several works that cover one or two of these features, there
are no other works that simultaneously solve all these problems while maintaining
standards compliance.

Regarding signaling on DCPS systems, there are no other works in the literature
that propose a DCPS-based signaling protocol. Instead, some works have focused
on integrating SIP and DDS. However, as we studied in Chapter 4, SIP does not suit
well to the specific requirements of DCPS-based environments.

We can find some works that propose P2P-based architectures for supporting
publish-subscribe systems. However, none of these works addresses the unique re-
quirements of DCPS-based systems, such as DDS. In this regard, we have proposed
a RELOAD-based solution for solving DCPS entity and content discovery that is
scalable and robust.

Finally, we have studied how our proposal is well aligned with the NDN model,
that addresses content using names that describe data, instead of names describing
data location.





Chapter 7
Conclusions and future work

This chapter summarizes the main conclusions of our work and discusses some
open issues for future research.

7.1 Conclusions

Publish-Subscribe communications have been gaining increasing popularity. No-
tably recent efforts to define a future publish-subscribe-based Internet are [20] [22]
[82]. DDS is one of the more popular standards for providing publish-subscribe
communications and appears well suited to the needs of the emerging ”Internet of
Things.” While powerful, DDS is a fairly new standard and leaves undefined impor-
tant issues for global Internet deployment such as universal DCPS entity and data-
content naming, end-to-end session establishment, data-space interconnection, data
transformation, QoS adaptation, and scalability to very large deployments. This
Thesis addresses many of these shortcomings.

In Chapter 3 we proposed the DDS-IS, a solution for the interconnection of DDS
data-spaces. In addition to the interconnection problem, the DDS-IS also addresses
three still unresolved issues of DDS: data transformation between data-spaces, sys-
tem scalability, and QoS adaptation between remote entities. Moreover, and fol-
lowing the data-centric philosophy of DDS, the proposed service is able to perform
content-based filtering of the exchanged data.

The design of the DDS-IS features an efficient data transforming capability,
which transforms data as it flows between applications. As a result, multiple ver-
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sions of the same application, or even applications of different vendors, can now
seamlessly interoperate, without change, despite differences in data structures and
interface definitions. DDS-IS also supports content-based filtering, which can be
used for avoiding sensitive information of a given data-space to be exposed to other
data-spaces.

One of the key benefits of our solution is its standards compliance. The DDS-IS
is fully compliant with the latest specifications of the DDS standard family. As a
result, our design is not implementation-dependent, and hence it is applicable to
any existing or future DDS implementation. Namely, the DDS-IS benefits from the
DDS-XTypes [71], a new OMG specification for accessing to topic types discovered
at execution time.

We implemented a DDS-IS prototype that demonstrates the advantages of our
proposal. Based on this prototype, we reported experimental results to evaluate the
performance impact of the proposed service. The reported results show that the
DDS-IS has a very low impact on DDS performance, in terms of overhead latency
and achievable throughput. We also demonstrated that the DDS-IS can improve the
scalability of DDS systems by reducing the network traffic load between remotely
interconnected data-spaces. Finally, we conducted a study of the impact of DDS-IS
in DDS QoS policies provision. From this study, we conclude that QoS enforcement
is applicable only in a hop-by-hop basis (i.e., among entities within a particular do-
main) for most of DDS QoS policies. There are, however, two exceptions: LIVELI-
NESS and LIFESPAN. These two DDS QoS policies can be enforced on a end-to-end
basis (i.e., across multiple interconnected domains).

The DDS-IS does not address the problems of universal entity identification and
universal data-content identification, end-to-end session establishment, and DDS
discovery scalability in large deployments. To solve these problems, in Chapter
4 we defined a mechanism for universal identification of DCPS entities and data-
content and we proposed the design and rationale of a protocol for session signal-
ing in DCPS environments. This protocol provides DCPS entity and data-content
discovery in medium-scale environments. It also allows the creation of sessions be-
tween nodes, which eases the creation of DCPS routes and the enforcement of QoS
at end-to-end level.

The protocol has not been implemented at the time of writing. However, one
of the main implementors of DDS, RTI Inc. [89], has already shown its interest in
DCSIP implementation, which envisages a very promising future for the proposal.

In spite of its benefits, the proposed solution is not suitable for very large DCPS
environments, as the presence of a unique rendezvous server may not scale for very
high-scale deployments (deployments with thousands of nodes). To address this
issue, in Chapter 5 we proposed a scalable P2P solution for performing content
discovery and data transfer.
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This solution is based on the RELOAD framework, one of the latest standards of
the IETF. In this sense, we proposed a RELOAD-based architecture for addressing
the requirements of DCPS IoT scenarios. In addition, we define three new RELOAD
Kinds that extend the current functionality of RELOAD. These new Kinds cover
three different DCPS entities: data-participants, publishers, and subscribers.

Our system provides rendezvous function for locating sensors, actuators, and
applications that share a common data-space or topic of interest. Once the ren-
dezvous is complete, nodes use existing RELOAD features for establishing a con-
nection. User applications can use this connection for transferring data using a
publish-subscribe approach. In this regard, our solution provides the additional
benefit of providing NAT traversal using ICE.

Our proposal is extensible, and any publish-subscribe application can benefit
from it, for instance, those based on CoAP or on DDS.

In order to validate our proposal, and evaluate its scalability and robustness, we
have conducted a series of experiments over a simulated network of 500 to 10000
peers. The topology of this network is based on real-world data. In particular, the
simulated experimental setup was configured according to PlanetLab data.

The obtained results show that our proposal is scalable, as the average delay for
the main operations of our system shows a logarithmic growth as a function of the
network size. Regarding robustness, we have stressed a network with 5000 nodes
using different churn rates. The results show that even for high level of churn (we
have stressed the system with rates equivalent to change the 25% of the nodes in the
network every 10 minutes) the percentage of lookup failures is lower than 18.17%.

To bring this section to a close, we will now review the initial objectives enu-
merated in Chapter 1, and we will now examine to what degree the presented work
meets these objectives.

• DDS data-space interconnection:

– Initial objective: To design a data-space bridging service for DDS.

* Results: In collaboration with RTI, we designed the DDS-IS and ap-
plied for a patent with number US 2011/0295923 A1 [18]. The pre-
liminary design was also presented in the Real-Time OMG Workshop
2009 [76].

– Initial objective: To increase the extensibility and flexibility of DDS sys-
tems, easing DDS systems evolution.

* Results: We took advantage of the recently standardized DDS-XTypes
specification for performing content-based transformations in DDS-IS
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nodes. The proposed DDS-IS also supports the integration of DDS
data-spaces with different QoS policies.

– Initial objective: To implement and evaluate the designed data-space
bridging service for DDS.

* Results: We implemented a prototype of DDS-IS and conducted sev-
eral performance and scalability experiments. We published the re-
sults of this evaluation in an indexed journal [53].

– Initial objective: To study the impact of the proposed service in DDS
QoS.

* Results: We conducted an analysis of the impact of DDS-IS in the
existing DDS QoS policies. In particular, we have identified which
of these policies can be enforced in a hop-by-hop or end-to-end basis
using the current DDS specification.

• Session signaling in DDS:

– Initial objective: To design an universal entity and data-content naming
format for DCPS environments.

* Results: We proposed the FQDN for identifying domains, the FQTN
for identifying topics, the DCPS-Entity-Group for identifying groups
of entities of the same type (participant, publisher, or subscriber) as-
sociated to a particular FQDN or FQTN, and the DCPS-Entity-Name
for identifying DCPS entities. This proposal is currently in peer re-
view process in an indexed journal.

– Initial objective: To design a protocol for DCPS entities discovery and
session establishment in DDS.

* Results: In the OMG Real-Time Workshop 2010 we proposed using
SIP for establishing DDS Sessions [51]. The initial work has evolved
to two new different solutions: first, a data-centric session signaling
protocol named DCSIP; and second, a DCPS usage for RELOAD. In
this Thesis we have proposed the design of DCSIP, and we have de-
signed and implemented a prototype of the DCPS usage for RELOAD.
The proposed DCPS usage for RELOAD is currently in peer review
process in an indexed journal.

– Initial objective: To evaluate the scalability and robustness of the pro-
posed solution.

* Results: We have conducted a set of experiments that demon-
strate the scalability and robustness of the proposed DCPS usage for
RELOAD. The results of these experiments are currently in peer re-
view process in an indexed journal.
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In addition to the initial objectives, we have accomplished the following addi-
tional objective:

• CoAP usage for RELOAD:

– Objective: To propose an extension to RELOAD that supports the con-
nection to constrained nodes in a request-response fashion.

* Results: In collaboration with ERICSSON, we have submitted a IETF
draft named CoAP usage for RELOAD [45]. This draft defines an ex-
tension to RELOAD to provide a rendezvous service for CoAP nodes
and to support the caching of sensor information. This draft was pre-
sented in the IETF 83 Meeting [1] and it is currently being discussed
within the P2PSIP WG [36].

7.2 Future work

As future work, we are interested on researching in new possible extensions and
applications of the proposed DDS-IS. For instance, we are interested on studying
how the Bloom-based SDP proposed in [92] impacts on the scalability of DDS-IS-
based deployments.

Cloud computing architectures have gained recently more and more attention in
both industry and academia. In this regard, there are some projects that use DDS
for exchanging Cloud monitoring information. However, these solutions are im-
plementation dependent. We would like to use DDS-IS for connecting DDS-based
applications in Cloud scenarios. Since DDS-IS allows applications to use types un-
known at the time of application compilation, we believe DDS-IS can help to build
generic and flexible DDS-based Cloud infrastructures.

In this Thesis we have proposed DCSIP, a protocol for session signaling in DDS
deployments. In collaboration with RTI, we plan to implement a DCSIP API. After
implementing the protocol API, we plan to integrate it with the DDS-IS. Once the
integration between DDS-IS and DCSIP is completed, we are interested on integrat-
ing our DCSIP-based solution and the DCPS usage for RELOAD. This integration
will allow to create autoconfigurable federated DDS domains that adapt to both
medium and large scale DDS deployments.

Regarding the DCPS usage for RELOAD, we want to focus our research on intro-
ducing load balancing mechanisms for addressing scenarios with a large number of
entities per DCPS-Entity-Group (i.e., scenarios where the number of entries associ-
ated to the same Resource-ID is high). Finally, we have also plans to propose for its
standardization the proposed DCPS usage for RELOAD.





Capı́tulo 7
Conclusiones y trabajo futuro

En este último capı́tulo se resumen las principales conclusiones de nuestro tra-
bajo, y se discuten algunas cuestiones abiertas que justifican la continuación de la
lı́nea de investigación abierta por esta Tesis.

7.1 Conclusiones

Las comunicaciones publicación-suscripción han ganado popularidad últimamente,
como ası́ queda demostrado por la existencia de proyectos para definir una Internet
del futuro basada en publicación-suscripción [20] [22] [82].

DDS, uno de los estándares de publicación-suscripción más populares, parece
adecuado para responder a las necesidades del llamado ”Internet de las Cosas”. Sin
embargo, DDS es un estándar relativamente joven, por lo que aún quedan algunos
problemas por resolver antes de su despliegue en Internet, a saber: la identificación
universal de contenidos y entidades DCPS, el establecimiento de sesión extremo
a extremo, la interconexión de espacios de datos, la transformación de datos, la
adaptación de QoS y la mejora de escalabilidad del discovery DDS en escenarios de
gran escala. Esta Tesis ha abordado estos problemas.

En el Capı́tulo 3 se propuso DDS-IS, una solución para la interconexión de es-
pacios de datos DDS. Además, DDS-IS afronta tres cuestiones actualmente no re-
sueltas en DDS: la transformación de datos entre dominios, la escalabilidad, y la
adaptación de QoS entre entidades remotas. Además, y siguiendo la filosofı́a cen-
trada en datos de DDS, el servicio propuesto permite realizar filtrado basado en
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contenido de los datos intercambiados.

El diseño de DDS-IS permite una transformación de datos eficiente, que se aplica
transparentemente durante la transmisión de información entre aplicaciones. En
consecuencia, múltiples versiones de una misma aplicación, o incluso aplicaciones
de diferentes proveedores, pueden interoperar de forma directa y sin requerir cam-
bios, pese a tener diferentes estructuras de datos e interfaces. DDS-IS también so-
porta el filtrado basado en contenido, que puede ser usado para evitar que infor-
mación sensible de un espacio de datos se filtre a otros dominios.

Uno de los puntos fuertes de DDS-IS es que es totalmente compatible con las
últimas especificaciones de DDS. En consecuencia, el diseño propuesto no es de-
pendiente de implementación, y por tanto es aplicable a cualquier implementación
de DDS actual o futura. En concreto, DDS-IS utiliza DDS-XTypes [71], una nueva
especificación del OMG para acceder a tipos de tópicos descubiertos en tiempo de
ejecución.

Un prototipo de DDS-IS ha sido implementado para demostrar las ventajas de
nuestra propuesta. Utilizando este prototipo, hemos presentado unos resultados
obtenidos experimentalmente para evaluar el impacto del servicio propuesto en las
prestaciones de DDS. Los resultados obtenidos demuestran que DDS-IS tiene un im-
pacto muy reducido en términos de retardo y throughput. También se ha demostrado
que DDS-IS puede ayudar a mejorar la escalabilidad de despliegues basados en
DDS, ya que reduce el tráfico de red entre los espacios de datos interconectados.
Por último, se ha conducido un estudio del impacto del servicio en la provisión en
las polı́ticas de QoS de DDS. De este estudio se concluye que la provisión de QoS es
únicamente aplicable entre entidades en un mismo dominio (i.e., salto a salto) para
la mayor parte de polı́ticas de QoS. Sin embargo, se han identificado dos excep-
ciones: LIVELINESS y LIFESPAN. Estas dos polı́ticas de QoS pueden ser provistas
a través de varios dominios interconectados (i.e., extremo a extremo).

DDS-IS no aborda el problema de la identificación universal de contenidos y
entidades, ni el establecimiento de sesiones extremo a extremo, ni la escalabilidad
del descubrimiento DDS en escenarios de gran escala. Con objeto de resolver estos
problemas, en el Capı́tulo 4 se define un mecanismo para la identificación universal
de contenidos y entidades DCPS, y se propone el diseño de un protocolo para la
señalización de sesiones en entornos DCPS. Este protocolo permite el descubri-
miento de entidades y contenidos en entornos de media escala. Además, permite
la creación de sesiones entre nodos, lo que facilita la creación de rutas DCPS y la
provisión de QoS extremo a extremo.

En este momento, el protocolo aún no ha sido implementado. Sin embargo, uno
de los principales implementadores de DDS, RTI Inc. [89], ha mostrado su interés
por implementar DCSIP, lo que augura un futuro muy prometedor para la propues-
ta.
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Pese a sus ventajas, esta solución no es adecuada para escenarios DCPS de gran
escala, dado que la presencia de un servidor de rendezvous no escala bien en des-
pliegues con varios miles de nodos. Para solucionar este problema, en el Capı́tulo 5
se propone una solución escalable basada en P2P para el discovery y la transferencia
de datos.

Nuestra solución se basa en el framework RELOAD, uno de los últimos estándares
de la IETF. En este sentido, esta Tesis propone una arquitectura basada en RELOAD
para desplegar escenarios IoT basados en DCPS. Además, se definen tres nuevos
Kinds que extienden la funcionalidad de RELOAD, y que se corresponden a tres
tipos de entidades DCPS: participantes, publicadores y suscriptores.

El sistema propuesto resuelve el rendezvous para sensores, actuadores y apli-
caciones que comparten un espacio de datos común o un tópico de interés. Una
vez se completa el rendezvous, los nodos utilizan la funcionalidad de RELOAD
para establecer una conexión. Las aplicaciones de usuario pueden entonces usar
dicha conexión para transmitir datos mediante una aproximación publicación-
suscripción. A este respecto, nuestra solución tiene la ventaja adicional de permitir
el paso a través de NATs con ICE.

Nuestra propuesta es extensible y cualquier otra aplicación publicación-
suscripción puede utilizarla, como las basadas en CoAP o en DDS.

Con objeto de validar nuestra propuesta y evaluar su escalabilidad y robustez,
se han conducido una serie de experimentos sobre redes simuladas de 500 a 1000
nodos. La topologı́a de estas redes está basada en datos reales. En concreto, el
entorno experimental se configuró utilizando datos de PlanetLab.

Los resultados experimentales obtenidos demuestran que nuestra propuesta es
escalable. En particular, se ha observado un crecimiento logarı́tmico (función del
tamaño de la red) del retardo medio para las principales operaciones del sistema.
Con respecto a su robustez, se ha estresado una red de 5000 nodos con diferentes
niveles de churn. Los resultados obtenidos muestran que, incluso para un elevado
nivel de churn (se ha estresado el sistema con niveles equivalentes a cambiar un 25%
de los nodos de la red cada 10 minutos) el porcentaje de errores en la localización
de recursos es inferior al 18.17%.

Para finalizar esta sección, a continuación se revisan los objetivos enumerados
en el Capı́tulo 1, y se examina en qué grado han sido cumplidos dichos objetivos.

• Interconexión de espacios de datos DDS:

– Objetivo inicial: Diseñar un servicio de interconexión de espacios de
datos DDS.
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* Resultados: En colaboración con RTI, se ha diseñado DDS-IS y soli-
citado una patente con número US 2011/0295923 A1 [18]. Además,
el diseño preliminar fue presentado en el Real-Time OMG Workshop
2009 [76].

– Objetivo inicial: Incrementar la extensibilidad y flexibilidad de los sis-
temas DDS, facilitando la evolución de los sistemas basados en dicho
estándar.

* Resultados: Aprovechando la funcionalidad de la especificación
DDS-XTypes, DDS-IS incorpora la capacidad de efectuar transforma-
ciones de los datos basadas en contenido. DDS-IS también soporta la
integración de dominios DDS con diferentes polı́ticas de QoS.

– Objetivo inicial: Implementar y evaluar el servicio diseñado.

* Resultados: Se ha implementado un prototipo de DDS-IS y se han
conducido una serie de experimentos para medir las prestaciones y
escalabilidad del servicio. Los resultados de esta evaluación fueron
publicados en una revista indexada en el JCR [53].

– Objetivo inicial: Estudiar el impacto del servicio propuesto sobre las
polı́ticas de QoS de DDS.

* Resultados: Se ha conducido un análisis del impacto de DDS-IS en
las polı́ticas de QoS de DDS. En concreto, se han identificado cuáles
de esas polı́ticas pueden ser provistas salto a salto y cuáles extremo a
extremo, de acuerdo a la especificación de DDS existente.

• Señalización de sesión en DDS:

– Objetivo inicial: Diseñar un formato de identificación universal de enti-
dades y contenidos en entornos DCPS.

* Resultados: Se ha propuesto el concepto de FQDN para la identifi-
cación de dominios, FQTN para la identificación de tópicos, DCPS-
Entity-Group para la identificación de grupos de entidades del mismo
tipo (participante, publicador, suscriptor) asociadas a un FQDN o
FQTN concreto, y DCPS-Entity-Name para la identificación de en-
tidades DCPS. Esta propuesta se encuentra actualmente en proceso
de revisión en una revista indexada en el JCR.

– Objetivo inicial: Diseñar un protocolo para el descubrimiento de enti-
dades DCPS y para el establecimiento de sesión en DDS.

* Resultados: En el OMG Real-Time Workshop 2010 se presentó un
trabajo en el que se proponı́a utilizar SIP para el establecimiento de
sesiones DDS [51]. Este trabajo derivó posteriormente en dos solu-
ciones diferentes: en primer lugar, un protocolo de señalización de
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sesiones centradas en datos denominado DCSIP; en segundo lugar,
una extensión (usage) DCPS para RELOAD. En esta Tesis se ha pre-
sentado el diseño DCSIP y el diseño e implementación de un pro-
totipo de la extensión propuesta. El diseño de dicha extensión se en-
cuentra actualmente en proceso de revisión en una revista indexada
en el JCR.

– Objetivo inicial: Evaluar la escalabilidad y robustez de la solución pro-
puesta.

* Resultados: Se han realizado una serie de experimentos que demues-
tran la escalabilidad y robustez de la extensión propuesta. Estos re-
sultados se encuentran actualmente en proceso de revisión en una
revista indexada en el JCR.

Además de los objetivos iniciales, se ha cumplido el siguiente objetivo adicional:

• Usage de CoAP para RELOAD:

– Objetivo: Proponer una extensión de RELOAD que soporte la conexión a
nodos de reducidas prestaciones utilizando un modelo solicitud-respuesta.

* Resultados: En colaboración con ERICSSON, se ha enviado un draft
a la IETF denominado CoAP usage for RELOAD [45]. Este draft define
una extensión a RELOAD que proporciona un servicio de rendezvous
para nodos CoAP y soporta el caching de la información de los sen-
sores. Este draft se presentó en la IETF 83 Meeting [1] y se encuentra
actualmente en proceso de discusión en el P2PSIP WG [36].

7.2 Trabajo futuro

Como trabajo futuro, queremos desarrollar nuevas extensiones y explorar nuevas
aplicaciones para DDS-IS. Por ejemplo, estamos interesados en estudiar cómo el
protocolo de descubrimiento basado en filtros de Bloom propuesto en [92] afecta a
la escalabilidad de escenarios basados en DDS-IS.

Las arquitecturas de Cloud computing han ganado recientemente el interés de
la industria y del mundo académico. En este sentido, han surgido proyectos que
se apoyan en DDS para el acceso a información de monitorización de sistemas de
Cloud. Sin embargo, estas soluciones son muy dependientes de la implementación
utilizada. Como trabajo futuro, nos gustarı́a utilizar el DDS-IS para integrar apli-
caciones basadas en DDS en escenarios de Cloud. Dado que DDS-IS permite a las
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aplicaciones usar tipos no conocidos en tiempo de compilación, creemos que su uso
puede facilitar la creación de infraestructuras genéricas y flexibles de Cloud.

En esta Tesis se ha propuesto DCSIP, un protocolo de señalización de sesión en
entornos DDS. Tenemos previsto implementar la API de DCSIP en colaboración con
RTI. Después de su implementación, queremos integrar dicha API en el DDS-IS.
Una vez finalice la integración de DDS-IS y DCSIP, estamos interesados en integrar
las dos soluciones de descubrimiento propuestas en esta Tesis: la solución basada
en DCSIP, y la solución basada en RELOAD. Una vez ambas arquitecturas sean
integradas, será posible crear federaciones de dominios DDS autoconfigurables que
se adapten a escenarios DDS de media y gran escala.

Con respecto al usage DCPS para RELOAD propuesto, queremos centrar nues-
tra investigación en introducir mecanismos de distribución de carga en escenarios
con un gran número de entidades por DCPS-Entity-Group (i.e., escenarios donde el
número de entradas asociadas a un único Resource-ID es alto). Por último, tenemos
previsto proponer para su estandarización el usage DCPS para RELOAD propuesto
en esta Tesis.
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