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ABSTRACT 

The cerebellar circuitry belonging to the Central Nervous System (CNS) consists of a set of 

neurons and synapses that present rich dynamical properties. In the field of traditional 

artificial neural network (ANN), most approaches are based on very simplistic connectivity 

rules between very simplified neuron models which produce an output in each propagation 

cycle (the time domain is not introduced in the simulation). Nevertheless, if we want to study 

computational neuroscience and consider biological nervous systems, we need a higher degree 

of detail. For instance the cerebellum does not consist only of very complex neurons in a 

sophisticated network but also this cerebellum network deals with non-continuous signals 

called spikes. Hence, it is clear that in order to understand the foundations of cerebellar 

processing (from a computational neuroscience perspective); it is mandatory to work with a 

realistic cerebellar spiking neural network. 

In the case of the Cerebellum, its functionality has been studied for decades and it is well 

accepted that it plays a fundamental role in human motor control loops by means of 

regulating movement and also cognitive processes. The cerebellum is able to dynamically 

regulate its activity (it can present a highly non-linear behavior) and it is also able to tune its 

synaptic connections by distributed and heterogeneous forms of synaptic plasticity. Along this 

thesis, we have focused on studying the cerebellar functionality and how it is related with its 

structure (network topology), neuron models and synaptic adaptation mechanisms. To that 

aim, we have developed a biologically inspired cerebellar like network (based on 

neurophysiological findings) embedded into a robotic system in order to evaluate circuit 

functioning under closed-loop conditions. According to the embodiment concept, we have 

developed a complete framework that allows researchers to contrast different experimental 

cerebellar hypotheses.  

 This work was partly supported by the Spanish Subprogram FPU 2007 (MICINN), and the 

EU projects SENSOPAC (IST-028056), and REALNET (IST-270434). 
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RESUMEN 

Como es bien sabido, la circuitería cerebelar perteneciente al sistema nervioso central está 

conformada por una serie de neuronas y sinapsis que presentan  un conjunto de  propiedades 

dinámicas tremendamente ricas. Si se echa un vistazo a lo largo de la literatura concerniente a 

redes neuronales artificiales tradicionales, es fácil comprobar que la mayoría de ellas están 

basadas en reglas de conectividad de algún modo simplistas entre modelos de neurona 

simplificados, los cuales son evaluados en ciclos de propagación (la dimensión de tiempo no 

está contemplada en la simulación). Sin embargo, lo que encontramos en el cerebelo no sólo 

se corresponde con neuronas de extraordinaria complejidad dinámica insertas en una 

sofisticada red, sino también se puede constatar un tratamiento por parte de dicha red 

cerebelar de señales no continuas, señales llamadas impulsos (impulsos eléctricos) o en su 

forma anglosajona “spikes”. Por lo tanto, resulta evidente que, con el fin de entender los 

fundamentos de la circuitería cerebelar, resulta imprescindible implementar una red neuronal  

cerebelar realista donde las características funcionales del cerebelo se vean reflejadas. 

Por otro lado, la comunidad científica asume que el cerebelo juega un rol fundamental en los 

circuitos de control motor humano mediante la regulación del movimiento, en los procesos 

cognitivos y en el control de emociones. El cerebelo es capaz de regular de forma dinámica su 

actividad (que puede presentar un comportamiento fuertemente no lineal) siendo capaz 

también  de modificar sus conexiones sinápticas mediante diferentes formas de plasticidad 

sináptica distribuida. A lo largo de esta tesis, hemos tratado de arrojar algo de luz sobre la 

funcionalidad (no solo estructural) del cerebelo, un  campo que, a día de hoy, aún sigue siendo 

poco conocido. Con este objetivo, hemos construido una red neuronal cerebelar bio-inspirada 

(haciendo uso de hallazgos neurofisiológicos) la cual se integra en un sistema robótico con el 

fin de evaluar su funcionamiento bajo condiciones de control en bucle cerrado, 

desarrollándose  para ello un completo entorno de trabajo que permite a distintos tipo de 

investigadores contrastar diferentes hipótesis cerebelares experimentales. 
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GLOSSARY 

Axon - extension from the cell that carries nerve impulses from the cell body to other 

neurons. 

Afferent fibers - any of the nerve fibers that convey impulses to a ganglion or to a nerve 

center in the brain or spinal cord. 

Basal ganglia - group of neural structures involved in movement control, procedural 

learning and cognitive functions; located in the forebrain (telencephalon). 

Brain - the major organ of the central nervous system. It exerts a centralized control over the 

organs of the body. 

Brainstem - also known as the hindbrain; region of the brain that consists of the midbrain 

(tectum, tegmentum), ponds, and medulla; responsible for functions such as breathing, heart 

rate, and blood pressure. 

Cell Body - region of the neuron defined by the presence of a nucleus. 

Central nervous system (CNS) - portion of the nervous system that includes the brain and 

the spinal cord. 

Cerebellum - structure located in the back of the brain (dorsal to the pons) involved in 

central regulation of movement, such as basic movement, balance, and posture; comes from 

the Latin word meaning "little brain"; is divided into two hemispheres and has a cortex. 

Cerebral cortex - the outer covering of the cerebral hemispheres consisting mostly of nerve 

cell bodies and branches; involved in functions such as thought, voluntary movement, 

language, reasoning, and perception; the right and left sides of the cerebral cortex are 
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connected by a thick band of nerve fibers (corpus callosum); highly grooved or 

"gyrencephalic" in mammals. 

Climbing fibers (CFs) - arise from cells in the inferior olive and provide an extraordinarily 

strong, 'climbing' multi-synaptic contact on Purkinje cells. However, branches of the olivo-

cerebellar axon contact not only Purkinje cells but also other neuron types of the cerebellum.  

Control system - a term that was originally used to refer to a mechanical or chemical system 

equipped with a mechanism for manipulating an object or regulating a process. The term now 

broadly applies to an informational, biological, neural, psychological or social system. 

Controlled object - in an object manipulation scenario, the controlled object is conceived as 

plant+object under manipulation. It translates motor commands in actual movements of 

plant+object (in a manipulation task). 

Controller - a key part of a control system, a controller converts a given instruction into a 

command. For example, the brain converts an instructed spatial position of a target into a 

command, which consists of signals in the nerves that innervate muscles. 

Deep Cerebellar Nuclei (DCN) - the nuclei at the base of the cerebellum that relay 

information from the cerebellar cortex to the thalamus. 

Dendrite - one of the extensions of the cell body that are reception surfaces of the neuron. 

Diencephalon - part of the midbrain; consists of the thalamus and hypothalamus. 

Dorsal - anatomical term referring to structures toward the back of the body or top of the 

brain. 

Efferent fibers - nerve fibers that take messages from the brain to the peripheral nervous 

system; motor fibers are efferent. 

Engineering control theory - a branch of engineering science concerned with the control of 

dynamic systems (including aircraft, chemical reactions and robots). 
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Error signals - signals representing errors in a system. The errors are discrepancies in the 

performance of a control system from either the instruction (consequence errors) or the 

prediction by an internal model (internal errors). 

Eyeblink conditioning - in this experiment, a conditional stimulus (CS) is presented a 

certain time before an unconditional stimulus (US). Typically, a tone is used as a CS, and an 

air puff directed to one eye as the US. After repeating this training for some iterations, the 

subject learns to close its eye (called conditioned response, CR) a little time after the CS and 

just before the air puff reaches the eye). 

Forebrain - the frontal division of the brain which contains cerebral hemispheres, the 

thalamus, and the hypothalamus. 

Glial cells - non-neuronal brain cells that provide structural, nutritional, and other supports 

to the brain. 

Golgi cells (GoCs) - inhibitory interneurons in the granular layer that synapse with granule 

cells. They receive excitatory input from mossy fibers and parallel fibers. 

Granule cells (GrCs) - integrate excitatory mossy fiber inputs from external sources and 

local inhibitory input from Golgi cells. 

Gray matter - areas of the brain that are dominated by cell bodies and have no myelin 

covering (in contrast to white matter). 

Gyrencephalic - when the cerebral cortex is highly folded and convoluted (due to gyri and 

sulci). 

Gyrus - raised portion of convoluted brain surface. 

Hindbrain - the rear division of the brain includes the cerebellum, ponds, and medulla (also 

called the rhomb encephalon). 
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Hippocampus - the portion of the cerebral hemispheres in basal medial part of the temporal 

lobe. This part of the brain is important for learning and memory for converting short term 

memory to more permanent memory, and for recalling spatial relationships in the world 

about us. 

Hypothalamus - part of the diencephalon, ventral to the thalamus. The structure is involved 

in functions including homeostasis, emotion, thirst, hunger, circadian rhythms, and control of 

the autonomic nervous system. In addition, it controls the pituitary. 

Internal model - a functional dummy of a body part or of a mental representation in the 

cerebral cortex. Internal models are encoded in the neuronal circuitry of the cerebellum and 

mimic the essential properties of a body part or mental representation. 

Inferior olivary nucleus (IO) - Prominent nucleus in the ventral medulla located just lateral 

and dorsal to the medullary pyramids; source of climbing fibers that provide a critical input to 

the cerebellum, involved in Purkinje cell plasticity and motor learning 

Kinesthesia - feedback from muscle spindles (a more specific term than proprioception)    

Lateral - anatomical term meaning toward the side (versus medial). 

Long-term potentiation (LTP) - the prolonged strengthening of synaptic transmission, 

which is thought to be involved in learning and memory formation. 

Long-term depression (LTD) - a persistent reduction of synaptic strength caused, for 

example, by specific neural activity. 

Medulla Oblongata/ Myelencephalon - this structure is the caudal-most part of the brain 

stem, between the pons and spinal cord. It is responsible for maintaining vital body functions, 

such as breathing and heart rate. See overall NS organization. 

Metencephalon - subdivision of the hindbrain, which includes the cerebellum and pons. 
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Midbrain/ Mesencephalon - middle division of the brain, which includes the tectum and 

tegmentum; involved in functions such as vision, hearing, eye movement, and body 

movement. 

Molecular layer - the outermost layer of the cerebellar cortex; it contains the parallel fibers, 

Purkinje cell dendritic trees, stellate cells and basket cells. 

Mossy fibers (MFs) - provide the bulk of the afferent input to the cerebellum and originate 

from numerous sources in the spinal cord, brain stem and pontine nuclei.  

Motor cortex - a region of the cerebral cortex whose activity influences muscular 

movements; involved in planning and control of movement; found in the frontal lobe. 

Myelencephalon - caudal part of the hindbrain includes the medulla oblongata. 

Microzone - a narrow longitudinal strip (a sagittal region of Purkinje cells within a cerebellar 

zone that is approximately 50 to 100 μm wide) of the cerebellar cortex, just a few Purkinje 

cells wide but up to hundreds of Purkinje cells long, in which all the Purkinje cells receive 

climbing fibers driven by the same input (climbing fibers from a cluster of coupled olivary 

neurons). 

Myelin - fatty insulation around an axon which improves the speed of conduction of nerve 

impulses. 

Nervous System - extends throughout the entire body and connects every organ to the 

brain; can be divided into the central nervous system (CNS) and the peripheral nervous 

system (PNS); the basic building blocks of the nervous system are nerve cells or neurons. 

Neuron - the basic building block of the brain; these cells receive input from other nerve cells 

and distribute information to other neurons; the information integration underlies the 

simplest and most complex of our thoughts and behaviors. 

Neuroscience - the science of the nervous system. 
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Neurotransmitter - chemical substance which is released by the presynaptic neuron at 

synapses that transmits information to the next neuron. 

Occipital lobe - the posterior lobe of the brain; involved with vision (the "occipital cortex" is 

also referred to as the "visual cortex"). 

Parallel fibers (PFs) - arise from granule cells and provide excitatory input to Purkinje cells 

and molecular layer interneurons. 

Parietal lobe - located behind the frontal cortex (and central sulcus); involved in perception 

of stimuli related to touch, pressure, temperature, and pain. 

Peripheral nervous system (PNS) - portion of the nervous system that includes all the 

nerves and neurons OUTSIDE the brain and spinal cord. 

Pons - part of the metencephalon in the hindbrain. It relays signals related to respiration, 

sleep, hearing, arousal, etc. For example; information from the ear first enters the brain in the 

pons. It has parts involved in consciousness and dreaming. Some structures within the pons 

are linked to the cerebellum, thus are involved in movement and posture. 

Prefrontal cortex - the most anterior region of the frontal cortex; involved in problem 

solving, emotion, and complex thought. 

Presynaptic - the region of a synapse that releases the neurotransmitter (in contrast to 

postsynaptic). 

Primary motor cortex - motor cortex region whose activity controls the execution of 

movements. It participates in motor learning and possibly in cognitive events. Some of its 

parts are suggested to be important for initiation of voluntary movement. 

Primary somatosensory cortex - region which receives tactile information from the body. 

Primary visual cortex - the region of the occipital cortex where most visual information first 

arrives. It performs visual processing such as pattern recognition. 
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Proprioception - sensory information about pressure, movement, vibration, position, muscle 

pain, and equilibrium that is received by the brain from the muscle spindles and other sensory 

receptors. 

Prosencephalon - the forebrain; lies rostral to the midbrain (mesencephalon); consists of the 

telencephalon (cerebral cortex & hippocampus) and diencephalon (thalamus and 

hypothalamus). 

Purkinje cell - by far the largest neuron of the cerebellum and the sole output of the 

cerebellar cortex. Receives climbing fiber input and integrates inputs from parallel fibers and 

interneurons. 

Rhombencephalon - the hindbrain; lies caudal to the midbrain (mesencephalon); made of 

the metencephalon and myelencephalon. 

Sagittal - the plane that bisects the body or brain into right and left halves. 

Spinal cord - the part of the central nervous system that lies below the magnum foramen and 

that extends downward to just above the cauda equina; it contains the cell bodies of the spinal 

nerves and their afferent and efferent fibers 

Sulcus - a furrow of convoluted brain surface (opposite of gyrus). 

Synapse - the area between one neuron and the next through which neurotransmitters are 

passed transmitting neural messages. 

Synaptic plasticity - the ability of certain synapses to increase or decrease their synaptic 

strength. 

Tectum - the dorsal portion of the midbrain (mesencephalon). 

Tegmentum - ventral part of the midbrain (mesencephalon). 



 

xxiv 

 

Telencephalon - the frontal subdivision of the forebrain includes the cerebral hemispheres 

and the hippocampus, basal ganglia, and amygdale. 

Temporal lobe - located below the frontal and parietal lobes; involved in perception and 

recognition of auditory stimuli, memory, emotions and comprehending language. 

Thalamus - a large mass of gray matter deeply situated in the forebrain at the topmost 

portion of the diencephalon. It relays sensory information and motor signals. Almost all 

sensory information enters this structure where neurons send that information to the cerebral 

cortex. Axons from many sensory systems (except olfaction) synapse here as the last relay site 

before the information reaches the cerebral cortex. 

Visual cortex - located in the occipital lobe; is responsible for processing visual information. 

White matter - the  white parts underneath the cortex that consists mostly of axons with 

white myelin sheaths and glia cells (in contrast to gray matter). 

Zone - a sagittal region of Purkinje cells in the cerebellar cortex that is up to 500 μm wide and 

that receives climbing fibers from a particular olivary subnucleus. 
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I n t r o d u c t i o n  

In the scientific community, it is accepted the relation between the cerebellum and different 

motor control features that humans present. In fact, it is well-known that the cerebellum plays 

a fundamental role in controlling fast and accurate movements [1] [2] [3] [4]; for example, it 

supervises ballistic movement timing [5], it is able to establish the duration of those 

movements in advance and supplies corrective motor commands [6] [7].   

These characteristics are supported by the feedback mechanism which is present in the 

cerebellum structure [8] [9]. In this way, the cerebellum can make efficient use of mechanisms 

and properties such as elasticity in muscular movements and help the central nervous system 

to predict the movement of the body parts [10]. This set of features seems to fit well in the 

robotic field, where the cerebellum could be used as an “artificial biologically plausible 

controller” that drives robotic motor activity [11] [12] [13] [14] [15] [16] [17] [18] [19].  

The relationship between cerebellum operation and many of the different types of local 

plasticity mechanisms is not well-known and even less known is its implication in what it is 

called “high level functions” [20] [21]. In the mid-eighties, some experimental findings in 

several research fields began to show that the cerebellum was involved not only in motor 

tasks but also in spatial cognition and other high level functions [22] [23] [24]. Neuro-image 

studies have shown the cerebellar activation in several processes such as, word generation 

[25], comprehension and semantic processing [26] [27], verbal recognition and non-verbal 

recognition [28], immediate verbal memory [29], cognitive planning [30], motor imagination 

[30], sensorial acquisition and discrimination [31] or cognitive attention [32]. Even more, 

some evidence has been obtained from patients with focal lesions [33] [34]: alterations on 

processing speed in complex spatial movements and operational planning tasks, word 

generation in relation to a set point or a reference value, planning and flexibility in abstract 
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reasoning, operative memory or perception and motor timing. Personality changes have been 

also observed, agrammatism, dysprosody, and difficulties in fast and precise voluntary 

changes to focus attention. 

During the last decade, an important amount of evidence supporting the hypothesis of 

cerebellum acting in cognitive functions has been shown to be true, however, some 

researchers are skeptic [35] [36] due to the fact that the conducted experiments are not free of 

doubts. Cerebellar activation in certain tasks does not allow researchers to directly ensure a 

fundamental role of the cerebellum in the cognitive process under study, the clinic results 

presents inconsistencies and contradictions, it is not easy to control the motor problem 

effects, the tasks are complex and the observed deficits are difficult to be interpreted, etc. 

Therefore, the role of the cerebellum in different cognitive and non-cognitive features and 

how it is supported by its intrinsic characteristics is an open issue. 

Keeping in mind this idea of the cerebellum being involved in multiple tasks, cognitive and 

non-cognitive processes, we can consider the following points: 

• The cerebellar cortex uniform synaptic organization suggests that both motor-

related and cognitive cerebellar functions might be emulated by using the same 

computational principles. 

• Biologically plausible robot control field seems to be a good candidate to work with 

to reveal cerebellar functionality. 

Consequently a combination of both fields (computational cerebellar principles and 

computational robot control theory) should give us a powerful tool to find out the cerebellar 

functionality. These two points constitute the grounds of this dissertation and it will be 

extended in the incoming sections.  

The main objective of this thesis is to bring some light to the functional roles of the 

cerebellum in both motor and spatial cognitive processes by exploiting computational rules 

that allow inferring how those processes could take place in the cerebellum. 
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I. THE CEREBELLUM 

The human brain has (estimate) 100 billion neurons. Some sources say between 10 and 100 

billion [37] [38]. The cerebellum takes up 10 % of the brain's total volume and contains 

roughly 50% of all the neurons in the brain [39]. 

The cerebellum looks like an independent structure attached right to the bottom  of the brain, 

located underneath the cerebral hemispheres. The cerebellum is  encased by a highly 

convoluted sheet of tissue called the cerebellar cortex, which contains almost all of the 

neurons in the cerebellum being Purkinje and granule cells the most important [37] [39] . Such 

a quantity of neurons and their interconnections allow the cerebellum to develop massive 

signal-processing capabilities [40] (Even though most of the cerebellum outputs are driven to 

a set of small deep cerebellar nuclei lying in the interior of the cerebellum) 

The cerebellum is a region of the brain which plays a main role in motor control. In addition 

it is also related to some cognitive functions such as attention and language, and probably in 

some emotional functions  as we have already mentioned [41].  

The cerebellum is involved in a feedback loop for muscle movement [42] [43]. When the 

cortex sends a message for motor movement to the lower motor neurons in the brain stem 

and spinal cord it also sends a copy of this message to the cerebellum [44]. This is conveyed 

from pyramidal fibers in the cortex on the cortico-pontine-cerebellar tract to the cerebellum. 

In addition, information reaches to the cerebellum from muscle spindles (Kinesthesia), joints 

and tendons (Proprioception) [45]. This information allows the cerebellum to determine how 

well motor commands coming from the cortex are being carried out and then, it can 

coordinate the muscle activity for the production of smooth movement through its 

connections with the pyramidal and extra pyramidal systems and the descending reticular 

formation [46] [47]. 
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In the framework of this coordination of fine motor movements the cerebellum makes 

important contributions to the control of rapid, alternating muscle movements necessary for 

high speed tasks. 

Moreover the cerebellum is not only involved in direct motor control but also with several 

types of motor learning, being the most relevant one the learning of adjusting changes in 

sensorimotor primitives [48]. Along last decades an enormous theoretical modeling effort has 

been done to explain sensorimotor calibration in terms of synaptic plasticity within the 

cerebellum (for a deeper review the reader is referred to chapter 2 section 4). Most of those 

theoretical models are based on early models formulated by Marr-Albus [49] [50], where each 

cerebellar Purkinje cell receive two dramatically different types of input: on one hand, 

thousands of inputs from parallel fibers, each individually very weak; on the other hand, 

inputs from one single climbing fiber, which is, however, so strong that a single climbing fiber 

action potential will reliably cause a target Purkinje cell to fire a complex action potential. The 

basic concept of the Marr-Albus theory is that the climbing fiber serves as a “teaching signal” 

[51], which induces a long-lasting change in the strength of synchronously activated parallel 

fiber inputs [52]. Observations of long-term depression in parallel fiber inputs have provided 

support for theories of this type, but their validity remains controversial. [53] 

A theoretical cerebellar model based on spiking neural network has been implemented and 

evolved along this thesis and it is presented in the included journal papers.  

II. THE CEREBELLUM IN MOTOR CONTROL 

Biological control systems (which deal with non-stiff-joint plants, as a human arm is) have 

evolved during millions of years and have become into an interesting paradigm to emulate in 

robotic controller construction [54]. The cerebellum is known to be involved in control and 

learning of smooth coordinated movements [6]. Furthermore, an accurate understanding of 
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how this advance control engine works should have a strong impact in controlling 

biomorphic robots.   

Human arm, as a mechanic manipulator, consists of rigid organs, bones, which are joined 

with flexible unions with respect to objects to be manipulated. Both, bones and joints are 

actuated by muscles; these muscles act as high performance effectors (high relationship 

between effort/mass).  These effectors produce a contraction effort when nervous stimuli 

arrive, and in order to allow bidirectional rotational movements in each joint, they are 

disposed in opposite pairs [55]. 

The whole set; arm-forearm-hand does not possess an exceptional mechanic accuracy but it 

has a great mobility (27 Degrees Of Freedom: 4 in each finger, 3 for extension and flexion 

and one for abduction and adduction; the thumb is more complicated and has 5 DOF, 

leaving 6 DOF for the rotation and translation of the wrist [56] plus 7 DOF [57] of the arm) 

and a great amount of effort sensors to compensate for this lack of accuracy helping in the 

control tasks. Our high handling performance is in part, a consequence of the cerebellum 

working as a control system which is able to develop highly complex tasks with unreachable 

results by any other current robot control system.  

In a biological control scenario with touch sensing, the transmission delay of the generated 

spike from the finger contact with any surface and the arrival time of this spike into the 

cerebellum cortex is around 70ms, that is, the control loop presents a delay between 100-

150ms [58](Actually standard industrial control loops cannot deal with such delays in 

transmission paths) [59]. This means that our handy human arm is not able to develop contact 

tasks which requires correction torques with a frequency higher than 6 or 10 times per second 

(about 100-150ms delay). The response to very fast events is usually attenuated by the hand, 

but when the contact takes place with a stiff arm-element, such as fist is, the presented error is 

high. [60] 



32 Chapter 1 

 

 

 

Then, how human beings have an extraordinarily manual ability when interacting with 

different scenarios? In fact, the arm (prior contact), presents a certain stiffness modulated by 

muscles. The simultaneous muscle pair activation allows increasing the joint stiffness. For 

instance the elbow can increase its stiffness in a ratio of 200 to 1 [60], by using biceps and 

triceps muscle. The proper arm stiffness is set using the previous task knowledge; afterwards 

this stiffness is modified before contact (before suffering position error muscles adjust and 

keep the proper stiffness without the intervention of the entire control loop) in order to 

optimize this task in terms of the specific task parameters (position, velocity, acceleration, 

torque value, etc.)  

Through this thesis, it is assumed that agonist-antagonist muscle pair is able to modify 

stiffness but, in fact, from a global point of view, which is modified is not the stiffness but the 

mechanic arm impedance. In a simple scenario, we can consider that the arm impedance has 

three parameters per D.O.F: stiffness, mass and damping. Thus, this impedance provides the 

static and dynamic relations between force and motion.  

It is clear enough that a control implementation which modifies the mechanic robot 

impedance allows having an approximation to human arm behavior. 

To that aim, this thesis has evolved a biological plausible cerebellar controller in a robot 

control scenario which is showed in the included journal papers. 

III. MOTIVATION 

The cerebellar architecture has been studied for more than a century, however its functional 

role and operation remains being an open issue [21] [61]. It is well known that cerebellum 

plays an important role in motor control making a fundamental contribution to the 

coordination, precision, and accurate timing of movements [62]. The cerebellum receives 
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inputs from sensory systems and from other parts of the brain and spinal cord, and integrates 

them with motor commands in order to modulate the motor activity and improve the 

movement performance [46] [47]. Many theories have been proposed to explain the operation 

of this region of the brain, and some of them have achieved a remarkable success 

[46,47,63,64]. However, several specific types of neurons, connections and plasticity 

mechanisms have been discovered in the cerebellum. Each of them possesses concrete 

properties which confer different information-processing capabilities. And even so, when 

modeling large nervous circuits to investigate their operation, these specific properties are 

usually not properly considered; either because they are not implemented (simple neural 

models and networks) or they are implemented (computationally-costly biological models) but 

their contribution to the entire network computation is not clearly understood. Consequently, 

in order to clarify how the computation is done in our cerebellum and to prove hypotheses 

about its operation, nervous circuit simulations seems to be a test bench. Applying those 

cerebellar hypotheses to a demanding motor control task scenario gives us the chance to 

discover how the sensorimotor and cognitive information could be managed by a 

computational cerebellar like architecture and to determine which the key functional 

properties of the neural processing are and how they contribute to the resultant computation 

performed by the entire network. 

From the control theory point of view, the best system is the one that achieves the best 

performance in terms of accuracy, speed and stability. This idea can be extrapolated to 

neuroscience, in a sense that the best performing biologically inspired system possible should 

give clues, and deeper understanding, about the real biological system. In this way, the 

network parameters that allow us to discern which architecture presents a better behavior can 

be studied. On the other hand, generating efficient functional large-or-medium-scale networks 

can be exploited in a practical task. Specifically, these realistic networks can be applicable to 

robotic control. An understanding of the theoretical principles underlying the simplicity, 

flexibility and robustness of biological control schemes is therefore of interest to control 

engineers. More specifically the cerebellar learning mechanism is capable of producing 

predictive responses statistically tuned to the demands of the environment so that an 



34 Chapter 1 

 

 

 

understanding of its control properties will be of direct benefit to those designing moving 

robots. This application may have major impact if the forecasted large growth in all robotics 

areas occurs. Cerebellar-inspired control schemes will be especially important for the new 

generation of 'soft' robots, designed for safe interaction with humans in clinical and home 

settings. Because of the high dimensionality that a realistic neural network has and the timing 

constraints a simulated/realistic robot control scenario presents, an ultra-fast simulator of 

biologically realistic neural networks is mandatory, the performance requirements demand an 

efficient simulator (EDLUT) able to perform even in real time [65] [66]. The combination of 

both fields, these biological architectures and robot control theory, involves a cutting-edge 

challenge.  

A whole cerebellum model simulation embedded into a control loop to accurately control a 

robotic arm constitutes a demanding test bench for the developed biological system. It is 

necessary to address all the inconveniences of working in between of two worlds; biology 

processing is written in spike terms, robot control processing is written in analog control 

signal terms, a Rosetta stone has to be found out.  

IV. OBJECTIVES 

The main aim of this work lies in the study and implementation of functional cerebellar like 

models working in a robot control scenario, taking full advantage of the capabilities of the 

cerebellar architecture. This implementation aims at contributing to a better understanding of 

the central nervous system (essentially the cerebellum) from a computational approximation 

and to assess its application in the robotic domain.  

The design of a cerebellar model embedded in a control loop is not straight forward. 

Reaching this aim demands a continuous developing process which has been divided into 
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different stages according to the journal papers included in order to give a gradual overview of 

the whole developed work. 

 The first objective is the study of how an adaptive cerebellum-like module 

embedded in the control loop can build up corrective models to compensate 

deviations in the target trajectory when the dynamics of the controlled plant (arm-

hand-object in the case of a human operator) are altered due to manipulation of 

heavy objects (whose mass significantly affects the basic model dynamics). We 

address the study of how this corrective model is inferred through a biologically 

plausible local adaptation mechanism using a simplified cerebellar architecture.  

Through the development of this simple cerebellar module, we can monitor how 

the synaptic weight’s space adapts to a distributed stable model that depends on the 

basic network topology, the target trajectory, and model deviations.  

This is covered in [14] (paper included in the fourth chapter). 

 The second objective is to describe how a more realistic spiking neural network (a 

granular layer is now implemented) mimicking a cerebellar micro-structure allows 

internal corrective model inference. By adopting a cerebellar-like network, we 

explore how different sensor representations can be efficiently used for a corrective 

model abstraction corresponding to different manipulated objects. It has been done 

in two steps: 

i. We address a biologically relevant task which consists in an 

accurate manipulation of objects which affect a base (kinematic 

and dynamic) model of the plant using low power actuators. 

ii. We define and implement a spiking-neuron based cerebellum 

model to evaluate how different properties of the cerebellar 

model affect the functional performance of the system. 
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This is covered in [12] (paper included in the fourth chapter). 

 Thirdly, we aim at studying how an adaptive spiking cerebellum-like module which 

includes long-term depression (LTD) and long-term potentiation (LTP) at parallel-

fiber to Purkinje-cell synapses (PF→PC) is embedded in diverse control loops 

(forward,  recurrent, and a combination of both architectures) to infer corrective 

models which compensate deviations in the robot trajectory when the dynamics and 

kinematics of the controlled robotic arm are altered and noise (related to the 

inherent noise of the muscle spindle signal) is introduced in the cerebellar input 

(MFs). The main goal at this point is to make a comparative evaluation of these 

control architectures which shows how forward and recurrent architectures 

complement each other in the framework of a manipulation task and how robustly 

they behave in the presence of noise. 

This is covered in [13] (paper included as fourth chapter). 

 The last objective is to study the best way in which sensori-motor information in a 

common robot scenario can be encoded to investigate an optimal representation of 

somatosensory information. 

This is covered by the last paper included in the fourth chapter. 

V. PROJECT FRAMEWORK 

This work has been developed in the framework of two European projects “SENSOrimotor 

structuring of Perception and Action for emergent Cognition” (SENSOPAC) and “Realistic 

Real-time Networks: computation dynamics in the cerebellum” (REALNET (IST-270434)). 
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The SENSOPAC (IST-028056) project (belonging to the EU Framework 6 IST Cognitive 

Systems Initiative) extended from January, 2006 to July, 2010 in collaboration with 12 

institutions from 9 different countries. The SENSOPAC (IST-028056) project combines 

machine learning techniques and modeling of biological systems to develop a machine 

capable of abstracting cognitive notions from sensorimotor relationships during interactions 

with its environment, and of generalizing this knowledge to novel situations. In particular, 

SENSOPAC (IST-028056) has combined robot dynamic models with sensory causal 

relationships in a haptic exploration task, in order to grasp and decide. Detailed neural models 

of key brain areas have been embedded into functional models of perception, decision 

making, planning, and control, effectively bridging and contributing to neuroscience and 

engineering. 

Sensory feedback including tactile sensory arrays, proprioceptive feedback, and motor 

command afferents have been employed for manipulation tasks under various contexts 

allowing the study of efficient representations, encoding/decoding mechanisms and 

abstractions; both in human haptic manipulation as well as artificial robotic sensor systems. 

Our research group at the University of Granada has been mainly involved in the 

development of the spiking neuron computation environment (EDLUT) following 

neuroscientist findings in order to design biologically inspired control systems capable of 

carrying out manipulating tasks.  
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Figure 1.1 Module organization of the SENSOPAC 

 

Our work as a partner is focused in biological relevant controller and simulation module 

provide a bridge between neurophysiologist and control theory in robotic systems. 

More recently our research group is involved with the REALNET (IST-270434) project as a 

continuation of SENSOPAC (IST-028056) project. REALNET (IST-270434) project (funded 

under the EU Framework 7 Information and Communication Technologies work program) 

started in February, 2011 and will last until February, 2014. The main goal of this project is to 

understand the circuits of the central nervous system from the functional level to the 

molecular/neuronal level. In order to understand circuit computations a different approach is 

needed: it aims to elaborate realistic spiking networks and use them, together with 

experimental recordings of network activity, to investigate the theoretical basis of central 

network computation. As a benchmark this project will use the cerebellar circuit. Based on 
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experimental data, this project will develop the very first realistic real-time model of the 

cerebellum. This cerebellar model will connect to a biomorphic robotic system to evaluate 

circuit functioning under closed-loop conditions. The data deriving from recordings, large-

scale simulations and robots will be used to explain circuit functioning through the adaptable 

filter theory. 

Because of the multidisciplinary properties these projects require each of the members of our 

research group to focus their research in a particular area. The present work mainly presents 

results where a cerebellum-like simulated architecture has been used in order to manipulate 

tools with a robotic arm. This work implies dealing with robotic system; developing a robotic 

arm simulator, studying the biologically plausible control loops, conversion from/to spiking 

signals, embedded the EDLUT simulator in the control loop, studying the spike/analog 

connection… etc. All these issues focus my research but it is mandatory to point out that all 

this work would not have been possible without the hard work of Jesus Alberto Garrido who 

is in charge of evolving the EDLUT simulator environment and performing simulations of 

more realistic biological structures. Our hard work shoulder to shoulder trying to bring some 

light to the motor control theory; from the biology findings through the implementation in 

realistic spike simulator to a robot control loop, has made this thesis possible. 

VI. CHAPTER ORGANIZATION 

In order to facilitate the reading and utilization of this dissertation we provide a concise 

summary of the information presented in each chapter: 

 In chapter 1 (the present chapter), a brief introduction of state of the art in 

computational neuroscience applied in robot control scenarios is described. The 

motivation of this dissertation is presented and the work carried out is summarized. 
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 In chapter 2, a proper contextualization of the research area in which this thesis has 

been done is presented. Although journal papers are self-contained, a previous 

overview on the research field aims to make easier the task of getting deep into 

details through the journal papers. 

 In chapter 3, we briefly enumerate the main contributions and future work plans.  

 Finally in chapter 4, all the related papers are included with a brief remark about the 

source journals, their impact factor and the quartile to which they belong. In 

addition other publications associated to this work (conference articles and 

cooperative journal articles) are also indicated. 

 



 

CHAPTER 2 
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T h e s i s  C o n t e x t u a l i z a t i o n  

In this chapter, we try to contextualize the research area in which this thesis has been 

developed. Due to the “journal article structure” used in this thesis, we first briefly introduce 

the research area related to this thesis. Therefore, we hope that the rest will be easier to follow 

for the reader and, in general, will facilitate to have a global picture of the work accomplished.  

I. ANATOMY OF THE MEMORY 

One of the most important aspects that the brain presents is its learning ability and its storage 

capacity of dynamic entry patterns. The way in which our experiences are structured and 

stored by our brain and how these experiences have an effect in our behavior, is strongly 

related with the nature of this storage process [67]. The memory is not something tangible 

which is stored as an image in a computer and it is invoked on demand.  The experiences 

change the way in which we perceive, we think, we plan and we act. These experiences 

physically modify the nervous system structure, changing those neuronal circuits which are 

involved in perception, thinking and planning [68]. For example, an unpleasant or disturbing 

experience will tend to be avoided; in contrast, we will try to repeat those experiences which 

gave us satisfaction or pleasure. 

One of the main brain functionalities is to activate the muscles in order to produce useful 

operating conducts. The learning capability is the result of developing useful operating 

conducts which are adapted to our surrounded dynamic environment. The learning shows up 

in different ways (Fig. 2): 
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• Perceptual learning: ability to learn to recognize stimuli that have been seen before 

[69]. 

 Primary function is to identify and categorize objects and situations 

 Changes within the sensory systems of the brain 

• Stimulus-response learning:  ability to learn to perform a particular behavior 

when a certain stimulus is present. Establishment of connections between sensory 

systems and motor systems. 

• Motor learning: establishment of changes within the motor system [70] [71].  

• Relational learning:  involves connections between different areas of the 

association cortex [72].  

• Spatial learning:  involves learning about the relations among many stimuli [73] 

[74]. 

• Episodic learning:  remembering sequences of events that we witness [75]. 

• Observational learning: learning by watching and imitation other people [76]. 
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Figure 2.1. A general view of perceptual behaviorism learning: stimulus response learning and motor 
learning [67]. 

 

II. BEHAVIORISM. PSYCHOLOGICAL 

BEHAVIORISM 

The psychologist F.B Skinner [67], in the seventieths, developed a fundamental research; the 

behavior analysis in terms of stimuli and responses. Considering behaviorism as “the 

observable activity that an individual performs” (activity that basically consists of movements) 

then what we called behaviorism is based on a set of rules that regulates the dependency 

between behavioral elements (mainly stimuli and responses) by means of finding out 

functional relationships. Considering the organism as a black box in which only inputs and 
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outputs are well known; being the functional correlation between stimuli and responses a 

“reflex”, and finally taking into consideration a reflex action as an instrument to describe the 

behaviorism (classical behaviorism), but just as a behavioral action not as a neurological 

concept, so then, we can described the Psychological behaviorism [77] as a kind of 

behaviorism that examines behavioral changes in relation to the results (experience) focusing 

its attention in the learning process. 

For instance, when a hungry rat is placed in a cage for the first time, it is very unlikely the rat 

activates the feeding mechanism. Nevertheless, when the rat activates the mechanism and 

receives a piece of meal, after that, the probability that the rat activates again the mechanism, 

increases. But ¿how does psychological behaviorism work? Figure 2 shows a possible model. 

The visual system of the previous rat has two neurons. One of them fires when the rat sees 

the feeding mechanism the other one fires when the rat sees a bottle of water.  The motor 

system has three neurons, each of them has a specific functionality (moving the ears, standing 

only on the hind legs, and activating the feeding mechanism). Another neuron is part of the 

reinforcement system. This one fires when the rat is hungry and receives some food. Initially, 

the M synapsis (Mechanism) is too weak for firing the motor neuron. However, the rat 

explores the cage and, by chance, activates the feeding mechanism. This positive fact is 

detected by the reinforcement system which synapses onto all moto-neurons. When the 

reinforcement synapsis R (Reinforcement) fires makes all the synapsis recently activated 

stronger. On this case, the synapsis M is responsible of reinforcing the learning when the 

mechanism is activated. When this last synapsis has been reinforced enough, just the 

mechanism vision provoke the behavior of activate that mechanism. 
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Figure 2.2. A simple reinforcement neuronal model of physiological behaviorism. 
When the animal sees the feeding mechanism, and then activates it, a positive event happens. The 
activity of the reinforcement system makes the synapsis M stronger. 

III. NEURAL NETWORKS, MODELING THE 

LEARNING CAPABILITY OF THE BRAIN 

The experience modifies the neural connections of our brain, and these modifications, these 

changes, represent what it is already learned [78] [79]. But ¿why does a new sensorial stimulus 

modify the way in which neurons respond to the stimuli already learned? One possible answer 

can be deduced from the functional models of the neural circuits, that is, the neural networks. 

Each “element” has computational properties as neurons have; these “elements” are 
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connected to each other through connections which are similar to a synapsis. These 

connections can be excitatory or inhibitory as real synapses are. 

When one of these “elements” receives a critic amount of excitation, it sends a message to 

those elements to which it is connected. The elements of the network have inputs that can 

receive “external” signals, representing a sensorial organ or received information from other 

network, for example as a feedback of our network. Other “elements” have outputs which 

control muscles or connect with other network producing particular behaviors. That means, 

particular patterns in the inputs can represent particular stimuli and particular output patterns 

can represent particular responses. 

It is possible to “teach” neural networks to recognize particular stimuli. These networks 

receive a single input pattern, being the inhibitory and excitatory elements of the neural circuit 

those that refine the response of the network when it is faced to a defined input pattern. The 

first time a defined stimulus is presented, the output “elements” response in a weak and 

unspecific way; but after several trials, a strong and reliable response pattern emerges. More 

stimuli can be presented to the network and then more corresponding specific output 

patterns can be generated. The functional properties of the neural network are quite similar to 

those which can be found in real nervous system, and this is the reason why Scientifics are 

interested on the fundamental principles of the neural learning. For instance, neural networks 

show generalization, discrimination and soft degradation. Generalization in this case, should 

be understood as the capacity of recognizing similarities between stimuli. For instance, let 

assume that our network has learnt some different stimuli, if we show to the network a stimuli 

similar to that one that it has already learnt, the network response pattern will be very close to 

that response which is produced when the already known stimulus was shown. What we 

understand for discrimination is the capability of recognizing differences between stimuli. If 

several similar stimuli are presented to a neural network, the network will learn to distinguish 

them and it will produce different output patterns for each stimuli. Finally the term soft 

degradation is used to indicate that the apoptosis (the malfunctioning of different elements or 

connections, synapses, in the neural network) do not make the whole neural network stop 
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totally working. Instead of stopping working, the processing progressively deteriorates 

depending on the rate of deterioration that the neural network presents. All of these three 

phenomena; generalization, discrimination and soft degradation also characterize the behavior 

of our brain.  

Our cerebellum is built up by neural networks which involves that our learning takes place 

within these neural networks. The question relies on the possibility of replicating the brain 

functionality with these neural networks. Knowing the neural circuits’ anatomy in detail and 

the physiological characteristics of single neurons and their synapse connections is the only 

way to give answer to that question. The more we learn about this issue, the more realistic 

neural network model we can build up.  

As a first step, this research field tries to study what it is called microstructure, of the brain, 

that is, brain functions which are performed by individual modules. The brain presents a huge 

amount of neural networks (it seems to be thousands), where each of these neural networks 

has it corresponding functionality. It is likely that those neural networks present a hierarchical 

structure where some of them control the functionality of other ones and regulate the 

information exchange between them. Therefore, the individual comprehension of the 

operations that happen in a specific neural network will not reveal all we need to know about 

the brain functions. We will also need to know the brain organization (relationship between 

individual neural networks which compose the brain). Then the brain macrostructure need to 

be also known.  Developing and improving neural networks is linked to brain macro and 

microstructure research; macro-microstructure research supplies a fundamental physiological 

base which supports the artificial neural network develop. 
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IV. CEREBELLAR CONTROL 

1. Distributed motor system 

The cerebral motor system is a complex controller. A good way to realize of this could be 

shown by using an example. Let’s suppose we see on the corner of our eye something that is 

moving. Quickly turn our head and look towards the source of motion, and we found that 

someone has taken a blow to a vase of flowers and it is about to fall off the table. Quickly we 

extend the arm, grab the vase and try to put in a stable position. 

The rapid movement of the head and eyes is controlled by mechanisms involving the superior 

colliculus and some nearby nuclei. The head and trunk movements are driven by the 

tectospinal tract. We note how the vase was tilted by the activity of neurons in the visual 

cortex. The same visual cortex also provides information on depth to the right parietal lobe, 

which is able to determine the spatial location of the vase. Our left parietal lobe uses the 

spatial information, along with its own record of the location of the hand to determine the 

path it has to do to intercept the vase. The information is sent to the left frontal lobe, where 

the associative motor cortex begins with the movement. Since this movement has to be 

ballistic, the temporal pattern control is based on the information received from the 

associative cortex of the frontal and parietal lobes. Our hand stops at the instant it touches 

the vase, and the connections between the somatosensory cortex and primary motor cortex 

start the reflex of closing the hand to grasp the vase. 

The hand movement is controlled by the cooperation of the corticospinal, rubrospinal and 

ventromedial tract. Even before our hand begins to move, the ventral corticospinal tract and 

the ventromedial pathway begin to adjust our posture to avoid our falling when we go to pick 

it up. Depending on how far we are away from the jar, the reticulospinal tract can even make 

us take a step to keep balance (adapted from [80]).  
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2. The Cerebellum. Introduction 

The cerebellum is an important part of the motor system [1] [81] [82] [63] [83]. It consists of 

two hemispheres that contain several deep nuclei located just below its folded and wrinkled 

cortex. Thus, the cerebellum looks like a miniaturized brain [37]. 

The cerebellum cortex receives inputs from the brain cortex encoding extrinsic and intrinsic 

movement parameters. [84] In fact, the cerebellum contributes both to control rapid and 

accurate movements and to control the temporal development of fast ballistic movements, 

movements which are too fast to be modified by feedback circuits [85] [86]. Because of that, 

the sequence of muscle movements must be programmed in advance, so then, individual 

muscles should be activated at the right time. Considering the distance between our hand and 

the aim to reach, our cerebellum calculates the timing that muscles should be active [64] [42] 

[9]. After that time, the cerebellum briefly activates the antagonistic muscles to stop the 

movement. [46] [47]  

Another main function of the cerebellum is programming the duration of rapid movement. 

The cerebellum monitors and provides corrective adjustments to motor activities triggered by 

other parts of the brain. The cerebellum continuously receives current information from the 

peripheral body parts to determine the instantaneous state of each of its areas (position, rate 

of motion, forces acting on it, and so on) [21] [87]. The cerebellum compares the actual 

physical condition of each body part as indicated by the sensory information with the state the 

motor system is trying to produce. If these two values do not instantly match, then the 

appropriate corrective signals are transmitted to the motor system, increasing or decreasing 

the activity of specific muscles [46] [47].  

The cerebellum communicates with the brain through a cord of fibers called superior 

cerebellar peduncles, with the pons through the middle cerebellar peduncles and with the 

medulla oblongata through the inferior cerebellar peduncles [88]. 
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The gray matter contains cells that constitute the origin of the fibers that synapses with those 

fibers which enters into the cerebellum coming from other parts of the brain. The impulses 

from the motor centers of the brain, from the semicircular canals of the inner ear and from 

striated muscles get into the cerebellum by the peduncles. Cerebellar motor impulses are 

transmitted from the motor centers of the brain and the spinal cord to the muscles [88]. 

3. The Cerebellum Entry System (Cerebellar 

afferent pathways) 

The cerebellum is divided into three lobes: flocculonodular lobe, anterior and posterior lobe. 

The vermis is located in the anterior and posterior lobe. Most of the nerve signals which are 

originated in the somatic areas of the body end in the vermis [37] [88]. The vermis plays a role 

in the integration of subconscious postural mechanisms. Most of the signals coming from the 

highest levels of the brain, especially the motor areas of the cortex, finish in the cerebellar 

hemispheres [89]. 

Cortico-cerebellar tract is born in the motor cortex and directly links with the cerebellar 

cortex. In addition, major afferents arise from the brain stem, the inferior olive, motor-cortex, 

basal ganglia and finally scattered areas of the reticular formation and spinal cord [88] [90]. 

The cerebellum also receives important sensory signals directly from the body periphery. The 

signals from these body parts arise from the muscle spindles, Golgi tendon organs, and large 

tactile receptors both on skin and joints, which informs the cerebellum of the current state of 

muscle contraction, the degree of tension in the tendons, the body part positions, and the 

acting forces on the surfaces of the body. All this information is processed in the cerebellum 

which is constantly informed of the instantaneous physical state of the body [88] [90]. 
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Spinocerebellar tract can transmit impulses with latencies of less than 100 ms; that is the faster 

transmission in any impulse transmission path throughout the central nervous system. This 

extremely fast transmission allows the cerebellum to quickly know the changes taking place in 

the state of the muscles. The cerebellum continuously receives information from all body 

parts, despite of these body parts are working at a subconscious level. 

TABLE I. The cerebellar afferent pathways [88]. 

 

Pathway Function Origin Destination 

Afferents from the cerebral cortex 

Cortico-

ponto-

cerebellar 

Conveys 

control from 

cerebral cortex 

Frontal, 

parietal, 

occipital & 

temporal lobes 

Cerebellar cortex 

Cerebro-

olivo-

cerebellar 

Cerebro-

reticulo-

cerebellar 

Sensorimotor 

areas 

Via reticular 

formation to 

cerebellar cortex 

Afferents from the spinal cord 

Anterior-

spino-

cerebellar 

Conveys 

information 

form muscles & 

joints 

1. Muscle 

spindles 

2. Tendon 

organs 

3. Joint 

Cerebellar cortex 

Posterior-

spino-
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cerebellar receptors 

Cuneo 

cerebellar 

Conveys 

information 

from muscles & 

joints of upper 

limbs 

Afferents from the vestibular nerve 

Vestibular 

nerve 

Conveys 

information on 

head position 

& movements 

1. Utricle   

2. Saccule  

3. Semi 

circular 

canals  

Cortex of the 

Flocculonodular 

lobe 

Other 

afferents 

Conveys 

information 

from the mid 

brain 

1. Red nucleus 

2. Tectum 
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The main entrance to the cerebellum is carried out by mossy fibers [87] [91]. Mossy fibers 

carry information from sources that control the balance (vestibular system), warning (reticular 

formation), motor activity (cerebral cortex), sensory organs and location of the tendon 

positions, contraction speed of muscles, and skin pressure [92] [93] [94] [95] [96] [97] [98].  

Mossy fibers can be classified according to the origin of the information that they carry in two 

classes:  
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1. Those which carry information from higher hierarchical levels. 

2. Those which carry feedback information about the results corresponding to the 

motor control output.  

Once in the cerebellum, these two classes are mixed, in an indistinguishable way. 

4. The Cerebellum output System (Cerebellar 

efferent pathways) 

There are four deep cerebellar nuclei located deep in the cerebellar mass, being these 

cerebellar deep nuclei, the sole outputs of the cerebellum. These nuclei receive signals from 

two different sources: the cerebellar cortex, and all the sensory afferent pathways to the 

cerebellum. The cerebellar input is carried by the mossy fibers. Three major efferent pathways 

can be found [88]: 

1. A pathway that starts in the cortex of both cerebellar hemispheres, which goes to 

the motor cortex. 

2. A pathway that starts in the structures of the midline cerebellum (vermis) and targets 

at bulbar and pontine regions of the brainstem. This circuit works in close 

relationship with the apparatus of balance and postural attitudes of the body. 

3. A pathway that originates in the intermediate areas on each side of the cerebellum, 

connecting the vermis and cerebellar hemispheres, the motor cortex, the basal 

ganglia, the red nucleus and reticular formation of the upper brain stem. This circuit 

works for coordinate activities between the two first mentioned output cerebellar 

pathways, that is, to help coordinate the interfaces between postural control 

subconscious bodies and voluntary conscious control of the motor cortex.  
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In addition to these inputs, all cerebellar nuclei and all regions of cerebellum get special inputs 

from the inferior olive of the medulla. 

Cerebellar peduncles. Three fiber bundles carry the input and output of the cerebellum [88]. 

1. The inferior cerebellar peduncle (also called the restiform body) primarily contains 

afferent fibers from the medulla, as well as efferents to the vestibular nuclei. 

2. The middle cerebellar peduncle (also called the brachium pontis) primarily contains 

afferents from the pontine nuclei. 

3. The superior cerebellar peduncle (also called the brachium conjunctivum) primarily 

contains efferent fibers from the cerebellar nuclei, as well as some afferents from the 

spino-cerebellar tract. 

Thus, the inputs to the cerebellum are conveyed primarily through the inferior and middle 

cerebellar peduncles, whereas the outputs are conveyed primarily through the superior 

cerebellar peduncle.  

5. The Cerebellum Cortex 

The cerebellar cortex is divided into three layers: Molecular, Purkinje cell, and granular layer 

and at least seven or more types of neurons connected in a very specific and uniform way can 

be differentiated [99].  

The molecular layer is located at the surface of the cerebellar cortex, it contains: 

 Two types of interneurons: stellate and basket cells 

 The parallel fibers  

 The Purkinje cell’s dendritic tree.  



Thesis Contextualization 57 

 

 

 

Below the molecular layer, the Purkinje cell layer gathers the somas of the Purkinje cells. 

Finally, the granular layer — the deepest of the cerebellar cortex — contains the somas of 

granular cells, an ascending section of granular cell’s axons, the Golgi cells, the Lugaro cells, 

the unipolar brush cells, and the glomeruli, an intricate formation that receives contacts from 

mossy fibers and inhibitory cells from the same layer [100]. 

Furthermore, the cerebellum contains a large quantity of glial cells which are located in the 

gray and white matter. 

In the following section, we will give an overview on the cytoarchitecture of the cerebellar 

cortex and describe the internal circuitry and cellular components of the cerebellar micro-

complex. 

6. Micro-complex Theory 

The functional units of the cerebellar cortex are identified as longitudinal zones, zones which 

are usually divided into smaller microzones consisting of [101] about 1000 Purkinje 

longitudinally located in a narrow strip (200mm). This group of Purkinje cells presents the 

same somatotopic receptive field [102]. Each micro-zone of the cerebellar cortex receives 

climbing fibers from a different group of olivary neurons [103]. 

 Each longitudinal zone of the cerebellar cortex targets a specific cerebellar nucleus. That 

involves that each micro-zone is also combined with a small group of neurons in a cerebellar 

or vestibular nucleus. The combination of a micro-zone with a set of subcortical structures 

(cerebellar or vestibular nucleus, the inferior olive and the red nucleus) constitutes which is 

called a corticonuclear micro-complex, or cerebellar micro-complex.  These micro-complexes 

are hypothesized to be the operational unit of the cerebellum [81] [104]. It is believed that 

human cerebellum presents thousands of micro-complexes which play different roles by 
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interacting with a functional system at the spinal cord, the brainstem, the subcortical 

structures and the cerebral cortex. 

7. Internal Circuitry. The Human Control Loop 

The three main layers of the cerebellar cortex are: the molecular layer, Purkinje cell layer and 

granular cell layer [99]. In addition to these layers, the deep cerebellar nuclei are located inside 

the cerebellar mass and surrounded by white matter. Most of the output of the cerebellar 

processing units comes from deep nuclei cells. The output information from the cerebellum is 

driven by the axons of our deep nuclei cells and flocculonodular lobe cells, which project 

onto different areas of the central nervous system. These cells are continually under the 

influence of both types of stimulation, excitatory and inhibitory. The output of the cerebellar 

cortex is conveyed by the inhibitory axons of the Purkinje cells. These Purkinje cells receive 

two major excitatory inputs; Purkinje cell receives the excitatory input of single climbing 

fibers, and at the same time, through the numerous synapses with parallel fibers [37] [105]. 

The inputs in the cerebellum are of two types, one called climbing fibers and the other mossy 

fibers. There is a climbing fiber per 10 Purkinje cells approximately. The information path 

begins with mossy fibers. Mossy fibers reach the cerebellum and target both the deep 

cerebellar nuclei and the granular layer. Most of granule cells and, to a lesser proportion, 

Golgi cells are contacted. Climbing fibers also create collaterals innervations with deep 

cerebellar nuclei with a few synapses and it is thought that they might also be sparsely 

projected to some types of neurons in the cerebellar cortex (such as Golgi cells) [37] [105].  

As it is said, a single Purkinje cell receives hundred thousands of synapses from parallel fibers. 

Those parallel fibers also handle inhibitory basket and stellate cells activity, which in turn 

project to Purkinje cells. Finally, closing the loop, granule cells receive excitatory signals from 

the same mossy fibers that innervate deep cerebellar nuclei. Granule cells and mossy fibers 

also send projection to Golgi cells, which in turn inhibit the granular cells [37] [105]. 
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Summarizing, the stimulation of a single mossy fiber never triggers an action potential in 

Purkinje cell; thus, a large number of mossy cells must be simultaneously stimulated to 

activate a Purkinje cell.  

Golgi cells are also contacted by parallel fibers. These cells have a dense dendritic tree.  Each 

Golgi cell has an axon with extensive branches. This axon makes inhibitory contact with 

about 100,000 granule cells in their immediate neighborhood, including some granule cells 

(granule cells which are branched in parallel fibers) that previously excited them. Golgi cells 

suppress all granule cell outputs which are not maximally stimulated. As a result, each pattern 

or input vector is transformed by the granular layer into a small and a relatively fixed 

percentage of active parallel fibers. Each Purkinje cell performs a “summation” of their inputs 

(synapses), producing more specific outputs. The basket and stellate cells are essentially 

inhibitors that provide “negative weights” to Purkinje cells, which are added to the “positive 

weights” of the parallel fibers.  

The climbing fibers cells are the second set of incoming fibers to the cerebellar cortex. 

Typically there is a climbing fiber per Purkinje cell. The output of the Purkinje cell depends 

on the input of the climbing fiber (each single spike produces an output spike on the Purkinje 

cell) and also on the inputs of the parallel fibers (whose contribution depends on the parallel 

fiber - Purkinje cell weights). These weights seem to be altered with the correlation between 

the inputs from the climbing fiber and from parallel fibers. Climbing cells may provide the 

necessary information for learning. 
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Figure 2.3. Major cells in the cerebellum. 

 

8. Models of Cerebellar Control (Computational 

models) 

a. The Marr-Albus Model 

In the Marr-Albus Model [49] [50] the cerebellum works as a classifier of sensory-motor 

patterns which are received through the MFs. Just a small portion of parallel fibers (PF) are 

activated when a Purkinje cell (PC) fires thus driving the motor neuron output. In this model, 

the error signal is supplied by the climbing fibers (CF), because they are specific to each PC. 
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These error signals (encoded in activity through CFs) will affect the weights between PFs and 

PCs, improving the PC firing response to specific PF patterns. In this model CF activity was 

hypothesized to have a debilitating effect in PF/PC synapses. This weakening of active 

synapses (known as Marr-Albus Model) still remains being the reference model of nowadays 

studies of synaptic plasticity of the cortex. In this model each PC is considered as a 

perceptron whose task is to control an elemental movement. This very first approximation 

constituted the starting point of different cerebellar models where cerebellar plasticity plays a 

key role. 

 

 

Figure 2.4. Cells in the Marr-Albus model. 
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b. The Cerebellar Model Articulation Controller 

(CMAC) 

One of the well-known early computational models of the cerebellum is the CMAC: This 

artificial model is based on Marr-Albus [49] [50] conception of the cerebellum, but it was not 

initially proposed as a biological plausible approximation [16]. This model considers MFs to 

be responsible of the discretization of the input values, that means, when a signal on a MF is 

in the receptive field of a particular GrC, it fires onto a PF. The process in which the inputs 

are “mapped” in binary states constituted the working principle of the CMAC. Learning 

signal is supplied by CFs. CMAC in essence consists of a large set of overlapping 

multidimensional receptive fields with finite boundaries. A local receptive fields is activated 

when an input is presented, the global output is formed by the average of the responses of the 

receptive fields activated by that input. 

The basic idea of CMAC is to store data within a region in such a way where those data can 

be easily recovered and the storage space is minimal, so the CMAC network presents multiple 

inputs and outputs. L1 layer presents the entry variable set  , the entry space 

is divided in segments which are called resolute elements , each entry space has an allowed 

value range, so each analog entry  is quantified and transformed into a discrete value. These 

new two values will be used to generate a memory address. 

In the L2 layer, the previously selected memory address is associated with other memories 

located in its neighborhood. The associative space is constituted when this neighborhood is 

projected into the resolution elements, ,  per each entry . For the same memory address, 

different memory positions can be assigned, each group constituted by this different memory 

positions is called hyper-cube. The value of all the hyper cubes will be modified according to a 

learning law. 

L3 layer finally is the sum of the value of all the memory positions of the hyper cubes. 
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Figure 2.5. Internal structure in CMAC model (Inspired by [16]). 

 

c. The APG Model. Adjustable Pattern Generator 

Houk and colleagues proposed this model in 1986 [17].  He was convinced from experimental 

studies that movement signals constituted the output of pattern generators in the brain rather 

than the effect of continuous feedback from periphery. In this model, the cerebellum is 

modeled as an array of adjustable pattern generators (APGs), each of which generate a “burst 

command” with varying intensity and duration. APG model operation relies on the same 

principles of MFs→GrC→PF structure as CMAC presents. The state encoder works in the 

same way, but deep nuclei cells play a fundamental role. Each nucleus cell is connected to a 

motor cell in a positive feedback circuit; a reciprocal relationship between Purkinje cell 

responses and motor commands is established. The generated motor patterns are assumed to 

be under the control of Purkinje cells which are also taken to be the site of learning of the 

motor pattern. The learning rule determines which of the PF→PC synapses will be updated 
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to improve the generated movement using training signals derived from sensory information. 

These training signals are conveyed by CFs to direct the adaptation of PF synapses and, after 

learning, selection of the motor patterns initiated by a trigger mechanism is controlled by 

basket cells. 

 

Figure 2.6. Internal structure in APG model. 

 

d. The Schweighofer-Arbib Model   

This model is strongly biologically inspired [19]; it tries to copy biology avoiding the idea of 

using an encoder of different status in granule cells. The model is constrained severely with 

anatomical data and based on the micro-complex hypothesis proposed by Ito (1984). Many 

assumptions are made: 
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 Mossy fibers drive an afferent copy of actual and desire state of the controlled plant. 

A mossy fiber diverges in an average of sixteen branches. 

 GrC has an average of four synapses coming from the MF inputs through a 

glomerulus.  

 Three Golgi cells synapse on a granule cell through glomeruli, the synaptic strength 

depends on the “geometric” distance between cells. 

 There is no connection between CFs and DCN. 

The learning process relies on the error information given by CFs from the inferior olive 

(IO).A kind of STDP is considered where LTD (long term depression) is supplied when the 

IO firing rate provides an error signal for a certain synapse. LTP (Long term potentiation) is 

represented by a slower constant increase in synaptic strength when no error signal occurs.  

Figure 2.7. Internal structure in Schweighofer-Arbib Model. (Adapted from [47]) 
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e. The MPFIM Model. Multiple Paired Forward-Inverse 

Model 

The basic idea of this model conceives the cerebellum containing multiple pairs (modules) of 

forward (predictors) and inverse (controllers) models (MPFIM) [106]. Within each module, 

the forward and inverse model are coupled both during the acquisition and use, in which the 

forward model determines the contribution of each inverse model’s output to the final motor 

command. This architecture simultaneously learns the multiple inverse models necessary for 

control. This model is based on the indirect/direct model approach by Kawato and at the 

same time the micro-complex theory previously described. As previously described, a 

microzone is a group of PCs and a micro-complex combines these PCs with a small group of 

neurons in a cerebellar or vestibular nucleus. Establishing and analogy, in MPFIM a micro-

zone is built up by a set of modules which control the same degree of freedom, modules 

whose adaption is controlled by a single climbing fiber. Each module presents three types of 

PCs which compute a forward model, an inverse model or a responsibility predictor, but all of 

these three receive the same input. A single internal model acts as a controller which generates 

a motor command and a predictor which predicts the current state of the plant. Each 

predictor is a forward model of the controlled system, while a controller consists of an inverse 

model of the system particularized for a specific region. There are also a set of responsibility 

signals which determines the weight contribution that a particular model will make to the 

overall output of the micro-zone.  

Finally the control motor command consists of the output of the single models adjusted by 

the sum of responsibility signal: and planning. 

elsmodofnumberi;
r

r

i

ii

dForwar                         (1) 
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Where Forward the forward motor command, i  is the motor command response of the 

model i, and finally ir  corresponds to the responsibility of model i.  

The PCs are considered to have a linear response, MFs carry all necessary information (state 

information, efference copies of the last motor commands and desired states), GrCs 

transform the state information (even non-linearities) into a rich set of basic functions 

through PFs. Finally while a CF carries a scalar error signal a PF cell encodes a scalar output. 

Responsibilities, predictions and controller outputs are all of them one-dimensional values. 

 

Figure 2.8. MPFIM Model. The thick dashed line shows the central role of the responsibility 
estimators’ signals. Dotted lines passing through models are training signals for learning (adapted 
from [106] ). 



68 Chapter 2 

 

 

 

f. The Adaptive Filter Model 

This cerebellar model was firstly proposed by Fujita [107]. Subsequent studies by Dean and 

Porril developed this theory in the last years [108] [109] [110].  

Adaptive filters are used in cerebellar model functions as a response of Marr-Albus 

cerebellum theories [49] [50]. It was a response coming from control theory towards a better 

understanding of the “obscure” biological control. It was a successful attempt to apply a very 

well-known field to an unexplored/unexploited field [107]. 

Adaptive filters present parameters which can be self-adjusted to modify the output form. 

The input signal is decomposed into component signals by means of a set of filters. Filter set 

outputs are weighted and summed up to obtain the desired output. The self-adjustment is 

driven by a learning rule consistent with the well-known Hebbian covariance rule [111]. The 

learning rule modifies the weights according to the relation between the corresponding 

component signal and the teaching signal. This is called the Analysis-Synthesis filter model 

proposed by Dean and Porril [108] [110].  The system analyses and separates the frequency 

components of the input signal, correlates these individual components and the system error 

and is able to synthesize (through local adaptation at the parallel fibers) the appropriate 

filtered responses towards a desired output.   

To establish a comparison between this Analysis-Synthesis filter model and the cerebellar 

microcircuitry the reader is referred to Fig 9 (Adapted from [108]) 
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Figure 2.9. Adaptive Filter. This scheme shows the most relevant connections within a cerebellar 
module and its relation with an adaptive filter. 
 A) The cerebellar module presents different connections communicating different circuit elements 
in closed loops. Mossy fibers (MFs) contact granule cells (GrC) and DCN cells which, in turn, 
receive inhibition from the same common set of Purkinje cells (PC). Moreover, the IO cells project 
climbing fibers that contact PC which also are projected to DCN cells. B) Filter inputs correspond 
to MF firing. These incoming inputs are conveyed by GrC into parallel fibers. The component 
weights act as the synapses made by parallel fibers on PCs. PCs add the component weights signals 
obtaining the output. The correlation between climbing-fiber inputs and parallel fiber climbing is 
used by the correlation learning law, the strength of the synapse is increased if the correlation is 
negative and it is increased when the correlation is positive (Long Term Potentiation/Long Term 
Depression). 

Climbing fiber and Teaching Signal.  

It is well known that these climbing fibers carry information from various sources (spinal 

cord, vestibular system, red nucleus, sensory and motor cortices…etc). One widely assumed 

hypothesis is that their activation carries motor error signal sent to the cerebellum, and it 

B A 
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seems to be also an important signal for motor timing but the way in which the error is 

translated into a climbing fiber signal is still an open issue [112] [113] [114] [115]. In the very 

first approach to cerebellum as an adaptive filter made by Fujita [107] it was assumed that the 

climbing fiber response acted as a teaching signal in which its variable impulse rate was given 

by the difference between the output signal and a desired response. The weights can be 

adjusted increasing or decreasing iteratively their values in order to obtain the desired output 

signal, if the correlation between de “error signal” (climbing fiber) and the component 

weights (mimicking the synapses made by parallel fibers on PCs) was positive the weight was 

increased otherwise it was decreased. Fujita proposes an equivalent way to use the error signal 

learning principle as it is the case in the adaptive filter theory. Although this proposal does not 

consider nowadays biological climbing fiber known characteristics, it is an inspiring source 

which is used in different applications [1] [116] [11] (This Fujita approach has been evolved 

along last decade [108] [110] [109] ). 

Golgi-Granule scheme 

In order to understand a functional scheme of this theory, different general assumptions have 

to be made: 

a) Golgi cells acts a leaky integrator. According to discharge pattern observations [117],  it is 

assumed that Golgi cells act as temporal filters, with a transfer function given by

)Ts1(
k)s(G  , that is, a low pass filter in which k > 0, s represents Laplace 

transform of complex frequency and T represents cut-off frequency. That means that 

Golgi cells, in these models, show an integrator-like pattern with a time constant T on 

the order of several seconds. The corresponding parallel fiber signals have a similar 

response. That means that we obtain a bank of low pass filters that responds to a range 

of frequencies. Their output is convoluted with different weight (PC/PF synapses) 

according to a teaching signal driven by the error; the global response is a sum of 

different analog frequency signals as a response of input stimuli.  
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b) Adaptive filter breaks down the input signal into different components (that is supposed 

to be done in granular layer [118] [119]) ensuring a diversification in parallel fiber signals. 

This diversification is a phase diversification; this cerebellum model uses spikes as simple 

activity carriers. 

c) Identical mossy fiber input signals should hit onto identical Golgi-granule cell areas. This 

is a controversial point. Although in [109] this fact is justified by means of biological 

records, until nowadays, recording granule activity has been a troublesome task, and the 

debate is opened. There is no a consensus along adaptive filter cerebellum theory [107] 

[108] [110] [109] on how the mossy fibers codification is done. Mossy fiber inputs are 

treated as a signal given by a “transducer”, transmission information spike theory [120] 

[121] is not taken into account; interspike/intraspike distance [122], population neural 

coding [121] or first spike information [122] are not included in the general adaptive filter 

behavior [123] though some research efforts are being currently done [124].  

Purkinje Cells  

Output signals from Golgi-granule cell are conveyed to PCs. The connection pathways to 

Purkinje are simplified, only the direct synaptic contact PF/PC is represented by a positive 

synaptic weight and an inhibitory interneuron per Purkinje is responsible of the negative 

synaptic weight. Both contributions are summed into a final output.   

g. The Synchronous System Cerebellar Model 

Maex and De Schutter published in 1998, their granular layer simulation model [125] 

consisting of Golgi cells, granule cells and mossy fibers all based in physiological findings. In 

their model the populations of both Golgi and granule cells became entrained in a single 

synchronous oscillation as a response to random mossy fiber stimulation and were robust 

over different parameters such as synaptic connection strengths, mossy fiber firing rates or 

the spiking propagation speed in parallel fibers.  
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Nevertheless, de-synchronization could happen in this implemented network under different 

conditions:    

 Very low mossy fiber input activity. A very low activity rate at mossy fibers (and 

therefore at the GrCs) generates almost no excitation at the GoCs, and in this way, 

the synchronization path (GrC →  GoC →GrC) is disabled. 

 Strong dominant excitation of Golgi cells through mossy fiber synapses (in relation  to 

parallel fiber synapses). This MFs → GoCs activity destabilizes the synchronism in the 

granule cells.    

 Tonic activation of GrC inhibition [126] decrements the level of average activity in 

GrC. Thus, the synchronization elements (the Golgi cells) remain nearly inactive and 

do not produce such synchronism.    

S. Solinas in 2010 [127] evolved this cerebellar model solving all the established restrictions 

because of the simulation capabilities in 1998. This evolved model simulates a more realistic 

large-scale model of the cerebellar granular layer and verifies some spatio-temporal filtering 

properties founded in physiological studies. This model implements the main granular layer 

properties which make the cerebellum being such an important part of the nervous system. 

The main weakness that this model presents is that it has not been clarified how the 

properties which the implemented granular layer has, can be efficiently used for a functional 

signal processing and how these properties can solve specific problems in a relevant task 

framework such as movement correction or eye blink conditioning. 

h. The Yamazaki and Tanaka cerebellum model (Liquid 

State Machine)  

This model assumes that the cerebellum generates activity patterns without temporal 

recurrence representing the passage of time [128]. The granular layer acts as an event-driven 

internal clock triggered by an initial activity pattern. Each time step can be represented with 

combinations of active granule cells. 
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According to that point of view, the cerebellum can be interpreted as a liquid state machine. 

The presentation of finite sequences of active neuron populations without recurrence as the 

response to different combinations of binary inputs can be compared to a liquid state 

machine [129] with high power of information processing. 

Neuro-physiological findings support the hypothesis that the neural clock could be 

implemented by the inhibitory loop composed of GrCs and GoCs s [130]. That is, GrCs 

would excite GoCs (through PFs) thanks to their input stimuli, and subsequently, these 

GoCss would inhibit some of the granule cells, thus obtaining the transition between active 

and inactive states and therefore representing the passage of time. 

One of the main critics that this model could have is related to its application field. This 

simple model has been successfully applied to eye blink conditioning problem. By contrast, 

this model has never been put into practice in more difficult scenarios such as coordination of 

body-movements where the cerebellum is involved.  

The eye blink conditioning solution should correlate the inter-stimulus interval and the 

unconditional stimulus, but, in this problem, the cerebellar output, supplied by the deep 

cerebellar nuclei cells (DCN) presents just two different states; active DCN (closed eyelid) or 

inactive DCN  (open eyelid). In other motor tasks (i.e. target reaching or fast ballistic 

movements) a continuous error correction in time is mandatory in order to execute properly 

the desired planned movement, that is, DCN output must be more than just a bi-stable 

output, DCN output has to supply as many temporal states as the temporal correction 

demands.  

Summarizing, this model proposes a cerebellar architecture composed of two different sub-

circuits. The first one (where GrCs, GoCs and MFs are located) represents a liquid state 

machine, and generates non recurrent sequences of activity. The second one (where MFs and 

cerebellar nucleus cells are located) represents a simple perceptron. This cerebellar 

architecture receives a teaching signal from the inferior olive. 
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9. Discussion and Comparison 

Summing up, the presented models can be categorized as follows: 

 State-encoder-driven models: These kinds of models present a granule cell layer 

where on/off types of entities are located. These on/off entities divide the state 

space (Marr-Albus Model, CMAC model, APG model or Yamazaki and 

Tanaka).These models fit well in simple function approximations, and suffer 

strongly from the curse of dimensionality. 

 Functional models: these models have been developed based on the functionality 

that the cerebellar architecture seems to possess. These models just take into 

account the functional understanding of the cells. In this case, it is obtained only a 

basic insight into the functions of the parts and finally it is applied as a crude 

approximation (MPFIM model, Adaptive Filter model or APG model). This kind of 

approximation derive from an engineering point of view and can solve most of the 

tasks that the cerebellum seems to perform, such as the eye blink conditioning or 

the movement correction, but in contrast, the lack of realistic implementations, and 

the suppositions that these models assume with little neuro-finding backup make 

these models not be still well established among the neurophysiology community.  

 Cellular-level models: Obviously, the most realistic simulations would be at the 

cellular level. Although these models fully fit from a neuro-physiological point of 

view, yet their application in the context of a whole cerebellum model and the 

modeling and computing of just only a few Purkinje /Granular/ Mossy 

Fibers/Golgi / Inferior Olive/ Deep Cerebellar Nuclei cells at realistic conditions, 

remains unclear. Still, from the biological point of view these kinds of models are 

the most important since they allow obtaining insight into cerebellar function at 

cellular level. The first steps in this direction were taken by the Schweighofer–Arbib 

model (e.g. Synchronous System Cerebellar Model and Scheweighofer-Arbib model 

[19] [46] [47]).  
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The contribution of this work is also related to this level of detail but keeping in 

mind the cerebellar functionality in a manipulation task scenario that the proposed 

models must present.  For a further overview the reader is referred to [1] [11] [12] 

[13] [14] [131] 

 

In this thesis contextualization chapter, it is demonstrated the importance of 

multidisciplinary studies where both neurophysiologists and engineers are 

involved.  

Neurophysiologists have studied and proposed very detailed models according to 

physiological findings; however actual modeled physiological systems are usually not 

ready to carry out complex and specific tasks at a system level.  By contrast, engineers 

have proposed machine-like systems that try to solve particular biological problems 

assuming an engineered point of view. 

Thus, both, neurophysiologists and system engineers need to work shoulder to shoulder 

towards a perfect understanding of how specific problems are solved using biologically 

plausible computational principles.  

 

SpikeFORCE, SENSOPAC and REALNET are European projects (FP5, FP6 and FP7) 

in which our research group has been involved during more than a decade (and it is still 

involved) where the understanding of the relationship between neuroscience, 

computational neuroscience and classical control theory has represented and represents 

the philosopher's stone of our research. 
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D i s c u s s i o n  a n d  C o n c l u s i o n s  

This chapter shows a summary of the main contributions of the presented work as well as 

future lines of work raised from the proposal work made in this memory. Finally a brief 

resume of the obtained researched results in terms of international conferences and scientific 

journals is included. 

I. DISCUSSION 

 As a first step, this thesis (chapter 4 section 1) presents how a simple spiking cerebellum-

like architecture can infer corrective models in the framework of a motor control task 

when manipulating objects that significantly affect the dynamics model of the base 

robotic system. This initial approximation evaluates a simplified bio-mimetic approach 

during a manipulation task. It focuses on how the model inference is carried out by a 

cerebellar module within a forward control loop and on how these inferred internal 

models are built up by means of biologically plausible synaptic adaptation mechanisms. A 

basic temporal-correlation kernel including a specific long-term depression (LTD) and a 

non-specific long-term potentiation (LTP) at parallel fiber-Purkinje cell synapses can 

effectively infer corrective models. It is also evaluated how this spike-timing-dependent 

plasticity correlates sensorimotor activity arriving through the parallel fibers with teaching 

signals (dependent on error estimates) arriving through the climbing fibers from the 

inferior olive. This first approximation to a functional bio-inspired cerebellar model 

brought some light about how these LTD and LTP components need to be well 

balanced with each other to achieve accurate learning. Furthermore, it is illustrated how 
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the temporal-correlation kernel (used for the LTD computation) can also work in the 

presence of transmission delays in sensorimotor pathways.  

This kind of investigations may provide clues on how biology achieves accurate control 

of non-stiff-joint robot with low-power actuators which involve controlling systems with 

high inertial components.  

The associated journal article to this point is: 

N. R. Luque, J. A. Garrido, R. R. Carrillo, O. J. M. D. Coenen, E. Ros, “ Cerebellar-like 

Corrective Model Inference Engine for Manipulation Tasks ”, IEEE Transactions on 

Systems, Man, and Cybernetics, Part B: Cybernetics, 41(5), 2011. 

 Secondly this thesis (chapter 4 section 2) evaluates a way in which a spiking cerebellar-

like structure (an evolution of the previous model) can store a model in the granular-

molecular layers. As it was explained in contextualization chapter  the cerebellum is 

assumed to be one of the main nervous centers involved in correcting and refining 

planned movement and accounting for disturbances occurring during the movement, for 

instance due to the manipulation of objects which affect the kinematics and dynamics of 

the robot-arm plant model, so it is interesting to study not only the molecular layer 

storage capability but also how the cerebellar microstructure and its input representations 

(context labels and sensor signals) can efficiently support model abstraction towards 

delivering accurate corrective torques for increasing precision during different-object 

manipulation. This work also described how the explicit (object-related input labels) and 

implicit state input representations (sensory signals) complement each other to better 

handle different models allowing interpolation between two already stored models. This 

facilitates accurate corrections during manipulations of new objects taking advantage of 

already stored models.  

The associated journal article to this point is: 
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N. R. Luque, J. A. Garrido, R. R. Carrillo, O. J. M. D. Coenen, E. Ros, “Cerebellar Input 

Configuration Toward Object Model Abstraction in Manipulation Tasks”. IEEE 

Transaction on Neural Networks, 22(8), 1321-1328, 2011. 

 As a natural evolution of this thesis, the next step focuses on evaluating the capability of 

the previously developed spiking cerebellar model when it is embedded in different loop 

architectures (recurrent, forward, and recurrent & forward architectures) to control a 

robotic arm (chapter 4 section 3). The implemented spiking network self-adapts and 

copes with perturbations in a manipulation scenario: changes in dynamics and kinematics 

of the simulated robot. Furthermore, the effect of several degrees of noise in the 

cerebellar input pathway (mossy fibers) was assessed depending on the employed control 

architecture. The implemented cerebellar model managed to adapt in the three control 

architectures to different dynamics and kinematics providing corrective actions for more 

accurate movements. However, according to the obtained results, coupling both control 

architectures (recurrent & forward) provides benefits of the two of them and leads to a 

higher robustness against noise. 

The associated journal article to this point is: 

N. R. Luque, J. A. Garrido, R. R. Carrillo, S. Tolu, E. Ros, Adaptive Cerebellar Spiking 

Model Embedded In The Control Loop: “Context Switching And Robustness Against 

Noise”, Int. Journal of Neural Systems, 21(5), pp. 385-401, 2011. 

 Once the primary cerebellar architecture and control loop is settled, it is time to evolve 

the achieved system according to not only an engineered point of view (machine-like 

systems that try to solve particular biological problems) but also taking into account  

physiological findings (chapter 4 section 4). As it was shown in contextualization chapter, 

in biological systems, instead of actual encoders at different joints, proprioception signals 

are acquired through distributed receptive fields. In robotics, a single and accurate sensor 

output per link (encoder) is commonly used to track the position and the velocity. 
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Interfacing bio-inspired control systems with spiking neural networks emulating the 

cerebellum with conventional robots is not a straight forward task. Therefore it is 

necessary to adapt this one-dimensional measure (encoder output) into a 

multidimensional space (inputs of a spiking neural network) to connect, for instance, the 

spiking cerebellar architecture; i.e. a translation from an analog space into a distributed 

population coding in spike space. In this subsection it is analyzed how evolved receptive 

fields (optimized towards information transmission) can efficiently generate a sensori-

motor representation that facilitates its discrimination from other “sensori-motor” states. 

This can be seen as an abstraction of the Cuneate Nucleus (CN) functionality in a 

robot-arm scenario. The CN is modeled as a spiking neuron population coding in time 

according to the response of realistic mechanoreceptors during a multi-joint movement 

in a robot joint space. An encoding scheme that takes into account the relative spiking 

time of the signals propagating from peripheral nerve fibers to second-order 

somatosensory neurons is proposed. Following the nature-inspired analogy, evolved 

configurations have shown to outperform simple hand-tuned configurations and other 

homogenized configurations based on the solution provided by the optimization engine 

(genetic algorithm).  

The associated journal article to this point is:  

Luque, N. R.; Garrido, J. A.; Ralli, J.; Laredo, J. J.; Ros, E.: “From Sensors to Spikes: 

Evolving Receptive Fields to Enhance Sensory Motor Information in a Robot-Arm 

Scenario".  Int. Journal of Neural Systems, 22(4), pp. 0-20, 2012. 
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II. ALL ASSOCIATED PUBLICATION WITH THIS 

THESIS 

The developed research has been done in the framework of two European projects; 

REALNET (IST-270434)/SENSOPAC (IST-028056) where different challenges have been 

addressed from different perspectives through synergies between neurophysiologists and 

engineers from different fields. This work has been evaluated in a framework of international 

conferences and scientific journals (with impact factor IF on JCR).  

1. International Peer-review Journals 

1. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Coenen, O. J. M. D.; Ros, E: “Cerebellar-

like corrective-model abstraction engine for robot movement control”. IEEE Transaction 

on system, man, and cybernetics - Part B: Cybernetics, 41(5), 2011. Impact Factor (JCR 2011): 

3.080. Quartile Q1 in categories: Automation & Control Systems, Computer 

Science,  Artificial Intelligence and Computer Science, Cybernetics 

2. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Coenen, O. J. M. D.; Ros, E: “Cerebellar 

input configuration towards object model abstraction in manipulation Tasks”. IEEE 

transaction on neural networks, 22(8), 1321-1328, 2011.  Impact Factor (JCR 2011): 2.952.  

Quartile Q1 in categories: Computer Science, Artificial Intelligence, Computer 

Science, Hardware & Architecture. Computer Science, Theory & Methods and 

Engineering, Electrical & Electronic.  

3. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Tolu, S.; Ros, E.: “Adaptive cerebellar 

spiking model in a bio-inspired robot-control loop”. International Journal on Neural Systems, 
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21(5), 385-401, 2011. Impact Factor (JCR 2011): 4.284. Quartile Q1 in category: 

Computer Science, Artificial Intelligence.  

4. Luque, N. R*.; Garrido, J. A*.; Ralli, J.; Laredo, J. J.; Ros, E.: “From Sensors to Spikes: 

Evolving Receptive Fields to Enhance Sensory Motor Information in a Robot-Arm 

Scenario". International Journal on Neural Systems, 22(4), 1-20, 2012. Impact Factor (JCR 

2011): 4.284. Quartile Q1 in category: Computer Science, Artificial Intelligence.  

*Both authors contributed equally to this work 

5. Tolu, S.; Vanegas, M.; Luque, N. R.; Garrido, J. A.; Ros, E.: “Bio-Inspired Adaptive 

Feedback Error Learning Architecture for Motor Control". Biological Cybernetics, 106(8-9), 

507-522, 2012. Impact Factor (JCR 2011): 1.586. Quartile Q1 in category: Computer 

Science, Cybernetics. Quartile Q4 in category: Neuroscience. 

6. Tolu, S.; Vanegas, M.; Garrido, J. A.; Luque, N. R.; Ros, E.: “Adaptive and Predictive 

Control of a Simulated Robot Arm” International Journal on Neural Systems, Accepted for 

publication. Impact Factor (JCR 2011): 4.284. Quartile Q1 in category: Computer 

Science, Artificial Intelligence.    

2. International Peer-review Proceedings 

1. Passot, J. B.; Luque, N. R.; Arleo, A.: “Internal models in the cerebellum: a coupling 

scheme for online and offline learning in procedural tasks”. International Conference on 

Simulation of Adaptive Behavior, (SAB 2010). In Doncieux, S. et al., editors, LNAI 

Simulation of Adaptive Behavior, vol. 6226, pp 435-446, Springer-Verlag, (2010). 
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2. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Ros, E.: “Cerebellar spiking engine: 

Towards object model abstraction in manipulation”. International Joint Conference on 

Neural Networks (IJCNN 2010). 

3. Garrido, J. A.; Carrillo, R. R.; Luque, N. R.; Ros, E.: “Event and time driven hybrid 

simulation of spiking neural networks”. International Work-Conference on Artificial 

Neural Networks (IWANN 2011). Advances in Computational Intelligence. Lecture 

Notes in Computer Science, 6691, pp. 554-561. Springer, Heidelberg (2011). 

4. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Ros, E.: “A spiking cerebellum model in a 

multi-context robot control scenario for studying the granular layer functional role”. 

International Work-Conference on Artificial Neural Networks (IWANN 2011). 

Advances in Computational Intelligence. Lecture Notes in Computer Science, 6691, pp. 

537-546. Springer, Heidelberg (2011). 

5. Casellato, C.; Pedrocchi, A.; Garrido, J. A; Luque, N. R.; Ferrigno, G.; D'Angelo, E.; 

Ros, E.: “An integrated motor control loop of a human-like robotic arm: Feedforward, 

feedback and cerebellum-based learning”. International Conference on Biomedical 

Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS\& EMBS .pp. 562-

567(2012). 

6. Garrido, J.A*.; Luque, N.R*.; D'Angelo, E.; Ros, E.; “Enhancing learning precision at 

parallel fiber-Purkinje cell connections through deep cerebellar nuclei LTD and LTP”. 

Federation of European Neurosciences (FENS2012) (2012).* Both authors contributed 

equally to this work 

III. SCIENTIFIC FRAMEWORK 

This thesis has been developed in the framework of two European Projects: 
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 SENSOPAC (SENSOrimotor structuring of Perception and Action for emergent 

Cognition (FP6-IST-028056)) 

 REALNET (Realistic Real-time Networks: computation dynamics in the cerebellum 

(FP7-IST-270434)).  

This fact has provided the perfect scenario to our research group for collaborating with 

different research groups at other European Universities and research institutions. The 

presented work represents just a part of the whole contribution the University of Granada has 

done in this two SENSOPAC/REALNET consortiums.  In this scenario, the aims to be 

reached make a multidisciplinary approach mandatory.  

This work mainly presents different results from a biological system point of view however 

this work involves other knowledge areas. Dealing with robotic systems using biological 

findings or implementing and evolving a realistic neural network simulator capable of running 

in different environments (task mostly developed by Jesús Alberto Garrido) are just a pair of 

examples of how difficult the research process was. It would not be fair to avoid the fact that 

all this effort has required a high collaborative and coordinated work with the working team. 

IV. MAIN CONTRIBUTIONS 

 A biologically relevant cerebellar model (embedded in a forward control loop with a 

crude inverse dynamics module) has been evolved and implemented. This model 

can effectively provide corrective torque to compensate deviations in the dynamics 

of a base plant model. 

 It has been evaluated how a temporal-correlation kernel driving a specific error-

related LTD and a compensatory non-specific LTP component (complementing 

each other) can achieve effective adaptation of the corrective cerebellar output.  
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Both LTD and LTP need to be balanced with each other to achieve high 

performance adaptation capabilities and effective reduction of error in manipulation 

tasks with objects which significantly affect the dynamics of the base arm plant. 

 In addition it has been studied how a temporal-correlation kernel can work even in 

the presence of sensorimotor delays. This cerebellar structure can adaptively 

generate any suitable output for each trajectory point codification; the delay of the 

sensorimotor pathways is not remarkably relevant. 

 An evaluation of the input sensory signal influence over an evolved cerebellum 

architecture is presented (The granular layer is now added). Two input 

representations, context-related inputs (EC), and only actual sensory robot signals 

(IC) encoding the state during the experiments have been studied. The IC&EC 

cerebellar configuration takes advantage of both kinds of signals providing 

smoother inter-context transitions at a fast convergence speed, allowing the 

interpolation of new contexts based on previously acquired models and overcoming 

misleading external contextual information, thus making this cerebellar 

configuration robust against incongruent representations.  

 This cerebellar architecture has been evaluated in different control loops (RR, FD, 

and FD&RR) in several noisy scenarios. The obtained results indicate that coupling 

both control loop architectures (FD&RR) leads to faster learning convergence, 

better accuracy gain and improved output stability in a noisy scenario.   

 Moreover, it has been demonstrated that this (FD&RR) control architecture in 

context switching has the capability of inferring and storing different corrective 

models simultaneously under dynamic/kinematic modifications better than FD or 

RR configurations on their own. This proposed architecture is compatible with 

several neurophysiological findings.  
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 Finally, a general methodology (by means of using genetic algorithms) for efficiently 

representing joint encoder signals into spike patterns in a plausible robot scenario is 

presented.  

These contributions covers the thesis objectives presented in the first chapter as follows: 

the first three points of this contribution section deal with the first objective. The next 

point corresponds to the second listed objective. The two last but one contribution 

points address the third objective. And the last contribution point corresponds to the last 

objective. 

V. FUTURE WORK 

As a future work there are two main research lines to be followed. On one hand it is 

necessary to evolve the whole cerebellar model in the framework of a control task by taking 

advantage of a larger number of biological processing characteristics of neurons and 

networks. Although there is not a straight connection between these neurophysiological 

properties and its final application in a particular control task scenario, the study of how these 

findings could improve a plausible cerebellar model requires a lot of research effort. It is 

mandatory to build a bridge between these apparently unrelated fields to better understand 

the architectural/functional/biological principles in the cerebellum. The inclusion of synaptic 

plasticity at most of the cerebellar synapses (as experimental studies have shown the existence 

of these mechanisms) will be our first step in this promising way. Achieving this distributed 

learning involves a powerful biological plausible control tool that automatically configures 

itself to match the surrounding environment just and to obtain the best possible performance. 

Adaptation mechanisms in connections such as MF→DCN or PC→DCN, together with the 

very well-known plasticity between GrC→PF→PC has been proven recently to have a strong 

impact in the learning consolidation [132].  
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It is also of high interest the IO→DCN connection; a biologically plausible Feedback Error 

Learning reinterpretation constitutes a prior research aim. This connection could play a key 

role to understand how a fast biological control in a real scenario could be possible without a 

classical PID controller (or other classical controller strategies belonging to this control field) 

as functional approximations use such as CMAC, MPIM, LWPR or Fujita cerebellar inspired 

models.  

More related with neural characteristics, an evolution of the granular layer with lateral 

inhibition in its neurons constitutes our incoming goal. By taking full advantage of this new 

feature, a better codification of input patterns will allow a better precision in terms of 

discrimination. 

The second research line is related with the manipulation task. We are working on connecting 

the entire developed networks not just to a simulator but also to a real robot. We have to 

develop the way to interface in real time our cerebellar model with the real robot; we have to 

re-implement physical controllers which are able to modify point by point their actuation. We 

have to develop a methodology to validate different cerebellar model proposals in a 

manipulation task in terms of stability since classical mathematical tests such as Lyapunov 

stability test, Routh-Hurwitz criterion, Nyquist stability criterion etc do not fit well in these 

spiking cerebellar neural networks. Spiking cerebellar neural networks present an 

overwhelming dimensionality and complexity on the contrary classical mathematical tests   are 

commonly applied to problems with lower levels of complexity and dimensionality where a 

perfect knowledge of the system is available. Indeed, when applying these classical 

mathematical tests, every single behavior is well known and restricted to certain boundaries 

where the whole system behaves deterministically and the computational test can be 

accomplished. These requirements are not available in a spiking neural network because of its 

own nature.   

All these issues will be addressed in a recently started EU project (REALNET (IST-270434)).  
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I n t r o d u c c i ó n  e n  C a s t e l l a n o  

A día de hoy realizar una asociación entre cerebelo y diferentes características de control 

motor humano no es una asunción descabellada. De hecho, es de conocimiento general que el 

cerebelo desarrolla un rol fundamental en el control de movimientos rápidos y precisos. [1] [2] 

[3] [4]; El cerebelo es responsable de supervisar los llamados movimientos balísticos 

(movimientos extremadamente rápidos), siendo capaz de establecer la duración de dichos 

movimientos por adelantado (dirigiendo sus secuenciaciones temporales) y  suministrando 

aquellos pares correctivos necesarios para su correcta ejecución [6] [7].  

Todas estas características de secuenciación y control son llevadas a cabo correctamente 

gracias a la existencia de los diferentes mecanismos de realimentación presentes a lo largo de 

la estructura cerebelar [8] [9].  Haciendo uso de dichas estructuras de realimentación, el 

cerebelo es capaz de generar  cierta elasticidad muscular en diferentes movimientos, ayudando 

así al sistema nervioso central a predecir el movimiento de cada una de las partes constitutivas 

de nuestro cuerpo [10]. Esta panoplia de características presentes en el cerebelo entroncan 

bien en el campo de la teoría de control y más concretamente en el campo de la robótica, en  

donde el cerebelo podría utilizarse como un controlador biológicamente plausible que pudiera 

orquestar apropiadamente la actividad motora del robot a controlar. [11] [12] [13] [14] [15] 

[16] [17] [18] [19].  

Si bien, la relación existente entre el cerebelo y diferentes tipos de aprendizaje motor no es un 

campo del todo conocido con absoluta certeza, aún lo es menos la implicación del mismo en 

lo que es llamado  “funciones de alto nivel” [20] [21]. A mediados de los ochenta, algunos 

descubrimientos experimentales en distintos campos de investigación empezaron a mostrar 

que el cerebelo no solo estaba implicado en tareas no motoras sino que también en la 

cognición espacial del individuo [22] [23] [24]. Los estudios de neuro-imagen han mostrado la 

activación del cerebelo en distintos procesos cognitivos tales como: generación de palabras 
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[25], compresión y procesamiento semántico [26] [27], reconocimiento verbal y no verbal [28], 

memoria verbal inmediata [29], planificación cognitiva [30], imaginación motora [30], 

adquisición sensorial y discriminación [31] o atención cognitiva [32]. Por otro lado, también se 

han obtenido distintas evidencias de estos procesos cognitivos en distintos pacientes con 

lesiones focales [33] [34]: alteraciones en la velocidad de procesamiento en movimientos 

espaciales complejos y planificación operacional de tareas, generación de palabras en relación 

a una consigna, planificación y flexibilidad en razonamiento abstracto, memoria operativa o 

percepción y temporización motora. De igual forma también se han observado cambios de 

personalidad, agratismo, disprosodia y dificultades ante cambios rápidos y precisos para llamar 

la atención.  

Resulta pues evidente que durante la pasada década se han descubierto un conjunto 

importante de evidencias que reflejan el hecho de que el cerebelo está implicado en ciertas 

funciones cognitivas, sin embargo algunos investigadores presentan  cierta actitud escéptica 

antes tales afirmaciones debido al hecho de que los experimentos llevados a cabo para 

demostrar estas implicaciones no están libres de toda duda [35] [36]. La activación cerebellar 

en ciertas tareas no permite asegurar directamente  un rol fundamental del cerebelo en el 

proceso cognitivo bajo estudio debido a diferentes causas: los resultados clínicos presentan 

inconsistencias y contradicciones, no es fácil controlar los efectos de los problemas motores, 

las tareas son complejas y los déficits observados son difíciles de interpretar...etc. De cualquier 

manera, podemos asegurar que estamos ante uno de los campos de investigación más 

notables en neurofisiología. 

Por lo tanto, teniendo en cuenta el comportamiento multitarea que el cerebelo presenta, y 

considerando: 

• Que la organización sináptica uniforme que presenta el córtex  cerebelar sugiere que 

tanto las funciones motores como cognitivas del mismo pudieran ser emuladas 

mediante los mismo principios computacionales. 

• Y que un control robótico biológicamente plausible parece ser un buen candidato 

con el que trabajar para arrojar algo de luz sobre la funcionalidad cerebellar. 
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Es posible afirmar que una combinación de ambos campos (principios computacionales 

cerebelares y teoría de control) debería poder suministrar una herramienta útil para entender 

la funcionalidad cerebellar y cómo esta es llevada a cabo por los circuitos nerviosos. Estos dos 

puntos constituyen los pilares de esta tesis y serán desarrollados a lo largo de lassiguientes 

secciones. 

Como conclusión podemos afirmar que el principal objetivo de esta tesis consiste en 

progresar hacia la adquisición de un mejor conocimiento de los roles funcionales que el 

cerebelo presenta, bien sea en los procesos cognitivos motores, bien en los procesos 

espaciales, así como explorar el conjunto de fundamentos y reglas computacionales que nos 

permitan inferir el cómo dichos procesos pudieren establecerse en el cerebelo   

I. EL PORQUÉ ES FUNDAMENTAL EL ESTUDIO 

DEL CEREBELO 

El cerebelo es una región del cerebro que desempeña un papel relevante en el control motor. 

Dicho cerebelo además se encuentra relacionado con algunas funciones cognitivas tales como 

atención y lenguaje y probablemente algunas funciones de carácter emocional como  fue 

previamente expuesto [41].  

El cerebelo está inserto en un bucle de control motor que posibilita el ajuste del movimiento 

muscular [42] [43].  Cuando el córtex envía un comando motor hacia las neuronas motoras 

inferiores en el tronco encefálico y hacia la espina dorsal, a la misma vez se dirige una copia de 

esta información  hacia el cerebelo. Concretamente, esta información motora se transporta 

desde las fibras piramidales en el córtex, en el tracto cortico-pontino-cerebelar, hacia el 

cerebelo. Junto a esta información motora, la información postural procedente de músculos, 

articulaciones y tendones alcanza también al cerebelo. [45]. Esta información permite al 

cerebelo determinar como de bien los comandos motores generados desde el córtex lo están 

haciendo y a su vez coordinar la actividad muscular para conseguir movimientos armoniosos 
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y suaves mediante su conexión con los sistemas piramidales y extra piramidales y la formación 

reticular descendente [46] [47]. La principal consecuencia de este rol en la coordinación 

motora de movimientos precisos radica en el hecho de que el cerebelo pueda realizar una 

contribución importante en el control de movimientos musculares rápidos y alternos 

necesarios para obtener cierta velocidad.  

El cerebro humano posee (estimado) unas cien mil millones de neuronas. Algunas fuentes 

defienden que el número ronda entre 10 and 100 mil millones [37] [38] ocupando el cerebelo 

sólo un 10% del volumen total del cerebro y poseyendo una estimación próxima al 50% de 

todas las neuronas del cerebro [39]. El cerebelo se muestra como una estructura 

independiente unida justo a la parte inferior del cerebro, localizado bajo los hemisferios 

cerebrales. Está revestido por una lámina intrincada de tejido llamada  corteza cerebelosa, que 

contiene casi todas sus neuronas, donde las células de Purkinje y granulares resultan ser las de 

mayor relevancia [37] [39]. Tal cantidad de neuronas e interconexiones dotan al cerebelo de  

una gran capacidad de procesamiento de señales [40] (aun a pesar de que la mayoría de las 

salidas cerebelares se dirigen hacia un conjunto reducido  de núcleos cerebelosos profundos 

localizados en el interior del cerebelo). Además, el cerebelo no sólo se ve implicado en el 

control motor, sino también está relacionado con varios tipos de aprendizaje motor, siendo el 

más relevante de ellos, el aprendizaje del ajuste a realizar sobre las primitivas sensoriomotoras 

[48]. A lo largo de las últimas décadas se ha realizado un enorme esfuerzo en la construcción 

de modelos cerebelares teóricos para tratar de explicar dicho ajuste sensoriomotor en 

términos de plasticidad sináptica en el cerebelo (para una revisión más profunda se remite al 

lector al capítulo 2, sección 4). La mayoría de los modelos teóricos se basan en los primeros 

modelos formulados por Marr-Albus [49] [50], en donde cada célula Purkinje recibe dos tipos 

de entrada radicalmente diferentes: por un lado, miles de entradas provenientes de las fibras 

paralelas, cada una de ella individualmente muy débil, y por otro lado, la entrada de una sola 

fibra trepadora , que es, sin embargo, de acción tan fuerte que su actuación es capaz de dirigir 

la actividad de su célula Purkinje objetivo pudiendo ser artífice del disparo de un potencial de 

acción complejo. El concepto básico de la teoría de Marr-Albus reside en el hecho de que la 

fibra trepadora hace las veces de  "señal de aprendizaje" [51],  capaz de inducir un cambio a 

largo plazo en la eficacia sináptica de las fibras paralelas (actuando como entrada) que son 
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activadas sincronizadamente [52]. Observaciones de (LTD) depresión a largo plazo en las 

fibras paralelas (reducción de la eficacia de la sinapsis neuronal.) son las principales artífices de 

la aparición de teorías de este tipo, sin embargo la validez de las mismas sigue siendo fuente 

de debate [53]. 

Se ha implementado y desarrollado un modelo teórico del cerebelo basado en una red 

neuronal de impulsos a lo largo de esta tesis. Dicho modelo y su evolución se desarrolla  a lo 

largo de los artículos en revistas incluidos.  

II. EL CEREBELO EN EL CONTROL MOTOR  

Los sistemas de control biológico (los cuales son capaces de controlar sistemas biológicos no 

rígidos, tales como son las articulaciones superiores humanas) han evolucionado durante años 

convirtiéndose por derecho propio en un paradigma a seguir por los controladores robóticos 

actuales [54]. Se sabe que el cerebelo está implicado de alguna manera en la generación y 

aprendizaje de movimientos coordinados con cierta gracilidad [6]. Resulta por tanto evidente 

que, un conocimiento preciso y profundo sobre el  cómo ésta avanzada máquina de control 

funciona, debería ser de ayuda en el proceso de control de robots biomorficos. 

El brazo humano, entendido como manipulador mecánico, está compuesto por elementos 

rígidos; los huesos, los cuales están unidos con juntas flexibles (articulaciones), cuya 

flexibilidad se modifica en relación con el objeto a ser manipulado. Tanto huesos como 

uniones flexibles se encuentran articuladas por los músculos, músculos que actúan como 

efectores de alto rendimiento (poseen una alta relación fuerza/masa). Estos efectores 

producen una contracción al recibir un estímulo nervioso, y se disponen en pares opuestos 

con el fin de permitir movimientos rotacionales bidireccionales en cada una de las 

articulaciones [55]. 

Todo el conjunto brazo-antebrazo-mano no posee una precisión mecánica  extremadamente 

buena, por el contrario, sí que presenta una extraordinaria movilidad (27 grados de libertad en 



104 Chapter 5 

 

 

total donde cada dedo presenta 4 grados de libertad; 3 para extensión-flexión y 1 para 

abducción y aducción. El pulgar es un poco más complejo poseyendo 5 grados de libertad, 

quedando 6 grados de libertad para la rotación y traslación de la muñeca [56] más los 7 grados 

de libertad [57] del brazo) y una gran cantidad de sensores de esfuerzo para compensar esta 

falta de precisión ayudando así en las tareas de control. Nuestra gran capacidad de 

manipulación es consecuencia directa de la actuación del cerebelo como sistema de control 

capaz de desarrollar tareas de todo complejas con resultados hoy día inalcanzables por 

cualquier otro sistema de control actual.  

En un escenario donde un sensor biológico detecta un contacto mecánico, el retardo de 

trasmisión del impulso generado desde el contacto del dedo con cualquier superficie hasta el 

córtex cerebellar está en torno a los 70ms, esto implica que, el ciclo de control presenta un 

retardo entre 100-150ms [58] (De hecho, los ciclos de control industriales no toleran este tipo 

de retardos en los canales de comunicación) [59]. Estos retardos en el canal de comunicación 

implican que nuestro brazo humano no es capaz de desarrollar tareas de contacto que 

requieran correcciones de pares con frecuencias mayores de entre 6 a 10 veces por segundo 

(entre unos 100-150ms de retardo). La respuesta a eventos de mayor rapidez se ve 

normalmente atenuada por la mano, sin embargo, cuando el contacto acaece con un elemento 

rígido del brazo, como pueda ser el puño,  el error cometido resultante es alto [60]. 

Por lo tanto, la pregunta sería, ¿Cómo son capaces los seres humanos de desarrollar una 

extraordinaria habilidad manual cuando interaccionan en distintos escenarios? De hecho, el 

brazo (contacto prior), presenta una cierta rigidez modulada por los músculos. La activación 

simultanea del par de músculos complementarios permite aumentar la rigidez articular. Por 

ejemplo el codo puede incrementar su rigidez en un ratio de 200 a 1 [60], mediante la 

utilización del bíceps y el  tríceps. La rigidez adecuada del brazo viene dada a priori por el 

conocimiento previo de la tarea a realizar; acto seguido, esta rigidez se modifica antes del 

contacto (antes de cometer un error los músculos modifican de nuevo la rigidez sin que el 

cerebro esté permanentemente implicado en esta acción) para así optimizar la tarea a realizar 

en términos de parámetros específicos de la propia tarea (posición, velocidad, aceleración, 

torques… etc).  
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A lo largo de esta tesis, se asume que los pares de músculos agonista-antagonistas son capaces 

de modificar la rigidez final del brazo, sin embargo desde un punto de vista más global, 

aquello que se modifica no es la rigidez  en sí misma, sino la impedancia mecánica del brazo. 

En un escenario de control sencillo, podemos considerar que la impedancia del brazo tiene 

tres parámetros por grado de libertad: rigidez, masa y amortiguamiento. Por lo tanto, esta 

impedancia establece las relaciones estáticas y dinámicas entre fuerza y movimiento.  

Está claro por tanto que una implementación de un control que modifica la impedancia 

mecánica del robot permitiría una aproximación más humana al comportamiento del brazo 

robótico. Con dicho objetivo, la tesis que aquí se presenta, ha evolucionado un controlador 

biológicamente plausible (ver sección anterior) embebido en un ciclo de control robótico, 

donde se trata de mimetizar la acción que un controlador motor biológico realiza sobre, por 

ejemplo, el brazo humano. 

III. MOTIVACIÓN 

La arquitectura cerebellar ha sido objeto de estudio durante más de un siglo, sin embargo su 

rol funcional y cognitivo aún sigue siendo un tema bajo estudio [21] [61].  Es bien sabido que 

el cerebelo juega un rol importante en el control motor, realizando una labor fundamental en 

la coordinación, precisión y temporización de movimientos primarios [62]. El cerebelo recibe 

entradas desde el sistema sensorial, de otras partes del cerebro y la espina dorsal, y las integra 

con los comandos motores para modular la actividad motora [46] [47]. Consecuentemente, 

tanto para explotar y clarificar cómo el cerebelo computa la información  como para probar 

distintas hipótesis sobre su modo de operación, parece ser que las simulaciones del circuito 

nervioso central son la herramienta más apropiada. Aplicar distintas hipótesis cerebelares a 

una tarea de control motor compleja proporciona la posibilidad de explicar el cómo la 

información sensorimotora y cognitiva pudieran ser manipuladas por una arquitectura 

cerebelar computacional. 
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Debido a la alta dimensionalidad que una red neuronal realista presenta y las limitaciones y 

restricciones temporales inherentes a un entorno de control robótico en tiempo real, un 

simulador ultra-rápido de redes neuronales biológicas es a todas luces imprescindible. Las 

exigencias temporales demandan un simulador en tiempo real (EDLUT) [65] [66]. La 

combinación de ambos campos, arquitecturas biológicas y teoría de control, constituye un 

desafío excitante a la par que científicamente tremendamente relevante.  

Para utilizar un modelo completo de cerebelo simulado, inserto en un ciclo de control donde 

se ha de manipular con precisión un brazo robótico, se necesita de un banco de pruebas 

apropiado para el testeo de los sistemas biológicos  desarrollados. Para hacer frente a todos 

los inconvenientes surgidos de trabajar en medio de estos dos mundos, robótica y biología, se 

necesita una piedra de Rosetta que pueda establecer las pasarelas de comunicación entre ellos 

puesto que el procesamiento biológico se realiza en términos de impulsos eléctricos mientras 

que el procesamiento de control robótico se realiza en términos de señales analógicas. El 

cómo el impacto de una cierta actividad neuronal perteneciente a una estructura particular del 

cerebelo se ha de traducir a una tarea de control y viceversa no es una tarea trivial. Una vez  

establecido dicho diálogo entre impulsos y señales de control, los parámetros que permiten 

discernir entre las bondades de distintas arquitecturas constituye el siguiente paso a 

desarrollar. 

Desde el punto de vista de la teoría de control, el mejor sistema sería aquel que consigue el 

mejor rendimiento en términos de precisión, velocidad y estabilidad. Esta idea puede ser 

extrapolada a la neurociencia, en el sentido de considerar el mejor sistema biológicamente 

inspirado a aquel que en una tarea de control consiga una mayor precisión, velocidad y 

estabilidad sin descuidar la fidelidad a los detalles biológicos. El mejor sistema biológicamente 

inspirado obtenido debiera suministrar un mejor y más profundo conocimiento sobre los 

sistemas biológicos reales. 
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IV. OBJETIVOS 

El objetivo principal de este estudio es la implementación de un modelo funcional del 

cerebelo en un escenario de control robótico, explotando así las posibles capacidades que la 

arquitectura del cerebelo pudiera presentar. Esta implementación pretende contribuir a una 

mejor comprensión del sistema nervioso central (esencialmente el cerebelo) a partir de una 

aproximación computacional. 

El diseño de un modelo integrado del cerebelo en un bucle de control no es un camino fácil y 

directo. Alcanzar este objetivo ha exigido y exige un proceso continuo de desarrollo el cual ha 

sido dividido en diferentes etapas (en relación a las publicaciones en revistas incluidas en este 

estudio) de manera que pueda darse una visión gradual de todo el trabajo desarrollado. 

 En primer lugar, el primer sub-objetivo consiste en realizar el estudio de cómo un 

circuito cerebelar artificial integrado en un lazo de control sería capaz de crear 

modelos de corrección para compensar desviaciones en la trayectoria a ejecutar 

cuando la dinámica de la planta (el brazo en el caso de un operador humano) se 

viese alterada debido a la manipulación de objetos pesados (cuya masa afecta 

significativamente a la dinámica del modelo base de la planta). El estudio tendría 

como finalidad entender cómo este modelo de corrección se infiere a través de un 

mecanismo de adaptación biológicamente plausible local utilizando una arquitectura 

cerebelar simplificada. 

 El siguiente objetivo consiste en tratar de describir cómo una red neuronal de 

impulsos más realista (se añade la capa granular) que imita la micro-estructura 

cerebelar permite la abstracción de modelos correctivos internos. Mediante la 

adopción de una red inspirada en el cerebelo, se pueden explorar cómo las 

diferentes representaciones  sensoriales poden ser utilizadas eficientemente con el 

fin de obtener un modelo de abstracción correctivo preciso para la manipulación de 

diferentes objetos. Esto se ha de llevar a cabo en dos fases: 
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i. Se establece una tarea de relevancia biológica consistente en una 

manipulación precisa por parte de la planta base (brazo robótico) de 

objetos que por sus características afectan al modelo dinámico base de 

dicha planta (se ve afectado tanto su modelo cinemático como dinámico).  

ii. Se define e implementa un modelo aditivo de red neuronal cerebelar base 

para evaluar como diferentes propiedades de dicho modelo funcional 

afectan en la ejecución de la tarea previamente establecida. 

 En tercer lugar se debe estudiar como el modelo cerebellar previo,  el cual incluiría 

plasticidad en las fibras paralelas (depresión a largo plazo y potenciación a largo 

plazo de la transmisión sináptica), se pude embeber en distintos lazos de control 

(control recurrente, control antes del proceso: “forward”, y una combinación de 

ambos modelos) para inferir modelos correctivos que compensen no solo las 

desviaciones en la trayectoria objetivo a causa de perturbaciones dinámicas o 

cinemáticas sino también causadas por el ruido (inherente a las señales de impulsos 

provenientes de los husos musculares) que se introduce a través de las fibras 

musgosas  llegando al cerebelo. El principal objetivo debiera ser establecer una 

comparativa que evaluase estas arquitecturas de control para poder así mostrar la 

manera en la que una arquitectura recurrente y otra arquitectura de control antes del 

proceso puedan verse complementadas y la robustez que ambas presentasen ante la 

presencia de ruido.  

  Finalmente se ha de estudiar cual sería la mejor manera de conseguir que la 

información sensorimotora en un entorno robótico genérico pudiera ser manipulada 

con objeto de obtener una codificación óptima en términos de información 

somatosensorial. 
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V. MARCO DE LOS PROYECTOS ASOCIADOS 

Este trabajo se ha  venido desarrollando en el marco de dos proyectos europeos; 

"estructuración sensorimotora de percepción y acción para la cognición emergente" 

(SENSOPAC) y "Redes realistas en tiempo real: la dinámica de la computación en el 

cerebelo" (REALNET (IST-270434)). 

El primero de ellos,  SENSOPAC (IST-028056), se extendió desde enero de 2006 a julio de 

2010, donde se colaboró con 12 instituciones de 9 países diferentes. El proyecto SENSOPAC 

(IST-028056) combinaba tanto técnicas de aprendizaje automático como técnicas para el 

modelado de diversos sistemas biológicos con el fin de desarrollar una determinada estructura 

computacional que fuese capaz de abstraer conceptos cognitivos de las relaciones 

sensorimotoras durante las interacciones con su entorno, y a su vez también capaz  de 

generalizar dicho conocimiento a situaciones nuevas. En particular, SENSOPAC (IST-

028056) ha combinado distintos modelos de robot en una tarea de exploración táctil con el fin 

de comprender distintas relaciones causales de diferentes dinámicas sensoriales. Se han 

incorporado modelos neuronales detallados de  áreas clave del cerebro en los modelos 

funcionales de percepción, toma de decisiones, planificación y control,  con el fin de  ampliar 

y mejorar el conocimiento que se tiene  tanto en el campo de la Neurociencia como de la 

Ingeniería. 

Más concretamente, se ha estado estudiando profundamente tanto la retroalimentación 

sensorial táctil como la  realimentación de señales propioceptiva  así como las fibras aferentes 

de los comandos motores. Dichos estudios se han s empleado en tareas de manipulación bajo 

diversos contextos permitiendo así estudiar la representación eficiente en la estructura 

neuronal, los mecanismos de codificación/decodificación de la información y las distintas 

abstracciones de conocimiento, tanto en la manipulación háptica humana, como los sistemas 

de sensores robóticos artificiales. 
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Nuestro grupo de investigación de la Universidad de Granada ha estado involucrado 

principalmente en el desarrollo del entorno de computación de neuronas y redes neuronales 

(EDLUT). Los hallazgos neurofisiológicos obtenidos, por ejemplo, a través de registros se 

han tratado de  implementar en este simulador con el fin de diseñar sistemas de control más 

biológicos capaces de llevar a cabo eficientemente tareas de manipulación. 

 

 

Figure 5.1. Organización de los Módulos en  SENSOPAC 

 

Nuestro trabajo como miembros en este proyecto se ha centrado en el estudio de tareas 

relevantes a nivel de control biológico así como en el conjunto de módulos de simulación 

necesarios para la integración entre neurofisiología y la teoría de control de sistemas robóticos. 

Hoy en día, nuestro grupo de investigación está involucrado con el proyecto REALNET 

(IST-270.434) como continuación de SENSOPAC (IST-028056). REALNET (IST-270434) 
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se inició en febrero de 2011 y se extenderá hasta febrero de 2014. El objetivo principal de este 

proyecto es comprender los circuitos cerebrales del sistema nervioso central desde su nivel 

funcional hasta su nivel molecular/neuronal. A fin de comprender el procesamiento cerebelar 

se necesita tomar un enfoque diferente; se necesita implementar redes neuronales realistas que 

hagan uso de comunicación por impulsos, inspiradas en el conjunto de registros 

neurofisiológicos experimentales obtenidos de verdadera actividad de la red cerebelar, para 

poder así investigar cuales debieran ser las bases teóricas de la computación del sistema 

nervioso central. Como punto de referencia de este proyecto se utiliza el circuito del cerebelo. 

Sobre la base de datos experimentales, este proyecto desarrollará la primera red realista en 

tiempo real del modelo de cerebelo. Este modelo de cerebelo se conectará a un sistema 

robótico biomorfico con el fin de  evaluar su funcionamiento  bajo condiciones de circuito de 

control realimentado. Los datos derivados de las grabaciones, las simulaciones a gran escala y 

los robots se utilizan para explicar el funcionamiento de la circuitería cerebelar a través de la 

teoría del filtro adaptativo.  

Debido a las necesidades de conocimiento  multidisciplinar que estos proyectos  requieren, 

cada uno de los miembros de nuestro grupo de investigación se ha visto obligado a centrar su 

investigación en un área particular. El presente trabajo presenta los resultados en los que una 

arquitectura cerebelar simulada se utiliza para manipular un brazo robótico. Este trabajo 

implica: tratar con sistema robóticos, desarrollar un simulador de brazo robótico, estudiar los 

lazos de control biológicamente plausibles, la conversión de señales de impulsos dadas por  el 

simulador integrado EDLUT a señales utilizables en el lazo de control, estudio de relación 

impulso /señal analógica ... etc. Todos estos temas centran mi investigación, pero cabe señalar 

que todo este trabajo no habría sido posible sin el arduo trabajo de Jesús Alberto Garrido 

quien ha estado a cargo de la evolución del simulador EDLUT con el fin de simular 

estructuras biológicas más realistas y aumentar el rendimiento de las simulaciones.  
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VI. ORGANIZACIÓN POR CAPÍTULOS 

Con el fin de facilitar la lectura y la utilización de esta tesis se hará una breve exposición de la 

información presentada en cada capítulo: 

 En el capítulo 1 (este capítulo), se realiza una pequeña introducción del estado del 

arte en la neurociencia computacional aplicada en robótica. Se presenta la 

motivación de esta tesis  y se resume el trabajo que se va a llevar a cabo. 

 En el capítulo 2, se presenta una contextualización adecuada del área de 

investigación en la que se ha enmarcado esta tesis. A pesar de que los artículos en 

revistas son autocontenidos no hay duda de que una visión previa del campo de 

investigación tratado hace más fácil la tarea de adentrarse en los detalles a través de 

los artículos de revista. 

 En el capítulo 3, se enumeran brevemente las principales aportaciones y se propone 

el trabajo futuro.  

 Por último, en el capítulo 4, todos los artículos relacionados con la tesis se han 

incluido junto con una breve reseña indicando el factor de impacto que cada uno de 

ellos posee y el cuartil al que pertenece. Además se han incluido distintas reseñas 

breves a diferentes publicaciones asociadas a este trabajo (ponencias y artículos en 

revistas con coautoría). 

 

 



 

CHAPTER 6 
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D i s c u s i ó n  y  C o n c l u s i o n e s  

En este capítulo se muestra un resumen de las principales contribuciones asociadas a los 

trabajos presentados, así como las futuras líneas de trabajo planteadas a partir de la labor 

descrita en esta memoria. De igual manera, se incluye un breve resumen de los resultados 

obtenidos así como una lista de las conferencias internacionales y revistas que este trabajo ha 

generado. 

I. DISCUSIÓN 

Como primer paso, esta tesis (capítulo 4, sección 1) presenta una arquitectura cerebelar 

sencilla capaz de inferir modelos de corrección en el marco de una tarea de control 

motor donde se manipulan objetos que afectan de manera significativa al modelo 

dinámico del sistema a controlar.  

Esta aproximación primaria busca en primera instancia un enfoque bio-mimético, 

centrándose en el proceso de inferencia de modelos correctivos mediante un módulo 

cerebelar integrado en un ciclo de control. De igual forma se estudia cómo estos modelos 

de corrección internos se constituyen por medio de mecanismos sinápticos de adaptación 

biológicamente plausibles. Se muestra por tanto, como una ley de correlación temporal 

(que incluye depresión a largo plazo (LTD) y una potenciación a largo plazo (LTP) entre 

las fibras paralelas y sus células de Purkinje) es capaz de inferir dichos modelos 

correctivos. También se ha evaluado cómo esta ley de aprendizaje es capaz de 

correlacionar la actividad sensorial que llega a través de las fibras paralelas con las señales 

de aprendizaje (en función de las estimaciones de error) que llegan a través de las fibras 
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trepadoras provenientes de la oliva inferior. Esta aproximación a un primer modelo 

funcional del cerebelo bioinspirado arroja un poco de luz sobre cómo estos 

componentes LTD y LTP deben estar bien equilibrados entre sí para lograr un 

aprendizaje preciso. Además, se ilustra cómo la ley de aprendizaje es responsable de la 

correlación temporal pudiendo trabajar en presencia de retrasos en la transmisión en las 

vías sensoriales. 

Este tipo de investigaciones puede dar pistas sobre cómo la biología consigue un control 

preciso de las articulaciones no-rígidas de extremidades con actuadores de bajo consumo 

que implican sistemas de control con componentes de alta inercia.  

El artículo asociado a esta parte es: 

N. R. Luque, J. A. Garrido, R. R. Carrillo, O. J. M. D. Coenen, E. Ros, “ Cerebellar-like 

Corrective Model Inference Engine for Manipulation Tasks ”, IEEE Transactions on 

Systems, Man, and Cybernetics, Part B: Cybernetics, 41(5), 2011. 

 En segundo lugar este trabajo evalúa (capítulo 4 sección 2)  la manera en la que una 

evolución de la arquitectura neuronal previamente señalada puede almacenar un 

modelo correctivo en la capa granular/molecular. Como fue señalado en el capítulo de 

contextualización, el cerebelo es uno de los centros nerviosos más importantes 

implicados en la corrección y refinamiento de movimientos planificados así como en la 

generación de correcciones apropiadas sobre la ejecución de dichos movimientos. Por lo 

tanto sería muy interesante no sólo estudiar la capacidad de almacenaje de la capa 

granular/molecular sino también como la microestructura cerebelar y la conexión de sus 

entradas puede apoyar eficientemente la abstracción de modelos correctivos que 

produzcan pares correctivos que incrementen la precisión al manipular diferentes 

objetos. En este trabajo se describe cómo las señales explícitas e implícitas de contexto 

(señales sensoriales) pueden complementarse entre ellas para mejorar la selección entre 

diferentes modelos correctores  almacenados permitiendo incluso la interpolación entre 

dos modelos distintos ya establecidos. Se facilita así la generación de correcciones 
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precisas durante la manipulación de nuevos objetos ayudándose de modelos correctores 

ya aprendidos. 

El artículo asociado a esta parte es: 

N. R. Luque, J. A. Garrido, R. R. Carrillo, O. J. M. D. Coenen, E. Ros, “Cerebellar Input 

Configuration Toward Object Model Abstraction in Manipulation Tasks”. IEEE 

Transaction on Neural Networks, 22(8), 1321-1328, 2011. 

 Como evolución natural, el siguiente paso se centra en evaluar el comportamiento que el 

modelo cerebelar previamente descrito tiene cuando se inserta en diferentes ciclos de 

control (control recurrente, control antes del proceso: “forward”, y una combinación de 

ambos) para controlar un brazo robótico (capítulo 4 sección 3).  La red de impulsos se 

auto adapta frente a las perturbaciones en un escenario de manipulación de objetos 

donde existen cambios sobre la dinámica y cinemática del modelo base del brazo 

robótico y junto a la presencia de distintos niveles de ruido en las entradas cerebelares 

(fibras musgosas). De acuerdo a los resultados obtenidos, acoplando ambas arquitecturas 

de control se obtienen los beneficios de ambas (mayor velocidad de convergencia y 

precisión) incrementándose además la robustez del sistema frente al ruido. 

El artículo asociado a esta parte es: 

N. R. Luque, J. A. Garrido, R. R. Carrillo, S. Tolu, E. Ros, Adaptive Cerebellar Spiking 

Model Embedded In The Control Loop: “Context Switching And Robustness Against 

Noise”, Int. Journal of Neural Systems, 21(5), pp. 385-401, 2011. 

 Una vez que  la arquitectura cerebellar primaria y el ciclo de control han sido establecidos 

llega el turno de evolucionar para conseguir un sistema que tenga no solo una 

aproximación desde un punto de vista tan ingenieril sino también que cada vez dicho 

sistema tome más en cuenta diferentes fuentes fisiológicas. (capítulo 4 sección 4). Como 

se mostró en el capítulo de contextualización, en los sistemas biológicos, en lugar de 

tener un codificador de posición por cada articulación, se tienen señales propioceptivas 
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adquiridas a través de campos receptivos. En robótica, se utiliza una salida única y precisa 

de un sensor por eslabón para hacer un seguimiento de la posición y la velocidad. 

Realizar una interfaz entre un sistema de control bioinspirado con una red neuronal 

cerebelar de impulsos con un robot convencional no es algo directo y trivial. Por lo tanto 

se necesita adaptar esta medida unidimensional (salida del codificador de posición) a un 

espacio multidimensional (entradas de la red neuronal de impulsos) para conectar la 

arquitectura cerebelar de impulsos. En esta subsección se analiza cómo unos campos 

receptivos que han sido evolucionados para conseguir una mejor transmisión de 

información pueden generar una representación  sensorimotora eficiente que facilite la 

discriminación entre distintos estados sensorimotores. Este proceso se puede entender 

como una abstracción del funcionamiento del núcleo cuneiforme. Este núcleo es 

modelado como un codificador en población mediante neuronas de impulsos en función 

de la respuesta de distintos mecanoreceptores. En nuestro caso las coordenadas del 

espacio articular de un robot son transformadas en patrones de impulsos susceptibles de 

ser procesados eficientemente por el siguiente módulo (el cerebelo). En concreto, el 

modelo de este núcleo presenta un esquema de codificación que toma en cuenta los 

tiempos relativos de los impulsos que se propagan desde las fibras nerviosas periféricas 

hacia las neuronas somatosensoras de segundo orden.  

El artículo asociado a esta parte es:  

Luque, N. R.; Garrido, J. A.; Ralli, J.; Laredo, J. J.; Ros, E.: “From Sensors to Spikes: 

Evolving Receptive Fields to Enhance Sensory Motor Information in a Robot-Arm 

Scenario".  Int. Journal of Neural Systems, 22(4), pp. 0-20, 2012. 
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II. TODAS LAS PUBLICACIONES ASOCIADAS A 

ESTA TESIS  

La investigación desarrollada se ha realizado en el marco de dos proyectos europeos; 

REALNET (IST-270434) / SENSOPAC (IST-028056), donde diferentes retos se han 

abordado desde diferentes perspectivas a través de las sinergias entre neurofisiólogos e 

ingenieros de diversas especialidades. Este trabajo ha sido evaluado en un marco de 

conferencias internacionales y publicaciones científicas (con factor de impacto (IF) en el JCR).  

1. Revistas Internacionales con índice de impacto 

1. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Coenen, O. J. M. D.; Ros, E: “Cerebellar-

like corrective-model abstraction engine for robot movement control”. IEEE Transaction 

on system, man, and cybernetics - Part B: Cybernetics, 41(5), 2011. Impact Factor (JCR 2010): 

2.699. Quartile Q1 in categories: Automation & Control Systems, Computer Science,  

Artificial Intelligence and Computer Science, Cybernetics 

2. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Coenen, O. J. M. D.; Ros, E: “Cerebellar 

input configuration towards object model abstraction in manipulation Tasks”. IEEE 

transaction on neural networks, 22(8), 1321-1328, 2011.  Impact Factor (JCR 2010): 2.633.  

Quartile Q1 in categories: Computer Science, Artificial Intelligence, Computer Science, 

Hardware & Architecture. Computer Science, Theory & Methods and Engineering, 

Electrical & Electronic.  

3. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Tolu, S.; Ros, E.: “Adaptive cerebellar 

spiking model in a bio-inspired robot-control loop”. International Journal on Neural Systems, 

21(5), 385-401, 2011. Impact Factor (JCR 2010): 4.237. Quartile Q1 in category: 

Computer Science, Artificial Intelligence.  
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4. Luque, N. R*.; Garrido, J. A*.; Ralli, J.; Laredo, J. J.; Ros, E.: “From Sensors to Spikes: 

Evolving Receptive Fields to Enhance Sensory Motor Information in a Robot-Arm 

Scenario". International Journal on Neural Systems, 22(4), 1-20, 2012. Impact Factor (JCR 

2011): 4.284. Quartile Q1 in category: Computer Science, Artificial Intelligence.  

*Both authors contributed equally to this work 

5. Tolu, S.; Vanegas, M.; Luque, N. R.; Garrido, J. A.; Ros, E.: “Bio-Inspired Adaptive 

Feedback Error Learning Architecture for Motor Control". Biological Cybernetics, 106(8-9), 

507-522, 2012. Impact Factor (JCR 2011): 1.586. Quartile Q1 in category: Computer 

Science, Cybernetics. Quartile Q4 in category: Neuroscience. 

6. Tolu, S.; Vanegas, M.; Garrido, J. A.; Luque, N. R.; Ros, E.: “Adaptive and Predictive 

Control of a Simulated Robot Arm” International Journal on Neural Systems, Accepted for 

publication. Impact Factor (JCR 2011): 4.284. Quartile Q1 in category: Computer 

Science, Artificial Intelligence. 

2. Conferencias Internacionales 

1. Passot, J. B.; Luque, N. R.; Arleo, A.: “Internal models in the cerebellum: a coupling 

scheme for online and offline learning in procedural tasks”. International Conference on 

Simulation of Adaptive Behavior, (SAB 2010). In Doncieux, S. et al., editors, LNAI 

Simulation of Adaptive Behavior, vol. 6226, pp 435-446, Springer-Verlag, (2010). 

2. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Ros, E.: “Cerebellar spiking engine: 

Towards object model abstraction in manipulation”. International Joint Conference on 

Neural Networks (IJCNN 2010). 

3. Garrido, J. A.; Carrillo, R. R.; Luque, N. R.; Ros, E.: “Event and time driven hybrid 

simulation of spiking neural networks”. International Work-Conference on Artificial 
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Neural Networks (IWANN 2011). Advances in Computational Intelligence. Lecture 

Notes in Computer Science, 6691, pp. 554-561. Springer, Heidelberg (2011). 

4. Luque, N. R.; Garrido, J. A.; Carrillo, R. R.; Ros, E.: “A spiking cerebellum model in a 

multi-context robot control scenario for studying the granular layer functional role”. 

International Work-Conference on Artificial Neural Networks (IWANN 2011). 

Advances in Computational Intelligence. Lecture Notes in Computer Science, 6691, pp. 

537-546. Springer, Heidelberg (2011). 

5. Casellato, C.; Pedrocchi, A.; Garrido, J. A; Luque, N. R.; Ferrigno, G.; D'Angelo, E.; 

Ros, E.: “An integrated motor control loop of a human-like robotic arm: Feedforward, 

feedback and cerebellum-based learning”. International Conference on Biomedical 

Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS\& EMBS .pp. 562-

567(2012). 

6. Garrido, J.A*.; Luque, N.R*.; D'Angelo, E.; Ros, E.; “Enhancing learning precision at 

parallel fiber-Purkinje cell connections through deep cerebellar nuclei LTD and LTP”. 

Federation of European Neurosciences (FENS2012) (2012).* Both authors contributed 

equally to this work 

III. MARCO CIENTÍFICO 

Esta tesis se ha desarrollado en el marco de dos proyectos europeos: 

 SENSOPAC (estructuración sensoriomotora de la Percepción y la Acción para la 

cognición emergente (IST-028056)) 

 REALNET (redes realistas en tiempo real: la dinámica de la computación en el cerebelo 

(IST-270434)).)).  
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Este hecho ha proporcionado el escenario perfecto para que nuestro grupo de investigación 

pudiera colaborar con los diferentes grupos de investigación en otras universidades europeas e 

instituciones de investigación. El trabajo presentado representa sólo una parte de la 

contribución que  la Universidad de Granada ha hecho en estos dos consorcios SENSOPAC 

/ REALNET. En este escenario resulta imprescindible una aproximación multidisciplinar en 

el proceso de investigación. 

Este trabajo presenta distintos resultados desde un punto de vista biológico, sin embargo, 

también implica otras áreas del conocimiento. Un ejemplo de la dificultad del proceso de 

investigación es el conjunto de frentes a atacar: desarrollo del sistema robótico, desarrollo de 

módulos computacionales biológicamente inspirados basados en datos neurofisiológicos y 

buscando posibles aplicabilidades en robótica o la evolución de un simulador realista de red 

neuronal capaz de funcionar en diferentes entornos son sólo un par de ejemplos. No sería 

justo obviar que todo este esfuerzo no ha sido único por mi parte sino que ha requerido de un 

trabajo de alta colaboración y coordinación con el equipo de trabajo. 

IV. PRINCIPALES APORTACIONES 

 Se ha presentado un modelo de cerebelo integrado en un lazo de control que incluye 

un modelo de cálculo aproximado de dinámica inversa. Este modelo puede 

proporcionar de manera efectiva pares correctores que compensan las desviaciones 

dinámicas de un modelo de la planta base (brazo robótico). 

 Se ha evaluado cómo una ley de correlación temporal en fibras paralelas (que 

presenta depresión dirigida en los pesos sinápticos a largo plazo LTD y un 

componente de compensación de potenciación a largo plazo de pesos sinápticos 

LTP) puede alcanzar una adaptación eficaz de la salida correctiva del cerebelo. 

Tanto LTD como LTP han de ser equilibrados para alcanzar un buen rendimiento 

en la capacidad de adaptación. Un LTD bien equilibrado con la componente LTP 
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asegura una reducción efectiva del error en las tareas de manipulación de objetos 

que pudieran afectar considerablemente a la dinámica de la planta base (brazo 

robótico). 

 Se ha demostrado cómo dicha ley de correlación temporal puede trabajar en 

presencia de retardos sensoriales. Esta estructura cerebelar  adaptativa puede generar 

la salida correctiva adecuada de manera adaptativa para cada punto de la trayectoria 

deseada, el retardo en las vías sensoriales ha demostrado no ser muy relevante. 

 Se presenta una estudio de la influencia de las señales de entrada sensorial usando 

una evolución de la arquitectura cerebelar previamente desarrollada (se añade la capa 

granular). Se han estudiado dos representaciones posibles de entrada , señales 

sensoriales explícitas de contexto (CE) y señales sensoriales implícitas del contexto 

(IC). La configuración que utiliza ambas represen-taciones aprovecha las ventajas de 

ambas complementándolas entre sí. La configuración de entradas  IC y EC ofrece 

transiciones más suaves entre contextos a una velocidad de convergencia mayor así 

como la capacidad de interpolación de nuevos contextos a partir de modelos 

previamente adquiridos. Además, es capaz de discernir información de contexto 

explícita engañosa, por lo que presenta cierta robustez ante representaciones 

incongruentes de contexto.  

 La arquitectura cerebelar propuesta se ha evaluado en diferentes ciclos de control en 

un entorno robótico sometido a un escenario con presencia de distintos niveles de 

ruido. Los resultados obtenidos indican que el acoplamiento de las arquitecturas de 

control recurrente y control antes del proceso: “forward”, lleva a una convergencia 

más rápida del aprendizaje y a una ganancia de precisión y estabilidad en un entorno 

ruidoso mayor que si cada una de estas arquitecturas actuase por sí misma.   

 Se ha demostrado que esta arquitectura de control acoplada tiene la capacidad de 

inferir y almacenar diferentes modelos de corrección cuando existen modificaciones 

dinámicas / cinemáticas sobre la planta base mejorando cada configuración 
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desacoplada por si misma. Además esta arquitectura propuesta acoplada es 

compatible con varios hallazgos neurofisiológicos.  

 Por último, se ha presentado una metodología general (mediante el uso de 

algoritmos genéticos) para representar de manera eficiente en términos de señales de 

entrada de impulsos los valores de los codificadores de posición de los diferentes 

eslabones que un manipulador robótico pudiera presentar.  

V. TRABAJO FUTURO 

Como trabajo futuro se presentan dos principales líneas de investigación a seguir: 

Por un lado, se necesita evolucionar todo el modelo cerebelar en el marco de una tarea de 

control utilizando aquellas propiedades que los hallazgos de la neurociencia muestran. No hay 

una conexión directa entre estas propiedades neurofisiológicas y su aplicación final en un 

escenario de control de una tarea en particular. El estudio de cómo estos hallazgos podrían 

mejorar un modelo plausible del cerebelo requiere de un gran esfuerzo de investigación. Es 

necesario tender un puente entre estos campos (neurociencia e ingeniería) aparentemente tan 

poco relacionados para obtener una mejor comprensión de los principios arquitecturales, 

funcionales y biológicos que el cerebelo presenta. La inclusión de la plasticidad sináptica en la 

mayoría de las sinapsis  neuronales cerebelares (diferentes estudios experimentales han 

demostrado la existencia de estos mecanismos en múltiples sinapsis) será nuestro primer paso 

en este prometedor camino. Este aprendizaje distribuido es una poderosa herramienta de 

adaptación en el control biológicamente plausible capaz de configurar la red neuronal 

automáticamente para obtener el mejor rendimiento posible. El aprendizaje localizado en 

conexiones  MF→DCN o PC→DCN junto con el  bien conocido aprendizaje entre 

GrC→PF→PC se ha demostrado que tiene un fuerte impacto en la consolidación de 

aprendizaje en el cerebelo.  
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Hablando en el contexto de red, gran parte de la atención en nuestra investigación futura se 

centrará en la conexión IO→DCN. Esta conexión podría desempeñar un papel clave para 

entender cómo podría implementarse un control biológico de rápida respuesta sin hacer uso 

de un controlador PID clásico (o de otras estrategias de control clásico que pertenecen a este 

campo de control) ni usando aproximaciones funcionales tales como CMAC, MPIM, LWPR 

o el modelo cerebelar de Fujita. 

Hablando en términos de conexiones neuronales, nuestro objetivo es evolucionar la capa 

granular, implementando la inhibición lateral neuronal. Esta característica podría permitir una 

mejor codificación de los patrones de entrada alcanzando una mayor precisión en términos de 

codificación en población. Diferentes grupos de neuronas responderían a determinados 

patrones de entrada logrando así una mejor diferenciación de estados. 

La segunda línea de investigación está relacionada con la tarea de manipulación. Ahora mismo 

estamos trabajando en la interconexión de las redes neuronales desarrolladas no sólo con un 

simulador robótico, sino también con un robot real. Con este fin, tendremos que volver a re-

implementar los controladores físicos para poder modificar su actuación punto a punto a lo 

largo de la trayectoria a seguir. Tenemos que desarrollar una metodología para validar 

diferentes hipótesis de modelos cerebelares en una tarea de manipulación en términos de 

estabilidad ya que los tests matemáticos clásicos tales como el criterio de estabilidad de 

Lyapunov, de  Routh-Hurwitz, criterios de estabilidad de Nyquist, etc no encajan bien en 

estas redes neuronales de impulsos. Las redes neuronales de impulsos se caracterizan por 

poseer una complejidad y dimensionalidad extraordinaria, por el contrario los test 

matemáticos conocidos se aplican tradicionalmente a problemas de una mejor complejidad y 

dimensionalidad donde el comportamiento de cada uno de los elementos del sistema es 

perfectamente conocido dentro de unos ciertos límites dados donde es posible aplicar dichos 

tests.. Estos prerrequisitos no están disponibles en una red neural de impulsos debido a su 

propia naturaleza. 

Todas estas cuestiones se abordarán en un proyecto  europeo iniciado recientemente  

(REALNET (IST-270 434)). 
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Cerebellarlike Corrective Model Inference Engine
for Manipulation Tasks

Niceto Rafael Luque, Jesús Alberto Garrido, Richard Rafael Carrillo,
Olivier J.-M. D. Coenen, and Eduardo Ros

Abstract—This paper presents how a simple cerebellumlike
architecture can infer corrective models in the framework of a
control task when manipulating objects that significantly affect the
dynamics model of the system. The main motivation of this paper
is to evaluate a simplified bio-mimetic approach in the framework
of a manipulation task. More concretely, the paper focuses on
how the model inference process takes place within a feedforward
control loop based on the cerebellar structure and on how these
internal models are built up by means of biologically plausible
synaptic adaptation mechanisms. This kind of investigation may
provide clues on how biology achieves accurate control of non-
stiff-joint robot with low-power actuators which involve control-
ling systems with high inertial components. This paper studies how
a basic temporal-correlation kernel including long-term depres-
sion (LTD) and a constant long-term potentiation (LTP) at parallel
fiber-Purkinje cell synapses can effectively infer corrective models.
We evaluate how this spike-timing-dependent plasticity correlates
sensorimotor activity arriving through the parallel fibers with
teaching signals (dependent on error estimates) arriving through
the climbing fibers from the inferior olive. This paper addresses
the study of how these LTD and LTP components need to be well
balanced with each other to achieve accurate learning. This is of
interest to evaluate the relevant role of homeostatic mechanisms
in biological systems where adaptation occurs in a distributed
manner. Furthermore, we illustrate how the temporal-correlation
kernel can also work in the presence of transmission delays in
sensorimotor pathways. We use a cerebellumlike spiking neural
network which stores the corrective models as well-structured
weight patterns distributed among the parallel fibers to Purkinje
cell connections.

Index Terms—Adaptive, biological control system, cerebellum,
learning, plasticity, robot, simulation, spiking neuron.

I. INTRODUCTION

CONTROLLING fast non-stiff-joint robots accurately with
low-power actuators is a difficult task which involves high

inertia. Biological systems are, in fact, non-stiff-joint “plants”
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driven with relatively low-power actuators. However, in this
case, control schemes require building accurate kinematic and
dynamic models (dynamic models would not be required in the
case of very stiff joint robots with inappreciable inertia). Even
if the basic dynamics model is very accurate, manipulating
tools and objects will affect this base model. This will lead to
significant distortions along the desired movements, affecting
the final accuracy. Therefore, these systems require adaptive
modules for tuning the corrective models to specific object or
tool manipulation. This challenge has been smartly solved by
the biological systems by using the cerebellum as a force, stiff-
ness, and timing control machine in every human movement.
The cerebellar cortex performs a broad role in different key
cognitive functions [1]. Three different layers constitute the
cerebellar cortex—the molecular layer, the Purkinje layer, and
finally, the granular layer. The cerebellar cortex seems to be
well structured into microzones [2] related to a specific soma-
totopic organization in sensor and actuator areas. The human
cerebellum involves about 10 000 000 Purkinje cells receiv-
ing excitatory inputs from parallel fibers (150 000 excitatory
synapses at each Purkinje cell). Each parallel fiber synapses on
about 200 Purkinje cells; these parallel fibers are granule cell
axons. These granule cells are excited by mossy fibers (with
afferent connections from the spinal cord, with sensory and
motor estimates). Each Purkinje cell receives further excitatory
synapses from one single climbing fiber. This connection is so
strong that the activity from a single climbing fiber can drive
the Purkinje cell to fire [3]. These spikes from the Purkinje
cells generated by climbing fibers are called complex spikes,
while the Purkinje cell spikes generated by the activity received
from the parallel fibers are called simple spikes. Basket cells,
being activated by parallel fiber afferents, can inhibit Purkinje
cells. Finally, Golgi cells receive input from parallel fibers,
mossy fibers, and climbing fibers, and inhibit granule cells. The
output of a Purkinje cell is an inhibitory signal to the deep
cerebellar nuclei [3] (Fig. 1). Granule cells and Purkinje cells
play an important role in pattern recognition [4]. We can assume
that the granular layer adaptation mechanism is essentially
unsupervised [5] toward enhancing information transmission.
In this layer, an efficient recoding of mossy fiber activity takes
place, improving the learning capability in subsequent stages
(granular cell-Purkinje cell synapse). The cerebellum seems to
play a crucial role in model inference within manipulation tasks
but the way this is supported by actual network topologies,
cells, and adaptation properties is an open issue.

We have addressed the study of how this model inference
task can be achieved in a local and distributed manner with
a basic cerebellumlike architecture based on spiking neu-
rons. Furthermore, we evaluate how spike-timing-dependent

1083-4419/$26.00 © 2011 IEEE
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Fig. 1. Scheme of the cerebellum organization [6]. This scheme shows the
most relevant connections within a cerebellar module. The cerebellar module
presents different connections communicating different circuit elements in
closed loops. Mossy fibers contact granule cells (GrC) and DCN cells which,
in turn, receive inhibition from the same common set of Purkinje cells (PC).
Moreover, the IO cells project climbing fibers that contact PC which also are
projected to DCN cells.

plasticity (STDP) provides an efficient learning rule for this
task. We do this by using a simple temporal-correlation kernel
[long-term depression (LTD)] and a constant compensating
long-term potentiation term (LTP) as the adaptation mecha-
nism at the parallel fiber (PF)-Purkinje cell (PC) synapses. We
explore how the LTP and LTD components of this learning
rule need to be well balanced to achieve an acceptable perfor-
mance. Although different systems that potentially compensate
transmission delays have been proposed [7], [8]; in this paper,
we explicitly avoid compensating them. The correlation kernel
is able to correlate sensorimotor activity with error estimates
without explicitly taking into account the transmission delays.
This inferred model is therefore trajectory-specific. By means
of a certain correlation kernel, the effect of several input spikes
on plasticity is accumulated in a reduced number of variables
without the necessity of storing spike times. This makes this
correlation kernel computationally efficient for event-driven
processing engines, as the one used in this paper, EDLUT
[9]. In this paper, we explicitly evaluate how these corrective
models are structured in a distributed manner among different
synapses in the PF-PC connection space. The possibility of
monitoring this spatio-temporal learned weight pattern repre-
sents a powerful tool to interpret how models are inferred to
enhance the accuracy in a control task. We evaluate how this
learning engine with specific (fixed gain) LTP and correlation-
based LTD components can infer different corrective dynamic
models corresponding to the manipulation of objects of differ-
ent masses.

Control schemes of biological systems must cope with sig-
nificant sensorimotor delays (100 ms approximately) [10]–[12].
Furthermore, actuators are very efficient but have a limited

power and have to deal with viscoelastic elements. In order to
deal with all these issues, biology has evolved efficient “model
inference engines” to facilitate adaptive and accurate control of
arms and hands [13]–[15]. A wide range of studies have proven
the crucial role of the cerebellum in delivering accurate correct-
ing motor actions to achieve high-precision movements even
when manipulating tools or objects (whose mass or moment
of inertia significantly affects the base dynamics models of the
arm-hand) [15]–[17]. For this purpose, the cerebellum structure
needs to infer the dynamics model of the tool or object under
manipulation [18] and store it in a structured way that allows
an efficient retrieval of corrective actions when manipulating
this item. There are scientific evidences of synaptic plastic-
ity at different sites of the cerebellum and the sensorimotor
pathway. The synaptic connection between PFs and PCs seems
to have a significant impact on the role of inferring models
of sensorimotor correlations for delivering accurate corrective
commands during control tasks in most cerebellar models
[19]–[21]. Furthermore, the adaptation at this site seems to be
driven by the activity coming from the inferior olive (IO) and
by the way this activity correlates with the activity received
through the PFs.

Within a cerebellarlike cell-based structure, the corrective
model is inferred in a distributed way among synapses. Fur-
thermore, this scheme based on distributed cell populations
allows several models to be inferred in a non-destructive way
by selecting a specific population each time.

The main goal of this paper is the study of how an adaptive
cerebellumlike module embedded in the control loop can build
up corrective models to compensate deviations in the target
trajectory when the dynamics of the controlled plant (arm-
hand-object in the case of a human operator) are altered due to
manipulation of heavy objects (whose mass significantly affects
the basic model dynamics). We address the study of how this
corrective model is inferred through a biologically plausible
local adaptation mechanism. To better illustrate this issue, we
have simplified the cerebellum architecture.

Through this simple cerebellar structure, we have monitored
how the weight’s space adapts to a distributed stable model that
depends on the basic network topology, the target trajectory,
and model deviations.

The IO is an important paracerebellar center whose func-
tional role is still an open issue [5], [6], [22]–[25]. Different
research groups have studied its potential role in delivering a
teaching signal during accurate movements [26]–[29]. The IO
is the only source of cerebellar climbing fibers (CFs) which
target the Purkinje cells (PC). Each PC receives a single CF
which massively connects with this single neuron strongly
driving its activity. When a spike of the IO reaches its target
PC, the Purkinje cell fires a complex spike. Each CF connects
approximately with ten PCs. Nevertheless, the IO fires at a very
low frequency (between 1–10 Hz, average 1 Hz) and therefore,
the amount of spikes coming from the CFs is almost negligible
compared to the activity of the PCs generated by the parallel
fibers (simple spikes) [30]–[33].

Neurophysiologic studies have revealed that there are many
adaptation mechanisms at the cerebellum. Each of them may
have a specific purpose (segmentation, maximization of infor-
mation transference, correlation of sensorimotor signals, etc.)
[34], [35]. In particular, the activity of the IO has a strong
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impact on the PF-PC synaptic adaptation [36]. The adaptation
of these synapses mediated by this activity seems to play a
crucial role in correlating the sensorimotor activity with a
“teaching signal” (arriving from the IO) [19], [20], [37], [38].
This teaching signal can be seen as an “intentional signal” that
highlights, in time domain, the accuracy of the movement that is
being performed. As proposed in [12], [39], this signal may be
related to the error during a movement. But since the IO is only
capable of very low-frequency output spikes (typically, output
activity between 1 and 10 Hz), it does not encode the error
quantity accurately in only one movement repetition, but rather
provides a progressive estimate. Therefore, during repetitions
of movements, its statistical representation may reproduce the
error evolution more accurately [28], [40], [41] and thus, it can
be a useful guide toward efficient error reduction to achieve
accurate movements.

II. MATERIALS AND METHODS

For extensive spiking network simulations, we have further

developed and used an advanced event-driven simulator based

on LookUp Tables [9], [42], [43]. EDLUT is an open-source

tool [42], [43] which allows the user to compile the response

of a predefined cell model (whose dynamics are driven by a

set of differential equations) into lookup tables. Then, complex

network simulations can be performed without requiring an in-

tense numerical analysis. In this research, as a first approxima-

tion, neurons were evolved versions of leaky integrate-and-fire

neuron models with the synapses represented as input-driven

conductances.

For the experimental work, we have used a biomorphic robot

plant, a simulated LWR (lightweight robot). This robot has been

developed at DLR [44]. The LWR’s arms are of specific interest

for machine-human interactions in unstructured environments.

In these scenarios, the use of low-power actuators prevents po-

tential damage on humans in case of malfunctioning. Although

a real impact on robotic applications is beyond the scope of

this paper, the target application scenario of this robotic robot

based on non-stiff low-power actuators shares certain character-

istics with the daily manipulation tasks performed by humans.

Therefore, we considered this robotic platform an appropriate

tool for validating the cerebellar-based model inference engine

under study.

For the sake of simplicity, in our simulations, we use a

simulator of this robot in which we have fixed some joints to

reduce the number of actual joints to three, limiting the number

of degrees of freedom to three.

A. Training Trajectory

The described cerebellar model has been tested in a smooth

pursuit task [45]–[47]. A target (desired target movement)

moves along a repeated trajectory, which is composed of verti-

cal and horizontal sinusoidal components. The target movement

describes the “eight-shape” trajectories illustrated in Fig. 2,

whose equations, in angular coordinates, are given by the

following expressions (1). We have evaluated the learning capa-

bility performing a goal movement along this target trajectory.

Fig. 2. Three joint periodic trajectories describing eight-shape move-
ments in joint coordinates. This trajectory implies movements of three
joints. (a) Cartesian coordinates of the eight-like trajectory. (b) 3-D view of the
eight-like trajectory. (c) X- and Z-axes representation of this target trajectory.
(d) Y and Z-axes representation of the eight-like target trajectory.

Each joint movement in our task is defined by q1, q2, and q3,

respectively,

q1 =A1 sin(πt) + C1

q2 =A2 sin(πt + θ) + C2

q3 =A2 sin(πt + 2θ) + C3. (1)

This trajectory with the three joints which are moving follow-
ing sine shapes is shown in Fig. 2. We chose fast movements
(1 s for the whole target trajectory) to study how inertial
components (when manipulating objects) are inferred at the
cerebellar structure. Slow movements would hide changes in
the dynamics of the arm+object model, since they would not
have significant impact when performing very slow movements.

Though for the sake of simplicity, we have used a single
eight-like trajectory in each trial, consecutive eight-like trajec-
tories have also been tested leading to similar results (provided
that the corrective torque values do not get saturated along the
global trajectory).

B. Control Loop. Interfacing the Cerebellum Model

With a Simulated Robot

Some studies indicate that the brain may plan and learn
to plan the optimal trajectory in intrinsic coordinates [14],
[48]–[50]. The central nervous system is able to execute three
major tasks—the desired trajectory computation in visual co-
ordinates, the task-space coordinates translation into body co-
ordinates, and finally, the motor command generation. In order
to deal with variations of the dynamics of the operator arm, we
have adopted an feedback error learning scheme [51] in con-
junction with a crude inverse dynamic model. In this scheme,
the association cortex provides the motor cortex with the de-
sired trajectory in body coordinates, where the motor command
is calculated using an inverse dynamic arm model. On one
hand, the spinocerebellum—magnocellular red nucleus system
provides an internal neural accurate model of the dynamics of
the musculoskeletal system which is learned with practice by
sensing the result of the movement. On the other hand, the
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Fig. 3. Control loop. The adaptive module (cerebellarlike structure) con-
tributes to the actual torques being received by the “crude inverse dynamics
robot model” to enhance the accuracy of the movement.

cerebrocerebellum—parvocellular red nucleus system provides
a crude internal neural model of the inverse dynamics of the
musculoskeletal system which is acquired while monitoring the
desired trajectory [51]. The crude inverse dynamic model works
neck to neck with the dynamical model by updating the motor
command by predicting a possible error in the movement.
As it is illustrated in Fig. 3, the cerebellar pathways follow
a feedforward architecture, in which only information about
sensory consequences of incorrect commands can be obtained
(i.e., the difference between actual and desired joint positions of
the arm). The natural error signal for learning motor commands
is the difference between actual and correct commands; this
implies, for example, that if M muscles control N sensor
dimensions involved in a task, then N -sensory errors must be
converted into M -motor errors (M × N complexity). How to
use this sensor information to drive motor learning is the so-
called distal error problem [46], [52]. In order to overcome this
motor error problem, (the cerebellum in our scheme provides
torque corrections) the implemented spiking cerebellum used
an adaptation mechanism described in Section II-D which can
correlate the actual and desired states toward the generation of
accurate corrective motor commands.

In our model, the cerebellum receives well-structured inputs
encoding the planned trajectory. We assume that the errors
occurred during the movement are encoded at the IO and
transferred (at low firing rates) to the cerebellum through the
climbing fibers.

We have built a module to translate a small set of signals
(encoding the arm’s desired state) into a sparse cell-based spike-
timing representation (spatio-temporal population coding). This
module has been implemented using a set of input fibers with
specific receptive fields covering the working range of the
different desired state variables (position and velocity of the dif-
ferent joints). In this way, the robot [analog domain consisting
of trajectory planer, trajectory generator, crude inverse dynamic
arm model, and arm plant (Fig. 3)] has been interfaced with the
spiking cerebellar model (spiking domain).

In our control loop, the desired states (positions and veloci-
ties) that follow a certain trajectory are obtained from an inverse
kinematic model computed by other brain areas [48] and then,
they are translated into joint coordinates. These desired arm
states are used at each time step by a crude inverse arm
dynamics model to compute crude torque commands which are
added to the cerebellum corrective torques. This control loop is
illustrated in Fig. 3.

Fig. 3 illustrates how the trajectory planner module delivers
desired positions and velocities for a target trajectory. The kine-
matics module translates the trajectory Cartesian coordinates
into joint coordinates. The “crude inverse dynamics arm model”
calculates the target torque in each joint which are necessary to
roughly follow the target trajectory. But this crude arm model
does not take into account modifications in the dynamics model
due to object manipulation. Thus, if only these torque values
are considered, the actual trajectory may significantly differ
from the desired one. The adaptive cerebellar component aims
at building corrective models to compensate these deviations,
for instance, when manipulating objects.

In Fig. 3, the adaptive cerebellarlike structure delivers cor-
rective actions that are added to compensate deviations in the
base dynamics plant model when manipulating objects. In this
feedforward control loop, the cerebellum receives a teaching
error-dependent signal and the desired arm state so as to pro-
duce effective corrective commands. Total torque is delayed
(on account of the biological motor pathways) and supplied to
the robot plant δtotal. The difference between the actual robot
trajectory and the desired one is also delayed δ1,2 and used
by the teaching signal computation module to calculate the IO
activity that is supplied to the cerebellum as a teaching input
signal (for the computation of the cerebellar synaptic weighs).
Using this control loop architecture, an accurate explicit model
of the musculoskeletal arm inverse dynamics is not necessary.
The cerebellum can infer corrective models tuned to different
tools which may affect the dynamics of the plant (arm+object).

C. Cerebellum Model

The proposed cerebellarlike architecture, organized in cere-
bellar microzones [2] (somatotopic arrangement), tries to cap-
ture some cerebellum’s functional and topological features [3],
[53]. This cerebellum model consists of the following layers:
(Fig. 4)

• Input layer (120 cells). This layer represents a simplifica-
tion of the mossy and granular layers of the cerebellum
and drives PCs and cells of the deep cerebellar nuclei
(DCN). The goal of this simplification is to facilitate the
study of how the sensorimotor corrective models are stored
in adapted weights at the PF-PC connections. This input
layer has been divided into six groups of 20-grouped cells
which carry the desired joint velocity and position infor-
mation (these desired position and velocity coordinates
can be thought as efferent copies of the motor commands
or “motor intention”); for the propioceptive encoding,
three groups of cells encode the desired joint positions
(one group per joint) and the other three encode the
desired joint velocities. The analog position and velocity
transformation into the fiber spike activity is carried out
by using overlapping radial basis functions (RBF) (Fig. 5)
[54] as receptive fields of the input-variable space, see (2)
(joint-specific angular position)

Imossyi
= e

(input variable−µi)
2

2σ2

i 0 < i < n

where = size of mossy group, (2.A)

where the mossy behavior is given by :

τmi

dvi

dt
= −vi(t) + RiImossyi

(2.B)
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Fig. 4. Cerebellum model diagram. Inputs encoding the desired position
and velocity (arm state) are sent (upward arrow) through the input layer which
represents a simplification of the mossy fibers and granular layer. Inputs encod-
ing the error are sent (upper downward arrow) through the inferior olive (IO).
Outputs are provided by the deep cerebellar nuclei (DCN) (lower downward
arrow). The DCN collects activity from the input layer (excitatory inputs which
provide DCN with a basal activity when an input stimulus is presented) and the
Purkinje cells (inhibitory inputs). The DCN activity represents the corrective
torque generated by the cerebellum. This output activity is transformed into a
proper analog torque signal by means of a buffer in which the DCN activity is
accumulated. This activity buffer is used to compute an analog average value
that acts as a corrective torque.

Fig. 5. Encoding of cerebellar input signals. Translation from joint-related
analog variables (angular positions and velocities) into spike trains is carried
out using overlapping RBFs as receptive fields in the analog domain. One-
dimensional values are transformed into multidimensional current vectors (one
for each RBF). Each current value is integrated using an integrate-and-fire
(I & F) neuron model and determines the output activity of an input cell of
the cerebellum model.

where µi is the mean and σ the standard deviation of
i RBF. Related to the cell dynamics, τmi

is the resting
time constant, vi the membrane potential, Imossyi

the input
current, and Ri is related to the resting conductance of the
membrane. For the sake of simplicity, in our model, we
have not included a more detailed cellular structure (Golgi
cells, interneurons, mossy fibers, etc.). We have adopted
well-structured noise-free patterns to encode sensorimo-
tor signals to partially embed potential roles typically
performed in the granular layer [6], [55] (such as noise

reduction, pattern separation, etc.). Parallel fibers are the
output of this layer.

• Inferior olive cells (IO) (48 cells). This layer consists of
six groups of eight cells. It translates the error signals into
teaching spikes to the Purkinje cells. The IO output carries
the teaching signal used for supervised learning (see STDP
section).

• Purkinje cells (PC) (48 cells). They are divided into six
groups of eight cells. Each input cell sends spikes through
excitatory connections to PCs, which receive teaching sig-
nals from the IO. The PF-PC synaptic conductances are set
to an initial average value (15 nS) at the beginning of the
simulation and are modified by the learning mechanism
during the training process.

• Cells of the DCN (24 cells). The cerebellum model output
is generated by six groups of these cells (two groups of
four cells per joint) whose activity provides corrective
torques to the specified arm commands. The corrective
torque of each joint is encoded by a couple of these
antagonist groups, being one group dedicated to com-
pensate positive errors and the other one to compensate
negative errors. Each neuron group in the DCN receives
excitation from every input layer cell and inhibition from
the two corresponding PCs. In this way, the PC-DCN-IO
sub circuit is organized in six microstructures (Fig. 4),
three for positive joint corrections (one per joint) and three
for negative joint corrections (one per joint).

We have used leaky integrate-and-fire (I&F) neurons with
synapses modeled as variable conductances to simulate
Purkinje cells and DCN cells. These models are a modified
version of the spike response model [56]. These synaptic
conductance responses were modeled as decaying exponential
functions triggered by input spikes as stated by (3.A)–(3.C).
Thus, these neuron models account for synaptic conductance
changes (driven by pre-synaptic activity) rather than simply for
current flows, providing an improved description over more ba-
sic I&F models. Table I contains the neuron model parameters
of the Purkinje cells and DCN cells

gexc(t) =

{

0, t < t0

gexc(t0) · e
−

t−t0
τexc , t ≥ t0

(3.A)

ginh(t) =

{

0, t < t0

ginh(t0) · e
−

t−t0
τinh , t ≥ t0

(3.B)

Cm

dVm

dt
= gexc(t)(Eexc − Vm) + ginh(t)(Einh − Vm)

+ Grest(Erest − Vm) (3.C)

where gexc and ginh represent the excitatory and inhibitory
synaptic conductance (time constant) of the neuron. τexc and
τinh represent the time constants of the excitatory and in-
hibitory synapses, respectively. Synaptic inputs through several
synapses of the same type can simply be recursively summed
when updating the total conductance if they have the same
time constants, as indicated in (4). Membrane potential (Vm)
is defined through (3.C) depending on the different reverse
potentials and synaptic conductances

gexc(post−spike)(t) = Gexc,j + gexc(pre−spike)(t) (4)

Gexc,j is the weight of synapse j; a similar relation holds for
inhibitory synapses.
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TABLE I
NEURON MODEL PARAMETERS FOR THE SIMULATIONS [57]–[61]. IN THE TABLE, nS STANDS FOR NANOSIEMENS AND syn STANDS FOR SYNAPSES

Fig. 6. LTD integral kernel. (a) Representation of a basic integral kernel (x · e−x) which has a rather wide peak that makes PC synaptic weights to decrease
more prominently and a more complex integral kernel (sin(x)20) · e−x which has a sharper peak. (b) This plot shows the amount of LTD at a particular synapse
depending on the IO spike arrival time elapsed since the PF spikes for different integral kernels. The figure includes a comparison between the basic integral kernel
(x · e−x) and a more complex integral kernel (sin(x)20) · e−x which has a peak 100 ms after the input spike. The PC receives three spikes through a particular
CF at times 0.0, 1, and 1.5 s.

D. STDP

The studied cerebellar model only includes synaptic plas-
ticity at the PF-PC connections. The changes of the synaptic
efficacy for each connection are driven by pre-synaptic activity
(STDP) and are instantaneous.

In our model, since there are delays in the transmission
of joint torque values and joint position measurements, the
trajectory error measurements (which are used to calculate the
teaching signal) reach the cerebellum with a 100-ms delay.
This means that the learning mechanism must learn to provide
corrective torque predictions.

This plasticity has been implemented including LTD and LTP
mechanisms in the following way:

a) LTD produces a synaptic efficacy decrease when a spike
from the IO reaches a PC, as indicated in (6.A). The
amount of efficacy which decreases depends on the pre-
vious activity arrived through the PF (input of the cere-
bellar model). This previous activity is convolved with
an integral kernel as defined by (5). This mainly takes
into account those PF spikes which arrived 100 ms before
the IO spike (see Fig. 6). This correction is facilitated
by a time-logged “eligibility trace” [45], [47], [62], [63],
which takes into account the past activity of the afferent

PF. This trace aims to calculate the correspondence in
time between spikes from IO (error-related activity) and
the previous activity of the PF which is supposed to have
provoked this error signal. The eligibility trace idea stems
from experimental evidence showing that a spike in the
climbing fiber afferent to a Purkinje cell is more likely
to depress a PF-PC synapse if the corresponding PF has
been firing between 50 and 150 ms before the IO spike
(through CF) arrives at the PC [45], [47]

k(t) = e−(t−tpostsynapticspike) sin(t − tpostsynapticspike)
20. (5)

b) LTP produces a fixed increase in synaptic efficacy each
time a spike arrives through a PF to the corresponding PC
as defined by (6.B). With this mechanism, we capture how
an LTD process, according to neurophysiologists studies
[64], can be inverted when the PF stimulation is followed
by spikes from the IO or by a strong depression of the
Purkinje cell membrane potential.

The strength of these two mechanisms needs to be tuned to
complement and compensate each other. These biological LTP-
LTD properties at PF-PC synapses have been tried to be emu-
lated in different fields, i.e., in the adaptive filter [65] theory by



LUQUE et al.: CEREBELLARLIKE INFERENCE ENGINE FOR MANIPULATION TASKS 1305

using the heterosynaptic covariance learning rule of Sejnowski
[66] or in the adaptive control theory by using the least-mean-
square learning rule [67]. Different alternative temporal kernels
are shown in Fig. 6. The sharper the integral kernel peak is,
the more precise the learning becomes. On the other hand, this
leads us to a slower synaptic weight adaptation. However, LTP
can lead the weight recruitment to be compensated by future IO
activity. This situation drives us to faster synaptic weight satu-
ration where LTP can hardly carry out the weight recruitment
for future IO activity. After the main peak in the correlation
kernel, a second marginal bump can be seen as a consequence
of the mathematical model used for modeling the correlation
engines. The chosen mathematical models of the kernel allow
accumulative computation in an event-driven engine, avoiding
the necessity of integrating the whole correlation kernel each
time a new spike arrives. Therefore, these correlation models
are computationally efficient in the framework of an event-
driven simulation scheme, such as EDLUT [9], but they suffer
this second marginal peak that can be considered noise in the
weight integration engine.

This is indicated in the following (6):

LTD,∀i,∆wi = −

IOspike
∫

−∞

k(t − tIOspike)δGRspike−i(t)dt

(6.A)

LTP,∆wi = α. (6.B)

E. Teaching Signal of the Inferior Olive

The crude inverse dynamics controller generates motor
torque values for a rough control, but the long delays in the
control loop prevent the online correction of the trajectory in a
fast reaching task using a classical controller with a continuous
feedback. In the studied control model, the trajectory error
is used to calculate the teaching signal. This teaching signal
follows (7)

ǫdelayedi
= Kpi · ǫpositioni

+ Kvi · ǫvelocityi

i = 1, 2, 3, . . . joint

ǫpositioni
= (qidesired − qireal)

[

(t + tpred)
i
− ti

]

ǫvelocityi
= (q̇idesired − q̇ireal)

[

(t + tpred)
i
− ti

]

(7)

where Kpi · ǫpositioni
represents the product of a constant value

(gain) at each joint Kpi and the position error in this joint [dif-
ference between desired joint position and actual joint position
(qidesired − qireal)].

Kvi · ǫvelocityi
represents the product between a constant

value (gain) at each Kvi joint and the velocity error in this
joint [difference between desired joint velocity and actual joint
velocity (q̇idesired − q̇ireal)].

The IO neurons synapse onto the PCs and contribute to drive
the plasticity of PF-PC synapses. These neurons, however, fire
at very low rates (less than 10 Hz), which appears problematic
to capture the high-frequency information of the error signal of
the task being learned. This apparent difficulty may be solved
by their irregular or chaotic firing [13], [41], [68]. This is a very
important property, which has the beneficial consequence of
statistically sampling the entire range of the error signal over
multiple trials (see below). Here, we implemented this irregular

firing using a Poisson model [69] for spike generation. The
weight adaptation was driven by the activity generated by the
IO, which encoded the teaching signal into a low-frequency
probabilistic spike train (from 0 to 10 Hz, average 1 Hz)
[5], [41].

We modeled the IO cell responses with probabilistic Poisson
process. Given the normalized error signal ε(t) and a random
number η(t) between 0 and 1, the cell fired a spike if ε(t) >
η(t); otherwise, it remained silent [47]. In this way, on one
hand, a single spike reported accurately timed information
regarding the instantaneous error; and on the other hand, the
probabilistic spike sampling of the error ensured that the whole
error region was accurately represented over trials with the cell
firing almost ten spikes per second. Hence, the error evolution
is accurately sampled even at a low frequency [12]. This
firing behavior is similar to the ones obtained in physiological
recordings [41].

LTD and LTP play complementary roles in the model in-
ference process. The LTP implemented at the PF-PC synapses
was a non-associative weight increase triggered by each input
cell spike [64]. The LTD was an associative weight decrease
triggered by spikes from the inferior olive [26], [27]. This
model of LTD uses a temporal kernel, shown in Fig. 6, which
correlates each spike from the IO with the past activity of the
parallel fiber [10], [45], [70]. Correlation-based LTD allows
the adjustment of specific PF-PC connections to reduce the
error according to the IO activity. When IO spikes are received,
the synaptic weights of the PF-PC connections are reduced
according to the temporal-correlation kernel and to the activity
received through the PF. In this way, we reduce the probability
of production of simple spikes by PC due to the activity coming
from the PFs through these specific connections. Therefore, the
IO effectively modulates the spatio-temporal corrective spike
patterns. In this model, a learning state in the cerebellum (PF-
PC weights) can be seen as a bidimensional function which
relates each PF and PC combination with their corresponding
synaptic weight [Fig. 7(c)].

Physiologically, the time matching of the desired and actual
joint states can be understood by the fact that the trajectory error
would be detected at the level of the spinal cord through a direct
drive from the gamma motoneurons to the spinal cord [71].

III. SIMULATIONS AND RESULTS

We have carried out several simulations to study different is-
sues: a) How LTD and LTP need to be balanced to optimize the
adaptation performance; b) how the temporal-correlation kernel
(integral kernel) works even in the presence of sensorimotor
delays; and c) how the same learning mechanism can adapt the
system to compensate different deviations in the basic model
dynamics (due to manipulating objects of different weights).

A. LTD Versus LTP Trade-Off

At the beginning of the learning process (before the con-
nection weights are adjusted), the spikes received from the
input fibers excite the DCN cells, producing a “bias correc-
tion” term on the motor commands. The role of the cerebellar
PF-PC-DCN loop is to specifically inhibit this bias term ac-
cording to a spatio-temporal pattern that is inferred during



1306 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 5, OCTOBER 2011

Fig. 7. Cerebellum state after 300 trajectory learning iterations. (a) Input activity at the cerebellum. The input layer produces a set of spikes after the
transformation from analog domain into spike domain These spikes are transmitted directly by PF. This activity (desired positions and velocities) keeps on
constant during all iterations. (b) DCN output activity generated by those synaptic weights. Error corrections are accomplished by changes in the activity of PCs
that, in turn, influence the activity of the DCN [72], which afterward is translated into analog torque correction signals. Each group of four DCN cells encodes
the positive or negative part of a joint corrective torque. The more activity the positive/negative group has, the higher/lower corresponding corrective torque is
generated. (c) PC-PF synaptic weight representation. Inx-axis, we can see the source cells (PFs). In y-axis, target cells (PCs) are shown. Dark colors represent
lower synaptic weights, thus, the corresponding DCN cells are more active. We can see six well-defined rows, each row represents weights related with the positive
and negative torque output of the three joints (q3, q2, and q1), and six well-defined columns (related with the input activity of the PF corresponding to the desired
position and velocity for the three joints). (d) Output torque after analog transformation from the DCN output spikes. These corrective torque curves have a profile
strongly related with the number of DCN cells assigned per joint; thus, increasing the quantity of DCN per joint will generate a smoother corrective profile.

movement executions and to further compensate other devi-
ations generated by the manipulation of different objects or
other elements, affecting the dynamics of the initial “arm
plant” (without object under manipulation). The PF-PC-DCN
loop transmits an activity pattern which is adapted taking into
account the teaching signals provided by the IO (described in
the previous section).

In the first simulations, the arm is manipulating a 1-kg mass
object. This mass significantly affects the dynamics of the
arm+object. Therefore, the actual trajectory (without correc-
tive support) deviates significantly from the target trajectory.
We have studied how the cerebellar module compensates this
deviation building a corrective model.

Fig. 7 illustrates how the corrective model is acquired
through learning and structured in distributed synaptic weight
patterns. When the arm moves along a target trajectory, dif-
ferent input cell populations are activated. They produce a
temporal signature of the desired movement. Meanwhile, the
IO continuously transfers trajectory error estimates (teaching
signals) which are correlated with the input signature. In Fig. 7,
the system adaptation capability is monitored. This helps to
interpret how the corrective model is continuously structured.
Similar monitoring experiments in much simpler scenarios and
smaller scale cell areas are being conducted in neurophysio-
logic studies [6] to characterize the adaptation capability of
neurophysiologic systems at different neural sites.

When manipulating heavy objects which do not properly fit
the basic plant model, the followed trajectory drifts from the
desired one before learning. This deviation is more prominent
when the desired trajectory changes direction [see Fig. 7(a)]
due to the arm’s inertia. After learning, the cerebellum output
counteracts this inertia, generating higher torques during these
changes of the desired trajectory direction [see Fig. 7(d)]. The
weight matrix learned by the cerebellum reflects the moments
when higher corrective torque values are supplied. By looking
at Fig. 7(b) and (d), we can see that the higher corrective
torque is produced when the desired trajectory joint coordi-
nates change direction. This occurs in the peaks of the sine
waves describing the desired trajectory and corresponds to the
activation of the higher and lower input fibers of each block
[left and right side of the six weight columns of Fig. 7(c)].
To generate a high corrective torque, the cerebellum must
unbalance the magnitude of the positive and negative parts of
the joint corrective output [q+ and q− in Fig. 7(b)] which
is calculated from the activity of the DCN cells. These DCN
cells are grouped by joints. A higher activity affecting positive
corrections in a joint produces higher corrective torque. Since
PCs inhibit DCN cells, a low PC activity is required for a
high DCN activity and vice versa. To obtain a low PC activity,
low PF-PC weights are required, which corresponds to small
dark squares in Fig. 7(c). Small light squares correspond to
high values of the weights. Looking at both sides of the six
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weight columns of Fig. 7(c), we can observe how the weight
values alternate between high and low in adjacent rows which
alternately encode the weights corresponding to the positive and
negative parts of each joint corrective torque.

During the learning process, the corrective model is captured
in the PF-PC connections. In this way, the movements become
more accurate, the error decreases and therefore, also the ac-
tivity of the IO is reduced. This allows the learned models to
become stable once the error reaches appropriate values.

The learning performance is characterized by using four
estimates calculated from the mean absolute error (MAE) curve
[73]. For the calculation of the MAE of a trajectory execution,
we have considered the addition of the error in radians produced
by each joint independently.

1) accuracy gain (estimates the error reduction rate com-
paring the accuracy before and after learning). This es-
timate helps to interpret the adaptation capability of the
cerebellum when manipulating different objects, since the
initial MAE for each of these manipulated objects may be
different

Accuracy Gain = MAEinitial

−

(

1

n

n
∑

i=0

MAE(final−i)

)

n = 30; (8)

2) final error (average error over the last 30 trials)

Final Error =

(

1

n

n
∑

i=0

MAE(final−i)

)

n = 30; (9)

3) final error stability (average of standard deviation over the
last 30 movement trials)

Final Error Stability

=
1

n

n
∑

i=0

(

σ
(

MAE(final−i)

))

n = 30; (10)

4) error convergence speed (number of samples to reach the
final error average)

Error Convergence Speed = j; where

MAEj ≤

(

1

n

n
∑

i=0

MAE(final−i)

)

0 < j ≤ final. (11)

We have carried out 70 simulations of a complete training
process, where each training process consists of 400 trajec-
tory executions and each trajectory execution is carried out in
1-s simulation time (i.e., the whole system is executed
28 000 times). During each of these training processes, the
obtained error in each trajectory execution decreases until it
reaches a final stable value. The obtained MAE of a single
complete training process is shown in Fig. 8(a). We have tested
this learning process with different LTD and LTP components
to evaluate how they affect the adaptation capability of the
system. From each of these training processes (with different
LTD and LTP values), we obtain the performance estimates
defined above (accuracy gain, final error, final error stability,
and error convergence speed). These performance estimates
characterize the adaptation mechanism capability.

As it is shown in Fig. 8(b) and (c), both LTP and LTD
must be compensated. Low LTD values combined with high
LTP values cause high weight saturation. This can be seen in
Fig. 8(c), in which 3-D final normalized error values of the
first figure are represented in a high flat surface correspond-
ing to high errors. We also have a flat surface close to zero
in Fig. 8(c) (3-D final normalized error stability figure); the
cerebellum output is totally saturated. Therefore, when LTP-
LTD tradeoff is unbalanced (LTP dominating LTD), the system
adaptation capability is low, leading to high error estimators
and useless high stability. On the other hand, when high LTD
values are combined with low LTP values, this causes low
weight saturation. In Fig. 8(c) 3-D plots, we see a good final
average error and a good accuracy gain and convergence speed
but very unstable output. This is also indicated by the error
variance figure estimates which are high in this LTD-LTP
area. A compensated LTD-LTP setting drives us to a high-
accuracy gain and also, to a low and stable final error with high
convergence speed. For instance, if our LTD choice is 0.075,
our LTP must be lower than 0.015 to achieve a proper stable
learning mechanism. In all the following simulations, we have
fixed the LTD and LTP parameters to these values. Therefore,
we illustrate how different model deviations (by different object
manipulations) can be compensated with a fixed and balanced
temporal-correlation kernel and how this correction loop works
even in the presence of different sensorimotor transmission
delays.

B. Learning Temporal-Correlation Kernel Allows Corrective

Model Inference Even in the Presence of Sensorimotor Delays

The cerebellumlike structure previously described works
even with sensorimotor delays by means of the temporal-
correlation kernel which determines the amount of LTD to be
applied. This is summarized in Fig. 9. The results (in Fig. 9)
have been obtained after performing four simulations (each one
for different delay setups) of 400 trajectory executions each. On
the other hand, this temporal-correlation kernel remains robust
not only with different unbalanced delays but also with a non-
perfect matching between sensorimotor delays and the temporal
correlation kernel peak, as it is shown in Fig. 10. These results
have been obtained after performing five simulations (each one
for a different time deviation) of 400 trajectory executions each.

This robustness is achieved because the scheme is using de-
sired coordinates (positions and velocities) which remain stable
across different trials. Nevertheless, with delays mismatching
(between learning kernel inherent time shift and sensorimotor
delays) over 70 ms, this scheme becomes unstable.

C. Learning Different Dynamic Models

The presented cerebellum microstructure and the long-term
plasticity, side by side, facilitate internal model inference. The
cerebellum model adapts itself to infer a new model by using
error signals which are obtained when manipulating this new
object. We study the ability of the cerebellar architecture to
infer different corrective models for dynamics changes on a
base manipulator model.

Under normal conditions, without adding any extra mass
to the end of the effector (arm), the crude inverse dynamics
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Fig. 8. Learning characterization. The error taken into account in this learning characterization is a global addition of the absolute joint errors in position from
each link of our robot plant. (a) During the learning process, the movement error decreases along several iterative executions of trials of an eight-like trajectory
benchmark. We evaluate the learning performance using four estimates extracted from the MAE curve: 1) accuracy gain; 2) final error; 3) final error stability;
and 4) error convergence speed. (b) Using these four estimators, we can evaluate how LTP and LTD affect the learning process. We have conducted multiple
simulations with different LTD-LTP tradeoffs to characterize the learning behavior. The goal of an appropriate learning process is to achieve a high-accuracy gain
and a low and stable final error.

model calculates rough motor commands to control the arm
plant. In contrast, under altered dynamics conditions, the motor
commands are inaccurate to compensate for the new under-
gone forces (inertia, etc.), and this leads to distortions in the
performed trajectories. During repeated trials, the cerebellum
learns to supply the corrective motor commands when the
arm plant model dynamics differs from the initial one. These
corrective motor commands are added to the normal-condition
motor commands. Then, improved trajectories are obtained as
the learning process goes on. The cerebellum gradually builds
up internal models by experience and uses them in combination
with the crude inverse dynamics controller. This cerebellum
adaptation is assumed to involve changes in the synaptic effi-

cacy of neurons constituting the inverse dynamics model [74],
as it is shown in our simulation results (Fig. 11).

The performance results of the followed trajectory have
been evaluated during 400 trajectory executions manipulating
different objects attached at the end of the last segment of the
arm of 0.5, 1, 1.5, and 2 kg. Fig. 11 illustrates the performed
trajectory for each simulation with an object of a different mass.
Fig. 12 shows how the cerebellar model is able to learn/infer
the corrective dynamics model for the different objects. The
error curves of Fig. 12(a) (where each sample represents the
error along one eight-like trajectory) show how the control
loop with the adaptive cerebellar module is able to significantly
reduce the error during the training process. Fig. 11 shows that
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Fig. 9. Temporal-correlation kernel for different sensorimotor delays
(delays from 25 to 150 ms have been tested). We have adjusted the correlation
kernel peak position to match (see Fig. 6) the sensorimotor delays of the control
loop illustrated in Fig. 3. As it is shown, the delay value does not affect to a large
extent the obtained performance. The final average error is nearly constant in
these different simulations.

Fig. 10. Temporal-correlation kernel behavior with different deviations
between sensorimotor delays and the kernel peak (deviation from 50 to
70 ms have been tested). We have evaluated different deviations between the
correlation kernel peak position (see Fig. 6) and the sensorimotor delays of the
control loop illustrated in Fig. 3. As it is shown, despite the kernel peak does
not exactly match with sensorimotor delays, the cerebellum still works and the
final average error keeps on constant. The cerebellum is able to correlate the
delayed sinusoidal inputs and the non-in-phase peak kernel.

manipulating heavier objects means that the starting error is
higher, since the arm dynamics differ from the original one to a
larger extent. Therefore, the cerebellum learns to supply higher
corrective torques, which makes a bigger difference between
the initial and final error. This makes the accuracy gain estimate
higher than in the other cases. On the other hand, for improving
the global accuracy gain, higher forces have to be counteracted
to follow the desired trajectory.

IV. DISCUSSION

This paper focuses on studying how a cerebellarlike adaptive
module, operating together with a crude inverse dynamics
model, can effectively provide corrective torque to compensate
deviations in the dynamics of a base plant model (due to object
manipulation). This is relevant to understand how the cere-
bellar structure embedded in a biologically plausible control
loop can infer internal corrective models when manipulating
objects which affect the base dynamics model of the arm. The
spiking neural cerebellum connected to a biomorphic robot

plant represents a tool to study how the cerebellar structure
and learning kernels (including time shifts for compensating
sensorimotor delays) provide adaptation mechanisms to infer
dynamics correction models toward accurate object manipula-
tion. Concretely, we have evaluated how a temporal-correlation
kernel driving an error-related LTD and a compensatory LTP
component (complementing each other) can achieve effective
adaptation of the corrective cerebellar output. We have shown
how the temporal-correlation kernel can work even in the pres-
ence of sensorimotor delays. However, considering the results
obtained for several sensorimotor delays, we can state that the
desired trajectory must be coded using a univocal population
coding in each time step, that is, the codification of the desired
position/velocity during the trajectory must be different for each
point of the trajectory. And thus, as our cerebellar structure
can adaptively generate any suitable output for each trajectory-
point codification, the delay of the sensorimotor pathways is
not remarkably relevant, even if this delay does not match the
intrinsic compensatory delay of the learning integration kernel.

In this simple cerebellarlike structure, we have shown how
the representation of the cerebellar weight matrix correspond-
ing to the PF-PC connections can be interpreted in terms of
the generated corrective torque (which, in turn, is a direct
consequence of this representation). This allows us to study
the performance of this corrective model storage and how the
changes of the arm dynamics (manipulating different object)
are inferred on different synaptic weight patterns.

We have also shown how LTD and LTP need to be balanced
with each other to achieve high performance adaptation capabil-
ities. We have studied the behavior of these two complementary
adaptation mechanisms. We have evaluated how the learning
behaves when they are balanced and also when they are in
value ranges in which one of them dominates saturating the
adaptation capability of the learning rule. We have evaluated
how well-balanced LTD and LTP components lead to an effec-
tive reduction of error in manipulation tasks with objects which
significantly affect the dynamics of the base arm plant.

We have used a simplified version of the cerebellum to focus
on the way that the cerebellar corrective models are stored
and structured in neural population weights. This is of interest
to inform neurophysiologic research teams to drive attention
to potential footprints of inferred models within the PF-PC
connections.

As future work, we will study how to dynamically optimize
the LTD-LTP integration kernel instead of a single, stable, and
balanced LTD-LTP kernel, we will evaluate the capability of
improving the adaptation mechanism, shifting this balance to
acquire the corrective models faster and then, decrease the
plasticity once an acceptable performance is reached. This
approach can optimize the learning capability of the system.

We will also develop further real-time interfaces between
analog signals and spiking neurons (between the robot and the
EDLUT simulator) to perform simulations with real robots and
new cerebellar architectures working in a manipulation task
scenario in which granular layer, Golgi cells, and stellate cells
will be included. This will be addressed in a starting EU project
(REALNET).

The neuron models, cerebellar models, and adaptation mech-
anisms will be available at the EDLUT simulator site to facili-
tate the reproduction of the presented work.
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Fig. 11. Learning the corrective models for the eight-like target trajectory when manipulating objects with different masses (2, 1.5, 1, and 0.5 kg).
(a) three-joint value representation for the performed trajectory. The three joints are shown. The followed trajectory is shown each 25 trials during a 400-trial
complete learning process. (b) 2-D representation of the performed trajectory (Desired trajectory in red; in blue. initial trial; in black, trial number 200; and in
cyan, final trial). Improvement in %: 0.5 kg 200-trial 40.4% 400-trial 49%; 1 kg 200-trial 64.6% 400-trial 64.5%; 1.5 kg 200-trial 72.5% 400-trial 74.4%;
2 kg 200-trial 78.6% 400-trial 79.3%. Stability improvement in % (average std over 0–30 trials/17–200 trials/370–400 trials). 0.5 kg 170–200-trials 82%
compared to initial 0–30-trials, 370–400-trials 60.1% comparing to initial 0–30-trials. 1 kg 170–200-trials 49.6% compared to initial 0–30 trials, 370–400-trials
42.1% compared initial 0–30-trials. 1.5 kg 170–200 trials 46.1% compared to initial 0–30 trials, 370–400-trials 26.4% compared to initial 0–30-trials. 2 kg 170–
200 trials 26.4% compared to initial 0–30-trials, 370–400 trials 25.1% compared to initial 0–30 trials.

Fig. 12. Learning performance when manipulating different objects (0.5,
1, 1.5, and 2 kg) during 400-trial learning processes. (a) MAE evolution.
Learning occurs on a continuous basis providing incremental adaptability
throughout the simulation time. (b) Accuracy gain.
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Brief Papers

Cerebellar Input Configuration Toward Object Model

Abstraction in Manipulation Tasks

Niceto R. Luque, Jesus A. Garrido, Richard R. Carrillo,
Olivier J.-M.D. Coenen and Eduardo Ros

Abstract— It is widely assumed that the cerebellum is one of
the main nervous centers involved in correcting and refining
planned movement and accounting for disturbances occurring
during movement, for instance, due to the manipulation of objects
which affect the kinematics and dynamics of the robot-arm plant
model. In this brief, we evaluate a way in which a cerebellar-
like structure can store a model in the granular and molecular
layers. Furthermore, we study how its microstructure and input
representations (context labels and sensorimotor signals) can
efficiently support model abstraction toward delivering accurate
corrective torque values for increasing precision during different-
object manipulation. We also describe how the explicit (object-
related input labels) and implicit state input representations
(sensorimotor signals) complement each other to better handle
different models and allow interpolation between two already
stored models. This facilitates accurate corrections during manip-
ulations of new objects taking advantage of already stored
models.

Index Terms— Adaptive, biological control system, cerebellum
architecture, learning, robot, spiking neuron.

I. INTRODUCTION

In the framework of a control task, many successful

approaches which use different kinds of “learning” (adapta-

tion mechanisms) in the control loop have been developed:

reinforcement learning [1], where systems can learn to opti-

mize their behavior making use of rewards and punishments,

genetic algorithms [2], where control systems are evolved

over many generations mimicking the process of natural

evolution, recurrent artificial neural networks [3], and also,

recently approaches based on biologically realistic spiking

neural networks (SNNs) [4], [5]. Most of the works focused

on SNNs addressing issues such as computational complexity

and real-time feasibility [6], biologically plausible models of

different complexity [7], effects of biological learning rules
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[8], etc. This brief represents a multidisciplinary research

effort in which SNNs adopting a cerebellar-like neural topol-

ogy are used with biologically plausible neural models. We

evaluate how the topology of a biological neuronal circuit

is specifically related with its potential functionality, start-

ing from electrophysiological recordings (validating the cell

models) to a proposed biologically plausible spiking control

solution.

More concretely, in this brief, we describe how a SNN

mimicking a cerebellar micro-structure allows an internal

corrective model abstraction. By adopting a cerebellar-like

network, we explore how different sensor representations

can be efficiently used for a corrective model abstraction

corresponding to different manipulated objects. When a new

object is manipulated and the system detects that significant

trajectory errors are being obtained, the abstracted internal

model adapts itself to match the new model (kinematic and

dynamic modifications of a base arm plant model). The stored

models to be used can be selected by explicit object-related

input signals (as specific input patterns generated for instance

from the visual sensory pathway) or implicit signals (such

as a haptic feedback). This can be seen as a “cognitive

engine” that abstracts the inherent object features through

perception-action loops and relates them with other incidental

properties, such as color, shape, etc. The cognition process

that relates both properties is important because it allows

the inference of inherent properties just by activating explicit

perceived primitives making possible to build up models of the

environment that describe how it will “react” when interacting

with it.

In the framework of a robot control task, manipulat-

ing objects that significantly affect the base kinematic and

dynamic model with bio-inspired schemes is an open issue

[5], [9], [10]. Biology seems to have developed (evolved) a

scalable control system capable of abstracting new models

in an incremental way in real time. This requires a smart

model abstraction engine which is believed to be largely

based on the cerebellum [11]. State-of-the-art simulation

tools [12] and also hardware platforms [13], [14] allow cell-

based simulation of nervous centers of certain complexity

in the framework of biologically relevant tasks. This allows

addressing studies in which the function and structure of

nervous centers are conjointly evaluated to better understand

how the system operation is based on cell and network

properties.

The working hypothesis and methodology of this brief can

be briefly described as follows:

1) we address a biologically relevant task which consists in

an accurate manipulation of objects which affect a base

(kinematic and dynamic) model of the base plant using

low power actuators;

1045–9227/$26.00 © 2011 IEEE
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2) we define and implement a spiking-neuron-based cere-

bellum model to evaluate how different properties of the

cerebellar model affect the functional performance of the

system.

II. MATERIAL AND METHODS

A. Experimental Setup. Interfacing the Cerebellum Model with

a Robot

1) Robot Plant: For the robot plant simulation, we have

implemented an interface between the simulator of the light-

weight-robot (LWR) developed at DLR [15] and the control

loop including the cerebellum module. The LWR robot is

a 7-DOF arm composed of revolute joints. For the sake of

simplicity, in our experiments, we used the first (we will refer

to it as q1), third (q2) and fifth joints (q3), keeping the other

ones fixed, limiting the number of degrees of freedom.
2) Training Trajectory: The described cerebellar model has

been tested on a task of smooth pursuit, in a similar way to

the one adopted by other authors [16]: a target moves along

a repeated trajectory, which is a composition of sinusoidal

components (this represents the desired trajectory). In previous

works, we evaluated a simpler cerebellar model in a target-

reaching task [5], [10] and a simple smooth pursuit task.

After these preliminary works, in this brief, we study context

switching capability, generalization-interpolation capability,

and different input sensorimotor representations.

We use an 8-like trajectory defined by in (1). The trajectories

of the individual joints have enough variation so that a

sufficiently rich movement is executed allowing dynamic robot

arm features to be revealed [17]. A multi-joint movement is

more complex from a mechanical standpoint than a summed

combination of single-jointed movements. This is due to the

interaction torque values generated by one linkage moving on

another. In this framework, the cerebellum role on the control

task becomes more complex

q1 = A sin π t, q2 = A sin (π t + θ) , q3 = A sin (π t + 2θ) .

(1)
3) Control Loop: It is largely assumed that the cerebellum

plays a major role in motor control [18]–[20]. Based on this

hypothesis, a wide range of cerebellar motor-control-system

approaches have been proposed in the literature (for a review,

the reader is referred to [21]). The central nervous system

(CNS) executes three relevant tasks. The desired trajectory

computation in visual coordinates, the task-space coordinate

translation into body coordinates, and finally, the motor com-

mand generation. As in [22], in this brief, we have adopted

the feedback-error learning (FEL) scheme in order to deal with

variations in the dynamics of the robot-arm [22] in connection

with a crude inverse dynamic model. But in contrast with

the adaptation modules used by Miller et al. [20], we use

a biologically plausible neural model as described in the next

section. Using FEL, the association cortex supplies the motor

cortex with the desired trajectory in body coordinates, where

the motor command is generated using an inverse dynamic

arm model.

Kawato et al. [22] relate different components of the control

scheme with the biological counterpart. As described in [22],

Fig. 1. Control loop.

the spinocerebellum-magnocellular red nucleus system pro-

vides an accurate internal neural model of the dynamics of

the musculoskeletal system which is learned by sensing the

result of the movement. The cerebrocerebellum-parvocellular

red nucleus system provides a crude internal neural model of

the inverse-dynamics of the musculoskeletal system which is

acquired while monitoring the desired trajectory.

The crude inverse dynamic model and the dynamical model

work together by means of updating the motor command and

predicting possible errors in the movement. As illustrated in

Fig. 1, the cerebellar pathways are structured in a feedforward

architecture, in which only information about sensory conse-

quences of incorrect commands is obtained (i.e., the difference

between actual and desired joint positions of the arm). We

developed our cerebellar-based control loop according to this

model as illustrated in Fig. 1.

We have also built a module to translate a small set of analog

signals into a sparse cell-based spike-timing representation

(spatio-temporal population coding). They encode the arm’s

desired and actual states (position and velocity) as well as

contextual information. This module has been implemented

using a set of mossy fibers (MFs) with specific receptive fields

covering the working range of the different state variables.

B. Cerebellum Model

For extensive spiking network simulations, we have further

developed and used an advanced event-driven simulator based

on lookup Tables EDLUT [23]. EDLUT is an open-source tool

[5] which accelerates the simulation of SNNs by compiling the

dynamic response of pre-defined cell models into lookup tables

before the actual network simulation. The proposed cerebellar

architecture (Fig. 2) consists of the following layers:

1) MFs: MFs carry both contextual information and sensory

joint information. A MF is modeled by a leaky I & F neuron,

whose input current is calculated using overlapping radial basis

functions as receptive fields in the value space of the input

signals.

2) Granular Layer (1500 Cells): This layer represents a

simplified cerebellar granular layer. The information given by

MFs is transformed into a sparse representation in the granule

layer [24]. Each granular cell (GR) has four excitatory input

connections: three of them from randomly chosen joint-related

MF groups and another one from a context-related MF. Parallel

fibers (PFs) are the output of this layer.
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Fig. 2. Cerebellum configuration inputs encoding the movement (desired
arm states, actual sensorimotor signals and context-related signals) are sent
(upward arrow) through the PFs. Error-related inputs are sent (upper down-
ward arrow) through the CFs. Outputs are provided by the DCN cells (lower
downward arrow).

3) Climbing Fibers (CFs) (48 CFs): This layer is composed

of six groups of eight CFs each. It carries the IO output which

encodes teaching spike trains (related to the error) for the

supervised learning in the PF–PC connections.

4) Purkinje Cells (PC) (48 Cells): They are divided into

six groups of eight cells. Each GR is connected to 80% of

the PCs. Each PC receives a single teaching signal from a CF.

PF–PC synaptic conductances are modified by the learning

mechanism during the training process.

5) Deep Cerebellar Nuclei Cells (DCN) (24 Cells): The

cerebellum model output is generated by six groups of these

cells. The corrective torque value of each joint is encoded by a

couple of these groups, one group is dedicated to compensate

positive errors (agonist) and the other one is dedicated to

compensate negative errors (antagonist). Each neuron group in

the DCN receives excitation from every MF cell and inhibition

from the two corresponding PCs. In this way, the subcircuit

PC–DCN–IO is organized in six microzones, three of them for

joint positive corrections (one per joint) and the other three of

them for joint negative corrections (one per joint). The DCN

outputs are added as corrective activity in the control loop.

The MFs encode input representation in a rather specific

way and the granular cells integrate information from different

MFs. These characteristics partially embed functional roles

of the inhibitory loop driven by the Golgi cells. Therefore,

although Golgi cells have not been explicitly included, part of

their functional roles has been integrated into the system.

C. Learning Process

It is well known that the cerebellum not only learns

sequences of pre-defined voluntary movements but also adapts

itself to external influences. This behavior seems to be very

difficult to analyze, but the cerebellum presents a regular

structured architecture that facilitates the study of how learning

may take place in our context-driven scenario using this

topology.

Although there seems to be an adaptation process at many

sites within the cerebellar structure [25], the main synaptic

adaptation driven by teaching or temporal signals (from the IO)

seems to take place at the PF–PC synapses. We have adopted a

plasticity mechanism that drives the modification of the PF–PC

synapses in the cerebellar model, based on the concept of

“eligibility trace” [16]. This trace aims to relate spikes from

IO error-related activity and the previous activity of the PF that

is supposed to have generated this error signal. The eligibility

trace idea stems from experimental evidence showing that a

spike in the CF afferent to a PC is more likely to depress

a PF–PC synapse if the corresponding PF has been firing

between 50 and 200 ms before the CF spike arrives at the PC

[16], [26]. This is indicated in (3) [5] where the integration

kernel k(t) is defined in (2). A marginal peak occurs in

the learning rule (around 450 ms after spike arrival) due

to the event-driven simulation scheme (mathematical expres-

sion based on exponential functions modulating a periodic

kernel, this presents a little hump), its impact in the global

learning amount is negligible (4%) and can be considered as

non-specific noise. In comparison with the previous learning

schemes [5], [10] in similar cerebellum structures, this one

allows to shift the maximum peak independently from the peak

width. Therefore, we can tune the control loops to different

sensorimotor delays and can narrow the maximum peak to

allow more specific learning.

We have used a simplified spiking cerebellar neural network

with spike-timing dependent plasticity (STDP). This plas-

ticity has been implemented including long-term depression

(LTD) and long-term potentiation (LTP) mechanisms in the

following.

1) LTD produces a synaptic efficacy decrease when a spike

from the IO reaches a PC. The IO output activity

is interpreted as an error signal [18], [21], triggering

a weight depression mechanism in synapses (PF–PC

connections) depending on the received activity from the

PFs. To calculate this amount of decrease, this previous

activity is convolved with an integral kernel as defined

by (2). Different expressions can be used for the learning

rule [8]. This kernel mainly takes into account all the

PF spikes which arrived 100 ms before the IO spike

to overcome the effect of transmission delays of this

range on sensory and motor signals (see Fig. 1). After

this mechanism is repetitively activated, when the same

pattern of PFs appears, the PC will not fire, in such

a way, they will not inhibit its corresponding DCN

cells [16], [27].

2) LTP produces a fixed increase in synaptic efficacy each

time a spike arrives through a PF at the corresponding

PC as defined by (2). For the sake of synaptic conduc-

tance equilibrium, LTD is accompanied by the opposite

process (LTP), which takes place at this same synaptic

site [28].

LT D : ∀i,�wi = −

∫ I Ospiket ime

−∞

k
(

t − tI Ospike

)

LT P : �wi = α (2)

k (t) = e−(t−t post synapt ic spike)

× sin
(

t − tpost synapt ic spike

)20
. (3)

These two learning rule components need to be tuned

complementing each other to be able to efficiently reduce
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action errors in the framework of a control task. In biological

systems, sensors (for instance, skin sensors and propriocep-

tors) are not directly connected to the cerebellum. They pass

through the cuneate nucleus [29] and other centers along

the sensory pathway where signals seem to be efficiently

organized to better address the cerebellar processing engine. In

this brief, we investigate how the cerebellum model can take

advantage of different cerebellar input representations during

object manipulation.

D. Mossy Layer Configuration in the Cerebellar Model

Different mossy layer configuration models have been pro-

posed in order to improve the cerebellum storage capability.

1) Base “Desired-proprioceptive configuration.” It consists

of 120 joint-related fibers, the MF layer has been divided

into six groups of 20 fibers, three groups of fibers

encoding joint positions (one group per joint) and the

other three, encoding joint velocities.

2) Encoding Approach (EC) model. Explicit Context EC

(16 context-related fibers plus 120 joint-related fibers):

This mossy layer configuration uses the base desired-

proprioceptive configuration adding 16 context-related

fibers. The contextual information is coded by two

groups of eight fibers. An external signal (related to

the “label or any captured property” of the object, for

instance assuming information captured through visual

sensory system) feeds these dedicated-eight-grouped

fibers.

3) IC model. Implicit Context EC (240 joint-related fibers):

The MF layer consists of 12 groups of 20 fibers

and delivers the actual and desired joint velocity and

position information. It uses the base-desired proprio-

ceptive configuration and adds three groups of fibers

encoding actual joint positions and other three groups

encoding actual joint velocities. The implicit contex-

tual information is conveyed using these six groups

of fibers. The actual position and velocity “helps” the

cerebellum to recognize where and how far from the

ideal (desired) situation it is. These deviations implicitly

encode a “context-like” representation based on senso-

rimotor complexes.

4) EC & IC. Explicit and Implicit Context encoding

approach (16 context-related fibers plus 240 joint-related

fibers): It uses the base desired proprioceptive and

incorporates also IC and EC architectural specifications.

Thus, this MF layer is a combination of the EC and IC

models described above.

The main aim of searching a proper mossy layer config-

uration is to exploit the capability of the granule layer for

generating a sequence of active neuron populations without

recurrence. This sequence is able to efficiently represent the

passage of time (representation of different time passages are

related with different input signals). Our system takes advan-

tage of this spatiotemporal discrimination of input signals for

learning different contexts.

As indicated in Section II-B, afferent MFs are randomly

connected to granule cells, on average, four MFs [30] per
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Fig. 3. Similarity indices for a spatiotemporal activity between two activity
patterns using EC, IC, and IC & EC configurations. The values of indices are
represented in gray scale; black 0, white 1. (a), (c), (e) Left side panels show a
white diagonal band indicating a proper generation of a time-varying granular
activity population. EC presents a mean gray value of 0.18, IC leads to a
mean gray level of 0.101, and IC & EC leads to a mean gray value of 0.074.
(b), (d), (f) Right side panels show similarity indices for two contexts. The
darker the matrix is, the better uncorrelated activity patterns are. EC presents
a mean gray value of 0.024, IC leads to a mean gray value of 0.096, and IC
& EC achieves 0.044.

granule cell. When an input signal pattern arrives at the MFs,

a spatiotemporal activity pattern is generated and the popu-

lation of active neurons in the granule layer changes in time

according to this received input. In order to evaluate the non-

recurrence in this activation train, the following correlation

function (4) is used [31]:

C (t1, t2) =

∑

i

fi (t1) fi (t2)

√

∑

i

f 2
i (t1)

√

∑

i

f 2
i (t2)

(4)

where fi corresponds to the instantaneous frequency of the

ni neuron (frequency measured within a 20-ms time window).

The numerator calculates the inner product of the population

vector of active neurons at times t1 and t2, and the denom-

inator normalizes the vector length. C (t1, t2) takes values

from 0 to 1, 0 if two vectors are complementary, 1 if two

vectors are identical. To facilitate the production of accurate

corrective terms, different input signals shall generate different

spatiotemporal activity patterns. The following correlation

function is used to evaluate this point as indicated in (5):

C (t1, t2) =

∑

i

f
(1)
i (t1) f

(2)
i (t2)

√

∑

i

f
(1)2
i (t1)

√

∑

i

f
(2)2
i (t2)

(5)

where f
(1)
i and f

(2)
i denote the activities of the ni neuron at

time t under different input signals (1 and 2, respectively).

The left panels in Fig. 3(a), (c) and (e) shows the similarity

index using a t1 × t2 matrix within the active granular popu-

lation at t1 and t2. A wide white band, surrounding the main

diagonal, points out that the index decreases monotonically
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as the distance [t1–t2] increases. That means a one-to-one

correspondence between the active neuron population and

time. This implies that a dynamically active neuron activity

changing can represent the passage of time.

The right panels in Fig. 3(b), (d) and (f) show how different

input signals can be discriminated by different activity pat-

terns. The values of the similarity index are small suggesting

that the two represented activity patterns are independent of the

other one. Actual and desired entries of the IC configuration

vary during time leading to a richer codification within a single

context, while EC only uses desired entries varying along the

trajectory execution. On the other hand EC gives a better

granular activity codification between contexts by using its

specific contextual signals. IC has no specific entries helping to

distinguish activity patterns when using two different contexts.

IC & EC takes advantages from both configurations, it uses

the context and the position/velocity entries to produce a better

time-varying granular activity population.

E. Experimental Methods

We have carried out several experiments to evaluate the

capability of cerebellar architecture to select and abstract mod-

els using different cerebellar topologies. In these experiments,

objects which significantly affect the dynamics and kinematics

of the base plant model have been manipulated to evaluate

the performance of different cerebellar configurations. Finally,

we have also studied how interpolation/generalization can be

naturally done for different plant + object models which have

not been used during the training process. We divided the

experiments into the following groups.

1) Cerebellar input configuration including only context-

related signals (and desired arm states) (EC).

2) Cerebellar input configuration including only sensori-

motor representation (IC) (i.e., desired and actual arm

states).

3) Cerebellar input configuration including conjointly sen-

sorimotor and context-related signals (IC & EC).

For this purpose, we have used a set of benchmark trajecto-

ries that we repeat in each iteration and evaluate how learning

adapts the GR-PC weights to tune accurate corrective actions

in the control loop (Fig. 1).

F. Quantitative Performance Evaluation

The learning process performance is characterized by using

three estimates calculated from the mean absolute error (MAE)

curve. The accuracy gain estimates the error reduction rate

comparing the accuracy before and after learning. This esti-

mate helps to interpret the adaptation capability of the cere-

bellum when manipulating different objects, provided that the

initial error is different

Accuracy Gain = M AEinit ial −

[

1

n

n
∑

i=0

M AE( f inal−i )

]

;

n = 30. (6)
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Fig. 4. Multi-context simulation with changes in dynamics and kinematics
using EC cerebellar input. Each sample represents the MAE evolution (sum
of error at different joints) for a trajectory execution (trial) during learning
with no context-related signals and with explicit context-related signals.
(a) Manipulating two different loads with and without context signals. Explicit
context signals reduce 68.31% the final average error and 70.73% the final
standard deviation. (b) Equivalent end-segment of the arm has been rotated in
certain angles π/2 and π/4. The corrective torque values should compensate
these different deviations in each context (with and without activated context
signals). Explicit context switching signals reduce 62.04% the final average
error and 26% the final standard deviation.

The final error (average error over the last 30 trials)

Final Error =

[

1

n

n
∑

i=0

M AE( f inal−i )

]

; n = 30. (7)

The final error stability (standard deviation over the last

30 movement trials)

Final Error Stabili ty =

[

1

n

n
∑

i=0

σ
(

M AE( f inal−i )

)

]

;

n = 30. (8)

III. EXPERIMENTAL RESULTS

A. EC Cerebellar Input

The explicit context EC uses a set of MFs to explicitly iden-

tify the context, assuming that they carry information provided

by other areas of the CNS (such as vision which helps to

identify the correct model to be used) or even cognitive signals.

Therefore, a specific group of context-based MFs become

active when the corresponding context is present. In this way,

when a certain context becomes active, a GR population is

pre-sensitized due to the specific context-related signals. We

have randomly combined the sensor signals (desired position

and velocity) of the different joints and the context-related

signals (in the MF to GR connections) allowing granule cells

to receive inputs from different randomly selected MFs (at

the network-topology definition stage). In order to explicitly

evaluate the capability of these signals to separate neural

populations for different object models, each granule cell has

four synaptic input connections: three random MF entries

which deliver joint-related information and one MF which

delivers context-related signals. In this case, we have evaluated

the capability of the cerebellum model to efficiently use

these context-related signals to learn to separate models when

manipulating objects of different weights or different kinemat-

ics (deformation in the robot-plant end-segment) (Fig. 4).
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Fig. 5. Single-context simulation using EC and IC cerebellar input and
multi-context simulation with changes in kinematics and dynamics using
IC cerebellar input. (a) and (b) Manipulation of objects of different loads
(2 kg/1 kg) without context signals. Each sample represents the MAE for a
trajectory execution (trial). (c) MAE evolution during the learning process
in EC and IC with dynamics-changing contexts. Two contexts with different
loads are manipulated, switching every 15 trials. (d) MAE evolution for EC
and IC configurations and two contexts with different ending deformation
(kinematics change), switching every 15 trials.

B. IC Cerebellar Input

In this section, we define an implicit context encoding

approach (IC), where no context-identifying signals are used.

The sensor signals (actual position and velocity of the robot)

implicitly encode (through MFs) the context during object

manipulation. We have randomly combined the sensor signals

(position and velocity) of the different joints (in the MF to

GR connections) allowing granule cells to receive four inputs

from different randomly selected MFs. The context models are

distributed along cell populations. These cell populations are

dynamically changing during the learning process (because

the actual trajectory changes as corrective torque values are

learned and integrated). Each time a new context is activated,

the specific neural population is tuned due to the slightly

different sensorimotor signals during the trajectory execution.

The context switching in IC is done automatically and learning

is carried out in a non-destructive manner, learned contexts

are not destroyed (Fig. 5).The fact that IC transitions do not

need explicit contextual information may indicate that this

configuration allows interpolation between different learned

contexts. This capability is explored by making the cerebellum

learn two contexts alternately and then, presenting a new

intermediate context (Fig. 6).

As shown in Fig. 5, although EC has a faster convergence

speed, IC presents a lower final error (0.007 rad. average

final error in IC against 0.018 rad. in EC) and a more

stable behavior (0.002 rad. of standard deviation in IC against

0.006 rad. of standard deviation in EC) after the learning

process.
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Fig. 6. Multi-context simulation with changes in kinematics and dynamics
using IC cerebellar input. Interpolation capability. (a) After 450 trials of
15 iterations per context (2 kg/1 kg added alternatively to the robot arm),
a new 1.5 kg context is presented to the cerebellum. (b) After 450 trials of
15 iterations per context (the end-segment of the robot arm includes different
rotations: π/2 and π/4 angles alternatively), a new 5π/12 context is presented
to the cerebellum.

Accuracy gain, final error average and final standard devi-

ation are similar in IC and EC. EC develops a better inter-

context transition. Comparing EC with IC in a dynamic

context switching experiment, we obtain context switching

error discontinuities 47.6% larger and a standard deviation

24.7% higher in the EC explicitly canceling context switching

signals than in the IC configuration [Figs. 4(a) versus 5(c)].

This highlights the importance of actual sensorimotor signals

efficiently used in the IC configuration, compared to EC which

only used desired states during manipulation.

Finally, comparing EC with IC in a kinematic context

switching experiment, we obtain context switching error

discontinuities 32.85% larger and a final standard devia-

tion 16.71% higher in the EC without activating context

switching signals than in the IC configuration [Figs. 4(b)

versus 5(d) explicit context signals are efficiently used in

EC configuration].

C. IC Plus EC Cerebellar Input

In this section, we evaluate how the previous EC and IC

input representations are complementary. In this case, the

cerebellar architecture includes both inputs. The MFs arriving

in the cerebellum encode the desired states, the actual states

(positions and velocities), and also, context signals which

identify the current contexts.

In Fig. 7(c) IC & EC uses the pre-learned synaptic weights

obtained in previous contexts to deal with a new payload.

Nevertheless, sensorimotor state signals feeding MFs drive fast

to a new contextual adaptation. The kinematics interpolation

is not efficient [Fig. 7(d)], interpolation across kinematics

changes is not an easy task (not linear).

IC & EC configuration also becomes robust against incon-

gruent external context-related signals (for instance, extracted

from vision). As shown in Fig. 7(e), during each epoch,

the external context signal changes do not match the actual

object switching (i.e., the external context signal does not

remain constant while manipulating a 2 kg object and it

does not do it either when using a 1 kg object). Thus,

context 1 value in the first 2 kg-415-trial-context equals A and

context 2 value in the first 1 kg-15-trial-contexts equals B.
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Fig. 7. Multi-context simulation with changes in kinematics and dynamics
using EC, IC, and IC & EC cerebellar input. Interpolation of a new context
and robustness against incongruent contextual input signals. (a) Dynamics
correction task with different loads in the robot arm. (b) Kinematics correction
task with different deviations in the end-segment of the robot arm. (c) 1.5 kg
load is fixed to the end-segment of the robot. (d) 5π/12 rotation in the end-
segment of the robot is presented. (e) IC & EC configuration is able to avoid
non-congruent contextual signals. Context-related input signals are indicated
with highlighted colors in the x-axis of the plot.

In the following 15-trial-context switching trials, values A

and B are interchanged. The incoming external contextual

information is not congruent but, thanks to sensorimotor state

signals (actual position and velocity of IC configuration), the

cerebellum is able to deal with these “misleading” external

signals.

IV. CONCLUSION

We have proposed a new simple biologically plausible

cerebellar module which can abstract models of manipulated

objects that significantly affect the initial dynamics and also

kinematics of the plant (arm + object), providing corrective

torque values toward more accurate movements. The results

are obtained from object manipulation experiments. This

new cerebellar approach, with two representations, receiving

context-related inputs (EC) and actual sensory robot sig-

nals (IC) encoding the context during the experiments, has

been studied. The IC & EC cerebellar configuration takes

advantage of both configurations which complement each

other. Smoother inter-context transitions are achieved at a fast

convergence speed. It allows the interpolation of new con-

texts (different loads under manipulation) based on previously

acquired models. Moreover, a good learning curve profile in

long-term epochs can be achieved and finally, the capability

of “overcoming” misleading external contextual information,

making this cerebellar configuration robust against incongru-

ent representations (Fig. 7), is remarkable. Furthermore, the

results obtained with this kind of cerebellar architecture are

coherent with the experiments [32], [33]. Therefore, when

both representations congruently encode the context, they shall

complement each other, while when they are incongruent,

they interfere with each other. This is so because in the

implemented cerebellar architecture, context classification and

model abstraction tasks are carried out in a distributed manner.

No pre-classification process is executed to disambiguate

incongruent context identification. In our approach, we have

also evaluated how sensorimotor representation can overcome

incongruent incidental context-related signals (i.e., sensorimo-

tor representation dominating a context-related incongruent

signal).

In a classical machine learning approach, disambiguation

is usually explicitly done through a classification module

(decision making) that can be tuned to adopt a winner-takes-

all strategy and leads to a single context model to be recalled

even in this incongruent context representation. In biological

systems, this kind of pre-classification (disambiguation) mech-

anisms may be processed in other nervous centers, although

it may reduce the interpolation and generalization capabilities

of the cerebellar model presented.
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This work evaluates the capability of a spiking cerebellar model embedded in different loop architec-
tures (recurrent, forward, and forward&recurrent) to control a robotic arm (three degrees of freedom)
using a biologically-inspired approach. The implemented spiking network relies on synaptic plasticity
(long-term potentiation and long-term depression) to adapt and cope with perturbations in the manip-
ulation scenario: changes in dynamics and kinematics of the simulated robot. Furthermore, the effect
of several degrees of noise in the cerebellar input pathway (mossy fibers) was assessed depending on
the employed control architecture. The implemented cerebellar model managed to adapt in the three
control architectures to different dynamics and kinematics providing corrective actions for more accurate
movements. According to the obtained results, coupling both control architectures (forward&recurrent)
provides benefits of the two of them and leads to a higher robustness against noise.
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1. Introduction

The efficiency and complexity of animal movement

suggest that the biological motor controller does not

consider the articulated animal limbs as strings of

independent linked bodies. The necessary force for

coordinated animal movements, such as reaching and

walking, is smartly and conjointly determined for

each joint. Due to the nonlinear relationship between

joint forces and limb movements and the need to sat-

isfy certain constraints on a movement in different

controlling scenarios, biology seems to use advanced

controlling mechanisms of interest also to advanced

robotics.

Although numerous details of cerebellar micro-

circuitry have been determined, the functional con-

tribution of the cerebellum to the motor system

function remains an open issue. The complexity and

the sophistication of the primate motor control sys-

tem are overwhelming. This motor control is highly

multi-dimensional and non-linear, making its char-

acterization troublesome.1 However, the cerebellum

is commonly supposed to be responsible for timing,

fine-tuning, and coordinating the motor system.2–4

It is fair to think that emulating the functionality

of the cerebellar microcircuitry would allow the con-

trol of non-stiff-joint “robotic arms” properly driven
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with relatively low-power actuators (as is the case

of biological counterparts).5 Very diverse models

have been proposed and evaluated.6–11 The cerebel-

lum is usually divided into three parts. One region

that is mainly associated with the vestibular sys-

tem, another part related with the brainstem and

spinal cord, and a third region, the cerebrocerebel-

lum, that has extensive interconnections with the

cerebral cortex and is likely to be involved in motor

coordination.12 However, this knowledge about the

cerebellar cortex has not been used in robotics as

successfully as in biology.

The control function of any individual region of

the cerebellum relies both on its internal microcir-

cuitry and on the way it is connected with other

parts of the motor system.13,14 These connections

and their functionality still remain an open issue.15

The cerebellum is involved in a feedback loop for

muscle control. When the cortex sends a message

for motor movement to the lower motor neurons in

the brain stem and to the spinal cord, it also sends

a copy of this message to the cerebellum. This is

transmitted from the pyramidal fibers in the cortex

on the cortico-pontine-cerebellar tract to the cerebel-

lum. Additionally, the cerebellum also receives infor-

mation from muscle spindles, joints and tendons.16

Therefore, the cerebellum receives motor commands

and also, actual sensory signals. This allows the

extraction of corrective models on the “manipulating

arm” for accurate movements. Traditionally, when

considering the control system, it is assumed that the

efference copy of motor commands predicts the sen-

sory consequences of actions, including the sensori-

motor pathways delays (the spinal cord inverse model

transforms the torques into muscle tension) and also

allowing its integration with the sensory information

related with the actual state.17 The concept of inter-

nal feedback from an internal model of the arm (or

body)18–20 has been extensively accepted (known as

the forward model and formed in the cerebellum via

the cerebrocerebellar communication loop).

Furthermore, a wide range of cerebellar motor-

control-system approaches has been developed. This

is a very active research field (for a review, please,

refer to Ref. 10).

By using a forward model combined with an

inverse dynamics model, the efference copy of the

motor command output from the inverse model can

be used as an input for a forward model. A for-

ward dynamics transformation is able to predict the

dynamics of the muscles from the state of the system

and therefore, can be used to compute a controller

output.

On the other hand, it has been recently sug-

gested that cerebellar microzones typically receive

mossy fiber (MFs) inputs that are related to the out-

puts of those microzones.21 This configuration leads

to a rather modular scheme. This modularity seems

to facilitate the potential role of the cerebellum in

adding corrective signals on the sensory space rather

than onto motor signals. There are biological evi-

dences that suggest that motor cortex functionality

is heterogeneous allowing both control possibilities

(addition of corrective terms in both the sensory and

motor space).22 The cerebellum computing correc-

tive terms in the sensory space have motivated some

authors to suggest a different cerebellar control loop

which is called recurrent model.14,21

This biologically inspired cerebellar architecture

based on the cerebellar connectivity can deal with

the so-called distal error problem. The natural error

signal for learning motor commands is the differ-

ence between actual and correct commands (‘motor

error’). However, in autonomous systems, the correct

command is typically unknown. Only information

about the sensory consequences of incorrect com-

mands is available, which leads to an error repre-

sentation (based on sensory signals). This is related

to the motor error; however, this relation may be

complex. Therefore, sensory-based error estimations

are called ‘distal errors’. How to use this information

to drive motor learning is the distal error (or motor

error) problem.

These two cerebellar architectures have been pro-

posed as biologically-inspired approaches. Thus, it is

fair to think that both architectures may co-exist and

work together in the cerebellum developing a comple-

mentary functionality (see Fig. 1). This is the main

issue under study in this paper.

The configuration illustrated in Fig. 1 has

remarkable analogies with the classical inner loop/

outer loop control architecture (see Fig. 2).

The inner loop/outer loop architecture groups

many classical robot-control strategies from the

literature.23,24 This separation of the inner loop and

outer loop terms is important for several reasons; in
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Fig. 1. Biological circuitry projection of the recurrent-
forward control loops.

Fig. 2. Inner/outer control loop.

the inner loop, the calculation of the torque com-

mands (non-linear terms) is computed to achieve a

better precision and computation speed. Besides, the

structure of the inner loop control remains fixed;

what control designers may modify more freely to

customize the control system architecture is mainly

in the outer loop. Thus, the outer loop can be totally

modified without restrictions to achieve several other

goals without the need to modify the dedicated inner

loop control. For instance, additional compensation

terms may be included in the outer loop to enhance

robustness to parametric uncertainty, unknown

dynamics, and external disturbances or tracking of

task space trajectories instead of joint space trajec-

tories, regulating both motion and force. Drawing an

analogy between the inner/outer control loop and the

presented composed control architecture, the inner

loop corresponds to the forward architecture that

supplies the torque corrections and the outer con-

trol loop corresponds to the recurrent architecture

that supplies the position/velocity corrections.

This paper studies how an adaptive spiking

cerebellum-like module which includes long-term

depression (LTD) and long-term potentiation (LTP)

at parallel-fiber to Purkinje-cell synapses (PF-PC) is

embedded in diverse control loops (forward, recur-

rent, and a combination of both architectures) to

infer corrective models which compensate deviations

in the robot trajectory when the dynamics and kine-

matics of the controlled robotic arm are altered and

noise (related to the inherent noise of the muscle

spindle signal) is introduced in the cerebellar input

(MFs).25,26 The main goal of this work is a compar-

ative evaluation of these control architectures which

shows how forward and recurrent architectures com-

plement each other in the framework of a manip-

ulation task and how robustly they behave in the

presence of noise.

2. Methods

As was exposed in the introduction section, nowa-

days, biologically inspired neural processing is an

open issue where spiking neural networks play a fun-

damental role.27–36 For a comprehensive review on

spiking neural networks, please, refer to Ref. 37.

For extensive spiking network simulations, an

advanced event-driven simulator based on lookup

tables (EDLUT) has been further developed and

used.38,39

For the robot plant simulation and the evalu-

ated control loops, an interface between the EDLUT

and the simulator of the LWR (Light-Weight Robot)

developed at DLR (German Aerospace Center)40 has

been implemented. In this way, we were able to

evaluate robotic movements of the LWR manipulat-

ing different objects that significantly affected the

dynamics and kinematics of the robotic arm.

2.1. Robotic arm simulator

Different control loops have been integrated within

the robot plant simulator of the LWR.40 The
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simulated-robot-plant physical characteristics can be

dynamically modified to match different contexts.

The LWR robot is a 7-Degrees-of-Freedom (DOF)

arm consisting of revolute joints. For the sake of

simplicity, in our experiments, the number of actual

joints (degrees of freedom) has been reduced to three.

Specifically, the first (we will refer to it as Q1),

second (Q2), and fifth joint (Q3) have been used

and the others have been kept fixed. This robot is

especially suited for interactions with humans. In

this scenario, the use of robots based on low-power

actuators in order to reduce danger for humans in

case of malfunctioning is of special interest. Further-

more, the accuracy in position and trajectory is not

fully exploitable because of the dynamically changing

interaction characteristics (non-static and structured

scenario as is the case in other robotic control appli-

cation fields). Figure 3 includes a simple scheme of

the robot arm indicating the three non-fixed joints

used in our experiments.

2.2. Control scheme

Lee Miller in Ref. 41 proposes a cerebellar control

system based on a predictive signal (supplied by the

cerebellum) with the aim of giving progressive and

Fig. 3. LWR robot-arm. The three joints used in our
experiments are explicitly indicated, all other joints are
fixed.

proper motor control commands. According to this

approach, our first cerebellar control-loop model has

been developed as a forward (FD) cerebellar control.

In this control loop (see Fig. 4(a)), the desired

arm states (robot end-effector position at each time)

are generated by the trajectory planner to follow

the desired trajectory. This trajectory in Cartesian

coordinates is translated into joint coordinates (posi-

tions (Q), velocities (Q̇), and accelerations (Q̈)) by

the trajectory generator that consists of a crude

inverse kinematic model representing the output of

the motor cortex and other motor areas (while motor

cortex provides a basic command which is appro-

priate for slow single-joint movements, the cerebel-

lum provides the necessary correction for multi-joint

movements).26 In our experiment, the robot follows

the trajectory described in Eq. (1) (see Fig. 5).

Q1 = 0.1 sin(πt), Q2 = 0.1 sin(πt + θ),

Q3 = 0.1 sin(πt + 2θ).
(1)

In the forward architecture, these desired arm

states in joint coordinates are used at each time step

to compute crude torque commands (crude inverse

dynamic robot model). They are also used together

with the contextual information (which could be

obtained through visual, haptic information or cogni-

tive “labels” as model profiles) related to the manip-

ulated object, as input to the cerebellum model

which produces the predictive corrective commands

(τcorrective) that are added to these crude torque

commands (τdesired). Total torque (τ) is delayed (on

account of delays of the biological motor pathways,

this is δ1 in Fig. 4) and supplied to the robot plant.

The difference (ε) between the actual robot tra-

jectory and the desired one is also delayed (δ2 in

Fig. 4) and used by the teaching signal computa-

tion module to calculate the inferior olive (IO) activ-

ity that reaches the cerebellum through the climbing

fibers. This signal will be used by the cerebellum to

adapt its output as described in the learning process

section.

On the other hand, the presented recurrent archi-

tecture helps the cerebellum to find out temporal

regularities in trajectory distortions. In this way, the

cerebellum is able to compute predictive corrective

position and velocity commands to compensate the

deviation caused by the dynamic and kinematic mod-

ifications on the base-robot arm.
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(a) (b)

(c)

Fig. 4. Forward (FD), recurrent (RR), and forward&recurrent control loop (FD&RR). (a) In this FD control loop, the
adaptive cerebellar module is embedded in the forward control loop and delivers add-on corrective torques to compensate
deviations in the base dynamics and kinematics of the robotic arm model when manipulating different objects. (b) Recur-
rent control loop, the adaptive cerebellar model infers a model from the error signal related to a sensorimotor input
to produce effective corrective position and velocity add-on terms. In this way, instead of propagating data from input
to output as the forward architecture does, the recurrent architecture also propagates data from later processing stages to
earlier ones. (c) FD&RR control loop delivers add-on corrective actions to compensate deviations in the base dynamic and
kinematic robotic arm model when manipulating objects. In this forward&recurrent control loop, the adaptive cerebellar
modules infer a model of effective corrective position, velocity, and torque add-on terms from the error signal related to
sensorimotor input.

According to this hypothesis and based on the

control loop described in Ref. 14, the recurrent

control architecture shown in Fig. 4(b) has been

developed.

In the recurrent architecture (RR), the arm

states in joint coordinates are also used together

(joint related information) with the contextual infor-

mation (related to the manipulated object) as

input to the cerebellum which produces the pre-

dictive corrective position and velocity commands

(qcorrective, qdcorrective) which are added to the

desired position and velocity trajectory commands.

The final total torque computed by the crude

inverse dynamics and the error signal are handled

in the same way as the previously-presented forward

architecture.
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Fig. 5. Three-joint periodic trajectory describing 8-shaped movements: (a) Angular coordinates of each joint of the Light
Weight Robot, (b) 3D view of the robot end-effector trajectory in Cartesian coordinates. This 8-like trajectory ensures
a sufficiently rich movement that allows robot arm dynamics to be revealed.42 The interaction torque values generated
in a multi-joint movement demand a more complex cerebellar control task than a summed combination of single-jointed
movements.

These two cerebellar architectures have been pro-

posed as biologically-inspired approaches; thus, it is

interesting to study their potential complementary

role in a control correcting scenario. Therefore, the

developed forward&recurrent (FD&RR) architecture

as presented in Fig. 4(c) will be evaluated.

Under normal conditions, without extra mass

added to the robot end effector, the “crude inverse

dynamic robot” module calculates rough motor com-

mands to control the robotic arm. Under altered

dynamics conditions, in contrast, the rough motor

commands are very inaccurate to compensate for the

new undergone forces (inertia, etc.), and this leads

to distortions in the performed trajectories. During

repeated trials, the cerebellar model is able to learn

a corrective dynamics model for each manipulated

object and supplies:

(a) Corrective motor torques in FD architecture.

(b) Corrective trajectory positions and velocities in

RR architecture.

(c) Corrective motor torques and corrective tra-

jectory position and velocities in FD&RR

architecture.

2.3. EDLUT: Spiking neuron simulator

EDLUT is an open software platform which allows

fast event-driven simulation of relatively-complex

neural networks through an innovative method: the

neural network43 simulations are split into the two

stages; Cell behavior characterization: each neural

model included in the network (usually defined by

a set of differential equations which govern the neu-

ral state) is simulated for every possible neural state

and the consequent evolution of each neural state

variable is stored in lookup tables. Then, in a sec-

ond stage, when a simulation of a network containing

these models is required, it can be performed without

requiring a computationally-costly numerical proce-

dure for solving the differential equations defining

the neural model. EDLUT is used for the simulation

of the embedded cerebellar module.

2.4. Neural models

The simulated spiking network consists of two dif-

ferent integrate-and-fire (I&F) cell types.43 The

used cell models are a modified version of the

spike-response model (SRM) with synapses modeled

as input-driven conductance.44,45 Thus, the neuron

models account for dynamic synaptic conductance

rather than simply for constant current flows, pro-

viding an improved description over simpler I&F

models.46

The synaptic conductance follows a decaying

exponential function triggered by input spikes as
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stated in Eq. (2):

gexc(t) =

{

0, t < t0

gexc(t0)e
−

(t−t0)

τexc t ≥ t0
(2a)

ginh(t) =







0, t < t0

ginh(t0)e
−

(t−t0)
τinh t ≥ t0

(2b)

where gexc and ginh represent the excitatory and

inhibitory synaptic conductance. τexc and τinh rep-

resent the corresponding synaptic time constants.

Finally t0 represents the last spike time arrival

(already computed).38 This exponential representa-

tion has several advantages. Firstly, it is an effective

representation of realistic synaptic conductance. Sec-

ondly, each synapse type requires only a single state

variable per neuron, because the effect of input spikes

through several synapses of the same type can sim-

ply be recursively summed when updating the total

conductance if they have the same time constants.

Therefore, when an input spike is received at time t,

for example, through an excitatory synapse, its cor-

responding conductance gexc(pre−spike)(t) is abruptly

incremented in a term Gexc,j as described in Eq. (3):

gexc(post−spike)(t) = Gexc,j + gexc(pre−spike)(t). (3)

Gexc,j is the weight of synapse j (a similar relation

holds for inhibitory synapses) and gexc(pre/post−spike)

represents the excitatory synaptic conductance

before (pre) and after (post) the spike arrival,

respectively.

In our simulations, the synaptic parameters have

been chosen to represent excitatory AMPA-receptor-

mediated synapse time constants and inhibitory

GABAergic synapse time constants of cerebellar

granule cells.47–51 Note that different cells might

have different parameters (Table 1).52–55

The neuron membrane potential Vm at time t is

defined by differential Eq. (4).

Cm

dVm

dt
= gexc(t)(Eexc − Vm) + ginh(t)(Einh − Vm)

+ Grest(Erest − Vm). (4)

Where the conductance values gexc(t) and ginh(t)

integrate all the contributions received through

individual excitatory and inhibitory synapses respec-

tively, Grest represents the resting conductance, and

Table 1. Parameters of the cell types.

Parameter Granule cell Purkinje cell

Refractory period 1ms 2 ms
Membrane capacitance 2 pF 400 pF
∗Total excitatory 1 nS · 100 1.3 nS·

peak conductance ·175000 · 10%∗

Total inhibitory peak
conductance

1 nS · 200 3 nS · 150

Threshold −40mV −52mV
Resting potential −70mV −70mV
Resting conductance 0.2 nS 16 nS
Resting time constant

(τm)
10ms 25 ms

Excitatory-synapse
time constant (τexc)

0.5 ms 0.5ms

Inhibitory-synapse time
constant (τinh)

10ms 1.6ms

Note: Parameters obtained from the following papers:

Granule cell (GrC)47–51 and Purkinje cell (PC)52–55.

*Where 10% means the ratio of active connections PF-

PC (out of the total 175000 PFs).

Eexc, Einh, and Erest represent the corresponding

reversal potentials. Equation (4) is amenable to

numerical analysis. In this way, Vm, gexc, and ginh,

can be calculated for a given time after a previous

neural state or input spike allowing the event-driven

simulation scheme. The firing time (tf ) is the time

when the membrane potential (Vm) reaches the fir-

ing threshold (Vth) and an output spike is emitted.

It can be calculated from the membrane potential

evolution.

Table 1 shows the equation parameters corre-

sponding to the two neural models used in the sim-

ulated cerebellum.

2.5. Cerebellum model

Two different cerebellar module configurations based

on the scheme of Fig. 6 have been used. The first one

corresponds to the previously called forward control

architecture providing corrective torque terms and

the second one corresponds to the recurrent control

architecture providing corrective terms in the sen-

sory space. Here we briefly indicate the different cere-

bellar module layers:

(i) Mossy fibers (256 fibers) (MFs): Mossy fibers

carry both contextual information and joint sen-

sory information related to desired and actual

positions and velocities. An MF is modeled as a



392 N. R. Luque et al.

Fig. 6. Cerebellum model scheme. In FD and RR con-
figurations, the cerebellar input, which encodes both the
desired and actual position and velocity of each joint dur-
ing the trajectory, is conveyed (upward arrow) through
the mossy fibers (MFs) to the granular layer (crossed
arrow indicates a random connectivity, i.e. each Granular
cell receiving four randomly chosen MFs). Inputs encod-
ing the error are sent (upper downward arrow) through
the inferior olive (IO). Cells of the deep cerebellar nuclei
(DCN) collect activity from the MFs (excitatory inputs)
and the Purkinje cells (inhibitory inputs) and provide the
cerebellar outputs (lower downward arrow). The DCN
output is added as a corrective activity in the control
loop. In the forward-architecture the output is added as
corrective torques to the control torques (Fig. 4(a)). In
the recurrent-architecture cerebellum configuration, the
output is added as trajectory corrections (in position and
velocity) in the control loop (Fig. 4(b)). Both outputs
work complementarily in Fig. 4(c).

leaky I&F neuron, whose input current is cal-

culated using overlapping Gaussian functions

as receptive fields on the input-variable value

space.39 This is carried out by modeling the con-

tribution received from muscle or skin related

afferents at a high level of abstraction. This

cerebellar input layer (MFs) has been divided

into 14 groups of fibers: 12 groups of twenty-

grouped fibers encode both actual and desired

joint velocity and position sensor information;

the other 2 groups encode the context. The

explicit contextual information is encoded by

these 2 groups of eight-grouped cells (16 context

input fibers). These MFs encode information

assumed to be received through other sensory

systems (such as vision). Each different context

Fig. 7. Granular layer model. Explicit and Implicit con-
text encoding approach.59 Each granule cell receives exci-
tation from an explicit-context-encoding fiber and three
other randomly chosen MFs from the current and desired
position and velocity groups.

(object under manipulation) activates differ-

ently this population of neurons. Figure 7 illus-

trates this input connectivity.

(ii) Granular layer (1500 cells) (GR): A simpli-

fied granular layer of the cerebellum has been

designed with the purpose of obtaining suit-

able signals at parallel fiber (PF) signals. The

information provided by MFs is transformed

into a sparse representation that facilitates dis-

crimination of very similar inputs in the large

granule cell (GR) layer, 56 in which each cell

receives four excitatory connections: three con-

nections from randomly chosen joint-related

MFs groups and the other one, from a context-

related MF group. PFs are the output of this

layer. The sensorimotor corrective models are

learned and stored as weight values at the

PF-PC connections.

(iii) Climbing fibers (CF) (48 climbing fibers in for-

ward architecture, 96 climbing fibers in recurrent

architecture): This layer consists of 6 groups of

CFs. In recurrent architecture, each group is

composed by 16 CFs (each of them is subdi-

vided in 2 subgroups of 8 CFs). In the forward

architecture, each group is composed by 8 CFs.

Each CF carries the teaching spikes (obtained

from error signals) from the IO to a Purkinje

cell.
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(iv) Purkinje Cells (PC) (48 Purkinje cells in for-

ward architecture) (96 Purkinje cells in recur-

rent architecture): In the forward architecture,

this layer is divided into 6 groups of 8 cells.

In the recurrent architecture, this layer is com-

posed by 6 groups of 16 PCs; each group is also

subdivided into 2 subgroups of 8 Purkinje cells.

Each granule layer cell is connected to 80 per

cent of PCs. Each PC receives the teaching sig-

nals used for the synaptic plasticity from a CF.

Every two PCs; a cell of the deep-cerebellar-

nuclei is inhibited. The PF-PC synaptic conduc-

tances are set to an initial value (15nS) at the

beginning of the simulation, and are modified

by the learning mechanism during the training

process. This value is significantly lower in the

corresponding rat cerebellum synapses.57 How-

ever, a reduced version of the cerebellum (1500

GRs) is being modeled; therefore, each PC only

receives activity from 1200 PFs (80% of GR). In

a full model of the cerebellum, each PC should

receive activity from 150000PFs.58 Therefore,

PF-PC weight values have been scaled in order

to obtain a similar PC excitation.

(v) Deep Cerebellar Nucleus cells (DCN) (24 DCN

cells in forward architecture) (48 DCN cells in

recurrent architecture): In the forward model,

the cerebellum output is generated by 6 groups

of these cells (2 groups per joint) whose activ-

ity provides corrective actions to the specified

arm commands. Each neuron group in the DCN

receives excitation from every MF and inhibi-

tion from the two corresponding PCs. In this

way, the sub circuit PC-DCN-IO is organized in

six microzones. In the forward architecture, the

cerebellar corrective output (torque) for each

joint is encoded by a couple of these groups. One

group is dedicated to compensate for negative

errors (agonist) and the other one is dedicated

to compensate for positive errors (antagonist).

In the case of the recurrent architecture, the

cerebellum output is generated by 6 groups of

these cells; 3 groups correspond to the joint–

position corrections (one group per joint) and

the other three groups correspond to the joint–

velocity corrections. Each group is subdivided

into 2 subgroups (of 4 cells); one subgroup han-

dles positive error corrections and the other one

handles negative error corrections.

2.6. Learning process

Although there seems to exist adaptation processes

at several sites within the cerebellar circuitry,60,61

one of the main synaptic adaptation mechanisms

(induced by CF activity) seems to be the long-

term depression (LTD) at PF-PC synapses62,63 that

has been correlated to cerebellar motor learning.64

Therefore, the IO output (CF activity) is interpreted

as an error-related signal 65–68 which drives this plas-

ticity. When the conductivity of a PF-PC synapse

becomes very low by this adaptation, the correspond-

ing PC will not inhibit its corresponding deep cere-

bellar nucleus cells.56,69 Another type of plasticity,

long-term potentiation (LTP), which occurs at the

same site, does not require the activation of CF70

and compensates the effect of LTD.

Spike-timing-dependent plasticity (STDP) mech-

anisms to reproduce these adaptation processes have

been implemented.71 Since LTD synaptic plastic-

ity requires the co-activation of PF and CF input,

every time a CF spike is received by a PC, the

conductance of all PF synapses corresponding to

that PC are decreased according to Eq. (6a). That

is, the past spike activity received through each

PF is convolved with the integral kernel defined by

Eq. (5) and the result is used to obtain the corre-

sponding conductance decreases. This integral ker-

nel, which correlates the IO and PF activity, was

designed in such a way that it shows a peak at 100

milliseconds72–74; which makes the PF activity that

was received 100ms before the CF spike relevant.

This time delay matches the sensorimotor delays of

our system (see Fig. 4). After this mechanism is

repetitively activated, when the same pattern of PF

activation appears, the PC will not become active

and the corresponding DCN will produce activity

recognizing the learned pattern. The opposite adap-

tation process (LTP) is implemented by increasing

the weight of a PF-PC synapse each time it trans-

mits a spike as defined in Eq. (6b).39,43,68,71

k(t) = e−(
t−t0

τ
) sin

(

2π

(

t − t0

τ

))20

. (5)

LTD : ∀ i, ∆wi

= β

∫ IOspike

−∞

k(tIOspike − t)δ(t)PFi
dt. (6a)

LTP : ∆wi = α. (6b)
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Where t0 is a time constant determined by the bio-

logical path delay which is fixed to 100ms and τ is a

time reference which is set to 1 s in order to normalize

the arguments in the learning rule. ∆wi represents

the synaptic weight increment at the ith PF reaching

that PC, tIOspike stands for the time in which the cor-

responding CF transmits a spike, δ(t)PFi is a Dirac

delta function which represents the activity in the ith

PF (1 when the PF carries a spike, 0 when it does

not). Finally α and β are constant values that modu-

late the synaptic weight changes at PF-PC synapses

(α = 0.005 and β = −0.1).

2.7. The error signal drives teaching
signal

The trajectory position/velocity error is used to cal-

culate the teaching signal. This teaching signal fol-

lows Eq. (7).

εpositioni
= (Qdesiredi

− Qactuali)[(t + tdelays) − ti].

εvelocityi
= (Q̇desiredi

− Q̇actuali)[(t + tdelays) − ti].

i = 1, 2, . . . n, joints

(7)

And the computed error in the forward and recur-

rent architectures is given by Eq. (8).

FDεdelayedi
= kpi · εpositioni

+ kvi · εvelocityi
;

RRεpdelayedi
= kpi · εpositioni

;

RRεvdelayedi
= kvi · εvelocityi

i = 1, 2 . . . n, joints.

(8)

Where kpi · εpositioni represents the product of a con-

stant value (gain) at each joint and the position error

in this joint (difference between desired joint position

and actual joint position (Qdesired − Qactual)).

kvi · εvelocityi represents the product between a

constant value (gain) at each joint and the velocity

error in this joint (difference between desired joint

velocity and actual joint velocity (Q̇desired−Q̇actual)).

Position/velocity error signals are delayed to

align them in time according to biological delay path-

ways (tdelays represents the signal delays in the con-

trol loop). Biologically speaking, this time-matching

of the desired and actual joint states can be explained

by the fact that the trajectory error would be

detected at the level of the spinal cord, through a

direct drive from the gamma motoneurons to the

spinal cord.75

IO cells respond with probabilistic Poisson pro-

cess encoding the teaching signal into a low frequency

probabilistic spike train (from 0 to 10Hz, average

1 Hz).76

2.8. Decoding the cerebellar output

The output variables τcorrective (in the FD configura-

tion) or (q, q̇)corrective (in the RR configuration) are

extracted from the firing rates of the DCN belonging

to the related population, Eq. (9).

τ
+/−
corrective/(q, q̇)

+/−
corrective =

4
∑

j=1

v̄j(t). (9)

Where v̄j(t) is the firing rate of neuron j at time

t, and the over-line indicates that the measures

are averaged over a sliding time window of 100ms,

inspired by the low frequency filtering performed by

motoneurons.

2.9. Experimental methods

Firstly, the behavior of different control architectures

has been studied in a noisy scenario by using a Gaus-

sian/uniform additive white noise on MF input sig-

nals. Table 2 indicates the different tested levels of

noise.

The MFs signals are driven when an animal per-

forms different activities. When an arm is moved

along a learned trajectory, this arm movement is

accompanied by predictable changes occurring pri-

marily in MFs inputs reporting kinesthetics of this

movement. Noise on the produced neural control sig-

nal (which may vary the firing time of motor neu-

rons) will cause deviation in actual trajectories from

the desired ones: Q(t) = Qdesired(t) + ε(t) where

Qdesired represents the desired trajectory/velocities

to be followed. We have studied how the system

behaves against two noise models (Table 2): (a) ε is a

random signal with uniform distribution and a non-

repeatable seed, (b) ε is a random signal with Gaus-

sian distribution and zero mean. Although Golgi cells

Table 2. Noise levels on mossy fiber signals.

SNR = 10 log
E[x2(n)]

ε2(n)
Uniform Gaussian

distribution distribution

Noise 1x 32 dB 23 dB
Noise 2x 18 dB 15.5 dB
Noise 4x 4 dB 8dB
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seem to play a crucial role in removing noise,77 the

evaluated cerebellar circuitry may help to accomplish

this task.

Different added noise levels were checked. The

used Signal-to-Noise-Ratio can be seen in Table 2.

In addition, different experiments have been also

carried out to evaluate how different biologically-

inspired control architectures work by abstracting

models and switching between different contexts

with a suitable cerebellar configuration.

3. Results

3.1. Noise on MF input

The learning process is evaluated by using the Mean

Absolute Error (MAE) curve. For the calculation

of the MAE of a trajectory execution, the addi-

tion of the error in radians produced by each joint

independently along the whole trajectory has been

used. 800 trials of the defined 8-shaped trajectory

using the FD, RR, and FD&RR control-loop archi-

tectures have been executed. The robot end effector

was loaded with 2 kg to increase the inertia (thus, the

initial dynamics model needs to be corrected through

learning).

Figure 8 shows the global mean absolute error

(MAE) evolution obtained from the robot joint coor-

dinates in radians. The noise was set to 1x, 2x, and

4x and was generated from a uniform distribution (a,

b, and c plots, respectively) and a Gaussian distri-

bution (d, e, and f plots).

As it is shown in Fig. 8, FD&RR architecture

remains more stable against random noise than FD

and RR architectures used independently. When the

random noise level is 1x, FD and FD&RR responses

are similar, but the more noise there is, the better

response is obtained in FD&RR compared to RR and

FD. In Figs. 8(b) and 8(c), it is easy to see that the

convergence speed and output stability is better in

FD&RR. FD&RR uses both configurations in a com-

plementary way, to support FD with the corrections

provided by RR. This causes FD&RR to have more

stability and better performance when the noise is

higher.

White Gaussian noise (Figs. 8(a)–8(c)) allows a

good precision in the cerebellum output correction

(torque predictions); prediction errors remain highly

delimited around mean values. The probability den-

sity function has its maximum value at the mean,

that is, during the learning process, the generated

noise values tend to accumulate around the mean,

the cerebellum learns this tendency and compen-

sates it. In contrast, white uniform noise (Figs. 8(d)–

8(f)) makes prediction torques less accurate since its

probability density function does not have a single

maximum value (thus, this is a harder task). The

generated noise values do not tend to accumulate

around any specific value therefore; the cerebellum

cannot easily abstract any tendency information.

3.2. Context switching between two
dynamic/kinematic models

Firstly, a set of experiments have been executed to

study the capability of the cerebellar model to infer

different corrective models when the dynamics of the

robotic arm is modified by manipulating different

objects using FD, RR, and FD&RR architectures.

During a first learning process, the robot was loaded

with a 1kg weight and executed 450 trials of the

8-like trajectory (Fig. 9(a)). During a second learn-

ing process, the robot was loaded with a 2 kg weight

(Fig. 9(b)).

As shown in Figs. 9(a) and 9(b), FD&RR archi-

tecture takes advantage of both configurations; it

uses the cerebellar corrections in torques and in posi-

tions and velocities to provide a better profile in the

obtained MAE curves.

In order to evaluate the ability of the cerebellar

module to infer and store different corrective mod-

els simultaneously using different control-loop archi-

tectures, an experiment in which the dynamics of

the robotic arm is changed during the learning pro-

cess every 15 trials has been carried out. The context

alternates between manipulating a 2 kg object and a

1 kg object (Fig. 9(c)). The context-related cerebellar

input is supplied with different signals in each con-

text to enable the cerebellum to differentiate both

contexts allowing different models (contexts) to be

efficiently learned and retrieved in a non-destructive

manner. Finally, the three different proposed control

architectures (RR, FD, and FD&RR) are compared

in a kinematic context switching scenario (Fig. 9(d)).

This kinematic context switching scenario consists of

a deformation of the end-effector (angle).

In RR architecture, the relationship between the

produced robot-arm state error and the cerebellar

output is direct, the cerebellum receives the position

and velocity error-related signals, which are properly
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Fig. 8. Accuracy evolution of the three control architectures (FD, RR, and FD&RR) when introducing noise on input
signals of MFs. Mean absolute error (MAE) of the joint coordinates in radians of the robot loaded with a 2 kg weight using
forward, recurrent, and FD&RR architectures during a learning process of 800 trials of the 8-like trajectory execution.
(a), (b), and (c) correspond to 1x, 2x, and 4x additive noise respectively using a uniform distribution. (d), (e), and (f)
correspond to 1x, 2x, and 4x additive noise respectively using a Gaussian distribution.

provided by CFs, and cerebellar outputs consist

of trajectory corrections of position and velocity,

being these input and output dimensions equivalent.

Therefore, the cerebellum does not need to imple-

ment a complex model representation translation.

With this dimension matching, the cerebellum is able

to learn and provide a quick response (a faster con-

vergence is obtained in RR than in FD in Figs. 9(a)

and 9(b)). Nevertheless, our crude inverse dynamic

robot models need to be fed with clean and con-

tinuous corrected inputs in order to supply accu-

rate torque values which command the robotic arm

properly. Due to these required input characteristics

of this dynamic model, the final torque commands in

RR architecture are not as good as the ones deliv-

ered by the FD architecture (the RR MAE error

curve is less stable than the FD case). The accuracy

of the cerebellum corrective output involves making

a trade-off between number of cells and simulation

time.

In the FD architecture, the accuracy is not

improved by correcting the input of the robot crude

inverse dynamics; the cerebellum supplies torque

command corrections almost directly to the robotic

arm (see Fig. 4(a)). However, in the FD architecture,

the relationship between the produced robot-arm

state error and the cerebellar output is not straight-

forward. The position and velocity error signal is
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Fig. 9. Accuracy evolution of the three control architectures with and without context switching. Mean absolute error
(MAE) of the robot joint coordinates in radians using FD, RR, and FD&RR architectures executing the 8-like trajectory.
(a) and (b) The context is not changed: The robot manipulates a 1 kg object and a 2 kg object respectively during a
450-trial learning process. (c) The dynamics of the robotic arm is alternately changed between the two contexts every
15 trials. In the first context, the end segment of the robot arm is loaded with a 2 kg object. In the second one, it is
loaded with a 1kg object. (d) The kinematics of the plant is alternately changed between two contexts every 15 trials:
in the first context, the robot must follow the trajectory using an end segment which is deformed 5π/12 radians. In the
second one, the robot end segment is deformed π/6 radians (this corresponds to kinematics changes that may be caused
by manipulating an object of a certain length).

conveyed by CFs while cerebellar output supplies

torque corrections. These input and output dimen-

sions are not equivalent, the cerebellum learning task

is of higher complexity. Thus, the learning conver-

gence is slower but the command torques are more

precise (FD MAE error curve is more stable than the

one of the RR architecture).

Again, FD&RR combines the advantages of both

the RR and the FD architectures. It has a high

convergence speed and good output stability after

learning. FD&RR uses the position and velocity

corrections given by RR to facilitate the FD torque

correction task, and they mutually complete each

other.

Figure 9(c) shows the MAE evolution of a 900-

trial learning process. It is shown that the learning

is performed in a non-destructive manner since once

the final error for each context is reached, this error

value is maintained stable when the context changes

(therefore, the previously-learned context model was
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not destroyed). This feature relies on the separation

capability of the granular layer for sensory signals

related to different contexts. Again, FD&RR reaches

a better behavior compared to RR and FD architec-

tures (Fig. 9(c)). FD&RR allows better inter-context

transitions (error peaks between two different con-

texts are almost negligible because of its superior

convergence speed (thanks to the RR loop)) and it

also achieves a better final stability.

The MAE evolution of a 900-trial learning pro-

cess is shown in Fig. 9(d). The results are simi-

lar to the dynamics context-switching scenario, in

single-context learning (as we have within 15 iter-

ations), high convergence speed, and good per-

formance learning curve profile in the long term

seem to be desirable aims. RR makes the transi-

tion between contexts softer; in the long term, no

transition peaks are observed. When the kinemat-

ics of the robotic plant changes, no inertia ten-

sors are involved, so the “crude inverse dynamic

robot model” module has an easier task in com-

puting the proper new torques. On the other hand,

FD provides a better curve performance than RR

(no crude inverse dynamic robot model is involved

in processing the cerebellum output). As shown in

Fig. 9(d), FD&RR configuration takes advantage of

both loops obtaining smoother transitions between

contexts and a good learning curve profile in long the

term.

4. Conclusions

This work has focused on studying biologically-

inspired robot-arm control architectures under

dynamic and kinematic perturbations of the manip-

ulation scenario. Furthermore, it has evaluated

different control loops (RR, FD, and FD&RR) in

several noisy scenarios. A cerebellar adaptive mod-

ule embedded in these loops could effectively provide

torque/position&velocity corrections to compensate

for deviations in the dynamics/kinematics of a base

robotic arm model (due to the manipulation of dif-

ferent objects and deformations of the end effector)

increasing the movement accuracy.

The cerebellar model included an input represen-

tation which encodes context-specific inputs and cur-

rent sensory signals encoding the actual arm states

during the experiment.

It has been evaluated how a temporal-correlation

kernel driving an error-related LTD and a com-

pensatory LTP component (which complement each

other) can achieve an effective adaptation of the cor-

rective cerebellar output.

The obtained results indicate that coupling both

control loop architectures (FD&RR) leads to a high

robustness against noise. Employing the recurrent

architecture (RR) to ensure a faster convergence in

learned profile curve dynamics has been combined

with exploiting the fact that the forward architec-

ture (FD) provides a better accuracy gain and out-

put stability in a noisy scenario.

In the same way, the results demonstrate that

the composite control architecture in context switch-

ing has the capability to infer and store different

corrective models simultaneously under dynamic/

kinematic modifications better than FD or RR con-

figurations on their own.

The assumption that the cerebellum is involved

in forward modeling for motor control is familiar

in the literature.78,79 Our results suggest that both

FD and RR loops could be present in the biological

motor control in order to achieve a better perfor-

mance. In fact, this proposed architecture (FD&RR)

is compatible with several neurophysiological find-

ings. Firstly, several studies have reported relations

between motor cortex activity and various kine-

matic parameters of the motor output such as dis-

tance and speed80–82 as well as parameters related

to the dynamics of the movement.22 As the motor

cortex has been described as one of the targets of

the cerebellar output,83 the cerebellar output could

influence these kinematic (RR loop) and dynamic

parameters (FD loop). And secondly, results of virus

tracing studies have shown that the regions of the

cerebellar cortex that receive input from the motor

cortex are the same as those that project to the

motor cortex.84 These observations suggest that sev-

eral closed-loop circuits may be present in the cere-

brocerebellar circuits as it occurs in the FD&RR

architecture.

As future work, the scalability of these cerebellar

configurations, the potential role of new nervous cir-

cuits, such as the cuneate nucleus and Golgi cells in

noisy scenarios, other kinds of plasticity, and cell fea-

tures and finally, scalability on the number of robot-

plant joints will be studied.
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In biological systems, instead of actual encoders at different joints, proprioception signals are acquired through 

distributed receptive fields. In robotics, a single and accurate sensor output per link (encoder) is commonly used to 

track the position and the velocity. Interfacing bio-inspired control systems with spiking neural networks emulating 

the cerebellum with conventional robots is not a straight forward task. Therefore, it is necessary to adapt this one-

dimensional measure (encoder output) into a multidimensional space (inputs for a spiking neural network) to 

connect, for instance, the spiking cerebellar architecture; i.e. a translation from an analog space into a distributed 

population coding in terms of spikes. This paper analyzes how evolved receptive fields (optimized towards 

information transmission) can efficiently generate a sensorimotor representation that facilitates its discrimination 

from other “sensorimotor states”. This can be seen as an abstraction of the Cuneate Nucleus (CN) functionality in a 

robot-arm scenario. We model the CN as a spiking neuron population coding in time according to the response of 

mechanoreceptors during a multi-joint movement in a robot joint space. An encoding scheme that takes into 

account the relative spiking time of the signals propagating from peripheral nerve fibers to second-order 

somatosensory neurons is proposed. Due to the enormous number of possible encodings, we have applied an 

evolutionary algorithm to evolve the sensory receptive field representation from random to optimized encoding. 

Following the nature-inspired analogy, evolved configurations have shown to outperform simple hand-tuned 

configurations and other homogenized configurations based on the solution provided by the optimization engine 

(evolutionary algorithm). We have used artificial evolutionary engines as the optimization tool to circumvent non-

linearity responses in receptive fields. 

Keywords: Receptive Field, Evolutionary Algorithm, Parallelism, Population Coding, Cuneate Nucleus, Spiking 

Neural Network, Robot.

1.  Introduction 

There is an active interdisciplinary field called 

Neurobotics in which actual robots are controlled by 

bio-inspired neural processing engines. Besides other 

potential applications, this kind of set ups are important 

for understanding neurobiological computational 

principles (system neuroscience), specifically, some 

issues under study are how sensorimotor representations 

are integrated and efficiently used in accurate 

manipulation tasks,
1-3
 how spike timing based on 

different sensory representations can help to enhance 

information transmission
4,5
 and be efficiently used by 

biologically plausible neural systems 
6-12

 (such as 

cerebellar-like structures).
13
 

It is well known that the cerebellum constitutes a 

fundamental part in motor systems.
13-17

 The cerebellum 

is fed by inputs from the cerebellar cortex, providing a 

contribution in fast and precise movements.18 This is 

crucial in the fine control of the temporal evolution of 

fast ballistic movements,
19
 that is, extremely fast 

movements that are impossible to be modified by 

feedback circuits because the complete movement 

muscle sequence control has to be planned in 

advance.
20,21

 

Furthermore, taking a look at the current research in 

robot labs, a new trend in constructing and controlling 

light-weight compliant robot arms 
22-24

 which mimic 

human arms can be seen. Such new robotic features 

pursue the search of new ways of control. In fact, 

controlling the dynamics of any of these kinds of robot 

arms is an open issue (there is no general established 

methodology developed yet).
25
 Since the cerebellum 

combines sensory information with the physical current 

state to generate motor signals, it is a proper candidate 
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for studying how these controlling problems are solved 

by nature. In that sense, cerebellum architecture, as a 

control scheme, has received much attention in the 

literature and different cerebellum computational models 

have been developed. Among others, the Cerebellar 

Model Articulation Controller (CMAC),
26
 the Adjustable 

Pattern Generator (APG),
27
 the Schweighofer-Arbib 

Model,
28
 or the Multiple Paired Forward-Inverse 

Model
29,30

 represent good state-of-the-art examples. All 

these models have something in common: they try to 

mimic the functionality of the cerebellum by making an 

abstraction of the cerebellum structure while keeping 

robotic control theory in mind. As a result, the 

approximations mentioned above configure their 

sensorimotor inputs to enhance their control aims. 

The cerebellum supervises and supplies corrective 

adjustments in motor commands31,32 which are generated 

in other encephalon zones. It receives continuous 

information from peripheral body parts (position, 

movement rhythm, interacting external forces, etc…) 

and, according to sensorial information, compares the 

physical state of each body part against the desired state 

which the motor system is trying to achieve.
33-35

 In the 

framework of errors (detected through this continuous 

comparison), proper corrective signals are transmitted to 

the motor system increasing or decreasing specific 

muscle activity.
36
 The cerebellar sensorial input is 

carried by mossy fibers
37
 (MFs), which constitute one of 

the major cerebellar afferent systems.
38
 MFs carry 

information from different sources; MFs from the 

pontine nuclei report on motor and sensory areas of the 

cerebellar cortex,
39-43

 MFs from cells in the CN handle 

information from forelimb muscle spindles
44
 related to 

position and movement,
45,46

 MFs from collaterals of 

cortical fibers carry a copy of descending motor 

commands to the cerebellum, and finally, MFs from the 

visual cortex supply information about movements in the 

visual space.
47
 Therefore, different kinds of MFs drive 

detailed information related to the external world and the 

desired/actual body movements/positions. As a result of 

that, it can be postulated that sensorial cerebellum inputs 

play a critical role in cerebellum functionality. 

Our system uses neural population coding
48
 for 

sensorimotor representation. Each neuron presents a 

distribution of responses over some set of inputs, and the 

responses of many neurons are combined to determine 

some information about the input state.
48,49

 Using this 

kind of coding, each input stimulus is represented by a 

set of spikes. However, the occurrence of these spikes 

strongly depends on the current generated by sensors 

and on which spikes subsequently reach the first-layer 

cells.  

In a reaching movement, the arm direction is 

encoded by means of neurons whose input current 

changes with the cosine of the difference between the 

stimulus angle and the cell’s preferred direction
50
 

(Cosine tuning). Each population vector cell contributes 

a vector in the direction of its preferred direction in 

relation to its current. Nevertheless, a simple reaching 

movement involves extracting spatial information 

including visual acquisition of the target, coordination of 

multi-modal proprioceptive signals, and a proper motor 

command generation to drive proper motor response 

towards the target.
51
 Usual reaching movements towards 

a target that we have already seen involve an internal 

representation of the target and limb positions, and also 

a coordinate transformation between different internal 

reference frames. A spiking population coding seems to 

be the best way to encode sensorial information to be 

consistent with biological control requirements.
52, 53

 This 

is also important to allow system level studies for the 

evaluation of the cerebellum functionality in the 

framework of accurate movement experiments. 
1,2
 

However, the integration of computational models 

with neurophysiologic observations in order to 

understand the main problems in motor control requires 

not only the cerebellum functionality to be considered 

(as is done in the CMAC, APG, and other approaches) 

but also, its biological architecture (cell-network) has to 

be taken into account. A necessary translation from 

analog domain sensor signals into spike based patterns 

compatible with a spiking cerebellar network needs to be 

developed. 

This paper tries to reveal the best way in which 

sensorimotor information in a common robot scenario 

can be handled to investigate an optimal encoding in 

terms of somatosensory information.  

To that aim, the followed methodology can be 

briefly described at the following points: 

 

(i) Firstly, we consider the execution of a biologically 

relevant reaching movement in a robot arm 

scenario. With that purpose, different trajectories 

are defined over a joint space. A biologically 

plausible translation from joint position/velocity 

measures to their corresponding spike train 

representation has been defined. Population coding 
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and tuning curves are used to be consistent with 

reaching arm movements.  

(ii) In order to make previous codifications more 

accurate, a bio-inspired Evolutionary Algorithm 

(EA) which optimizes the receptive fields towards 

maximizing sensorimotor information and state 

discrimination has been used. The combinatorial 

space to be explored towards an optimization is 

enormous; the EA seems to be the proper tool that 

unifies biology evolution and an optimization 

procedure.
54
 

(iii) Finally, the performance of the sensorial 

representations using different measures that take 

into account metrical properties of the spike train 

space has been evaluated. 

Therefore, the paper uses a new methodology in 

which an EA is used as an optimization engine towards 

reaching an efficient sensory representation to be further 

processed at the spiking based cerebellum. As a result, in 

this case, an EA is used for reverse engineering an 

abstraction of a biologically plausible model. Rather 

than finding an optimal fitness value of the cost 

function, the goal is to arrive at an efficient solution in 

terms of receptive fields in the sensory space. The cost 

function includes actual trajectories, which makes the 

experimental set up heavier but also more informative, 

enhancing the usefulness of the searching methodology 

carried on by the EA.  

2. Materials and methods 

This section describes the principles of the proposed 

methodology. An answer to different issues explicitly 

indicating what/why/how and the basis of the proposed 

approach is given. 

2.1.  Target reaching trajectories 

Anthropomorphic robotic arms, mimicking human arms, 

usually consist of three links (arm, forearm, and hand) 

which are connected with each other using motorized 

joints (shoulder, elbow, and wrist). Reaching involves 

bringing the endpoint of the robot arm to a desired target 

position. Therefore, the aim is to “connect” two points, 

the initial point, defined by the actual endpoint robot 

arm position and the final point, defined by the endpoint 

robot arm target position. The control system leads the 

sequence of motor actions to achieve the target. In a 

robotic arm (due to the redundancy in the degrees of 

freedom), there is an infinite number of possible 

trajectories that allow the arm to reach any given target 

point. A specific approach will be provided by a planner 

module. But even focusing on a single joint workspace 

(see Fig. 1) (shoulder, elbow, wrist), the movement can 

be performed in different ways, in smoother or abrupt 

movements (as indicated in Fig. 1). 

Taking into account both the ability of humans to 

generalize motor learning skills with a changeable 

duration/amplitude in a common workspace and the 

possibility of reaching a target point in infinite different 

ways, we designed a set of different trajectories (Fig. 1) 

that allows us to properly explore the workspace in a 

very simplified scenario. An optimal evolution of 

receptive fields in this workspace may provide us a 

generalized solution, i.e. a solution for this kind of 

movements. 

These trajectories are realistic both in terms of 

robotics (cubic polynomials, linear segments with 

parabolic blends
55
) and biological plausibility (smooth 

trajectories with a bell-shaped velocity profile (with 

different smooth profiles and different trajectory 

ranges)).
56,57

 

2.2.  From analog signals to spike patterns: 
Receptive fields 

When interacting with the real world, a representation of 

the external environment and the internal state of our 

body is supplied by the somatosensory system to the 

central nervous system. The afferent (sensory) 

information signals are propagated from peripheral nerve 

 

Fig. 1.  Trajectory benchmark. Within a single joint workspace 

(as shown in this plot) the actual movement can be done also 

in different ways, through different position/velocities 

profiles. rmax and rmin represent the maximum and the 

minimum values of the joint angle. 
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fibers to the central nervous system (spinal cord and 

brain).
58
 Each region of the skin is related to an 

individual cutaneous sensory nerve fiber (or a population 

of them). These skin regions are called receptive fields. 

Therefore, each nerve fiber has its associated receptive 

field, which overlaps with other receptive fields from 

other fibers. This overlapping is not fixed; the average 

overlapping degree between receptive fields is related to 

its body-location.
58
 

When a target reaching movement is executed, 

different body-parts, as muscles, tendons, and joints are 

articulated depending on their body-location along the 

followed trajectory. Sensory receptors (proprioceptors) 

are activated according to movement; thus, a time-

varying set of stimuli is produced, and its corresponding 

neural population varying activity is generated. In 

contrast, in a robot scenario, the only available sensory 

information is the one supplied by a single encoder for 

each link. That involves a translation between the joint 

position/velocity measures to a time-varying set of 

stimuli. This is illustrated in Fig. 2. At this point, to find 

out an optimal biologically plausible encoding scheme 

that allows “biological decoders” to take advantage of 

the codification is a non-trivial point. It is assumed that 

the firing rate of an individual sensory receptor follows a 

neural response which is characterized by Eq. (1) (also 

equivalent to a cosine tuning curve, that is, neurons’ 

firing rate varies as the angle between a sensory 

receptors’ preferred direction or angle varies). 
59
 

Therefore, a reaching movement execution will be 

represented with a sparse population of active cells 

which are changing with time. This coding mechanism 

facilitates the representation of the current sensorial state 

during the trajectory execution in an unambiguous way. 

The output of each receptive field (RF) in Fig. 2 is 

given by Eq. (1): 

( ) ( )
.errtI

n

2n2

maxminRi

2
i

2

ipref∑ −−−+= σπθθ
  (1) 

 

Fig. 2.  Population coding of receptor (proprioceptors) signals. The position of a revolute joint given by an encoder along a trajectory 

is translated into a population coding by means of a set of tuning curves which represent the current injected to Integrate & Fire 

(I&F) neurons by different sensory receptors (propioceptors). Tuning proprioceptor curves are overlapped mimicking peripheral 

nerve receptive fields in the human arm. Each value of a proprioceptor output signal (I current) is integrated using an I&F neuron 

whose output spikes represent the activity provided by the mossy fibers. At the end, in each step time, a spike train is obtained from 

the mossy fibers that represent the sensory inputs to the cerebellum module.  
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Where [rmin, rmax] is the joint range in radians, θ is 

the actual position, θpref  is the  RF preferred direction 

which in this work is simplified by the RF centroid (RF 

responses maximally during a trajectory execution near  

this centroid, and its response decreases when the 

trajectory execution increasingly differs from the 

preferred direction or RF centroid in this case), σ is the 

width of the RF, i is the identifier of each RF (each one 

is linked to its corresponding mossy fiber), 2πn is a 

subtractive term used to refer the actual position to the 

first-360-degrees (the maximal range of any revolute 

joint is ideally 360º), and finally, IRi is the input current 

from the corresponding RFi.  

RFs are distributed along the range of each joint 

(Fig. 2) and they have certain overlap (as in the case of 

peripheral nerve receptive fields). 

Each value of a proprioceptor output signal is 

integrated using a leaky integrate-and-fire neuron model 

shown in Eq. (2), which determines the output activity 

that drives the cuneate nucleus activity in the same way 

as the mossy fiber activity from cells in the CN handles 

information from forelimb muscle spindles.  

 

( ) .IRtv Riiidt

dv
mi

i +−=τ   (2) 

Related to the integrated and fire cell dynamics,
 60
 τmi 

is the resting time constant, vi, the membrane potential, 

IRi, the input current from the corresponding receptive 

field, and Ri is related to the resting conductance of the 

membrane. Finally, the i sub-index term defines the 

identifier of the related mossy fiber. Therefore, the 

mossy fiber layer will consist of a group of leaky I&F 

neurons connected to their corresponding target granule 

cells. 

 At this point, the problem in this population coding 

scheme is not only how to distribute propioceptors 

(centroid and width) along the workspace, but also how 

many RFs should be used in order to enhance the 

information transfer between sensor signals and their 

spike representation. 

2.3.  The evolutionary algorithm as optimization 
engine  

The distribution of peripheral nerve receptive fields in a 

human arm is the result of a continuous test and trial 

process of biological evolution through millions of 

years. Taking a look around our surrounding 

environment, there are many examples of well-adapted 

organisms (in fact, as many as living forms), pointing 

out that evolution is a universal solver which overcomes 

difficulties presented by nature. Hence, evolutionary 

algorithms
61
 seem to be a proper tool to optimize the 

receptive fields of our cerebellum architecture according 

to artificial evolution and keeping the analogy (though at 

a very high abstraction level) with the way in which 

nature solved the biological problem.  

Strictly speaking, evolutionary algorithms are a set 

of bio-inspired techniques for optimization based in the 

Darwinian process of natural selection. As in the 

evolution of species, those individuals (solutions) 

showing to be the fittest ones are preferentially selected 

for mating, so that their offspring will inherit their genes 

through the course of generations. Iteratively, selection 

acts as a filter for genes and just those belonging to the 

best solutions are able to overcome the selection 

pressure and recombine forming higher order solutions. 

It is within that process where the stochastic based 

search of an evolutionary algorithm has been shown to 

succeed in many optimization problems.
62,63

 A genetic 

algorithm (i.e. a sub-class of an evolutionary algorithm) 

is used to obtain, through evolution, a near-optimal 

peripheral nerve receptive field distribution. 

 In Table 1, the pseudo-code of an evolutionary 

algorithm where a population of plausible solutions (P) 

is iteratively improved from random is shown. This 

Table 1. Pseudo code of a Generational EA 

/* The initial population is a random sampling of the search 

landscape*/ 

P <= Randomly generated initial population 

Fitness(P) 

       /*For a number of predefined generations*/ 

Repeat until termination 

      /*Every generation, we create a new population (Paux) of 

evolved individuals*/ 

   Repeat P times 

      Ind1 Ind2 <= Select 2 of the fittest individuals in P 

      NewInd1 NewInd2 <= Crossover(Ind1,Ind2) 

      NewInd1 <= Mutate(NewInd1) 

      NewInd2 <= Mutate(NewInd2) 

      Paux.add(NewInd1,NewInd2)    

   End Repeat 

     /* Evaluate individuals in population Paux */ 

   Fitness(Paux) 

    /* To keep elitism, we replace the worst individual in Paux with 

the best individual in P */ 

   Paux(individualworst) <= P(individualbest) 

   P <= Paux 

End Repeat�
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evolvable population (P) consists of Individuals (Ind) as 

indicated in Eq. (3). 

{ } .Ind,1jwhere,Ind,,Ind,IndP maxj21 KK ==  (3) 

Where the candidate solutions (Individuals) are 

encoded by Eq. (4). 

{ }{ } .RF,1iwhere,e,,e,e,RFInd maxi21max KK ==  (4) 

And finally, e is a receptive field defined in Eq. (5). 

( ).,e σθ=     (5) 

Where θ represents the centroid of the receptive field 

along the sensory space (preferred coordinate of 

receptive field e) and σ, the width of the receptive field 

(Fig. 3). Therefore, according to Fig. 2, each candidate 

solution presents a spike train response in time when a 

trajectory is executed. A set of executed trajectories 

produce a set of spike train responses. R denotes the set 

of spiking responses of a possible candidate solution 

along the followed trajectories as expressed in Eq. (6). 

The heuristic based search consists in projecting 

each individual encoding (Ind) into the problem space 

(i.e. using the Fitness function). Then, the fittest 

individuals are selected for recombination. As in the 

case of natural reproduction, crossover applies to a 

couple of individuals (Ind1 and Ind2), merging their 

encodings to produce descendants (NewInd1 and NewInd2). 

Furthermore, there are also small mutations in 

descendants in order to escape from local-optima 

attracting regions. Within this process, the best solution 

in every iteration (known as epoch) is preserved for the 

next one.  

2.4. Van Rossum distance based fitness function. 
Metrics for evaluating information transfer 

At this point, it is necessary to define a metric (goal 

function) to measure whether a solution A is better than 

a solution B. This is intimately related to the 

functionality assumed by the system. To that end, a 

metrical information transfer measure which is 

employed in order to assess the fitting of an evolved 

peripheral nerve receptive field distribution has been 

chosen. We have found no previous approach related to 

information transfer (Shannon’s mutual information, for 

instance) that takes into account the whole metrics of the 

spike response space.
64 In order to determine the 

quantity of information transmission carried on by  a 

large population of spikes (taking into consideration 

their metrical properties), a new entropy definition based 

on Ref. 65 is used. That facilitates the comparison 

between different spike populations generated by 

different receptive field distributions, as shown by Eq. 

(6). 

( ) ( ) ( ) ( ) .r,r
Rcard

1
log

Rcard

1
RH

Rr Rr

* ∑ ∑
∈ ∈′














′−= α (6) 

Where R is the set of spiking responses of a possible 

configuration of receptive fields along the followed 

trajectories, card(R) is the cardinal number of R, and 

finally, α is a similarity real function between the 

responses (r, r'). We use as a similarity function between 

two spike trains the van Rossum distance
66 Dvr  defined 

in Eq.(8). The van Rossum based Real function α(r, r') 

will take values in the interval [0, 1] as a response to r, r' 

stimuli, as shown in Eq. (7). 

( )
( ) 1

vrDr,rotherwise

rr1r,r

−=′

′=↔=′

α

α
   (7) 

Eq. (6) means that the quantity of entropy in a 

system is proportional to the logarithm of possible 

different microstates presented by this system. 

Maximizing the entropy involves maximizing the 

quantity of possible microstates in the system. Keeping 

in mind this concept and looking backwards to our 

previously defined receptive field system, some relevant 

points can be clarified:  

 

Fig. 3.   Visual interpretation of the Population (P) to be 

evolved. Each individual consists of a vector containing a 

variable number of RFs defined by their own preferred 

coordinate θpref and the width of the receptive field  

associated.  
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(a) Each set of evolvable receptive fields produces 

a set of spiking stimuli for the previously 

described trajectory benchmark. 

(b) A population coding that represents the 

different sensorial states in an unambiguous 

way when each of the trajectories belonging to 

the benchmark is executed is desirable (Fig. 4). 

(c) Maximizing the number of possible population 

coding microstates improves the representation 

of different sensorial states. Each microstate 

might be unambiguously represented in just one 

single way. 

(d) In order to differentiate a couple of spike train 

sets, van Rossum distance is used. If two sets of 

spike trains are equal, the entropy is zero, the 

more difference between both sets, the higher 

the entropy will be, i.e. the number of 

microstates representing different sensorial 

states increases in proportion with the entropy. 

According to Eq. (6), entropy depends on α, 

and α depends on van Rossum distance as well. 

Therefore, an optimal representation will be 

ensured only if we evolve receptive fields to 

maximize the minimal distance between any of 

two single spike based states of the whole 

generated set of spike trains for any benchmark 

trajectory. 

2.4.1. Similarity function 

As it was previously indicated, we have chosen a 

similarity function based on the van Rossum distance. 
66
 

This function is related to the distance introduced by 

Victor and Purpura,
 67,68

 but is computationally more 

efficient, Eq. (8), and has a more natural physiological 

interpretation. 

( ) ( ) ( )[ ] .dttrtr
t

1
r,rD

0

2

c
tc

2
vr ∫

∞

′−=′  (8) 

Where our spike train (r) is defined by a set of first 

spikes generated along a certain time window by the 

implemented spiking neural network. It is assumed that 

all spikes generated by the spiking neural network are 

identical; being the timing of its spikes the key 

information in a spike train. Therefore, it is reasonable 

to model a spike train as a sequence of identical, 

instantaneous Dirac delta functions (  (t)), representing 

individual spikes as expressed in Eq. (9.A). 

( ) ( ).tttr

M

i

i∑ −= δ
   

(9.A) 

 

 

Fig. 4.  Different mossy activities corresponding to two different receptive fields when a rectilinear trajectory is followed. A) 

Trajectory which is followed by a link of a robot-arm. B) Two configurations of receptive fields mapping the analog joint coordinate. 

C) Two spike populations (population coding) representing each sensorial state (vertical columns) along the executed trajectory. Each 

sensorial state highly depends on the input receptive field distribution. 
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( ) ( ) ( )
.ettHtr

M

i

ttt
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ci∑ −−⋅−=
  

(9.B) 

In Eq. (9.B), each Dirac delta function Eq. (9.A) is 

substituted by an exponential function ( ) ci ttt
e

−− . H is the 

Heaviside step function (H(x) = 0 if x<0 and H(x) =1 if 

x≥0) and M is the number of events in the spike train. In 

Eq. (8), distance Dvr is calculated as the integration of 

the difference between r and r', which are spike-driven 

functions with exponential terms, as indicated in Eq. 

(9.B). Note that the resulting distance and, indeed, its 

interpretation depends upon the exponential decay 

constant, tc in Eq. (9.B). The distance also depends upon 
the number of spikes in the trains; it can be normalized 

dividing the number of spikes by M. 

2.4.2. Similarity measure 

The previously introduced similarity function Dvr 

depends on the tc parameter, (van Rossum cost 

parameter).
66
 This parameter determines the penalization 

cost of two spikes when calculating the distance between 

them; if the distance is higher than tc, the penalty will be 

one, the lower the distance is, the lower the penalty will 

be. According to Ref. 64, 65, the CN population code is 

able to discriminate different stimuli around 35ms after 

the first afferent spike; therefore, a tc value of 40ms is 

assumed. The codification has to respond in less than 

40ms to be consistent with biology, larger values shall 

be punished in the spike metric measure using this decay 

constant. Human micro-neurography recordings
52,53,64

 

(for distribution latencies of the first afferent spike, see 

Figs. 3 and 4 in Ref. 52) show that generated spike trains 

from different continuous stimuli have time lengths 

around 35ms on average. Hence, in order to be 

biologically coherent, a spike train (microstate) is 

generated for each 40ms time window providing sensor 

estimates through a spike-based pattern (Fig. 4.C). The 

goal function to be calculated per executed trajectory is 

given by Eq. (10). 

 
( )( )

{ } .estrajectoriofnumbernwhere,rR

j,iandRr,r,rDmin

n

jivr

j,i
ji

min

==

∈∈= +

≠
ΝΦ

 (10) 

 

 Where ri and rj represent a pair of spike trains as a 

response to two different stimuli. A 40ms time window 

activity after the stimulus presentation is taken into 

account to determine the stimulus response (i.e. in a 1 

second trajectory, 25 time windows of 40ms are 

obtained; therefore, consequently 25 spike trains 

corresponding to 25 microstates are obtained too). R is 

the whole set of spike patterns {rn} generated when 

following n trajectories. Dvr (ri, rj) represents the inter-

stimulus distances between responses of two different  

stimuli. We try to find out the minimal distance between 

any pair of spikes in the whole set of time windows Φmin. 

This process is implemented one by one in each 

benchmark trajectory   
n
minΦ  obtaining Eq. (11): 

( ) .estrajectoriofnumbernwhere,
n

1
n

1

n
min =∑Φ (11) 

On the other hand, to be consistent with biology, 

intra-stimulus distance has been implemented by means 

of using a slightly stochastic threshold voltage in 

integrated and fire neurons (Eq. 2). This means that the 

same stimulus may lead to a slightly different response 

(Fig. 5). The same input (trajectory) is presented three 

times to our receptive field; the whole obtained spike set 

is used in Eq. (11). Therefore, the effect of firing 

 
Fig. 5.  Intra-Stimulus Distance. A 40ms length time window showing two slightly different responses (cross and star markers) of the 

receptive field configurations shown in 4.B (left side) for the same input due to stochasticity in the neural model. 
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probability in stochastic leaky I&F neurons is 

compensated in the cost function. 

2.4.3. Fitness function 

The target problem, the spike representation to be used, 

and how to measure the fitness of a particular solution 

(receptive field distribution) have been defined. Hence, 

the final global fitness function to be optimized is given 

by Eq. (12). 

( ) .estrajectoriofnumbern,
n

1
maxfitness

n

1

n
min =














= ∑ Φ (12) 

 

2.5.  Experimental setup 

As it was explained in the previous section, the 

optimization criterion is to find a combination of 

receptive fields capable of maximizing Eq. (12). That 

translates into a hard combinatorial and deceptive 

problem in which a good solution can be found near a 

poor region of the searching landscape. Specifically, up 

to 30 receptive fields are considered, each having 6000 

positions (i.e. each vector element that goes from rmin=-

6rad to rmax= 6rad in steps of 0.002rad is considered as a 

possible centroid’s position) and different coverage 

width (i.e. each value from σ =0.02 to σ=10 in steps of 

0.001 is considered as a possible width of the associated 

receptive field). That is, the combinatorial space can be 

roughly estimated to be around 10
169
. 

Furthermore, the time to simulate the fitness of a 

single solution is computationally expensive and can last 

several seconds even in current processors. Therefore, to 

alleviate the burden of a deterministic exploration of the 

combinatorial space, we have used an evolutionary 

algorithm in which receptive fields are represented using 

three vectors; the first one encodes the number of 

receptive fields to be used, the second one contains the 

position of the receptive fields covering the range that 

can be achieved by the joint, and the last one contains 

the width of the respective receptive fields. An initial 

random solution (in terms of the number of receptive 

fields, their position over the defined range of possible 

values per joint, and their width) is supplied to the 

evolutionary algorithm. Through evolution, the 

evolutionary algorithm drives the population to 

promising regions of the searching space towards near-

optimal solutions.  

It is remarkable that an evaluation of a single 

trajectory takes 0.645s in an Intel Core Quad Q6600 2.4 

GHz 4 GB RAM (the evaluation has been performed 

using MATLAB). An evaluation of the previously 

described benchmark takes 7.75 seconds; the evaluation 

of the whole population of 100 individuals takes almost 

13 minutes. An evaluation of such a population of over 

300 or more epochs/generations will take days. That 

means that finding an optimal solution in a reasonable 

time becomes a problem. Fortunately, the nature of the 

evolutionary algorithm is inherently suited to be 

parallelized, offering a straightforward way to be scaled 

up improving performance in terms of convergence 

time.
69,70

 The main idea is to speed-up the execution 

times by sharing the workload of the individuals among 

a pool of processors. To overcome the issue of 

computational time, a global parallel evolutionary 

algorithm has been implemented. This approach takes 

advantage of the parallelism at an evaluation level in the 

case of a very demanding fitness evaluation function (as 

is the case in this work). Global parallelization consists 

in the parallel evaluation of the individuals (i.e. 

candidate solutions),
71
 usually following a master-slave 

model. The algorithm runs on the master node and the 

individuals are sent for evaluation to the slaves. 

Additionally, the master is responsible for collecting the 

results and applying the genetic operators.  

In order to conduct the experiments, a 14 node 

computer cluster has been used. Each node has two 

Xeon E5320 processors at 1.86GHz, with four nuclei 

and 4 GBs of RAM at each node. 

3. Results 

This Results section is focused in how to validate this 

new proposed methodology. Therefore, this section is 

structured in different steps showing how this 

methodology should be applied when it is particularized 

for a certain experiment.  

Towards this aim, firstly, a predictable trajectory has 

been used, that is, a rectilinear trajectory (Fig. 4). If the 

results of the evolved set of receptive fields, obtained 

with this simplified problem, are suitable and consistent, 

it will be possible to extrapolate the followed 

methodology to an extension of the problem over 

different trajectories. 

At this point, it is important to define specific metrics 

to evaluate how good a solution is. The Metrical 

Discrimination Analysis plays a fundamental role in the 
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interpretation of the results (in terms of spike 

generation) and therefore, the evaluation of the obtained 

solutions. We have included a subsection with the 

Metrical Discrimination Analysis within the Results 

section to make the reading more understandable.  

3.1. Metrical analysis 

In order to abstract the strategy behind the evolved 

values of the receptive fields, we work in a scenario in 

which Dvr (ri, rj) is linear. In this case, if Dvr (ri, rj) were 

linear, the way in which spikes would be distributed to 

maximize the distance between each other should be 

equidistant. An optimal distribution under linear 

assumption of the “cost” function Dvr in the mossy fiber 

number 1 of the Fig. 6.A. would be a single spike in 

each time window (0.04s) with a relative separation of 

0.0016 second (time window/number of windows) from 

the previous time window spike time. The optimal 

relative distance between spikes in mossy fiber 1 would 

be 0.0016s. This process should be repeated trough the 

other mossy fibers obtaining a value of 0.0016 · number 

of mossy fibers (in our case 0.0016·10). Translating this 

value into van Rossum distance (tc=TimeWindow); the 

obtained intra-stimulus-value is Dvr (s0, s0.0016) = 0.0392 · 

number of mossy fibers. As it was previously 

established, this result would correspond to a linear cost 

function, but Dvr is essentially an exponential cost 

function, which means that the obtained result cannot be 

used as an accurate optimum but, at least, it can be used 

as a non-feasible upper bound for the fitness value the 

evolutionary algorithm could achieve.  

The trajectory shown in Fig. 4.A is used as the only 

input that feeds the evolvable receptive fields. The 

evolutionary algorithm, after 1500 epochs/generations of 

evolution using a population of 100 individuals, obtains 

a feasible near-optimal distribution (Fig. 6.A.). As it is 

shown, receptive fields which are placed near range 

extremes [rmax-rmin] have a wider tail in comparison to 

equally distributed receptive fields (general solution) in 

which receptive fields around range extremes are under-

utilized. The evolutionary algorithm optimizes the width 

of the receptive field at the extremes with two purposes; 

 

Fig. 6. Ten Evolved Receptive Fields vs. Ten Equally distributed Receptive Fields. The trajectory represented in Fig. 4.A is used as 

an input of the evolvable receptive fields whose final configuration is driven by the genetic algorithm (GA). A) Evolved receptive 

fields generate a population coding that ensures a maximal fitness of Eq. (12). (Fitness 0.0434 instead of 0.0 in the equidistant 

solution). A none zero Dvr means that we have a set of spikes that represent the coding of the executed trajectory in unambiguous way 

(each time window has its own unique spike train representation that implies that any spike train can be distinguished from any 

other). The higher the fitness is, the more separated representation we have (a spike train is distanced from any other spike train of the 

whole set as much as possible). This involves that we can distinguish a spike train from any other sooner and more robustly in the 

presence of noise. 
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to cover a wider area and to provide a spike contribution 

in a more extended range. The evolutionary algorithm 

also distributes central receptive fields in an equally 

distributed way but with different widths; equally 

distributed central fields ensure proper range coverage in 

a rectilinear trajectory, different widths make distances 

between different stimuli not linearly related with the 

estimation being encoded.  

3.1.1. Metrical discrimination analysis 

In order to validate the previously presented EA 

optimization process, a metrical analysis is needed to 

have a proper tool for discerning a good solution from a 

bad one.  

A metrical discrimination analysis allows us to 

numerically measure the main features of a given 

solution. As was established in Section 2.4, the desirable 

objective to achieve, broadly speaking is to generate a 

spike population set over time that represents the current 

sensorial state in an unambiguous way. That is, each 

sensorial state (trajectory state) should have a sole spike 

train representation which differentiates it from others. 

Consequently, it is necessary to prove that the evolved 

solution presents this discrimination feature between 

spike trains. Numerically, the EA maximizes the fitness 

function to enhance inter-stimulus distance. As a result, 

a given number representing this fitness is obtained, but, 

how does this inter-stimulus distance behave over time? 

How long does the discrimination between spike trains 

take? How can we evaluate that we have obtained an 

unambiguous spike train representation? 

The metrical discrimination analysis of Eq. (13) 

gives answer to these questions. 

[ ]
( ) ( )
( ) ( ) .nStep,wnTimeWindonStep,1wnTimeWindo

1,1i1,1

j,i

j,imin|max
−

+
Φ (13) 

Where j and i are the sub-indexes that indicate the 

pair of selected spike trains to calculate the van Rossum 

distance Dvr (ri, rj). nStep is the integration step number 

within a time window. For instance, a time window of 

40ms, assuming an integration step of 1ms, has 40 steps, 

i.e. nStep runs from 1 to 40. Finally, nTimeWindow is 

the index within the number of time windows into which 

a certain trajectory can be divided. For instance, a 1s 

trajectory can be divided in 25 time windows of 40ms 

each (thus, nTimeWindow runs from 1 to 25). As an 

example, ri=(1,1) value corresponds to the set of spikes 

belonging to the first spike train of the first time window 

(0s to 0.04s) that are located in the first integration step 

(0s to 0.001s) (Fig. 7).  

Since the stimulus changes along the trajectory, we 

can measure the inter-stimulus-distance in each time 

window. The first spike train belonging to the first 0.04s 

time window is compared with the second spike train 

belonging to the second 0.04s time window. The first 

spike train is then compared consecutively with the third 

spike train, then with the fourth, and so on. After this, 

the second spike train is compared successively with the 

third, the fourth, the fifth spike train, and so on. And this 

is repeated for each spike train, thus making an 

exhaustive comparison process.  

As a result, a minimal-inter-stimulus-distance curve 

is obtained. As it is shown in Fig. 8.A, Eq. (13) is 

applied to the EA solution (Fig. 6.A). We can see the 

minimal-inter-stimulus-distance behavior. Considering a 

40ms time window, we can ensure that it takes 34ms 

(first non-zero value for minimal-inter-stimulus-

distance) to distinguish any two spike trains (i.e. the 

actual state –joint angle- in the trajectory) of the 

generated spike set when a rectilinear trajectory is 

performed and the state variables (joint angle in these 

experiments) are translated into spikes through the 

evolved receptive fields given by the EA. A non-zero 

value for minimal-inter-stimulus-distance means a 

 
Fig. 7. Metrical discrimination analysis. Van Rossum distance 

is calculated between two spike trains (ri, rj) of different time 

windows (i, j) along n integration Steps within their 

corresponding time windows. 
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perfect discrimination. The earlier this non-zero value is 

obtained, the sooner it is possible to distinguish a spike 

train from any other. That means that we can ensure a 

perfect discrimination between any two spike trains over 

any 40ms time window because discrimination actually 

takes time before 34 ms. 

We can also verify that the maximum minimal-inter-

stimulus-distance is 0.0434 and it is achieved around 

40ms. This maximum value represents an estimate of 

how easy the discrimination between different stimuli 

becomes in different time windows (sensory states). 

To establish a comparison, this solution has been 

compared against other four solutions; an equally 

distributed receptive field solution (Fig. 8.B), two 

different equally distributed receptive field solutions 

with a better coverage at both ends of the range (Fig. 8.C 

and 8.D), and finally, an equally distributed receptive 

field solution with a decreasing coverage of the range 

from the ends of the range to the center. The second 

solution is a hand-calibrated solution; the third and 

fourth solutions try to emulate the behavior of the 

solution obtained by the EA. Receptive fields placed 

near both ends of the range are modified in order to 

ensure a better response to initial and final trajectory 

segments and the fifth solution not only tries to mimic 

the behavior of the EA solution at both ends of the range 

and also the behavior at central range positions, the 

receptive field width is modified from the range of 

extreme positions to the center position; the higher the 

distance of the receptive field center from the range 

center value, the wider receptive field is used. Different 

widths covering center range values ensure quite 

different responses to slightly different entries.   

As is shown in Fig. 8.A, in order to distinguish any 

two spike trains (microstates) of the generated set, it 

takes over 0.034s. A maximum of 0.434 (0.0434 · 

numMossyFibers) in the minimal-intra-stimulus-

distance is achieved (this value is consistent with the 

result obtained by the EA solution). Fig. 8.B shows a 

constant zero minimal-inter-spike-distance; equally, 

distributed receptive fields are not able to properly 

discriminate two spike trains of the generated spike set.  

On the other hand, although solutions of Fig. 8.C and 

Fig. 8.D really do a discrimination between spike trains 

(minimal-inter-stimulus-distance does not remain 

constantly zero) even sooner than the evolved solution 

(Fig. 8.D at 0.03s), neither of them achieves a maximum 

value of the minimal-inter-stimulus-distance near 0.434. 

The obtained maximum values are around 50% lower, so 

a better coverage of the whole range is implemented by 

the evolved solution.  

Finally, the last solution (Fig. 8.E) shows the same 

problem as the previous one, whereas a discrimination is 

possible even sooner than the evolved solution and the 

 

Fig. 8. Inter-stimulus distribution function for different receptive fields illustrates the discrimination capability of the system (a 10 

scale factor has been used to better plot the minimal-inter-stimulus-distance in the left panels). A) Evolved receptive fields. B) Equally 

distributed receptive fields. C) and D) Equally distributed receptive fields with a better coverage at both ends of the range. E) Equally 

distributed receptive fields with a decreasing coverage of the range from the ends to the center. 
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maximal-inter-stimulus-distance is better than Fig. 8.C 

and Fig. 8.D  (blue dashed curve), the maximum value 

of the minimal-inter-stimulus-distance is 66% less than 

the evolved solution. The evolved solution still 

represents a better way to cover the whole range of joint 

angles; the evolved solution not only ensures a perfect 

discrimination between spike stimuli but also ensures a 

maximal distance between their spike representations 

(Fig. 9). 

3.2. Analysis of evolved receptive fields in 
multiple trajectories 

Once the proposed methodology has been shown to 

succeed in a single-trajectory scenario, now the EA 

based optimization methodology is generalized to 

different trajectories. All the trajectories illustrated in 

Fig. 1 are used. 

In this scenario, the solutions will not be easily 

compared to manually handcrafted ones capturing the 

essence of the evolved solutions. The EA has been set to 

manage up to 30 possible receptive fields to be 

conjointly evolved. After the EA evolves a population of 

100 individuals over 2000 epochs, a final evolved 

solution is obtained as is shown in Fig. 10. Fig. 10.C 

shows the resulting receptive fields after the 

optimization process.  

We can see that the EA has concentrated the 

receptive field distribution in the [2/3rmax-2/3rmin] range. 

In this range region, the majority of the trajectories have 

sharp changes in their values; having a pretty 

concentrate centroid distribution right in [2/3rmax-2/3rmin] 

values of the range ensures a proper population of 

sensitized neurons (their base current forces neurons to 

be closer to their firing state) to fast changes in the input 

value. That is, fast changes in trajectory values involve 

very different generated spike trains, which is what we 

are looking for in this area. 

On the other hand, at the end of the range values, the 

EA has increased the width of the receptive fields 

providing a sparse distribution of them. Placing those 

wide receptive fields at the ends of the range is a way to 

distinguish the extreme areas in the spiking code. This 

involves that, at least, immediately, one neuron is firing 

in this area, being accompanied by the rest of firing 

neurons with certain delays no longer than 40ms (time 

windows) due to the width of the central receptive fields. 

Central receptive fields are wide enough to be sensitive 

 

Fig. 9. Minimal-inter-stimulus-distances (Dvr) achieved at time 

0.04s by different by different receptive field distribution 

solutions. Cases A, B, C, D, and E corresponding to the 

respective A, B, C, D, and E solutions illustrated in Fig. 8. 

 

Fig. 10. Evolved receptive field solution. A)  The EA uses the multiple trajectory benchmark to cover the defined workspace [rmax–

rmin]. Through evolution, the EA obtains a receptive field distribution that ensures discrimination between any spike-train mossy fiber 

produces (Fig. 2). B) Fitness evolution. Fitness curve converges properly after 1000 epochs. C) Final evolved distribution of the 

receptive fields.   
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to input values belonging to both ends of the range areas. 

3.2.1. Metrical discrimination analysis 

The metrical discrimination analysis extended to the 

multiple trajectories benchmark is given by Eq. (14).    

[ ]
( ) ( )
( ) ( )∑ −

+

n

1

j,i

j,imin|max .
n

1
nStep,wnTimeWindonStep,1wnTimeWindo

1,1i1,1
Φ (14) 

Where j and i are the sub-indexes that indicate the 

pair of selected spike trains to calculate the van Rossum 

distance Dvr (ri, rj). As previously described, nStep is the 

integration step number within a time window. 

nTimeWindow is an index within the number of time 

windows in which a certain trajectory can be divided 

into, and finally, n is the number of the trajectories of the 

benchmark. This equation is computed once in every 

trajectory obtaining a set of curves (a curve per 

trajectory). Each curve represents the behavior of the 

minimal-inter-stimulus-distance over each 0.04ms time 

window along the trajectory (using the receptive field 

solution given by the EA). As it was done in Section 3.1, 

the spike train set generated by a trajectory is computed 

according to Eq. (13). As a result, a minimal-inter-

stimulus-distance curve is obtained per trajectory. 

A final mean curve is calculated using this set of 

minimal-inter-stimulus-distance curves applying Eq. 

(14). As it is shown in Fig. 11, the evolved solution has 

been compared against a designed solution which 

consists of equally distributed receptive fields (other 

equally distributed solutions with different RF widths 

were tested but these experiments did not provide any 

new further information) and also, to a solution 

manually implemented which tries to emulate the EA 

solution. This illustrates how the EA solution itself can 

be used, or how it is also possible to try to emulate it 

(after interpreting it) towards designing efficient hand-

crafted solutions based on the EA guidance. 

Fig. 11.A shows the evolved solution and its 

performance. The discrimination condition between any 

pair of spike trains from the generated spike set using 

evolved receptive fields is possible after 0.014s in 

average with a maximum at the minimal-inter-stimulus-

distance of Dvr=0.0476. In contrast, the equally 

distributed receptive field standard solution presents a 

maximum value at minimal-inter-stimulus-distance of 

Dvr=0.00138. The discrimination between any pair of 

spike trains is possible after 0.032s on average. These 

values are clearly improved by the evolved solution. 

Finally, equally distributed receptive fields with a better 

 

Fig. 11. Inter-stimulus distribution obtained by the EA using the whole set of benchmark trajectories. A) Evolved receptive fields. B) 

Equally distributed receptive fields. C) Equally distributed receptive fields with a better coverage at both ends and in interval [2/3rmax-

2/3rmin] of the range. 
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coverage at both ends and in interval [2/3rmax -2/3rmin] of 

the range are able to discriminate any pair of spike trains 

from the generated spike set after 0.018s on average. 

The maximum value of the minimal-inter-stimulus-

distance at each time window is Dvr =0.0356. This 

maximum value of the minimal-inter-stimulus-distance 

is larger in the evolved solution than in the others; 

therefore, the discrimination process is not only 

executed sooner, but also with higher inter-stimulus-

distance values (which represent a larger margin that is 

useful in the case of noise in the sensory signal 

estimation). The EA solution not only ensures an earlier 

discrimination between spike trains, but also increases 

the distance between any pair of spike trains.   

4. Conclusions 

A methodology for efficiently representing incoming 

encoder signals from different links in terms of spikes in 

a plausible robot scenario is presented. Several 

approaches in controlling robots with cerebellum-like 

networks have been proposed in the literature
26-29 

(all of 

them keeping classical control theory in mind). Little 

attention has been given to efficient sensory 

representation in these approaches. To that aim, an 

evolutionary algorithm as an optimization engine has 

been proposed in this contribution. In this way, a goal 

function that captures how sensory information can be 

efficiently represented in terms of spike trains was 

defined, maximizing the minimal-inter-stimulus-distance 

when performing movements (benchmark trajectories). 

In the framework of experiments with cerebellar based 

robot control
1-3,13,72,73

 or other bio-inspired experiments, 
74,75

 the presented contribution will allow at initial stages 

of the adaptation mechanisms of the cerebellum to 

distinguish more accurately specific instants along the 

trajectories in which potential corrections or actions 

need to be performed. 

The receptive fields in our sensory input layer have 

been evolved. We focus on the way in which these 

receptive fields have to be distributed both to encode 

each sensorial state in an unambiguous way and to 

enhance information transfer (in terms of entropy) 

between mechanoreceptor signals and their spike 

representations. The receptive field configuration task is 

carried out by the aforementioned Evolutionary 

Algorithm. Such an algorithm evolves receptive fields 

along the robot-link work space according to a goal 

function that takes into account the metrical properties 

of the spike train space.  

Beyond this specific contribution, this work also 

presents a general methodology of using EAs for 

optimization purposes when addressing reverse 

engineering of biological systems. In this scenario, it is 

important to implement a goal function that captures the 

essence of attributed properties of the system which is 

being optimized. In our case, the goal function is the 

optimization of sensory representation in terms of spikes 

with inter-spike discrimination capability along 

movement trajectories. This required the definition of a 

metric to allow the evaluation of the different candidate 

solutions, in order to derive a final fitness function for 

the EA. The definition of a fitness function that allows 

convergence through an EA is not straight forward; it 

required a preliminary experimental stage in which 

preliminary simulations where done with a single 

trajectory in which the results (and obtained solutions in 

terms of receptive field configuration) were easy to 

interpret. The searching space in this kind of problems 

and the computational cost of spike train distances may 

require the parallelization of the EA, as it has been done 

in this work. 

This technique will be included into robotic 

experiments with cerebellar like modules as corrective 

engines to evaluate how an optimal sensory 

representation facilitates an effective adaptation at the 

cerebellum. Thus, it will be applied to object 

manipulation experiments with an adaptive cerebellar-

like module. In previous experimental studies
76-78

, the 

translation from analog robotic sensory signals to spike 

trains has been done manually (through a manually 

designed receptive filter configuration) to facilitate an 

easy discrimination when performing different 

trajectories. 

We will also apply the presented technique to tactile 

sensors
79-82

 to maximize information transmission as 

discrimination between microstates in the framework of 

sensing tasks.  

We will also study the possibility of introducing an 

STDP
83
 law that increases the performance of the 

evolved system in such sensing task frameworks. 

Furthermore, we will apply other parallel optimization 

schemes
84,85

 in order to scale up the complexity of the 

representations that can be studied.   
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