
UNIVERSITY OF GRANADA
Department of Computer Architecture and

Computer Technology

PhD Thesis Dissertation:

New Methodologies for the Design of
Evolving Fuzzy Systems for
Online Intelligent Control

by
Ana Belén Cara Carmona

Advisors:
Ignacio Rojas Ruiz

Héctor Pomares Cintas
Miguel Damas Hermoso

Granada, February 2012

Editor: Editorial de la Universidad de Granada
Autor: Ana Belén Cara Carmona
D.L.: GR 2183-2012
ISBN: 978-84-9028-120-8

UNIVERSITY OF GRANADA

New Methodologies for the Design of
Evolving Fuzzy Systems for
Online Intelligent Control

(Nuevas metodologı́as para el diseño de sistemas difusos
auto-organizativos para control inteligente en tiempo real)

Dissertation presented by:
Ana Belén Cara Carmona

To apply for the:

European PhD degree in Computer Science

Signed. Ana Belén Cara Carmona

D. Ignacio Rojas Ruiz, D. Héctor Pomares Cintas y D. Miguel Damas Her-

moso, Catedrático y Profesores Titulares de Universidad respectivamente del

Departamento de Arquitectura y Tecnologı́a de Computadores de la Universi-

dad de Granada

CERTIFICAN

Que la memoria titulada ”New Methodologies for the Design of Evolving

Fuzzy Systems for Online Intelligent Control” ha sido realizada por Da. Ana

Belén Cara Carmona, bajo nuestra dirección en el Departamento de Arquitec-

tura y Tecnologı́a de Computadores de la Universidad de Granada para optar al

grado de Doctor Europeo en Ingenierı́a Informática.

Granada, a 17 de Febrero de 2012

Fdo. Ignacio Rojas Ruiz, Héctor Pomares Cintas y Miguel Damas Hermoso

Directores de la Tesis

Contents

List of Figures xv

List of Tables xxi

List of Abbreviations xxiii

Abstract 1

Resumen 3

Introducción 5

Antecedentes . 5

Aportaciones de la tesis . 8

Estructura de la tesis . 12

1 Introduction 15

1.1 Antecedents . 15

1.2 Contributions of the dissertation 18

1.3 Structure of the dissertation . 21

2 Preliminaries 25

2.1 Fuzzy logic . 25

2.1.1 Fuzzy sets. Concepts and definitions 26

2.1.2 Operations on fuzzy sets . 29

2.1.2.1 Intersection. T-norms 30

2.1.2.2 Union. T-conorms 31

2.1.2.3 Complement. Negation operators 32

2.1.3 Approximate reasoning . 33

x

2.1.4 Fuzzy logic systems as universal approximators 37

2.2 Structure of a fuzzy controller . 38

2.2.1 Fuzzification . 39

2.2.2 Knowledge base . 40

2.2.3 Fuzzy inference engine . 41

2.2.4 Defuzzification . 42

2.3 Type-2 fuzzy logic . 42

2.3.1 Type-2 fuzzy sets. Concepts and definitions 44

2.3.2 Operations on interval type-2 fuzzy sets 48

2.3.2.1 Intersection. Meet operator 48

2.3.2.2 Union. Join operator 49

2.3.2.3 Complement. Negation operator 49

2.3.3 Type-2 fuzzy logic systems as universal approximators . . 50

2.4 Structure of a type-2 fuzzy logic system 50

2.4.1 Fuzzification . 51

2.4.2 Rule base . 52

2.4.3 Fuzzy inference engine . 52

2.4.4 Type reduction . 53

2.4.4.1 Computing the centroids of the rule consequents 55

2.4.4.2 Computing the type-reduced sets 57

2.4.5 Defuzzification . 59

3 Evolving fuzzy control. Concepts and state of the art 61

3.1 Introduction. Historical origins of intelligent control 62

3.2 Evolving fuzzy systems . 63

3.2.1 From first principle to evolving models 64

3.2.2 Incremental learning in evolving systems 66

3.2.2.1 Stability-plasticity dilemma 67

3.2.2.2 Accuracy-interpretability trade-off 68

3.2.3 Essential requirements and goals for evolving fuzzy systems 69

3.3 State of the art . 70

xi

4 OSEFC: Online Self-Evolving Fuzzy Controller 77

4.1 Motivation and goals . 78

4.2 Problem formulation . 80

4.3 Architecture of the Online Self-Evolving Fuzzy Controller 83

4.3.1 Phase 1: Online parameter learning 84

4.3.1.1 Online local learning of the rule consequents . . 86

4.3.1.2 Value of the normalization constant C 88

4.3.1.3 Effect of the presence of actuator bounds 91

4.3.1.4 Comments on the stability of the parameter learn-

ing process . 92

4.3.2 Phase 2: Topology self-evolution 95

4.3.2.1 Selection of the most relevant controller input . 98

4.3.2.2 Location of the new membership function 102

4.3.2.3 Initial parameters for the new fuzzy controller . 103

4.3.2.4 Input variable selection 105

4.3.2.5 Comments on the stability of the topology self-

evolving process 106

4.3.3 Alternative methodology for parameter learning 107

4.3.4 Additional comments . 110

4.4 Experimentation and results . 113

4.4.1 Description of the basic features of OSEFC 114

4.4.1.1 Parameter learning for a given topology 114

4.4.1.2 Global operation of OSEFC 118

4.4.1.3 Automatic input variable selection 122

4.4.1.4 Tolerance to noise 124

4.4.2 Simulation of real-world systems 125

4.4.2.1 Control of a tank of liquid 126

4.4.2.2 Control of a mechanical suspension system . . . 129

4.4.2.3 Control of a 1-DOF helicopter 131

4.4.2.4 Robustness against changes in the plant 134

4.4.3 Experiments with a real system: Control of a nonlinear

servo system . 136

4.5 Conclusions . 143

xii

5 OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on
the TaSe-NF model 145

5.1 Motivation and goals . 146

5.2 Problem formulation . 149

5.3 The TaSe-NF model . 151

5.3.1 Equivalence between RBFNNs and TSK fuzzy systems . . 152

5.3.2 Description of the TaSe-NF model for control problems . . 153

5.3.2.1 Partitioning of the input space 154

5.3.2.2 Interpretability of the fuzzy rules 157

5.4 Architecture of the Online Self-Evolving Neuro-Fuzzy Controller

based on the TaSe-NF model . 159

5.4.1 Phase 1: Online local learning of the rule consequents . . . 161

5.4.2 Phase 2: Structure self-evolution method 162

5.4.2.1 Selection of the rule to be split 164

5.4.2.2 Generation of the new rules 165

5.4.2.3 Optimization of the parameters of the new con-

troller . 166

5.4.3 Comments on the stability of OSENF-TaSe 168

5.5 Experimentation and results . 169

5.5.1 Description of the basic features of OSENF-TaSe 169

5.5.1.1 Reduction of the number of rules 169

5.5.1.2 Improvement of the interpretability 171

5.5.1.3 Further examples 175

5.5.2 Control of a real-world system 177

5.5.2.1 Control of a mechanical suspension system . . . 178

5.5.2.2 Robustness against changes in the plant. Com-

parison with a classic controller 179

5.6 Conclusions . 183

6 Multi-objective optimization of type-1 and type-2 fuzzy systems with
comparative purposes 187

6.1 Motivation and goals . 188

6.1.1 Handling uncertainties: comparing type-1 and type-2 fuzzy

systems . 188

xiii

6.1.2 Multi-objective optimization of type-2 fuzzy systems . . . 189

6.2 Multi-objective evolutionary algorithms 193

6.2.1 Evolutionary algorithms . 193

6.2.2 Multi-objective evolutionary optimization. NSGA-II . . . 195

6.3 Multi-objective evolutionary algorithm for the optimization of the

parameters and structure of type-1 and type-2 fuzzy systems . . . 196

6.3.1 Description of the fuzzy systems considered 197

6.3.2 Proposed multi-objective evolutionary algorithm 200

6.3.2.1 Solution encoding 201

6.3.2.2 Initial population 202

6.3.2.3 Fitness evaluation 202

6.3.2.4 Genetic operators 203

6.3.2.5 Optimal consequents 207

6.4 Experimentation and results . 211

6.4.1 Optimized type-1 and type-2 fuzzy systems for function

approximation . 212

6.4.1.1 Experimental setup 212

6.4.1.2 Comparing the quality of the Pareto fronts 215

6.4.1.3 Example of the approximation obtained 224

6.4.1.4 Effect of the use of optimal consequents 228

6.4.2 Analysis of a sample application: control of a nonlinear

servo system . 229

6.4.2.1 Ideal case: no noise or a small level of noise . . . 232

6.4.2.2 Experiments with medium levels of noise 235

6.4.2.3 Experiments with high levels of noise 236

6.5 Conclusions . 237

7 Conclusions of the dissertation and list of publications 241

7.1 Conclusions and contributions . 241

7.2 List of publications . 246

Conclusiones de la tesis y lista de publicaciones 251

Conclusiones y aportaciones . 251

Lista de publicaciones . 257

xiv

A Description of the plants used in this dissertation 261

A.1 Tank of liquid . 261

A.2 Mechanical suspension system . 262

A.3 1-DOF Helicopter setup . 263

A.4 Nonlinear servo system . 264

B Additional tables of results for the multi-objective evolutionary algo-
rithm 267

C High-performance computing architecture for the MOEA 275

Bibliography 277

List of Figures

2.1 Structure of a fuzzy controller . 39

2.2 Types of fuzzification and antecedent matching 40

2.3 Example of a triangular interval type-2 fuzzy set with uncertain

center . 47

2.4 Structure of a type-2 fuzzy logic system 51

2.5 Singleton fuzzification with an interval type-2 fuzzy set 52

2.6 Parameters needed for each yz in the procedure for computing the

centroid of the rule consequents in an interval type-2 FLS 56

3.1 A possible classification of fuzzy controllers according to their de-

sign technique . 71

4.1 Representation of the closed-loop control system with OSEFC . . 84

4.2 General flowchart of OSEFC . 85

4.3 Example for the selection of the most relevant controller input . . 99

4.4 Topology change: modifications made in the fuzzy controller . . . 105

4.5 Flowchart of the online parameter learning method combining lo-

cal and global learning . 108

4.6 Online local learning of the consequents during the first 50 sec-

onds controlling plant (4.55) with a 4x2 topology 116

4.7 Reference tracking during the first 30 seconds of controlling plant (4.55)

with local consequent learning only 116

4.8 Local learning performance versus local and global learning per-

formance for the control of plant (4.55) 117

xvi

4.9 Response of OSEFC’s parameter learning procedure to an unex-

pected change in the dynamics of the plant 118

4.10 Evolution of the approximation to the plant’s true inverse func-

tion with different topologies . 120

4.11 Evolution of the MSE with and without initialization of the new

rules . 121

4.12 Schematic representation of a tank of liquid 127

4.13 Reference tracking for the tank of liquid 128

4.14 Suspension system used for experimentation 129

4.15 MSE evolution for the control of the suspension system 130

4.16 Reference tracking for the suspension system 131

4.17 Helicopter setup used for experimentation 132

4.18 Reference tracking for the 1-DOF helicopter during the first 150

seconds . 133

4.19 Reference tracking for the helicopter setup after a change in the

plant’s dynamics . 135

4.20 Reference tracking for the suspension system after a change in the

plant’s dynamics. Comparison with a non-adaptive controller . . 135

4.21 Comparison of the tracking errors after a change in the plant’s

dynamics for a non-adaptive fuzzy controller and the proposed

OSEFC . 136

4.22 Nonlinear servo system . 137

4.23 Reference tracking for the nonlinear servo system during the first

100 seconds . 138

4.24 Effect of the global learning on the reference tracking for the non-

linear servo system . 138

4.25 Reference tracking for the nonlinear servo system at the end of

the experiment . 139

4.26 Evolution of the MSE during the control of the nonlinear servo

system . 140

4.27 Final location of the membership functions assigned to the inputs

in the control of the nonlinear servo system 142

xvii

5.1 Control of the degree of overlap between local models in the TaSe-

NF model for a one-dimensional example 156

5.2 Modified rule activations for a bidimensional example 158

5.3 Structure of the OSENF-TaSe controller 160

5.4 True inverse function of plant (5.22) 171

5.5 Approximation of the inverse function of plant (5.22) achieved by

OSENF-TaSe with 4 rules . 171

5.6 Approximation of the inverse function of the plant (5.22) achieved

by OSEFC . 172

5.7 Rule activations for the four rules obtained by the OSENF-TaSe

controller for plant (5.22) . 173

5.8 Approximation of the inverse function of plant (5.22) achieved

by the OSENF-TaSe controller, together with the activation of the

rules and the rule consequents . 174

5.9 Approximation of the inverse function of plant (5.22) achieved by

a traditional TSK scatter partitioning controller, together with the

activation of the rules and the rule consequents 175

5.10 Reference tracking for plant (5.24) with Tp = 0.01s and Tc = 5·Tp =

0.05 s . 176

5.11 Reference tracking for plant (5.24) with Tp = 0.01 s and Tc = 10 ·

Tp = 0.10 s . 176

5.12 Reference tracking for plant (5.25) 178

5.13 Evolution of the MSE when OSENF-TaSe is used to control the

suspension system . 179

5.14 Reference tracking for the suspension system with a 5-rule OSENF-

TaSe controller . 180

5.15 Comparison of the reference tracking for the suspension system

obtained by OSENF-TaSe and by a classic controller 181

5.16 MSE evolution for the control of the suspension system. Compar-

ison between OSENF-TaSe and a classic controller 181

5.17 Reference tracking for the suspension system when there is a change

in the plant’s dynamics (i.e., M1 is increased by 65%) 182

xviii

5.18 Reference tracking for the suspension system when there is a large

change in the plant’s dynamics (i.e., M1 is increased by 500%) . . 183

6.1 Trade-off between the complexity (interpretability) and the error

(accuracy) of a rule set . 190

6.2 Flowchart of a general evolutionary algorithm 194

6.3 Gaussian functions used to handle the uncertainty in the input data198

6.4 Chromosome representation . 201

6.5 Single-point crossover at rule level with cutting point c = 1 and

cutting gene g = 6 . 205

6.6 Evolution of the BLX-α (α = 0.5) crossover operator during the

evolutionary process . 206

6.7 Example of the hypervolume indicator 216

6.8 Evolution of the areas under the Pareto front as the noise level

increases for training and test . 221

6.9 Function f6 . 224

6.10 Training data for function f6 with noise at different levels 225

6.11 Approximation of function f6 when the noise level in the training

data is σ = 0.05 . 226

6.12 Approximation of function f6 when the noise level in the training

data is σ = 0.50 . 227

6.13 Pareto fronts obtained for the approximation of function f6 with

different levels of noise (test) . 228

6.14 Fitness of a portion of the initial population of the MOEA when

optimal consequents are used for the rules, and when they are

included in the evolutionary optimization process 229

6.15 Pareto front obtained by the MOEA when optimal consequents

are used for the rules, and when they are included in the evolu-

tionary optimization process . 230

6.16 Membership functions for the singleton type-1 controller 231

6.17 Construction of non-singleton type-1 and type-2 MFs from single-

ton triangular type-1 MFs . 232

6.18 Reference tracking with the singleton type-1 FLC (no noise) . . . 233

xix

6.19 Reference tracking with the non-singleton type-1 FLC (no noise) . 233

6.20 Reference tracking with the singleton interval type-2 FLC (no noise)234

6.21 Control performance for the non-singleton type-1 FLC and the

type-2 FLC when there is a 15% of noise 236

6.22 Control performance for the non-singleton type-1 FLC and the

type-2 FLC when there is a 20% of noise 237

C.1 Use of the cluster BIOATC for the execution of the MOEA 276

xx

List of Tables

3.1 Comparison of adaptive, evolutionary and evolving systems . . . 66

3.2 Summary of the properties of the different methodologies for the

design of fuzzy controllers . 75

4.1 Topology evolution for the control of plant (4.55) 119

4.2 Topology evolution for the control of plant (4.57) 123

4.3 Topology evolution in a noisy environment 125

4.4 Topology evolution for the control of a tank of liquid 128

4.5 Topology evolution for the control of a 1-DOF helicopter 133

4.6 Topology evolution for the control of the nonlinear servo system . 139

4.7 Final rules for θ̇ = X1
3 in the control of the nonlinear servo system 141

4.8 Final rules for θ̇ = X2
3 in the control of the nonlinear servo system 141

5.1 Comparison of the properties of OSEFC and OSENF-TaSe 148

5.2 MSE with different number of rules for OSENF-TaSe and OSEFC 172

6.1 Number of parameters in scatter-partitioning FLSs with Gaussian

antecedent MFs and zero-order consequents 200

6.2 Functions considered for the comparison of type-1 and type-2 FLSs 213

6.3 Parameters of the proposed MOEA for the optimization of type-1

and interval type-2 FLSs . 214

6.4 Main parameters for NSGA-II . 215

6.5 Ranks obtained by each FLS in the Friedman Aligned Ranks test

(α = 0.05) for the average quality indicators of the Pareto fronts . 222

xxii

6.6 Li post-hoc test to detect differences between the different types of

FLS, using the system with the best ranking as the control method,

with a level of significance α = 0.05 223

6.7 Fitness of the most accurate approximations of function f6 with

different levels of noise . 225

6.8 Performance of the three types of controllers with 5% of noise . . 234

6.9 Performance of the three types of controllers with 10% of noise . . 235

A.1 Parameters of the tank of liquid . 262

A.2 Parameters of the suspension system 263

A.3 Parameters of the helicopter setup 264

A.4 Parameters of the nonlinear servo system 265

B.1 Average quality indicators of the Pareto fronts obtained by the

MOEA for the three types of FLSs (training) 268

B.2 Average quality indicators of the Pareto fronts obtained by the

MOEA for the three types of FLSs (validation) 271

List of Abbreviations

ANFIS Adaptive Neuro-Fuzzy Inference System

ANOVA ANalysis Of VAriances

DB Data Base

DOF Degree Of Freedom

EA Evolutionary Algorithm

EFS Evolving Fuzzy System

EIS Evolving Intelligent System

FLC Fuzzy Logic Controller

FLS Fuzzy Logic System

FOU Footprint of Uncertainty

GFS Genetic Fuzzy System

GL Global Learning

GMP Generalized Modus Ponens

IR Index of Responsibility

KB Knowledge Base

KM Karnik-Mendel

KNN K-Nearest Neighbors

xxiv

LL Local Learning

MF Membership Function

MISO Multiple-Input Single-Output

MOEA Multi-Objective Evolutionary Algorithm

MOOP Multi-Objective Optimization Problem

MSE Mean Square Error

NRMSE Normalized Root-Mean-Square Error

NS Non-Singleton

NSGA-II Nondominated Sorting Genetic Algorithm II

OSEFC Online Self-Evolving Fuzzy Controller

OSENF-TaSe Online Self-Evolving Neuro-Fuzzy controller based on the TaSe-

NF model

RB Rule Base

RBF Radial Basis Function

RBFNN Radial Basis Function Neural Network

SISO Single-Input Single-Output

SPEA2 Strength Pareto Evolutionary Algorithm 2

SSE Sum of Square Errors

SVD Singular Value Decomposition

TaSe-NF Taylor Series Neuro-Fuzzy model

TSK Takagi-Sugeno-Kang (fuzzy system)

UF Uncertainty Factor

A mi Juanlu, por enseñarme que hay cosas que no se pueden controlar.
Y por hacer que me alegre de ello.

Abstract

The work presented in this dissertation is a contribution to the areas of automatic

design of fuzzy systems and intelligent control. Specifically, this dissertation fo-

cuses in the automatic design of fuzzy controllers with less prior knowledge

about the plants. Two new methodologies for online self-evolving fuzzy con-

trollers are proposed. These methods are able to design fuzzy controllers from

scratch, in an online manner, based on the analysis of the input/output data ob-

tained from the normal operation of the plant. They do not use the information

regarding the differential equations governing the system, or make any assump-

tions about them. The evolution of the controller is achieved through a life-long

learning process that combines the adaptation of the rule consequents and the

addition of new membership functions and rules. Due to their adaptive nature,

these controllers are robust against unexpected changes in the plants and per-

form well in noisy environments. Moreover, the first methodology is able to au-

tomatically select the relevant control inputs, whilst the second tackles the curse

of dimensionality and improves the controller’s intrepretability. Simulation and

experimental results illustrate the capabilities of the proposed methods.

In addition, we study the increasingly popular type-2 fuzzy logic systems

(FLSs), which are credited to outperform traditional (type-1) FLSs in the pres-

ence of uncertainties. We propose a multi-objective evolutionary algorithm for

learning the structure and parameters of type-1 and type-2 fuzzy systems. This

method is applied to obtain a common framework for the comparison of type-

1 and type-2 FLSs in uncertain environments. Our final aim is to investigate

whether the better performance of type-2 FLSs is solely based on the use of ex-

tra parameters (as it is often criticized), or whether it is due to the use of an

essentially different mechanism for uncertainty handling.

Resumen

El trabajo presentado en esta tesis doctoral representa una contribución a los

ámbitos del aprendizaje automático de sistemas difusos y del control inteligente.

En concreto, la tesis se centra en el diseño automático de controladores difusos

sin conocimiento previo sobre las plantas a controlar. Se proponen dos nuevas

metodologı́as para la auto-organización de controladores en tiempo real que

son capaces de diseñar controladores difusos desde cero, basándose en la infor-

mación de entrada/salida obtenida del propio funcionamiento de la planta. No

se utiliza información referente a las ecuaciones diferenciales que rigen el fun-

cionamiento de las plantas, ni se hacen hipótesis sobre las mismas. La evolución

del controlador se consigue gracias a un proceso de aprendizaje continuado

que combina la adaptación de los consecuentes de las reglas con la adición de

nuevas funciones de pertenencia y reglas. Gracias a su naturaleza adaptativa, los

métodos propuestos son robustos frente a cambios inesperados en la operación

de las plantas y presentan un buen funcionamiento en entornos ruidosos. Es

más, el primer método es capaz de seleccionar las entradas de control que son

relevantes para el proceso, mientras que el segundo afronta el problema de la

maldición de la dimensionalidad a la vez que mejora la interpretabilidad de las

reglas. Los resultados experimentales muestran las capacidades de los métodos

propuestos.

Adicionalmente, se estudian los cada vez más populares sistemas difusos de

tipo 2, a los que se atribuye una mejor respuesta en presencia de incertidumbre

que a los sistemas difusos tradicionales (o de tipo 1). En este trabajo se pro-

pone un algoritmo evolutivo multi-objetivo para el aprendizaje de la estructura

y los parámetros de sistemas difusos de tipo 1 y 2. Este método se utiliza para

Resumen 4

proporcionar un entorno adecuado para la comparación, en presencia de incer-

tidumbre, de ambos tipos de sistema. El objetivo final de esta comparación es

investigar la cuestión de si, tal y como se argumenta habitualmente, el mejor

rendimiento de los sistemas difusos de tipo 2 se debe únicamente al uso de un

mayor número de parámetros, o si, por el contrario, se debe al uso de un meca-

nismo diferente para manejar la incertidumbre.

Introducción

Esta introducción es una versión en español del capı́tulo 1 y ha sido incluida

para cumplir los requisitos necesarios para optar a la mención de Doctorado Eu-

ropeo. El resto de esta memoria, a excepción de las conclusiones, se presenta en

inglés.

Antecedentes

El término “control convencional (o tradicional)” se utiliza en la actualidad para

referirse a las teorı́as y métodos desarrollados durante las últimas décadas del

siglo XX para controlar sistemas dinámicos1. Generalmente, estas técnicas se

basan en el uso de ecuaciones diferenciales y ecuaciones en diferencias [Antsak-

lis, 1994]. Sin embargo, en ciertos casos este marco matemático puede no ser lo

suficientemente general, pues existen problemas de control que no se pueden

describir adecuadamente en términos de ecuaciones diferenciales [Gupta, 2000].

En 1993, el Grupo de Trabajo en Control Inteligente de la Sociedad de Sis-

temas de Control del IEEE (Task Force on Intelligent Control of the IEEE Con-

trol Systems Society, en inglés) definió el término “control inteligente” como la

disciplina que aborda el desarrollo de métodos de control que pretenden emular

ciertas caracterı́sticas de la inteligencia humana [Antsaklis, 1994; Antsaklis and

Passino, 1993]. Dichas caracterı́sticas incluyen adaptación, aprendizaje y planifi-

cación en presencia de incertidumbre, entre otras. Por tanto, se puede considerar

que el control inteligente trata de ampliar y mejorar las metodologı́as de control

1Estas metodologı́as constituyen la tradicionalmente llamada “teorı́a de control moderna”,
que se desarrolló principalmente entre la década de los 60 y la década de los 80.

Introducción 6

convencionales para resolver nuevos problemas que presentan un mayor nivel

de exigencia.

Para controlar satisfactoriamente sistemas complejos a lo largo del tiempo,

con frecuencia es necesario hacer frente a diferentes tipos de incertidumbre que

pueden no ser manejados adecuadamente por los métodos de control robustos

y adaptativos tradicionales [Chen and Narendra, 2003; Linkens and Nyongesa,

1996]. Para ello, el diagnóstico de fallos, la capacidad de reconfiguración, la

adaptación y el aprendizaje son elementos fundamentales.

En cierto sentido, los problemas de control abordados en el área del con-

trol inteligente pueden ser vistos como versiones ampliadas, más ambiciosas

y generales, de los problemas planteados en el control tradicional [Antsaklis,

1994; Gupta, 2000]. Es más, estos problemas presentan requisitos adicionales

que los métodos tradicionales no pueden satisfacer. Como consecuencia, el con-

trol inteligente se convierte en un ámbito interdisciplinar en el que se combinan

métodos y teorı́as de áreas diversas, como son el control, las ciencias computa-

cionales y la investigación de operaciones.

Merece la pena aclarar que, en general, las metodologı́as desarrolladas en es-

tos campos no pueden aplicarse directamente para resolver problemas de con-

trol [Antsaklis, 1994]. Esto no significa que no sean métodos válidos, sino que

fueron concebidos para cubrir necesidades diferentes. Por ejemplo, el problema

del diseño de un controlador puede ser visto como un problema de aproxi-

mación funcional. Sin embargo, los métodos comúnmente utilizados para este

tipo de problema no se pueden aplicar directamente en el ámbito del control,

pues los requisitos y condiciones de operación son diferentes. Por tanto, se

plantea la necesidad de mejorar las técnicas existentes y de derivar nuevas meto-

dologı́as en combinación con ellas. Más aún, incluso puede ser necesario revisar

y redefinir conceptos básicos como el de estabilidad, para adaptarlos a las pecu-

liaridades de los nuevos problemas [Antsaklis, 1994].

Por otra parte, en ocasiones también se utiliza el término “control autónomo”

para referirse a la disciplina que estamos considerando [Pachter and Chandler,

1998]. Esta denominación realza el hecho de que los controladores inteligentes

pretenden, en general, alcanzar altos grados de operación autónoma. Es obvio

que la inteligencia es fundamental tanto para responder de manera adecuada a

Introducción 7

los cambios en el entorno como para alcanzar un alto grado de autonomı́a. Por

tanto, se puede decir que autonomı́a e inteligencia son nociones complemen-

tarias en el ámbito del control.

En resumen, un sistema de control inteligente debe contar con una alta ca-

pacidad de adaptación y autonomı́a frente a cambios imprevistos [Antsaklis,

1994]. Para alcanzar estos objetivos, el aprendizaje es un factor fundamental.

Inicialmente, los métodos de aprendizaje para control se plantearon como un

medio para mejorar el bajo rendimiento causado por las deficiencias del mode-

lado de sistemas no lineales, ya que permitı́an incorporar la experiencia obtenida

a través de la interacción directa con la propia planta [Gupta, 2000]. Sin em-

bargo, en la actualidad su uso se ha extendido a un rango más amplio, que

incluye el manejo de incertidumbres ambientales, de problemas de desgaste en

los actuadores y mecanismos, etc. [Angelov, 2004; Doctor et al., 2005a; Schaal

and Atkeson, 2010].

En las últimas dos décadas ha aparecido una gran variedad de paradig-

mas y herramientas para control inteligente, siendo las redes neuronales, los

sistemas difusos y los algoritmos genéticos algunos de los ejemplos más po-

pulares [Gupta, 2000; Zilouchian and Jamshidi, 2000]. Sin embargo, hay que

recalcar que el control inteligente no se limita al uso de estas técnicas. Es más,

de acuerdo con las definiciones anteriores, no todos los controladores difusos o

neuronales pueden ser considerados “inteligentes” [Antsaklis, 1994]. Para que

ası́ sea, deben contar con las capacidades de autonomı́a y adaptación ya men-

cionadas, lo que requiere que sean extendidos mediante métodos de aprendizaje

y auto-organización.

Con el objetivo de hacer frente a la aparición de nuevas condiciones de ope-

ración, a dinámicas cambiantes o a otras influencias ambientales, en la última

década ha surgido un nuevo campo de investigación: los denominados sistemas

inteligentes auto-organizativos1 (evolving intelligent systems, o simplemente evolv-

ing systems, en inglés), de los cuales los sistemas difusos auto-organizativos (o

1A pesar de que los primeros estudios relativos a los denominados (en inglés) evolving sys-
tems datan del año 2000, no existe aún una traducción al español ampliamente aceptada en el
ámbito cientı́fico. En esta tesis se ha optado por utilizar el término sistema auto-organizativo, que
es una de las traducciones más comunes. Asimismo, no se debe confundir evolving con evolutivo
(evolutionary, en inglés), pues ambos términos se refieren a paradigmas de aprendizaje diferentes.

Introducción 8

evolving fuzzy systems, en inglés) son un caso particular [Angelov et al., 2010; Lu-

ghofer, 2011]. Los sistemas inteligentes auto-organizativos combinan la capaci-

dad de interpolación y la flexibilidad de los sistemas difusos y neuro-difusos con

la capacidad adaptativa de las técnicas de aprendizaje dinámico. En el caso de

los sistemas difusos auto-organizativos se cuenta con la ventaja adicional de su

interpretabilidad lingüı́stica. La caracterı́stica más importante de estos sistemas

es que son capaces de adaptarse, extenderse y evolucionar automáticamente,

bajo demanda. Ası́, un sistema auto-organizativo presenta la capacidad de ex-

pandir o contraer su estructura, ası́ como de adaptar sus parámetros, de forma

incremental, dinámica y, si es necesario, en tiempo real.

Los sistemas auto-organizativos son capaces de soportar escenarios en los

que los datos son dinámicos y pueden cambiar su naturaleza y caracterı́sticas a

lo largo del tiempo y el espacio. Es más, estos sistemas son capaces de continuar

adaptando su conocimiento de manera permanente para integrar nuevas con-

ductas y circunstancias ambientales, en un proceso de aprendizaje continuado

que está siempre presente. Por tanto, representan una contribución importante

al ámbito de la inteligencia computacional y artificial [Angelov and Kasabov,

2005; Lughofer, 2011].

A partir de esta presentación se puede deducir que las propiedades de los

sistemas auto-organizativos los convierten en herramientas adecuadas para el

desarrollo de controladores inteligentes. Es más, la capacidad de desarrollar

su propia estructura y parámetros puede ser vista como la habilidad de deter-

minar una polı́tica de control con un objetivo determinado, lo cual representa

un intento por parte del controlador de organizar su “conocimiento” sobre su

propia conducta interna. Esta capacidad puede ser considerada como un atri-

buto de “inteligencia”, por lo que se puede concluir que un controlador difuso

auto-organizativo capaz de auto-diseñarse es un sistema de control inteligente.

Aportaciones de la tesis

Las aportaciones de esta tesis pretenden contribuir al avance en el ámbito de los

sistemas difusos auto-organizativos para control inteligente. El principal obje-

tivo es investigar y desarrollar nuevas metodologı́as capaces de producir con-

Introducción 9

troladores eficaces cuando no existe conocimiento previo sobre los sistemas a

controlar. Adicionalmente, otra caracterı́stica deseable en estos controladores es

la capacidad de manejar cambios en las condiciones de operación, ruido y otros

tipos de incertidumbre que pueden aparecer durante su operación.

En la primera parte de esta tesis se proponen dos nuevas metodologı́as para

la auto-organización de controladores difusos en tiempo real, cuando no exis-

te información previa sobre la planta. Dichos métodos son capaces de construir

controladores difusos desde cero, basándose en la información de entrada/salida

obtenida del propio funcionamiento de la planta. Los principios subyacentes

son los mismos en ambos casos: por una parte, se hace uso de la propiedad

de aproximación universal de los sistemas difusos para construir el controlador

incrementalmente, a través de la adición de nuevas funciones de pertenencia y

reglas. Por otra parte, para proporcionar mayor robustez al método de apren-

dizaje, la modificación de la estructura del controlador se basa en el análisis de la

superficie de error a lo largo de todo el rango de operación del sistema. Algunas

de las propiedades comunes a ambas metodologı́as son las siguientes:

• Los métodos propuestos no requieren un modelo de la planta ni sus ecuaciones

diferenciales. Es más, al contrario que la mayorı́a de los métodos propues-

tos en la literatura [Gao and Er, 2003; Park et al., 2005; Phan and Gale,

2008], tampoco realizan hipótesis sobre la forma o propiedades de dichas

ecuaciones (por ejemplo, sus lı́mites). El único requisito es que la mono-

tonı́a de la planta con respecto a la señal de control tenga signo constante.

En otras palabras, tan sólo se precisa cierto conocimiento cualitativo sobre

la planta.

• No se requiere conocimiento previo sobre la polı́tica de control. Tal y como se

ha mencionado, el controlador puede empezar a funcionar con una única

regla (inicializada a cero) y se auto-desarrollará en tiempo real, mientras

controla la planta.

• Los controladores desarrollados son robustos, en el sentido de que pueden

manejar cambios imprevistos en la dinámica de la planta. Su naturaleza

adaptativa les dota de la capacidad de aprender el nuevo comportamiento

de la planta para ası́ continuar operando satisfactoriamente.

Introducción 10

• El método auto-organizativo es un proceso continuado de aprendizaje. Esto sig-

nifica que el controlador continúa aprendiendo y evolucionando durante

toda su operación. En concreto, se aplican dos tipos de aprendizaje: por

una parte, la información referente al error en la salida de la planta se uti-

liza para adaptar los consecuentes de las reglas de forma dinámica. Por

otra parte, se analiza el error en la aproximación de la función inversa de

la planta para desarrollar incrementalmente la estructura del controlador.

La primera metodologı́a propuesta es OSEFC (por las siglas de Online Self-

Evolving Fuzzy Controller, en inglés) [Cara et al., 2011a]. Para modificar la es-

tructura del controlador, OSEFC analiza la superficie de error en todo el rango

de operación del sistema. Seguidamente, se añade una nueva función de perte-

nencia a la variable que es mayormente responsable de dicho error. En este

método se utiliza un conjunto completo de reglas; por ello, la adición de una

función de pertenencia conlleva la creación de todas las reglas que la usan como

antecedente. Esta metodologı́a cuenta con la capacidad adicional de poder se-

leccionar automáticamente las variables de entrada que son más relevantes para

el proceso de control, de entre un conjunto de candidatas. De este modo, se

reduce la cantidad de información previa necesaria. OSEFC proporciona una

buena polı́tica de control, a pesar de no utilizar ningún conocimiento previo so-

bre la planta. Sin embargo, su configuración “en rejilla” provoca el crecimiento

exponencial del número de reglas (fenómeno conocido como la maldición de la

dimensionalidad [Bellman, 1961]), lo que a su vez influye negativamente en la

complejidad e interpretabilidad del controlador.

Con el objetivo de abordar estos inconvenientes, se propone una segunda

metodologı́a, que denominamos OSENF-TaSe (por las siglas de Online Self-Evol-

ving Neuro-Fuzzy controller based on the TaSe-NF model, en inglés) [Cara et al.,

2012]. En OSENF-TaSe se sustituye la distribución en rejilla de las reglas por una

distribución “en clustering”. De este modo, las reglas se pueden ubicar libre-

mente en las zonas con mayores alinealidades, lo que ayuda a reducir el número

de reglas necesarias. Por otra parte, se utiliza el modelo TaSe-NF [Herrera et al.,

2011b], recientemente propuesto en la literatura, que ofrece un mecanismo de

inferencia difusa modificado que ayuda a mejorar la interpretabilidad de las re-

glas. Esto es posible gracias a que se garantiza que cada consecuente representa

Introducción 11

exactamente la salida de la función inversa de la planta en el centro de la regla

correspondiente. Por último, en OSENF-TaSe la evolución de la estructura del

controlador se lleva a cabo por medio de la división sucesiva de aquellas reglas

que presentan errores de control altos en sus zonas de influencia. Es importante

resaltar que, mientras que en OSEFC cada cambio estructural implica la creación

de varias reglas, en OSENF-TaSe sólo se añade una regla cada vez.

Finalmente, la tercera contribución de esta tesis se orienta hacia el estudio de

nuevas estructuras para el diseño de controladores difusos auto-organizativos.

En este sentido, se investigan los sistemas difusos de tipo 21, cuya popularidad

ha aumentado notablemente en los últimos años al presentarse como métodos

eficaces para el manejo de incertidumbre. Como paso previo a la adopción de

este nuevo modelo difuso, se aborda el mayor criticismo dirigido a este tipo de

sistemas, que establece que su mejor rendimiento (con respecto a los sistemas

difusos tradicionales o de tipo 1) se debe únicamente al uso de un mayor número

de parámetros [Cara et al., 2011b]. En concreto, se intenta determinar si existen

diferencias significativas en el rendimiento de ambos tipos de sistemas cuando

presentan el mismo número de parámetros y, en tal caso, cuándo es un tipo de

sistema difuso preferible al otro.

Con el objetivo de proporcionar un marco común para la comparación de

sistemas difusos de tipo 1 (con entradas numéricas y difusas) y de tipo 2, se pro-

pone un algoritmo evolutivo multi-objetivo para la optimización de la base de

reglas y los parámetros de sistemas difusos de ambos tipos. Este método incluye

un módulo para el cálculo óptimo de los consecuentes, tanto para sistemas de

tipo 1 como para sistemas de tipo 2. El uso de este módulo ayuda a reducir el

tamaño del espacio de búsqueda, a la vez que mejora la calidad de las soluciones

proporcionadas por el algoritmo evolutivo. Por último, se presenta un estudio

comparativo de los sistemas difusos de tipo 1 y 2 optimizados, para distintos

niveles de incertidumbre en el entorno. En dicho estudio se han utilizado tests

estadı́sticos no paramétricos para determinar si las diferencias de rendimiento

entre los sistemas difusos de tipo 1 y los de tipo 2 son significativas o no.

1En concreto, se estudian los sistemas difusos de tipo 2 intervalo-valorados (interval type-2
fuzzy systems, en inglés). Por simplicidad, nos referimos a ellos simplemente como “sistemas
difusos de tipo 2”.

Introducción 12

Estructura de la tesis

El trabajo presentado en esta tesis está organizado en capı́tulos, cuyo contenido

se resume en la siguiente lista. Para mayor claridad, los tı́tulos de los capı́tulos

se presentan en español:

Capı́tulo 1. Introducción: Es la versión en inglés de esta introducción. En
ella se presenta el concepto de control inteligente y se resumen las principales
aportaciones de esta tesis doctoral.

Capı́tulo 2. Fundamentos: En este capı́tulo se presentan los fundamentos de
lógica difusa de tipo 1 y 2 aplicada al campo de control. Estos conceptos repre-
sentan la base teórica para la correcta comprensión del resto de esta memoria.

Capı́tulo 3. Control difuso auto-organizativo. Conceptos y estado del arte:
Este capı́tulo describe el área del control difuso auto-organizativo. En primer
lugar, se proporciona una breve descripción de la evolución histórica de los sis-
temas de control. Seguidamente, se define el concepto de sistema difuso auto-
organizativo y se presentan sus principales propiedades. Por último, se realiza
una revisión del estado del arte en el área del control difuso, prestando especial
atención a los sistemas auto-organizativos.

Capı́tulo 4. OSEFC: Controlador difuso auto-organizativo en tiempo real: En
este capı́tulo se presenta una nueva metodologı́a para la auto-organización de
un controlador difuso en tiempo real, empezando desde cero, cuando no hay
conocimiento previo sobre la planta. Este método, que llamamos OSEFC (On-
line Self-Evolving Fuzzy Controller, en inglés) [Cara et al., 2011a], es capaz de de-
terminar una topologı́a adecuada para el controlador difuso, basándose en los
datos obtenidos durante el funcionamiento normal del sistema. El aprendizaje
se divide en dos etapas: la adaptación de los consecuentes de las reglas y la
adición de nuevas funciones de pertenencia y reglas. El capı́tulo incluye resul-
tados experimentales y simulaciones que ilustran las principales caracterı́sticas
de la metodologı́a propuesta.

Capı́tulo 5. OSENF-TaSe: Controlador neuro-difuso auto-organizativo basado
en el modelo TaSe-NF: Este capı́tulo presenta la segunda metodologı́a propues-
ta para el aprendizaje automático de controladores difusos en tiempo real. Este
método, que denominamos OSENF-TaSe (Online Self-Evolving Neuro-Fuzzy con-
troller based on the TaSe-NF model, en inglés) [Cara et al., 2012], amplı́a las ca-

Introducción 13

pacidades de OSEFC reduciendo la complejidad (número de reglas) del contro-
lador a la vez que mejora la interpretabilidad de las reglas gracias al uso del
modelo TaSe-NF. En este capı́tulo se presentan simulaciones y comparaciones
de OSENF-TaSe con OSEFC y con otros métodos de control clásicos.

Capı́tulo 6. Optimización multi-objetivo de sistemas difusos de tipo 1 y 2 con
propósito comparativo: En este capı́tulo se pretende abordar una de las crı́ticas
que más frecuentemente se dirigen a los sistemas difusos de tipo 2 y que es-
tablece que la mejor respuesta obtenida por estos sistemas (con respecto a los
de tipo 1) se debe exclusivamente al uso de un mayor número de parámetros
[Cara et al., 2011b]. Para ello, se presenta un algoritmo evolutivo multi-objetivo
para la optimización de sistemas difusos de tipo 1 y 2. Su aplicación propor-
ciona un marco común para la comparación, en el que los sistemas de tipo 1
(con entradas numéricas y con entradas difusas) y los de tipo 2 presentan con-
figuraciones optimizadas con un número similar de parámetros, obtenidas en
las mismas condiciones. En este contexto, se utilizan tests estadı́sticos para de-
terminar si las diferencias de rendimiento son significativas o no.

Capı́tulo 7. Conclusiones: Este capı́tulo, que se presenta tanto en inglés como
en español, resume las principales aportaciones y conclusiones extraı́das del tra-
bajo presentado en esta tesis doctoral. El capı́tulo incluye una lista de las publi-
caciones derivadas de la presente investigación.

Es importante resaltar que en esta tesis se consideran tanto sistemas difusos

“tradicionales” (de tipo 1), como sistemas difusos de tipo 2. Los primeros son

utilizados en los capı́tulos 4, 5 y 6, mientras que los segundos se aplican sólo

en el capı́tulo 6. Para simplificar la notación, en los capı́tulos 4 y 5 simplemente

usamos el término “lógica difusa”. En cambio, en el capı́tulo 6 siempre se aclara

a qué tipo de sistema difuso nos referimos en cada momento. Igualmente, hay

que aclarar que en esta tesis no se estudian los sistemas difusos de tipo 2 en su

versión general, sino que, como ya se ha mencionado, sólo se trata la versión

intervalo-valorada.

Por último, para facilitar la lectura de esta tesis, se han adoptado las siguien-

tes convenciones:

• Cada capı́tulo está dividido en secciones, subsecciones y sub-subsecciones.

Cuando se proporcionan referencias a otras partes del texto, dichas refe-

Introducción 14

rencias incluyen el número de capı́tulo seguido del número de sección,

subsección, etc. Por ejemplo: ver sección 2.4.4; ir al capı́tulo 4.

• Las figuras y tablas se numeran por capı́tulos. Por ejemplo: Fig. 2.1.

• Las expresiones matemáticas se numeran también dentro de cada capı́tulo

y se referencian mediante el número correspondiente entre paréntesis. Por

ejemplo: la planta dada por (4.55).

• Las referencias bibliográficas se indican del siguiente modo: cuando el tra-

bajo tiene uno o dos autores, se utiliza el apellido de los autores seguido

del año de publicación, como por ejemplo en [Angelov, 2004; Wagner and

Hagras, 2007]. Para los trabajos con más de tres autores, se utiliza el nom-

bre del autor principal seguido de la abreviatura et al. y del año de publi-

cación, como en el siguiente ejemplo: [Rojas et al., 2000].

Chapter 1

Introduction

1.1 Antecedents

The term “conventional (or traditional) control” is nowadays used to refer to

the theories and methods that were developed in the last decades of the 20th

century to control dynamical systems1. These techniques are generally based on

the use of differential and difference equations [Antsaklis, 1994]. However, this

mathematical framework may not be general enough in certain cases, as there

are control problems that cannot be adequately described in terms of differen-

tial/difference equations [Gupta, 2000].

In 1993, the Task Force on Intelligent Control of the IEEE Control Systems

Society defined the term “intelligent control” as the discipline that tackles the

development of control methods that attempt to emulate important characteris-

tics of human intelligence [Antsaklis, 1994; Antsaklis and Passino, 1993]. These

characteristics include adaptation, learning and planning under uncertainties,

among others. Hence, intelligent control attempts to build upon and enhance

the conventional control methodologies to solve new challenging control prob-

lems.

In order to achieve its control goals for complex systems over a period of

time, an intelligent controller frequently has to cope with significant uncertainty

that fixed feedback robust controllers or adaptive controllers may not be able

1These methodologies constitute the traditionally known as “modern control theory”, mainly
developed between the 1960s and the 1980s.

Introduction 16

to deal with [Chen and Narendra, 2003; Linkens and Nyongesa, 1996]. In this

scenario, fault diagnosis and control reconfiguration, adaptation and learning

are important considerations.

In some senses, the control problem tackled in intelligent control can be re-

garded as an enhanced, more ambitious and general version of the problem tack-

led in traditional control [Antsaklis, 1994; Gupta, 2000]. It presents increased

control demands that cannot be met by the methods used in traditional control.

As a consequence, the area of intelligent control is interdisciplinary and it at-

tempts to combine and extend theories and methods from areas such as control,

computer science and operations research.

It is worth noting that these theories and methodologies cannot, in general,

be applied directly to solve control problems [Antsaklis, 1994]. The reason for

this is not that these methods are not valid, but rather that they were conceived

to address different needs. For instance, the problem of designing a controller

can be cast as a problem of functional approximation of the plant’s inverse func-

tion. However, techniques for function approximation cannot be applied di-

rectly, as the requirements and conditions in a control problem are different.

Hence, they need to be enhanced and new methodologies need to be derived in

combination with traditional control techniques. Additionally, traditional con-

trol concepts such as stability may have to be revisited and redefined [Antsaklis,

1994].

Sometimes, the term “autonomous (intelligent) control” is also used to refer

to this discipline [Pachter and Chandler, 1998]. This designation emphasizes the

fact that an intelligent controller usually aims to attain higher degrees of auton-

omy in its operation. Obviously, intelligence is required in order for the systems

to provide the desired functioning under changing environments. Moreover,

intelligence is also necessary to achieve a high degree of autonomous behav-

ior. Thus, it is observed that the terms “autonomous control” and “intelligent

control” are complementary.

In summary, an intelligent control system must be highly adaptable to unan-

ticipated changes [Antsaklis, 1994]. Moreover, it must present a high degree of

autonomy in dealing with these changes. To achieve these objectives, learning is

fundamental. Learning control techniques were initially developed as a means

Introduction 17

of improving the performance of poorly modeled nonlinear systems by exploit-

ing the experience gained through the online interaction with the actual plant

[Gupta, 2000]. Nowadays, their use has been extended to a much wider use,

e.g., accounting for uncertainties in the environment, overcoming problems due

to wear or tear in the actuators, etc. [Angelov, 2004; Doctor et al., 2005a; Schaal

and Atkeson, 2010].

Many paradigms and tools for intelligent control have appeared in the last

two decades. Neural networks, genetic algorithms and fuzzy logic systems

(FLSs) are some popular examples of these techniques [Gupta, 2000; Zilouch-

ian and Jamshidi, 2000]. It is important to note that intelligent control does not

restrict to the use of these methodologies. Moreover, according to the previous

definitions, not all fuzzy or neural controllers would be considered intelligent

[Antsaklis, 1994]. On the contrary, in order to provide them with the required

autonomy and with the capability to cope with unexpected changes, they have

to be extended with learning and self-organization methods.

In order to account for changing system dynamics, new operating condi-

tions and environmental influences, in the last decade a new research topic has

emerged, the so-called Evolving Intelligent Systems (EISs), of which Evolving

Fuzzy Systems (EFSs) are a particular case [Angelov et al., 2010; Lughofer, 2011].

EISs combine the interpolation abilities of (neuro-) fuzzy systems and their flex-

ibility with the adaptive feature of online learning techniques. In the case of

evolving fuzzy systems, there is the additional advantage of their linguistic in-

terpretability. Their main property is that they are automatically adapted, ex-

tended and evolved dynamically on-the-fly. Thus, an evolving system presents

the ability to expand or shrink its structure, as well as to adapt its parameters,

in an incremental way, online and, if necessary, in real time.

Evolving systems are able to support any modeling scenarios for data streams

and dynamic data that change their nature and characteristics over time and

space. Moreover, it is worth noting that they are permanently updating their

knowledge by integrating new system behaviors and environmental influences

in a life-long learning process that is always present. Therefore, they can be

seen as a valuable contribution within the field of computational and artificial

intelligence [Angelov and Kasabov, 2005; Lughofer, 2011].

Introduction 18

From the previous discussion, it is obvious that all these properties make of

an EIS a suited tool for the development of intelligent controllers. Moreover, the

capability of evolving their own structure and parameters can be seen as the abil-

ity of designing a control law for a specific objective. This activity can in turn be

regarded as the controller’s attempt to organize its “knowledge” of its own dy-

namical behavior, which can be seen as an attribute of “intelligence” [Antsaklis,

1994]. Thus, it is possible to conclude that an evolving fuzzy controller capable

of self-designing is an intelligent control system.

1.2 Contributions of the dissertation

The contributions presented in this dissertation aim to advance in the area of

evolving fuzzy systems for intelligent control. The main objective is to investi-

gate and develop new methodologies that are able to provide controllers using

less prior knowledge about the systems to be controlled. Moreover, it is desired

that these controllers present good capabilities for handling changing operating

conditions, noise, and other uncertainties that may appear during their opera-

tion.

In the first part of this thesis, we propose two new methodologies for the

online self-evolution of a fuzzy controller when there is no prior knowledge

about the plant. Both methodologies are able to design fuzzy controllers from

scratch, in an online manner, based on the analysis of the input/output data ob-

tained from the normal operation of the plant. The underlying principles are the

same in both cases: On the one hand, the property of universal approximation of

fuzzy systems is exploited to incrementally build the controller by adding new

membership functions (MFs) and rules. On the other hand, in order to provide

higher robustness, the modification of the controller’s structure is based on the

analysis of the error surface in the entire operating region. Some of the features

that are shared by these two methodologies are the following:

• The methods proposed do not require a model of the plant or its differential equa-

tions. Unlike most online methods proposed in the literature [Gao and Er,

2003; Park et al., 2005; Phan and Gale, 2008], these methods do not make

assumptions about the differential equations (e.g., their bounds). The only

Introduction 19

requirement is that the monotonicity of the plant with respect to the con-

trol signal has a constant sign. Thus, only qualitative knowledge about the

plant is used.

• No previous knowledge about the control policy is required. As mentioned be-

fore, the controller can start operating with only one rule initialized to zero

and will self-develop while working online.

• The controllers are robust, in the sense that they can cope with unexpected

isolated changes in the dynamics of the plant. Their adaptive nature pro-

vides them with the ability to learn the new behavior of the plant in order

to continue delivering a satisfactory performance.

• The evolving method is a life-long learning process. As such, the controller

continues learning and evolving during its entire operation. Two different

types of learning are applied: On the one hand, the information about the

error at the plant’s output is used to adapt online the rule consequents.

On the other hand, the error of the approximation of the plant’s inverse

function is analyzed to incrementally evolve the structure of the controller.

The first methodology presented is OSEFC (Online Self-Evolving Fuzzy Con-

troller) [Cara et al., 2011a]. In this methodology, a complete set of rules is used

for the fuzzy controller. When the controller’s topology has to be modified, the

error surface in the entire operating regions is analyzed and one membership

function is added to the input variable that is mostly responsible for the error.

The method is also able to select the input variables that are relevant for the

control, from a set of candidate inputs. This last feature also helps to reduce the

initial knowledge required. OSEFC provides controllers with good performance

despite the fact of not using any prior knowledge about the plant. However, due

to its grid-like structure, the number of rules grows exponentially (i.e., it suffers

the well-known curse of dimensionality [Bellman, 1961]). This situation has a

negative effect for both the complexity and the interpretability of the controller.

In order to tackle these problems, the second methodology (which we call

OSENF-TaSe1) is proposed [Cara et al., 2012]. OSENF-TaSe uses a scatter parti-
1OSENF-TaSe stands for Online Self-Evolving Neuro-Fuzzy controller based on the TaSe-NF

model

Introduction 20

tioning of the input space. This distribution reduces the number of rules needed

by directly locating them in the regions with higher nonlinearities. In addition,

the use of the modified inference process offered by the recently proposed TaSe-

NF model [Herrera et al., 2011b] enhances the interpretability of the rules. This

is achieved by guaranteeing that each rule consequent represents the output of

the plant’s inverse function at the center of the corresponding rule. In OSENF-

TaSe, the controller’s structure evolves through the successive splitting of the

rules that present high control errors in their areas of influence. It is important

to note that while in OSEFC the addition of one new membership function im-

plies the generation of several rules, in OSENF-TaSe only one rule is added at

each step.

Finally, the third contribution of this dissertation is oriented towards the

study of new structures for the design of evolving fuzzy controllers. In this

sense, we investigate the increasingly popular interval type-2 fuzzy systems,

which have emerged in the last years as an effective mechanism for uncertainty

handling. As a previous step for the adoption if this new model, we address one

of the main criticisms directed to type-2 fuzzy systems, which states that the

only reason why they outperform their type-1 counterparts is their use of extra

parameters [Cara et al., 2011b]. Specifically, we aim to determine if there are sig-

nificant differences in the performance of type-1 and interval type-2 FLSs with

the same number of parameters and, in that case, when is a method preferred to

the other.

With the goal of providing a common framework for the comparison of these

systems, we propose a multi-objective evolutionary algorithm for the optimiza-

tion of the rule base and parameters of type-1 (both singleton and non-singleton)

and singleton interval type-2 fuzzy systems. This methodology includes a mod-

ule for computing the optimal consequents for a given rule base, for both type-1

and singleton interval type-2 FLSs. This module helps to reduce the size of the

search space and to improve the accuracy of the solutions found by the multi-

objective evolutionary algorithm. Finally, a comparative study, based on the

optimized fuzzy systems under different levels of noise, is carried out. Non-

parametric statistical tests are used to determine whether the differences be-

tween the performance of type-1 and interval type-2 FLSs are significant or not.

Introduction 21

1.3 Structure of the dissertation

The work presented in this dissertation is organized in chapters. The following

list summarizes the contents of each chapter:

Chapter 1. Introduction: It presents the field of intelligent control and sum-
marizes the contributions and structure of this dissertation. This chapter is also
presented in Spanish.

Chapter 2. Preliminaries: In this chapter, we provide the main concepts and
definitions of type-1 and type-2 fuzzy logic applied to the field of control. These
concepts represent the theoretical basis for the proper understanding of the re-
maining chapters.

Chapter 3. Evolving fuzzy control. Concepts and state of the art: This chapter
introduces the field of evolving fuzzy control. First, a brief historical description
of the evolution of control systems is presented. Next, the definition and main
properties of evolving fuzzy systems are provided. The chapter ends with a
review of the state of the art in the area of fuzzy control.

Chapter 4. OSEFC: Online Self-Evolving Fuzzy Controller: This chapter
presents the first methodology proposed for the online self-evolution of a fuzzy
controller, starting from scratch, when there is no prior information about the
plant. This method, which we call OSEFC [Cara et al., 2011a], is able to deter-
mine an adequate topology for the fuzzy controller based on the data obtained
during the system’s normal operation. It comprises two phases: Online adapta-
tion of the rule consequents, and online addition of new membership functions
and rules. The chapter also includes simulation and experimental results to il-
lustrate the main properties of the proposed methodology.

Chapter 5. OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based
on the TaSe-NF model: In this chapter the second methodology for the online
self-design of a fuzzy controller (called OSENF-TaSe) is proposed [Cara et al.,
2012]. OSENF-TaSe extends OSEFC’s capabilities by reducing the controller’s
complexity (i.e., the number of rules) while increasing the interpretability of the
rules thanks to the use of the TaSe-NF model. The chapter includes simulation
results and comparisons with OSEFC and with classic controllers.

Chapter 6. Multi-objective optimization of type-1 and type-2 fuzzy systems
with comparative purposes: This chapter aims to address one of the most com-
mon criticisms of type-2 fuzzy systems, which states that they outperform their

Introduction 22

type-1 counterparts based solely on the use of extra parameters [Cara et al.,
2011b]. The chapter presents a multi-objective evolutionary algorithm for the
optimization of type-1 and interval type-2 fuzzy systems. This optimization
procedure provides a common framework for the comparison, where (singleton
and non-singleton) type-1 and interval type-2 FLSs present optimized configura-
tions with a similar number of parameters, obtained under the same conditions.
In this context, statistical tests are used to determine if the differences in their
performance are significant.

Chapter 7. Conclusions of the dissertation and list of publications: This
chapter summarizes the main conclusions extracted from the work presented
in this dissertation. The publications derived from this research are also enu-
merated. This chapter is also presented in Spanish.

It has to be noted that two types of fuzzy logic systems are considered in

this dissertation, namely type-1 and interval type-2 FLSs. The former are used

in chapters 4, 5 and 6, whilst the latter are only considered in chapter 6. For

simplicity, in the chapters that only apply type-1 fuzzy logic, we omit the adjec-

tive “type-1” and simply use terms as “fuzzy controller”, “fuzzy logic”, and so

on. In chapter 6, however, the particles “type-1” and “type-2” are always used

to differentiate them. Additionally, it has to be clarified that this dissertation

considers singleton interval type-2 FLSs only. For brevity, we sometimes refer

to them simply as “type-2 FLSs”; however, the reader has to keep in mind that

general type-2 FLSs are not treated in this work.

Finally, in order to make easier the reading of this thesis, the following con-

ventions are applied:

• Each chapter is divided into sections that can include subsections and sub-

subsections. When a reference to any part of the text is given, this reference

includes the number of chapter followed by the number of section, subsec-

tion and so on. For instance, see section 2.4.4; go to chapter 4.

• Figures and tables are numbered by chapter. For example, Fig. 2.1.

• Mathematical expressions are also numbered by chapter and referenced

with their number enclosed in parentheses, e.g., the plant given by (4.55).

Introduction 23

• Bibliographic references are indicated as follows: When the work has one

or two authors, the last name of the authors followed by the year of pub-

lication is used; for instance, [Angelov, 2004; Wagner and Hagras, 2007].

When there are three or more authors, we use the last name of the main

author followed by the abbreviation et al. and the year of publication, e.g.,

[Rojas et al., 2000].

Chapter 2

Preliminaries

In this chapter, we review the main concepts of the theory of fuzzy logic required

for the proper comprehension of the work presented in this dissertation. Both

type-1 fuzzy logic (or simply “fuzzy logic”) and type-2 fuzzy logic are consid-

ered. Section 2.1 presents the concepts of (type-1) fuzzy sets, operations on fuzzy

sets, fuzzy inference and universal approximation property of fuzzy logic. In

section 2.2, the structure of a fuzzy controller and its components are described.

The fundamentals of type-2 fuzzy logic and the structure of a type-2 fuzzy logic

system are described in sections 2.3 and 2.4, respectively.

2.1 Fuzzy logic

The complexity of most real-world processes (e.g., physical, chemical or other

processes from nature) makes it almost impossible to obtain a precise descrip-

tion of their dynamics in terms of a set of differential equations. Moreover, such

precise representation may be even unnecessary in many cases to achieve an ef-

fective control of the process. On the other hand, human beings can control such

types of processes satisfactorily without using complex mathematical models or

without requiring a deep comprehension of their internal dynamics. Driving ve-

hicles, controlling the level of liquid in reservoirs or the concentration of chem-

ical compounds in tanks are examples of such processes that are successfully

controlled by humans.

Preliminaries 26

To overcome the need of a precise representation of knowledge, in 1965

Zadeh introduced fuzzy sets [Zadeh, 1965] that allowed for the use of approx-

imate forms of reasoning in which the notion of “true” or “false” is a matter

of degree. Ten years later, Zadeh extended these fuzzy sets with the so-called

type-2 fuzzy sets [Zadeh, 1975], with the purpose of modeling the uncertainties

that can appear in the design of ordinary (type-1) fuzzy sets [Lughofer, 2011;

Mendel, 2001].

Over the last decades, fuzzy logic has been successfully applied to different

areas, such as regression, system modeling, control, pattern classification, etc.

Among them, the field of control can be regarded as one of the most relevant

[Hagras, 2007; Herrera et al., 2011b; Mendel, 2001]. The main reasons for the

wide acceptance of fuzzy systems are the following:

• They avoid the need of a precise mathematical model of the process.

• They present a high generalization capability.

• They avoid the use of black-box systems, that are harder to understand,

providing instead a set of comprehensible rules that are easier to be inter-

preted by humans. In the case of control problems, this means that the

linguistic control strategy used by a human operator is translated into an

automatic control strategy [Lee, 1990; Lughofer, 2011].

This section focuses on the concepts and fundamentals of type-1 fuzzy the-

ory (which for simplicity we call just “fuzzy logic”) that are of interest for the

reader of this dissertation. Most of the contents presented are taken from [Po-

mares, 2000]. The structure and operation of a fuzzy controller is presented later

in section 2.2. The concepts and operations for type-2 fuzzy logic, as well as

the structure of type-2 fuzzy logic systems, can be found in sections 2.3 and 2.4,

respectively.

2.1.1 Fuzzy sets. Concepts and definitions

Classic sets, as they are named to differentiate them from fuzzy sets, are charac-

terized by a clearly defined boundary or frontier. Every element in the universe

Preliminaries 27

of discourse whether completely belongs or not to the set. Thus, the member-

ship function (MF) for the element x to the set A is given by

µA(x) =

1 i f x ∈ A
0 if x < A

(2.1)

Mathematically speaking, the set A and its membership function µA(x) are

equivalent, in the sense that knowing the former is the same as knowing the

latter, and vice versa. However, human knowledge cannot be always so easily

categorized. For instance, if Z is defined as the set of all the cars whose maxi-

mum speed is high, the limit of the set is not clear. One of the main contributions

of Zadeh was the definition of the concept of membership degree for fuzzy sets,

which allows for the use of different levels of belonging of a given element to a

set.

Therefore, a fuzzy set Z is defined by the pair (x, µz(x)), where x is an element

and µz(x) is the membership degree of x to the fuzzy set Z, given by a real value

in the interval [0, 1].

For a discrete set, the definition of the elements belonging to the set is

Z =

n∑
i=1

xi/µz(xi) = x1/µz(x1) + ... + xn/µz(xn) (2.2)

where the symbol “+” has been used to represent the union of all the elements

in the set. These elements have been defined as x/µz(x), where the symbol “/”

represents an ordered pair.

In the continuous case, the set is defined as

Z =

∫
X

x/µz(x) (2.3)

Fuzzy logic is characterized by the use of linguistic terms instead of numeric

values to represent the state of the variables, e.g., high temperature or low speed.

Thus, a linguistic variable is a variable whose values are words instead of num-

bers. The use of words instead of precise numeric values is motivated by the fact

that linguistic descriptions contain more information and are more comprehen-

sible for humans, even if they are more imprecise [Mendel et al., 2010; Zadeh,

Preliminaries 28

1996]. In this section, we define the main concepts used in the field of fuzzy

logic, some of which will be used in the rest of this dissertation.

Definition 1. Fuzzy set and membership function: Let X be a collection of
objects x. Then the fuzzy set A in the universe of discourse X is defined as a set
of ordered pairs of the form

A = {(x, µA(x)) | x ∈ X} (2.4)

where µA(x) is the membership function of the element x to the fuzzy set A,
which takes real values in the interval [0, 1]. If the membership function is re-
stricted to take its values in {0, 1}, then the fuzzy set is equivalent to a classic
set.

Definition 2. Inclusion: Given two fuzzy sets A and B in the universe of dis-
course X, A is said to be included in B (equivalently, A is a subset of B) if and
only if for every element x ∈ X it is satisfied that µA(x) ≤ µB(x). Formally,

A ⊆ B⇔ µA(x) ≤ µB(x); x ∈ X (2.5)

Additionally, A and B are equal if and only if µA(x) = µB(x), ∀x ∈ X.

Definition 3. Convexity: A fuzzy set A is said to be convex if and only if the
following property is satisfied:

x, y ∈ X, λ ∈ [0, 1] : µA (λx + (1 − λ)y) ≥ min (µA(x), µA(y)) (2.6)

Definition 4. Support: The support of a fuzzy set A is defined as the set of all
the elements whose membership degree to A is non-zero. Formally,

S (A) = {x ∈ X | µA(x) > 0} (2.7)

Definition 5. Singleton: A singleton is a fuzzy set whose support is a single
point.

Definition 6. Amplitude: The amplitude of a convex fuzzy set A with support
S (A) is defined as

Amp(A) = sup(S (A)) − inf(S (A)) (2.8)

In control applications it is common to work with convex fuzzy sets. In this
case, the notions of support and amplitude are generally used indistinctly. It is

Preliminaries 29

important to note that the support is an interval; if it is closed, the supremum
and infimum operations can be replaced by the maximum and minimum, re-
spectively.

Definition 7. Core: The core of a fuzzy set A is defined as

Core(A) = {x ∈ X | µA(x) = 1} (2.9)

If the core is formed by a single element xp (e.g., as in fuzzy sets defined by
triangular MFs), then xp is called the apex of the fuzzy set.

Definition 8. Height: The height of a fuzzy set A is the maximum membership
degree of the elements of its support. Formally,

Height(A) = sup {µA(x) | x ∈ X} (2.10)

Definition 9. Normal fuzzy set: A fuzzy set is said to be normal if its height is
equal to 1 or, equivalently, if its core is not the empty set.

Definition 10. α-Cut: Given a fuzzy set A, its α-cut is the subset of A that
contains all the elements x ∈ X such that their membership degree is greater
than or equal to α. Formally,

Aα = {x ∈ X | µA(x) ≥ α} (2.11)

2.1.2 Operations on fuzzy sets

Intersection, union and complement are the basic operations defined in classical

set theory. They can be extended to fuzzy sets, although there is not a unique

definition for these operations. The definitions given by Zadeh [Zadeh, 1973]

are the following:

∀x ∈ X : µA∧B(x) = min(µA(x), µB(x))

∀x ∈ X : µA∨B(x) = max(µA(x), µB(x))

∀x ∈ X : µA′(x) = 1 − µA(x) (2.12)

These definitions have the property that, when the membership values are re-

stricted to {0, 1}, the operations with fuzzy sets are equivalent to the correspond-

ing operations with classic sets. The Minimum and Maximum operators were

Preliminaries 30

widely used in the design of the first fuzzy systems, that followed the Mamdani

design. Nonetheless, afterwards many efforts were directed to study the prop-

erties of such operators on the fuzzy inference process [Cárdenas et al., 1993;

Kovalerchuk and Taliansky, 1992] and to prove if some options can be better

than others in certain applications [Gupta and Qi, 1991; Kruse et al., 1994]. In

the following subsections we define the properties that have to be satisfied by

the operators used to implement the operations on fuzzy sets.

2.1.2.1 Intersection. T-norms

Definition 11. T-norm: A continuous function t : [0, 1] × [0, 1] → [0, 1] is a
t-norm if it satisfies the following properties:

Commutativity: t(a, b) = t(b, a)

Associativity: t(t(a, b), c) = t(a, t(b, c))

Monotonicity: if a ≤ c and b ≤ d ⇒ t(a, b) ≤ t(c, d)

Identity element: t(a, 1) = a

where a, b, c, d are real values in the interval [0, 1].

From the monotonicity property and the identity element it also follows that

a ∈ [0, 1] : t(a, 0) = 0

Some examples of t-norms are the following [Michels et al., 2006]:

Minimum: t(a, b) = min(a, b) (2.13a)

Algebraic product: t(a, b) = a · b (2.13b)

Lukasiewicz t-norm: t(a, b) = max(0, a + b − 1) (2.13c)

Drastic product: t(a, b) =

a if b = 1
b if a = 1
0 otherwise

(2.13d)

In spite of the wide variety of existing t-norms, in most practical applications,

the minimum, the algebraic product and the Lukasiewicz t-norm are chosen

[Michels et al., 2006]. Additionally, it can be proven that the largest t-norm is the

Preliminaries 31

Minimum operator, i.e., for any set of inputs any other t-norm produces a value

that is smaller than or equal to the minimum of the inputs. More information on

t-norms can be found in [Klement et al., 2000].

2.1.2.2 Union. T-conorms

Another relevant operation on fuzzy sets is the union. The properties that must

be satisfied by the union operator can be gathered under the following defini-

tion.

Definition 12. T-conorm: A continuous function t∗ : [0, 1] × [0, 1] → [0, 1] is a
t-conorm if it satisfies the following properties:

Commutativity: t∗(a, b) = t∗(b, a)

Associativity: t∗(t∗(a, b), c) = t∗(a, t∗(b, c))

Monotonicity: if a ≤ c and b ≤ d ⇒ t∗(a, b) ≤ t∗(c, d)

Identity element: t∗(a, 0) = a

where a, b, c, d are real values in the interval [0, 1].

Again, from the monotonicity property and the identity element it also fol-

lows that

a ∈ [0, 1] : t∗(a, 1) = 1

T-norms and t-conorms are dual concepts [Alsina et al., 1983; Michels et al.,

2006] in the sense that each t-norm t induces a t-conorm t∗ by

t∗(a, b) = 1 − t(1 − a, 1 − b) (2.14)

and, vice versa, from a t-conorm t∗ it is possible to obtain the corresponding

t-norm t by applying

t(a, b) = 1 − t∗(1 − a, 1 − b) (2.15)

Preliminaries 32

Some of the most widely used t-conorms in the literature are:

Maximum: t∗(a, b) = max(a, b) (2.16a)

Algebraic sum: t∗(a, b) = a + b − a · b (2.16b)

Lukasiewicz t-conorm: t∗(a, b) = min(1, a + b) (2.16c)

Drastic sum: t∗(a, b) =

a if b = 0
b if a = 0
1 otherwise

(2.16d)

It is easy to observe that these operators are the dual to the t-norms defined

in the previous subsection, as they are obtained from (2.13) by applying (2.14).

Thus, it can be proven that the Maximum operator is the smallest t-conorm.

2.1.2.3 Complement. Negation operators

The complement of a fuzzy set can be defined similarly to the definition used in

classical set theory, although it has to be noted that the operation is now applied

to the values of the corresponding membership function. Thus, the intuitive

interpretation of the fuzzy complement is that it measures the degree to which

an element x ∈ X does not belong to a given fuzzy set.

Definition 13. Fuzzy complement: A continuous function c : [0, 1]→ [0, 1] is a
fuzzy complement operator if it satisfies the following properties:

Boundary condition: c(0) = 1 and c(1) = 0

Negative monotonicity: if a < b⇒ c(a) > c(b)

Involution: c(c(a)) = a

where a, b are real values in the interval [0, 1].

Some examples of complement functions are the following:

Ordinary complement: c(a) = 1 − a (2.17a)

Yager complement: cw(a) = (1 − aw)1/w, with w ∈ (0,∞) (2.17b)

Sugeno complement: cλ(a) =
1 − a

1 + λa
, with λ ∈ (−1,∞) (2.17c)

Preliminaries 33

In classical set theory the intersection of a set with its complement is equal to

the empty set, whilst the union of a set and its complement yields to the whole

universe of discourse. In the context of fuzzy sets, these laws are weakened

as t(a, c(a)) ≤ 0.5 and t∗(a, c(a)) ≥ 0.5 [Michels et al., 2006]. Another important

property of the complement operation is that it has at least one point of equilib-

rium, i.e., a point a for which c(a) = a. This means that the point of equilibrium

of a fuzzy set is a value such that the membership degree to the set and to its

complement is the same.

2.1.3 Approximate reasoning

Fuzzy propositions are the primitive elements of human knowledge representa-

tion in fuzzy logic. A fuzzy proposition is a statement of the form the temperature

is high, where temperature is a linguistic variable and high is a linguistic label de-

fined for that variable. Fuzzy propositions can be combined by means of linguis-

tic connectives in many different ways, derived from the following fundamental

operations [Lee, 1990]:

• Conjunction (denoted p∧q): It forms a new proposition based on the truth-

fulness of both propositions.

• Disjunction (denoted p∨q): It forms a new proposition based on the verac-

ity of one of the propositions.

• Implication (denoted p→ q): Used to form IF-THEN fuzzy rules.

• Negation (denoted ¬p): It forms a new proposition of the form “it is false

that...”.

Thus, a fuzzy rule is a conditional statement of the form

IF propositionA THEN propositionB

where propositionA and propositionB can be simple or complex fuzzy proposi-

tions. The IF-part is the rule antecedent, whilst the THEN-part is the consequent.

Preliminaries 34

For instance, in the rule

IF temperature is high THEN pressure is very high

high and very high are linguistic labels for the linguistic variables temperature and

pressure, respectively. The proposition “temperature is high” is the antecedent and

“pressure is very high” is the consequent.

A fuzzy rule of the form “IF X is P THEN Y is B” can be abbreviated as

P → B. This notation essentially describes a relation between the two variables

X and Y . Thus, an IF-THEN rule can be also seen as a fuzzy binary relation R on

X × Y , where each element (x, y) ∈ X × Y is associated to a membership degree

µR(x, y). Formally,

R = P→ B =

∫
X×Y

µP(x)→ µP(y)/(x, y) (2.18)

where→ represents the implication function chosen, e.g., Kleene-Dienes, Luka-

siewicz, Zadeh, Gödel, Mamdani, etc. Therefore, a fuzzy relation represents a

degree of presence or absence of association, interaction, or interconnectedness

between the elements of two or more fuzzy sets [Mendel, 1995].

To obtain a fuzzy consequence from a set of antecedents, a fuzzy inference

process is performed [Cao and Kandel, 1992]. This process operates over the

fuzzy sets associated to the propositions and produces a fuzzy or numeric conse-

quence (the latter is more common in control and function approximation prob-

lems). In engineering applications, the Generalized Modus Ponens (GMP) is

usually the inference mechanism selected. Its operation can be represented as:

premise 1: X is P′

premise 2: IF X is P THEN Y is B

consequence: Y is B′

where P, P′, B and B′ are linguistic labels. Opposed to traditional crisp logic,

it is not required that the premise set is exactly equal to the antecedent set, i.e.,

a rule can be fired to different levels, depending on how similar the antecedent

Preliminaries 35

and the premise sets are. To obtain the fuzzy set B′, the operation B′ = P′ ◦ R is

performed, where ◦ represents the fuzzy composition and R is the fuzzy relation

generated by the rule in the second premise. Two basic operations are used

to define the fuzzy composition, namely projection and cylindrical extension

[Dubois and Prade, 1980].

Definition 14. Projection: Let R be a fuzzy relation on U =

n∏
i=1

Ui = U1 × U2 ×

· · · × Un, where (i1, . . . , ik) is a subsequence of (1, . . . , n) with k < n, and (j1, . . . , jl)

is its complementary subsequence. Consider V =

k∏
m=1

Uim . The projection of R on

V is defined as

proy(R) on V =

∫
V

sup
x j1 ...x jl

µR(x1, . . . , xn)/(xi1 , . . . , xik) (2.19)

In the binary case, if we define R on X × Y , we have:

proy(R) on Y =

∫
Y

sup
x
µR(x, y)/y (2.20)

Definition 15. Cylindrical extension: Let S be a fuzzy relation on V =

k∏
m=1

Uim

(see previous definition). The cylindrical extension of S in U is defined by

ce(S) =

∫
U
µS (xi1 , . . . , xik)/(x1, . . . , xn) (2.21)

In the binary case, if we define F as a fuzzy set over Y , we have:

ce(F) =

∫
X×Y

µF(y)/(x, y) (2.22)

Definition 16. Fuzzy composition: Let A be a fuzzy set defined on X and let
R be a fuzzy relation on X × Y . The composition of A and R (denoted A ◦ R) is a
fuzzy set B on Y given by

B = A ◦ R = proy(ce(A) ∩ R) on Y (2.23)

If the minimum is used for the intersection and the maximum for the projection,
the above expression is equivalent to the inference rule proposed by Zadeh, i.e.,

Preliminaries 36

µb(y) = max
x

min(µA(x), µR(x, y)) (2.24)

Equivalently, if the product is used for the intersection,

µb(y) = max
x

(µA(x) · µR(x, y)) (2.25)

If conjunctive premises are used in the antecedent part of the rule, then the

GMP inference process is as follows:

premise 1: X is P′ AND Y is Q′

premise 2: IF X is P AND Y is Q THEN Z is B

consequence: Z is B′

In this case, the second premise is a rule of the form P × Q → B, which can be

expressed as a ternary fuzzy relation R. The membership level of the elements

in the Cartesian product X×Y ×Z is given by µR(x, y, z) = µ(P×Q)→B(x, y, z). Finally,

the consequence set B′ can be computed using the product • (for the implication,

intersection and conjunction) and the maximum ∨ (for the projection) as follows:

µB′ (z) =

projection︷︸︸︷
∨
x,y

µP′ (x)

conjunction︷︸︸︷
• µQ′ (y)

 intersection︷︸︸︷
•

µP(x)

conjunction︷︸︸︷
• µQ(y)

implication︷︸︸︷
• µB(z)︸ ︷︷ ︸

µR(x,y,z)

︸ ︷︷ ︸
composition

(2.26)

which leads to

µB′(z) = ∨
x,y

{ [
µP′(x) • µQ′(y)

]
•
[(
µP(x) • µQ(y)

)
• µB(z)

] }
= ∨

x,y

{
µP′(x) • µQ′(y) • µP(x) • µQ(y)

}
• µB(z)

=

(
∨
x
{µP′(x) • µP(x)}

)
•

(
∨
y

{
µQ′(y) • µQ(y)

})
• µB(z)

= (α1 • α2) • µB(z) = αrule • µB(z) (2.27)

Preliminaries 37

where α1 is the similarity level between the value P in the antecedent and the

measured value P′ in the premise, α2 is the similarity level between the value Q

in the antecedent and the measured value Q′ in the premise, and αrule is the total

firing of the rule.

Finally, an aggregation operator is required to combine the output of multi-

ple rules into a final output value. Generally, the maximum or the sum-of-sets is

used for Mamdani-type fuzzy systems, whilst the weighted sum or the weighted

average are preferred for Takagi-Sugeno-Kang (TSK) systems (see section 2.2).

This aggregation produces an output fuzzy set, which is inferred from a given

fuzzy input by a set of fuzzy rules. It is important to note that there are other

ways to develop the inference process. A detailed analysis can be found in [Dri-

ankov et al., 1993; Jager, 1995].

2.1.4 Fuzzy logic systems as universal approximators

One of the most important issues that arises in the design of fuzzy systems is

the precision that can be achieved when approximating an arbitrary function

by a set of fuzzy rules and membership functions. For neural networks, it was

proven that a perceptron with three layers can approximate any real continuous

function in a compact domain to any desired accuracy, if an adequate number of

neurons is used [Hornick et al., 1989]. The same result was proven in [Wang and

Mendel, 1992] for Mamdani fuzzy systems with numeric consequents. Using the

Stone-Weierstrass theorem, Buckley [1992] proved that a set of fuzzy controllers

with Gaussian membership functions, product t-norm and center-of-maximum

defuzzification, can approximate any real continuous function in a compact do-

main.

Kosko [Kosko, 1992, 1994] developed a similar analysis, although based in

the concept of fuzzy patches. In [Buckley, 1993], it was proven that Sugeno fuzzy

systems with some specific properties were also able to approximate any type of

continuous function. Nonetheless, in [Castro, 1995; Castro and Delgado, 1996]

it was shown that there exist other types of fuzzy systems that do not use the

structures and primitives defined in the previous works but are also universal

approximators. Thus, in [Castro, 1995], it was proven that fuzzy systems that

use

Preliminaries 38

• triangular, Gaussian or trapezoidal membership functions,

• t-norm for the conjunction,

• implication functions that satisfy only some fundamental properties, and

• the usual defuzzification methods in the literature (mean of maximum,

center of areas, etc.), with the only condition that the defuzzification point

belongs to the support of the output set,

are all universal approximators. Additionally, the hybridization of neural par-

adigms and fuzzy logic also leads to universal approximators [Buckley and

Hayashi, 1994]. However, despite of these results, there is not a systematic

methodology for the design of fuzzy systems (selection of structure, operators

and parameters) that guarantees that the desired accuracy level will be met.

2.2 Structure of a fuzzy controller

The main components of a fuzzy controller (or fuzzy system, in general) are

depicted in Fig. 2.1. They can be summarized as:

• Fuzzifier: This block transforms the crisp inputs into fuzzy sets, so that

they can be used in the fuzzy inference process. This process is known as

fuzzification.

• Knowledge base (KB): It contains the definition of the linguistic values for

all the input and output linguistic variables and the rules that form the

system.

• Fuzzy inference engine: This block performs the inference process according

to the activation of the rules. It can be considered that this block has the

capability of simulating the human process of decision making.

• Defuzzifier: In this block, the output of the rules are combined into a sin-

gle output fuzzy set which is then transformed into a final numeric output

value. These processes are called aggregation and defuzzification, respec-

tively.

Preliminaries 39

Fuzzifier

Inference engine

Defuzzifier

Input fuzzy sets Output fuzzy sets

Crisp inputs Crisp output

Knowledge base

Data base Rule base

FIGURE 2.1: Structure of a fuzzy controller

In the following subsections we describe in some detail the operation of each

block.

2.2.1 Fuzzification

The first step that has to be performed in a fuzzy system is the conversion of

the numeric input values into fuzzy sets that can be used as the premises of the

rule antecedents in the fuzzy inference process. Formally, the fuzzifier maps a

crisp input vector with n inputs ~x = [x1, ..., xn]T ∈ X1 × ... × Xn into n fuzzy sets

Ax. There are two types of fuzzification, namely singleton and non-singleton

[Mendel, 1995].

When singleton fuzzification is used, the numeric input value is considered

to be precisely the desired input value. Thus, for an input x′, a singleton fuzzy

set Ax with support x′ is defined as (see Fig. 2.2(a))

Ax =

1 if x = x′

0 if x , x′
(2.28)

On the contrary, a non-singleton fuzzifier produces a fuzzy set Ax for which

µAx(x′) = 1 and µAx(x) decreases from unity as x moves away from x′. Thus,

in non-singleton fuzzification, the input value x′ is mapped into a fuzzy num-

ber, i.e., a fuzzy membership function (e.g., Gaussian or triangular) is associated

with it. Fig. 2.2(b) depicts an example of non-singleton fuzzification with a tri-

angular membership function.

Preliminaries 40

(a)

x’

1

0

(b)

x’

1

0

FIGURE 2.2: Types of fuzzification and antecedent matching. (a) Singleton
fuzzification. (b) Non-singleton fuzzification

Singleton fuzzification is usually preferred in control applications, because

it is simpler and faster to compute. However, it may not always be adequate,

especially when the data are corrupted by noise. In this case, non-singleton

fuzzification is, at least in theory, a better alternative.

It is a general convention to name a fuzzy system after the type of fuzzifica-

tion used. Hence, we can define the following types of fuzzy systems:

Definition 17. Singleton (type-1) fuzzy system: A fuzzy system that uses type-
1 fuzzy sets (and membership functions) and singleton fuzzification is called a
singleton (type-1) fuzzy system. Since this is the most widely used, when there
is no possible ambiguity, it is usually referred to simply as “fuzzy system”.

Definition 18. Non-singleton (type-1) fuzzy system: A fuzzy system that uses
type-1 fuzzy sets (and membership functions) and non-singleton fuzzification is
called a non-singleton (type-1) fuzzy system.

2.2.2 Knowledge base

The knowledge base of a fuzzy system stores all the information needed to de-

fine the rules and membership functions in the system. It is formed by two

components, namely the data base (DB) and the rule base (RB).

The data base stores the definition of the linguistic variables and their lin-

guistic labels. It defines all the membership functions, for both input and output

Preliminaries 41

variables. The selection of the granularity or density of membership functions

is very important in the modeling process.

The rule base comprises the fuzzy rules defined in the system. These rules

define a partition of the input space that can have a grid or scatter structure,

depending on whether a complete set of rules (with a rule for each possible

combination of the linguistic labels) is used or not.

For a multiple-input single-output (MISO) fuzzy system with n inputs x1 ∈

X1, ..., xn ∈ Xn and one output y ∈ Y , the i-th rule is given by

<i : IF x1 is Fi
1 AND x2 is Fi

2 AND... xn is Fi
n THEN y is Gi (2.29)

where Fi
1, ..., F

i
n are the input fuzzy sets and Gi is the output fuzzy set or numeric

value used to define the consequent of the rule.

2.2.3 Fuzzy inference engine

The fuzzy engine is the real core of the fuzzy controller. It combines the rules in

the rule base to provide a mapping from the input fuzzy sets to the output fuzzy

sets that will be later defuzzified. The inference process is divided into two

steps: First, a matching operation is used to determine the activation of the rules

according to the similarity between input fuzzy sets and the rule antecedents.

This operation basically consists in finding the intersection between the input

fuzzy set and the antecedent’s membership function, as shown in Fig. 2.2. Thus,

it is usually included in the fuzzification block. In the second step, the actual

inference is carried out using the procedure described in section 2.1.3.

Two main types of fuzzy controllers are found in the literature, depending on

the type of consequents used in the fuzzy rules: Mamdani [Mamdani, 1974] and

Takagi-Sugeno-Kang [Sugeno, 1985a,b; Takagi and Sugeno, 1985]. In the former,

fuzzy sets or precise crisp values are used to define the rule consequents, whilst

in the latter a numeric function of the input values is used. Thus, the rules of a

Mamdani fuzzy system are of the form (2.29), whereas for TSK systems the rules

are defined as

IF X is P AND Y is Q THEN Z is F(x, y) (2.30)

Preliminaries 42

where P and Q are fuzzy sets and F(x, y) is a polynomial of the input values,

generally linear, i.e., F(x, y) = p0 + p1x + p2y. A TSK system is said to be of order

O when it uses polynomials of order O in its rule consequents, with O being

an integer. Sugeno originally proposed first-order TSK systems [Sugeno and

Kang, 1988; Takagi and Sugeno, 1985], although systems of order 0 [Pomares

et al., 2004] and 2 [Herrera et al., 2005] are also widely used. It is important to

note that in the case of zero-order consequents, TSK and Mamdani systems with

crisp consequents are equivalent.

In most cases, first or higher order TSK systems require less rules than Mam-

dani system. However, TSK rules are also more difficult to interpret. Moreover,

when the rules are extracted from expert knowledge, it may be difficult to trans-

late this knowledge into a polynomial representation.

2.2.4 Defuzzification

Finally, the defuzzifier combines the output fuzzy sets obtained in the inference

process and transforms the result into a crisp numeric output value. This pro-

cess is highly important; for instance, in control applications the actuators only

accept numeric signals. Many works devoted to defuzzification strategies can

be found in the literature [Filev and Yager, 1993; Hellendoorn and Thomas, 1993;

Zhao and Govind, 1991].

For TSK fuzzy systems, the most commonly used defuzzification strategies

are the weighted average and the weighted sum. For Mamdani systems, a wide

variety of methods exist, including the center-of-area, the center-of-gravity, the

center-of-sums, several height methods, etc. A detailed description and a com-

parative between them can be found in [Pomares, 2000].

2.3 Type-2 fuzzy logic

Quite often, the knowledge used to construct the rules in a fuzzy logic system

is uncertain [Liang and Mendel, 2000]. Among the many sources of uncertainty,

the following can be considered as the most relevant [Hagras, 2004]:

Preliminaries 43

• Uncertainties in the inputs to the FLS, which translate into uncertainties

in the inputs’ or antecedents’ membership functions (in the non-singleton

and singleton case respectively) as the sensors’ measurements are affected

by high noise levels from various sources. In addition, the input sensors

can be affected by the conditions of observation, i.e., their characteristics

can be changed by the environmental conditions such as wind, sunshine,

humidity, rain, etc.

• Uncertainties in the control outputs, which translate into uncertainties in

the consequents’ membership functions of the FLS. Such uncertainties can

result from the change of the actuators’ characteristics, which can be due

to wear, tear, environmental changes, etc.

• Linguistic uncertainties, since the meaning of words that are used in the an-

tecedents’ and consequents’ linguistic labels can be uncertain, i.e., words

mean different things to different people [Mendel, 2001]. In addition, ex-

perts do not always agree and they often provide different consequents for

the same antecedents. A survey of experts will usually lead to a histogram

of possibilities for the consequent of a rule; this histogram represents the

uncertainty about the consequent of a rule [Mendel, 2001].

• Uncertainties associated with the use of noisy training data that could be

used to learn, tune or optimize the FLS.

All these uncertainties translate into uncertainties about fuzzy set member-

ship functions [Mendel and John, 2002]. In recent years, it has been argued that

classic fuzzy sets (also called type-1 fuzzy sets), as described in section 2.1.1,

have limited capabilities to directly handle data uncertainties, in the sense that

they may not be able to directly model and minimize the effect of these uncer-

tainties [Mendel, 2007b].

Type-2 fuzzy sets were introduced by Zadeh in 1975 [Zadeh, 1975] as an ex-

tension of the concept of ordinary (type-1) fuzzy set, with the purpose of mod-

eling the aforementioned uncertainty [Lughofer, 2011]. The main characteristic

of type-2 fuzzy sets is that they have grades of membership that are themselves

fuzzy [Liang and Mendel, 2000].

Preliminaries 44

The structure of a type-2 fuzzy logic system (or controller) is similar to its

type-1 counterpart (see section 2.2), although it includes an additional element,

the type-reducer. Type-2 FLSs are credited to be a good alternative when the cir-

cumstances are too uncertain to determine exact membership grades, e.g., when

training data is corrupted by noise [Liang and Mendel, 2000]. In the following

subsections we describe in detail type-2 fuzzy sets and systems. The structure

of a type-2 fuzzy system is presented in section 2.4

2.3.1 Type-2 fuzzy sets. Concepts and definitions

A type-2 fuzzy set is characterized by a fuzzy membership function, i.e., the

membership level for each element of this set is a fuzzy set in [0, 1]. It is im-

portant to note the difference with a type-1 fuzzy set where the membership

level is a crisp number in [0, 1] [Hagras, 2004]. The MFs in type-2 fuzzy sets are

three-dimensional and include a footprint of uncertainty. These two elements

provide additional degrees of freedom that make it possible to directly model

and handle uncertainties [Mendel and John, 2002; Mendel, 2001].

As it may be inferred from the previous description, new terminology ap-

peared with the introduction of type-2 fuzzy sets. In this subsection we present

the main concepts needed in order to use type-2 fuzzy logic as a model of lin-

guistic uncertainty. In general, we use a tilde over the symbols to distinguish

type-2 concepts from their type-1 counterparts, e.g., Ã denotes a type-2 fuzzy

set. Most of the contents of this subsection are taken from [Hagras, 2004; Mendel

and John, 2002; Mendel, 2001].

Definition 19. Primary variable: In the context of type-2 fuzzy logic, a primary
variable x ∈ X is the main variable of interest, e.g., temperature, speed. Note that
this definition is equivalent to the notion of linguistic variable considered in
traditional (type-1) fuzzy logic.

Definition 20. Primary membership: The primary membership of x ∈ X is an
interval Jx ⊆ [0, 1] of membership values defined for each value of the primary
variable x.

Definition 21. Secondary variable: Each element of the primary membership
u ∈ Jx ⊆ [0, 1] is called secondary variable.

Preliminaries 45

Definition 22. Type-2 fuzzy set and type-2 membership function: A type-2
fuzzy set Ã in the universe of discourse X is defined as a set of ordered pairs of
the form

Ã =
{(

(x, u), µÃ(x, u)
)
| x ∈ X, u ∈ Jx ⊆ [0, 1]

}
(2.31)

where µÃ(x, u) is the type-2 membership function that characterizes the type-2
fuzzy set, which satisfies 0 ≤ µÃ(x, u) ≤ 1. Note that when uncertainties dis-
appear, the type-2 MF is reduced to a type-1 membership function, in which
case the secondary variable u is equal to µA(x) and 0 ≤ µA(x) ≤ 1, i.e., the third
dimension disappears.

An alternative definition for a type-2 fuzzy set is given by

Ã =

∫
x∈X

∫
u∈U

µÃ(x, u)/(x, u) (2.32)

where Jx ⊆ [0, 1] and the integrals denote the logical union over all admissible
values of x and u.

The type-2 membership function µÃ(x, u) is also called a secondary grade,
and some authors use fx(u) to denote it.

Definition 23. Footprint of uncertainty: The bounded region that represents
the uncertainty in the primary memberships of a type-2 fuzzy set Ã is called
footprint of uncertainty (FOU). Formally, the FOU is the union of all the primary
memberships, i.e.,

FOU(Ã) =
⋃
x∈X

Jx (2.33)

It has been shown that, regardless of the choice of primary membership func-

tion (triangular, trapezoidal, Gaussian, etc.), the FOU is about the same [Mendel

and Wu, 2002]. Moreover, according to [Mendel and Wu, 2002], the FOU of a

type-2 fuzzy set also handles the rich variety of choices that can be made for a

type-1 MF, in the sense that using type-2 MFs instead of type-1 MFs diminishes

the importance of the issue of which type of MF to choose.

Definition 24. Secondary membership function (vertical slice, secondary set):
At each specific value x′ of the primary variable x, the 2-D plane whose axes
are u and µÃ(x′, u) is called a vertical slice of µÃ(x, u) or secondary membership
function. Formally, it is defined as

µÃ(x = x′, u) ≡ µÃ(x′) =

∫
u∈Jx′

fx′(u)/(u) (2.34)

Preliminaries 46

where Jx′ ⊆ [0, 1] and 0 ≤ fx′ ≤ 1. Since this formulation is valid ∀x′ ∈ X, the
prime notation in µÃ(x′) is generally dropped and µÃ(x) is referred to as a sec-
ondary membership function. Note that µÃ(x) is a type-1 fuzzy set, also referred
to as as a secondary set. Generally, the name used to describe the entire type-2
MF is associated with the name of the secondary membership function.

Definition 25. Domain of a secondary membership function: The domain of a
secondary membership function is the primary membership of x, i.e., Jx ⊆ [0, 1].

Definition 26. Embedded type-2 set: For discrete universes of discourse X
and U, an embedded type-2 set Ãe has N elements, one each from Jx1 , Jx2 , ..., JxN ,
i.e., u1, u2, ..., uN , with the associated secondary grades fx1(u1), fx2(u2), ..., fxN (uN).
Formally,

Ãe =

N∑
i=1

[
fxi(ui)/ui

]
/xi ui ∈ Jxi ⊆ U = [0, 1] (2.35)

Note that set Ãe is embedded in Ã.

Definition 27. Embedded type-1 set: Given discrete universes of discourse
X and U, an embedded type-1 set Ae contains one element from Jx1 , Jx2 , ..., JxN ,
namely u1, u2, ..., uN . Formally,

Ae =

N∑
i=1

ui/xi ui ∈ Jxi ⊆ U = [0, 1] (2.36)

The set Ae is the union of all the primary memberships of set Ãe in (2.35).

Definition 28. Type-2 singleton: A type-2 fuzzy set Ã is a singleton if it only has
a single point of nonzero membership, i.e., µÃ(x) = 1/1 for x = x′ and µÃ(x) = 1/0
for all other x , x′.

Definition 29. Interval type-2 fuzzy set: A type-2 fuzzy set Ã is an interval
type-2 fuzzy set if all its secondary grades are equal to 1. This condition is for-
mally expressed as

∀x ∈ X : fx(u) = 1, ∀u ∈ Jx ⊆ [0, 1] (2.37)

Note that, in this case, all the secondary membership functions are interval

(type-1) sets that reflect a uniform uncertainty at the primary memberships of

x. Since all the secondary grades in an interval type-1 set are unity, this interval

Preliminaries 47

x

1

0

Lower MF

Upper MF

FOU

Jx

Primary membership

FIGURE 2.3: Example of a triangular interval type-2 fuzzy set with uncertain
center. The lower MF is triangular and the upper MF is trapezoidal. The upper
vertexes of the trapezoid represent the uncertain center of a triangular type-1

membership function. The grey area depicts the FOU

set can be represented by its left and right end-points as [l, r]. An example of an

interval type-2 fuzzy set is depicted in Fig. 2.3. The figure also shows the FOU

(grey area) and the primary membership Jx.

Definition 30. Lower and upper membership functions: The lower and upper
bounds of the footprint of uncertainty of an interval type-2 fuzzy set are two
type-1 MFs, called lower and upper membership functions, respectively. The
lower MF (denoted µ

Ã
(x)) is a subset that has the minimum membership values

of the FOU. Analogously, the upper MF (denoted µÃ(x)) is a subset that has the
maximum membership values of the footprint of uncertainty. Note that, for a
given input x′, the lower and upper membership values correspond to the left
and right end-points of the interval set mentioned in Definition 29. In Fig. 2.3,
the lower and upper MFs are indicated with arrows.

In the literature about interval type-2 fuzzy systems, it is common to use

the term FOU to refer to the difference between the upper and the lower MFs.

Hence, if there is no risk of ambiguity, we will use this term indistinctly with

this double meaning, i.e., to refer to the union of all the primary memberships,

as described in Definition 23, and to indicate the difference between the upper

and lower MFs.

General type-2 FLSs are computationally expensive because they require a

process of type-reduction that is very intensive [Liang and Mendel, 2000]. This

Preliminaries 48

process is simpler when interval type-2 fuzzy sets are used, which makes in-

terval type-2 FLSs more suitable for control problems [Hagras, 2004]. For this

reason, in this dissertation we consider only interval type-2 fuzzy sets and sys-

tems.

2.3.2 Operations on interval type-2 fuzzy sets

The set-theoretic operations of type-2 sets and the properties of the membership

values of such sets were initially studied in [Mizumoto and Tanaka, 1976]. The

algebraic structure of type-2 sets was later analyzed in [Mizumuoto and Tanaka,

1981] and [Nieminen, 1997]. Finally, the general formula for the extended sup-

star composition of type-2 relations presented in [Karnik et al., 1999] is the base

of the type-2 FLS theory to handle uncertainties in the FLS parameters [Liang

and Mendel, 2000; Mendel, 2001].

For type-2 fuzzy sets in general, and interval type-2 fuzzy sets in particular,

two new operators, named meet and join, are defined to account for the inter-

section and union [Hagras, 2004]. These operators are described in detail for

general type-2 fuzzy sets in [Karnik and Mendel, 2001a]. Here, we present the

definition of the meet and join operators for the case of interval type-2 fuzzy sets

[Liang and Mendel, 2000].

For the following definitions, we consider two type-2 fuzzy sets Ã and B̃ in

the universe of discourse X. Their membership values are respectively given

by µÃ(x) =
∫

u fx(u)/u and µB̃(x) =
∫

w gx(w)/w, where u,w ∈ Jx are the primary

memberships and fx(u), gx(w) ∈ [0, 1] are the secondary grades of x ∈ X. In the

case of interval sets, the membership values are simplified to µÃ(x) =
∫

u 1/u and

µB̃(x) =
∫

w 1/w, and the sets are represented by the left and right end-points of

the intervals [lA, rA] ⊆ [0, 1] and [lB, rB] ⊆ [0, 1], respectively.

2.3.2.1 Intersection. Meet operator

Definition 31. Intersection of type-2 fuzzy sets: Using Zadeh’s Extension Prin-
ciple [Zadeh, 1975], the intersection of two type-2 fuzzy sets Ã and B̃ is defined
as [Karnik and Mendel, 2001a]:

Ã ∩ B̃⇔ µÃ∩B̃(x) = µÃ(x) u µB̃(x) =

∫
u

∫
w

(fx(u) ? gx(w)) /(u ? w) (2.38)

Preliminaries 49

where u is the meet operator, ? represents a t-norm, and the integrals indicate
logical union.

Definition 32. Meet operator: Under minimum or product t-norm, the meet
operator for two interval sets is defined by

Q = Ã u B̃ =

∫
v∈Q

1/q =

∫
v∈[lA?lB,rA?rB]

1/(u ? w) (2.39)

Equivalently, the meet of n interval type-1 sets A1, ..., An represented by [l1, r1], ...,
[ln, rn] ⊆ [0, 1] is an interval set whose end-points are given by [(l1 ? l2 ? ... ?

ln), (r1 ? r2 ? ... ? rn)].

2.3.2.2 Union. Join operator

Definition 33. Union of type-2 fuzzy sets: Using Zadeh’s Extension Principle,
the union of two type-2 fuzzy sets Ã and B̃ is defined as [Karnik and Mendel,
2001a]:

Ã ∪ B̃⇔ µÃ∪B̃(x) = µÃ(x) t µB̃(x) =

∫
u

∫
w

(fx(u) ? gx(w)) /(u ∨ w) (2.40)

where t is the join operator, ? represents a t-norm, ∨ is the maximum t-conorm,
and the integrals indicate logical union.

Definition 34. Join operator: The join operator for two interval sets is defined
by

Q = Ã t B̃ =

∫
v∈Q

1/q =

∫
v∈[lA∨lB,rA∨rB]

1/(u ∨ w) (2.41)

Equivalently, the join of n interval type-1 sets A1, ..., An represented by [l1, r1], ...,
[ln, rn] ⊆ [0, 1] is an interval set represented by [(l1 ∨ l2 ∨ ...∨ ln), (r1 ∨ r2 ∨ ...∨ rn)].

2.3.2.3 Complement. Negation operator

Definition 35. Complement of a type-2 fuzzy set: Using Zadeh’s Extension
Principle, the complement of a type-2 fuzzy set Ã is defined as [Karnik and
Mendel, 2001a]:

c(Ã)⇔ µc(Ã)(x) = ¬µÃ(x) =

∫
u

fx(u)/(1 − u) (2.42)

where ¬ is the negation operator and the integral indicates logical union.

Preliminaries 50

2.3.3 Type-2 fuzzy logic systems as universal approximators

In section 2.1.4, the universal approximation property of type-1 fuzzy controllers

was discussed. In an analogous way, the issue of whether type-2 fuzzy systems

are universal approximators or not is highly important. Again, we remember

that the universal approximation property refers to the capability of fuzzy logic

systems to approximate any real multivariate continuous function to any degree

of accuracy on a compact domain.

The development of an approximation theory for type-2 fuzzy systems is

still in its infancy [Ying, 2009]. Up to present, the only works reported in the

literature that cover this topic are those of H. Ying [Ying, 2008, 2009; You and

Ying, 2010]. These three works apply a two-step constructive proof for general

type-2 Mamdani fuzzy systems [Ying, 2008], interval type-2 TSK fuzzy systems

with linear consequents [Ying, 2009], and interval type-2 boolean fuzzy systems

[You and Ying, 2010]. First, they prove that type-2 fuzzy systems can uniformly

approximate any polynomial to an arbitrary accuracy, and then, use the Weier-

strass approximation theorem to generalize the first step to any multivariate

function.

2.4 Structure of a type-2 fuzzy logic system

The structure of a type-2 fuzzy logic system (or controller) is depicted in Fig. 2.4.

It is similar to the structure of a type-1 fuzzy logic controller (FLC) shown in

Fig. 2.1, with the difference that an additional block is included before the de-

fuzzification, i.e., the type-reducer, which generates a type-1 fuzzy set. A type-2

FLS is also characterized by a set of IF-THEN rules, but the antecedents and/or

consequents are type-2 fuzzy sets instead of type-1 sets. The use of type-2 FLSs

is recommended when the circumstances are too uncertain to determine exact

membership values [Hagras, 2004].

The operation of a type-2 FLS is as follows: First, the crisp input values are

fuzzified into type-2 fuzzy sets and are fed to the inference engine. In the in-

ference process, the rules in the rule base are activated by the input type-2 sets

to produce output type-2 sets. These output type-2 sets are processed by the

Preliminaries 51

Fuzzifier

Inference engine

Rules
Defuzzifier

Type-2 fuzzy input sets Type-2 fuzzy output sets

Crisp inputs

Crisp output

Type-reducer

Type-reduced sets

(type-1)

FIGURE 2.4: Structure of a type-2 fuzzy logic system

type-reducer, which combines them and performs a centroid calculation that re-

sults in type-1 fuzzy sets, called type-reduced sets. Finally, the type-1 sets are

defuzzified to produce crisp outputs. In this dissertation, we consider FLSs with

multiple inputs and a single output, thus, a single crisp output value is produced

for each input vector. In the following subsections, we describe the operation of

the five blocks just mentioned [Hagras, 2004; Mendel, 2001].

2.4.1 Fuzzification

The fuzzifier maps a crisp input vector with n inputs ~x = [x1, x2, ..., xn]T ∈ X1×X2×

...×Xn ≡ X into n input type-2 fuzzy sets Ãx. The same types of fuzzification used

for type-1 fuzzy systems (namely singleton and non-singleton) can be used for

type-2 fuzzy systems. Nonetheless, for type-2 systems, singleton fuzzification is

usually preferred, as it is fast to compute [Hagras, 2004] and conceptually easier.

For interval type-2 fuzzy sets, the result of the singleton fuzzification process

is a type-1 interval defined by its left and right end-points [lx, rx]. Fig. 2.5 depicts

an example of the fuzzification process. It is easy to observe the similarity with

the fuzzification process used for type-1 fuzzy sets (see Fig. 2.2).

As for type-1, a type-2 FLS is named after the type of fuzzification used.

Hence, for interval type-2 FLSs we define:

Definition 36. Singleton interval type-2 fuzzy system: A fuzzy system that
uses interval type-2 fuzzy sets and singleton fuzzification is called a singleton
interval type-2 fuzzy system.

Definition 37. Non-singleton interval type-2 fuzzy system: A fuzzy system
that uses interval type-2 fuzzy sets and non-singleton fuzzification is called a

Preliminaries 52

1

0

FIGURE 2.5: Singleton fuzzification with an interval type-2 fuzzy set

non-singleton interval type-2 fuzzy system.

It is important to highlight that in this dissertation, we only consider single-

ton interval type-2 fuzzy systems.

2.4.2 Rule base

According to [Mendel, 2001], the rules in a type-2 FLS remain the same as in

type-1 FLSs (see section 2.2.2), with the difference that the antecedents and/or

the consequents are represented by type-2 fuzzy sets. Thus, for a MISO system

with n inputs x1 ∈ X1, ..., xn ∈ Xn and one output y ∈ Y , the i-th rule is given by

<i : IF x1 is F̃i
1 AND x2 is F̃i

2 AND... xn is F̃i
n THEN y is G̃i (2.43)

where F̃i
1, ..., F̃

i
n are the input type-2 fuzzy sets and G̃i is the output type-2 fuzzy

set used to define the consequent of the rule.

2.4.3 Fuzzy inference engine

The inference engine combines the rules in the rule base to provide a mapping

from input type-2 sets to output type-2 sets. The antecedents in the rules are

connected through the meet operation, the membership values in the input set

are combined with those in the output sets using the extended sup-star compo-

sition [Karnik et al., 1999], and the rules are combined through the join operation

[Hagras, 2004].

Preliminaries 53

Each fuzzy rule of the form (2.43) can also be expressed as [Mendel, 2001]

<i : F̃i
1 × F̃i

2 × ... × F̃i
n → G̃i ≡ Ãi → G̃i (2.44)

where Ãi represents the rule’s antecedent set, i = 1, ...,Nr, and Nr is the number

of rules in the rule base. This rule is described by the membership function

µ<i(~x, y) = µ<i(x1, ..., xn, y). According to [Mendel, 2001], µ<i(~x, y) = µÃi→G̃i(~x, y) is

given by

µ<i(~x, y) = µF̃i
1
(x1) u ... u µF̃i

n
(xn) u µG̃i(y) =

 n�
a=1

µF̃i
a
(xa)

 u µG̃i(y) (2.45)

When singleton fuzzification is used, the input type-2 set Ãx contains a sin-

gle element ~x ′ and each µx̃a(xa) is non zero only at one point xa = x′a [Hagras,

2004]. Additionally, in this dissertation we consider the meet operation under

product t-norm [Liang and Mendel, 2000]. Therefore, the result of the input and

antecedent operations is an interval type-1 set, called the firing set, of the form

Fi(~x ′) ≡
n�

a=1

µF̃i
a
(x′a) =

[
f i(~x ′), f

i
(~x ′)

]
≡

[
f i, f

i
]

(2.46)

where f i(~x ′) and f
i
(~x ′) represent the lower and upper firing of the rule and can

be written as

f i(~x ′) = µi
F̃1

(x′1) · ... · µi
F̃n

(x′n) (2.47)

f
i
(~x ′) = µi

F̃1
(x′1) · ... · µi

F̃n
(x′n) (2.48)

2.4.4 Type reduction

Before defuzzifying the output fuzzy set to produce a crisp output value, type-2

FLSs require that the output type-2 fuzzy set obtained in the inference process

is transformed into a type-1 set. This process is known as type reduction and

was proposed in [Karnik et al., 1999]. The resulting type-1 set is known as the

type-reduced set.

The process of type reduction is computationally intensive, specially in the

Preliminaries 54

case of general type-2 sets [Liang and Mendel, 2000]. Big effort has been put in

the research of more efficient type-reduction methods [Liu et al., 2012; Mendel,

2005, 2007a; Wu and Mendel, 2009; Wu and Nie, 2011], thus leading to multi-

ple type-reduction algorithms. Some of the most widely used methods are the

following [Karnik and Mendel, 2001b; Mendel, 2001]:

• Height and modified height type reduction. This method replaces each output

type-2 set by a type-2 singleton, which is situated at the point of maximum

primary membership in the output type-2 set. In the modified version, the

same idea is applied, although a multiplying scaling factor is applied to the

rules’ firing levels. They are both simple methods but present problems

when only one rule is fired.

• Centroid type reduction. This method combines all the fired rule-output

type-2 fuzzy sets through the join operator and then calculates the centroid

on the resulting set. It is a computationally expensive method, because it

requires a high number of centroid calculations.

• Center-of-sets type reduction. In this method, each consequent type-2 set is

replaced by its centroid, which is a type-1 interval set. Then, the weighted

average of all the centroids is computed. It has a reasonable computational

cost that lies between the height and the centroid type reduction methods.

• Center-of-sums type reduction. This method combines the output type-2 sets

by adding them and then finds the centroid of the resulting type-2 set. Its

computational cost is similar to that of the centroid type reduction.

In this dissertation, we consider the Karnik-Mendel (KM) algorithm for the

center-of-sets type reduction, for which we provide a description below. We

have selected this method because it avoids the problems of the simple height

methods at a reasonable computational cost [Hagras, 2004]. The description of

the remaining methods can be found in [Mendel, 2001].

The type-reduced set produced by the center-of-sets method is an interval

Preliminaries 55

type-1 set that can be expressed as [Mendel, 2001]

Ycos(~x) =
[
yl, yr

]
=

∫
y1∈

[
y1

l ,y
1
r

] ...
∫

yNr∈
[
yNr

l ,yNr
r

]
∫

f 1∈

[
f 1, f

1
] ...

∫
f Nr∈

[
f Nr , f

Nr
] 1/

Nr∑
i=1

f iyi

Nr∑
i=1

f i

(2.49)

where Nr is the number of rules. The value yi (i = 1, ...,Nr) represents the centroid

of the type-2 interval consequent set G̃i of the i-th rule. It is a type-1 interval set

determined by its leftmost and rightmost values, i.e., yi =
[
yi

l, y
i
r

]
. Similarly, f i

denotes the firing level of the i-th rule, which is also a type-1 interval of the form[
f i, f

i
]
.

The calculation of the type-reduced sets is divided into two steps: First,

the centroid of each consequent type-2 set has to be obtained. Then, the type-

reduced set is actually computed. The following subsections describe these two

steps, following the notation used in [Hagras, 2004].

2.4.4.1 Computing the centroids of the rule consequents

The centroid of the i-th output fuzzy set is a type-1 interval set given by

yi =
[
yi

l, y
i
r

]
=

∫
θ1∈Jy1

...

∫
θz∈Jyz

1/

Z∑
z=1

yzθz

Z∑
z=1

θz

(2.50)

To obtain the limits of this interval set, the iterative procedure developed in

[Mendel, 2001] is used. In this procedure, the values of y are minimized and

maximized with respect to (θ1, ..., θz) to obtain yi
l and yi

r, respectively; i.e., the

following function has to be optimized:

y(θ1, ..., θz) =

Z∑
z=1

yzθz

Z∑
z=1

θz

(2.51)

Preliminaries 56

1

0

FIGURE 2.6: Parameters needed for each yz in the procedure for computing the
centroid of the rule consequents in an interval type-2 FLS

Thus, the following steps are followed to obtain the right end yi
r of the interval:

1. Discretize the output fuzzy set into Z points y1, ..., yZ . Without loss of gen-

erality, we assume that the values yz are arranged in ascending order, i.e.,

y1 ≤ y2 ≤ ... ≤ yz. Additionally, define the following elements:

Jyz =
[
Lz,Rz

]
(2.52a)

hz = (Lz + Rz)/2 (2.52b)

∆z = (Rz − Lz)/2 (2.52c)

Fig. 2.6 shows how to find the values Lz and Rz for each yz.

2. Initialize θz by setting θz = hz for z = 1, ...,Z, and compute y′ = y(θ1, ..., θz)

using equation (2.51).

3. Find e (1 ≤ e ≤ Z − 1) such that ye ≤ y′ ≤ ye+1.

4. Update the values θz according to

θz =

hz − ∆z if z ≤ e
hz + ∆z if z > e

(2.53)

and compute y′′ = y(θ1, ..., θz) using equation (2.51) with the new values of

θz.

Preliminaries 57

5. If y′′ = y′, then y′′ is the maximum value of y(θ1, ..., θz) and this is the value

of yi
r. Otherwise, go to step 6.

6. Set y′ = y′′ and go to step 3.

The procedure for computing the lower end yi
l of the centroid interval is the

same, although replacing (2.53) by

θz =

hz + ∆z if z ≤ e
hz − ∆z if z > e

(2.54)

It has been proven that this procedure converges in at most Z iterations to

find each of the limits of the centroid interval [Mendel, 2001].

2.4.4.2 Computing the type-reduced sets

To obtain the type-reduced set Ycos(~x) defined in (2.49), its left and right end-

points have to be computed. In the center-of-sets method [Mendel, 2001], the

firing strength f i of each rule is attached to the centroid of the corresponding

consequent yi. For the sake of clarity, we use f i
l to denote the lower firing level

associated to the lower limit yi
l of the centroid, and f i

r to denote the upper firing

level associated to the upper limit yi
r of the centroid. From (2.49), it is seen that

yl =

Nr∑
i=1

f i
l yi

l

Nr∑
i=1

f i
l

(2.55)

yr =

Nr∑
i=1

f i
r yi

r

Nr∑
i=1

f i
r

(2.56)

Thus, the following iterative procedure is used to compute yr [Mendel, 2001].

Without loss of generality, we assume that the pre-computed centroids yi
r are

arranged in ascending order, i.e., y1
r ≤ y2

r ≤ ... ≤ yNr
r :

1. Initialization step:

Preliminaries 58

(a) For every rule i = 1, ...Nr, initialize f i
r as f i

r = (f i + f
i
)/2, where f i

and f
i
have been previously computed according to (2.47) and (2.48),

respectively.

(b) Compute y′r = yr as given in (2.56).

2. Find R (1 ≤ R ≤ Nr − 1) such that yR
r ≤ y′r ≤ yR+1

r .

3. Update the firing levels according to

f i
r =

 f i if i ≤ R

f
i

if i > R
(2.57)

and compute y′′r = yr using equation (2.56).

4. If y′′r , y′r, then set y′r equal to y′′r and go to step 2. Otherwise, stop and

return yr ≡ y′′r .

The value R computed in this method is very important, as it defines whether

the lower or upper firing is used for each rule [Hagras, 2004]. Thus, for i ≤

R, f i
r = f i, whereas for i > R, f i

r = f
i
. Hence, the right end yr of the type-reduced

interval, given in (2.56), can be rewritten as

yr =

R∑
a=1

f aya
r +

Nr∑
b=R+1

f
b
yb

r

R∑
a=1

f a +

Nr∑
b=R+1

f
b

(2.58)

The procedure for computing the left end yl is similar to the one given for yr,

with the following changes:

• Use (2.55) to compute yl where (2.56) is used to obtain yr (steps 1b and 3).

• In step 2, find L (1 ≤ L ≤ Z − 1) such that yL
l ≤ y′l ≤ yL+1

l .

• In step 3, replace (2.57) by the following equation to update f i
l :

f i
l =

 f
i

if i ≤ L
f i if i > L

(2.59)

Preliminaries 59

Analogously to yr, the left end yl of the type-reduced interval, given in (2.55),

can be rewritten as

yl =

L∑
u=1

f
u
yu

l +

Nr∑
v=L+1

f vyv
l

L∑
u=1

f
u

+

Nr∑
v=L+1

f v

(2.60)

This iterative method is guaranteed to converge in no more than Nr iterations

to find yr and no more than Nr iterations to find yl, where Nr is the number of

rules in the rule base [Liang and Mendel, 2000; Mendel and Wu, 2002].

2.4.5 Defuzzification

Finally, the type-reduced set Ycos(~x) is defuzzified to produce a crisp output

value. As proposed in [Liang and Mendel, 2000] and [Mendel, 2001], the av-

erage of the left and right end-points of this interval is used as the type-2 FLS

final output, i.e.,

y =
yl + yr

2
(2.61)

Chapter 3

Evolving fuzzy control. Concepts
and state of the art

Nowadays control applications can be found in many different fields, such as

robotics, industrial applications, ambient intelligence or health care, among oth-

ers. The underlying theories and techniques have evolved greatly since their

appearance in the early 20th century, leading to a nowadays mature control the-

ory. However, as the complexity of the systems increase, so does the need of

new methodologies capable of coping with uncertainties, modeling problems

and complexity. Thanks to the improvement of computational systems, soft-

computing techniques can be applied to control systems to improve their per-

formance and to allow them to tackle more challenging problems.

In this chapter, we present a brief review of the evolution of control systems,

from their origins to state-of-the-art intelligent controllers that apply computa-

tional intelligence techniques to self-design. We pay special attention to fuzzy

controllers, which are the focus of this dissertation. Section 3.1 provides a brief

insight into the historical evolution of control systems. Evolving fuzzy systems

are throughly used in this dissertation as the paradigm for designing intelligent

controllers. Their properties, requirements and goals are described in section 3.2.

Finally, in section 3.3, we study the state of the art on the use of fuzzy systems

for control applications.

Evolving fuzzy control. Concepts and state of the art 62

3.1 Introduction. Historical origins of intelligent control

Automatic control has played a fundamental role in the advance of science and

engineering [Ogata, 2001]. The term “automatic control” is used to describe a

wide variety of methods that aim to minimize the need of human intervention

in control systems in order to maximize their efficiency. Despite the huge di-

versity of processes that can be controlled (generally named plants), their basic

underlying properties are similar and can be approached with a common math-

ematical control theory.

Probably, the first significant work in the field of automatic control was James

Watt’s centrifugal governor for the speed control of steam engines, in the 18th

century. However, a theory capable of explaining the underlying principles

did not appear until 1868, when James Maxwell [Maxwell, 1868] introduced the

analysis of systems through their linear differential equations.

Classical control theory was mainly developed during the first half of the

20th century [Ogata, 2001]. In 1922, Minorsky applied automatic controllers

to steering ships and showed how stability could be determined from the dif-

ferential equations describing the system [Minorsky, 1922]. In 1932, Nyquist

developed a relatively simple procedure for determining the stability of close-

loop systems [Nyquist, 1932]. In 1934, Hazen discussed the design of relay ser-

vomechanisms capable of closely following a changing input [Hazen, 1934].

During the decade of the 1940s, frequency-response methods (especially those

based on the Bode diagram [Bode, 1945]) allowed engineers to design linear

closed-loop control systems that satisfied performance requirements. In the

early 1950s, Evans’ root-locus method [Evans, 1950] was fully developed. These

two methods are the core of classical control theory. The systems designed us-

ing them were in general acceptable, but not optimal in any meaningful sense

[Ogata, 2001]. For this reason, in the late 1950s, the attention in the control field

shifted to the design of “optimal” systems (in some specific sense).

The complexity of modern plants has increased over the years. As a con-

sequence, the description of a control system now requires a large number of

equations. Classical control theory deals with single-input-single-output sys-

tems and is unable to properly handle these complex, nonlinear systems [Ogata,

Evolving fuzzy control. Concepts and state of the art 63

2001]. In the 1960s, the availability of digital computers made possible the devel-

opment of the so-called modern control theory, which is based on time-domain

analysis and synthesis using state variables [Gupta, 2000]. This new theory was

able to handle the increasing complexity of modern plants and to meet the re-

quirements on accuracy, weight and cost [Ogata, 2001]. Until the late 1980s, this

control theory was widely used in multiple fields and lead to the research on

optimal and adaptive control techniques.

However, the methods developed still relied heavily on rigorous mathemati-

cal concepts [Gupta, 2000]. The lack of a well-established theory for the analysis

of nonlinear systems, together with the appearance of new more challenging

requirements for control systems (uncertainties, operation on changing environ-

ments, speed, accuracy, etc.), caused the necessity of new advanced methods.

In response to this need, in the last decade of the 20th century, soft-computing

techniques (such as fuzzy logic, neural networks and evolutionary computa-

tion) were applied to control problems with good results [Andersen et al., 1997;

Chen and Khalil, 1995; Lee, 1990; Ordonez et al., 1997]. This synergy lead to the

appearance of the so-called “intelligent control”, which is treated in this disser-

tation. In the last decade, intelligent control techniques have continued evolv-

ing, increasing their capability to cope with the requirements mentioned above

[Bleris et al., 2007; Hagras, 2007; Rojas et al., 2006].

3.2 Evolving fuzzy systems

Fuzzy logic systems (both type-1 and type-2) are a widely used paradigm to rep-

resent uncertain knowledge. They provide a reliable trade-off between precise

and linguistic modeling and offer a tool for solving complex problems in the real

world [Lughofer, 2011]. However, the main obstacle in the design of fuzzy rule-

based systems is the proper generation of their structure (rule base, membership

functions, linguistic labels) and parameters [Angelov and Buswell, 2002].

In the last decade, a new topic has emerged in the field of data-driven design

of fuzzy systems: the so-called evolving fuzzy systems, which aim to account for

changing system dynamics and behaviors, as well as new operating conditions

and environmental influences [Lughofer and Angelov, 2011]. The main property

Evolving fuzzy control. Concepts and state of the art 64

of an evolving fuzzy system is that it develops both its structure and its param-

eters on demand, based on new incoming information [Angelov et al., 2010]. In

this section, we present the main concepts related to this new paradigm, which

represents the main core of this dissertation.

3.2.1 From first principle to evolving models

Mathematical models can be divided into four classes [Lughofer, 2011], namely

(i) first principle models, (ii) knowledge-based models, (iii) data-driven mod-

els, and (iv) hybridization of the former types. First principle models are those

which are analytically deduced from well-established theories about physical,

chemical, biological processes and other laws. They are often also called ana-

lytical models. This is the case of exact formulas that describe non-changing

dependencies, differential equations that describe dynamic processes, etcetera

[Luo, 2009]. They are usually deduced once and kept fixed afterwards. Their

main advantage is that they provide accurate representations of these processes;

however, they present the drawback that they are difficult or even impossible to

obtain in some cases. Moreover, real-life applications often do not comply with

the rigorous assumptions under which the basic conclusions of this theory have

been made [Angelov and Buswell, 2002].

Knowledge-based models are extracted from the long-term experience of ex-

perts, operators or users of the underlying system. This expert knowledge is

usually represented as linguistic rules, leading to the so-called knowledge-based

systems or expert systems [Castillo, 1991]. Fuzzy logic systems are a particular

case of this type of model. When the rules are properly defined, this type of

model may even cover extreme cases that cannot be captured by analytical mod-

els [Lughofer, 2011]. However, obtaining these rules from experts may be very

time consuming or difficult [Chen et al., 2008] and may be affected by subjective

moods or ideas.

Data-driven models appeared to overcome the difficulties mentioned above.

This type of model includes any form of mathematical model that is fully de-

signed, extracted or learned from data [Lughofer, 2011]. Opposed to knowledge-

based models, they avoid the impact of subjectivities by using objective obser-

vations (data) provided by the underlying system. This information may come

Evolving fuzzy control. Concepts and state of the art 65

from several different sources, such as measurement sensors, structured data

(e.g., databases) or data streams. The objective nature of the data often makes

a data-driven model more trustworthy than a knowledge-based one. Nonethe-

less, the generalization capability of these models highly depends on the quality

of the training data used in the learning process [Bouchachia and Mittermeir,

2006].

Evolving models (or evolving systems) are a particular case of data-driven

models. Their main property is that they are automatically adapted, extended

and evolved dynamically on-the-fly based on new incoming data samples [Lu-

ghofer, 2011]. Thus, any evolving system presents the ability to expand or shrink

its structure, as well as to to adapt its parameters, in an incremental way, online

and, if necessary, in real time [Angelov et al., 2010]. They are able to support any

modeling scenarios for data streams and dynamic data that change their nature

and characteristics over time and space.

In this context, it is important to differentiate between adaptive and evolv-

ing models (see Table 3.1). The former usually refers to the update of some

model parameters, whilst the latter also takes the extension of the model into

account, i.e., by generating new structural components on demand. It is also

worth noting that evolving models are permanently updating their knowledge

by integrating new system behaviors and environmental influences in a life-long

learning process that is never really terminated [Lughofer and Angelov, 2011].

Finally, it is to be clarified the distinction between the evolutionary and the

evolving approach. In the former, structure and parameters are learned based

on genetic operators in an iterative process that uses all the data in each step.

Moreover, a complete population of individuals is evolved in order to finally

obtain a solution. On the contrary, the evolving approach refers to the system’s

ability to incorporate new data on-the-fly and to gradually adapt (evolve) its

structure and parameters to accommodate such data [Angelov et al., 2010; Lu-

ghofer, 2011]. Moreover, in the evolving paradigm, a single solution is handled,

instead of a population. Table 3.1 summarizes the differences among the adap-

tive, the evolving and the evolutionary paradigms.

Evolving fuzzy control. Concepts and state of the art 66

TABLE 3.1: Comparison of adaptive, evolutionary and evolving systems

Adaptive Evolutionary Evolving

Parameters Dynamic Dynamic Dynamic

Structure Predefined Predefined or dynamic Dynamic

Type of learning
Adaptation Genetic operators Incremental

Online Offline Online

Data used for learning As they arrive All the data As they arrive

Solutions handled One Several (population) One

3.2.2 Incremental learning in evolving systems

In order to obtain systems that are capable of gradually learning and evolv-

ing their structure, techniques of incremental learning are usually applied. In-

cremental learning can be defined as a sample-wise or block-wise training of a

model or system, either from scratch or starting with an already available one

[Lughofer, 2011]. Incremental learning techniques can be classified into three

groups, depending on the use and storage of the data [Maloof and Michalski,

2004]:

• Full instance memory methods store all the data points received. This op-

tion presents several drawbacks, mainly the cost of relearning the models

from all the data seen so far and the need to store all the previous data

[Cara et al., 2011a; Lughofer, 2011], which may cause the memory to ex-

plode.

• No instance memory methods (also known as single-pass incremental learn-

ing) represent the opposite case, in which the data are processed immedi-

ately and discarded afterwards [Bouchachia and Mittermeir, 2006]. This

alternative has the advantage of requiring low memory and computational

effort. Nonetheless, it also may lead to robustness problems, e.g., they

are strongly affected by the order in which the data points are received

[Dagher et al., 1999].

Evolving fuzzy control. Concepts and state of the art 67

• Partial instance memory methods are intermediate solutions that store only

part of the data points received. It has been stated that learners with partial

instance memory react more quickly to drifting concepts than learners that

do not store any past information [Maloof and Michalski, 2004]. Nonethe-

less, the way in which the data to be stored are selected is important, as

it may lead to forgetting previously learned situations [Lughofer, 2011].

A way to tackle this issue is to store a limited amount of data points that

provide a uniform representation of the data space considered [Cara et al.,

2010c].

Online learning is also an important concept in the context of evolving sys-

tems. This type of learning can be defined as the training process that takes

place during online operation modes (e.g., during the normal operation of the

system), which implies that the system is permanently trained and expanded

with new data collected from the online process.

Finally, incremental learning methods in general, and evolving systems in

particular, have to tackle different trade-offs, known as the stability-plasticity

dilemma and the accuracy-interpretability trade-off. These issues are described

in the following subsections.

3.2.2.1 Stability-plasticity dilemma

Evolving systems are confronted with the stability-plasticity dilemma. This

dilemma is concerned with learning new knowledge (plasticity) without forget-

ting the previously learned one (stability) [Bouchachia, 2010; Grossberg, 1988].

On the one hand, a system is totally stable when it is able to keep all the ac-

quired knowledge without any catastrophic forgetting [Bouchachia and Mitter-

meir, 2006]. On the other hand, a system is completely plastic if it is able to

continually incorporate new knowledge, even if that implies discarding the pre-

viously acquired information.

In addition, it can be considered that stability is achieved when the system’s

components (i.e., rules, in the case of fuzzy systems) are not changed or are

changed very slightly [Lughofer, 2011]. In this sense, stability is related to pa-

rameter convergence, as small changes in the structure usually do not disturb

Evolving fuzzy control. Concepts and state of the art 68

this convergence. On the contrary, plasticity is related to significant movements

of structural components, which are required to accommodate the new informa-

tion.

Obviously, plasticity is fundamental in the context of evolving systems, as it

is the key to the adaptation to new situations as they appear. If learning stops too

soon, later events cannot be incorporated. However, if new data always cause

important modifications in the system, earlier learning may be forgotten. Since

these two desirable qualities are in conflict, an evolving methodology should

try to find a compromise between stability (in order to guarantee convergence)

and plasticity (in order to guarantee that new information is included in the

system) [Lughofer, 2011]. This problem has been thoroughly studied by many

researchers [Bouchachia, 2010; French, 1999; Grossberg, 1988].

3.2.2.2 Accuracy-interpretability trade-off

Another important issue in the design of fuzzy systems (whether they are evolv-

ing or not) is the trade-off between accuracy and interpretability. The former

refers to the system’s capability of performing its task with high precision, whilst

the latter refers to its ability to express this behavior in an understandable way

from the human point of view [Cordón, 2001]. It is clear that accuracy and inter-

pretability are to a considerable extent opposing properties when training fuzzy

systems [Herrera et al., 2011b]. As a consequence, many researchers have stud-

ied this problem recently [Casillas, 2003; Casillas et al., 2005, 2003; Herrera et al.,

2005; Johansen and Babuska, 2003].

In general, the two types of fuzzy system introduced in section 2.2.4 af-

fect this trade-off in a different way [Herrera et al., 2011b]. On the one hand,

Mamdani-type systems focus on interpretability, as they use linguistic labels for

both the antecedents and the consequents. On the other hand, TSK fuzzy sys-

tems are considered to be more accurate due to the use of linear functions in the

consequents. This provides a better approximation capability although it also

makes these systems less interpretable.

Traditionally, learning mechanisms for fuzzy systems (adaptive, evolution-

ary, evolving, etc.) have concentrated on the improvement of the accuracy,

whilst interpretability has been left as a secondary aspect [Cordón, 2011; Gacto

Evolving fuzzy control. Concepts and state of the art 69

et al., 2009]. Nonetheless, it must be remembered that one of the motivations

for the use of fuzzy systems is their higher interpretability with respect to other

type of systems (neural networks, genetic programming, etc.) [Lughofer, 2011].

Therefore, it is important that evolving fuzzy systems use techniques that allow

for the balancing of these two aspects.

3.2.3 Essential requirements and goals for evolving fuzzy systems

In this section, we conclude our introduction to EFSs by pointing out the main

demands that can be made to this type of intelligent systems. From a general

point of view, there are two main requirements that should be fulfilled by an

evolving system [Lughofer, 2011]:

• The performance of the evolving system should be as close as possible to

the performance achieved by its hypothetical batch version. Note that a

batch learning algorithm can use all the data for its learning and may even

perform several iterations over the data to refine its parameters. Thus, it

will usually achieve a stable solution with high accuracy. For this reason, it

would be desirable to achieve a similar performance with an online learn-

ing method that only “sees” part of the data.

• The evolving system should achieve the so-called convergence to optimality

with respect to a certain optimization criterion. This requirement means

that at least some parameters should converge to the optimal solution

achieved by the hypothetical batch method mentioned before. This re-

quirement is closely related to the stability-plasticity dilemma.

In order to achieve these two requirements, an evolving fuzzy system must

modify its structure and parameters. More specifically, the following elements

should be adapted/evolved:

• The system’s linear and nonlinear parameters must be adapted and refined

as demanded by the incoming data. The rule consequents in TSK systems

are linear parameters, whereas the fuzzy sets in the antecedents are non-

linear. Usually, different methods are required for the adaptation of linear

consequents and the update of nonlinear parameters.

Evolving fuzzy control. Concepts and state of the art 70

• In order to allow the fuzzy system to cope with the appearance of new

operation states, its core components should be evolved. This is usually

achieved by adding new rules and antecedent fuzzy sets.

• In the case of problems with high-dimensional feature spaces, it would be

desirable that the evolving system was capable of selecting those features

that are relevant for its operation.

Finally, there are some additional properties that can be desirable in an EFS,

even if they are not strictly necessary. Thus, the following enhanced goals can

be defined for evolving fuzzy systems:

• The guarantee of process-safety can be a necessity in critical applications

in which some states should never be reached. Thus, an evolving system

could include mechanisms to guarantee proper operation and to prevent

system crashes. Nonetheless, in order to achieve this property, some previ-

ous knowledge about such undesired states should be known beforehand,

i.e., an expert should provide this information.

• The interpretability of the system should be preserved, as this is one of the

key reasons for the use of fuzzy systems.

• Finally, evolving systems could present increased performance an usabil-

ity with respect to other types of systems. This requirement is not strictly

necessary, as the fact that evolving systems can adapt to the environment

by themselves is a strong advantage by itself. Nonetheless, it represents

an additional nice-to-have feature.

3.3 State of the art

Over the past several years, fuzzy systems have achieved a considerable suc-

cess in the field of control [Chang, 2010; Gao and Er, 2005; Jiang and Han, 2008;

Pomares et al., 2004; Rojas et al., 2006; Wagner and Hagras, 2007; Wang et al.,

2008]. The main reasons for this are that fuzzy controllers do not require an ac-

curate model of the plant to be controlled and that they allow for the application

of human expert knowledge [Chang, 2010]. Moreover, in [Castro, 1995] it was

Evolving fuzzy control. Concepts and state of the art 71

proven that fuzzy controllers are universal approximators, in the sense that they

are able to approximate any continuous function in a compact set to any desired

accuracy.

However, there is no systematic approach for the design of fuzzy controllers

[Rajapakse et al., 2002]. As a consequence, obtaining high quality controllers is

never an easy task [Wagner and Hagras, 2007]. The way a fuzzy controller is

designed depends on the available knowledge about the dynamics of the sys-

tem to be controlled. In Fig. 3.1, we suggest a possible way to classify fuzzy

controllers according to the previous information and the type of design used to

obtain them. In this section, we follow this taxonomy to review the state of the

art on fuzzy control.

Internal dynamics fully known?

Internal dynamics partially known?

Prefixed structure? I/O data available?

Yes

Yes

Yes

No

No

No

Lyapunov-based adaptive
controllers

Ad-hoc fixed controllers

Lyapunov-based evolving
controllers

Yes No

Offline-trained
controllers

Prefixed structure?

Yes No

Adaptive controllers Evolving controllers

FIGURE 3.1: A possible classification of fuzzy controllers according to their
design technique

If the internal dynamics of the plant (i.e., its differential equations) and their

properties are well known, this information can be studied and used to design

stable controllers [Galluzzo and Cosenza, 2009; Lalouni et al., 2009]. This way,

we obtain ad-hoc fixed controllers specifically designed for the plant to be con-

trolled. Their main advantage is that their stability can be studied and proved.

Moreover, the design can be optimized to obtain an optimal controller under

a certain optimality criterion (i.e., minimum number of rules, adequate topol-

ogy, etc.). However, this approach presents some problems: Firstly, the design

process can be very time-consuming, or even impossible for complex systems.

Evolving fuzzy control. Concepts and state of the art 72

Secondly, the controllers need to be redefined for every different plant, even if

they are similar. Finally, they cannot cope with changes in the dynamics of the

plant if the designer was not aware of the possibility of their occurrence and

considered them during the design.

On the other hand, for real-world complex plants, it is a common situation

that only reduced knowledge (e.g., some properties of the differential equations,

such as their upper bounds), or even no knowledge at all, is available. In such

cases, other alternative methodologies have to be used, such as data-driven tech-

niques that are able to automatically obtain the controller parameters.

The literature shows a wide variety of methods for the development of fuzzy

controllers when enough knowledge about the plant is available to make as-

sumptions about its equations, such as the existence of certain bounds. In [Liu

and Zheng, 2009; Wang et al., 2008], the authors assume that the approximation

error is bounded and use this information to obtain Lyapunov-based update

laws for the parameters of the controller. In [Bellomo et al., 2008], the filtered

prediction error is combined with the tracking error to provide a modified com-

posite adaptation law for the rule consequents. In all these cases, the structure

of the fuzzy system is fixed and only the parameters are updated online. Hence,

these methods could be classified as Lyapunov-based adaptive controllers. Their

main advantage is that the stability of the closed-loop system is guaranteed.

However, the rule base has to be defined beforehand, i.e., the membership func-

tions and the rules have to be identified. In order to provide a good definition of

the rule base, some knowledge about the plant is needed. If this is not the case,

the resulting structure may be too complex or too simple to properly respond to

the nonlinearities of the plant.

There are also methods that perform an online modification of the controller’s

structure [Gao and Er, 2003; Park et al., 2005; Phan and Gale, 2008]. These meth-

ods also base their update laws on the Lyapunov theory, thereby obtaining sta-

ble controllers, although Phan and Gale [2008] were the only ones to prove the

stability over the structural changes. Although, these Lyapunov-based evolving

methods need less prior knowledge than their adaptive counterparts, they still

share the disadvantage of requiring that certain assumptions about the plant are

satisfied.

Evolving fuzzy control. Concepts and state of the art 73

In [Park et al., 2005], the controller’s structure is modified whenever an in-

put value falls outside the range defined by the current MFs. This method uses

a complete set of rules; hence, when the aforementioned criterion is satisfied, a

new MF and all the related rules are added to the knowledge base. The advan-

tage of this method is that it only places membership functions in those regions

of the input space that are actually reached by the controller. However, the rules

are evenly distributed in this explored space, which may lead to a high con-

centration of MFs in regions with low nonlinearities or not enough functions in

regions where the nonlinearities are high.

Gao and Er [2003] proposed a neuro-fuzzy controller that adapts online both

the parameters and the structure. This method adds new rules based on two cri-

teria, namely the ε-completeness and the system error, and deletes rules based

on the concept of error reduction ratio. It provides a scattered distribution of

the rules, thereby placing more of them in the areas with higher nonlinearities.

However, the computational cost of this technique is high, as large matrix com-

putations are performed in every step and all the previous input/output data

have to be stored.

In [Phan and Gale, 2008], the same criteria, as given in [Gao and Er, 2003],

are used for the addition of new membership functions. The new MF is added

to the input that achieved the maximum activation degree in the rule with the

maximum firing strength. The idea behind this selection criterion is that a large

system error indicates that membership functions in that input are not sufficient

to represent the nonlinearity in the region. However, it causes high sensibility

to noise, as the method will be sensitive to the presence of outliers. This method

does not require storing any past input/output (I/O) data. This reduces the

memory requirements, although it also causes that all the decisions made by the

algorithm only take into account the current situation, i.e., the algorithm may be

short-sighted.

The worst possible case for the design of a controller occurs when it is not

possible to make any assumptions about the equations of the plant, due to the

lack of knowledge. Obviously, in this case, techniques for the automatic design

of the controller are needed the most. When there are I/O data available, this

task can be performed offline with methods based on pre-training. In [Chen

Evolving fuzzy control. Concepts and state of the art 74

et al., 2009; Lin and Xu, 2006; Mingzhi et al., 2009; Mucientes and Casillas, 2007],

evolutionary algorithms are used for parameter learning in controllers with a

predefined topology. In [Li and Lee, 2003] and [Juang, 2008], the controller’s

topology is also learned, providing more flexible solutions, as they do not de-

pend on the ability of the designer to choose the rules. However, all these ap-

proaches show some drawbacks: On the one hand, since the controller is learned

offline, it works as a fixed controller and it is not able to cope with changes in the

dynamics of the plant. On the other hand, the I/O data used for the pre-training

may be difficult, or even impossible, to obtain.

When no I/O data are available, online techniques have to be applied. Multi-

ple methods exist for the online adaptation of parameters such as the rule conse-

quents or the membership functions [Andersen et al., 1997; Pomares et al., 2004;

Rojas et al., 2006; Zarandi, 2008]. In [Zarandi, 2008], reinforcement learning is

used for tuning the parameters of a fuzzy logic controller. In this approach two

fuzzy systems are used: an Actor and a Critic. The former uses the input state to

determine the next action; the latter combines the information about the action

suggested by the Actor with a reinforcement signal to produce an internal rein-

forcement that is later used to update both fuzzy systems. In [Rojas et al., 2006],

three types of parameters are adapted: output scale factors, rule consequents

and position of the membership functions. In [Andersen et al., 1997], the error

at the controller output is used in a gradient-descent technique to tune the pa-

rameters of the controller. Finally, in [Pomares et al., 2004], the error at the plant

output is used for a coarse tuning of the rule consequents, whilst the error at the

controller output is used for a fine tuning of the membership functions and the

consequents. These adaptive techniques share the inconvenient of requiring a

prior definition of the structure of the fuzzy controller, and the related problems

that have been already commented.

Finally, the case of the online learning of the structure of the fuzzy controller

when no prior knowledge about the plant is available has been seldom studied

[Angelov, 2004]. The most relevant work found in the literature regarding this

subject is authored by P. Angelov [2004]. In this work, the controller’s structure

is modified by using the information given by every new sample of training

Evolving fuzzy control. Concepts and state of the art 75

TABLE 3.2: Summary of the properties of the different methodolo-
gies for the design of fuzzy controllersa

Pr
ev

.k
no

w
le

dg
e

T y
pe

of
de

si
gn

Pa
ra

m
. a

da
pt

at
io

n

St
ru

ct
ur

e
le

ar
ni

ng

St
ab

ili
ty

pr
ov

en

C
op

es
w

it
h

ch
an

ge
s

Ad-hoc controller Full Offline 7 7 X 7

Lyapunov-based adaptive Partial Online X 7 X [

Lyapunov-based evolving Partial Online X X [X

Offline-training I/O data Offline X [7 7

Adaptive Reduced Online X 7 7 [

Evolving Minimum Online X X 7 X
a Legend: X: Yes/property fulfilled; [: In some cases/property partially fulfilled; 7:

No/property not present

data. As a consequence, different sequences of training data may produce dif-

ferent structures for the controller. In some cases, as when working in noisy

environments, this type of method may not be sufficiently robust.

Other related works can be found in the literature [de Barros and Dexter,

2007; Lin et al., 1995], although they do not completely fulfill the requirements

of truly evolving fuzzy controllers. For instance, one of the first contributions

in this area was made in [Lin et al., 1995]. In this work, the authors proposed

an online method for parameter and structure learning based on training data.

However, the fuzzy controller was trained offline and was not actually used to

control the plant until the learning had been completed. Hence, the proposed

method could be considered as an offline learning method, in the sense that

learning does not happen while controlling the plant. A more recent example is

found in [de Barros and Dexter, 2007], which proposes an evolving model-based

controller. Although the evolving model does not need previous information

about the plant, the system uses a fixed fuzzy model to avoid problems during

the initial moments, until the evolving model is fully trained. This fixed fuzzy

model is trained offline with I/O data from an approximate linear model of the

plant. The design of this approximate model, even if it is simple, requires some

Evolving fuzzy control. Concepts and state of the art 76

knowledge about the plant that may not be available.

The properties of the design methods just mentioned are summarized in Ta-

ble 3.2. From the previous discussion, it becomes clear that obtaining methods

able to work with the less-possible information, while the control process is be-

ing performed, is a very challenging issue for current research. Nevertheless,

relaxing the need of assumptions and the conditions imposed to the plant’s dy-

namics is not costless. It is important to note that these methods cannot rely on

mathematical models of the plants, as they are unknown. As a consequence,

providing a formal proof for the stability of these controllers becomes a difficult

(or even impossible) task. Thus, in many cases, the validity of these methods

can be proven only by experimental results [Angelov, 2004].

Chapter 4

OSEFC: Online Self-Evolving
Fuzzy Controller

The online evolution and learning of fuzzy systems is highly important when

dealing with changing environments. This capability is especially relevant in

the field of control, due to the special characteristics of control problems. In this

field, techniques capable of developing controllers with a minimum amount of

prior knowledge about the plants are desired.

In this chapter a novel fuzzy controller, which is able to self-design from

scratch while working online, is proposed. The controller does not use the in-

formation regarding the differential equations that govern the plant’s behavior

or any of their bounds. The methodology presented is able to determine an ad-

equate topology for the fuzzy controller based on the data obtained during the

system’s normal operation. Therefore, the controller can start operating with an

empty set of fuzzy rules and does not need any offline training. The proposed

methodology comprises two phases: adaptation of the consequents for every se-

lected topology and online addition of new membership functions. Some of the

main advantages of this method are its robustness under changes in the plant’s

dynamics, its good performance in noisy situations and its ability to perform

variable selection among a group of candidate variables. Unlike other online

methods, the modification of the topology is based on the analysis of the whole

operating region of the plant, thereby providing higher robustness.

OSEFC: Online Self-Evolving Fuzzy Controller 78

4.1 Motivation and goals

As commented in previous sections, fuzzy systems have been successfully ap-

plied to many control problems over the past several years. The main reasons

for this are the following [Gao and Er, 2005; Jiang and Han, 2008; Wang et al.,

2008; Ying, 2000]:

• They need no accurate mathematical models of the system under control.

• They allow for the application of human expert knowledge about the op-

eration of such systems.

• They are universal approximators, in the sense that they are able to ap-

proximate any continuous function in a compact set to any desired accu-

racy [Castro, 1995; Wang and Mendel, 1992].

Unfortunately, there is not a systematic approach for the design of fuzzy con-

trollers [Rajapakse et al., 2002]. Thus, obtaining high quality controllers is never

an easy task. The worst-case scenario occurs when the internal dynamics of the

plant are not known and it is not possible to make any assumptions about the

equations that govern it, due to the lack of knowledge. In this case, techniques

for the automatic design of controllers are needed the most. If, in addition, there

is no I/O data available, offline learning techniques, such as evolutionary algo-

rithms, cannot be applied and online learning becomes necessary.

As mentioned before, multiple methods exist for the online adaptation of pa-

rameters (e.g., adaptation of the rule consequents or the membership functions)

[Andersen et al., 1997; Pomares et al., 2004; Rojas et al., 2006; Zarandi, 2008],

but they require a prior definition of the structure of the fuzzy controller. On

the contrary, the case of the online adaptation of the controller’s structure when

there is no prior knowledge about the plant has been seldom studied [Angelov,

2004]. In this work, the controller’s structure is modified by using the informa-

tion given by every new sample of training data. As a consequence, the order

in which the data is received has a big influence on the structure obtained for

the controller [Dagher et al., 1999]. In some cases, as when working in noisy

environments, this type of method may not be sufficiently robust. Thus, it is ob-

served that the problem of designing controllers capable of learning online how

OSEFC: Online Self-Evolving Fuzzy Controller 79

to control an unknown system is a very challenging one. In the particular case

of fuzzy controllers, it requires both parameter learning and structure evolution,

i.e., evolving fuzzy systems.

In this chapter, we aim to advance in this direction by presenting a novel

Online Self-Evolving Fuzzy Controller (OSEFC) which is able to adapt both its

parameters (rule consequents) and its structure (membership functions) while

controlling the plant. This method is based on the concept of universal approx-

imation capability of fuzzy systems, which assures that it is possible to reach

a desired accuracy level by properly adding enough MFs and rules. The main

features of OSEFC are the following:

• No model for the plant or its differential equations are needed.

• No previous knowledge about the control policy is needed. The fuzzy

controller can start working with an only rule initialized to zero and will

self-develop as it performs the control.

• The controller is robust, in the sense that it is able to cope with unexpected

isolated changes in the behavior of the plant. As it does not use specific

information about the dynamics of the plant, its operation does not rely on

it. Furthermore, its adaptive nature makes the system able to learn how to

control the new behavior of the plant.

• No precise knowledge regarding the control inputs is needed, as the algo-

rithm is able to select those that are relevant for the plant state, from a set

of candidate inputs.

The aim of this new methodology is to provide a means of obtaining a ca-

pable controller when more precise methods cannot be applied due the lack of

information. However, this lack of information also causes some limitations:

Firstly, it is not possible to provide a formal demonstration of the stability of

the closed-loop system. Secondly, the proposed controller cannot be applied

when there are states that must not be reached by the plant: Since we do not

have information about the plant, there is no way to know which states of the

plant should not be entered. In this case, some pre-training should be performed

OSEFC: Online Self-Evolving Fuzzy Controller 80

to guarantee that the control policy avoids these states when the controller ini-

tially starts operating. Finally, its application is limited to plants for which the

controller’s sampling period can be set in a way such that the plant’s output

depends directly on the control signal applied in the previous time step.

The rest of the chapter is organized as follows. In section 4.2, the problem

to be solved is introduced together with the structure of the fuzzy controller

employed. In section 4.3, the proposed methodology is presented, separating

its two phases, i.e., rule consequents adaptation and topology modification by

adding new membership functions to the inputs of the controller. Simulation

and experimental results illustrating the main features of the algorithm are pre-

sented in section 4.4. Finally, conclusions are drawn in section 4.5.

4.2 Problem formulation

Let us consider a single-input single-output (SISO) plant, whose dynamics are

given by a set of differential equations of the form

x(n) = F(x̄, u) = F(x, ẋ, ..., x(n−1), u)

y = H(x̄) (4.1)

where x̄ ∈ Rn represents the plant’s state, y ∈ R is the plant’s output, u ∈ R is the

control signal and F and H are unknown continuous functions.

Using a short enough sampling time Tp, the dynamics of the plant (4.1) can

be expressed in terms of its difference equations [Andersen et al., 1997]

y(t + 1) = f (x̃(t), u(t)) = f (y(t), y(t − 1), ..., y(t − p), u(t), u(t − 1), ..., u(t − q)) (4.2)

where u(t) is the control signal exerted by the controller at time t, and p and q are

natural constants that determine the complexity of the plant, by indicating how

previous states and control actions affect its current output.

Let us assume that the controller’s sampling time Tc (which defines the time

instants at which control actions are exerted) can be selected in a way such that

the plant’s output at time k + 1 depends on the control signal applied at time k,

i.e., the effect of the control action u(k) is reflected at the plant’s output at the next

OSEFC: Online Self-Evolving Fuzzy Controller 81

time step, y(k + 1). Note that this does not mean that previous control actions do

not affect the plant’s output as well, but rather that u(k) actually has an effect that

is measurable at the next time step. Additionally, take notice that the sampling

time Tp used to simulate the plant and the sampling time Tc used to exert control

actions are not necessarily the same. In fact, if Tp is very small, Tc will generally

be chosen larger in order to avoid possible instabilities caused by dead-beat be-

havior. Unless otherwise stated, in the following we will use the concept “time

instant” to refer to the discrete time instants given by the controller’s sampling

time.

In order for the proposed methodology to be valid to control the plant (4.1),

we impose the condition that there must always exist a control policy capable of

translating the plant’s output to the desired value (within the operation range)

[Pomares et al., 2002b]. This means that there must never exist a state in which

the plant’s output does not depend on the control input. In addition, it is also

required that the monotonicity of the plant with respect to the control input has

a constant sign. Without loss of generality, we assume that this monotonicity is

positive. To clarify this condition, let us suppose that, at a certain time instant k,

the plant’s state is x̂(k) and a control signal u(k) is applied, producing the output

y(k+1) at the next time step. If at the same state x̂(k) the control signal u′(k) > u(k)

had been applied, then the output obtained would have been y′(k + 1) > y(k).

The aim of the controller is to guarantee that the plant’s output tracks a given

reference signal r(k). In the absence of actuator bounds, we can assume that there

exists an optimal control policy G capable of achieving the control objective, i.e.,

u(k) = G(r(k), ~x(k)) (4.3)

where ~x(k) is a finite set of variables that determine the control policy.

According to (4.3), the control problem may be cast as a problem of func-

tional approximation of the plant’s inverse function [Pomares et al., 2004]. To

attain this approximation, we employ a zero-order Takagi-Sugeno-Kang fuzzy

system with a complete set of rules [Lee, 1990] defined as

IF x1 is Xi1
1 AND x2 is Xi2

2 AND... xN is XiN
N THEN u = Ri1i2...iN

OSEFC: Online Self-Evolving Fuzzy Controller 82

where Xiv
v ∈ {X1

v , X
2
v , ..., X

nv
v } are the membership functions of input Xv, nv is the

number of membership functions for that input variable, and Ri1i2...iN is a scalar

value representing the rule consequent.

Homogeneously distributed triangular membership functions [Lee, 1990; Ro-

jas et al., 2000] are used in the methodology presented in this chapter. With this

configuration, only the center of each function needs to be stored, as the slopes

of the triangles are computed according to the centers of the neighboring func-

tions. Moreover, as an additional benefit, this configuration assures that for any

input value within the input range, exactly two membership functions present

a non-zero activation degree. This property greatly reduces the complexity of

computations while, at the same time, guarantees that all the possible operating

regions are covered by the firing of at least one fuzzy rule.

Lastly, the product is chosen as the t-norm for the inference method and the

weighted average is chosen as the defuzzification strategy. Hence, the fuzzy

controller’s output is given by:

u(k) = Ĝ(~x(k); Θ) =

Nr∑
i=1

Ri · µi(~x(k))

Nr∑
i=1

µi(~x(k))

=

n1∑
i1=1

n2∑
i2=1

...

nN∑
iN=1

Ri1i2...iN ·

N∏
m=1

µXim
m

(xm(k))

n1∑
i1=1

n2∑
i2=1

...

nN∑
iN=1

N∏
m=1

µXim
m

(xm(k))

(4.4)

where Nr is the total number of fuzzy rules, µi is the activation degree of the

i-th rule, and µXim
m

is the activation degree of the im-th membership function of

input Xm. In the above expression, we have explicitly highlighted the output de-

pendency not only on the input vector, but also on the parameters of the fuzzy

system, Θ. These parameters are the set of rule consequents (Ri1i2...iN), the num-

ber of membership functions for each input variable (nv) and the centers of the

membership functions (θ j
v), where v denotes the input variable and j is a natural

value between 1 and nv.

Note that the challenge tackled in this chapter, i.e., the online evolution and

control starting from no knowledge about the plant, is more complex than typ-

ical function approximation problems, because the approximation of (4.3) must

be obtained while controlling the plant in a proper way.

OSEFC: Online Self-Evolving Fuzzy Controller 83

4.3 Architecture of the Online Self-Evolving Fuzzy Con-
troller

As commented before, the universal approximation property of fuzzy systems

implies that it is possible to achieve any desired approximation accuracy by

properly adding more membership functions and rules. This idea can be used

to obtain controllers capable of learning the control policy from the beginning of

their operation, with a fast convergence. The lack of knowledge about the plant

makes automatic design necessary for these controllers, which also need to have

adaptive parameters in order to cope with noise, disturbances or changes in

the plant’s dynamics. With this objective in mind, the method proposed in this

chapter produces a fuzzy controller capable of a proper operation despite the

fact that no prior knowledge about the plant is available.

Fig. 4.1 presents the proposed methodology integrated in a closed-loop con-

trol system. The adaptation mechanism of OSEFC is shown on the top. Inter-

nally, it consists of two blocks, namely parameter learning and self-evolution of

the topology, and a memory to store I/O data collected online during the oper-

ation of the plant. All these elements are explained later in this chapter. Below,

the fuzzy logic controller that is modified by the adaptation mechanism (dotted

line) provides the control signal that is applied to the plant. OSEFC is the com-

bination of the adaptation mechanism and the fuzzy logic controller. Finally, the

plant produces the output y that is fed back to the controller. The Input Prepro-

cessing block is optional. It simply represents the possibility of using different

sets of inputs for the fuzzy controller.

The general flowchart of the adaptation mechanism is depicted in Fig. 4.2.

No initial control parameters are available, so it starts working with an empty

controller (i.e., only one membership function per input; hence, only one fuzzy

rule [Pomares et al., 2002a]). The control process is carried out in two phases:

• Parameter learning: In this phase, the consequents of the existing rules

are adapted based on the plant’s output error. The method applies a re-

ward/penalty policy that takes into account the sign of the dependence

of the plant’s output with respect to the control signal. This process is

described in section 4.3.1.

OSEFC: Online Self-Evolving Fuzzy Controller 84

y
Reference

u

Parameter learning

MSE improves?

Topology self-evolution I/O Data

Adaptation mechanism

u y

y

PlantFuzzy Logic ControllerInput preprocessing

FIGURE 4.1: Representation of the closed-loop control system with OSEFC

• Topology self-evolution: Once the modification of the fuzzy rules no longer

improves the quality of the control, the algorithm switches to this phase,

in which a new membership function is added to one of the controller

inputs and, hence, new fuzzy rules are created. Then, the consequents of

all the rules need to be adapted again, so the algorithm switches back to

the parameter learning phase. Section 4.3.2 presents a detailed explanation

of the process followed to modify the topology of the controller.

It is important to note that the adaptation mechanism works online, while

the control is being performed. Therefore, its application never stops.

4.3.1 Phase 1: Online parameter learning

To improve the control quality, a fuzzy controller needs to “learn” which actions

lead to the stabilization of the plant. In the context of parameter adaptation,

such learning is translated into the modification of the consequents of the fuzzy

rules so that the new control actions may provide better results. However, the

OSEFC: Online Self-Evolving Fuzzy Controller 85

EMPTY CONTROLLER

PARAMETER LEARNING

(Section 4.3.1)

GLOBAL ERROR IMPROVED?

TOPOLOGY SELF-EVOLUTION

(Section 4.3.2)

Selection of the most relevant controller input

Eq. (4.39)

Location of the new membership function

Eq. (4.42)

Initial parameters for the new fuzzy controller

Eqs. (4.44 - 4.46)

YES

NO

FIGURE 4.2: General flowchart of OSEFC

OSEFC: Online Self-Evolving Fuzzy Controller 86

lack of knowledge about the plant’s internal functioning makes us unaware of

how to modify the controller’s parameters.

In order to apply a gradient-descent algorithm, we would need to compute

the partial derivative of the plant’s output with respect to the control input

(∂y/∂u), which leads us to two different problems: On the one hand, this deriva-

tive is unknown, since our hypothesis here is that the differential equations gov-

erning the plant are unknown. On the other hand, if sampling periods are long,

it may be not possible to approximate the aforementioned derivative by ∆y/∆u.

Nevertheless, in Section 4.2 the existence of a control policy capable of trans-

lating the plant’s output to the desired reference value (within the operation

range) was stated. Additionally, this condition implies that the monotonicity of

the plant with respect to the control input has a constant sign. The next subsec-

tion describes an online local learning method for the rule consequents based on

the sign of the monotonicity of the plant and the error at the plant’s output.

4.3.1.1 Online local learning of the rule consequents

From a “local” point of view, the goal of the controller is to bring the plant’s

output from its current value to the desired reference value as soon as possible,

i.e., ideally y(k + 1) = r(k), where k and k + 1 represent consecutive control steps.

At each time step, it is possible to obtain the error at the plant’s output as ey(k) =

r(k − 1)− y(k). The combination of this error with the sign of the monotonicity of

the plant with respect to the control input provides valuable information about

the direction in which the rule consequents have to be moved in order to achieve

the local control objective [Rojas et al., 2006].

Let us assume that the monotonicity is positive. This means that, given a

state x(k) of the plant, if we apply the control signal u′(k) > u(k), then the output

obtained for u′(k) is larger than the one obtained for u(k). Then, there are three

possible cases regarding the error at the plant’s output:

• If the error ey(k) is negative, i.e., y(k) > r(k − 1), it means that the control

signal applied at time k was too large. To correct this behavior, the conse-

quents of the fuzzy rules must be decreased.

OSEFC: Online Self-Evolving Fuzzy Controller 87

• When ey(k) > 0, i.e., y(k) < r(k − 1), the control signal was too small and the

consequents must be increased.

• Finally, if ey(k) = 0, the plant’s output has reached the reference value and

no correction is needed in the rule consequents.

In the case of negative monotonicity, the same reasoning still holds, but the

changes in the consequents go in the opposite direction.

Thus, our consequent adaptation process is based on the evaluation of the

current state of the plant and the proposal of a correction (either a reward or a

penalty) for the rules responsible of reaching such state. Since not all the rules

contributed to reaching the current state, it does not seem reasonable to apply

the same penalty to all of them. A better option is modifying only those rules

which were triggered to obtain the control input u(k). In the same way, such

modification must be proportional to their degree of activation.

Therefore, the following expression is used for the modification of the con-

sequent of the i-th rule of the fuzzy system:

∆Ri(k) = C · µi(k − 1) · ey(k) = C · µi(k − 1) · (r(k − 1) − y(k)) (4.5)

where µi(k−1) is the activation degree of the i-th rule at instant k−1, r(k−1) is the

set point at that time, and y(k) is the current plant’s output. C is a normalization

constant that is further described in section 4.3.1.2. It is important to note the

use of the reference value at instant k− 1 in (4.5), instead of its current value r(k).

The reason for this is that the rules activated at instant k − 1 aimed to reach the

former and not the latter.

Finally, it must be highlighted that the whole consequent adaptation process

is performed online, while the controller is operating on the real plant; there-

fore, control is applied from the first moment, with increasing accuracy as the

adaptation evolves.

In the following subsections, some additional aspects about the parameter

learning methodology are clarified.

OSEFC: Online Self-Evolving Fuzzy Controller 88

4.3.1.2 Value of the normalization constant C

In this subsection, we analyze the effect of the normalization constant C intro-

duced in (4.5) and establish the conditions it must fulfill [Pomares, 2000]. To do

so, we consider the plant given by the difference equation (4.2) and a controller

of the form (4.4). Thus, the output of the controller at time k is given by

u1(k) = Ĝ(~x(k); Θ1(k)) (4.6)

where Θ1(k) represents the parameters of the controller at time k. The superscript

1 is used in this and the following equations to refer to the original configura-

tion of the controller. Accordingly, the plant’s output obtained as a result of the

application of this control signal is

y1(k + 1) = f (x̃(k), u1(k)) (4.7)

and the error at the plant’s output is

e1
y(k + 1) = r(k) − y1(k + 1) (4.8)

In order to correct this error, the rule consequents are modified as indicated

in (4.5). Since the objective of the correction is to reduce the error at the plant’s

output, it is obvious that C must have the same sign as the monotonicity of the

plant with respect to the control signal. Without loss of generality, we assume

that this monotonicity is positive.

Let us now study the effect of this change by applying the new rules under

the same conditions initially considered. In this case, the control signal would

be

u2(k) = Ĝ(~x(k); Θ2(k)) (4.9)

where Θ2(k) represents the controller’s modified parameters. The associated

plant’s output and error would then be given by

y2(k + 1) = f (x̃(k), u2(k)) (4.10)

OSEFC: Online Self-Evolving Fuzzy Controller 89

and

e2
y(k + 1) = r(k) − y2(k + 1), (4.11)

respectively. As in the initial case, the superscript 2 is used to refer to the config-

uration of the controller after applying the change (4.5) to the rules.

The maximum possible change in a consequent takes place when only one

rule was triggered, i.e., its activation degree was equal to 1. Hence, depending

on the sign of the error (4.8), there are two cases to be considered:

(i) If e1
y(k + 1) > 0, then the modified control signal is larger than the initial one

and the following relationship holds:

u1(k) ≤ u2(k) ≤ u1(k) + C · e1
y(k + 1)

0 ≤u2(k) − u1(k) ≤ C · e1
y(k + 1) (4.12)

(ii) If e1
y(k + 1) < 0, then the modified control signal is smaller and the relation-

ship is

u1(k) + C · e1
y(k + 1) ≤ u2(k) ≤u1(k)

C · e1
y(k + 1) ≤ u2(k) − u1(k) ≤ 0 (4.13)

Additionally, if the modification of the consequents is adequate, the error in

the modified case must be smaller than the initial error. Formally,

∣∣∣e2
y(k + 1)

∣∣∣ ≤ ∣∣∣e1
y(k + 1)

∣∣∣ (4.14)

with
∣∣∣e2

y(k + 1)
∣∣∣ =

∣∣∣e1
y(k + 1)

∣∣∣ if and only if they are both zero, i.e., the plant’s output

has reached the desired reference value.

On the other hand, assuming that f (x̃(k), u(k)) is continuous and differen-

tiable with respect to the control signal, and since [u1(k), u2(k)] is a closed and

bounded interval, the mean value theorem establishes that there exists a value ũ

such that

y2(k + 1) = y1(k + 1) +
∂ f
∂u

(x̃, ũ)
∣∣∣∣∣
x̃(k),ũ

(
u2(k) − u1(k)

)
(4.15)

OSEFC: Online Self-Evolving Fuzzy Controller 90

As a consequence, we also have that

e2
y(k + 1) = e1

y(k + 1) −
∂ f
∂u

(x̃, ũ)
∣∣∣∣∣
x̃(k),ũ

(
u2(k) − u1(k)

)
(4.16)

and since we assume that the monotonicity of the plant w.r.t. the control signal

is positive, the term ∂ f
∂u

∣∣∣∣∣
x̃(k),ũ

is a real, positive, non-zero value.

Finally, by taking absolute values in (4.16), we obtain

∣∣∣e2
y(k + 1)

∣∣∣ =

∣∣∣∣∣∣e1
y(k + 1) −

(
∂ f
∂u

(x̃, ũ)
∣∣∣∣∣
x̃(k),ũ

) (
u2(k) − u1(k)

)∣∣∣∣∣∣ (4.17)

in which the partial derivative has a constant sign. It can be observed that the

limit values of (4.17) correspond with the limit values of u2(k) − u1(k). Therefore,

we have again two cases to consider:

(i) If u2(k) − u1(k) = 0, it means that the consequents have not suffered any

modification. This can only happen if the error in the initial case was zero,

i.e., e2
y(k + 1) = e1

y(k + 1) = 0.

(ii) If u2(k) − u1(k) = C · e1
y(k + 1), equation (4.17) can be rewritten as

∣∣∣e2
y(k + 1)

∣∣∣ =

∣∣∣∣∣∣e1
y(k + 1) −

(
∂ f
∂u

(x̃, ũ)
∣∣∣∣∣
x̃(k),ũ

)
·C · e1

y(k + 1)

∣∣∣∣∣∣
=

∣∣∣e1
y(k + 1)

∣∣∣ · ∣∣∣∣∣∣1 −
(
∂ f
∂u

(x̃, ũ)
∣∣∣∣∣
x̃(k),ũ

)
·C

∣∣∣∣∣∣ (4.18)

and the condition (4.14) is only satisfied if∣∣∣∣∣∣1 −
(
∂ f
∂u

(x̃, ũ)
∣∣∣∣∣
x̃(k),ũ

)
·C

∣∣∣∣∣∣ ≤ 1⇔ −1 ≤ 1 −
(
∂ f
∂u

(x̃, ũ)
∣∣∣∣∣
x̃(k),ũ

)
·C ≤ 1 (4.19)

Finally, this leads to the following conditions for the value of C:

∂ f
∂u

(x̃, ũ)
∣∣∣∣∣
x̃(k),ũ

·C ≥ 0 (4.20a)

∂ f
∂u

(x̃, ũ)
∣∣∣∣∣
x̃(k),ũ

·C ≤ 2 (4.20b)

The first condition confirms our previous idea about the sign of C being the

OSEFC: Online Self-Evolving Fuzzy Controller 91

same as the sign of the monotonicity. The second condition is more restrictive

and establishes a bound for the value of C. Thus, in order to guarantee the

convergence of the learning method for any state of the plant, the value of C

must verify

C ≤
2

∂ f
∂u (x̃, ũ)

∣∣∣∣∣
max

(4.21)

where in the denominator we use the maximum value of the partial derivative,

to guarantee that condition (4.20b) is satisfied for each state of the plant.

In the case of negative monotonicity of the plant with respect to the control

signal, a similar approach can be used. Hence, the previous condition can be

generalized as

|C| ≤
2

∂ f
∂u (x̃, ũ)

∣∣∣∣∣
max

(4.22)

However, our assumption is that the differential equations governing the

plant are unknown. Therefore, it is not possible to compute the partial derivative

in (4.22) and an approximation must be used. If we approximate the partial

derivative by ∆y/∆u and take the mean value of (4.22), then the absolute value

of C can be set offline as

|C| =
∆u
∆r

(4.23)

where ∆u is the range of the controller’s actuator and ∆r is the range in which the

reference signal varies. Note that we do not use ∆y directly because the range of

the output values of the plant may be unknown. On the contrary, the ranges of

the actuator and the reference signal are known beforehand by the user of the

control system.

It is also important to highlight that the specific value of C is not critical, as

long as it satisfies the condition (4.22). When it does, the value of C influences

the convergence speed, but not the convergence itself.

4.3.1.3 Effect of the presence of actuator bounds

A fact that must be taken into account is that most real life controllers have

limitations on their operation, which highly affects the control process. For in-

stance, let us consider an actuator that is only able to operate within the range

OSEFC: Online Self-Evolving Fuzzy Controller 92

[umin, umax]. If at a given moment the optimal control input to reach the reference

value is u(k) > umax, the input that will be finally applied to the plant will be umax.

In this case, it will not be possible to reach the desired set point at the next time

step. However, the rules should not be penalized, as they are already providing

the best possible answer.

To solve this inconvenience, no penalty is applied to the rules when the error

is due to the actuator’s limitations. Thus, the updating law for the consequents

is redefined as:

∆Ri(k) =

0 if u(k − 1) = umin & ∆Ri(k) < 0

0 if u(k − 1) = umax & ∆Ri(k) > 0

∆Ri(k) otherwise

(4.24)

4.3.1.4 Comments on the stability of the parameter learning process

As mentioned before, one of the limitations derived from the reduction of as-

sumptions about the mathematical model of the plant is that a rigorous mathe-

matical formulation for the proof of stability is almost impossible. Nevertheless,

we provide here a qualitative approach to this important issue.

First, the most simple case of a controller with only one rule is tackled. In

this case, the controller’s output is given by

u(k) = µ(k) · R(k) = R(k), (4.25)

as the normalized activation of the only rule is always µ(k) = 1.

Let us now assume that the optimum value of the rule consequent is R∗and

that, at time k, the consequent value is R(k) and the modification to be applied is

∆R(k) = C · µ(k − 1) · ey(k) = C · ey(k) (4.26)

Then, the consequent at the next time instant will be

R(k + 1) = R(k) + C · ey(k) = R(k) + C · (r(k − 1) − y(k)) (4.27)

OSEFC: Online Self-Evolving Fuzzy Controller 93

If we define ER(k) = R∗ − R(k), we can consider the quadratic Lyapunov can-

didate function given by

V(ER(k)) = ER(k)2 = (R∗ − R(k))2 (4.28)

It is easy to verify that this function fulfills the requirements of a Lyapunov func-

tion, namely V(0) = 0, V(ER(k)) ≥ 0∀ER(k), and V(ER(k))→ ∞ as ER(k)→ ∞.

The difference in the Lyapunov candidate function over time can be defined

as

∆V(ER(k + 1)) = V(ER(k + 1)) − V(ER(k))

= (R∗ − R(k + 1))2 − (R∗ − R(k))2

= (R∗ − R(k + 1) + R∗ − R(k)) − (R∗ − R(k + 1) − R∗ + R(k))

= (2 · R∗ − R(k + 1) − R(k)) · (R(k) − R(k + 1)) (4.29)

In order to obtain ∆V < 0, the two elements in the product (4.29) must have

a different sign. Without loss of generality, let us assume that the monotonicity

of the plant with respect to the control input is positive and that ey(k) > 0. In this

case, R(k + 1) > R(k) and R(k) − R(k + 1) < 0, which leads to

2 · R∗ − R(k + 1) − R(k) > 0

2 · R∗ − (R(k) + C · ey(k)) − R(k) > 0

2 · R∗ − 2 · R(k) −C · ey(k) > 0

2(R∗ − R(k)) −C · ey(k) > 0 (4.30)

Replacing ey(k) = r(k) − y(k + 1), this condition can be rewritten as

C < 2 ·
R∗ − R(k)

r(k) − y(k + 1)

Thus, it can be concluded that the local stability of the learning mechanism

depends only on the value of the parameter C. It is easy to observe that the value

proposed for C in (4.23) also fulfills this condition. Moreover, it can be verified

that the same condition for the value of C is obtained for the cases of negative

monotonicity and negative error at the plant’s output.

OSEFC: Online Self-Evolving Fuzzy Controller 94

Now, let us consider a controller with Nr rules, which aims to approximate

the optimal control policy (4.3). Let ~R(k) = [R1(k),R2(k), ...,RNr (k)]T be the vector

of current values for the rule consequents, and ~R∗ = [R∗1,R
∗
2, ...,R

∗
Nr

]T be the vec-

tor of optimal consequents that provide the best possible approximation for the

controller’s current structure. At each time step k, the rule consequents Ri(k) are

modified according to (4.5).

Again, if we define the vector of parameter errors at time k as ~ER(k) = ~R∗ −

~R(k), we can consider the quadratic Lyapunov candidate function

V(~ER(k)) = ~ER
T ~ER = (~R∗ − ~R(k))T (~R∗ − ~R(k)) =

Nr∑
i=1

(R∗i − Ri(k))2 (4.31)

which also fulfills the conditions of a Lyapunov function mentioned in the pre-

vious case.

In this case, the variation on the Lyapunov candidate function is given by

∆V(~ER(k + 1)) = V(~ER(k + 1)) − V(~ER(k))

=

Nr∑
i=1

(R∗i − Ri(k + 1))2 −

Nr∑
i=1

(R∗i − Ri(k))2

=

Nr∑
i=1

[
(R∗i − Ri(k + 1))2 − (R∗i − Ri(k))2

]
=

Nr∑
i=1

[
(R∗i − Ri(k + 1) + R∗i − Ri(k))(R∗i − Ri(k + 1) − R∗i + Ri(k))

]
=

Nr∑
i=1

[
(2 · R∗i − Ri(k + 1) − Ri(k))(Ri(k) − Ri(k + 1))

]
(4.32)

If the sign of (2·R∗i −Ri(k+1)−Ri(k)) is different from the sign of (Ri(k)−Ri(k+1))

for every rule, then all the elements in the sum (4.32) are negative and so is ∆V .

Without loss of generality, let us assume that C > 0 and ey(k) > 0. In this case,

Ri(k + 1) > Ri(k) and Ri(k) − Ri(k + 1) < 0, meaning that the following inequality

OSEFC: Online Self-Evolving Fuzzy Controller 95

must be satisfied for all the rule consequents:

2 · R∗i − Ri(k + 1) − Ri(k) > 0

2 · R∗i − (Ri(k) + C · µi(k − 1) · ey(k)) − Ri(k) > 0

2 · R∗i − 2 · Ri(k) −C · µi(k − 1) · ey(k) > 0

2(R∗i − Ri(k)) −C · µi(k − 1) · ey(k) > 0 (4.33)

Again, replacing ey(k) by its definition, the previous inequality can be rewritten

as:

C < 2 ·
R∗i − Ri(k)

µi(k − 1) · (r(k) − y(k + 1))
∀ i = 1, ...,Nr (4.34)

From this derivation it can be concluded that the local stability of the learning

mechanism depends again on the value of the parameter C. Finally, for the value

of C given in (4.23), we have that

C < 2 ·
R∗i − Ri(k)

(r(k) − y(k + 1))
< 2 ·

R∗i − Ri(k)
µi(k − 1) · (r(k) − y(k + 1))

since µi(k − 1) ≤ 1∀i = 1...Nr. Hence, the condition (4.34) is satisfied and the

consequent learning policy leads to a locally stable controller. It is easy to verify

that the same condition for the value of C is obtained for the cases of negative

monotonicity and negative error at the plant’s output.

4.3.2 Phase 2: Topology self-evolution

In the previous section, we presented a method for the adaptation of the rule

consequents of a fuzzy controller that has a predefined configuration of MFs.

Therefore, it is necessary to fix the structure of the fuzzy controller beforehand

(i.e., control inputs, number of membership functions for each input, parameters

of the MFs, etc.). This may not be a trivial task, as it requires certain knowledge

about the system to be controlled [Phan and Gale, 2008; Rojas et al., 2006].

In order to operate without any previous knowledge, an intelligent controller

should be able to adapt not only its parameters, but its full structure as well, i.e.,

an evolving methodology is required. This way, it will be possible to start the

operation of the control system with a very simple controller, e.g., just one rule

automatically initialized. Then, as the operation goes on, more rules can be

OSEFC: Online Self-Evolving Fuzzy Controller 96

added to the controller, as needed to meet the accuracy demands of the closed-

loop system.

As commented in section 4.2, the problem of designing a fuzzy controller

may be cast as a problem of functional approximation of the inverse function of

the plant [Pomares et al., 2004]. Nevertheless, there is the additional difficulty

that the only information available to tackle this problem is the data obtained

from the normal operation of the closed-loop system. There are few methods

reported in the literature that aim to evolve the topology of a fuzzy controller

while operating on the plant [Angelov, 2004; Park et al., 2005; Phan and Gale,

2008]. Moreover, it is common that these methods base the structure modifi-

cation on local information, i.e., only the data obtained from the system at the

current time step. This has a negative impact on the robustness of the method

[Dagher et al., 1999]:

• The structure of the resulting fuzzy system greatly depends on the se-

quence of data, i.e., the same data received in a different order may lead to

a fuzzy system with a completely different structure.

• The methodologies may be short-sighted, i.e., the data obtained at each

time step is processed and forgotten at that moment. Therefore, future

decisions may not take past information into account.

• The presence of outliers may be more difficult to handle.

A way to address these issues is to base the modification of the controller’s

topology on a set of data instead of using just a single point. In the ideal case,

a set of data that provides a uniform representation of the entire range of oper-

ation of the plant is available. Nonetheless, in practice it is very unlikely that

the normal operation of the plant will span the entire operating range. For this

reason, the learning of the controller’s structure has to be based on a uniform

representation of those regions that have been reached by the controller during

its operation.

As a consequence, the information obtained may not be sufficient to perform

a complete functional approximation of the plant’s inverse function. Nonethe-

less, it may be enough to obtain a good approximation in the regions of interest,

OSEFC: Online Self-Evolving Fuzzy Controller 97

i.e., those effectively reached by the controller’s normal operation. Hence, it is

possible to obtain a controller that will properly control the already-visited re-

gions, even if the approximation is somehow erratic in other areas. In the event

that the control operation ever goes into those regions, the evolving mechanism

will be able to learn them in order to incorporate them to the control policy.

The method proposed in this dissertation exploits the fact that the very oper-

ation of the system provides input/output data about the true inverse function

of the plant to be controlled [Pomares et al., 2004]. Let us assume that, at time in-

stant k, the control signal u(k) is applied to the plant and the output value y(k +1)

is obtained as a result. Regardless of whether y(k+1) is the desired output or not,

if in the future the plant is again in the same state and the desired reference value

is r(k′) = y(k+1), the control signal that has to be applied to the plant is u(k), since

u(k) is capable of taking the plant output from y(k) to y(k + 1). Hence, the pairs

(~z(k), u(k)), where ~z(k) is obtained from ~x(k) by replacing r(k) with y(k + 1), rep-

resent I/O data concerning the true inverse function of the plant under control.

Note that this reasoning is valid as long as the relationship between the states,

the control signal and the plant’s output remains over time. If these I/O rela-

tionships are not reliable (e.g., in the presence of unbounded internal dynamics)

or change rapidly in time, the data previously gathered are no longer valid and

cannot be used to approximate the inverse function of the plant.

With the aim of using this information towards the self-evolution of the

fuzzy controller, we store the I/O data provided by the plant in a memory M.

Then, we use these data to decide which input variable mostly needs a new

membership function. In practice, storing all the I/O data produced during the

system operation will cause the memory to explode. To avoid this, we define

the memory M as a fixed grid in the input space. Every time a new datum is

obtained, it is stored in the corresponding hypercube defined by this grid. No

weights are assigned to the data in the memory. The reason for this is as fol-

lows: In real control applications, it is common that the reference signal stays

constant for a certain time. If weights were assigned, the weight assigned to the

corresponding cell would grow to the point of making irrelevant the informa-

tion stored in all the other cells. As a consequence, the approximation would be

based only on local information. By not assigning weights, all the data stored in

OSEFC: Online Self-Evolving Fuzzy Controller 98

the memory M are equally important, and therefore, the information in M pro-

vides a uniform representation of the input space of the plant’s inverse function.

The modification of the fuzzy structure involves the following steps (see

Fig. 4.2), which are detailed in the next subsections:

• First, it is necessary to decide which input to the fuzzy controller will re-

ceive the new membership function. Adding MFs to all the inputs is not

feasible, as the number of rules exponentially depends on the number of

membership functions [Pomares et al., 2002a].

• Once the most appropriate input variable has been selected, the location of

the new function must be chosen. This is done taking into account the en-

tire error distribution, in order to reduce the method’s sensibility to noise.

• Finally, the introduction of a new membership function implies the cre-

ation of new fuzzy rules. Therefore, the parameters of the new rules must

be initialized in such a way that the controller’s performance is minimally

affected.

4.3.2.1 Selection of the most relevant controller input

One of the main questions arising when modifying the topology of a fuzzy sys-

tem is the selection of the input which is going to receive the new membership

function. Up to the present, only a few authors have tackled this problem offline

[Li and Lee, 2003; Wang and Frayman, 2002] or online [Park et al., 2005; Phan

and Gale, 2008]. Among them, some authors [Wang and Frayman, 2002] add

MFs to all the inputs, locating them so that their intersection will be in the area

of highest error. This alternative presents several drawbacks, which are even

more dramatic when working online: On the one hand, the number of rules

increases too much, due to its exponential dependency on the number of mem-

bership functions. On the other hand, minimizing the point of greatest error

leads to methods which are too sensitive to noise [Phan and Gale, 2008]. Con-

sequently, in the proposed method, we only add a membership function to one

input variable at a time. This input is previously selected based on the study

OSEFC: Online Self-Evolving Fuzzy Controller 99

of the complete error surface reached by the current configuration, instead of

considering only the point of maximum error.

To introduce the proposed methodology, a simple example will be used. Let

us consider the plant given by [Andersen et al., 1997]:

y(k + 1) = 0.8 sin(2(y(k)) + 1.2u(k) (4.35)

Fig. 4.3(a) shows its inverse function, whilst Fig. 4.3(b) depicts the output

given by a fuzzy configuration with two membership functions in the input r(k)

and four in the input y(k). Visually analyzing the original function, it is possible

to determine that it is preferable to go to a 2x5 configuration instead of choos-

ing a 3x4 one, since two memberships functions are enough to approximate the

linear outline of the function in dimension r(k).

FIGURE 4.3: Example of the selection of the most relevant controller input. (a)
Plant’s true inverse function. (b) Controller approximation with 8 rules

This same conclusion may be drawn from the analysis of the error of the

current approximation to the inverse function by the fuzzy system. To this pur-

pose, let us analyze variable r(k) to determine its degree of responsibility on

the approximation error. First, the other variable’s range will be divided into in-

finitesimal intervals with width dy, and each of these intervals will be considered

individually. Hence, the situation in each of these small intervals is the same as

if we tried to approximate a one-dimensional function. Since a triangular par-

tition is being used, the fuzzy output in one dimension is a linear piecewise

function. Therefore, it is obvious that the current configuration of MFs for input

OSEFC: Online Self-Evolving Fuzzy Controller 100

r(k) is enough for an excellent approximation and that adding a new member-

ship function to this input will not improve it. If we perform the same analysis

on every interval and add the approximation error existing in each one, we ob-

tain an index that gives us an idea of the need to add a new MF to the input

under consideration. For instance, in the example mentioned before (Fig. 4.3),

the value of this index is 0.226 for the first input and 16.616 for the second, which

confirms the intuitive selection previously made.

After introducing the main idea, let us present the mathematical approach.

The first task to be tackled is the computation of the sum of square errors (SSE)

for the approximation in each one of the infinitesimal intervals mentioned. For

the analysis of variable xv, these intervals are given by:

[x1, x1 + dx1] × . . . × [xvmin , xvmax] × . . . × [xN , xN + dxN] (4.36)

where [xvmin , xvmax] denotes the full range of the input variable xv.

As stated before, our goal is to approximate the previously collected points

(in the memory M) of the plant’s inverse function within this interval. This is

the same as approximating a one-dimensional function with a fixed configura-

tion of membership functions for variable xv. Let us assume that the solution of

the approximation problem is the function Fv, which gives the best possible ap-

proximation for the plant’s inverse function within the considered interval with

respect to the variable xv. The square error for this approximation is given by:

ev
a(~x) = (u(~x) − Fv(~x))2 (4.37)

where u(~x) represents the plant’s true inverse function points obtained during

normal operation (i.e., the real controller’s output) and Fv(~x) is the result of eval-

uating the obtained function Fv at those points.

Assuming that all the other variables have enough membership functions,

if the current configuration for variable xv were enough to obtain a perfect ap-

proximation, then the error ev
a(~x) given in (4.37) would be zero. This means that

variable xv is not responsible for the approximation error in this interval. On the

other hand, a large value of ev
a(~x) denotes a high responsibility of xv in the ap-

proximation error. Computing the error ev
a(~x) for each interval of the form (4.36),

OSEFC: Online Self-Evolving Fuzzy Controller 101

we obtain a global measure of the SSE that could be reached using the current

configuration of membership functions for input xv. Let us call this measure

Index of Responsibility of the input xv, IRv:

IRv =

∫
X1

dx1 . . .

∫
Xv−1

dxv−1

∫
Xv+1

dxv+1 . . .

∫
XN

dxN

[∫
Xv

dxv(u(~x) − Fv(~x))2
]

(4.38)

Finally, if we compute this index for every input in the fuzzy system, we are

able to compare them and choose the most suitable input, which is the one with

the largest value of IRv.

Although the plants considered are continuous in time, the controller exerts

its control actions in discrete instants. Therefore, the previous approach has

to be reformulated in discrete terms. In this sense, the definition of infinitesimal

intervals is replaced by setting a large number of membership functions in every

input but the one under analysis, whereas the integrals in expression (4.38) are

replaced by sums. This leads us to the following algorithm:

1. For each input xv:

(a) Define an auxiliary fuzzy system with the same inputs as the current

fuzzy controller:

i. Assign a large number of membership functions (N∆) to each of

the input variables, except for xv, and distribute them homoge-

neously, forming a triangular partition of the input space. A pos-

sible value for N∆ is given in section 4.3.4.

ii. The input xv receives the same MFs in the same location as in the

current controller.

(b) The resulting fuzzy system produces an approximation Fv
N∆

[Pomares

et al., 2000] of the data stored in the memory M.

(c) Compute the Index of Responsibility IRv for variable xv as

IRv =
∑
~zi∈M

(u(~zi) − Fv
N∆

(~zi))2 (4.39)

where ~zi is the i-th input vector stored in the memory M, and u(~zi) is

the output stored for that input.

OSEFC: Online Self-Evolving Fuzzy Controller 102

2. Let Vmax = arg max
v

(IRv) be the index associated to the input variable with

the largest approximation error in the case of not receiving an additional

membership function. This is the selected variable.

This way we have selected the variable which is most responsible of the cur-

rent approximation error and, hence, the one which needs to receive one more

membership function. Now, the next step is finding a proper location for this

new MF.

4.3.2.2 Location of the new membership function

Once the input variable has been selected, it is necessary to determine the lo-

cation of the new membership function. This decision is never easy, as all the

possible options have some drawbacks. Intuitively, it might be thought that

the best location for the new function is at the point where the error is largest;

however, it was already pointed out that this would give the algorithm a high

sensitiveness to noise. Another option is to place the new MF at the center of

gravity of the mean square error (MSE) distribution through the variable’s full

range. This is a good option when the data are equally distributed, as it consid-

ers the entire error distribution and not only its maximum point. As mentioned

before, the use of a grid memory provides a uniform representation of the input

space of the plant’s inverse function. Therefore, this option is suited for our case.

With this aim, we divide again the range of the input variable in infinitesimal

intervals and compute the mean square error in each of them. The center of the

new membership function is located at the position given by:

c∗i =

∫
Xi

xi · e2(xi)dxi∫
Xi

e2(xi)dxi

(4.40)

where

e2(xi) =

∫
. . .

∫
e2(x1 . . . xi . . . xn)dx1 . . . dxi−1dxi+1 . . . dxn∫

. . .
∫

dx1 . . . dxi−1dxi+1 . . . dxn
(4.41)

Once again, this expression needs to be formulated in discrete terms. To

do so, infinitesimal intervals become intervals with a reduced width ∆xi, and

OSEFC: Online Self-Evolving Fuzzy Controller 103

equations (4.40) and (4.41) are rewritten as:

c∗i =

∑
∆xi

x∗i · e2(∆xi)∑
∆xi

e2(∆xi)
=

∑
∆xi

x∗i · e
2
N(∆xi) (4.42)

where x∗i is the central value of the interval ∆xi and e2
N(∆xi) is the normalized

mean square error of all those data points whose component xi is within the

range determined by ∆xi. The expression used to compute the mean square

error is:

e2(∆xi) =

∑
x j; j,i
xi∈∆xi

e2(x1, x2, ..., xi, ..., xn)

∑
x j; j,i
xi∈∆xi

1
(4.43)

where the denominator simply represents the number of data whose component

xi is within the range ∆xi.

4.3.2.3 Initial parameters for the new fuzzy controller

As a consequence of the addition of new membership functions, new fuzzy rules

have been created. Although it would be possible to initialize their consequents

to any random value and letting them be adapted by the parameter learning al-

gorithm (section 4.3.1), this would cause a sudden decrease in the control quality

right after the topology modification. To avoid this situation, it is convenient to

initialize the new rules to values that guarantee minimum quality degradation.

Since we are using a complete set of fuzzy rules, every time a new member-

ship function is added to an input xv,
N∏

i=1
i,v

ni new rules have to be created. These

new rules have the form

IF x1 is Xi1
1 AND...AND xv is X jv

v AND...xN is XiN
N THEN u = Ri1i2...iv= jv...iN

where jv is the position of the new membership function within the list of or-

dered centers (see Fig. 4.4).

OSEFC: Online Self-Evolving Fuzzy Controller 104

To explain the changes applied to the parameters of the fuzzy system, we

will name the set of old parameters (before the new MF was added) as Θ̃ and

the new set of parameters as Θ. Firstly, the changes applied to the centers of

the membership functions are as follows (see Fig. 4.4(a)). Note that the MFs

belonging to the rest of variables are not affected by any changes:

θ
j
v =θ̃

j
v i f j < jv (4.44a)

θ
j
v =θ̃

j−1
v i f j > jv (4.44b)

θ
j
i =θ̃

j
i i f i , v (4.44c)

Secondly, to prevent a severe damage on the controller’s performance, the rule

consequents have to be readjusted so that the outline of the global function rep-

resented by the fuzzy system is kept the same as before, i.e., Ĝ(~x; Θ) = Ĝ(~x; Θ̃)∀~x.

The new rules will be activated only when the input value for variable xv is

within the range [θ jv−1
v , θ

jv+1
v], which is the partition created by the new member-

ship function. Therefore, in the rest of cases, the same old consequents are used

(see Fig. 4.4(b)):

Ri1,...,iv,...,iN =R̃i1,...,iv,...,iN i f iv < jv (4.45a)

Ri1,...,iv,...,iN =R̃i1,...,iv−1,...,iN i f iv > jv (4.45b)

To obtain the initial consequents of the new rules, we impose the following

condition: at the point of maximum activation of the rule, the consequent equals

the output produced by the system under its previous configuration for the same

input. As the maximum activation degree is reached when all the inputs are

located at the centers of the antecedent MFs, we have that:

Ri1,...,iv= jv,...,iN = Ĝ(~c; Θ̃) (4.46)

where ~c = (θi1
1 , ..., θ

iv= jv
v , ..., θiN

N), with i1 = 1, ..., n1 , ..., iN = 1, ..., nN .

Finally, the only change to be made to the number of membership functions

is adding one to the variable to which the new function has been added, while

OSEFC: Online Self-Evolving Fuzzy Controller 105

2
vθ%1

vθ% 3
vθ%

2
vθ%1

vθ% 3
vθ%vj

vθ

2
vθ1

vθ 4
vθ3

vθ

12R%11R% 13R%

22R%21R% 23R%

22R%21R%

12R%11R%

23R%

13R%

23R

13R

FIGURE 4.4: Topology change: modifications made in the fuzzy controller. (a)
Addition of a new membership function. (b) New rules created after adding

the new membership function

the rest remain unchanged:

nv =ñv + 1 (4.47a)

ni =ñi ∀i , v (4.47b)

4.3.2.4 Input variable selection

Let us suppose that only one membership function is assigned to the input xv,

such that its activation is equal to 1 for any input value. This means that the

value of xv actually has no effect on the activation degree of the rules, as 1 is

the identity element for the product operator. Therefore, we can state that as-

signing only one membership function to an input variable is the same as not

considering that variable in the fuzzy inference process.

One of the advantages of the proposed method is that it is also valid in the

case just mentioned, which makes possible its use as a mechanism for the selec-

tion of input variables when it is hard to identify a priori the relevant variables.

Hence, if the algorithm decides to assign one more membership function to an

input variable, it will mean that such a variable is relevant and has to be taken

into account. Furthermore, with this approach, there exists the chance of having

variables that are irrelevant at the beginning but which become important when

the accuracy increases.

OSEFC: Online Self-Evolving Fuzzy Controller 106

This feature makes it possible to begin with very simple structures (even

empty ones, i.e., only one membership for each input variable), as the algorithm

will determine by itself which the best topology is. Thus, we avoid consider-

ing more complex configurations and the need of applying techniques for rule

pruning, as it occurs in other methods [Phan and Gale, 2008], [Gao and Er, 2003].

4.3.2.5 Comments on the stability of the topology self-evolving process

In section 4.3.1.4, the stability for each given topology was commented. Now, to

establish the stability of OSEFC, the stability across the structural changes has to

be considered, i.e., when a new membership function is added to the controller.

Given a specific topology, the control law can be parametrized as u = ~R∗µ(k),

where ~R∗ denotes the optimal parameters (consequents) of the controller for this

topology. In this case, the expression (4.5) given for the consequents’ adaptation

is a gradient update law, already proven to be stable in the sense that the update

law will make the vector of consequents ~R converge to ~R∗, and the tracking error

will converge to a ball around the origin [Nounou and Passino, 2004; Spooner

et al., 1997].

Concerning the structural changes, we use the assumption made in (4.3) (see

section 4.2) about the existence of a control law that achieves the perfect tracking.

This control law is approximated by the self-organizing controller OSEFC. In this

case, if at a given moment, the controller’s topology is formed by n1 membership

functions, we have that

u = ~R∗(n1)µ(n1) + ε(n1) (4.48)

where ~R∗(n1) are the optimal consequents for this topology and ε(n1) is the ap-

proximation error. As already commented, this controller will converge to a ball

around the origin with radius b(1).

Consider now that a new membership function θ
j
v is added. The universal

approximation property of fuzzy controllers implies that the approximation of

the resulting controller will be better at least in the area corresponding to the

location of the new membership function (i.e., in the range [θ j−1
v , θ

j+1
v]), even if

the consequents are not adapted. Once the consequents of the new controller

OSEFC: Online Self-Evolving Fuzzy Controller 107

are adapted, the best control policy that can be achieved with this structure is

u = ~R∗(n2)µ(n2) + ε(n2) (4.49)

where ~R∗(n2) are again the optimal consequents for this structure and ε(n2) is

the approximation error, which is smaller than ε(n1). This means that the radius

of the ball where the tracking error will converge will be b(2) < b(1). Hence,

since the radii decrease, the tracking error will eventually converge to zero, as

the operation time goes to infinity.

Equivalently, if we consider the Lyapunov function V(k) = b(k), for which

∆V = V(k + 1) − V(k) < 0, then the asymptotic stability is proven. Therefore,

although the mathematical formulation is not possible, this discussion shows

that the proposed methodology provides a reasonably stable controller.

4.3.3 Alternative methodology for parameter learning

The parameter adaptation method presented in section 4.3.1 follows a local learn-

ing approach. It aims to reduce the tracking error at the present time instant,

thereby taking care of the short-term response of the controller. This type of

adaptation is usually sufficient to satisfy the accuracy demands of the control

system. Nonetheless, there may be more demanding applications that require a

finer tuning of the controller’s parameters. In this section, we present a learning

approach based on global information [Cara et al., 2010c] that works in combi-

nation with the local learning described in section 4.3.1. In order to differentiate

both types of learning, in the reminder of this section we will refer to the lo-

cal learning method as LL-module (Local Learning module) and to the global

learning as GL-module (Global Learning module).

The combined learning procedure is depicted in Fig. 4.5 and can be summa-

rized as follows: First, only the LL-module works during a period T’. During this

time, the control policy may be rough, but the local learning allows for the gath-

ering of truly useful data from the plant. After this period, and while the plant

is locally controlled, the GL-module starts tuning the consequents to achieve a

globally finer control policy. It is important to note that the changes proposed

OSEFC: Online Self-Evolving Fuzzy Controller 108

FUZZY CONTROLLER

LL-MODULE

LL-MODULE

error < threshold?

GL-MODULE

Consistent?

Apply global changeApply local change

YES

YES

NO

NO

T’

FIGURE 4.5: Flowchart of the online parameter learning method combining
local (LL-module) and global (GL-module) learning

by the GL-module must always be consistent with those suggested by the LL-

module. The reason for this is that the main objective at every moment is to keep

the plant under control, i.e., the short-term response cannot be degraded by the

global changes. Hence, the LL-module acts as a supervisor of the GL-module.

The GL-module aims to assure the global performance of the control policy,

as a means of providing a better response to the changes in the reference sig-

nal. In order to improve the global performance, the adaptation process cannot

simply concentrate on the rules that are being fired at the present moment, but

rather needs to consider the remaining rules as well. To do so, historical data

about the behavior of the plant is needed.

Since our hypothesis here is that the dynamics of the plant are unknown, we

OSEFC: Online Self-Evolving Fuzzy Controller 109

cannot compute the partial derivative ∂y/∂u. Therefore, it is not possible to apply

any gradient-based techniques to minimize the error at the plant’s output. How-

ever, such methodologies can be applied if the error at the controller’s output is

used instead [Pomares et al., 2004]. As mentioned before, the fuzzy controller is

an approximator of the plant’s true inverse function; therefore, the error at the

controller’s output is equivalent to the error of this approximation. Thus, mini-

mizing the error made by the controller indirectly minimizes the tracking error

made at the plant’s output. Thanks to this idea, the need for the model of the

plant can be avoided.

For the process of global learning, the memory M described at the beginning

of section 4.3.2 is used again, as it stores the I/O data that represent the true

inverse function of the plant. Hence, it is possible to compute the error at the

controller’s output at time k for the m-th datum as

eu(m) = um − ũm (4.50)

where um is the control signal stored in the memory M and ũm is the output

produced by the current controller for the input vector ~zm.

At each control step k, the objective of the GL-module is to minimize the

mean square error for all the data in M:

J(k) =

K∑
m=1

e2
u(m) =

K∑
m=1

(um − ũm)2 =

K∑
m=1

(
um − Ĝ(~zm; Φk)

)2
(4.51)

where K is the number of elements stored in the memory M.

The new consequents proposed for the fuzzy controller are those that mini-

mize (4.51), that is,

Γg(k) = arg min
R

(J(k)) = arg min
R

 K∑
m=1

(
um − Ĝ(~zm; Φk)

)2
 (4.52)

where Γg(k) =
{
Rg

1(k),Rg
2(k), ...,Rg

Nr
(k)

}
is the set of new values for all the conse-

quents.

Before replacing the old consequents in the fuzzy controller by the new ones,

it must be kept in mind that we have minimized the error at the controller’s

OSEFC: Online Self-Evolving Fuzzy Controller 110

output and not the error at the plant’s output. Thus, it is necessary to verify if

the new consequents proposed by the GL-module actually improve the tracking

of the reference signal. In this sense, we use the LL-module as a supervisor.

As stated before, the monotonicity of the plant w.r.t. the control signal allows

us to determine the right direction in which the consequents have to be moved.

Therefore, if the modification proposed for a consequent by the GL-module goes

in the same direction as that indicated by the LL-module, the change is accepted.

Otherwise, the local modification is applied.

Finally, it is important to note that the global learning cannot be used without

the existence of the local module as the latter is the one which is initially capable

of starting to control the plant and obtaining truly useful I/O data.

4.3.4 Additional comments

In this section, the description of the proposed method is completed by pointing

out some additional issues:

• A criterion to switch from the parameter learning phase to the topology

self-evolving stage is required. As stated before, we consider that a struc-

tural change is needed when the consequent adaptation is unable to con-

tinue improving the quality of the control. The mean square error of the

reference tracking for ns samples, computed according to (4.53), is used as

the quality measure:

MSE =
1
ns

ns∑
k=1

(r(k) − y(k + 1))2 (4.53)

The value ns used to compute this MSE can be estimated according to the

variability of the reference signal, which is usually known beforehand. In

general, it is desirable that ns is big enough as to provide a general view

of the evolution of the control in different operating regions. Nonetheless,

it should not be too large, as it would make the learning process slower.

Although there is not a general guideline for selecting this value, the fol-

lowing suggestions can be applied as a rule of thumb:

OSEFC: Online Self-Evolving Fuzzy Controller 111

– When stepwise reference signals are used, ns should be chosen large

enough as to cover several steps.

– If the reference signal changes randomly and rapidly, smaller values

of ns can be used, as it can be expected that more operating regions

will be covered in less time.

– When the references follow a pattern, the size of this pattern can be

selected as ns, as it covers the entire operation of the control.

• It is important to note that a decreasing of the improvement rate of the

MSE does not always mean that the current topology is insufficient to pro-

vide a proper control. When the plant is operating in steady state (i.e., the

reference has already been reached), the MSE stops improving but there is

no need of modifying the topology, since the plant is already under control.

To avoid changes in this situation, a threshold for the minimum control er-

ror is defined. Whenever the MSE is below that value, there is no need to

add more membership functions.

• When the improvement of the MSE is below a given threshold but its value

is larger than the desired minimum, the data in the memory M is frozen

and the topology self-evolving process is run in parallel with the normal

operation of the control system, which is not interrupted at any point.

• Obtaining a very accurate control policy may require a large amount of

membership functions. In some practical applications, this may not be de-

sirable, due to the limitations they may present, e.g., hardware limitations.

To avoid this situation, an upper bound for the number of generated mem-

bership functions can be established.

• It is also important to highlight that the number of input dimensions cho-

sen for the fuzzy controller has a direct impact on the data gathering pro-

cess. Firstly, since the memory M uses a grid structure, the number of data

points needed to represent the plant’s inverse function grows exponen-

tially with the number of input dimensions. As these data are gathered

online, this implies that it will take a longer time to collect enough infor-

mation to properly represent the inverse function of the plant. Secondly,

OSEFC: Online Self-Evolving Fuzzy Controller 112

increasing the number of input dimensions also affects the interpretability

of the rules; i.e., since all the input variables are used to define the ante-

cedents, the rules obtained will be complex and more difficult to interpret

for the user.

• The quality of the data stored in the memory M affects the approximation

of the inverse function of the plant obtained. Thus, enough representa-

tive data points are needed. To address this issue, we can use a threshold

on the minimum number of data in M required to modify the controller’s

topology, e.g., do not modify the structure until there is data in a certain

percentage of the hypercubes. Although there is no guideline to select this

threshold, its selection is not very hard, as the user of a control system

usually knows how variable the reference signal is. Therefore, if there is

not much variation, a smaller value for the threshold will be preferred,

whereas larger values will be chosen in the case of more changing refer-

ence signals.

• In the algorithm for the selection of the input variable that must receive a

new MF (see section 4.3.2.1), we defined an auxiliary fuzzy system with

N∆ membership functions in all the variables but the one under analysis.

The value of N∆ depends on the amount of I/O data available. On the

one hand, if we set too many membership functions, there will be no data

in some of the intervals defined by them and the estimation will not be

reliable. On the other hand, if there are too few MFs, they will be too wide

and will be far from the ideal continuous case. For instance, if we have

a controller with two input variables and 400 I/O data points stored, it

will not be reasonable to assign more than 10 membership functions per

variable. Note that, in that case, there would be an average of four data

samples per interval, which is enough to be considered equivalent to “a

large number of membership functions”. Thus, since the grid memory M

provides a uniform representation of the input space of the plant’s inverse

function, a possible estimation of the number of MFs is:

N∆ =

N√K
2

(4.54)

OSEFC: Online Self-Evolving Fuzzy Controller 113

where K is the number of I/O data stored in the memory M and N is the

number of input variables.

Note that this fuzzy system is only used for the selection of the input vari-

able that is receiving a new function. Its aim is producing an approxima-

tion of the inverse function of the plant that is “perfect” in all the dimen-

sions but one. The modification of the topology is performed in parallel

with the normal operation of the controller. Therefore, the fuzzy system

with N∆ membership functions neither operates over the plant nor per-

forms any type of control. Only when the new structure is completely

defined (i.e., the new MF is located and the new rules are initialized), the

fuzzy controller is replaced by the new one.

• In the parameter learning method with global information (section 4.3.3),

we defined a period of time T ′ for the gathering of useful I/O data to be

used by the GL-module. Since the goal during this time is to obtain enough

representative data about the plant’s inverse function, its value should de-

pend on the variability of the reference values. Again, it is not possible to

provide a general value for this parameter that works well in every possi-

ble case. Nonetheless, the guidelines provided for the estimation of ns can

be also applied in this case.

4.4 Experimentation and results

With the aim of illustrating the main features of the proposed OSEFC, a set of

experimental results is gathered in this section. These tests can be classified into

three groups:

• Description of the basic features of OSEFC: In this group, we analyze the basic

properties of the proposed methodology by applying OSEFC to a bench-

mark of synthetic plants [Cara et al., 2011a]. This type of plants is useful to

provide an insight of the operation of the methodology without the “inter-

ferences” caused by the complexity of real-world systems. The plants used

for this type of experiment are described by their difference equations.

OSEFC: Online Self-Evolving Fuzzy Controller 114

• Simulation of real-world systems: In this category, we include software sim-

ulations of systems from the real world [Cara et al., 2010b, 2011a]. These

experiments are obviously more complex than the ones in the first set and

aim to provide an idea of the operation of the controller with real plants.

To simulate these plants, the fourth-order Runge-Kutta method has been

used. It is important to highlight the difference between the sampling time

Tp used for the simulation and the sampling time used to exert control ac-

tions Tc (see section 4.2).

• Experiments with real systems: Finally, some experiments with a real sys-

tem have been carried out. Obviously, these are the most challenging tests

for the control methodology, as the environment cannot be controlled and

there may exist multiple external factors influencing the behavior of the

plant [Cara et al., 2010a,c].

It has to be highlighted once more that OSEFC does not use any information

about the internal dynamics of the plants, other than the sign of their mono-

tonicity with respect to the control signal. For this reason, the plants used for the

experimentation are described only from a qualitative point of view. Nonethe-

less, the reader can find the information regarding the differential equations and

parameters of the plants in Appendix A.

4.4.1 Description of the basic features of OSEFC

With the goal of clarifying the operation of the proposed methodology, in this

section we present a series of simulation results for synthetic plants. For the

sake of clarity, each plant is described by its difference equation, although this

equation is not used for the control process.

4.4.1.1 Parameter learning for a given topology

Firstly, the features of the consequent adaptation phase (see section 4.3.1) are

discussed. To do so, only this phase has been applied to a fuzzy controller with

a predefined fixed topology. First, the performance of the local learning pro-

cedure discussed in section 4.3.1 is analyzed. Then, the addition of the global

OSEFC: Online Self-Evolving Fuzzy Controller 115

learning module (section 4.3.3) is considered. Finally, the response of OSEFC to

an unexpected change in the dynamics of the plant is also shown.

Consider the plant defined by the following equation [Pomares et al., 2002b]:

y(k + 1) = −0.075 sin(y(k)) +
u(k) + u3(k)

4
(4.55)

Despite of its apparent simplicity, this plant shows a nonlinear behavior with

respect to both the control signal and the variable to be controlled. Moreover, it

is to be noted that a control signal u(k) = 0 does not guarantee a stationary plant

output.

To control this plant, a fuzzy controller with two input variables (namely the

reference signal r(k) and the plant output y(k)) is used. The reference is a step-

wise function that changes randomly in the range [-1,1]. The actuator’s range

of operation is [-1.5 1.5]. Since the monotonicity of the plant with respect to u is

positive, and according to (4.23), the constant C is set to 1.5. Finally, the sampling

frequency is set to 100 samples per second.

For the test with local learning only, we have selected a topology with a

medium number of rules. Specifically, an evenly distributed triangular partition

with four MFs for the input r(k) and two for y(k) is used; therefore, eight rules

form the fuzzy controller. We have selected this topology because it is one of

the configurations obtained by the self-evolving methodology, as we show later

in Table 4.1. Initially, the value of all the consequents is set to zero. Thus, the

situation is equivalent to having an empty controller.

Fig. 4.6 depicts the evolution of the eight rule consequents. During the first

iterations there are sharp changes in their values, although after a few seconds,

a clear convergence is shown. Fig. 4.7 shows the reference tracking obtained

during the initial 30 seconds. It is possible to note the effect of the lack of knowl-

edge about the plant, which causes a poor performance at the beginning; how-

ever, the parameter learning process soon produces a significant enhancement.

Some overshoot can be observed at the end of the simulation. This is due to the

limitations of the topology selected for the controller.

In order to depict the quality improvement that may derive from the use of

global information in the learning process, we have developed two simulations

OSEFC: Online Self-Evolving Fuzzy Controller 116

FIGURE 4.6: Online local learning of the consequents during the first 50 sec-
onds controlling plant (4.55) with a 4x2 topology

FIGURE 4.7: Reference tracking during the first 30 seconds of controlling
plant (4.55) with local consequent learning only

in the same conditions. The first one only applies the local learning, whilst the

second one applies both the local and the global learning policies, as described

in section 4.3.3. For this example, five evenly distributed MFs are assigned to

each input. Therefore, 25 fuzzy rules initialized to zero are used. This topology

has been selected to provide enough MFs to both inputs, assuming that the plant

is unknown.

In this case, the reference signal follows a pattern of one-second-long ran-

OSEFC: Online Self-Evolving Fuzzy Controller 117

25 50 75 100 125 150 175
0

0.01

0.02

0.03

0.04

0.05

0.06

TIME (s)

M
S

E

LL−Module only
LL−Module + GL−Module

FIGURE 4.8: Local learning performance versus local and global learning per-
formance for the control of plant (4.55)

dom steps that is repeated every 10 seconds, i.e., the pattern is formed by 10

steps. The period of initial data gathering for the GL-module has been set to

T ′ = 100 seconds, i.e., 10 presentations of the reference pattern. This value has

been selected to provide enough time for the LL-module to obtain a satisfactory

tuning of the parameters.

Fig. 4.8 compares the evolution of the MSE for the cases of applying only

local learning (solid line) and both local and global learning (dotted line). The

MSE is computed for every presentation of the reference pattern, thus, the num-

ber of samples used is ns = 1000. It can be observed that, at the beginning, both

learning methods show the same evolution. Obviously, the reason for this is that

only local learning is being applied in both cases, since the method with global

learning is operating in the initial data gathering period. However, after 100 sec-

onds, the effect of the global learning is evident: although the minimum error

achieved by the local learning at the end of the simulation is 0.039, the addition

of the GL-module allows the controller to reach a value of 0.0038, i.e., the per-

formance is ten times better thanks to the global learning. This experiment has

been repeated with different reference patterns, obtaining similar results every

time.

Another interesting fact is the response of OSEFC to unexpected changes in

the dynamics of the plant. To show this behavior, we have carried out the same

OSEFC: Online Self-Evolving Fuzzy Controller 118

120 140 160 180 200 220
0

0.002

0.004

0.006

0.008

0.01

TIME (s)

M
S

E

Change in the plant’s dynamics

FIGURE 4.9: Response of OSEFC’s parameter learning procedure to an unex-
pected change in the dynamics of the plant (4.55), that decreases the response

of the actuator by 20%

simulation as described above. However, after 150 seconds the definition of the

plant’s equation is changed as follows:

y(k + 1) = −0.075 sin(yk) + 0.2u(k) + 0.25u3(k) (4.56)

The only difference with the previous definition of the plant is the multiplying

factor applied to u(k), which is reduced by 20%. This situation represents a de-

crease in the actuator’s response, which could be due, for instance, to an incip-

ient fault. Fig. 4.9 depicts the evolution of the MSE before and after the change

in the dynamics of the plant. It is observed that the change in the plant causes a

sudden increase in the mean square error. However, after some time, and due to

the joint action of the LL-module and the GL-module, the error decreases again.

4.4.1.2 Global operation of OSEFC

As stated before, the adaptation of the rule consequents is not enough to obtain

a high quality control, unless an adequate topology for the fuzzy controller is

known beforehand. In this section, the full adaptive self-evolving method is

applied again to plant (4.55), to show its capability to obtain a suitable topology

that provides a good approximation to the plant’s inverse function.

OSEFC: Online Self-Evolving Fuzzy Controller 119

TABLE 4.1: Topology evolution for the control of plant (4.55)

Configuration
IR1 IR2 MSE

Example Mean ±σ Example Mean ±σ Example Mean ±σ

1x1 26.42 25.09 ± 1.20 1.94 1.83 ± 0.10 2.0769 1.666 ± 0.363

2x1 17.99 22.85 ± 4.21 4.87 5.37 ± 0.45 0.5347 0.418 ± 0.101

3x1 21.19 25.29 ± 3.55 5.43 5.70 ± 0.24 0.5051 0.418 ± 0.080

4x1 1.91 1.98 ± 0.06 5.70 5.87 ± 0.16 0.0533 0.048 ± 0.025

4x2 1.97 1.98 ± 0.03 5.35 5.38 ± 0.03 0.0289 0.032 ± 0.020

4x3 2.00 2.03 ± 0.03 5.45 5.41 ± 0.03 0.0110 0.018 ± 0.015

4x4 1.98 2.02 ± 0.05 0.21 0.35 ± 0.14 0.0078 0.008 ± 0.005

5x4 5.11 5.14 ± 0.04 0.22 0.36 ± 0.14 0.0073 0.006 ± 0.002

6x4 0.60 0.59 ± 0.01 0.23 0.33 ± 0.13 0.0031 0.004 ± 0.003

7x4 1.14 1.14 ± 0.01 0.22 0.36 ± 0.14 0.0021 0.003 ± 0.002

The parameters defining the system (e.g., actuator’s range, constant C, etc.)

are the same as defined at the beginning of section 4.4.1.1. The input variables

are also the same (namely the reference signal and the plant output), although,

in this case, the controller starts with an empty configuration, i.e., only one mem-

bership function for each variable and the only rule initialized to zero. The mem-

ory M is defined as a 30x30 grid which stores I/O data samples from the true

inverse function, obtained online while the control system is operating.

A randomly changing stepwise reference signal varying in the range [-1,1] is

used. This reference signal does not follow a pattern, which means that the se-

quence of steps is not repeated. This is important, since the effect of any specific

reference value on the evolution of the controller is very limited, specially as the

time goes to infinity. Nonetheless, the simulation has been repeated five times,

always obtaining the same topologies for the controller.

Table 4.1 depicts the controller’s evolution through the entire process. For

each topology change, it shows the value of the IR for both input variables and

the MSE obtained after adapting the consequents of the new rules, i.e., right

before the next topology change. The MSE is computed every 10 seconds (i.e.,

ns = 1000 samples), which corresponds to 40 steps in the reference signal. This

time allows the plant to reach multiple operating regions, thereby providing

OSEFC: Online Self-Evolving Fuzzy Controller 120

−1
0

1
1

0

−1

−1

0

1

r(k)

(a)

y(k)

u

−1
0

1

−1

0

1

−1

0

1

r(k)

(b)

y(k)

u

−1
0

1

−1

0

1

−1

0

1

r(k)

(c)

y(k)

u

−1
0

1

−1

0

1

−1

0

1

r(k)

(d)

y(k)

u

FIGURE 4.10: Evolution of the approximation to the plant’s true inverse func-
tion with different topologies. (a) Plant’s true inverse function. (b) Controller
function with 4x1 membership functions. (c) Controller function with 4x4 MFs.

(d) Controller function with 6x4 MFs

representative information about its response for each computation of the MSE.

For each measure, the table presents the specific value obtained in the example

shown and the mean and standard deviation of the five executions.

At first, the input r(k) is clearly more important than y(k), which can be eas-

ily confirmed by looking at the true inverse function depicted in Fig. 4.10(a).

Therefore, the algorithm always assigns new MFs to this input. However, when

the 4x1 configuration is reached, a finer control policy is needed and the second

variable comes into play. Fig. 4.10(b)-(d) show the progressive improvement in

the approximation to the plant’s inverse function made by the fuzzy controller.

Comparing configuration 4x1 (Fig. 4.10(b)) to configuration 6x4 (Fig. 4.10(d)), it

can be noted that the MFs added to the input y(k) provide a good approximation

OSEFC: Online Self-Evolving Fuzzy Controller 121

FIGURE 4.11: Evolution of the MSE with and without initialization of the new
rules

to the sine wave in this component of the inverse function. In cases like this,

when the topology provides a fine approximation of the plant’s inverse func-

tion and the consequents start converging, the adaptation methodology can be

stopped and the application of the resulting fixed controller is possible. In this

case, the controller achieves the so-called convergence of the topology, which is

related to the stability-plasticity dilemma mentioned in section 3.2.2.1.

Fig. 4.11 shows the evolution of the mean square error during the simulation.

The solid line corresponds to the MSE when the consequents of the new rules

are initialized according to (4.46). The first thing to observe is that, every time

a topology change is performed, the MSE has stopped decreasing, which means

that the adaptation of the consequents cannot longer improve the control. In

every case, the addition of a new MF helps reducing the MSE. In contrast, the

dotted line depicts the evolution of the error when the consequents of the new

rules are initialized to random values. It can be observed that the initialization

proposed in this work has two main effects: First, the MSE decreases faster. Sec-

ond, the lack of initialization produces sudden increases in the error right after

the changes in the topology, because the new rules do not use the knowledge

already acquired by the controller. This undesirable effect is avoided by the pro-

posed initialization.

OSEFC: Online Self-Evolving Fuzzy Controller 122

It is important to note that, in the case of random initialization, the rules

would eventually achieve proper consequents; therefore, the error would reach

the same values as when using initialization. In order to make the compari-

son of both cases possible, the topology changes have been forced to happen at

fixed times. Otherwise, the simulation without initialization would have taken

a longer time but, in the end, the results would have been the same as when

using initialization.

4.4.1.3 Automatic input variable selection

In section 4.3.2.4, we commented OSEFC’s capability of selecting the most rele-

vant input variables from a set of candidates. Here, we present an example of

this interesting feature. Consider the following plant [Chen and Khalil, 1995]:

y(k + 1) =
1.5y(k − 1)y(k)

1 + y2(k − 1) + y2(k)
+ 0.35 sin(y(k − 1) + y(k)) + 1.2u(k) (4.57)

Initially, four input variables (namely r(k), y(k), y(k − 1), and y(k − 2)) are

considered. These variables are actually “candidates” to be a part of the control

process, as all of them initially have only one membership function assigned,

and therefore, are not participating in the fuzzy inference process. Within this

context, “selecting” variables is equivalent to adding membership functions to

them. At the end, those variables having a unique membership function will be

ignored in the inference process, i.e., they are considered to be irrelevant for the

control.

The values of the control signal are limited to the range [−1, 1] and the mono-

tonicity of the plant w.r.t. the control signal is positive, as shown below in equa-

tion (4.58). Randomly varying stepwise reference signals in the range [−1, 1] are

used for this simulation. Hence, according to (4.23), the value of the constant

C is set to 1. In order to reduce the influence of the specific reference values on

the results, the reference steps do not form a repetitive pattern. Nonetheless, the

experiment has been repeated five times, obtaining analogous results in all of

them.

Table 4.2 depicts the evolution of the controller’s topology. For every selected

configuration, it shows the IR associated to each input variable and the MSE

OSEFC: Online Self-Evolving Fuzzy Controller 123

TABLE 4.2: Topology evolution for the control of plant (4.57)

Configuration IR1 IR2 IR3 IR4 MSE·103

1x1x1x1 0.59 0.03 0.02 0.0002 454.61

2x1x1x1 0.02 205.80 210.46 0.02 131.49

2x1x2x1 0.03 294.75 6.09 0.03 84.56

2x2x2x1 0.04 10.51 10.54 0.041 3.75

2x2x3x1 0.04 10.54 6.68 2.08 2.36

2x3x3x1 0.04 6.76 6.79 0.04 1.05

2x3x4x1 0.04 6.94 0.62 0.04 0.72

2x4x4x1 0.04 0.61 0.59 0.04 0.52

achieved by the chosen topology at the moment of the next change. The MSE is

computed using ns = 2000 samples, which corresponds to the presentation of 20

reference steps.

The first decision made by OSEFC is to consider the reference signal as a rel-

evant variable for the control. Although r(k) does not appear in the definition of

the plant, it is easy to see its importance in the control process. As already stated,

the evolving fuzzy controller’s aims to approximate the inverse function of the

plant. The following expression is obtained when the difference equation (4.57)

is solved for the control signal u(k):

u(k) = 0.83y(k + 1) −
1.25y(k − 1)y(k)

1 + y2(k − 1) + y2(k)
− 0.29 sin(y(k − 1) + y(k))

≡ 0.83r(k) −
1.25y(k − 1)y(k)

1 + y2(k − 1) + y2(k)
− 0.29 sin(y(k − 1) + y(k)) (4.58)

where the reference r(k) has been used to replace y(k + 1).

This equation confirms that the control signal depends linearly on the ref-

erence signal, which is adequately acknowledged by OSEFC by assigning two

MFs to this input. On the contrary, no membership functions are ever added

to the fourth variable. Equation (4.58) confirms that u(k) does not depend on

y(k − 2); hence, the decision of not taking it into account for the control is cor-

rect. Finally, the same number of MFs is assigned to y(k) and y(k + 1), which is

OSEFC: Online Self-Evolving Fuzzy Controller 124

also consistent with the fact that u(k) depends in the same way on both of them.

Further, it can be observed that these two inputs present similar values of the

IR when they have the same number of MFs assigned, e.g., observe the config-

urations 2x2x2x1 and 2x3x3x1. This means that they present a similar degree

of responsibility on the approximation error, and therefore, any of them could

receive a new MF. On the contrary, when one of them presents one more MF, the

index of responsibility clearly states the need of assigning a new MF to the other

one, thereby indicating that both inputs are equally important for the control

process.

4.4.1.4 Tolerance to noise

The learning capabilities of OSEFC provide the control system with a higher

tolerance to noise. In this section, this feature is studied through the use of a

plant that presents noisy readings for the plant output y(k). Specifically, equally

distributed additive noise is added to y(k) to three different levels, namely 5%,

10% and 20% of the plant’s operating range.

The plant used for this example is defined in (4.35) and repeated here for

clarity:

y(k + 1) = 0.8 sin(2y(k)) + 1.2u(k)

The simulation is started with a two-input controller (i.e., r(k) and y(k)) and two

membership functions for each input. Initially, all the rule consequents are set

to zero; therefore, the controller is empty. Random steps in the range [−1, 1] are

used as the reference signal. The actuator’s range of operation is [−1, 1]. It is

easy to observe that the monotonicity of this plant w.r.t. the control signal is

positive. Hence, C is set to 1. Again, the experiment has been repeated five

times, obtaining similar results in all of them.

Table 4.3 compares the simulation results obtained for the noise-free case

with the results of the three aforementioned noisy cases. The table shows the

different topology configurations obtained by OSEFC, the MSE achieved after

optimizing the consequents, and the standard deviation of the measurement of

the MSE in all the executions. The MSE is computed every ns = 2000 samples,

i.e., 20 reference steps.

OSEFC: Online Self-Evolving Fuzzy Controller 125

TABLE 4.3: Topology evolution in a noisy environment

No noise Noise 5% Noise 10% Noise 20%

Cfg. MSE·103 Cfg. MSE·103 σ Cfg. MSE·103 σ Cfg. MSE·103 σ

2x2 7.91 2x2 7.70 1.89 2x2 10.29 2.52 2x2 25.54 2.81

2x3 1.26 2x3 1.96 0.32 2x3 6.07 0.76 2x3 17.39 1.52

2x4 0.86 2x4 1.79 0.31 2x4 4.84 1.15 2x4 16.39 1.02

2x5 0.36 2x5 1.75 0.62 2x5 4.30 0.88 3x4 14.97 1.33

2x6 0.43 2x6 1.39 0.29 2x6 4.35 0.24 4x4 14.43 0.50

2x7 0.29 2x7 1.10 0.38 3x6 4.12 0.45 4x5 15.07 0.52

When the noise is 5%, the MSE is higher than in the noise-free case, but

the evolution of the topology is unaffected. This behavior is observed in the

five executions. Thus, it can be said that the learning process can effectively

handle this level of noise. For a 10% of noise, in four of the executions only

the last topology change is affected, whilst in the remaining execution, the same

topology as in the noise-free case is obtained. This means that OSEFC can also

cope with this level of noise, but the noise’s effect is noticeable when a high

accuracy is required. Finally, it can be observed that for a noise level of 20%,

errors in the selections start to happen sooner. The table shows the evolution of

the configuration obtained in four out of the five runs of the experiment. In the

fifth execution, the controller’s topology changed from 3x4 MFs to 3x5 (instead

of 4x4, as shown in the table) and then, to 4x5. Note that most executions provide

the same results, which can be seen as a sign of the robustness of the proposed

methodology.

4.4.2 Simulation of real-world systems

In this section we analyze the operation of the algorithm when applied to real-

world systems. Three different cases have been studied: a tank of liquid, an

industrial mechanical suspension system and the control of the elevation angle

of a helicopter. These experiments aim to illustrate the operation of the pro-

posed methodology for plants that are more complex than the ones presented

OSEFC: Online Self-Evolving Fuzzy Controller 126

in the previous section. Moreover, we also present examples of the response of

OSEFC in the presence of changes in the dynamics of the plants and compare

this response with that provided by a non-adaptive fuzzy controller.

For these experiments, we have used randomly varying stepwise reference

signals. Each simulation has been repeated five times, with different sequences

of reference values, and similar results have been obtained in all of them. For

the sake of brevity, in the following subsections we include only a representative

example of each case considered.

It is important to remember that OSEFC does not use any specific informa-

tion about the differential equations that govern the plants under control. The

only information it requires to work is the sign of the monotonicity of the plant

with respect to the control signal and the range of operation of the actuators and

the plant’s output. In order to keep this idea clear in this dissertation, we do

not include here any specifics about the internal dynamics of the plants. Only

a qualitative description about the systems is presented. Nonetheless, the com-

plete information about the plants, including the mathematical models used for

simulation, is summarized in Appendix A for the interested reader.

4.4.2.1 Control of a tank of liquid

As a first example, we consider the plant commonly known as tank of liquid or

water tank [Cara et al., 2010b], depicted in Fig. 4.12. This plant represents a tank

with a valve that controls the introduction of liquid, and a vent in its lower side

that lets the liquid out. The amount of liquid introduced in the tank depends

on the voltage applied to the entrance valve, whilst the liquid that flows out

depends on the level reached by the liquid inside. The control objective is to

compensate the loss of liquid by adjusting the power of liquid entrance, so that

the final level of liquid in the tank reaches a determined height H, measured in

meters. This system presents the peculiarity of limiting the actuator’s operation

to positive values. This means that if the liquid level has to be decreased, the

only possible action is to stop the entrance of liquid in the tank (i.e., the input

voltage is zero) and wait for the liquid to flow out.

For this example we have used a fuzzy controller with two inputs, namely

the reference signal r(k) and the plant’s output y(k). Initially, the controller is

OSEFC: Online Self-Evolving Fuzzy Controller 127

FIGURE 4.12: Schematic representation of a tank of liquid

empty, which means that every input variable has only one membership func-

tion and the only rule is initialized to zero. The control objective is to track a

reference signal composed by several random steps within the range [0.5, 4] m,

forming a 1000-iteration long pattern. The actuator operates within the range

[0, 5] V. It is easy to see that the monotonicity of the plant w.r.t. the control

signal is positive, since applying larger voltages to the entrance valve implies

introducing more liquid in the tank. Hence, according to (4.23), the value of the

normalization constant is C = 5/3.5 = 1.43. Finally, the controller’s sampling

time is Tc = 0.1 s.

Table 4.4 depicts the evolution of the self-evolving process, with each row

representing a topology change. For each one, we show the new topology ob-

tained, the values of the IR used to decide the next change, and the mean square

error reached for the given topology after the adaptation of the new conse-

quents, i.e., right before the next topology change. The number of samples used

for computing the values of the MSE is ns = 1000, which corresponds to a pre-

sentation of the reference pattern. The first two changes set the topology to 2x2

MFs, which means that both variables are relevant for the control process. After

that, the importance of both inputs is kept similar, as we reach an even topol-

ogy, i.e., 4x4 MFs. However, in the end r(k) becomes more important, as it is

observed from the fact that it receives six MFs, compared to the four assigned

OSEFC: Online Self-Evolving Fuzzy Controller 128

TABLE 4.4: Topology evolution for the control of a tank of liquid

Configuration IR1 IR2 MSE (m2)

1x1 253.729 237.603 0.711

2x1 0.452 208.457 0.248

2x2 7.104 ·10−4 2.584 0.052

2x3 1.989 ·10−4 4.525 ·10−4 0.041

2x4 1.219 ·10−4 8.874 ·10−5 0.034

3x4 9.639 ·10−5 6.152 ·10−5 0.029

4x4 4.624 ·10−5 3.536 ·10−5 0.026

5x4 5.497 ·10−5 2.961 ·10−5 0.024

6x4 0.023

20 40 60 80 100
0

2

4

(a)

L
E

V
E

L
 (

m
)

r(k)
y(k+1)

3520 3540 3560 3580 3600
0

2

4

(b)

TIME (s)

L
E

V
E

L
 (

m
)

FIGURE 4.13: Reference tracking for the tank of liquid. (a) At the beginning.
(b) After one hour

to y(k). This means that, in order to achieve a better accuracy, the control policy

has to be finer for the values of r(k).

The tracking of the reference signal at different moments of the experiment

is depicted in Fig. 4.13. At the beginning of the simulation the controller is

empty, and therefore, incapable of properly controlling the plant (Fig. 4.13(a)).

However, the addition of new membership functions and rules leads to a good

OSEFC: Online Self-Evolving Fuzzy Controller 129

FIGURE 4.14: Suspension system used for experimentation. (a) Suspension
system. (b) Simplified mathematical model

performance before one hour elapses (Fig. 4.13(b)). In the lower plot, it is also

possible to observe the effect of the actuator’s limitations, i.e., the decrease of

the liquid level is always slower than its increase (e.g., at time 3540 s). As al-

ready mentioned, the cause for this is that the only possible action to decrease

the level of liquid is closing the valve completely. Nonetheless, it is also worth

noting that the level of liquid does not go beyond the desired value at any point,

which means that the controller has adequately learned to re-open the valve.

4.4.2.2 Control of a mechanical suspension system

In this section, we consider the control of an industrial mechanical suspension

system, as depicted in Fig. 4.14 [Ogata, 2001]. This model is formed by a sprung

mass M1 that represents a body, and an unsprung mass M2 representing the

mechanical components whose duty is to move the body. Between these two

elements there is a transfer system, which is characterized by a spring K1 and

a damper D. Finally, a spring K2 serves as a model of the compressibility of

the mechanical components. The values of all the parameters of the system are

provided in Appendix A.2. In this problem, the objective is to control the vertical

velocity of the body v1, measured in meters per second.

To control this plant, a fuzzy controller with two inputs has been used, namely

OSEFC: Online Self-Evolving Fuzzy Controller 130

FIGURE 4.15: MSE evolution for the control of the suspension system. (a) At
the beginning. (b) At the end

the reference signal r(k) and the system’s output y(k). Both inputs take values in

the range [−1, 1] m/s. The actuator’s range is scaled and limited to the values

[−1, 1], which represent the minimum and maximum voltage allowed by the

physical system. The sign of the monotonicity of the plant w.r.t. to the control

signal has been experimentally identified by applying different control signals

to the plant, with a common initial state. It has been observed that larger control

signals produce larger outputs, i.e., the monotonicity is positive. Thus, the con-

stant for the consequents’ adaptation is set to C = 1, as given by (4.23). Initially,

the controller is empty, i.e., only one membership function is assigned to each

input, and therefore, only one zero-initialized fuzzy rule is defined.

The reference trajectory is given by a randomly changing stepwise signal

in the range [−1, 1] m/s. To simulate the plant, the fourth-order Runge-Kutta

method has been used, with sampling time Tp = 0.05 seconds. The controller’s

sampling time is also set to Tc = 0.05 s. The total simulation time was 9000

seconds (150 minutes).

Fig. 4.15 depicts the evolution of the MSE through the entire simulation. The

moments in which the topology has changed are indicated with arrows. We

have split the figure into two parts to make the visualization easier. Fig. 4.15(a)

OSEFC: Online Self-Evolving Fuzzy Controller 131

FIGURE 4.16: Reference tracking for the suspension system

shows the evolution at the beginning, when the error is large, whilst Fig. 4.15(b)

depicts the evolution at the end, when the MSE takes small values. OSEFC as-

signs the first membership function to the input r(k), thereby indicating that this

variable is relevant for the control process. However, after that, the second input

becomes clearly more important, as it is observed from the fact that y(k) receives

four membership functions, compared with the two assigned to r(k).

In addition, this figure also shows how the tracking error decreases due to

the modification of the topology. This fact is also depicted in Fig. 4.16, which

represents the reference tracking during 300 seconds. During the first 100 sec-

onds the topology was 2x3. In this time span the control is quite satisfactory,

although some overshoot is shown, specially when large changes occur in the

reference signal. At time 7500 s, the topology changes to 2x4, i.e., a new mem-

bership function is added to the second input variable, y(k). This change helps

reducing this overshoot, although it is not completely removed.

4.4.2.3 Control of a 1-DOF helicopter

The last application considered in this section is a 1-degree of freedom (DOF)

helicopter setup (see Fig. 4.17 and Appendix A.3). This setup consists of a beam

attached to a fixed pole. The beam can freely rotate in the vertical plane while

the horizontal position is fixed. At the end of the beam there is a DC motor

OSEFC: Online Self-Evolving Fuzzy Controller 132

FIGURE 4.17: Helicopter setup used for experimentation. (a) Helicopter setup.
(b) Schematic model of the helicopter setup

with a propeller attached. The control input u is the voltage applied to the mo-

tor to control the elevation angle of the beam α. It takes values in the range

[−1, 1], where -1 represents the maximal voltage (in absolute value) that makes

the propeller and the beam rotate in the negative sense of α, and +1 is the maxi-

mal voltage that causes rotation of the beam in the positive sense of α. Since the

horizontal position of the beam is fixed, a constant voltage is applied to the front

rotor. There are two measured outputs, namely the angular velocityω of the pro-

peller and the angle α of the beam. The former takes values in the range [-1,1],

representing the maximal negative and positive angular velocity measured in

radians per seconds, respectively. The latter is measured in radians. The control

objective is to make the angle α follow an specific reference trajectory, formed

by a series of random steps in the range [-1,1] rad.

For this experiment, the sampling time is set as Tp = Tc = 0.001 s. A three-

input fuzzy controller has been used; these inputs are the plant’s output y(k),

the error at the plant’s output e(k) and the derivative of the error ė(k). They

take values in the ranges [−1, 1], [−0.006, 0.006] and [−0.003, 0.003], respectively.

Initially, only one membership function is assigned to each input variable, and

the only rule is initialized to zero. From the description of the plant, it can be

deduced that the monotonicity of the plant w.r.t. the control signal is positive.

Thus, the value of C is set to 1.

Table 4.5 shows the evolution of the self-structuring process, with each row

representing a topology change. For each of them, we show the new topol-

ogy obtained after the change, the values of the indexes of responsibility used

OSEFC: Online Self-Evolving Fuzzy Controller 133

TABLE 4.5: Topology evolution for the control of a 1-DOF helicopter

Configuration IR1 IR2 IR3 MSE (rad2)

1x1x1 127.47 160.92 6.20 ·10−8 0.23

1x2x1 280.41 2.95 ·10−10 4.3 ·10−8 0.043

2x2x1 3.16 ·10−7 2.89·10−9 3.89·10−9 0.034

3x2x1 1.42·10−6 2.72·10−9 2.96·10−9 0.022

4x2x1 2.85·10−7 2.70·10−9 2.65·10−9 0.018

5x2x1 0.016

20 40 60 80 100 120 140

−1

−0.5

0

0.5

1

TIME (s)

P
LA

N
T

 O
U

T
P

U
T

 (
α)

r(k)
y(k+1)

FIGURE 4.18: Reference tracking for the 1-DOF helicopter during the first 150
seconds

to decide the next change, and the MSE reached for the given topology after

the adaptation of the new consequents. The MSE is computed every 25 s. The

first new membership function is added to the plant’s error e(k). The reason for

this decision is that the control objective is to make the error equal to zero, and

therefore, its value is important for the control process. After that, the plant’s

output clearly becomes the most important variable for the control process. It

is interesting to note that the derivative of the error does not receive any MF.

This means that the controller considers that it is not relevant for the control. In

other words, this example shows the capability of the proposed methodology of

choosing only the important control variables among a group of candidates.

OSEFC: Online Self-Evolving Fuzzy Controller 134

Finally, Fig. 4.18 depicts the tracking of the reference signal during the first

150 seconds of the experiment. Initially, the lack of knowledge and the sim-

ple topology selected makes the controller unable to stop the oscillations at the

plant’s output. However, after developing the structure and adapting the rule

consequents, the control achieves a satisfactory performance.

4.4.2.4 Robustness against changes in the plant

The proposed method does not use any specific information or makes any hy-

potheses about the system it controls, except for the sign of the monotonicity

with respect to the control signal u. Thus, an important feature of OSEFC is its

robustness against unexpected changes in the plant under control.

In order to visualize this property, the suspension system (section 4.4.2.2)

and the 1-DOF helicopter (section 4.4.2.3) are used again, with the same initial

configurations and parameters as previously commented. In both cases, the ini-

tial values of the plant’s parameters are the ones shown in Tables A.2 and A.3,

respectively. For the suspension system, the mass of the moving body M1 is mul-

tiplied by 5 after 175 minutes, while in the case of the helicopter setup the gain

K1 is multiplied by 2 after 150 s. The effect of these changes is similar in both

cases: a clear deterioration in the performance of the control takes place right

after the change. Nevertheless, the proposed methodology starts counteracting

this deterioration from the beginning and soon the control is as good as it was

before the change in the plant’s dynamics, as depicted in Fig. 4.19 for the case of

the helicopter.

The response of the proposed OSEFC has been compared with the response

of a classic non-adaptive fuzzy controller [Lalouni et al., 2009], for the case of a

change in the dynamics of the suspension system. Fig. 4.20 shows the tracking

of the reference signal in both cases and Fig. 4.21 depicts the tracking errors. It

is observed that both controllers perform equally well before the change. How-

ever, the response of the controllers is different when the change in the plant’s

dynamics occurs. On the one hand, OSEFC is able to learn the new behavior

and produces a satisfactory tracking after some time. On the other hand, the

OSEFC: Online Self-Evolving Fuzzy Controller 135

non-adaptive controller, which has been designed for the previous plant config-

uration, is not capable of properly controlling the plant under the new condi-

tions.

140 145 150 155 160 165 170

−1

−0.5

0

0.5

1

TIME (s)

P
LA

N
T

 O
U

T
P

U
T

 (
α)

r(k)
y(k+1)

Change in the plant’s dynamics

FIGURE 4.19: Reference tracking for the helicopter setup after a change in the
plant’s dynamics. The vertical dotted line indicates the moment of the change

in the plant’s dynamics

175 176 177
−1

−0.5

0

0.5

1

TIME (min)

V
E

R
T

. V
E

LO
C

IT
Y

r(k) Non−adapt. OSEFC

Change in the
plant’s dynamics

FIGURE 4.20: Reference tracking for the suspension system after a change in
the plant’s dynamics. Comparison with a non-adaptive fuzzy controller

OSEFC: Online Self-Evolving Fuzzy Controller 136

175 176 177
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

TIME (min)

E
R

R
O

R

Non−adapt. OSEFC

Change in the plant’s dynamics

FIGURE 4.21: Comparison of the tracking errors after a change in the plant’s
dynamics for a non-adaptive fuzzy controller and the proposed OSEFC

4.4.3 Experiments with a real system: Control of a nonlinear servo
system

In this section, the proposed OSEFC is applied to the real nonlinear servo sys-

tem depicted in Fig. 4.22. This experimental setup consists of a weight attached

to a disk that is actuated by a DC motor and rotates in a vertical plane. The

presence of the extra weight introduces a gravity term that causes the system’s

nonlinear behavior. Thus, the control objective is to compensate this nonlinear-

ity in order to make the position of the disk (measured as an angle θ) track a

desired reference trajectory r. The complete description of the plant is included

in Appendix A.4. It is important to note that the results reported in this section

were obtained in real-time experiments developed at the Delft Center for Sys-

tems and Control (Delft University of Technology, The Netherlands), under the

supervision of Prof. R. Babuška.

For this experiment, the parameter learning method based on global infor-

mation (see section 4.3.3) has been used for learning the rule consequents. Three

inputs are considered for the fuzzy controller, namely the reference value r(k),

the current output angle θ(k), and the angular velocity θ̇(k). The inputs take val-

ues in the ranges [−π, π] rad, [−π, π] rad, and [−5, 5] rad/s, respectively. Initially,

two MFs are assigned to each input, thus 8 fuzzy rules form the initial controller.

OSEFC: Online Self-Evolving Fuzzy Controller 137

FIGURE 4.22: Nonlinear servo system

However, since all the consequents are initialized to zero, the situation is equiv-

alent to having an empty controller.

The actuator’s range is limited to [−10, 10] V. The speed and sense of the

rotation of the disk depend on the voltage applied to the DC motor. In the initial

experiments, it was observed that larger control signals produced larger values

of the position angle θ. Thus, the monotonicity of the plant with respect to the

control signal is positive and the value of the constant C for the adaptation of

the consequents can be set to C = 10/π, as given by (4.23). The sampling period

is chosen as Tc = 0.05 s. The reference signal is given by a randomly changing

function in the interval [−π, π] rad, forming a 1000-sample long pattern (i.e., 50-

second long pattern). The total time for the experiment is 45 minutes.

The operation of the control system at different moments of the experiment

is depicted in Fig. 4.23, 4.24 and 4.25. On the top part of the figures, the reference

tracking is shown, with the solid line representing the reference signal and the

dotted line corresponding to the plant’s output. In addition, the control signal

applied is depicted in the lower part of the plots. At the beginning of the ex-

periment (Fig. 4.23), the lack of knowledge about the plant causes oscillations in

the plant’s output. However, after only 20 seconds, the system starts following

the trajectory marked by the reference signal, although the control is still not

satisfactory. In Fig. 4.24(a), the effect of the global learning can be observed: The

OSEFC: Online Self-Evolving Fuzzy Controller 138

10 20 30 40 50 60 70 80 90 100

−5

0

5

Time (s)

A
ng

le
 θ

 (
ra

d)

(a)

r
k

y
k+1

10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

Time (s)

C
on

tr
ol

 s
ig

na
l (

V
)

(b)

u
k

FIGURE 4.23: Reference tracking for the nonlinear servo system during the
first 100 seconds. (a) Reference tracking. (b) Control signal

1200 1220 1240 1260 1280 1300

−2

0

2

Time (s)

A
ng

le
 θ

 (
ra

d)

(a)

r
k

y
k+1

1200 1220 1240 1260 1280 1300
−10

−5

0

5

10

Time (s)

C
on

tr
ol

 s
ig

na
l (

V
)

(b)

u
k

Global learning

FIGURE 4.24: Effect of the global learning on the reference tracking for the
nonlinear servo system. (a) Reference tracking. (b) Control signal

OSEFC: Online Self-Evolving Fuzzy Controller 139

2650 2660 2670 2680 2690 2700

−2

0

2

Time (s)

A
ng

le
 θ

 (
ra

d)
(a)

r
k

y
k+1

2650 2660 2670 2680 2690 2700
−10

−5

0

5

10

Time (s)

C
on

tr
ol

 s
ig

na
l (

V
)

(b)

u
k

FIGURE 4.25: Reference tracking for the nonlinear servo system at the end of
the experiment. (a) Reference tracking. (b) Control signal

TABLE 4.6: Topology evolution for the control of the nonlinear servo system

Time (s) Configuration IR1 IR2 IR3 MSE (rad2)

0 2x2x2 7.761 18.531 4.538 2.897

748.3 2x3x2 13.038 29.533 7.512 0.153

1469.5 2x4x2 12.899 12.609 7.318 0.191

2173.7 3x4x2 12.033 12.470 7.135 0.020

2274.5 3x5x2 11.875 6.714 6.997 0.019

2376.4 4x5x2 11.703 6.652 6.978 0.015

2685.6 5x5x2 0.014

GL-module starts operating at time 1238 s, helping to eliminate the small oscil-

lations that were present before. Finally, Fig. 4.25 depicts the control at the end

of the experiment. It can be observed that the tracking at this point is virtually

perfect.

The evolution of the controller’s structure is summarized in Table 4.6. Each

row represents a topology change, showing the time of change, the new distribu-

tion of MFs, the values of the IR used to select the variable to receive the new MF,

OSEFC: Online Self-Evolving Fuzzy Controller 140

(a)

500 1000 1500 2000 2500
0

5

10

15

20

Time (s)

M
S

E

Global learning

2x3x2
Global learning

2x4x2

(b)

1400 1600 1800 2000 2200 2400 2600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time (s)

M
S

E

2x4x2

Global learning

3x4x2
3x5x2

4x5x2
5x5x2

FIGURE 4.26: Evolution of the MSE during the control of the nonlinear servo
system. (a) During the entire experiment. (b) Details of the evolution at the

end of the experiment

and the MSE reached with that topology after tuning the new consequents. The

MSE is computed after each presentation of the reference pattern, i.e., ns = 1000

samples. In the first two changes, it is clear that the second input (i.e., the angle

θ) is the most important, as the difference between its IR and the others is high.

However, after optimizing the consequents for the topology 2x4x2, IR1 and IR2

have very similar values, the former being slightly higher. This means that, at

this point, the error due to the plant’s output has been corrected by the two ex-

tra MFs and the lack of precision on the first variable (i.e., the reference value)

is more relevant. At the end of the execution, both inputs are equally important

for the control, as they both have the same number of MFs. The initial configura-

tion of the input θ̇ does not change, which indicates that a linear approximation

is sufficient in that dimension.

To illustrate the positive effect of the global learning in this problem, we have

depicted the evolution of the MSE in Fig. 4.26. Fig. 4.26(a) shows the evolution

of the MSE for the first topology changes, whilst Fig. 4.26(b) depicts the details

of this evolution once the error reaches small values. The arrows point out the

moments in which new MFs are added, as well as the moments in which the

global learning starts operating for some topologies. Firstly, it is observed that

the error presents a clear decreasing tendency, which is faster at the beginning

but continues until the end of the experiment, i.e., all the topology changes help

OSEFC: Online Self-Evolving Fuzzy Controller 141

TABLE 4.7: Final rules for θ̇ = X1
3 in the control of the nonlinear servo system

Input θ
Input r

X1
1 X2

1 X3
1 X4

1 X5
1

X1
2 4.77 52.20 53.69 69.73 104.57

X2
2 -30.85 23.50 24.95 43.33 83.24

X3
2 -48.44 8.39 10.38 29.47 70.91

X4
2 -70.15 -10.05 -8.46 11.47 54.80

X5
2 -90.84 -45.52 -44.18 -28.95 4.11

TABLE 4.8: Final rules for θ̇ = X2
3 in the control of the nonlinear servo system

Input θ
Input r

X1
1 X2

1 X3
1 X4

1 X5
1

X1
2 -4.77 43.37 44.98 61.26 96.63

X2
2 -39.81 15.15 16.60 35.06 75.15

X3
2 -56.55 0.25 2.21 21.20 62.43

X4
2 -77.44 -18.33 -16.70 2.98 45.78

X5
2 -98.57 -53.87 -52.57 -37.54 -4.89

to improve the performance of the controller. Secondly, the figure shows that the

global learning procedure improves the MSE for each topology, thereby helping

to reduce the number of topology changes required.

Finally, we show the structure of the final fuzzy controller. Fig. 4.27 depicts

the final location of the MFs for the three input variables. In the case of the

angular velocity θ̇, this location is the same as the initial configuration, since no

MFs have been added to this input. At the end of the experiment, the controller

is formed by 50 rules, whose consequents are gathered in two tables: Table 4.7

presents the consequents of the 25 rules for MF X1
3 , whilst Table 4.8 shows the

consequents of the remaining 25 rules, for MF X2
3 . In these tables, the rules are

identified by the MFs that form their antecedent part, and each cell shows the

value of the corresponding consequent.

OSEFC: Online Self-Evolving Fuzzy Controller 142

(a)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Input: r
k

D
eg

re
e

of
 m

em
be

rs
hi

p

X
1
1 X

1
2 X

1
3 X

1
4 X

1
5

(b)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Input: Angle θ

D
eg

re
e

of
 m

em
be

rs
hi

p

X
2
1 X

2
2 X

2
3 X

2
4 X

2
5

(c)

 6 5 4 3 2 1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Angular velocity

D
e

g
re

e
 o

f
m

e
m

b
e

rs
h

ip

X
3

1
X

3

2

FIGURE 4.27: Final location of the MFs assigned to the inputs in the control of
the nonlinear servo system. (a) Input r(k). (b) Input θ(k). (c) Input θ̇(k)

OSEFC: Online Self-Evolving Fuzzy Controller 143

4.5 Conclusions

In this chapter, a novel online self-evolving fuzzy controller, named OSEFC, has

been presented. The aim of this methodology is to provide a means of obtaining

fuzzy controllers when no prior information about the plant is available. Hence,

OSEFC is able to self-design from scratch while working online. It does not

use the information regarding the differential equations that govern the plant

or any of their bounds. The only prior information required is the sign of the

monotonicity of the plant with respect to the control signal.

The learning mechanism of OSEFC is based on the property of universal

approximation of fuzzy systems and is divided into two phases: online param-

eter learning for the optimization of the rule consequents, and topology self-

evolution based on the addition of antecedent membership functions and rules.

In both stages, the information used for the learning is obtained directly from

the normal operation of the plant.

Two complementary methods have been proposed for the adaptation of the

rule consequents. The first one is an online local adaptation process based on the

analysis of the current error at the plant’s output. It applies a reward/penalty

policy to move the consequents in the direction that reduces the error at the

plant’s output. In the second method, the global I/O information provided by

the plant’s operation is used to obtain a finer tuning of the rule consequents.

In this method, a gradient-based technique is used to minimize the error in the

controller’s output as a means to indirectly minimize the error at the plant’s

output. Additionally, the online local adaptation method is used as a supervisor

to guarantee that all the changes applied to the consequents are consistent with

the local control objective, i.e., to guarantee that the changes help to keep the

plant under control.

The topology self-evolution method proposed allows OSEFC to start operat-

ing with a simple structure and then add more membership functions and rules

as they are needed. In order to provide more robustness to the method, this

phase is based on the analysis of the error in the entire operating range of the

plant. This analysis is used to identify the input variables that are mostly respon-

sible for the error, and therefore, need more membership functions. Moreover,

OSEFC: Online Self-Evolving Fuzzy Controller 144

it has been shown that this method can be used as an input selector mechanism

when there is no precise knowledge about which inputs are relevant for the con-

trol.

The main features of the proposed OSEFC can be summarized as follows:

• OSEFC does not require a model for the plant or its differential equations.

Only the sign of the monotonicity of the plant with respect to the control

signal is needed.

• No previous knowledge about the control policy is needed. OSEFC can

start working with an only rule initialized to zero and will self-develop as

it performs the control.

• OSEFC is robust in the sense that it is able to cope with unexpected isolated

changes in the behavior of the plant.

• OSEFC performs well in noisy situations, due to its adaptive nature.

• There is no need to precisely define the set of input variables for the con-

troller, as OSEFC is able to select those that are relevant from a set of can-

didate inputs.

Simulations and real experiments have been presented to illustrate all these fea-

tures. Although the lack of information about the plant makes it difficult to

provide a formal demonstration of the stability, a qualitative discussion about

the stability of our approach has also been provided.

Finally, the proposed methodology also presents some limitations that are a

consequence of the lack of information about the plant. Firstly, since the con-

troller self-designs from scratch while working online, the full methodology

proposed here cannot be applied to plants with critic states that must never be

reached. In this case, the controller can be pre-trained to obtain a control policy

that is sufficiently reliable when it starts being applied to the plant. Secondly, its

application is limited to plants in which the controller’s sampling period Tc can

be set in a way such that the plant’s output depends directly on the control sig-

nal applied in the previous time step. Nevertheless, our proposal sets an initial

framework in which to develop new controllers to achieve the ultimate goal of

online intelligent control with minimum previous knowledge about the plant.

Chapter 5

OSENF-TaSe: Online
Self-Evolving Neuro-Fuzzy
Controller based on the TaSe-NF
model

In the previous chapter, we presented a new methodology for the online self-

evolution of a fuzzy controller that aims to provide accurate controllers when

there is no prior information about the plant. That methodology mainly focuses

on the accuracy, in the sense that the only objective is to reduce the control error.

However, other properties, such as the reduction of the complexity and/or the

improvement of the interpretability, are also desirable.

This chapter presents a new online self-evolving neuro-fuzzy controller based

on the Taylor Series Neuro-Fuzzy (TaSe-NF) model. Under the assumption of no

prior knowledge about the differential equations that define the plant to be con-

trolled, this methodology is capable of incrementally evolving the structure of

the controller and adapting its parameters online, while controlling the plant.

The new methodology uses a scatter distribution of the fuzzy rules, thus reduc-

ing the number of rules in the fuzzy controller. Furthermore, the use of the TaSe-

NF model to represent the antecedents of the rules enhances the interpretability

of the obtained rules.

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 146

5.1 Motivation and goals

There are two characteristics highly important when designing a fuzzy con-

troller: On the one hand, the interpretability of the rules is important in order

to allow for the verification and completion of the rule base by human experts

[Guillaume, 2001]. On the other hand, the need of implementing fuzzy con-

trollers in embedded systems makes it necessary to reduce the number of rules

defined [Doctor et al., 2005b; Hagras et al., 2007].

Traditionally, the design of a fuzzy controller has relied on the expertise of

human operators to establish the linguistic terms and fuzzy rules [Chang, 2010].

However, the process of extracting this knowledge from human experts may not

be possible in some cases or may be very time-consuming [Chen et al., 2008]. As

a consequence, much effort has been dedicated to the development of methods

for the automatic generation of fuzzy rules from input/output data [Chen et al.,

2009; Navale and Nelson, 2010; Pomares et al., 2000; Rojas et al., 2000]. However,

training data is not always available and online techniques become necessary

[Angelov, 2004; Cara et al., 2010c; Chang, 2010; Chen et al., 2008; Gao and Er,

2003].

Some methods [Chang, 2010; Chen et al., 2008; Gao and Er, 2003; Hsu, 2007]

base their adaptation laws in the Lyapunov theory, so the stability of the con-

trollers can be proven. Nevertheless, this type of approach requires some knowl-

edge about the internal dynamics of the plant (e.g., the bounds of the differential

equations). On the other hand, there are also methods that intend to reduce the

information required to develop the controller and therefore, do not apply the

Lyapunov approach [Angelov, 2004; Cara et al., 2011a, 2010c; de Barros and Dex-

ter, 2007]. Although these approaches cannot provide a mathematical proof of

the stability, they provide good control performance in situations in which there

is no prior information about the plant to be controlled.

In [Cara et al., 2011a, 2010c; Park et al., 2005; Phan and Gale, 2008; Tewari and

Macdonald, 2010], grid partitions have been used to divide the input space. Al-

though this option is conceptually simpler, it presents the drawback of the well-

known curse of dimensionality, i.e., the number of rules grows exponentially

with the number of input variables and the number of membership functions

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 147

per input variable [Herrera et al., 2007]. Scatter-partitioning fuzzy systems do

not suffer from this problem and are therefore good solutions for dealing with

control problems. In [Angelov, 2004], a non-grid clustering technique is applied.

In this approach, every new incoming data point is analyzed to decide if a new

rule has to be added to the controller. However, basing this decision in one data

point at a time provides less robustness than using a set of points.

Under certain conditions, fuzzy systems, and especially scatter-partitioning

ones, are also called neuro-fuzzy systems [Haykin, 1998; Jang and Sun, 1993],

as they aim to combine the interpretability of fuzzy systems with the accuracy

of neural networks. Within this scope, each rule can be seen as a sub-model

that performs the approximation in a region of the input space, and the union

of all the sub-models globally approximates the underlying model. However,

traditional methods for automatic learning of neuro-fuzzy systems from I/O

data barely deal with simultaneous optimization of the local and global models

[Leng et al., 2006; Mollov et al., 2004]. This can lead to a deficient interpretability

of the extracted set of rules, which can cause a lack of usability of the models by

the experts [Johansen and Babuska, 2003]. Some works have proposed solutions

to this problem by using a special type of MF and a particular structure for the

rule consequents in grid-based fuzzy systems [Bikdash, 1999; Guillaume, 2001;

Herrera et al., 2005; Sala and Ario, 2009; Tewari and Macdonald, 2010]. They

have been recently adapted to scatter-partitioning fuzzy systems (Taylor Series

Neuro-Fuzzy, or TaSe-NF model) [Herrera et al., 2011b] thanks to a modification

of the fuzzy inference process.

In this chapter, we present a new Online Self-Evolving Neuro-Fuzzy con-

troller based on the TaSe-NF model, which we call OSENF-TaSe. This new

methodology can be seen as an extension of the method presented in chapter 4

(see Table 5.1), in the sense that it adds two new capabilities [Herrera et al.,

2011b]:

• It preserves the interpretability of the local models by using the TaSe-NF

architecture.

• It avoids the exponential growth of the number of fuzzy rules by using a

scatter partitioning of the input space.

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 148

TABLE 5.1: Comparison of the properties of OSEFC and OSENF-TaSe

OSEFC OSENF-TaSe

Type of MFs Triangular Gaussian

Partitioning
of the input
space

Grid Scatter

Inference
model

Zero-order TSK Zero-order TaSe-NF

Previous
knowledge

– Sign of the monotonicity

– Set of candidate input variables

– Sign of the monotonicity

– Set of input variables

Parameter
learning

– Online with local information
(consequents)

– Optional use of global informa-
tion (consequents)

– Online with local information
(consequents)

– Global information (conse-
quents and antecedents)

Structure
evolution
based on

Addition of MFs to the input that is
most responsible for the error

Splitting of the rules with high
control errors in their areas of
influence

Number of
rules added
each time

All the combinations of the new
MF with the MFs in all the other in-
puts

One

Advantages
– Automatic input selection

– Conceptually simpler

– Reduction of the number of
rules

– Enhancement of the inter-
pretability

Drawbacks Curse of dimensionality More nonlinear parameters

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 149

In addition, OSENF-TaSe preserves the fundamental properties of OSEFC,

namely:

• It assumes no prior knowledge about the plant. Therefore, it starts operat-

ing with only one rule and learns both the structure and the parameters of

the neuro-fuzzy controller while it performs the control.

• The learning method of the OSENF-TaSe is also based on the online local

learning of the rule consequents and a structure self-evolution algorithm

that adds rules to the system. As in the case of OSEFC, the former aims to

reduce the current error at the plant’s output, whilst the latter distributes

the rules based on the analysis of the entire error surface.

The main properties of OSEFC and OSENF-TaSe are summarized and compared

in Table 5.1.

The reminder of this chapter is organized as follows. Section 5.2 states the

problem that is tackled and presents the structure of the neuro-fuzzy controller.

The TaSe-NF model is described in some detail in section 5.3. The architecture of

the proposed OSENF-TaSe controller is then presented in section 5.4. Section 5.5

presents simulation results that illustrate the capabilities of OSENF-TaSe. Fi-

nally, conclusions are drawn in section 5.6.

5.2 Problem formulation

The problem tackled in this chapter is very similar in nature to the one presented

in chapter 4. For the sake of simplicity, in this section we just summarize its

main aspects and assumptions and the elements for which the notation used is

different. We refer the reader to section 4.2 for the complete details.

We consider again the single-input single-output plant whose dynamics are

given by the set of differential equations (4.1), which can be expressed in terms

of its difference equations (4.2) when the sampling time Tp is short enough. As

in section 4.2, we assume that the controller’s sampling time Tc can be selected

in a way such that the plant’s output at time k + 1 depends on the control signal

applied at time k, i.e., the effect of the control action uk is reflected at the plant’s

output at the next time step yk+1. Again, it is to be highlighted that this does not

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 150

mean that previous control actions do not affect the plant’s output as well, but

rather that uk actually has an effect that is measurable at the next time step.

In order for the proposed methodology to be valid to control the plant (4.1),

we continue imposing the condition of the existence of a control policy capable

of translating the plant’s output to the desired value (within the operation range)

[Pomares et al., 2002b]. This means that there must never exist a state in which

the plant’s output does not depend on the control input. In addition, it is also

required that the monotonicity of the plant with respect to the control signal has

a constant sign.

The control objective is to make the plant’s output track a given reference

signal rk. In the absence of actuator bounds, we can assume that there exists an

optimal control policy G capable of achieving the control objective, i.e.,

uk = G(rk, ~xk) (5.1)

where ~xk is a finite set of variables that determine the control policy. Again, our

objective is to approximate such control policy.

In this case, we choose to use a zero-order TSK fuzzy system with scatter

partitioning of the input space instead of a complete set of rules. Thus, the rule

base is formed by Nr IF-THEN rules of the form

<i : IF x1 is µi
1 AND x2 is µi

2 AND... xn is µi
n THEN u = Qi

where i = 1...Nr, ~x = [x1, ..., xn]T is the input vector to the fuzzy system, µi
j repre-

sents the i-th fuzzy set defined for the input variable x j, which is characterized

by the membership function µi
j(x j), and Qi is a scalar value that represents the

rule consequent. In this chapter, we assume that a set ~x of input variables that

are enough to approximate the control policy is known beforehand (e.g., based

on qualitative knowledge about the plant).

If we choose the product as the t-norm for the fuzzy inference process, and

the weighted average as the defuzzification method, the output of the fuzzy

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 151

controller can be expressed as

ûk = Ĝ(~xk; Φk) =

Nr∑
i=1

Qi · µi(~xk)

Nr∑
i=1

µi(~xk)

=

Nr∑
i=1

Qi ·

n∏
j=1

µi
j(x j)

Nr∑
i=1

n∏
j=1

µi
j(x j)

(5.2)

where Φk is the set of parameters defining the fuzzy controller at time k and

µi(~xk) =

n∏
j=1

µi
j(x j) is the firing strength of the i-th rule.

In general, scatter partitioning fuzzy systems represent the antecedent fuzzy

sets µi
j by Gaussian membership functions of the form

µi
j(x j) = exp

− (x j − ci
j)

2

2σi
j
2

 (5.3)

where ci
j is the center of the membership function and σi

j is its radius. We have

selected to use the same radius σ for all the MFs, as it simplifies the optimization

of the neuro-fuzzy system.

As in the case of OSEFC, it is important to remember that approximating the

inverse function of a plant while keeping it under control is a challenging task

with special properties that may not be present in traditional functional approx-

imation problems, e.g., the I/O data arrives while the controller is working and

is unlikely to span the entire operation range. Moreover, the approximation has

to be obtained while guaranteeing that the plant is under control.

5.3 The TaSe-NF model

In this section, the TaSe-NF model [Herrera et al., 2011b] is described. TaSe-NF

is a scatter-partitioning modified neuro-fuzzy model whose main characteris-

tic is its ability to perform a global model approximation whilst preserving the

interpretation of the local sub-models. It is a TSK modified model equivalent

to radial basis function networks that offers the possibility to extract a set of

locally interpretable fuzzy rules. These characteristics are possible thanks to a

special partitioning of the input space by means of a modified calculation of

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 152

the final normalized activation of the rules, which controls their overlap. The

rule consequents of the model take the form of a truncated Taylor series, which

means that they describe the behavior of the model output around the rule cen-

ters. In section 5.3.1, the equivalence between TSK fuzzy systems and radial

basis function networks is quickly revised. Then, the details about the TaSe-NF

model are presented, paying special attention to the partitioning of the input

space (section 5.3.2.1) and its effect on the interpretability of the fuzzy rules (sec-

tion 5.3.2.2).

5.3.1 Equivalence between RBFNNs and TSK fuzzy systems

The equivalence between TSK fuzzy systems and Radial Basis Function Neu-

ral Networks (RBFNNs) is well known [Jang and Sun, 1993]. This equivalence

essentially occurs when the output of the network is normalized and Gaussian

functions - or Radial Basis Functions (RBFs) in general - of the form (5.3) are

used as membership functions [Herrera et al., 2011a]. Therefore, in the RBFNN

approach, equation (5.2) represents the output function of the RBF neural net-

work, where µi(~xk) =

n∏
j=1

µi
j(x j) are the activations of the hidden neurons and Qi

are their output weights.

It is possible to use a common radius σ for all the MFs (also called clusters

or nodes in the context of RBFNNs) or a different σi for each node i. In the

first case, the optimization of the neuro-fuzzy model is easier, since the number

of non-linear parameters is smaller. On the other hand, TSK models usually

use different radius for each fuzzy set in each variable and node. Thus, the

equivalent RBFNN, which could be called multiple-radii RBF neural network, has

a higher training computational cost.

In general, the rule consequents Qi have polynomial form, i.e.,

Qi ≡ Y i(~x) = ai + (~bi)T~x + ..., (5.4)

where ai and ~bi are the polynomial coefficients of the i-th rule consequent. A

TSK model is said to be of order O when it uses polynomials of order O in its

rule consequents, with O being an integer, generally 0 [Pomares et al., 2004], 1

[Jang, 1993] or 2 [Herrera et al., 2005].

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 153

The TaSe-NF model used in this chapter is a modified neuro-fuzzy model

whose starting point is a zero-order (O = 0) TSK fuzzy system with Gaussian

membership functions, which is equivalent to a RBF neural network model [He-

rrera et al., 2011b].

5.3.2 Description of the TaSe-NF model for control problems

According to the formulation given in equations (5.2) and (5.3) (see section 5.2),

the output of a TSK fuzzy controller is a continuous and differentiable function

with respect to the parameters defining its rules. Once these parameters are op-

timized, the TSK controller is expected to globally approximate the behavior of

the true inverse function of the plant being controlled. However, for both grid-

based partitioning and scatter partitioning, the system’s global output at a given

point will normally depend on the contribution of several rules. If rule over-

lapping is not controlled, this multiple dependence can occur at the same rule

centers. This can cause that the optimization of the local output of each rule (i.e.,

its consequent) is affected by the nearby rules, inducing it to not properly reflect

the specific behavior of the model in its area of influence. The main implication

is that, from the point of view of the user, the meaning of each independent rule

may not be clearly related to the output of the controller.

The TaSe-NF model was introduced in [Herrera et al., 2011b] to solve this

problem. One of its main characteristics is that it reduces the problem of the

curse of dimensionality by using a scatter partition of the input space, whilst

maintaining the interpretability of the sub-models. It performs a global opti-

mization of the system whilst obtaining the optimal sub-models without the

need to perform a trade-off between one objective and the other. These charac-

teristics provide a significant performance advantage with respect to the TaSe

model [Herrera et al., 2005] and other approaches that use grid-based partition-

ing [Bikdash, 1999; Zhou and Gan, 2004].

The local modeling in TaSe-NF is achieved through the use of the Taylor

series expansion of a function around a point, which describes the behavior of

that function in the vicinity of such point [Klein, 1998]. To achieve the objectives

mentioned above, TaSe-NF imposes two requirements in the structure of the

neuro-fuzzy model [Herrera, 2007]:

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 154

• The degree of overlap of all the rules is forced to vanish at each rule cen-

ter. This way, every point of the n-dimensional space ~c i, identified by the

center of a rule i, is only affected by its respective rule in the global output

function.

• The consequents should have the form of a Taylor Series of a function

around a point, namely the respective rule center. Nevertheless, in on-

line control problems, the system’s structure should be kept as simple as

possible. For this reason, constant consequents are used in OSENF-TaSe

and this requirement does not represent any modification.

In the following subsections, we describe in detail the partitioning of the

input space and its effect on the interpretability of the resulting fuzzy rules.

The examples shown have been taken from [Herrera et al., 2011b] and [Herrera,

2007].

5.3.2.1 Partitioning of the input space

Under scatter partitioning, the degree of overlap amongst the local models can-

not be directly controlled through the use of a specific type of membership

function. The scattered distribution of the membership functions along the n-

dimensional input space makes it necessary to perform a deeper modification

of the structure of the fuzzy system. In the TaSe-NF model, the final rule acti-

vation is modified to satisfy the property of overlapping mentioned above. To

do so, this activation depends on both the activation of the rest of the rules and

on the relative position of its center ~c i with respect to the rest of the rule cen-

ters. For the sake of simplicity, this modification is first presented for the simple

one-dimensional case and then extended to the general n-dimensional case.

Let us consider as an example a one-dimensional input space with domain

[0, 1]. We define two membership functions (and thus, two rules) centered at

c1 = 0.2 and c2 = 0.8, with σ = 0.3, as depicted in Fig. 5.1(a) [Herrera et al.,

2011b]. A slight overlap between the rules can be observed in this case. In order

to comply with the condition of overlap, the domain of the first MF µ1(x) is

limited by the function 1 − µ2(x). This implies that when the firing of the second

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 155

rule is maximum (i.e., µ2(x) = 1), the firing of the first rule is zero, i.e., µ1(x) = 0.

Formally, the activation of the first rule is modulated by

1 − µ′2/1(x); µ′2/1(x) =

{
µ2(x) if x < c2

1 if x ≥ c2 (5.5)

and, similarly, the activation of the second rule µ2(x) is modulated by

1 − µ′1/2(x); µ′1/2(x) =

{
µ1(x) if x > c1

1 if x ≤ c1 (5.6)

Therefore, the final firing of the rules (see Fig. 5.1(b)) is given by

µ1∗(x) = µ1(x)
(
1 − µ′2/1(x)

)
(5.7)

µ2∗(x) = µ2(x)
(
1 − µ′1/2(x)

)
(5.8)

which after normalization leads to (see Fig. 5.1(c))

µ̂1∗(x) =
µ1∗(x)

µ1∗(x) + µ2∗(x)
(5.9)

µ̂2∗(x) =
µ2∗(x)

µ1∗(x) + µ2∗(x)
(5.10)

Generalizing to the n-dimensional case, the activation of the i-th rule is given

by [Herrera et al., 2011b]

µi∗(~x) = µi(~x)
Nr∏
j=1
j,i

(1 − µ′ j/i(~x)) (5.11)

where

µ′ j/i(~x) =

n∏
k=1

1 if (xk > c j
k) and (ci

k < c j
k)

1 if (xk < c j
k) and (ci

k > c j
k)

µ
j
k(xk) otherwise

(5.12)

Finally, with this new computation of the activation degrees of the rules, the

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 156

(a)

(b)

(c)

FIGURE 5.1: Control of the degree of overlap between local models in the TaSe-
NF model for a one-dimensional example [Herrera et al., 2011b]. (a) Original µ1

and µ2 MFs. (b) Final rule activations µ1∗ and µ2∗, computed according to (5.7)
and (5.8). (c) Normalized final rule activations µ̂1∗ and µ̂2∗, computed according

to (5.9) and (5.10)

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 157

output of the fuzzy controller can be defined as follows

uk = ĜTaS e−NF(~xk; Φk) =

Nr∑
i=1

Qi · µi∗(~xk)

Nr∑
i=1

µi∗(~xk)

=

Nr∑
i=1

µi(~xk)
Nr∏
j=1
j,i

(1 − µ′ j/i(~xk))

 Qi

Nr∑
i=1

µi(~xk)
Nr∏
j=1
j,i

(1 − µ′ j/i(~xk))

(5.13)

5.3.2.2 Interpretability of the fuzzy rules

The use of (5.11), (5.12) and (5.13) preserves the properties of interpolation, con-

tinuity and differentiability of fuzzy systems, while guaranteeing that the global

output of the system at each rule center is precisely the value of its correspond-

ing consequent [Herrera, 2007]. To clarify this property, let us consider the one-

dimensional example presented in the previous subsection. From the definitions

given in equations (5.5)-(5.10), it is straightforward that the following properties

are satisfied, due to the continuity of the Gaussian MFs and the stepwise func-

tions presented:

µ̂2∗(c1) = 0; µ̂1∗(c1) = 1⇒ ĜTaS e−NF(c1) = Q1

µ̂1∗(c2) = 0; µ̂2∗(c2) = 1⇒ ĜTaS e−NF(c2) = Q2 (5.14)

In the general n-dimensional case, the previous properties also hold and can

be rewritten as

µ̂ j∗(~ci) = 0, ∀ j , i; µ̂i∗(~ci) = 1⇒ ĜTaS e−NF(~ci) = Qi (5.15)

To illustrate the general case, Fig. 5.2 depicts a bidimensional example [He-

rrera et al., 2011b] with domain [0, 10] and three Gaussian rules centered at (3, 3),

(5, 5) and (7, 7), respectively, with σ = 2 (see Fig. 5.2(a)). In Fig. 5.2(b), it is ob-

served that thanks to the modified firing (5.11), the only rule with a non-zero

activation at the position of each rule center is the respective rule.

Therefore, it can be seen that this model performs an intuitive partitioning

of the input space whereby no rule has an effect on the other rule centers and

the firing level is limited by the location of the remaining rules. This property

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 158

(a)

(b)

FIGURE 5.2: Modified rule activations for a bidimensional example. (a) Orig-
inal rule activations with three Gaussian MFs. (a) Modified rule activations

with three Gaussian MFs

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 159

guarantees that the model’s global output at each rule center is precisely its cor-

responding consequent. Thus, the rules are more comprehensible from the hu-

man point of view, as they are directly related to the controller’s output.

5.4 Architecture of the Online Self-Evolving Neuro-Fuzzy
Controller based on the TaSe-NF model

The structure of the proposed OSENF-TaSe is depicted in Fig. 5.3. The learn-

ing mechanism (on the left) consists of two main parts: On the one hand, an

online local learning method is applied to the rule consequents with the aim of

reducing the current error at the plant’s output. On the other hand, a structure

self-evolution algorithm is applied to modify the structure of the controller by

adding rules and globally updating their parameters, based on the analysis of

the error surface at the controller’s output. The switching from local learning

to structure self-evolution occurs when the consequent adaptation by itself no

longer improves the quality of the control. Note that these two levels of learn-

ing intend to provide a balance between exploration and exploitation in our

approach.

On the right part of the figure, the TaSe-NF controller described in Section 5.3

is modified by the learning mechanism (dotted line). This TaSe-NF controller

provides the control signal u that is applied to the plant. The OSENF-TaSe con-

troller is the combination of the learning mechanism and the TaSe-NF controller.

It must be noted that most real applications may present limitations regard-

ing the maximum number of rules that can be handled by the system (i.e., real-

time requirements). In our approach, we consider two cases in which the addi-

tion of rules is stopped:

• Firstly, a threshold for the tracking error is defined. Whenever the error at

the plant’s output is below this value, the system is considered to be under

control and no rules need to be added.

• However, obtaining a very accurate approximation of the plant’s inverse

function may require a large number of rules. Although the use of a scatter

partition of the input space helps to tackle this problem, an upper bound

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 160

ONLINE LOCAL LEARNING
(Section 5.4.1)

Rule needed?

STRUCTURE SELF-EVOLUTION

Optimize controller’s parameters
(Section 5.4.2.3)

TaSe-NF controller
Eq. (5.14)

Select worst rule
(Section 5.4.2.1)

u

YES

NO

Split rule into two rules
(Section 5.4.2.2)

FIGURE 5.3: Structure of the OSENF-TaSe controller

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 161

for the maximum number of rules can also be defined. Note that, once

this upper bound is reached, the existing rules continue being adapted.

This way, the controller continues learning how to respond to the different

control needs that may appear in different moments.

In the following sections, the elements that compose the learning mechanism

are described in detail. Section 5.4.1 is devoted to the online local learning of the

rule consequents, whilst the structure self-evolution algorithm is presented in

section 5.4.2.

5.4.1 Phase 1: Online local learning of the rule consequents

The method for the online learning of the rule consequents presented in sec-

tion 4.3.1 is independent on the type of MFs or the distribution of the rule base

used in the fuzzy system [Pomares, 2000]. Therefore, it can be applied to learn

the consequents in a FLS with scatter partitioning of the input space and, in

particular, in a system based on the TaSe-NF model. Additionally, this learn-

ing method is both simple (intuitive) and computationally cheap, which makes

it very suitable for online control. Thus, in OSENF-TaSe we use the same con-

sequent learning method as in OSEFC. Since the procedure is completely de-

scribed in section 4.3.1, we just present here a summary of the main idea lying

behind it.

At every time step, the local objective of a controller is to keep the plant’s

output as close to the reference value as possible [Cara et al., 2011a]. With this

objective in mind, the learning method combines the information about the sign

of the monotonicity of the plant with respect to the control signal and the error

at the plant’s output to propose corrections to the rule consequents [Pomares

et al., 2002b].

Hence, the adaptive method analyzes the current error at the plant’s output

and applies a penalty or a reward to the rules that are responsible for the error.

Since not all the rules contribute in the same degree to the plant’s output value,

the modification applied to each rule consequent is proportional to its contribu-

tion, leading to the update law (4.5). For the sake of clarity, we reproduce again

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 162

the modification to be applied to the consequent of the i-th fuzzy rule at instant

k:

∆Qi
k = C · µi

k−1(~x) · ek(~x) = C · µi
k−1(~x) · (rk−1 − yk) (5.16)

where µi
k−1(~x) is the activation degree of the i-th rule at the previous time step,

when the rule was fired to obtain rk−1, and C is a normalization constant. Ac-

cording to the discussion in section 4.3.1.2, the value of C is set offline as |C| =

∆u/∆r, where ∆u is the range of variation of the control signal and ∆r is the range

of possible reference values. It is worth reminding the reader that these two val-

ues are known beforehand, since the user of a control system has to know the

operating ranges.

5.4.2 Phase 2: Structure self-evolution method

Although there are methods that evolve only the parameters of the controller

while keeping a prefixed structure (i.e., number of rules) [Hsu and Lin, 2005;

Pomares et al., 2004; Tewari and Macdonald, 2010], in order to operate without

any previous knowledge, a mechanism to automatically develop the structure

of the controller is also needed. This allows for the controller to start working

with a very simple configuration, i.e., only one fuzzy rule automatically initial-

ized. Then, as the control operation goes on, more rules are added as needed to

meet the accuracy demands of the closed-loop system. OSENF-TaSe adds only

one rule at a time, thus providing controllers with fewer rules than other ap-

proaches [Cara et al., 2011a, 2010c; Park et al., 2005]. It is important to note that

by starting with only one rule and adding rules one by one as they are required,

the necessity of applying rule pruning techniques is avoided, as more complex

configurations are not considered until needed.

The only information available to tackle the problem of the online evolution

of the controller’s structure is the data obtained from the normal operation of

the closed-loop system. Unlike other methods proposed to solve this problem

[Angelov, 2004; Chen et al., 2008; Phan and Gale, 2008], OSENF-TaSe considers

the entire operating region when modifying the controller’s structure. Thus, the

modifications are based on a set of historic data and not on a single point, which

reduces the negative effect of outliers and provides higher robustness.

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 163

The principle behind the structure self-evolution method that we present in

this chapter is the same as in the case of OSEFC (see section 4.3.2), that is, the

fact that the very operation of the system provides input/output data about the

true inverse function of the plant to be controlled [Pomares et al., 2004]. The

interpretation of this idea is as follows: if the control signal uk applied to the

plant at time k produces the output value yk+1, we know that if in the future the

plant is again in the same state and the desired reference value is rk′ = yk+1, the

control signal that has to be applied to the plant is uk (since uk takes the plant

output from yk to yk+1). Again, it has to be highlighted that this reasoning is

valid as long as the relationship between the states, the control signal and the

plant’s output remains over time. If these I/O relationships are not reliable (e.g.,

in the presence of unbounded internal dynamics) or change rapidly in time, the

data previously gathered are no longer valid and cannot be used to approximate

the inverse function of the plant.

Hence, the pairs (~zk, uk), where ~zk is obtained from ~x by replacing rk with

yk+1, represent I/O data concerning the true inverse function of the plant under

control. To make use of this information, we use again the memory M described

in section 4.3.2, which provides a uniform representation of the input space of

the plant’s inverse function in the regions actually reached by the operation.

In OSENF-TaSe, the refinement of the controller’s structure is achieved by

further splitting the rules that present an unsatisfactory performance. The idea

is that the nonlinearities are higher in those areas with a larger approximation

error, and therefore, more rules are needed in those regions [Phan and Gale,

2008]. Thus, the modification of the fuzzy structure involves three steps (see

Fig. 5.3):

• First, a rule to be split has to be selected. This selection is based on the

quality of the approximation obtained by each rule in its area of influence,

which provides an idea of the strength of the nonlinearity in that area [Gao

and Er, 2003].

• Once a rule is selected, it is split into two new ones. The objective is to

locate more rules in those areas where the nonlinearity is high [Phan and

Gale, 2008].

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 164

• Finally, the parameters of the resulting TaSe-NF controller are optimized.

As discussed in section 4.3.2.3, when the structure of a controller is modi-

fied online, the new rules created can have a negative effect on the control

performance until their parameters are tuned by the learning algorithm

[Cara et al., 2011a]. To avoid this situation, we use the information stored

in M to obtain optimized values for all the parameters [Pomares et al.,

2002b].

The following subsections describe in detail each of these steps.

5.4.2.1 Selection of the rule to be split

To decide which area of the input space requires a new rule, the error in the

approximation of the plant’s inverse function is analyzed. In chapter 4, we dis-

cussed that adding rules directly to the points of maximum error leads to meth-

ods that are too sensitive to noise. A way to tackle this problem is to consider

the error over the entire operating region, to detect problematic areas (instead of

individual points).

The scatter partitioning of the input space used in OSENF-TaSe provides a

set of clusters that are directly associated with the fuzzy rules. To detect the

region in the input space that requires higher precision, we analyze the error re-

lated to each of these clusters and select the one with the largest error for further

splitting. The algorithm for this process is as follows:

1. For each cluster Ci determined by the antecedent part of the i-th rule <i,

[µi
1, ..., µ

i
n]T :

(a) Select the points belonging to the cluster Ci. These are the points for

which the rule with the maximum activation degree is<i. Formally,

XCi =
{
~z | µi(~z) > µ j(~z) ∀ j = 1, ...,Nr and j , i

}
(5.17)

where ~z represents the input data stored in the memory M and µi(~z) is

the activation degree of the i-th rule for that input, as given in (5.11).

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 165

(b) Compute the approximation error associated to the cluster Ci as

E(Ci) =
∑
~z∈XCi

(u(~z) − û(~z))2 (5.18)

where û(~z) is the output produced by the current TaSe-NF controller

for the input vector ~z, and u(~z) is the output stored in the memory M

for that input vector.

2. Select the cluster C∗ with the largest error, i.e.,

C∗ = arg max
i

(E(Ci)) (5.19)

With this procedure, the rule with the worst performance has been selected.

In order to increase the accuracy of the approximation in its area of influence,

this rule is split into two new ones.

5.4.2.2 Generation of the new rules

Once the cluster with the worst performance has been selected, it is replaced by

two new clusters C1∗ and C2∗, thereby adding one more fuzzy rule to the system.

The centers of these two new clusters, namely [µ1∗
1 , ..., µ

1∗
n]T and [µ2∗

1 , ..., µ
2∗
n]T , are

obtained by applying the K-means algorithm [MacQueen, 1967] to the points in

XC∗ . Note that the K-means algorithm1 is only used to obtain the initial location

of the centers of the new clusters, which will be later optimized.

The resulting TaSe-NF controller is initialized as follows:

• The rule<∗ associated to the cluster C∗ is removed and two new rules<1∗

and<2∗ are added to the rule base. These new rules are defined as

<1∗ : IF x1 is µ1∗
1 AND ... AND xn is µ1∗

n THEN u = Q1∗ (5.20a)

<2∗ : IF x1 is µ2∗
1 AND ... AND xn is µ2∗

n THEN u = Q2∗ (5.20b)

1In this work, we have used the K-means implementation provided in the Matlab R©Statistics
Toolbox, version 6.1 (R2007b) [MATLAB, 2007b], with the default values in all the parameters,
i.e., 20 iterations, euclidean distance, and random selection of the centroids (among the points in
XC∗).

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 166

• The membership functions that formed the antecedent part of rule<∗, i.e.,

[µ∗1, ..., µ
∗
n]T , are replaced by the membership functions that define the two

new rules, i.e., [µ1∗
1 , ..., µ

1∗
n]T and [µ2∗

1 , ..., µ
2∗
n]T .

• The radius of all the membership functions is set to the mean of the min-

imum distance amongst the centers of the clusters. Note that, although it

may be considered that using the same radius for all the MFs reduces the

flexibility of the model, the normalization of the system’s output made in

(5.13) decreases the influence of this parameter.

• The consequents of the two new rules, namely Q1∗ and Q2∗, take the values

of the controller’s output under its previous configuration at the points of

maximum activation of the new rules, i.e., when the inputs are equal to the

centers of the new MFs. Hence, according to (5.13), the new consequents

are given by

Q1∗ = ĜTaS e−NF(x1∗; Φk−1) (5.21a)

Q2∗ = ĜTaS e−NF(x2∗; Φk−1) (5.21b)

where x j∗ = [c j∗
1 , ..., c

j∗
n] represents the centers of the MFs in the antecedent

part of the new rules and Φk−1 represents the parameters of the controller

before adding the new rule.

5.4.2.3 Optimization of the parameters of the new controller

Once an initial configuration of the parameters of the TaSe-NF controller is ob-

tained, we use a local search procedure to find an optimal configuration of the

parameters defining every rule (i.e., centers and radius for the antecedent MFs

and values of the consequents) [Pomares et al., 2002b]. Note that using the same

radius for all the MFs reduces the risk of falling on a local (non-global) mini-

mum during this search, as the number of nonlinear parameters that have to be

optimized is smaller. This is especially important due to the fact that the amount

of I/O data available is reduced, as it is obtained from the normal operation of

the closed-loop system.

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 167

Multiple methods can be found in the literature for this search process, e.g.,

gradient descent, Newton-Raphson, Levenberg-Marquardt, etc. Herein we have

used the Levenberg-Marquardt (LM) algorithm [More, 1978] due to its efficiency

and robustness 1.

It is important to highlight that the process of adding a new rule is performed

in parallel with the normal control operation of the system, which does not stop

at any point. This is especially important in connection with the way in which

the structural changes take place in the proposed method. Obviously, in every

learning/evolving method, there is always a time lapse between the moment in

which it is decided to modify the controller’s structure and the moment in which

the change has been made effective and the new controller can start operating.

In OSENF-TaSe, the decision of modifying the structure is based on the general

evolution of the controller’s performance over a period of time and not on the

analysis of the properties of every single point. This means that the structural

changes do not have to take place at any specific moment, i.e., the modification

of the structure does not aim to accommodate the properties of any specific point

to the control policy. As a consequence, the learning time is less critical.

For each change, all the information stored in the grid memory M until the

current time instant is used. Since the controller’s operation does not stop dur-

ing the structure evolution phase, if the process is not finished before the next

time step, new data points will be gathered in the meantime and stored for their

use in future structural changes. Therefore, they will not be missed. Moreover,

it is likely that these new points will belong to an already explored region of

the input space, so their only effect will be reinforcing the information already

stored in M. In the case that the new points belong to a new operating region,

they will not be relevant enough as to generate a new rule in their area until

enough points are received.

Nevertheless, in an online environment it is highly desirable to learn the

new structure as fast as possible with respect to the controller’s operating pace.

For this reason, we have selected the LM algorithm with a small number of

1Specifically, we have used the implementation of the LM algorithm provided in the
Matlab R©Optimization Toolbox, version 3.1.2 (R2007b) [MATLAB, 2007a], with the default con-
figuration for the parameters of the algorithm, i.e., λ = 0.01, all the weights set to 1, and 20
iterations.

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 168

iterations, instead of other more-intensive search techniques, such as evolution-

ary algorithms. This way, in the worst case, only a few new data may arrive

during the structure modification process and they will have a reduced global

relevance.

5.4.3 Comments on the stability of OSENF-TaSe

As for OSEFC, in OSENF-Tase we do not assume any knowledge about the

mathematical model of the plant to be controlled. As a consequence, a rigorous

mathematical formulation for the proof of stability is almost impossible. How-

ever, this issue can be approached with a discussion similar to the one presented

in chapter 4 for OSEFC.

In the first place, the same method is applied for learning the rule con-

sequents. As mentioned before, this method is independent on the type or

distribution of the rules [Pomares, 2000]. Thus, the analysis presented in sec-

tion 4.3.1.4 is still valid here.

Regarding the stability across the structural changes, the same idea can also

be applied here. Thus, let us represent the approximation of the control policy

achieved by the controller with Nr rules as u(Nr) = Q̂(Nr)µ(Nr) + ε(Nr), where

Q̂(Nr) represents the vector of optimal consequents for this rule base and ε(Nr)

is the approximation error. As previously commented, this controller is locally

stable, in the sense that the tracking error will converge to a ball around the

origin with radius d1 [Nounou and Passino, 2004; Spooner et al., 1997].

Consider now that the rule with the worst performance in the rule base (i.e.,

<∗) is replaced by two new rules (namely <1∗ and <2∗) that are placed in a

location that minimizes the approximation error for the I/O data available. Ac-

cording to the universal approximation property of fuzzy controllers, the ap-

proximation of the resulting controller will be better at least in the area of in-

fluence of the new rules. Once the consequents are adapted again, the best

control policy that will be achieved by this new configuration is u(Nr + 1) =

Q̂(Nr + 1)µ(Nr + 1) + ε(Nr + 1), where the approximation error ε(Nr + 1) is smaller

than ε(Nr). This means that the tracking error will converge to a ball with ra-

dius d2 < d1. Hence, since the radii decrease, the tracking error will eventually

converge to zero, as the operation time goes to infinity.

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 169

On the other hand, it has to be kept in mind that the proposed methodology

is based on the I/O data provided by the normal operation of the plant. Thus, it

is necessary that the data gathered truly represent the I/O relationships present

in the inverse function of the plant. In those situations in which this happens,

the above discussion suggests that the proposed method provides a reasonably

stable controller, despite the impossibility of carrying out a rigorous mathemat-

ical analysis.

5.5 Experimentation and results

In this section, we present simulation results to provide a better insight of the

operation of the OSENF-TaSe controller. In section 5.5.1, the OSENF-TaSe con-

troller is applied to a set of synthetic plants with the objective of illustrating its

main properties. In section 5.5.2, OSENF-TaSe is applied to a real-world sys-

tem. The proposed method is also compared with a classic controller and its

robustness against unexpected changes in the plant is studied.

5.5.1 Description of the basic features of OSENF-TaSe

In order to illustrate the main properties of the proposed methodology in a

clear and understandable way, we present some examples based on the con-

trol of a set of synthetic plants. First, we show the benefits of the new method

by analyzing the reduction of the number of rules and the improvement of

the controller’s interpretability in comparison to grid-partitioning and tradi-

tional scatter-partitioning methods. Then, we present two additional examples

that present special characteristics: Firstly, we analyze a case in which the con-

troller’s sampling time Tc has to be chosen larger than the plant’s sampling time

Tp, in order for our methodology to obtain a valid controller. Finally, we con-

clude this subsection by applying the proposed approach to a plant with internal

zero dynamics.

5.5.1.1 Reduction of the number of rules

The use of a scatter partitioning of the input space helps to reduce the number

of rules in the fuzzy controller, thus tackling the problem of the curse of dimen-

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 170

sionality [Herrera et al., 2011b]. In this section we aim to illustrate this feature

by comparing OSENF-TaSe to OSEFC, which employs a grid partitioning of the

input space (see chapter 4). To do so, we consider again the plant (4.55) [Cara

et al., 2010c; Pomares et al., 2000], whose dynamics are given by the difference

equation

y(k + 1) = −0.075 sin(y(k)) +
uk + u3

k

4
(5.22)

The OSENF-TaSe controller applied has the same structural elements as used

in section 4.4.1.2 for OSEFC. Hence, both controllers have two input variables,

namely the reference signal r(k) and the plant’s output y(k), which take values

in the range [−1, 1]. The control objective is to follow a step-like reference signal

in the range [−1, 1]. Initially, there is only one rule in each controller, with its

consequent set to zero. The range for the control signal u is [−1.5, 1.5] and the

parameter C is set to 1.5.

The true inverse function of the plant (5.22) is depicted in Fig. 5.4. Fig. 5.5

represents the approximation of the inverse function obtained by OSENF-TaSe

with four rules. Fig. 5.6 shows the approximation achieved by the grid-based

method OSEFC with 4 and 20 rules (Fig. 5.6(a) and Fig. 5.6(b), respectively);

the approximations obtained by other configurations of MFs can also be found

in Fig. 4.10. It is observed that OSENF-TaSe is able to obtain a very precise

approximation with only four rules, whilst the grid method requires 5 times

more rules to achieve a similar accuracy.

Table 5.2 shows the evolution of the mean square error for the different struc-

tures of both controllers. For each structure considered by the online methodolo-

gies, we show the number of parameters to be optimized and the MSE reached

by the controller at the moment of the next structural change. In this table, it

is also observed that OSENF-TaSe provides a better performance with a smaller

number of rules than OSEFC. Although the number of parameters for a given

number of rules is slightly higher for OSENF-TaSe, the results show that the

tracking error obtained by this method is also smaller than the error obtained

by OSEFC with a similar number of parameters. For instance, with the topol-

ogy 4x2 in OSEFC (i.e., 8 rules and 14 parameters) the MSE is 0.029, whilst the

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 171

−1

0

1
1

0

−1

−1

0

1

r(k)y(k)

u

FIGURE 5.4: True inverse function of plant (5.22)

−1

0

1

1

0

−1

−1

0

1

r(k)y(k)

u

FIGURE 5.5: Approximation of the inverse function of plant (5.22) achieved by
OSENF-TaSe with 4 rules

MSE obtained by OSENF-TaSe with 4 rules (i.e., 13 parameters) is 0.002. More-

over, OSEFC requires 28 rules (i.e., 39 parameters) to provide the same MSE as

OSENF-TaSe.

5.5.1.2 Improvement of the interpretability

In order to illustrate the improvement of the interpretability of the fuzzy rules

provided by OSENF-TaSe, in this subsection we analyze the controller obtained

in the previous example and compare it with a traditional scatter-partitioning

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 172

−1

0

1

−1

0

1

−1

0

1

r(k)

(a)

y(k)

u

−1

0

1

−1

0

1

−1

0

1

r(k)

(b)

y(k)

u

FIGURE 5.6: Approximation of the inverse function of plant (5.22) achieved by
OSEFC. (a) With a structure of 4x1 MFs (4 rules). (b) With a structure of 5x4

MFs (20 rules)

TABLE 5.2: MSE with different number of rules for OSENF-TaSe and OSEFC

Rules
OSENF-TaSe OSEFC

Parameters MSE Structure Parameters MSE

1 4 0.154 1x1 3 2.077

2 7 0.009 2x1 5 0.535

3 10 0.008 3x1 7 0.505

4 13 0.002 4x1 9 0.053

8 4x2 14 0.029

12 4x3 19 0.011

16 4x4 24 0.008

20 5x4 29 0.007

24 6x4 34 0.003

28 7x4 39 0.002

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 173

−1

0

1−1

0

1

0

0.5

1

y(k)

r(k)

u(k)

ℜ 2

ℜ 3

ℜ 1

ℜ 4

FIGURE 5.7: Rule activations for the four rules obtained by the OSENF-TaSe
controller for plant (5.22). The rules are defined in (5.23)

TSK controller. The four rules obtained by OSENF-TaSe are given by

<1 : IF r(k) is 0̂.93 AND y(k) is 0̂.70 THEN u = 1.19 (5.23a)

<2 : IF r(k) is −̂0.93 AND y(k) is −̂0.70 THEN u = −1.28 (5.23b)

<3 : IF r(k) is −̂0.92 AND y(k) is 0̂.98 THEN u = −1.25 (5.23c)

<4 : IF r(k) is 0̂.93 AND y(k) is −̂0.95 THEN u = 1.22 (5.23d)

where ĉ represents the fuzzy set centered at point c, e.g., for the first premise in

the antecedent part of rule<1, the center of the fuzzy set 0̂.93 is c = 0.93.

As commented in section 5.3.2.2, the partitioning of the input space used in

the TaSe-NF model forces the overlapping of the rules to vanish at each rule

center. This effect can be observed in Fig. 5.7, which depicts the rule activations

for the four rules obtained by OSENF-TaSe.

The main consequence of this overlapping property is that it is guaranteed

that each rule consequent represents the output of the plant’s inverse function

at the rule center, thereby providing a direct and clear interpretation to the rule.

This property is illustrated in Fig. 5.8. This figure depicts the approximation

of the plant’s inverse function (blue surface) together with the activation of the

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 174

FIGURE 5.8: Approximation of the inverse function of the plant (5.22) achieved
by the OSENF-TaSe controller (blue surface), together with the activation of the
rules (transparent surfaces) and the rule consequents (black dots) located at the

position of the corresponding centers

rules, which has been weighted by the corresponding rule consequent (trans-

parent surfaces). The rule consequents are also depicted at the position of their

respective centers (black dots). It can be observed that the output of the rules

at their centers corresponds to the respective values of the plant’s inverse func-

tion in those points. This figure also shows that the rule overlapping at the rule

centers is zero. Thanks to this behavior, the rules obtained by OSENF-TaSe are

easier to interpret than in other approaches.

To further illustrate this capability, we have applied our self-evolving method-

ology to a traditional scatter-partitioning TSK controller. Fig. 5.9 represents the

approximated inverse function of the plant (blue surface), the weighted acti-

vation of the rules (transparent surfaces) and the rule consequents (black dots)

obtained. In this case, there is a slight overlapping between the activations at

the rule centers, causing the controller’s output at these points to be different

from the output of the plant’s inverse function. Fig. 5.9 shows that the centers

of the rules located in the lower values of r(k) are below the real behavior of

the controller at these points. The same happens to the centers of the other two

rules, which are located above the approximated surface. As a consequence, the

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 175

FIGURE 5.9: Approximation of the inverse function of the plant (5.22) achieved
by a traditional TSK scatter partitioning controller (blue surface), together
with the activation of the rules (transparent surfaces) and the rule consequents

(black dots) located at the position of the corresponding centers

interpretation of the rules is not straightforward from the controller’s actions.

5.5.1.3 Further examples

In this subsection, we present two additional examples of the application of

OSENF-TaSe to control plants with special requirements. The first example con-

siders a plant for which the controller’s sampling time Tc is required to be larger

than the plant’s sampling time Tp. In the second example, a plant with zero

dynamics is used.

The importance of selecting an appropriate sampling time for the controller

has been commented in sections 4.2 and 5.2. To illustrate this issue, let us con-

sider the simple plant given by

yk+1 = yk − 2 · uk−1 + uk (5.24)

It is easy to see that applying the proposed methodology to this plant with

Tc = Tp does not allow for the learning of the control policy, as the optimal

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 176

100 150 200 250 300 350
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

TIME (s)

P
LA

N
T

 O
U

T
P

U
T

r
k

y
k+1Addition of the second rule

FIGURE 5.10: Reference tracking for plant (5.24) with Tp = 0.01 s and Tc =

5 · Tp = 0.05 s

200 300 400 500 600 700
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

TIME (s)

P
LA

N
T

 O
U

T
P

U
T

r
k

y
k+1Addition of the second rule

FIGURE 5.11: Reference tracking for plant (5.24) with Tp = 0.01 s and Tc =

10 · Tp = 0.10 s

control policy would be unbounded in this case. Nonetheless, the problem can

be tackled by using a larger sampling time for the controller. For instance, we

consider two cases, namely, Tc = 5 · Tp and Tc = 10 · Tp. Fig. 5.10 and Fig. 5.11

show the response obtained in these two cases by an OSENF-TaSe controller

with two inputs, namely the error ek and the control signal in the previous step

uk−1. In both figures it is possible to see how the controller stabilizes the plant’s

output after adding a second rule to the system.

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 177

Finally, we consider the control of plants with zero dynamics. As commented

in section 5.4.2, the addition of new rules is based on the relationship between

the plant’s states, its output and the control signals. Plants with internal zero

dynamics have states that are not observable from the plant’s output. In this

work, we assume a lack of knowledge about the internal dynamics of the plant

and thus base our control methodology on the information measured during the

normal operation of the system. This means that there is no way of being aware

of the existence of these unbounded internal dynamics. For this reason, it is not

possible to make a general statement about the validity of the approach for this

type of systems, as it will depend on the effect of the unbounded internal states

on the plant’s output.

Nonetheless, we present here an example in which the control of a plant with

zero dynamics is successfully tackled. Consider the plant

yk+1 = 1.6 · yk − 0.63 · yk−1 + uk − 2 · uk−1 (5.25)

Fig. 5.12 depicts the reference tracking achieved by a controller with three

inputs (the error ek, the variation of the plant’s output ẏk, and the control signal

in the previous step uk−1) and two rules automatically created. The rules are

uniformly distributed along the diagonal of the input space and the consequents

are initialized to zero. Hence, the initial situation is equivalent to having an

empty controller. It can be observed that OSENF-TaSe is able to keep this plant

under control, despite of the presence of small overshoots.

5.5.2 Control of a real-world system

In this section, OSENF-TaSe is applied to the control of a real-world system,

specifically, a mechanical suspension system [Ogata, 2001]. Firstly, we analyze

the evolution of the control performance as new rules are added to the controller.

Then, we study the method’s robustness against changes in the dynamics of the

plant and compare it with a classic controller that can be regarded as a “theoret-

ical optimum” controller.

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 178

1000 2000 3000 4000 5000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

TIME STEP (k)

P
LA

N
T

 O
U

T
P

U
T

r
k

y
k+1

FIGURE 5.12: Reference tracking for plant (5.25)

5.5.2.1 Control of a mechanical suspension system

In this section, the OSENF-TaSe controller is applied to the industrial mechanical

suspension system described in Appendix A.2 and depicted in Fig. 4.14. As for

OSEFC, OSENF-TaSe does not make any use of the differential equations that

govern the plant.

To control this system, an OSENF-TaSe controller with three inputs has been

used. These inputs are the plant’s output yk, the tracking error ek and the first

derivative of the error ėk. The input variables take values in the ranges [−1, 1],

[−2, 2] and [−0.6, 0.6], respectively. The actuator’s range is limited to the values

[−1, 1], which represent the minimum and maximum voltage allowed by the

physical system. The controller’s sampling time is set to Tc = 0.05 s. The con-

stant C for the consequents adaptation is then set to 1. Initially there is only one

fuzzy rule with its consequent initialized to zero.

The control objective is to make the output variable follow a desired trajec-

tory rk, given by a randomly changing stepwise signal in the range [−1, 1]. To

simulate the plant, the fourth-order Runge-Kutta method has been used. The

total simulation time was 5000 seconds (83.33 minutes).

Fig. 5.13 depicts the evolution of the MSE through the entire simulation. The

moments at which the topology has changed are indicated with vertical dotted

lines. The MSE at the end of the simulation is zoomed in the right part of the

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 179

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

TIME (min)

M
S

E

50 60 70 80
0

0.5

1
x 10

−3

FIGURE 5.13: Evolution of the MSE when OSENF-TaSe is used to control the
suspension system. The vertical dotted lines indicate the addition of a new

rule

graphic. Four rules are added to the system during the simulation, thus obtain-

ing a controller with five rules. It is observed that the addition of every new rule

improves the performance of the controller, thereby reducing the MSE.

The reference tracking with the 5-rule controller is depicted in Fig. 5.14. We

can observe that OSENF-TaSe provides a good control quality, despite the small

number of rules used. It is worth noting that, since there are three inputs to the

controller, a grid-based methodology would create 53 = 125 rules in the same

number of structural modifications.

5.5.2.2 Robustness against changes in the plant. Comparison with a classic
controller

In order to further illustrate the capabilities of the proposed OSENF-TaSe, in this

section we analyze its response when an unexpected change in the plant’s dy-

namics occurs. Moreover, a comparison with a “theoretical optimum” controller

is also presented. For this comparison we have used a classic controller based

on full knowledge about the plant, designed by feedback linearization [Isidori,

1995].

In Fig. 5.15, the reference tracking for OSENF-TaSe (dashed line) and for the

classic controller (dotted line) are depicted. In this figure it is observed that, even

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 180

79.5 80 80.5 81 81.5 82 82.5 83
−1

−0.5

0

0.5

1

TIME (min)

V
E

R
T

. V
E

LO
C

IT
Y

r(k)
y(k+1)

FIGURE 5.14: Reference tracking for the suspension system with a 5-rule
OSENF-TaSe controller

though both controllers have a similar performance and provide a good control

policy, the response of the evolving controller is slightly better, as shown in the

zoomed area of the figure. In Fig. 5.16, the evolution of the MSE is depicted

for both controllers. This figure confirms the previous observation, as it shows

how the addition of the fifth rule to the OSENF-TaSe reduces the MSE below

the values obtained by the classic controller. The importance of this result is

highlighted by the fact that full knowledge about the equations describing the

plant has been used to design the classic controller, whilst the evolving controller

has not used any of this information.

It is important to note that classic methods, such as feedback linearization,

require complete knowledge of the differential equations governing the plant.

However, in many cases, these are unknown or very difficult to obtain. More-

over, the equations are a model of the plant, rather than its real and precise

representation; hence, they are subject to deviations from the real behavior of

the system due to modeling errors or simplifications. If the controller is later

applied to the real plant, these deviations may cause an undesired response in

the control process. In the case of OSENF-TaSe, the design of the controller is

not based on a model of the plant, but on the real I/O data obtained from the

very operation of the plant. This makes the method more robust and capable of

handling modifications in the internal behavior of the plant.

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 181

79.5 80 80.5 81 81.5 82 82.5 83
−1

−0.5

0

0.5

1

TIME (min)

V
E

R
T

. V
E

LO
C

IT
Y

r
k

y
k+1

 OSENF_TaSe

y
k+1

 Classic

FIGURE 5.15: Comparison of the reference tracking for the suspension system
obtained by OSENF-TaSe and by a classic controller

55 60 65 70 75 80
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

TIME (min)

M
S

E

OSENF_TaSe
Classic

FIGURE 5.16: MSE evolution for the control of the suspension system. Com-
parison between OSENF-TaSe and a classic controller

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 182

61.8 62 62.2 62.4 62.6 62.8 63 63.2
−1

−0.5

0

0.5

1

TIME (min)

V
E

R
T

. V
E

LO
C

IT
Y

r
k

y
k+1

 OSENF_TaSe

y
k+1

 Classic

Change on the dynamics

FIGURE 5.17: Reference tracking for the suspension system when there is a
change in the plant’s dynamics (i.e., M1 is increased by 65%). Comparison

between OSENF-TaSe and a classic controller

To illustrate this point, we have developed an experiment in which both the

classic and the OSENF-TaSe controllers are applied to a plant that suffers an

unexpected change in its internal dynamics. Specifically, the parameter M1 in

the suspension system is increased to different degrees during the execution.

Fig. 5.17 depicts the response of the controllers when M1 is increased by a 65%

of its initial value. As it is observed, the classic controller is unable to cope with

this change, causing large oscillations at the plant’s output. However, as de-

picted in the zoomed area, the response of the OSENF-TaSe is almost unaffected

by the change. Finally, Fig. 5.18 shows the response of the OSENF-TaSe when

M1 is increased by 500%. For such a large increase, the effect of the change is

observable at the plant’s output, which oscillates for some time. However, the

self-evolving capabilities of OSENF-TaSe allow for the learning of the new be-

havior, thereby providing a good tracking response after some time. In this case,

the response of the classic controller is not shown because the excessive growth

of the oscillations at the plant’s output caused computing errors.

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 183

62 64 66 68 70 72 74 76
−1

−0.5

0

0.5

1

TIME (min)

V
E

R
T

. V
E

LO
C

IT
Y

r
k

y
k+1Change on

the dynamics

FIGURE 5.18: Reference tracking for the suspension system when there is a
large change in the plant’s dynamics (i.e., M1 is increased by 500%)

5.6 Conclusions

In this chapter, a new online self-evolving neuro-fuzzy controller, called OSENF-

TaSe, has been presented. This methodology can be seen as an extension of

OSEFC (see chapter 4) that improves its interpretability and tackles the problem

of the curse of dimensionality through to the use of the TaSe-NF model and its

modified inference process.

As in the case of OSEFC, this new methodology assumes no prior knowl-

edge about the plant to be controlled and develops the fuzzy structure online,

while controlling the plant. Hence, the controller starts with a very simple struc-

ture consisting of only one rule automatically initialized and uses the I/O infor-

mation obtained directly from the plant to add new rules and adapt the rule

consequents online.

The learning mechanism of OSENF-TaSe is divided into two steps: On the

one hand, the online local learning method takes care of the control on the short

term by updating the rule consequents. Its objective is to guarantee a proper

control at the present moment. On the other hand, the structure self-evolution

process uses the information about the entire error surface to add new rules to

the fuzzy controller. The refinement of the controller’s structure is achieved by

further splitting those rules that present a bad performance. In addition, a local

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 184

search procedure is used to obtain an optimal configuration for the controller’s

parameters (i.e., centers and radius of the antecedent MFs and rule consequents).

OSENF-TaSe is based on the TaSe-NF model, which provides a scatter parti-

tioning of the input space with locally interpretable models. As a consequence,

two of the main characteristics of the OSENF-TaSe controller are the enhance-

ment of the interpretability and the reduction of the number of rules with re-

spect to the methods that use a grid partitioning of the input space. Hence, the

features of OSENF-TaSe can be summarized as follows:

• OSENF-TaSe assumes no prior knowledge about the plant. Therefore, it

starts operating with only one rule and learns both the structure and the

parameters of the neuro-fuzzy controller while it performs the control.

• The learning method of OSENF-TaSe is based on the online local learning

of the rule consequents and a structure self-evolution algorithm that adds

rules to the system. The former aims to reduce the current error at the

plant’s output, whilst the latter distributes the rules based on the analy-

sis of the entire error surface. This combination produces a good balance

between stability and plasticity and between exploration and exploitation.

• OSENF-TaSe is robust under unexpected changes in the behavior of the

plant.

• It preserves the interpretability of the local models by using the TaSe-NF

architecture.

• It avoids the exponential growth of the number of fuzzy rules by using a

scatter partitioning of the input space.

The three former properties are to some extent inherited from its predecessor

OSEFC, whilst the two latter are derived from the use of the TaSe-NF model.

Simulation results have been used to illustrate the properties of the new

OSENF-TaSe controller. On the one hand, it has been compared to OSEFC,

which is based on a grid-like distribution of the fuzzy rules. As a result of this

comparison, it has been observed that OSENF-TaSe is capable of obtaining bet-

ter performance with a smaller number of rules than its grid-based counterpart.

OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on TaSe-NF 185

Moreover, the comparison of OSENF-TaSe with a traditional scatter-partitioning

fuzzy controller has shown the improvement on the interpretability of the rules.

On the other hand, OSENF-TaSe has been applied for controlling a real-

world system. Its response has been compared with the response of a classic

controller based on full knowledge about the plant. It has been shown that un-

der normal conditions, OSENF-TaSe is capable of learning a control policy that

is as good as the classic one, despite the fact that no prior knowledge about the

plant is used. Moreover, the results show that OSENF-TaSe is able to cope with

an unexpected change in the plant’s dynamics to a further degree than its classic

counterpart.

Chapter 6

Multi-objective optimization of
type-1 and type-2 fuzzy systems
with comparative purposes

Over the past years, type-2 fuzzy systems have become increasingly popular as

a tool for uncertainty handling in a wide variety of real-world problems (e.g.,

control, modeling, ambient intelligence, etc.). However, their popularity is not

without controversy. On the one hand, one of the main criticisms of singleton

type-2 FLSs is that they outperform (the usually singleton-) type-1 FLSs because

they use extra parameters in their fuzzy sets, thus making improved perfor-

mance an obvious result. On the other hand, the counter-argument is that these

performance differences are due to an essentially different way of handling the

uncertainty between the (non-) singleton type-1 and the type-2 FLSs.

In this chapter, we aim to directly address this criticism by providing a com-

mon framework for comparing type-1 (both singleton and non-singleton) and

singleton interval type-2 FLSs. With this objective in mind, we present a multi-

objective evolutionary algorithm that optimizes the complexity and the accuracy

of the three types of fuzzy systems considered. We compare the optimized type-

1 and type-2 FLSs in the context of function approximation and use statistical

tests to determine whether the differences in their performance are statistically

significant or not. Finally, we analyze the response of type-1 and singleton in-

terval type-2 FLCs for a sample control application.

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 188

6.1 Motivation and goals

6.1.1 Handling uncertainties: comparing type-1 and type-2 fuzzy sys-
tems

Type-2 FLSs were proposed to deal with uncertainties [Mendel, 2001]. As de-

scribed in section 2.3, there are many sources of uncertainty facing the FLS in dy-

namic real-world unstructured environments and real-world applications. The

most relevant ones are related to the inputs and outputs of the FLS, to their lin-

guistic interpretation and to the presence of noise in the training data [Hagras,

2004].

Non-singleton (NS) type-1 FLSs (see section 2.2.1) were initially considered

as the alternative to be used in the presence of uncertainties [Mendel, 1995].

However, considering the sources of uncertainty and mapping them to the dif-

ferent types of FLSs, it can be realized that the non-singleton type-1 FLS can only

handle the first point relating to the uncertainties associated with the input mea-

surements. The non-singleton type-1 FLS (as the singleton type-1 FLS) cannot

handle the uncertainties associated with the output variables nor the linguistic

uncertainties associated with the linguistic labels. An interval type-2 FLS how-

ever, through the employed interval type-2 fuzzy sets which include a FOU, can

address and aim to handle all the different sources of uncertainty mentioned in

section 2.3 [Cara et al., 2011b; Hagras, 2004].

Further, it is important to note that the non-singleton type-1 FLS handling

of the input uncertainties “finishes” at the fuzzification stage, where the fuzzifi-

cation returns a crisp membership value (like the singleton type-1 FLS) relating

to the intersection of the type-1 fuzzy variable that represents the input mea-

surement and the antecedent type-1 fuzzy sets. Thus, the uncertainty in the NS

type-l FLS is not propagated further to affect the inference engine and defuzzi-

fication stage.

On the contrary, in the singleton type-2 FLS, the uncertainty propagates

through the various blocks of the type-2 FLS to provide a decision that takes

into consideration the various uncertainties in the inputs and outputs. Hence, it

can be seen that the non-singleton type-1 FLS and the singleton type-2 FLS are

conceptually different in the way they handle the uncertainties. Thus, giving the

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 189

singleton type-1 FLS more degrees of freedom through the non-singleton fuzzi-

fier will not make the NS type-1 FLS equivalent to the singleton type-2 FLS, as

they handle uncertainties in a fundamentally different way.

It has been shown that singleton interval type-2 FLSs can handle the un-

certainties and outperform their type-1 counterparts in applications with high

uncertainty levels (e.g., mobile robot control [Figueroa et al., 2005; Hagras, 2004;

Linda and Manic, 2011], video streaming control [Jammeh et al., 2009], noisy

function approximation [Juang et al., 2010; Lin et al., 2009], etc.). However, one

of the main criticisms of singleton interval type-2 FLSs is that the fact that they

outperform singleton type-1 FLSs is solely based on their use of extra degrees

of freedom (extra parameters) and that type-1 FLSs with a larger number of pa-

rameters may provide the same performance as interval type-2 FLSs.

In addition, most works on type-2 FLSs only compare their results with sin-

gleton type-1 FLSs, but fail to consider non-singleton type-1 systems [Juang

et al., 2010; Lin et al., 2009; Sepúlveda et al., 2007]. As part of this chapter, we

aim to directly address and investigate this criticism. To do so, we will perform

a comparative study between optimized singleton type-1, non-singleton type-1

and singleton interval type-2 FLSs under the presence of noise in the training

data.

6.1.2 Multi-objective optimization of type-2 fuzzy systems

As previously commented, the design of a FLS involves two steps: (i) selection of

the structure of the system, i.e., the rules in the rule base, and (ii) determination

of the right parameters (or database) , i.e., antecedents, consequents, linguistic

variables, etc. Thus, manually designing and tuning a FLS is a difficult task,

particularly as the number of MF parameters increases [Wagner and Hagras,

2007].

The automatic identification of the fuzzy system’s parameters and/or struc-

ture from data samples can be seen as an optimization or search process [Alcalá

et al., 2009]. Due to the high number of parameters to be defined in a FLS (es-

pecially in the case of type-2 FLSs), the size of the search space is rather big,

thereby requiring powerful search methods capable of managing large dimen-

sional spaces. At present, evolutionary algorithms (EAs) [Goldberg, 1989] are

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 190

Complexity

Low High

Low

High

Error

Low complexity
&

High error

High complexity
&

Low error

FIGURE 6.1: Trade-off between the complexity (interpretability) and the error
(accuracy) of a rule base [Ishibuchi, 2007]

deemed to be powerful and effective global search techniques for this type of

problem [Herrera, 2008]. As a result, their use for the learning of fuzzy systems

(usually called Genetic Fuzzy Systems, GFS) has been a popular research topic

in the past several years [Cordón et al., 2004; Cordón, 2011; Herrera, 2008].

There are always two main requirements in the design of a FLS: accuracy

and interpretability. The former refers to the fuzzy system’s capability of per-

forming its task (e.g., modeling, control, classification) with the highest preci-

sion, whereas the latter refers to its ability to express this behavior in an under-

standable way from the human point of view [Cordón, 2011]. Although both

objectives are equally important and should be satisfied in a similar degree, this

is generally not possible because they are in conflict, i.e., a system with a low

number of rules has higher interpretability but lower accuracy, and vice versa

(see Fig. 6.1) [Alcalá et al., 2009; González et al., 2006; Ishibuchi, 2007].

Traditionally, the research in the field of GFSs has concentrated its efforts

in the improvement of the accuracy, whilst interpretability has been left as a

secondary aspect, often forgotten altogether [Cordón, 2011; Gacto et al., 2009].

Thus, multiple GFSs that use the accuracy as the single fitness measure have

been proposed for both type-1 [Cordón, 2001; Cordón et al., 2004; Cordón, 2011;

Hagras et al., 2004; Herrera, 2008] and type-2 FLSs and FLCs [Castillo et al., 2011;

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 191

Celikyilmaz and Turksen, 2008; Martinez et al., 2009; Wagner and Hagras, 2007].

Nonetheless, in the last years, a new tendency towards the balancing of in-

terpretability and accuracy has appeared [Alcalá et al., 2006; Casillas et al., 2003;

Cordón, 2011; Guillaume, 2001; Ishibuchi, 2007]. Although initially there were

attempts at tackling this problem by using single-objective optimization that

combined both aspects [Ishibuchi et al., 1995], the current trend is mainly ori-

ented towards the use of multi-objective evolutionary algorithms (MOEAs) [Al-

calá et al., 2009; Antonelli et al., 2010; Gacto et al., 2009; González et al., 2007;

Guenounou et al., 2009; Zhang et al., 2011].

MOEAs [Coello et al., 2007; Deb, 2001] are evolutionary tools to tackle prob-

lems where two or more conflicting objectives have to be optimized at the same

time, i.e., problems in which the improvement of one objective causes the wors-

ening of the others. In this type of problem, known as multi-objective optimiza-

tion problem (MOOP), the optimal solutions are usually sub-optimal for each

objective in particular, but “acceptable” when all the objectives are taken into

account [González et al., 2006]. For this reason, the goal of a MOOP is not to

find an optimal solution, but a set of solutions that provide different compro-

mises between the objectives. The population-based nature of EAs makes them

a very suitable tool to solve this type of problem, as it allows them to provide a

set of non-dominated (Pareto-optimal) solutions in a single run [Cordón, 2011].

The use of MOEAs for the optimization of fuzzy systems has widely spread

in the last years and has become a hot topic in the GFS area [Cordón, 2011;

Ishibuchi, 2007]. The first efforts in this field were directed to classification prob-

lems [Ishibuchi et al., 1997, 2001; Ishibuchi and Nojima, 2007; Pulkkinen and

Koivisto, 2008]. Later, some attention has been put on function approximation

problems as well. A MOEA with expert evolutionary operators is proposed in

[González et al., 2006] to learn both the rule base and the parameters of the FLS.

This work presents a set of genetic operators that aim to accelerate the conver-

gence of the algorithm by avoiding the generation of offspring that are worse

than their parents. In [Guenounou et al., 2009], a MOEA is combined with a

backpropagation learning method in a two-step procedure that first learns the

parameters of the FLS by backpropagation and then uses the MOEA to fine-tune

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 192

the parameters and optimize the number of rules. A classic tuning of the MF pa-

rameters and a rule selection method are combined in [Gacto et al., 2009] with

the objective of focusing the search on the most accurate part of the Pareto front.

Finally, in [Alcalá et al., 2009], a method that learns both the parameters and the

rule base is presented. In this approach, the search space is reduced by consid-

ering only displacements of the linguistic labels (i.e., the MF parameters) from

an initial point. This way, only one parameter is needed instead of three (for

triangular MFs), but the flexibility of the model is also reduced.

On the other hand, the automatic design of type-2 FLSs is nowadays an

open research topic [Juang et al., 2010]. Traditionally, most learning methods

for type-2 FLSs are based on their hybridization with neural networks and the

application of gradient-descent methods [Jeng et al., 2009; Juang and Tsao, 2008;

Mendel, 2004; Uncu and Turksen, 2007; Wang et al., 2004]. Different learning

techniques can be found in [Biglarbegian et al., 2011; Juang et al., 2010]. In

[Juang et al., 2010], a structure and parameter learning method was proposed

for noisy regression problems. Online clustering was used for rule generation

and a two-phase linear support vector regression method was used for parame-

ter optimization. Finally, in [Biglarbegian et al., 2011], a method for the design of

robust type-2 FLSs is presented. This method starts with a type-1 FLS obtained

by means of some well known method (e.g., ANFIS [Jang, 1993]), then uses a

genetic algorithm to obtain the FOUs, and finally checks the robustness through

a constraint optimization problem.

As mentioned before, EAs have been used for learning type-2 FLSs [Castillo

et al., 2011; Celikyilmaz and Turksen, 2008; Martinez et al., 2009; Park et al., 2009;

Wagner and Hagras, 2007]. However, to the best of our knowledge, MOEAs

have not been yet applied to the optimization of the structure and parameters of

type-2 FLSs.

In this chapter, we present a MOEA for the optimization of singleton type-1,

non-singleton type-1, and singleton interval type-2 fuzzy systems for function

approximation problems. With this approach we follow two main goals: (i) the

development of a common methodology for the learning of the three types of

FLSs from data samples, and (ii) the creation of a common framework for the

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 193

comparison of type-1 and type-2 FLSs that allows us to address the aforemen-

tioned criticism. It is important to highlight that we only consider singleton in-

terval type-2 FLSs and do not address the more complex cases of general type-2

FLSs or non-singleton interval type-2 FLSs. For the sake of simplicity, in the

reminder of this chapter we may refer to the singleton interval type-2 FLS indis-

tinctly as “type-2 FLS” or “interval type-2 FLS”.

The rest of the chapter is organized as follows. Section 6.2 introduces multi-

objective evolutionary algorithms as a tool to tackle optimization problems with

conflicting objectives. In section 6.3, the proposed multi-objective evolution-

ary algorithm for the optimization of type-1 and type-2 fuzzy systems is de-

scribed in detail, including a method for computing the optimal consequents for

a given rule base (see section 6.3.2.5). Experimental results are gathered in sec-

tion 6.4, which includes an analysis of the optimized fuzzy systems obtained by

the MOEA for function approximation (section 6.4.1) and a comparison of type-

1 and interval type-2 fuzzy controllers for a sample application (section 6.4.2).

Finally, the conclusions of the chapter are summarized in section 6.5.

6.2 Multi-objective evolutionary algorithms

6.2.1 Evolutionary algorithms

The evolutionary algorithm paradigm is based on the use of probabilistic search

algorithms inspired by certain aspects in the Darwinian theory of evolution

[Spears et al., 1993]. The basic idea is to maintain a population of chromosomes

or individuals (representing candidate solutions to the specific problem being

solved) that evolves over time through a process of competition and controlled

variation [Goldberg, 1989].

The general flowchart of an EA is depicted in Fig. 6.2. Its components are

summarized as [Cordón et al., 2004; Espejo et al., 2010]:

• A group (population) of candidate or partial solutions (chromosomes or indi-

viduals).

• A generational inheritance method whose objective is to advance towards

better chromosomes. Genetic operators are applied to the chromosomes

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 194

Population

Offspring

Parents

Initialization

Parent selection

Crossover

Mutation

Survivor selection

Termination

FIGURE 6.2: Flowchart of a general evolutionary algorithm (adapted from
[Eiben and Smith, 2008])

of a population to give birth to a new population of chromosomes (the

next generation). The main genetic operators are crossover and mutation.

Crossover swaps a part of the genetic material of two individuals, whilst

mutation randomly changes a small portion of the genetic material of one

chromosome.

• A fitness-biased selection method. A fitness function is used in order to

measure the quality of an individual. The better the fitness of an individ-

ual, the higher its probability of being selected to take part in the breeding

of the next generation of chromosomes, thereby increasing the probability

that its genetic material will survive throughout the evolutionary process.

EAs can be applied to the learning of FLSs at different complexity levels,

ranging from parameter optimization to learning the rule base [Cordón et al.,

2004]. In the latter case, the two most widely applied approaches in the litera-

ture are Pittsburgh [Smith, 1980] and Michigan [Holland and Reitman, 1977]. In

the former, each chromosome represents an entire rule base, thus maintaining a

population of candidate rule bases. On the contrary, in the Michigan approach

each chromosome represents a single rule and the entire population forms the

rule set.

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 195

6.2.2 Multi-objective evolutionary optimization. The Non-dominated
Sorting Genetic Algorithm II

As explained before, a MOOP is an optimization problem in which several con-

flicting goals have to be optimized at the same time. Since the goals are in

conflict, the improvement of one of them causes the worsening of the others

[González et al., 2006]. In this type of problem, there is not a single solution, but

a set of incomparable (non-dominated) solutions that represent different trade-

offs between the objectives.

To clarify the concept of dominance, let us consider a MOOP with K con-

flicting objectives f1, f2, ..., fK that have to be simultaneously minimized (analo-

gously maximized). A solution x1 is said to dominate another solution x2 (de-

noted by x1 ≺ x2) if it is at least as good as x2 in all the objectives and strictly

better in at least one of them. Formally,

x1 ≺ x2 ⇔ ∀i = 1, 2, ...,K : fi(x1) ≤ fi(x2) ∧ ∃ j = 1, 2, ...,K : f j(x1) < f j(x2).

A solution is non-dominated or Pareto optimal if there exists no other feasible

solution that dominates it. The set of all the Pareto optimal solutions is known

as the Pareto front [Zitzler et al., 2008].

There are two main reasons that make MOEAs well suited to solve multi-

objective optimization problems. Firstly, the fact that they naturally handle a set

of solutions (the population) makes them able to find Pareto-optimal solutions

in a single run [Cordón, 2011]. Secondly, they are less susceptible to the shape or

continuity of the Pareto front, e.g., they can deal with discontinuous and concave

Pareto fronts [Gacto et al., 2009].

Several MOEAs have been proposed in the literature over the years [Fonseca

and Fleming, 1993; Knowles and Corne, 2000; Srinivas and Deb, 1994], although

it is generally agreed that the most representative ones are Strength Pareto Evo-

lutionary Algorithm 2 (SPEA2) [Zitzler et al., 2002] and Nondominated Sorting

Genetic Algorithm II (NSGA-II) [Deb et al., 2002] .

In this work, we use NSGA-II. Briefly, there are two main features that make

it a high performance MOEA [Gacto et al., 2009]: fitness evaluation based on

Pareto ranking and a crowding measure, and an elitist generation update.

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 196

The evaluation of the current population is carried out as follows: First, all

the non-dominated solutions in the population are assigned a rank equal to 1

and are “removed” from the population. Then, from the remaining population,

the non-dominated solutions are ranked as 2 and also removed. This procedure

is iterated until all the solutions have been ranked. Solutions with a smaller rank

are considered to be better. Hence, the Pareto front is formed by solutions with

rank equal to 1.

To differentiate among the solutions with the same rank, a crowding measure

is considered as an additional criterion. This crowding measure calculates the

distance in the objective space between adjacent solutions with the same rank.

Less crowded solutions with larger values of the crowding measure are consid-

ered better than more crowded solutions with smaller values of the crowding

measure [Gacto et al., 2009].

Finally, to create the next population, an elitist policy is applied. First, the

current and the offspring populations are merged together. Each solution in this

combined population is evaluated using both the Pareto rank and the crowding

measure. Then, the next generation is formed by the best valued chromosomes

of the merged population. Elitism is implemented in NSGA-II in this manner

[Gacto et al., 2009].

6.3 Multi-objective evolutionary algorithm for the opti-
mization of the parameters and structure of type-1 and
type-2 fuzzy systems

In this section, we present a MOEA for the optimization of the structure (rules)

and parameters (antecedents, consequents) of type-1 and singleton interval type-

2 fuzzy systems. With this approach we follow two main goals: Firstly, we

aim to develop a common methodology for the learning of the three types of

FLSs (namely singleton type-1, non-singleton type-1 and singleton interval type-

2 FLSs) from data samples. Secondly, we intend to investigate the criticism

on the performance of type-2 FLSs by comparing them to non-singleton type-

1 FLSs. The use of the MOEA supplies a common framework for this analysis,

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 197

thereby providing fuzzy systems with a similar number of parameters that are

optimized under the same conditions.

The proposed MOEA includes a module for the computing of optimal con-

sequents for a given rule base. This approach was initially proposed for type-1

FLSs [Pomares et al., 2000] and is extended to singleton interval type-2 FLSs with

scalar consequents in this dissertation. The use of optimal consequents reduces

the number of parameters to be optimized by the MOEA, thereby reducing the

size of the search space.

6.3.1 Description of the fuzzy systems considered

The properties of the fuzzy systems used in this chapter are described in this

subsection. As it is well known, there are multiple choices that can be taken

regarding the structure of a FLS, such as the type of MFs, the organization of

the rule base, the type of consequents (Mamdani or TSK), etc. In our case, these

choices follow two different objectives: (i) Reducing the size of the search space

for the MOEA, and (ii) ensuring that the number of parameters in the NS type-

1 and in the singleton interval type-2 FLSs is the same. Thus, the following

elements are chosen for the design of the fuzzy systems:

• A scatter partitioning of the input space is used for the rule base. As al-

ready mentioned, this type of partition helps to tackle the curse of dimen-

sionality by reducing the number of rules. This way, the rules can be lo-

cated in those areas of the input space that really contribute to minimize

the output error [González et al., 2006].

• Zero-order TSK fuzzy systems are used. Thus, the consequents are repre-

sented by crisp values in the three cases. Although it may be thought that

this reduces the flexibility of the type-2 FLS, it actually favors meeting the

two objectives commented before. On the one hand, the type-2 FLS and

the NS type-1 FLSs have the same number of parameters, since the NS

system only incorporates mechanisms for handling the uncertainty at the

system’s input. On the other hand, the consequents can be optimally com-

puted for each rule base [Pomares et al., 2000], thus making unnecessary

to use the EA to optimize them.

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 198

(a)

x
j

U = σ
j
NS

(b)

c
ij

σ
ij
l

σ
ij
u

U

FIGURE 6.3: Gaussian functions used to handle the uncertainty in the input
data. (a) Gaussian input function used in the non-singleton type-1 FLS. (b)

Interval type-2 MF used in the type-2 FLS

• The inputs to the non-singleton FLS are fuzzy values instead of crisp num-

bers (see section 2.2.1). Gaussian MFs centered in the crisp value of the

input are used to this purpose. These MFs are therefore defined by their

standard deviation σNS
j , as depicted in Fig 6.3(a).

• Gaussian membership functions are also used for the rule antecedents. In

the case of type-1 FLSs (both singleton and non-singleton), the MFs are de-

fined by their center ci j and their standard deviation σi j, where i = 1, ...,Nr

and j = 1, ...,N represent the rule and the input variable, respectively. In

the case of interval type-2 FLSs, the MFs have certain center and uncertain

standard deviation. Thus, they are described by three parameters, namely

(ci j, σ
l
i j, σ

u
i j), where σl

i j and σu
i j represent the lower and upper standard de-

viation, respectively (see Fig. 6.3(b)).

• Finally, the product is used as a t-norm and the weighted average is se-

lected as the defuzzification method. In the case of the type-2 FLS, the

center-of-sets method (see section 2.4.4) is used for the type-reduction pro-

cess.

Since the number of parameters is an important issue in this study, we sum-

marize now the parameters that define each of the FLSs considered. For the

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 199

three systems, each rule is defined by N antecedents (given by the corresponding

Gaussian MF) and one consequent. Thus, the number of parameters required to

represent a system with Nr rules in each case is obtained as follows:

• The simplest case is the singleton type-1 FLS. Each antecedent MF is de-

fined by two parameters, namely the center and standard deviation of the

Gaussian function. Hence, the total number of parameters is Nr(2N + 1).

Since the consequents are optimally computed, only 2NrN parameters are

optimized by the MOEA.

• The rules in the NS type-1 FLS are defined by the same parameters as in the

singleton case. Nonetheless, the standard deviation of the input MFs has to

be defined. If a different σNS
j is used for each input variable, then the total

number of parameters defining the FLS is N+Nr(2N+1), of which (2Nr+1)N

are optimized by the MOEA. A way to reduce this number of parameters

is using the same standard deviation for all the inputs, which leads to 1 +

Nr(2N + 1) parameters (i.e., 1 + 2NNr for the optimization procedure).

• Finally, the number of parameters for the singleton interval type-2 FLS de-

pends on the definition of the FOUs. If a different FOU is used for each an-

tecedent MF, then the number of parameters needed to define the system is

Nr(3N +1), of which 3NNr form the search space for the MOEA. Obviously,

this represents a larger number of parameters than in the non-singleton

type-1 FLS. Nonetheless, the FOU can be expressed as FOUi j = σu
i j − σ

l
i j

(see Fig. 6.3(b)). Hence, if the same FOU is used for all the MFs, we can

simply use all the σl
i j and a single value U to obtain the corresponding

upper standard deviations as σu
i j = σl

i j + U. In this case, the number of

parameters is reduced to 1 + Nr(2N + 1), of which 1 + 2NNr are optimized

by the MOEA. There is also the option of using the same FOU for all the

MFs in the same input dimension, but different FOUs in each dimension.

In this case, we can use the lower deviations σl
i j and N additional values

U j (j = 1, ...,N) to obtain the upper deviations as σu
i j = σl

i j + U j. This way,

the system is defined by N + Nr(2N + 1) parameters (i.e., (2Nr + 1)N for the

MOEA).

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 200

TABLE 6.1: Number of parameters in scatter-partitioning FLSs with Gaussian
antecedent MFs and zero-order consequents

Type of FLS Total Optimized by the MOEA

Singleton type-1 Nr(2N + 1) 2NNr

Non-singleton type-1
Different U N + Nr(2N + 1) 2NNr + N

Same U 1 + Nr(2N + 1) 2NNr + 1

Singleton interval type-2
Different U N + Nr(2N + 1) 2NNr + N

Same U 1 + Nr(2N + 1) 2NNr + 1

Thus, it is observed that it is possible to configure the NS type-1 FLS and the

singleton interval type-2 FLS in a way such that they have the same number of

parameters. Note that the standard deviation σNS
j and the FOU are the mech-

anisms used by the the non-singleton type-1 and the type-2 FLSs to handle the

uncertainty in the input data. In order to use a uniform notation for the descrip-

tion of the MOEA, we define the term Uncertainty Factor (UF) , which we denote

by U. This parameter is used to represent the level of uncertainty considered

in the system. In the case of the non-singleton type-1 FLS, U j represents the

standard deviation σNS
j of the input MF (see Fig. 6.3(a)), whereas for the type-2

FLS, U j represents the FOU, i.e, the difference between the upper and the lower

standard deviations, U j = σu
i j−σ

l
i j, as explained before (see Fig. 6.3(b)). Table 6.1

summarizes the number of parameters in each type of system, indicating the

total number of parameters and how many of them are actually optimized by

the MOEA. It can be observed that with these configurations, the NS type-1 and

the singleton interval type-2 FLSs only have 1 or N parameters more than the

singleton type-1 FLS, depending on whether the same or different uncertainty

factors are used in all the input dimensions.

6.3.2 Proposed multi-objective evolutionary algorithm

The following subsections describe in detail the elements that form the pro-

posed multi-objective evolutionary approach. These components are the repre-

sentation of chromosomes or solution encoding (section 6.3.2.1), the generation

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 201

1U NU
11c 12c Nc1L11σ 12σ N1σ LL 1rNc 2rNc NNr

cL1rNσ 2rNσ NNr
σ

FIGURE 6.4: Chromosome representation

of the initial population (section 6.3.2.2), the evaluation of the fitness function,

including the mentioned trade-off between accuracy and interpretability (sec-

tion 6.3.2.3), and the genetic operators for crossover and mutation (section 6.3.2.4).

Finally, the method for the optimal learning of the rule consequents is described

in section 6.3.2.5.

6.3.2.1 Solution encoding

The chromosome representation used in the proposed MOEA is depicted in

Fig. 6.4. The chromosome is composed of two parts: the uncertainty in the

system and the rule base. The uncertainty is represented through 0, 1 or N un-

certainty factors U1, ...,UN , corresponding to the cases of singleton type-1 FLS,

the same UF in all the input dimensions, and a different UF in each input di-

mension, respectively. The rule base is represented as a sequence of rules, each

of them described by the center and standard deviation of the antecedent MFs.

Since the consequents are computed outside the genetic search process (see sec-

tion 6.3.2.5), they are not included in the chromosome.

One of the objectives of the MOEA is to optimize the number of rules (com-

plexity) of the FLS. Thus, the chromosome has a variable length, which has to

be taken into account when applying the genetic operators. As in other works

[Alcalá et al., 2009; González et al., 2006], we establish bounds for the maximum

and minimum number of rules allowed in the systems, i.e., Nmax
r and Nmin

r , re-

spectively. Note that in real applications, very complex solutions with a large

number of rules are not desired [Alcalá et al., 2009]. Similarly, too-simple solu-

tions are not expected to produce satisfactory results. Additionally, the presence

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 202

of these two limits helps to reduce the size of the search space [González et al.,

2006].

6.3.2.2 Initial population

It is common in the literature to find that the initial populations are randomly

generated [Alcalá et al., 2009; Guenounou et al., 2009]. Nonetheless, it has been

stated that MOEAs can obtain better solutions if some expert knowledge about

the problem to be solved is included [Baeck et al., 1997]. In our case, we ap-

ply this idea by using heuristics to obtain an initial population formed by rela-

tively good solutions, which can save many generations of evolutionary search

[González et al., 2006]. Hence, the initial population is generated as follows:

• A chromosome with each possible number of rules in the range [Nmin
r ,Nmax

r]

is generated, thus obtaining Nmax
r − Nmin

r + 1 chromosomes. The centers of

the antecedent MFs are located using the K-means method [MacQueen,

1967] with the training data, whereas the standard deviations are selected

by applying the K-nearest neighbors (KNN) algorithm [Cover and Hart,

1967] with k = 2 to the centers previously obtained [González et al., 2006].

• If necessary, the rest of the population is randomly generated, to introduce

diversity.

• For all the chromosomes, the uncertainty factors are randomly generated

in the range [Umin,Umax]. To establish these bounds, qualitative knowl-

edge about the expected uncertainty can be used, e.g., the expected level

of noise. It is worth noting that this range is only used for the generation of

the initial values, as the actual uncertainty factors obtained by the MOEA

can actually be outside this range. Thus, the specific range selected is not

critical.

6.3.2.3 Fitness evaluation

The selection procedure in the MOEAs is based on the evaluation of the fitness

function. As mentioned before, there are two conflicting objectives that we aim

to optimize when learning FLSs: interpretability and accuracy. The former is

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 203

measured as the number of rules in the rule base, Nr, whilst the latter is repre-

sented in terms of the normalized root-mean-square error (NRMSE) of the ap-

proximation, which is given by

NRMSE =

√√
e2

σ2
y

=

√√√
1

Ns · σ
2
y

Ns∑
i=1

(F(xi) − yi)2 (6.1)

where e2 is the mean square error, σ2
y is the variance of the output data, Ns is the

number of data samples, F(xi) is the output of the FLS for the i-th input vector,

and yi is the desired output for that input. The NRMSE is used instead of the

MSE because of its independence on the scale of the data, which makes it more

suitable for comparing results from problems with different ranges of values.

Nonetheless, computationally speaking, it is more efficient to simply compute

the sum of square errors SSE =
∑Ns

i=1(F(xi) − yi)2, as it avoids computing the

square root. Thus, internally, we have used this SSE.

Hence, the following two-objective problem is considered:

Minimize NRMSE(ci) and Nr(ci)

where ci represents the i-th chromosome in the population.

6.3.2.4 Genetic operators

In evolutionary computation, it is important to find a proper trade-off between

the exploration of the search space and the exploitation of the promising areas

already found [Herrera et al., 2003]. Our selection of the two genetic operators,

crossover and mutation, aims to find a good balance of this two aspects.

Crossover operator Traditionally, crossover operators combine genetic mate-

rial of two parents to produce two offspring. However, in the NSGA-II imple-

mentation used in this dissertation only one offspring is generated from two

parents. We use a hybrid crossover operator that combines the classical one-

point operator [Goldberg, 1989] with the BLX-α operator [Herrera et al., 2003]

with α = 0.5.

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 204

We consider that an even number of parents has been selected using a suit-

able selection function (e.g., tournament). Then, the crossover process is per-

formed as follows:

1. Randomly select an even amount of parents for single-point crossover,

with probability Psp.

2. Apply the single-point operator at rule level to each pair of parents C1, C2

in the selected group (see Fig. 6.5):

(a) Select a cutting point c ∈ [Nmin
r , n], where n = min(Nr(C1),Nr(C2)).

(b) The exchange of genetic material between parents is done at rule

level, i.e., complete rules are exchanged. Thus, the cutting gene is

computed as g = NU + 2Nc, where NU ∈ {0, 1,N} is the number of UFs

used in the FLS.

(c) The offspring takes the first g genes from parent C1 (including the

values of the uncertainty factors) and the remaining ones from parent

C2.

3. Apply the BLX-α operator to the remaining parents (note that there is an

even number of parents left after the application of the single-point oper-

ator). For each pair of parents C1 = (x1, ..., xg1) and C2 = (y1, ..., yg2) with

xi, yi ∈ [ai, bi], an offspring Z = (z1, ..., zG) with G = max(g1, g2) is generated

as follows:

(a) For i = 1, ...,min(g1, g2), the i-th gene zi is a random value uniformly

generated in the range [li, ui], where

li = max(ai, cmin − I)

ui = min(bi, cmax + I) (6.2)

with

cmin = min(xi, yi)

cmax = max(xi, yi)

I = (cmax − cmin) · α

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 205

1

11c
1

11

1Rule R

1

12c
1

12

2RuleR 3RuleR

2

21c
2

22c
2

31c
2

32c
2

21

2

31

2

32

2

22

Offspring

1
1U 1

11c 1
11σ1C

1Rule R 2Rule R

1
12c 1

12σ 1
21σ 1

22c 1
22σ1

21c

2C 2
11c

1Rule R 2Rule R 3Rule R

2
21c 2

22c2
12c 2

31c 2
32c2

11σ 2
12σ 2

21σ 2
31σ 2

32σ2
22σ2

1U 2
2U

1
2U

1
1U 1

2U

FIGURE 6.5: Single-point crossover at rule level with cutting point c = 1 and
cutting gene g = 6

(b) For i = {min(g1, g2) + 1, ...,G}, the genes zi take their values from the

parent with the largest number of rules.

This operator has been included because it produces a balanced relation-

ship between exploitation and exploration. The reason for this is that the

probability of the offspring’s gene lying inside the interval defined by the

values of the parents’ genes (i.e., exploitation) is the same as the probabil-

ity of it lying outside this range (i.e., exploration) [Herrera et al., 2003]. The

value α = 0.5 has been selected because it is the most standard value in the

literature [Eshelman and Schaffer, 1993; Herrera et al., 2002]. Fig. 6.6 shows

how the BLX-α operator works at different moments of the evolutionary

process. The grey areas represent the range in which the offspring’s gene

lies. It can be observed how this range shrinks as the EA evolves.

Mutation operator This operator creates new chromosomes by modifying the

existing individuals. Its main objective is to improve the exploration of the

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 206

Initial generations:

Exploring

ia ibix iy

I I

minmax cc −

Intermediate generations:

Exploring/exploiting

ix iy ib

I I

minmax cc −ia

Final generations:

Exploiting

ix iy
ib

I I

minmax cc −ia

FIGURE 6.6: Evolution of the BLX-α (α = 0.5) crossover operator during the
evolutionary process (adapted from [Alcalá et al., 2009])

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 207

search space by introducing new genetic material. In our approach, we apply

two mutation operators:

1. The first mutation operator modifies the number of rules in the chromo-

some by adding or subtracting r rules [Alcalá et al., 2009], with a probabil-

ity Pmod. The value r is randomly generated in [1,Rmax], with the constraint

that the number of rules in the resulting rule base must lie in the range

[Nmin
r ,Nmax

r].

2. The second mutation operator simply applies random changes to some

genes, with probability Pm [Guenounou et al., 2009]. Note that any chro-

mosome can be modified, even if it has been modified by the first mutation

operator.

The crossover operator combines existing solutions that have survived the

selection procedure through the generations, thus helping to improve the ex-

ploitation of the search space. Regarding the mutation operators, the first one is

useful to generate solutions with different levels of complexity; its use in com-

bination with the second mutation operator favors the exploration of new areas

of the search space.

6.3.2.5 Optimal consequents

For type-1 FLSs, given a rule base R and a set of K data samples (~xi, yi), i =

1, ...,K, it is possible to compute the optimal consequents that approximate the

unknown function represented by the data samples [Pomares et al., 2000], i.e.,

that minimize the sum of square errors

J(R,Q) =

K∑
i=1

(yi − F(~xi; R,Q))2 (6.3)

where Q represents the set of rule consequents, yi is the desired output for the

input vector ~xi and F(~xi; R,Q) is the output of the fuzzy system formed by the

rule base R and the consequents Q for that input vector.

In [Pomares, 2000], it is shown that the function F is continuous and differ-

entiable with respect to the rule consequents and that this dependency is linear.

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 208

This property allows us to find the optimum values for the consequents by solv-

ing the overdetermined system of linear equations:

A · Q = Y ≡

α1(~x1) · · · αNr (~x1)
α1(~x2) · · · αNr (~x2)
...

. . .
...

α1(~xK) · · · αNr (~xK)

 ·

Q1
Q2
...

QNr

 =

y1
y2
...

yK

 (6.4)

where Q1, ...,QNr are the rule consequents and α j(~xi) (j = 1, ...,Nr) is the normal-

ized firing of the j-th rule for the input vector ~xi, given by

α j(~xi) =
µ j(~xi)

Nr∑
k=1

µk(~xi)

=

N∏
a=1

µ
j
a(xa)

Nr∑
k=1

N∏
a=1

µ
j
a(xa)

(6.5)

If the determinant of the matrix X =
(
AT A

)
is not null, the solution of the

system (6.4) is unique. This is a covariance-type matrix and the system can be

easily solved by using some well known methods, such as the Cholesky algo-

rithm [Pomares et al., 2000] or singular value decomposition (SVD) [Yen and

Wang, 1996]. It is important to highlight that this reasoning is independent of

the form and distribution of the membership functions, so it is valid for both

grid-like and scatter partitioning of the input space.

In this section, we adapt this procedure to the case of interval type-2 FLSs

with zero-order consequents. In order to do so, let us consider a fuzzy system

with Nr rules in which the antecedents are given by interval type-2 MFs and the

consequents are singleton values. According to (2.61), the output of such system

is

y =
yl + yr

2
(6.6)

where yl and yr represent the left and right ends of the output type-reduced set

(2.49) [Hagras, 2004]. For the sake of clarity, the expressions used to compute

these end points are reproduced again here. Thus, the left end of the interval is

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 209

given by

yl =

L∑
u=1

f
u
yu

l +

Nr∑
v=L+1

f vyv
l

L∑
u=1

f
u

+

Nr∑
v=L+1

f v

(6.7)

and the right end is given by

yr =

R∑
a=1

f aya
r +

Nr∑
b=R+1

f
b
yb

r

R∑
a=1

f a +

Nr∑
b=R+1

f
b

(6.8)

where f
u

and f u (analogously, f
v

and f v; f
a

and f a; f
b

and f b) are the upper

and lower firing of the u-th rule (analogously the v-th, a-th, and b-th rules), re-

spectively. The values L and R are computed as explained in section 2.4.4.2. The

values yu
l and yu

r represent the left and right end of the centroid of the consequent

of the u-th rule (see section 2.4.4.1). Nonetheless, since crisp values are used for

the consequents, it holds that yu
l = yu

r . To simplify the notation, in the following

derivation we simply use yu to refer to the rule consequents.

We now define the normalized firing of the rules as

αi
l =

f i

L∑
u=1

f
u

+

Nr∑
v=L+1

f v

(6.9)

αi
l =

f
i

L∑
u=1

f
u

+

Nr∑
v=L+1

f v

(6.10)

αi
r =

f i

R∑
a=1

f a +

Nr∑
b=R+1

f
b

(6.11)

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 210

αi
r =

f
i

R∑
a=1

f a +

Nr∑
b=R+1

f
b

(6.12)

Note that the normalized lower (respectively upper) firing of the rules is differ-

ent depending on whether yl or yr is being computed, since the summations in

the denominators of (6.7) and (6.8) are different. Hence, we use the subscripts l

and r to clarify this aspect.

Substituting the normalized firings in (6.7) and (6.8), the limits of the output

type-reduced set (2.49) can be rewritten as

yl =

L∑
u=1

αu
l yu +

Nr∑
v=L+1

αv
l yv (6.13)

and

yr =

R∑
a=1

αa
r ya +

Nr∑
b=R+1

αb
r yb (6.14)

Thus, the output of our type-2 FLS can be expressed as

y =
1
2

 L∑
u=1

αu
l yu +

Nr∑
v=L+1

αv
l yv +

R∑
a=1

αa
r ya +

Nr∑
b=R+1

αb
r yb

=

1
2

 q∑
i=1

yi
(
αi

l + αi
r

)
+

p∑
j=q+1

y jΨ j(L,R) +

Nr∑
k=p+1

yk
(
αk

l + αk
r

) (6.15)

where q = min(L,R), p = max(L,R), and Ψ j(L,R) is given by

Ψ j(L,R) =

(
α

j
l + α

j
r

)
if L < R

0 if L = R(
α

j
l + α

j
r

)
if L > R

(6.16)

Finally, from (6.15) we obtain the following matrix of coefficients for the sys-

tem of linear equations:

AT2 =
1
2

(
α1

l (~x1)+α1
r (~x1)

)
··· Ψq+1(L,R)(~x1) ···

(
α

p+1
l (~x1)+αp+1

r (~x1)
)
···

(
αNr

l (~x1)+αNr
r (~x1)

)
...

...
...

. . .
...

...
...(

α1
l (~xK)+α1

r (~xK)
)
··· Ψq+1(L,R)(~xK) ···

(
α

p+1
l (~xK)+αp+1

r (~xK)
)
···

(
αNr

l (~xK)+αNr
r (~xK)

)
 (6.17)

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 211

Therefore, it is possible to obtain the optimal consequents for a given rule

base in an interval type-2 FLS with singleton consequents by applying the same

method as in the case of type-1 FLSs, only with a different coefficient matrix.

This is an important result, as it avoids the need to use the evolutionary ap-

proach to optimize the rule consequents, thus reducing the size of the search

space.

6.4 Experimentation and results

As previously commented, one of the main criticisms of singleton interval type-

2 FLSs is that they could outperform singleton type-1 FLSs as they use extra

parameters/degrees of freedom in the FOU and that, consequently, a type-1 FLS

with the same number of parameters may provide similar performance to an

interval type-2 FLS. Additionally, it can be argued that the potential of type-1

FLSs has not been sufficiently exploited, as most applications of type-1 FLSs are

based on their most simple form – the singleton type-1 FLS.

As part of this chapter, we aim to address these criticisms by working at two

different levels:

• Firstly, we apply the MOEA described in section 6.3 to optimize the rule

base and parameters of singleton type-1, non-singleton type-1 and single-

ton interval type-2 FLSs for function approximation problems. With these

experiments we aim to provide an objective comparison between the three

types of FLS considered. The use of the MOEA provides a framework in

which the fuzzy systems not only have the same number of parameters,

but also present configurations that have been obtained through the same

optimization process, under the same conditions. Statistical tests are used

to support the conclusions drawn from the comparative analysis.

• Secondly, we present a sample application consisting in the control of a

nonlinear servo system [Cara et al., 2010c]. In this example, we compare

an automatically tuned singleton type-1 FLC with a non-singleton type-1

FLC and a singleton interval type-2 FLC that are obtained from the for-

mer by applying the same uncertainty factors to the input MFs. The three

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 212

controllers present the same structure (rule base), the same consequents,

and a similar number of parameters (the same, in the case of the NS type-1

and the singleton interval type-2 FLCs). Hence, it is possible to carry out

a direct comparison of the performance of the three types of FLCs (for this

specific sample application) under different levels of input noise.

6.4.1 Optimized type-1 and type-2 fuzzy systems for function approx-
imation

In this section, we aim to provide an objective comparison between type-1 and

interval type-2 fuzzy systems. With this objective in mind, we have applied the

MOEA described in section 6.3 to singleton type-1, non-singleton type-1 and

singleton interval type-2 FLSs with different levels of noise in the training data.

The parameters of the MOEA, the training data, and all the remaining assump-

tions are the same in the three cases. This way, the FLSs are obtained under

equivalent conditions and can be expected to take advantage of their respec-

tive capabilities, thus providing good performances in all the cases. First, we

describe the experimental setup used, and then, we present the results obtained.

6.4.1.1 Experimental setup

Our benchmark consists of ten function approximation problems taken from

[Cherkassky et al., 1996] and [Rovatti and Guerrieri, 1996], that are commonly

used in the literature [Echanobe et al., 2007; Florido et al., 2011; Guillén et al.,

2009; Wang et al., 2010]. Table 6.2 shows the definition of the functions consid-

ered. For each problem, a training dataset formed by 400 data points is used.

This dataset is obtained by defining a 20 × 20 grid in the input space and taking

a random point in each zone delimited by that grid [Pomares et al., 2002a]. In

order to facilitate the comparison of the results, all the data points have been

normalized in the range [0, 1] for the computing process. Note that due to the

use of the NRMSE as the accuracy measure, this normalization does not affect

the evaluation this objective.

Since type-2 FLSs are claimed to outperform their type-1 counterparts when

uncertainties are present, we add Gaussian noise with 0-mean and σ-deviation

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 213

TABLE 6.2: Functions considered for the comparison of type-1 and type-2 FLSs

Function Input range

f1(x1, x2) = sin(x1x2) x1, x2 ∈ [−2, 2]

f2(x1, x2) = exp(x1 sin(πx2)) x1, x2 ∈ [−1, 1]

f4(x1, x2) =
1 + sin(2x1 + 3x2)
3.5 + sin(x1 − x2)

x1, x2 ∈ [−2, 2]

f5(x1, x2) = 42.659(2 + x1)/20 + Re(z5)

with z = x1 + ix2 − 0.5(1 + i)

x1, x2 ∈ [−0.5, 0.5]

f6(x1, x2) = 1.3356[1.5 (1 − x1) + exp(2x1 − 1) sin(3π(x1 − 0.6)2)

+ exp(3(x2 − 0.5)) sin(4π(x2 − 0.9)2)]

x1, x2 ∈ [0, 1]

f7(x1, x2) = 1.9[1.35+exp(x1) sin(13(x1−0.6)2) exp(−x2) sin(7x2)] x1, x2 ∈ [0, 1]

f10(x1, x2, x3, x4) = exp(2x1 sin(πx4)) + sin(x2x3) x1, ..., x4 ∈ [−0.5, 0.5]

y2(x1, x2) = 0.5 + 64
(x1 − 0.5)(x2 − 0.5)(x1 + 0.2)
1 + (4x1 − 2)2 + (4x2 − 2)2 x1, x2 ∈ [0, 1]

y3(x1, x2) = 0.5 exp{−20[(x1 − 0.5)2 + (x2 − 0.5)2]}

+ exp[−10(x2
1 + x2

2)]

x1, x2 ∈ [0, 1]

y5(x1, x2) = 0.5 [1 + sin(2πx1)cos(2πx2)] x1, x2 ∈ [0, 1]

to the input vectors at nine different levels, i.e., σ = {0, 0.05, 0.10, 0.15, 0.20, 0.25,

0.30, 0.40, 0.50}. For testing, we consider a test dataset with 2025 noise-free sam-

ples forming a uniformly distributed 45 × 45 grid in the input space. In order

to deal with the stochastic nature of EAs, the MOEA has been run ten times for

each instance of the problems and the average results are used for the upcoming

study.

In this work, we have used the implementation of the multi-objective evolu-

tionary algorithm NSGA-II provided by MATLAB’s Global Optimization Tool-

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 214

TABLE 6.3: Parameters of the proposed MOEA for the optimization of type-1
and interval type-2 FLSs

Parameter Description Value Source

[Nmin
r ,Nmax

r]
Minimum and maximum number of rules
allowed in the FLS [3, 30] [Alcalá et al., 2009]

[Umin,Umax]
Initial range of values for the uncertainty
factor. Final values can be outside this range [0, 0.2] [Cara et al., 2011b]

Psp

Probability of a parent being chosen for
single-point crossover 0.5 [Alcalá et al., 2009]

Pmod

Probability of a parent being modified by
the mutation operator that modifies the
number of rules 0.5 [Alcalá et al., 2009]

Rmax

Maximum number of rules that can be
added/removed by the mutation operator 5 [Alcalá et al., 2009]

Pm

Probability of a gene being changed by the
second mutation operator 0.01

[Guenounou et al.,
2009]

box R© [MATLAB, 2010a]. It has to be noted that the proposed MOEA just intends

to be a tool for obtaining comparable type-1 and type-2 FLSs, since this compar-

ison is our final goal. For this reason, we have tried to reduce the influence of

the learning method on the results by applying a commonly used optimization

technique with a general configuration of parameters.

In this sense, the parameters that are specific for the proposed MOEA take

values that have been already used in the literature with satisfactory results.

These values are summarized in Table 6.3, which includes the source for the

value of each parameter. The only exception is the range of initial values for the

uncertainty factors [Umin,Umax]. To the best of our knowledge, the concept of

“uncertainty factor” has not been explictly used in the literature for the defini-

tion of interval type-2 MFs. Hence, since there is not a guideline for selecting an

appropriate value for this parameter, we have simply selected reasonable val-

ues. Note that Umin = 0 corresponds to the definition of a singleton type-1 FLS,

whilst using Umax = 0.20 indicates that there is a 20% of uncertainty in the def-

inition of the MF, which seems to be adequate. Moreover, it has been observed

that higher values of U cause very large spreads in the MFs, and therefore, the

FLSs may behave like random systems [Cara et al., 2011b].

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 215

TABLE 6.4: Main parameters for NSGA-II

Parameter Description Value

Population size Number of chromosomes in the population 100

Crossover fraction
Fraction of the population that is created by the
crossover operator 0.8

Mutation fraction
Fraction of the population that is created by the
mutation operator 0.2

Maximum number
of generations

Maximum number of iterations to be performed
by the algorithm 400

Number of elite
individuals

Number of individuals guaranteed to survive to
the next generation 2

Selection function
Function that selects parents for the crossover
and mutation operators Tournament

Stall limit
The algorithm stops if there is no improvement
for the specified number of iterations 50

For the remaining parameters (i.e., those related to MATLAB’s implementa-

tion of NSGA-II), we have applied the default values, which are summarized

in Table 6.4. The only non-default parameters are the population size and the

number of generations. For the first one, we have selected the value used in the

work where NSGA-II was initially proposed [Deb et al., 2002] for problems of

similar complexity, which is still widely used in the literature. For the number

of generations, we have selected a high value that allows the MOEA to achieve

an appropriate convergence in all the cases considered [Gacto et al., 2009], i.e.,

the evolution stops because the improvement in the Pareto front over a period

of time is not significant.

Nonetheless, it is worth noting that selecting a more specific configuration of

parameters could increase the quality of the solutions obtained by the MOEA.

Hence, this aspect will be addressed in future research.

6.4.1.2 Comparing the quality of the Pareto fronts

In order to investigate if the differences between type-1 and interval type-2 FLSs

are significant, we compare the Pareto fronts obtained by the MOEA for the

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 216

0 5 10 15 20
0

5

10

15

20

Objective f
1

O
b

je
c
ti

v
e
 f

2

Objective vectors in the subspace of interest
Solutions in the Pareto front P

Objective vectors that dominate the solutions in P
~z ∗

FIGURE 6.7: Example of the hypervolume indicator. A(P) is determined by the
objective vectors that dominate the solutions in the Pareto front P (depicted by

circles), i.e., it represents the area of the surface delimited by the solid line

three types of FLS considered, at different levels of noise. To do so, we apply a

comparison method based on a quality indicator [Zitzler et al., 2008]. The idea

is to map each Pareto front into a real number (known as the quality indicator)

and then perform a statistical analysis of the resulting values. Specifically, we

use the hypervolume measure [Zitzler and Thiele, 1998] as the quality indicator

for our study. The reason is that the hypervolume is the only strictly monotonic

unary indicator known [Zitzler et al., 2007], i.e., for any Pareto front compared

to another, if the former dominates the latter, then its quality indicator is also

better.

Traditionally, the hypervolume indicator measures the volume of the por-

tion of the objective space that is dominated by a specific Pareto front P [Zitzler

et al., 2008]; hence, higher values of the indicator are considered better. How-

ever, since we are addressing a minimization problem, we redefine this quality

indicator as the volume of the portion of the objective space that dominates the

given Pareto front (see Fig. 6.7). Thus, our objective is to minimize this measure.

This quality indicator can be formally defined as

A(P) =

∫ ~z ∗

~0
αP(~z) d~z (6.18)

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 217

where ~0 = (0, 0) and ~z ∗ is the objective vector representing the upper bound for

the portion of the objective space within which the hypervolume is calculated,

as depicted in Fig. 6.7. The function αP is the attainment function [da Fonseca

et al., 2001] for the Pareto front P, which is defined as

αP(~z) =

0 if ∃ ~x ∈ P : ~x ≺ ~z
1 otherwise

(6.19)

Note that αP returns 1 for those objective vectors that dominate the solutions in

the Pareto front P, and returns 0 for those that are dominated by some solution

in P. For our two-objective optimization problem, the hypervolume A(P) can be

seen as the area of the surface that lies under the Pareto front P. For simplicity,

the values of the hypervolume are normalized, so they represent the proportion

of objective vectors (within the subspace considered) that dominate the solutions

in the Pareto front P. Thus, for the example shown in Fig. 6.7, the value of the

indicator is equal to A(P) = 138/441 = 0.313.

The hypervolume indicator is sensitive to the choice of the upper bound ~z ∗,

i.e., it is not scaling invariant [Zitzler et al., 2008]. To overcome this issue, we

choose a common point ~z ∗ for computing the hypervolume of all the Pareto

fronts obtained. Specifically, we use the maximum point in all the Pareto fronts

obtained, among all the problem instances considered. This way, the quality

measure is computed with respect to a common subspace and the Pareto fronts

obtained for the different problems can be compared.

Fig. 6.8 depicts the evolution of the quality indicator A(P) as the noise level

increases. For each problem, type of FLS and noise level, the data shown is

the average of the area obtained in the ten runs of the MOEA. The numeric

data (mean areas and their standard deviation) are presented in Appendix B, in

Tables B.1 and B.2 for training and test, respectively.

Obviously, the area increases as the noise level does, indicating a worsening

of the quality of the Pareto fronts. However, it is observed that the effect of

the noise on the quality indicators is not the same for the three FLSs. Although

for lower noise levels the three systems present similar quality measures, as the

noise raises, the type-2 FLS is observed to generally have a slower increase of

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 218

(a)

0 0.1 0.2 0.3 0.4 0.5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

f
1
 − Training

Noise (σ)

Q
ua

lit
y

in
di

ca
to

r
(A

)

0 0.1 0.2 0.3 0.4 0.5

0.16

0.18

0.2

0.22

0.24

0.26

0.28

f
1
 − Test

Noise (σ)
Q

ua
lit

y
in

di
ca

to
r

(A
)

Type−2
Sing. Type−1
NS Type−1

(b)

0 0.1 0.2 0.3 0.4 0.5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

f
2
 − Training

Noise (σ)

Q
ua

lit
y

in
di

ca
to

r
(A

)

0 0.1 0.2 0.3 0.4 0.5
0.1

0.15

0.2

0.25

0.3

0.35

f
2
 − Test

Noise (σ)

Q
ua

lit
y

in
di

ca
to

r
(A

)

Type−2
Sing. Type−1
NS Type−1

(c)

0 0.1 0.2 0.3 0.4 0.5
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

f
4
 − Training

Noise (σ)

Q
ua

lit
y

in
di

ca
to

r
(A

)

0 0.1 0.2 0.3 0.4 0.5

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

f
4
 − Test

Noise (σ)

Q
ua

lit
y

in
di

ca
to

r
(A

)

Type−2
Sing. Type−1
NS Type−1

FIGURE 6.8: Evolution of the areas under the Pareto front as the noise level
increases for training and test. (a) f1, (b) f2, (c) f4

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 219

(d)

0 0.1 0.2 0.3 0.4 0.5
0.2

0.25

0.3

0.35

0.4

0.45

f
5
 − Training

Noise (σ)

Q
ua

lit
y

in
di

ca
to

r
(A

)

0 0.1 0.2 0.3 0.4 0.5
0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

f
5
 − Test

Noise (σ)

Q
ua

lit
y

in
di

ca
to

r
(A

)

Type−2
Sing. Type−1
NS Type−1

(e)

0 0.1 0.2 0.3 0.4 0.5
0.1

0.15

0.2

0.25

0.3

0.35

f
6
 − Training

Noise (σ)

Q
ua

lit
y

in
di

ca
to

r
(A

)

0 0.1 0.2 0.3 0.4 0.5
0.12

0.13

0.14

0.15

0.16

0.17

0.18

f
6
 − Test

Noise (σ)

Q
ua

lit
y

in
di

ca
to

r
(A

)

Type−2
Sing. Type−1
NS Type−1

(f)

0 0.1 0.2 0.3 0.4 0.5
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

f
7
 − Training

Noise (σ)

Q
ua

lit
y

in
di

ca
to

r
(A

)

0 0.1 0.2 0.3 0.4 0.5
0.17

0.18

0.19

0.2

0.21

0.22

0.23

f
7
 − Test

Noise (σ)

Q
ua

lit
y

in
di

ca
to

r
(A

)

Type−2
Sing. Type−1
NS Type−1

FIGURE 6.8: Evolution of the areas under the Pareto front as the noise level
increases for training and test - continued. (d) f5, (e) f6, (f) f7

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 220

(g)

0 0.1 0.2 0.3 0.4 0.5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

f
10

 − Training

Noise (σ)

Q
ua

lit
y

in
di

ca
to

r
(A

)

0 0.1 0.2 0.3 0.4 0.5
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

f
10

 − Test

Noise (σ)
Q

ua
lit

y
in

di
ca

to
r

(A
)

Type−2
Sing. Type−1
NS Type−1

(h)

0 0.1 0.2 0.3 0.4 0.5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

y
2
 − Training

Noise (σ)

Q
ua

lit
y

in
di

ca
to

r
(A

)

0 0.1 0.2 0.3 0.4 0.5
0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

y
2
 − Test

Noise (σ)

Q
ua

lit
y

in
di

ca
to

r
(A

)

Type−2
Sing. Type−1
NS Type−1

(i)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y
3
 − Training

Noise (σ)

Q
ua

lit
y

in
di

ca
to

r
(A

)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y
3
 − Test

Noise (σ)

Q
ua

lit
y

in
di

ca
to

r
(A

)

Type−2
Sing. Type−1
NS Type−1

FIGURE 6.8: Evolution of the areas under the Pareto front as the noise level
increases for training and test - continued. (g) f10, (h) y2, (i) y3

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 221

(j)

0 0.1 0.2 0.3 0.4 0.5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

y
5
 − Training

Noise (σ)

Q
ua

lit
y

in
di

ca
to

r
(A

)

0 0.1 0.2 0.3 0.4 0.5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

y
5
 − Test

Noise (σ)

Q
ua

lit
y

in
di

ca
to

r
(A

)

Type−2
Sing. Type−1
NS Type−1

FIGURE 6.8: Evolution of the areas under the Pareto front as the noise level
increases for training and test - continued. (j) y5

the indicator. This suggests that the type-2 FLS handles the uncertainties (i.e.,

the noise) better than the other two FLSs.

In order to verify this observation, and to determine at which noise level

significant differences appear, we perform statistical tests based on the quality

indicators. Since the conditions for the application of parametric tests (e.g., the

repeated-measures ANOVA [Box et al., 1978]) are not satisfied, we apply the

equivalent non-parametric test [Luengo et al., 2009]. Thus, for each noise level

we employ the Friedman test [Friedman, 1937] to determine whether the differ-

ences are statistically significant or not. Since the number of systems to be com-

pared is small, we apply a variation of the Friedman test, the Friedman Aligned

Ranks test [Garcı́a et al., 2010].

The null hypothesis to be rejected states the equality of medians between

the populations, i.e., its rejection implies the existence of differences between

the behavior of the three systems. Table 6.5 summarizes the ranks obtained by

each type of FLS in the Friedman Aligned Ranks test. It also shows the values

of the Friedman’s statistic in each case and the associated p-value. For a level

of significance α = 0.05, the value of the statistic in all the cases is higher than

the corresponding critical value for a χ2 distribution with 2 degrees of freedom1.

1The critical value for a χ2 distribution with 2 degrees of freedom is χ2 = 5.99 [Sheskin, 2007].

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 222

TABLE 6.5: Ranks obtained by each FLS in the Friedman Aligned Ranks test
(α = 0.05) for the average quality indicators of the Pareto fronts

Noise level (σ)

0 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50

Singleton type-1 15.1 18.6 19.4 18.2 17.4 17.4 19.1 18.1 18.2

Non-singleton type-1 7.6 8.4 9.8 12.4 12.0 17.3 18.2 21.4 20.6

Interval type-2 23.8 19.5 17.3 15.9 17.1 11.8 9.2 7.0 7.7

Friedman’s statistic FAR 7.15 7.24 7.41 7.75 7.73 7.72 7.44 7.14 7.26

p-value 0.0280 0.0268 0.0246 0.0207 0.0210 0.0210 0.0243 0.0282 0.0265

Therefore, there are significant differences among the three types of FLS, with a

confidence level of 95% [Sheskin, 2007].

The Friedman Aligned Ranks test only provides information about the ex-

istence of statistically significant differences about the samples compared. In

order to detect the specific differences, a post-hoc test is required [Derrac et al.,

2011]. The post-hoc procedure compares a control algorithm (in our case, the

one with the best ranking for each noise level) with the remaining algorithms.

In this study, we use the Li test [Li, 2008] because of its simplicity and power

[Garcı́a et al., 2010].

The results of the post-hoc test are presented in Table 6.6. For each noise

level, the value of the statistic z and the corresponding unadjusted and adjusted

p-values are shown. The FLSs to be compared to the control method are ordered

in ascending order of their p-value. The last column indicates if the null hypoth-

esis is rejected, i.e, whether the difference between the control method and the

corresponding FLS is statistically significant or not. Several conclusions can be

drawn from this table:

• When the noise level is very low (i.e., noise-free case and σ = 0.05) the

non-singleton type-1 FLS shows the best performance. Nonetheless, it has

to be noted that for the noise-free case, the difference with the singleton

type-1 is not significant. On the contrary, the interval type-2 FLS presents

the worst performance in this case. The reason for this behavior is that

the level of uncertainty in the data is very low, and therefore, the mech-

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 223

TABLE 6.6: Li post-hoc test to detect differences between the different types of
FLS, using the system with the best ranking as the control method, with a level

of significance α = 0.05

Noise level
(σ)

Control
method

FLS z = (R0 − Ri)/S E pu pLi Rejected?

0 NS type-1
Type-2 4.1148 3.9·10−5 4.1·10−5 Yes

Sing. type-1 1.9050 0.0568 0.0568 No

0.05 NS type-1
Type-2 2.8194 0.0048 0.0048 Yes

Sing. type-1 2.5908 0.0096 0.0096 Yes

0.10 NS type-1
Sing. type-1 2.4384 0.0148 0.0154 Yes

Type-2 1.9050 0.0568 0.0568 No

0.15 NS type-1
Sing. type-1 1.4732 0.1407 0.1835 No

Type-2 0.8890 0.3740 0.3740 No

0.20 NS type-1
Sing. type-1 1.3716 0.1702 0.1745 No

Type-2 1.2954 0.1952 0.1952 No

0.25 Type-2
Sing. type-1 1.4224 0.1549 0.1561 No

NS type-1 1.3970 0.1624 0.1624 No

0.30 Type-2
Sing. type-1 2.5146 0.0119 0.0120 Yes

NS type-1 2.2860 0.0222 0.0222 Yes

0.40 Type-2
NS type-1 3.6576 0.0003 0.0003 Yes

Sing. type-1 2.8194 0.0048 0.0048 Yes

0.50 Type-2
NS type-1 3.2766 0.0010 0.0011 Yes

Sing. type-1 2.6670 0.0077 0.0077 Yes

anisms provided by the interval type-2 FLS to handle the uncertainty are

not needed.

• However, this difference decreases as the noise level increases. Hence,

when σ = 0.10, the difference between the non-singleton type-1 FLS and

the singleton type-1 FLS is still significant (the null hypothesis is rejected

with p = 0.0154), but the difference between the non-singleton type-1 and

the singleton interval type-2 is not (p = 0.0568).

• For medium levels of noise (i.e., σ = {0.15, 0.20, 0.25}) the differences be-

tween the three systems are not significant, i.e., there is not a system that

is clearly better than the others.

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 224

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1

2

3

4

5

x
1

x
2

y

FIGURE 6.9: Function f6

• Finally, when the noise level reaches high values, namely σ = 0.30 and

above, the singleton interval type-2 FLS clearly outperforms the other two.

6.4.1.3 Example of the approximation obtained

In the previous subsection, the quality of the Pareto fronts obtained by the MOEA

has been studied, leading to the conclusion that NS type-1 FLSs are preferred for

low noise levels, but the type-2 FLS outperforms its type-1 counterparts when

the noise level is higher. In this subsection, we present a representative example

of the approximations obtained by the different types of FLSs.

Thus, we analyze the approximations obtained for function f6 (depicted in

Fig. 6.9) when the training data presents low and high levels of noise. Specif-

ically, we consider the cases of σ = 0.05 (see Fig. 6.10(a)) and σ = 0.50 (see

Fig. 6.10(b)), respectively. Since it is not possible to show the approximations

obtained by all the solutions in all the Pareto fronts, we have used the following

criteria to select the example shown: First, for each FLS, we have selected the

execution that produces the Pareto front with the median value of the quality

indicator; then, we have chosen the most accurate solution in that Pareto front.

The approximations obtained for the test data by the three FLSs are shown

in Fig. 6.11 and 6.12, and the corresponding fitness is presented in Table 6.7. It

is observed that when the noise level is low, the non-singleton type-1 system

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 225

(a)

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1

2

3

4

5

x
1

x
2

y

(b)

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1

2

3

4

5

x
1

x
2

y

FIGURE 6.10: Training data for function f6. (a) Training data with noise level
σ = 0.05. (b) Training data with noise level σ = 0.50

TABLE 6.7: Fitness of the most accurate approximations of function f6 with
different levels of noise

Type of FLS
Noise level σ = 0.05 Noise level σ = 0.50

Number of rules NRMSE Number of rules NRMSE

Singleton type-1 29 0.0589 17 0.1447

Non-singleton type-1 30 0.0391 18 0.1539

Singleton interval type-2 28 0.0567 16 0.1374

produces the most accurate approximation. However, the interval type-2 FLS

provides a better approximation when the noise level is high. This result was

expected in the view of the statistical results obtained in the previous section.

Finally, in Fig. 6.13, we present the Pareto fronts obtained for both cases. This

figure shows that the evolution of the Pareto fronts coincides with the behavior

previously observed: when the noise level is low, the non-singleton type-1 FLS

clearly outperforms the others, whilst the singleton interval type-2 FLS behaves

better in the presence of high noise. Additionally, it is remarkable that the Pareto

fronts include solutions with a higher number of rules when the noise level is

low. The reason for this is that, as the level of noise increases, the training process

is more difficult and some overfitting may appear for longer solutions.

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 226

(a)

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1

2

3

4

5

x
1

x
2

y

(b)

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1

2

3

4

5

x
1

x
2

y

(c)

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1

2

3

4

5

x
1

x
2

y

FIGURE 6.11: Approximation of function f6 when the noise level in the training
data is σ = 0.05. (a) Singleton type-1 FLS. (b) Non-singleton type-1 FLS. (c)

Singleton interval type-2 FLS

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 227

(a)

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1

2

3

4

5

x
1

x
2

y

(b)

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1

2

3

4

5

x
1

x
2

y

(c)

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1

2

3

4

5

x
1

x
2

y

FIGURE 6.12: Approximation of function f6 when the noise level in the training
data is σ = 0.50. (a) Singleton type-1 FLS. (b) Non-singleton type-1 FLS. (c)

Singleton interval type-2 FLS

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 228

(a)

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of rules

N
R

M
S

E

Type−2
Sing. type−1
NS type−1

(b)

5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

Number of rules

N
R

M
S

E

Type−2
Sing. type−1
NS type−1

FIGURE 6.13: Pareto fronts obtained for the approximation of function f6 with
different levels of noise (test) (a) When the noise in the training data isσ = 0.05.

(a) When the noise in the training data is σ = 0.50.

6.4.1.4 Effect of the use of optimal consequents

In section 6.3.2.5, we introduced a method for computing the optimal conse-

quents for a given rule base. The use of this method within the context of the

multi-objective evolutionary algorithm serves two purposes: On the one hand,

it reduces the size of the search space, thereby reducing in Nr the number of

parameters that have to be optimized for a system with Nr rules. On the other

hand, it enhances the optimization process by improving the quality of each so-

lution in the population, thus leading to more accurate Pareto fronts.

In order to visualize this property, we present here an example of this effect.

Specifically, we have applied the MOEA to optimize a singleton interval type-2

FLS for the approximation of function f1. Starting from the same initial popu-

lation, we have performed the evolutionary search twice, i.e., using the optimal

consequents as described in this chapter, and including the consequents in the

chromosome and using the MOEA to optimize them. In both cases, the same

seed has been used for the generator of pseudo-random values. The test has

been performed five times, obtaining similar results in all of them.

Fig. 6.14 shows the fitness obtained for the portion of the initial population

resulting from the application of the K-means and the KNN algorithms to se-

lect the parameters of the antecedents (see section 6.3.2.2). The stars represent

the fitness of the chromosomes that use optimal consequents, whilst the circles

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 229

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of rules

N
R

M
S

E

Non−optimal consequents
Optimal consequents

FIGURE 6.14: Fitness of a portion of the initial population of the MOEA when
optimal consequents are used for the rules (stars), and when they are included

in the evolutionary optimization process (circles)

correspond to the solutions that optimize the consequents as part of the evolu-

tionary approach. In both cases, the antecedents of the rules are the same.

The enhancement in the quality of the rules when the optimal consequents

are used is obvious, even for this population in which the antecedents have

not been refined yet. This improvement helps the search process to obtain fi-

nal Pareto fronts with better accuracy for the same number of rules. Fig 6.15

depicts the final Pareto fronts obtained in the two cases considered. It can be

observed that the solutions obtained when using the optimal consequents are

more accurate.

6.4.2 Analysis of a sample application: control of a nonlinear servo
system

We conclude this section of experimental results by presenting an example of the

application of the three types of FLS considered for a control problem. Specif-

ically, we a singleton type-1 FLC, a non-singleton type-1 FLC, and a single-

ton interval type-2 FLC to control the nonlinear servo system described in Ap-

pendix A.4 [Cara et al., 2010a]. The three controllers have the same structure

and use the same rule base, since the non-singleton type-1 FLC and the interval

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 230

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of rules

N
R

M
S

E

Non−optimal consequents
Optimal consequents

FIGURE 6.15: Pareto front obtained by the MOEA when optimal consequents
are used for the rules (stars), and when they are included in the evolutionary

optimization process (circles)

type-2 FLC have been obtained from the singleton type-1 controller. The output

MFs are also the same.

The control objective in these experiments is to track a step-like reference

signal r, for a time span of 100 seconds. The sampling time used to exert control

actions is Tc = 0.05 s. To measure the performance of the controllers, we have

computed the mean square error of the tracking over the whole simulation time

and the standard deviation of the square errors.

The three controllers use three input variables, namely the reference value r,

the current output angle of the plant θ, and the angular velocity θ̇. Uniformly

distributed triangular membership functions are used for both the inputs and

the outputs, the minimum is used as the t-norm and the center-of-sets is se-

lected as the defuzzification method. More specifically, the three controllers are

designed as follows:

• The singleton type-1 FLC was automatically obtained and tuned by ap-

plying the online self-evolving method described in chapter 4 [Cara et al.,

2011a]. Once the control performance was satisfactory, the online learning

mechanism was switched off and the resulting classical type-1 controller

was used for the upcoming experiments. As a result of the learning, three

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 231

(a) (b) (c)

FIGURE 6.16: MFs for the singleton type-1 controller. (a) Input r, (b) input θ,
and (c) input θ̇

membership functions were assigned to the inputs r and θ, and two MFs

were assigned to the input θ̇. These MFs are depicted in Fig. 6.16.

• The non-singleton type-1 FLC uses the same MFs for the inputs and out-

puts and the same rules as the singleton type-1 FLC. The only difference is

that the inputs to the non-singleton controller are fuzzy values instead of

crisp numbers. The fuzzy input variables to the non-singleton type-1 FLC

are centered on the crisp input value and spread according to the manually

specified uncertainty factor U, as shown in Fig. 6.17(a).

• The type-2 FLC parameters are also obtained from the singleton type-1

FLC. The FOUs of the input sets use the type-1 fuzzy sets as the lower

MFs and blurry them with the uncertainty factor U. Thus, the upper MFs

are obtained by adding U to the left and right ends of the type-1 lower

MFs. Fig. 6.17(b) depicts the way the type-2 MFs are obtained.

• Finally, the output MFs are the same in all the controllers. Triangular type-

1 membership functions have been used for the consequents of the rules.

The centers of these MFs are the values obtained for the consequents by

the evolving method and the slopes are set accordingly to the centers of

the adjacent MFs.

The experiments are classified into three groups, according to the level of

noise applied to the inputs of the controller: First, we analyze the cases of low or

no noise; then, we study the case for medium noise levels; finally, we comment

on the cases with high levels of noise. For these three groups of tests, we have

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 232

(a)

U U

x’

(b)

U U
Type-1 MF

FIGURE 6.17: Construction of non-singleton type-1 and type-2 MFs from sin-
gleton triangular type-1 MFs. (a) Triangular input MF for the input value x′ in
the NS type-1 FLC, with uncertainty factor U. (b) Triangular type-2 MF with

uncertainty factor U

analyzed different values for the uncertainty factor U, i.e., different spreads for

the MFs. The values of noise applied to the inputs are N ∈ {0, 5, 10, 15, 20}% of

the range of the input variables. The values of the uncertainty factor used in

this study are U ∈ {5, 10, 15, 20, 30}%. Larger values for the uncertainties were

also tried; however, they cause very large spreads in the MFs and, therefore,

the controllers behaved like random systems. In the following subsections, we

present the results of the comparative study.

6.4.2.1 Ideal case: no noise or a small level of noise

In this first group of experiments, we consider the ideal case (i.e., there is no

noise in the inputs) and the case in which the noise is N = 5% of the range of

the input variables. Fig. 6.18, 6.19 and 6.20 show the tracking performance of

the singleton type-1 FLC, the non-singleton type-1 FLC and the singleton inter-

val type-2 FLC, respectively, when there is no noise present in the controller’s

inputs. The thin solid line depicts the desired trajectory r, while the dotted lines

represent the output of the plant. For the non-singleton type-1 and the singleton

interval type-2 FLCs, three lines are shown, corresponding to different uncer-

tainty factors (namely 10, 20 and 30% of the input range). The first thing that

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 233

20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

TIME (s)

A
N

G
LE

 θ
 (

ra
d)

r(k)
y(k+1)

FIGURE 6.18: Reference tracking with the singleton type-1 FLC (no noise)

20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

TIME (s)

A
N

G
LE

 θ
 (

ra
d)

r(k)
y(k+1) U = 10%
y(k+1) U = 20%
y(k+1) U = 30%

FIGURE 6.19: Reference tracking with the non-singleton type-1 FLC (no noise)

we observe is that in the ideal case with no noise, the best option is to use a sin-

gleton type-1 FLC. Furthermore, Fig., 6.19 and 6.20 show that larger values of

the uncertainty factor (i.e., larger spreads in the membership functions) cause a

worsening in the performance when – as in this case – there is no noise actually

present in the environment/application.

Table 6.8 shows the MSE and the standard deviations obtained when the

noise in the controller’s inputs is N = 5%. Again, the results show that the best

control performance is achieved by the singleton type-1 FLC.

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 234

20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

TIME (s)

A
N

G
LE

 θ
 (

ra
d)

r(k)
y(k+1) U = 10%
y(k+1) U = 20%
y(k+1) U = 30%

FIGURE 6.20: Reference tracking with the singleton interval type-2 FLC (no
noise)

TABLE 6.8: Performance of the three types of controllers with 5% of noise

U
Singleton type-1 Non-singleton type-1 Interval type-2

MSE Std. Dev MSE Std. Dev MSE Std. Dev

0% 0.0074 0.0136 0.0074 0.0136 0.0074 0.0136

5% - - 0.0112 0.0166 0.0397 0.0513

10% - - 0.0164 0.0271 0.0459 0.0582

15% - - 0.0235 0.0492 0.0520 0.0684

20% - - 0.0398 0.0947 0.0600 0.0809

30% - - 0.1182 0.3048 0.0839 0.1118

These results were expected, as the singleton type-1 controller has been spe-

cially designed to control this plant and, therefore, it is more precise than those

that assume that there is some type of uncertainty when in practice there is no

such uncertainty. Of course, it is worth noting that this ideal, uncertainty–free

state is a direct result of employing a simulated environment and is generally

not achievable in real world applications.

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 235

TABLE 6.9: Performance of the three types of controllers with 10% of noise

U
Singleton type-1 Non-singleton type-1 Interval type-2

MSE Std. Dev MSE Std. Dev MSE Std. Dev

0% 216.440 237.491 216.440 237.491 216.440 237.491

5% - - 58.659 154.676 0.0655 0.0931

10% - - 0.0682 0.2239 0.0717 0.1010

15% - - 0.0547 0.1258 0.0731 0.0938

20% - - 0.0666 0.1415 0.0788 0.1015

30% - - 0.1462 0.3471 0.1185 0.1746

6.4.2.2 Experiments with medium levels of noise

In this second category of experiments, we have included those in which the

noise level is N = 10% and N = 15%. Note that these values of noise cause three

different situations with respect to the expected uncertainty factors: First, the

noise may be smaller than the expected uncertainty; second, the noise may be

close or equal to the uncertainty factor; and, finally, the noise may be larger than

expected when the controllers were designed.

Table 6.9 gathers the MSE and the standard deviation obtained by the three

controllers when there is a 10% of noise in the inputs. First, it is clear that the

singleton type-1 FLC is not capable of coping with this level of noise. As men-

tioned before, this is due to the precise definition of the membership functions

during the design. On the other hand, we observe that the non-singleton type-1

FLC is also unable to control the system when the noise is higher than the given

uncertainty factor (i.e., N = 10% and U = 5%). However, the singleton inter-

val type-2 FLC is able to handle this noise and produces a good response in the

tracking. Nevertheless, when the noise level is close to the expected uncertainty

factor, the MSE is very similar in both cases, although the standard deviation

of the non-singleton type-1 FLC is slightly higher. Only when the uncertainty

factor is much larger than the noise (i.e., N = 10% and U = 30%) the type-2 FLC

obtains a smaller error and deviation.

Fig. 6.21 depicts the MSE and the standard deviation of the non-singleton

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 236

5 10 15 20 25 30
0

10

20

30

Uncertainty factor (%)

M
S

E

(a)

N−S.Type−1
Type−2

5 10 15 20 25 30
0

10

20

30

Uncertainty factor (%)

S
ta

nd
ar

d
D

ev
ia

tio
n

(b)

N−S.Type−1
Type−2

FIGURE 6.21: Control performance for the non-singleton type-1 FLC and the
type-2 FLC when there is a 15% of noise. (a) MSE. (b) Standard deviation

type-1 FLC and the singleton interval type-2 FLC when the noise level is 15%

for the different values of uncertainty factors considered during the design. In

this case, the type-2 FLC clearly outperforms the non-singleton type-1 FLC. Note

that neither one of the controllers is capable of handling the noise when the

uncertainty factor is much smaller (i.e., U = 5%), although the type-2 controller

starts providing good control performance with a smaller uncertainty factor (i.e.,

U = 20% in contrast with the U = 30% required by the non-singleton type-1

FLC).

6.4.2.3 Experiments with high levels of noise

Finally, we present the results when higher levels of noise are present in the

controllers’ inputs. Fig. 6.22 depicts the MSE and the standard deviation of the

non-singleton type-1 FLC and the type-2 FLC when the noise level is 20%, for the

different uncertainty factors considered during the design. First, it is observed

that neither controller is capable of properly controlling the plant when the noise

is above the uncertainty factor, although the errors provided by the type-2 FLC

are smaller. Furthermore, the performance of the non-singleton type-1 controller

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 237

5 10 15 20 25 30
0

10

20

30

Uncertainty factor (%)

M
S

E
(a)

N−S.Type−1
Type−2

5 10 15 20 25 30
0

10

20

30

Uncertainty factor (%)

S
ta

nd
ar

d
D

ev
ia

tio
n

(b)

N−S.Type−1
Type−2

FIGURE 6.22: Control performance for the non-singleton type-1 FLC and the
type-2 FLC when there is a 20% of noise. (a) MSE. (b) Standard deviation

is poor in all the cases, showing that it is not capable of handling high levels of

noise, even if they were expected during the design process. On the contrary, the

type-2 FLC continues producing a satisfactory control when the noise is below

the uncertainty factor, i.e., for N = 20% and U = 30%.

During the experiments, it has been observed that the values of uncertainty

factors that produce better results are U = 20% and U = 30%.

6.5 Conclusions

In this chapter, we have presented a comparative analysis between singleton

type-1 FLSs, non-singleton type-1 FLSs and singleton interval type-2 FLSs. As

we have detailed in this dissertation, the type-2 FLS is theoretically capable of

handling uncertainties from various sources whilst, at least in concept, the non-

singleton type-1 FLS can only handle the input uncertainties. In addition, the NS

type-1 FLS handles the uncertainties only in the fuzzification stage, whereas the

type-2 FLS propagates the uncertainty through the different inference stages.

Hence, it should be expected that the singleton interval type-2 FLS should be

better able to handle the faced uncertainties.

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 238

To provide an adequate comparative framework, we have presented a multi-

objective evolutionary algorithm for the optimization of type-1 and singleton

interval type-2 FLSs from data samples. The proposed MOEA concurrently op-

timizes the complexity and the accuracy of the fuzzy systems, thus providing

a set of Pareto-optimal configurations. In addition, the proposed optimization

approach includes a module for computing the optimal consequents for a given

rule base for both type-1 and singleton interval type-2 fuzzy systems. This mod-

ule helps to reduce the size of the search space, as the consequents do not need

to be optimized by the MOEA. Moreover, it has been shown that the solutions

obtained when using optimal consequents are more accurate (for the same sys-

tem complexity) than the ones obtained when the consequents are optimized by

the MOEA.

The three types of FLSs have been compared for function approximation and

for a sample control application. In the first case, we have used the proposed

MOEA to optimize the three types of FLSs for several function approximation

problems under different levels of noise in the input data. We have used the hy-

pervolume indicator as a quality measure to compare the Pareto fronts obtained

by the MOEA for each type of fuzzy system and each noise level. Then, we have

applied non-parametric statistical tests to analyze the results and to try to an-

swer two different questions: (i) Whether the differences in the performance of

type-1 and type-2 FLSs are significant or not, and (ii) at which noise level type-2

fuzzy systems should be preferred to type-1 FLSs, and vice versa.

In the second case, we have presented a framework where the different types

of controllers have the same rule base, the same output fuzzy sets, and where the

non-singleton type-1 FLC and the singleton interval type-2 FLC share the same

uncertainty factors. For this experiment, we have used a singleton type-1 FLC

automatically optimized (using the approach presented in chapter 4) for the con-

trol of a nonlinear servo system. Then, we have designed a non-singleton type-1

and a singleton interval type-2 FLCs that are structurally equivalent to their sin-

gleton type-1 counterpart. This has provided us with a framework in which

all the controllers are as similar to each other as possible. We have carried out

comparative experiments with different levels of noise in the controller’s inputs.

Multi-objective optimization of type-1 and type-2 FLSs with comparative purposes 239

Different levels of uncertainty factors have also been defined in the controllers

during their design.

The results show that for low noise levels, the best performance is obtained

by the non-singleton type-1 FLS. Nonetheless, the noise-free case requires a

deeper consideration: On the one hand, in the experiments related to function

approximation, the NS type-1 FLS showed the best performance, but the differ-

ence with the singleton type-1 FLS was not statistically significant. On the other

hand, for the control sample application, the classical singleton type-1 FLC pro-

vided the best response in the absence of noise. This was expected, since this

controller had been specifically tuned for this control problem. It is worth noting

that the singleton type-1 FLS has the simplest structure and therefore, it should

be used when possible. However, in real-world applications it is almost impos-

sible to avoid uncertainties (e.g., noise in the sensors inputs) and more flexible

methods capable of handling them are needed.

In this sense, it has been observed that both the non-singleton type-1 and

the singleton interval type-2 FLSs can handle noise in the system’s inputs to a

certain degree. However, it has been shown that the type-2 FLS is able to accept

higher levels of noise than its non-singleton type-1 counterpart. As such, the

results show that while the non-singleton type-1 FLS provides advantages over

the singleton type-1 FLS for medium levels of noise, the singleton type-2 FLS is

better able to handle higher uncertainty levels.

Finally, by performing a side-by-side comparison of non-singleton type-1

FLSs and singleton interval type-2 FLSs, we have been able to clarify the dif-

ference in the actual handling of the uncertainty, i.e., it is only in the type-2

FLS that the uncertainty flows from the inputs to the outputs, through the com-

plete inference system. It is this capability (rather than the increased number

of parameters) that generally allows type-2 FLSs to perform better uncertainty

handling than comparable type-1 FLSs.

Chapter 7

Conclusions of the dissertation
and list of publications

The work presented in this dissertation represents a contribution to the areas

of evolving fuzzy systems and intelligent control. The main contributions and

conclusions extracted from this work are summarized in this chapter.

7.1 Conclusions and contributions

In this thesis, we have proposed two new methodologies for the online self-

evolution of fuzzy controllers when there is no prior knowledge about the plant

to be controlled. They provide a means of obtaining fuzzy controllers when

the lack of knowledge makes it difficult (or impossible) to apply other methods.

These two methodologies share some common properties and features, which

can be summarized as follows:

• No model of the plant or its differential equations are required. Moreover, the

methods proposed do not make any assumptions about the differential

equations and only require qualitative knowledge about the plant (specif-

ically, the sign of the monotonicity of the plant with respect to the control

signal).

• The fuzzy controller is designed from scratch, while controlling the plant online.

To do so, only the input/output information obtained online from the sys-

tem’s normal operation is used.

Conclusions and list of publications 242

• The structure of the fuzzy controller is incrementally evolved by exploiting the

property of universal approximation of fuzzy systems. Thus, increasing degrees

of accuracy are achieved as the operation goes on. Moreover, the informa-

tion applied to develop the controller covers the entire operating region of

the system, thereby improving the robustness of the learning method.

• The controllers developed are robust, in the sense that they can cope with un-

expected isolated changes in the plant’s dynamics. Their adaptive nature

provides them with the ability to learn the new behavior of the plant in

order to continue delivering a satisfactory performance.

• The evolving methodology is a life-long learning process. As such, the controller

continues learning and evolving during its entire operation. Two different

types of learning are applied: On the one hand, in the parameter learn-

ing phase, the information about the error at the plant’s output is used

to adapt online the rule consequents. On the other hand, the error of the

approximation of the plant’s inverse function is analyzed to incrementally

evolve the structure of the controller.

The first methodology proposed is OSEFC (see chapter 4). In this method,

a complete set of rules is applied for the controller. Thus, adding a new mem-

bership function implies creating all the possible rules that use this new MF as

an antecedent. Two complementary methods for parameter learning have been

proposed for OSEFC. The first method is an online local adaptation procedure

based on the reduction of the current error at the plant’s output (i.e., based on

local information). It applies a reward/penalty policy to move the consequents

in the direction that reduces the error. In the second method, the global in-

put/output data provided by the plant’s operation is used to fine-tune the rule

consequents. Specifically, a gradient-based optimization technique is used to

minimize the error at the controller’s output as a means of indirectly minimiz-

ing the error at the plant’s output. In this case, the local learning method acts

as a supervisor to guarantee that the changes applied to the consequents do not

compromise the local control of the plant.

Conclusions and list of publications 243

As mentioned before, the evolution of the structure in OSEFC is based on the

improvement of the approximation of the plant’s inverse function. The approx-

imation error in the entire operating region is analyzed to identify the variable

that is mostly responsible for this error. Then, a new membership function is

added to this input variable, along with all the related rules. Thanks to this pro-

cess, OSEFC is able to detect which inputs are important for the control process,

thereby acting as an automatic input selector.

Simulation and experimental results have been used to illustrate the capa-

bilities of OSEFC. The results with plants of increasing complexity have shown

that OSEFC can effectively learn the control policy, even when starting from an

empty controller. It has also been shown that it can deal with noise in the input

readings and with changes in the dynamics of the plant. Moreover, it has been

observed that OSEFC can outperform a non-adaptive fuzzy controller in the lat-

ter situation. However, the use of a complete set of rules causes the exponential

growth of the number of rules, i.e., OSEFC suffers the curse of dimensionality, a

well-known problem that is inherent to the use of grid-like distributions of fuzzy

rules. As a consequence, the complexity of the system increases and damages

the interpretability of the controller.

In order to tackle this problem, we have proposed a second methodology,

named OSENF-TaSe (see chapter 5). In OSENF-TaSe, a scatter partitioning of the

input space is used. This allows for an uneven distribution of the fuzzy rules,

which can be directly placed in areas with high nonlinearities. In addition, this

methodology is based on the TaSe-NF model, which preserves the interpretabil-

ity of the local sub-models (rules). This is achieved by the use of a modified

inference process that guarantees that the rule consequents equal the system’s

global output at the respective rule centers. Hence, each rule consequent has a

direct meaning that is related to the controller’s output.

As in OSEFC, the online local learning method takes care of the short term

response of the controller by updating the rule consequents. Then, the struc-

ture of the controller is incrementally refined by splitting the rules that show an

unsatisfactory performance in their areas of influence. Unlike OSEFC, OSENF-

TaSe adds just one rule at a time. This helps to keep the growth of the number of

Conclusions and list of publications 244

rules under control. Finally, a gradient-descent method is used to further opti-

mize all the parameters of the fuzzy controller (i.e., the center and radius of the

antecedents and the values of the consequents) when a new rule is added.

The simulation results presented in chapter 5 have shown that OSENF-TaSe

effectively reduces the complexity of the fuzzy controller, compared to OSEFC.

Similarly, it has been shown how the interpretability of the rule base is enhanced

with respect to traditional scatter-partitioning fuzzy controllers. OSENF-TaSe

has also been compared with a classic controller designed with full knowledge

about the plant. In this case, the results have shown that the control performance

achieved by OSENF-TaSe is comparable to the performance of the classic con-

troller. Moreover, the proposed methodology outperforms the classic controller

when facing changes in the dynamics of the plant.

These results demonstrate that OSEFC and OSENF-TaSe are suitable alterna-

tives for the automatic design of fuzzy controllers when there is no prior knowl-

edge about the plant. Nonetheless, as a consequence of the lack of prior infor-

mation about the plant, these approaches suffer some limitations. Firstly, since

the controllers self-design from scratch while working online, the full method-

ologies proposed cannot be applied to plants with critic states that must never

be reached. In this case, the controllers can be pre-trained in order to obtain

a control policy that is sufficiently reliable when it starts being applied to the

plant. Secondly, their application is limited to plants for which the controller’s

sampling period can be set in a way such that the plant’s output depends on

the control signal applied in the previous time step. Finally, the lack of a mathe-

matical model makes it almost impossible to provide a formal demonstration of

the stability of these controllers (although this issue has been approached from

a qualitative perspective in this dissertation). Nevertheless, our proposals set an

initial framework in which to develop new controllers to achieve the ultimate

goal of online intelligent control with minimum previous knowledge about the

plant.

Finally, a comparative analysis of type-1 and type-2 fuzzy logic systems has

been presented in chapter 6. This study aimed to answer two questions that

often arise in the context of type-2 fuzzy systems: (i) Are the differences in the

Conclusions and list of publications 245

performance of type-1 and type-2 FLSs significant? And (ii) for which level of

uncertainty is one method preferred to the other?

With this goal in mind, we have proposed a multi-objective evolutionary al-

gorithm for the optimization of the rule base and the parameters of type-1 and

interval type-2 fuzzy systems. This MOEA provides a set of Pareto-optimal so-

lutions with respect to the conflicting objectives of complexity and accuracy. The

proposed method includes a module for computing the optimal consequents for

a given rule base, based on a set of input/output vectors. This module improves

the performance of the solutions obtained by the MOEA and simplifies the opti-

mization process by reducing the size of the search space. The use of the MOEA

provides a set of FLSs whose configurations have been optimized under the

same conditions, thereby providing a common framework for the comparison

of type-1 and interval type-2 fuzzy systems.

Specifically, we have compared singleton type-1, non-singleton type-1 and

singleton interval type-2 FLSs in two different contexts:

• Firstly, we have applied the proposed MOEA to optimize the three types of

FLSs for several function approximation problems under different levels

of noise in the input data. Using the hypervolume measure as a quality

indicator, we have compared the Pareto fronts obtained and have carried

out a non-parametric statistical test to analyze the results.

• Secondly, we have analyzed a sample application consisting in the con-

trol of a nonlinear servo system. In this case, we have presented a frame-

work where the different types of controllers considered have the same

rule base, the same output fuzzy sets, and where the non-singleton type-

1 FLC and the singleton interval type-2 FLC share the same uncertainty

factors. First, we have applied OSEFC to automatically obtain a single-

ton type-1 FLC for the application considered. Then, we have designed

a non-singleton type-1 FLC and a singleton interval type-2 FLC that are

structurally equivalent to their singleton type-1 counterpart. This has pro-

vided us with a framework in which all the controllers are as similar to

each other as possible. We have carried out comparative experiments with

Conclusions and list of publications 246

different levels of noise in the controller’s inputs. Different levels of uncer-

tainty factors have also been defined in the controllers during their design.

The results have shown that the traditional singleton type-1 FLS provides

a satisfactory performance in the absence of noise. This is the simplest type of

system and therefore, it should be applied when possible. However, it is almost

impossible to avoid uncertainties in real-world applications and more flexible

methods capable of handling them are needed. Our study has shown that the

non-singleton type-1 FLS and the singleton interval type-2 FLS can adequately

handle noise in the system’s inputs to a certain degree. Specifically, it has been

observed that the former presents a better performance for lower and medium

levels of noise, whilst the latter is preferred to handle larger amounts of uncer-

tainty. These results are important, as they address one of the main criticisms

received by type-2 FLSs. They have allowed us to clarify that the reason for the

better performance of interval type-2 FLSs under large amounts of uncertainty

is not their use of extra parameters, but rather their different way of handling

such uncertainty.

For future work, we aim to further extend the capabilities of the proposed

evolving methodologies, according to the issues mentioned before. Some open

questions that can be addressed are: (i) Increase of the controller’s autonomy,

e.g., by automatically determining the sign of the monotonicity of the plant with

respect to the control signal, from the plant’s response to the control actions. (ii)

Design of input selection mechanisms for OSENF-TaSe. (iii) Incorporation of

new soft-computing techniques to the different steps of the evolving procedure,

e.g., new methods for parameter learning, advanced clustering techniques for

the location of the rule centers, etc. In addition, we aim to continue the study

of the properties of type-2 FLSs, with the objective of developing evolving tech-

niques for their automatic design.

7.2 List of publications

This section gathers a list of the publications in which the results presented in

this dissertation have appeared. These publications have been classified into

three groups: The first group is formed by articles that have been published in

Conclusions and list of publications 247

scientific journals. Next, we include the works presented in international con-

ferences. Finally, we present a series of works that are not directly related to

the topic of this dissertation but that have been developed in parallel with it

and have contributed to my training in Computer Architecture and Computer

Technology.

Journal publications

1. Cara, A. B., Herrera, L. J., Pomares, H., and Rojas, I. (2012).New online self-

evolving neuro-fuzzy controller based on the TaSe-NF model. Information

Sciences. Accepted with minor revision.

• Impact factor (JCR 2010): 2.836.

• Ranking per subject category:

– Computer Science, Information Systems: 10/128 (Q1)

2. Cara, A. B., Pomares, H., and Rojas, I. (2011). A new methodology for the

online adaptation of fuzzy self-structuring controllers. IEEE Transactions

on Fuzzy Systems., 19(3):449–464.

• Impact factor (JCR 2010): 2.695.

• Ranking per subject category:

– Computer Science, Artificial Intelligence: 14/108 (Q1)

– Engineering, Electrical and Electronic: 17/247 (Q1)

• Times cited: 1.

3. Cara, A. B., Pomares, H., Rojas, I., Lendek, Zs., and Babuška, R. (2010). On-

line self-evolving fuzzy controller with global learning capabilities. Evolv-

ing systems, 1(4):225–239.

• Times cited: 2.

Conclusions and list of publications 248

International conferences

1. Cara, A. B., Rojas, I., Pomares, H., Wagner, C., and Hagras, H. (2011). On

comparing non-singleton type-1 and singleton type-2 fuzzy controllers for

a nonlinear servo system. In 2011 IEEE Symposium on Advances in Type-2

Fuzzy Logic Systems (T2FUZZ), pages 126–133.

2. Herrera, L. J., Ghinea, R. I., Cara, A. B., Paravina, R. D., Pérez, M. M. (2011).

On Color Threshold Calculations In Oral Tissues And Dental Materials.

Histology And Histopathology, vol 26, num. SUPL 1, pages. 306–306.

3. Cara, A. B., Lendek, Zs., Babuška, R., Pomares, H., and Rojas, I. (2010).

Online self-organizing adaptive fuzzy controller: application to a nonlin-

ear servo system. In Proc. 2010 IEEE World Congress on Computational

Intelligence, pages 2491–2498.

4. Cara, A. B., Pomares, H., and Rojas, I. (2010). An algorithm for online

self-organization of fuzzy controllers. Lecture Notes in Artificial Intelligence,

volume 6097, pages 212–221. Springer Berlin Heidelberg.

Other publications

1. Pomares, H., Rojas, I., Guillén, A., González, J., Valenzuela, O., Florido,J. P.,

Urquiza, J. M, Cara, A. B., Lopez-Mansilla, L., Egea-Serrano, S. (2011). De-

sarrollo de un entorno integrado para un computador didáctico elemental

para la asignatura de Fundamentos de Informática del nuevo grado en In-

genierı́a de Tecnologı́as de Telecomunicaciones. In Enseñanza y aprendizaje

de Ingenierı́a de Computadores, vol. 1, pages 43–49.

2. Pomares, H., Rojas, I., Guillén, A., Herrera, L.J., Rubio, G., Florido, J.P.,

Urquiza, J.M, Cara, A.B., Lopez-Mansilla, L., Egea-Serrano, S. (2009). Im-

plementation of a didactic interpreter for CODE-2. In V International Con-

ference on Multimedia and Information and Communication Technologies in Ed-

ucation Research, Lisbon, Portugal. Reflections and Innovations in Integrating

ICT in Education, Vol.2. pages 960-964.

Conclusions and list of publications 249

3. Pomares, H., Garcia-Garcia, C., Rojas, I., Damas, M., González, J., Florido,

J.P., Urquiza, J.M, Cara, A.B., Lopez-Mansilla, L., Egea-Serrano, S. (2009).

Teaching Digital Systems Design with a New Didactic Environment through

the Internet. In V Internacional Conference on Multimedia and Information and

Communication Technologies in Education Research, Lisbon, Portugal. Reflec-

tions and Innovations in Integrating ICT in Education, Vol.2. pages 1021-1026.

4. Cara, A.B., Moreno, C., Cañas, A. (2008). Virtual whiteboard and chat for

a learning management system. In Proceedings of the 2008 IADIS Interna-

tional Conference on E-Learning, Vol. 1, pages 263-270.

5. Cara, A.B., Moreno, C., Cañas, A. (2008). Pizarra virtual y chat para una

plataforma de teleformación. In Actas de las XIV Jornadas de Enseñanza

Universitaria de la Informática, pages 619-626.

Conclusiones de la tesis y lista de
publicaciones

Este capı́tulo contiene la versión en español de las conclusiones presentadas en

el capı́tulo 7 y ha sido incluido para cumplir con los requisitos necesarios para

optar a la mención de Doctorado europeo.

Conclusiones y aportaciones

El trabajo presentado en esta tesis doctoral es una contribución a las áreas de

sistemas difusos auto-organizativos y control inteligente. En esta sección se re-

sumen las principales aportaciones y las conclusiones extraı́das del trabajo de

investigación desarrollado.

En esta tesis se han propuesto dos nuevas metodologı́as para el diseño de

controladores difusos auto-organizativos en tiempo real, cuando no existe co-

nocimiento previo sobre la planta a controlar. Estas metodologı́as proporcio-

nan mecanismos para la obtención de controladores difusos cuando la falta de

información no permite aplicar otros métodos. Las principales caracterı́sticas

presentes en ambos métodos se pueden resumir del siguiente modo:

• No es necesario disponer de un modelo de la planta ni de sus ecuaciones dife-

renciales. Es más, los métodos propuestos no realizan hipótesis sobre las

propiedades de dichas ecuaciones y tan sólo utilizan información cualita-

tiva sobre la planta (concretamente, el signo de la monotonı́a de la planta

con respecto a la señal de control).

Conclusiones y lista de publicaciones 252

• El controlador difuso se diseña desde cero, a la vez que se controla la planta.

Para ello, tan sólo se utiliza la información de entrada/salida obtenida en

tiempo real de la propia operación de la planta.

• La estructura del controlador se obtiene de forma incremental, explotando la pro-

piedad de aproximación universal de los sistemas difusos. De este modo, se pro-

porcionan polı́ticas de control cuya precisión aumenta conforme avanza el

tiempo de operación. La información utilizada en este proceso cubre todo

el rango de operación de la planta, lo que proporciona mayor robustez al

proceso auto-organizativo.

• Los controladores desarrollados son robustos, en el sentido de que pueden res-

ponder a cambios inesperados en la dinámica de la planta. Su naturaleza

adaptativa les dota de la capacidad de aprender el nuevo comportamiento

de la planta para ası́ continuar operando satisfactoriamente.

• El método auto-organizativo es un proceso continuado de aprendizaje. Por tanto,

el controlador continúa aprendiendo y evolucionando durante toda su o-

peración. El aprendizaje actúa en dos niveles: por una parte, en la fase de

ajuste de parámetros se utiliza la información referente al error en la salida

de la planta para adaptar los consecuentes de las reglas. Por otra parte, se

analiza el error en la aproximación de la función inversa de la planta para

desarrollar incrementalmente la estructura del controlador.

La primera metodologı́a propuesta es OSEFC (véase el capı́tulo 4). En este

método se hace uso de un conjunto completo de reglas, por lo que la adición

de una nueva función de pertenencia implica la creación de todas las reglas que

la usan como antecedente. Para OSEFC se han propuesto dos mecanismos de

ajuste de parámetros, basados en aprendizaje local y global, respectivamente. El

primer método es un proceso de adaptación basado en la reducción del error ac-

tual en la salida de la planta (por tanto, en información local). Este método aplica

una polı́tica de recompensa/penalización para desplazar los consecuentes en

la dirección que ayuda a reducir dicho error. El segundo mecanismo propues-

to hace uso de la información global de entrada/salida proporcionada por la

propia planta para conseguir un ajuste fino de los consecuentes de las reglas.

Conclusiones y lista de publicaciones 253

Concretamente, se aplica una técnica de optimización basada en gradiente para

minimizar el error presente en la salida del controlador y ası́, de forma indirecta,

reducir el error en la salida de la planta. En este caso, el método de aprendizaje

local se utiliza a modo de supervisor, con el objetivo de garantizar que los cam-

bios aplicados no comprometen la calidad del control desde un punto de vista

local.

Como se ha comentado, la evolución de la estructura de OSEFC se basa en la

mejora sucesiva de la aproximación de la función inversa de planta realizada por

el controlador. En este sentido, se analiza el error de aproximación a lo largo de

todo el rango de operación del sistema para localizar la variable de entrada con

mayor responsabilidad en dicho error. Dicha variable recibe una nueva función

de pertenencia y, como resultado, todas las reglas asociadas a ella se añaden a

la base de reglas del controlador. Este proceso permite a OSEFC detectar cuáles

son las variables más relevantes para el proceso de control, dotándole de la ca-

pacidad de actuar como un selector de entradas automático.

Las principales propiedades de esta metodologı́a han sido mostradas a través

de múltiples experimentos, incluyendo el control de un sistema real. Los resulta-

dos obtenidos con plantas de complejidad creciente han demostrado que OSEFC

es capaz de aprender la polı́tica de control de forma efectiva, a pesar de comen-

zar el control con topologı́as vacı́as. Igualmente, se ha mostrado que es capaz

de manejar entradas ruidosas y afrontar cambios inesperados en la dinámica

de las plantas, mejorando la respuesta de un controlador difuso tradicional (no

adaptativo) en este último caso. Sin embargo, el uso de un conjunto completo de

reglas hace que OSEFC padezca el problema conocido como la maldición de la

dimensionalidad, inherente a la distribución de las reglas en rejilla. Como con-

secuencia, la complejidad del sistema aumenta y se degrada la interpretabilidad

del controlador.

Con el objetivo de afrontar este problema, se ha propuesto una segunda

metodologı́a, denominada OSENF-TaSe (véase el capı́tulo 5). En esta nueva

metodologı́a, se ha optado por una distribución “en clustering” de la base de

reglas, que permite ubicar las reglas de forma no uniforme a lo largo del espa-

cio de entrada. De este modo, es posible colocar las reglas directamente en las

zonas donde las alinealidades son más fuertes. Por otra parte, esta metodologı́a

Conclusiones y lista de publicaciones 254

se basa en el modelo TaSe-NF, cuya principal caracterı́stica es la preservación

de la interpretabilidad de las reglas (o sub-modelos locales). Esto es posible

gracias al uso de un mecanismo de inferencia difusa modificado que garantiza

que la salida global del controlador en el punto asociado al centro de cada regla

coincide exactamente con el consecuente correspondiente. De este modo, cada

consecuente tiene un significado que está directamente relacionado con la salida

del controlador.

Al igual que en OSEFC, se utiliza el mecanismo local de aprendizaje para

adaptar los consecuentes y garantizar la respuesta a corto plazo del controlador.

Por otra parte, la estructura del controlador se refina de modo incremental por

medio de la subdivisión de aquellas reglas que presentan un rendimiento insa-

tisfactorio en sus áreas de influencia. Una diferencia importante entre OSEFC

y OSENF-TaSe es que éste último tan sólo añade una regla en cada cambio es-

tructural, lo que ayuda a mantener el crecimiento del número de reglas bajo

control. Por último, OSENF-TaSe incluye un método de descenso en gradiente

para obtener una mejor estimación de los parámetros del controlador (concreta-

mente, de los centros y radios de los antecedentes y de los consecuentes).

Las simulaciones presentadas en el capı́tulo 5 han confirmado que OSENF-

TaSe reduce la complejidad del controlador difuso con respecto a OSEFC. Del

mismo modo, se ha mostrado la mejora en la interpretabilidad de las reglas en

comparación con un controlador difuso basado en clustering tradicional. Por

último, se ha comparado la respuesta de OSENF-TaSe con la de un método de

control clásico que se ha diseñado haciendo uso de las ecuaciones diferenciales

de la planta. Los resultados han mostrado que OSENF-TaSe puede controlar la

planta con una calidad equivalente a la del controlador clásico y que, de hecho,

lo supera cuando se produce un cambio inesperado en la dinámica interna de la

planta.

Todos estos resultados demuestran que OSEFC y OSENF-TaSe son alterna-

tivas válidas para el diseño automático de controladores difusos cuando no e-

xiste información previa sobre la planta. No obstante, esta falta de información

provoca algunas limitaciones. En primer lugar, puesto que los controladores se

auto-diseñan en tiempo real a la vez que controlan la planta, los métodos pro-

puestos no se pueden aplicar directamente en plantas con estados crı́ticos que no

Conclusiones y lista de publicaciones 255

deben alcanzarse nunca. Sin embargo, en estos casos es posible aplicar métodos

de pre-entrenamiento para conseguir un controlador inicial lo suficientemente

estable con el que iniciar el proceso auto-organizativo. En segundo lugar, la

aplicación de estos métodos requiere que el perı́odo de muestreo del contro-

lador se pueda definir de forma que la salida de la planta dependa directamente

de la señal de control aplicada en el instante anterior. Por último, la falta de un

modelo matemático hace que sea prácticamente imposible proporcionar una de-

mostración formal de la estabilidad de estos controladores, si bien este aspecto

ha sido abordado desde una perspectiva cualitativa en este trabajo. A pesar de

lo anterior, las metodologı́as propuestas establecen un marco de trabajo inicial

para el desarrollo automático de controladores con el que alcanzar el objetivo

final de proporcionar un control inteligente sin ningún tipo de conocimiento

previo.

Por último, la parte final de la tesis se ha dedicado al estudio comparativo de

sistemas difusos de tipo 1 y 2 (véase el capı́tulo 6). El objetivo de dicho estudio

ha sido intentar responder a dos de las cuestiones que con mayor frecuencia se

plantean en el ámbito de los sistemas difusos de tipo 2: en primer lugar, ¿existen

diferencias significativas en el rendimiento de los distintos paradigmas difu-

sos? Y, en segundo lugar, ¿a partir de qué nivel de incertidumbre es un método

preferible al otro?

Con este objetivo en mente, se ha presentado un algoritmo evolutivo multi-

objetivo para la optimización de la base de reglas y los parámetros de sistemas

difusos de tipo 1 y 2 (en concreto, para sistemas difusos de tipo 2 intervalo-

valorados). Este algoritmo evolutivo proporciona un conjunto de sistemas Pa-

reto-óptimos con respecto a los objetivos contrapuestos de complejidad y pre-

cisión. El método de optimización propuesto incluye un módulo para el cálculo

de los consecuentes óptimos para un conjunto de reglas dado, a partir de datos

de entrada/salida. El uso de los consecuentes óptimos mejora la precisión de

las soluciones obtenidas por el algoritmo evolutivo, a la vez que reduce el es-

pacio de búsqueda. La aplicación de este método evolutivo permite obtener un

marco adecuado para llevar a cabo la comparación mencionada, pues propor-

ciona un conjunto de sistemas difusos que han sido optimizados en las mismas

condiciones.

Conclusiones y lista de publicaciones 256

En concreto, se han comparado sistemas difusos de tipo 1 (con entrada nu-

mérica y con entrada difusa) con sistemas de tipo 2 intervalo-valorados, en dos

contextos diferentes:

• En primer lugar, el método evolutivo propuesto se ha aplicado para op-

timizar los tres tipos de sistema difuso en varios problemas de aproxi-

mación funcional, bajo distintos niveles de ruido en los datos de entrada.

Los frentes Pareto obtenidos se han comparado utilizando un indicador de

calidad basado en el hiper-volumen de los frentes. Finalmente, se ha em-

pleado un test estadı́stico no paramétrico para determinar si las diferencias

detectadas son significativas o no.

• En segundo lugar, se ha estudiado una aplicación de ejemplo consistente

en el control de un servomotor no lineal. En este caso, se ha presen-

tado un entorno en el que los tres tipos de controladores presentan la

misma base de reglas y los mismos consecuentes. El controlador de tipo

1 con entrada numérica se ha obtenido de forma automática, aplicando el

método OSEFC propuesto en esta tesis, mientras que el controlador de tipo

1 con entrada difusa y el controlador de tipo 2 intervalo-valorado se han

obtenido a partir de éste, aplicando los mismos factores de incertidumbre

en ambos casos. De este modo, se ha conseguido que los tres controladores

sean lo más similares posible. En este contexto, se han realizado experi-

mentos con distintos niveles de ruido en las entradas del controlador y

con distintos factores de incertidumbre en el diseño de los controladores.

Los resultados obtenidos han mostrado que, en ausencia de ruido, el sistema

difuso de tipo 1 con entrada numérica proporciona un rendimiento satisfactorio.

Este tipo de sistema es el más simple y, por tanto, deberı́a ser utilizado siempre

que sea posible. Sin embargo, hay que tener en cuenta que en las aplicaciones

del mundo real es prácticamente imposible evitar la incertidumbre y que, por

tanto, se necesitan métodos más flexibles que sean capaces de manejarla. Por

otra parte, nuestro análisis ha mostrado que tanto los sistemas de tipo 1 con

entradas difusas como los de tipo 2 son capaces de manejar adecuadamente el

ruido hasta un cierto nivel. Concretamente, se ha observado que los primeros

Conclusiones y lista de publicaciones 257

responden mejor ante niveles de ruido bajos y medios, mientras que los segun-

dos aceptan niveles de ruido mayores. Estos resultados son relevantes, pues

abordan una de las crı́ticas que con mayor frecuencia se dirigen a los sistemas

difusos de tipo 2. Ası́, nos han permitido aclarar que su mejor rendimiento ante

altos niveles de incertidumbre no se debe al uso de más parámetros, sino a su

mecanismo para manejar dicha incertidumbre.

Como trabajo futuro, se pretende extender las capacidades de las metodo-

logı́as auto-organizativas propuestas, de acuerdo con los aspectos mencionados

anteriormente. Algunas de las cuestiones abiertas que se pueden abordar son: (i)

Aumento de la autonomı́a del controlador; por ejemplo, mediante la detección

automática del signo de la monotonı́a de la planta con respecto a la señal de

control, a partir de la respuesta de la planta. (ii) Diseño de mecanismos de se-

lección de entradas para OSENF-TaSe. (iii) Incorporación de nuevas técnicas de

soft-computing en los distintos pasos del proceso auto-organizativo; por ejemplo,

nuevos métodos para el aprendizaje de parámetros, técnicas de agrupamiento

(clustering) para la localización de los centros de las funciones de pertenencia

y reglas, etc. Igualmente, se pretende continuar el estudio de las propiedades

de los sistemas difusos de tipo 2, con el objetivo de desarrollar técnicas auto-

organizativas para su diseño automático.

Lista de publicaciones

En esta sección se recoge una lista de las publicaciones en las que han apare-

cido los distintos resultados presentados en esta tesis. Las publicaciones se han

agrupado en tres categorı́as, correspondientes a revistas cientı́ficas, congresos

internacionales y, por último, otras publicaciones que no están directamente

relacionadas con los temas tratados en esta tesis pero que han contribuido a

mi formación en el área de la Arquitectura y Tecnologı́a de Computadores.

Publicaciones en revistas cientı́ficas

1. Cara, A. B., Herrera, L. J., Pomares, H., and Rojas, I. (2012).New online self-

evolving neuro-fuzzy controller based on the TaSe-NF model. Information

Sciences. Aceptado con revisión menor.

Conclusiones y lista de publicaciones 258

• Índice de impacto (JCR 2010): 2.836.

• Clasificación según la categorı́a:

– Computer Science, Information Systems: 10/128 (Q1)

2. Cara, A. B., Pomares, H., and Rojas, I. (2011). A new methodology for the

online adaptation of fuzzy self-structuring controllers. IEEE Transactions

on Fuzzy Systems., 19(3):449–464.

• Índice de impacto (JCR 2010): 2.695.

• Clasificación según la categorı́a:

– Computer Science, Artificial Intelligence: 14/108 (Q1)

– Engineering, Electrical and Electronic: 17/247 (Q1)

• Número de veces que ha sido citado: 1.

3. Cara, A. B., Pomares, H., Rojas, I., Lendek, Zs., and Babuška, R. (2010). On-

line self-evolving fuzzy controller with global learning capabilities. Evolv-

ing systems, 1(4):225–239.

• Número de veces que ha sido citado: 2.

Congresos internacionales

1. Cara, A. B., Rojas, I., Pomares, H., Wagner, C., and Hagras, H. (2011). On

comparing non-singleton type-1 and singleton type-2 fuzzy controllers for

a nonlinear servo system. In 2011 IEEE Symposium on Advances in Type-2

Fuzzy Logic Systems (T2FUZZ), pages 126–133.

2. Herrera, L. J., Ghinea, R. I., Cara, A. B., Paravina, R. D., Pérez, M. M. (2011).

On Color Threshold Calculations In Oral Tissues And Dental Materials.

Histology And Histopathology, vol 26, num. SUPL 1, pages. 306–306.

3. Cara, A. B., Lendek, Zs., Babuška, R., Pomares, H., and Rojas, I. (2010).

Online self-organizing adaptive fuzzy controller: application to a nonlin-

ear servo system. In Proc. 2010 IEEE World Congress on Computational

Intelligence, pages 2491–2498.

Conclusiones y lista de publicaciones 259

4. Cara, A. B., Pomares, H., and Rojas, I. (2010). An algorithm for online

self-organization of fuzzy controllers. Lecture Notes in Artificial Intelligence,

volume 6097, pages 212–221. Springer Berlin Heidelberg.

Otras publicaciones

1. Pomares, H., Rojas, I., Guillén, A., González, J., Valenzuela, O., Florido,J. P.,

Urquiza, J. M, Cara, A. B., Lopez-Mansilla, L., Egea-Serrano, S. (2011). De-

sarrollo de un entorno integrado para un computador didáctico elemental

para la asignatura de Fundamentos de Informática del nuevo grado en In-

genierı́a de Tecnologı́as de Telecomunicaciones. In Enseñanza y aprendizaje

de Ingenierı́a de Computadores, vol. 1, pages 43–49.

2. Pomares, H., Rojas, I., Guillén, A., Herrera, L.J., Rubio, G., Florido, J.P.,

Urquiza, J.M, Cara, A.B., Lopez-Mansilla, L., Egea-Serrano, S. (2009). Im-

plementation of a didactic interpreter for CODE-2. In V International Con-

ference on Multimedia and Information and Communication Technologies in Ed-

ucation Research, Lisbon, Portugal. Reflections and Innovations in Integrating

ICT in Education, Vol.2. pages 960-964.

3. Pomares, H., Garcia-Garcia, C., Rojas, I., Damas, M., González, J., Florido,

J.P., Urquiza, J.M, Cara, A.B., Lopez-Mansilla, L., Egea-Serrano, S. (2009).

Teaching Digital Systems Design with a New Didactic Environment through

the Internet. In V Internacional Conference on Multimedia and Information and

Communication Technologies in Education Research, Lisbon, Portugal. Reflec-

tions and Innovations in Integrating ICT in Education, Vol.2. pages 1021-1026.

4. Cara, A.B., Moreno, C., Cañas, A. (2008). Virtual whiteboard and chat for

a learning management system. In Proceedings of the 2008 IADIS Interna-

tional Conference on E-Learning, Vol. 1, pages 263-270.

5. Cara, A.B., Moreno, C., Cañas, A. (2008). Pizarra virtual y chat para una

plataforma de teleformación. In Actas de las XIV Jornadas de Enseñanza

Universitaria de la Informática, pages 619-626.

Appendix A

Description of the plants used in
this dissertation

The methodologies presented in this dissertation do not use the information

about the differential equations of the plants. For this reason, the plants used

for experimentation have only been described from a qualitative point of view.

However, their mathematical models are gathered in this appendix for the inter-

ested reader.

A.1 Tank of liquid

The plant known as tank of liquid or water tank [Ogata, 2001] (see Fig. 4.12) rep-

resents a tank with a valve that controls the introduction of liquid, and a vent in

its lower side that lets the liquid out. The amount of liquid that gets in the tank

is proportional to the voltage v applied to the entrance valve, whilst the liquid

that flows out is proportional to the square root of the level reached by the liquid

inside. The change in the amount of liquid in the tank is equal to the difference

between the amount of liquid getting in and the amount of liquid getting out.

Thus, the nonlinear differential equation that defines the level of liquid H stored

in the tank is given by
dVol

dt
= A

dH
dt

= bv − a
√

H (A.1)

where Vol is the volume of liquid inside the tank (measured in m3), A is the

area of the transversal section of the tank, b is a constant associated to the liquid

Description of the plants used in this dissertation 262

TABLE A.1: Parameters of the tank of liquid

Symbol Parameter Value

A Area of the section of the tank 10 m2

a Constant for the exit rate 1 m5/2 · s−1

b Constant for the entrance rate 2.5 m3 · (Vs)−1

entrance rate, a is a constant related to the liquid exit rate. The level of liquid is

measured in meters.

The control objective for this problem is to adjust the power of the liquid

entrance so as to achieve a determined height in the liquid level. The voltage

applied to the plant can vary in the range [0, 5] V. Note that negative control

signals are not allowed, which means that the only way to decrease the level of

liquid in the tank is to stop the liquid entrance (i.e., close the valve) and wait for

the liquid to flow out.

Table A.1 shows the values of the parameters used for the experiment pre-

sented in section 4.4.2.1.

A.2 Mechanical suspension system

In this section, we describe the plant known as mechanical suspension system (see

Fig. 4.14), whose model was provided by the Delft Center for Systems and Con-

trol (Delft University of Technology, The Netherlands). This model is formed by

a sprung mass M1 that represents a body, and an unsprung mass M2 represent-

ing the mechanical components whose duty is to move the body. Between these

two elements there is a transfer system, which is characterized by a spring K1

and a damper D. Finally, a spring K2 serves as a model of the compressibility of

the mechanical components.

The state of the system is given by x = [v1, f1, v2, f2], where v1 is the body ver-

tical velocity, f1 is the force associated with the transfer system, v2 is the vertical

velocity of the mechanical components and f2 is the force associated with them.

The velocities are measured in meters per second and the forces are measured in

Description of the plants used in this dissertation 263

Newtons. In this case, the control objective is to make the output variable follow

a desired trajectory r.

The dynamics of the system can be modeled by the following nonlinear dif-

ferential equations:

v̇1 =
1

M1
(− f1 − D(v1 − v2))

ḟ1 =
cosh2(γ f1)

γ
(v1 − v2)

v̇2 =
1

M2
(f1 + D(v1 − v2)) − f2

ḟ2 =K2(v2 − u)

y =v1 (A.2)

where u is the control signal, y is the output of the system and γ is a constant

associated with the transfer system. The values of all the parameters are given

in Table A.2.

TABLE A.2: Parameters of the suspension system

Symbol Parameter Value

M1 Mass of the moving body 305 kg

M2 Mass of the mechanical components 38 kg

γ Constant for the transfer system 38 · 10−6 m ·N−1

K2 Compressibility of mechanical components 231 · 103 N ·m−1

D Damper 6000 N · s ·m−1

A.3 1-DOF Helicopter setup

In this section, we describe a simple 1-DOF helicopter setup (see Fig. 4.17), also

from the Delft Center for Systems and Control. This setup consists of a beam

attached to a fixed pole. The beam can freely rotate in the vertical plane while

the horizontal position is fixed. At the end of the beam there is a DC motor with

a propeller attached. The control input u is the voltage applied to the motor to

Description of the plants used in this dissertation 264

control the elevation angle of the beam. It takes values in the range [−1, 1], where

-1 represents the maximal voltage (in absolute value) that makes the propeller

and the beam rotate in the negative sense of α, and +1 is the maximal voltage that

causes rotation of the beam in the positive sense of α. There are two measured

outputs, namely the angular velocity ω of the propeller and the angle α of the

beam. The former takes values in the range [-1,1], representing the maximal

negative and positive angular velocity, respectively. The latter is measured in

radians. The control objective is to make the angle α follow a specific reference

trajectory in the range [-1,1].

The nonlinear differential equations that govern this plant are the following:

τω̇ + ω = K1u

α̈ + bα̇ + K2 sinα = K3ω (A.3)

Table A.3 summarizes the meaning and values of all the parameters involved.

TABLE A.3: Parameters of the helicopter setup

Symbol Parameter Value

τ Time constant of the motor 0.3 s

b Damping (viscous friction) of the beam’s motion 0.5491 s−1

K1 Gain control signal-propeller’s velocity 1.3 V · s · rad−1

K2 Constant of influence of the gravity force 0.8374 rad · s−2

K3 Gain propeller’s velocity-beam’s ang. acceleration 0.75 s

A.4 Nonlinear servo system

In this section, we present the experimental setup known as nonlinear servo sys-

tem, from the Delft Center for Systems and Control (Delft University of Tech-

nology, The Netherlands). This system consists of a weight attached to a disk

that is actuated by a DC motor and rotates in a vertical plane, as depicted in

Fig. 4.22. The presence of the extra weight introduces a gravity term that causes

Description of the plants used in this dissertation 265

the system’s nonlinear behavior. Thus, the control objective is to compensate

this nonlinearity in order to make the position of the disk (measured as an angle

θ) track a desired reference trajectory r.

The mathematical model of the plant is defined by

ẋ = f (x, u) = Ax + Bu + G

=

[
0 1
0 −K2−bR

RJ

]
x +

[
0
K
RJ

]
u −

[
0

mgl
J sin(θ)

]
(A.4)

where x =
[
θ, θ̇

]T
∈ R2 is the state of the plant, given by the angle θ (measured

in radians) and the angular velocity θ̇ (measured in rad/s); u is the control sig-

nal, and G =

(
−

mgl
J

sin(θ)
)

is the gravity term. The control signal is the voltage

applied to the plant, whose values range in [−10, 10] V.

Table A.4 gathers the meaning and value of all the parameters involved. It

has to be noted that these parameters correspond to the configuration of the real

experimental setup.

TABLE A.4: Parameters of the nonlinear servo system

Symbol Parameter Value

J Moment of inertia of the rotor 1.91 · 10−4 kg ·m2

b Damping of the mechanical system 3 · 10−6 kg · s−1

K Electromotive force constant 0.0536 N ·m ·A−1

R Electric resistance 9.5 Ω

m Mass of the weight 0.055 kg

l Length from the center of the disk to the center of mass 0.042 m

g Gravity acceleration 9.81 m · s−2

Appendix B

Additional tables of results for
the multi-objective evolutionary
algorithm

In this appendix, we present the numeric data corresponding to the experimen-

tation presented in section 6.4.1.2 for the multi-objective optimization of type-1

and type-2 fuzzy systems. The following tables depict the mean values and

standard deviations of the quality indicators obtained for each function, level

of noise, and type of fuzzy system, i.e., the information represented in Fig. 6.8.

Table B.1 shows the information obtained during the training process, whilst

Table B.2 gathers the data obtained during test.

Additional tables of results for the multi-objective evolutionary algorithm 268

TA
B

L
E

B
.1

:A
ve

ra
ge

qu
al

it
y

in
di

ca
to

rs
of

th
e

Pa
re

to
fr

on
ts

ob
ta

in
ed

by
th

e
M

O
EA

fo
r

th
e

th
re

e
ty

pe
s

of
FL

Ss
(t

ra
in

in
g)

Fu
nc

ti
on

FL
S

N
oi

se
le

ve
l(
σ

)
0

0.
05

0.
1

0.
15

0.
2

0.
25

0.
3

0.
4

0.
5

f 1

ST
1

0.
17

2
0.

17
8

0.
18

7
0.

22
8

0.
24

9
0.

27
3

0.
29

4
0.

35
9

0.
41

0
±

0.
00

9
±

0.
00

9
±

0.
00

9
±

0.
01

1
±

0.
00

8
±

0.
01

5
±

0.
00

7
±

0.
01

1
±

0.
01

6

N
ST

1
0.

13
3

0.
15

0
0.

18
5

0.
21

7
0.

23
3

0.
27

2
0.

29
6

0.
36

9
0.

40
9

±
0.

01
0
±

0.
00

5
±

0.
00

5
±

0.
00

8
±

0.
00

5
±

0.
00

6
±

0.
00

6
±

0.
00

6
±

0.
00

3

T2
0.

16
6

0.
17

5
0.

18
1

0.
22

3
0.

24
3

0.
26

0
0.

28
7

0.
32

6
0.

38
8

±
0.

00
9
±

0.
01

0
±

0.
01

0
±

0.
01

7
±

0.
01

1
±

0.
01

6
±

0.
02

1
±

0.
04

4
±

0.
03

4

f 1
0

ST
1

0.
12

6
0.

15
8

0.
18

5
0.

22
8

0.
26

6
0.

28
7

0.
35

3
0.

38
6

0.
44

4
±

0.
02

2
±

0.
02

3
±

0.
02

5
±

0.
03

6
±

0.
02

9
±

0.
04

3
±

0.
03

2
±

0.
04

4
±

0.
07

7

N
ST

1
0.

11
2

0.
14

5
0.

19
1

0.
22

9
0.

28
9

0.
30

8
0.

36
2

0.
41

9
0.

46
8

±
0.

01
1
±

0.
00

9
±

0.
00

8
±

0.
01

2
±

0.
00

6
±

0.
00

5
±

0.
01

0
±

0.
00

4
±

0.
01

2

T2
0.

14
9

0.
14

9
0.

18
0

0.
20

6
0.

25
1

0.
29

2
0.

30
6

0.
36

2
0.

42
1

±
0.

01
6
±

0.
01

3
±

0.
01

6
±

0.
03

0
±

0.
03

9
±

0.
04

3
±

0.
04

8
±

0.
07

8
±

0.
05

3

f 2

ST
1

0.
11

0
0.

13
6

0.
17

1
0.

21
3

0.
25

9
0.

29
2

0.
35

6
0.

40
4

0.
46

7
±

0.
01

6
±

0.
01

2
±

0.
01

8
±

0.
02

6
±

0.
02

0
±

0.
02

4
±

0.
02

0
±

0.
02

4
±

0.
02

5

N
ST

1
0.

09
6

0.
13

4
0.

19
0

0.
22

7
0.

28
2

0.
33

3
0.

37
5

0.
42

1
0.

46
0

±
0.

00
8
±

0.
00

8
±

0.
00

8
±

0.
00

4
±

0.
00

5
±

0.
00

6
±

0.
00

6
±

0.
01

0
±

0.
00

9

T2
0.

10
7

0.
13

6
0.

17
6

0.
21

2
0.

24
3

0.
30

3
0.

32
9

0.
38

1
0.

44
4

±
0.

00
9
±

0.
01

0
±

0.
01

3
±

0.
02

1
±

0.
02

1
±

0.
03

0
±

0.
04

0
±

0.
02

3
±

0.
05

5

f 4

ST
1

0.
33

9
0.

36
5

0.
41

6
0.

45
9

0.
48

3
0.

51
8

0.
52

0
0.

54
9

0.
56

7
±

0.
02

3
±

0.
01

1
±

0.
00

9
±

0.
01

4
±

0.
01

8
±

0.
01

7
±

0.
03

6
±

0.
01

7
±

0.
01

1

N
ST

1
0.

29
9

0.
33

5
0.

39
0

0.
44

3
0.

46
5

0.
51

7
0.

52
9

0.
56

7
0.

57
0

±
0.

01
9
±

0.
01

7
±

0.
01

2
±

0.
01

3
±

0.
02

0
±

0.
01

3
±

0.
00

5
±

0.
01

4
±

0.
02

2

T2
0.

34
5

0.
36

3
0.

39
8

0.
43

4
0.

47
9

0.
50

7
0.

49
4

0.
51

2
0.

56
4

±
0.

01
1
±

0.
01

9
±

0.
02

9
±

0.
03

3
±

0.
02

5
±

0.
02

9
±

0.
03

4
±

0.
04

5
±

0.
02

0
C

on
ti

nu
ed

on
ne

xt
pa

ge

Additional tables of results for the multi-objective evolutionary algorithm 269
Ta

bl
e

B.
1

A
ve

ra
ge

qu
al

it
y

in
di

ca
to

rs
of

th
e

Pa
re

to
fr

on
ts

(t
ra

in
in

g)
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

Fu
nc

ti
on

FL
S

N
oi

se
le

ve
l(
σ

)
0

0.
05

0.
1

0.
15

0.
2

0.
25

0.
3

0.
4

0.
5

f 5

ST
1

0.
23

5
0.

24
1

0.
25

1
0.

26
6

0.
27

4
0.

28
8

0.
30

6
0.

34
3

0.
38

2
±

0.
01

3
±

0.
02

1
±

0.
01

3
±

0.
01

7
±

0.
01

7
±

0.
02

1
±

0.
01

6
±

0.
01

3
±

0.
01

4

N
ST

1
0.

20
7

0.
21

5
0.

22
6

0.
25

6
0.

27
3

0.
28

9
0.

31
9

0.
34

9
0.

40
6

±
0.

01
3
±

0.
01

5
±

0.
01

5
±

0.
01

3
±

0.
00

4
±

0.
01

1
±

0.
00

9
±

0.
00

8
±

0.
00

4

T
2

0.
25

1
0.

24
4

0.
25

2
0.

26
7

0.
27

6
0.

27
4

0.
28

5
0.

30
4

0.
35

6
±

0.
02

2
±

0.
01

8
±

0.
01

7
±

0.
00

9
±

0.
03

0
±

0.
01

6
±

0.
02

1
±

0.
02

3
±

0.
02

1

f 6

ST
1

0.
11

7
0.

14
2

0.
14

1
0.

15
4

0.
18

2
0.

20
3

0.
21

8
0.

26
1

0.
29

3
±

0.
01

6
±

0.
01

2
±

0.
01

4
±

0.
01

1
±

0.
00

9
±

0.
01

5
±

0.
01

9
±

0.
01

5
±

0.
01

4

N
ST

1
0.

11
8

0.
13

6
0.

14
1

0.
17

4
0.

18
4

0.
21

9
0.

23
0

0.
27

6
0.

30
1

±
0.

01
6
±

0.
00

9
±

0.
01

1
±

0.
01

1
±

0.
01

1
±

0.
00

6
±

0.
00

6
±

0.
00

7
±

0.
00

7

T
2

0.
12

8
0.

13
2

0.
14

1
0.

15
7

0.
16

6
0.

17
9

0.
20

1
0.

21
7

0.
27

4
±

0.
01

1
±

0.
01

1
±

0.
01

4
±

0.
01

1
±

0.
01

0
±

0.
02

2
±

0.
01

5
±

0.
02

7
±

0.
02

1

f 7

ST
1

0.
16

6
0.

17
1

0.
17

8
0.

19
9

0.
21

0
0.

22
3

0.
25

5
0.

27
5

0.
31

4
±

0.
01

4
±

0.
01

4
±

0.
01

8
±

0.
01

7
±

0.
01

3
±

0.
01

4
±

0.
01

2
±

0.
01

4
±

0.
01

3

N
ST

1
0.

17
8

0.
18

6
0.

19
2

0.
21

4
0.

22
5

0.
23

6
0.

27
1

0.
28

9
0.

33
1

±
0.

01
1
±

0.
01

5
±

0.
00

6
±

0.
01

1
±

0.
01

0
±

0.
01

0
±

0.
01

0
±

0.
00

5
±

0.
00

5

T
2

0.
17

9
0.

17
8

0.
18

7
0.

20
4

0.
20

8
0.

21
8

0.
25

2
0.

26
3

0.
29

9
±

0.
01

0
±

0.
01

2
±

0.
00

8
±

0.
00

8
±

0.
01

7
±

0.
01

7
±

0.
01

2
±

0.
01

3
±

0.
01

5

y 2

ST
1

0.
08

1
0.

09
5

0.
11

1
0.

13
9

0.
14

7
0.

19
0

0.
20

2
0.

24
2

0.
27

8
±

0.
00

7
±

0.
00

8
±

0.
00

7
±

0.
00

8
±

0.
01

4
±

0.
01

5
±

0.
01

5
±

0.
01

8
±

0.
00

9

N
ST

1
0.

06
7

0.
08

3
0.

10
6

0.
13

5
0.

15
9

0.
19

4
0.

21
4

0.
24

9
0.

32
1

±
0.

00
7
±

0.
00

5
±

0.
00

4
±

0.
00

2
±

0.
00

5
±

0.
00

6
±

0.
00

6
±

0.
00

4
±

0.
00

3

T
2

0.
09

4
0.

09
8

0.
09

9
0.

12
4

0.
16

4
0.

18
2

0.
20

4
0.

23
6

0.
24

9
±

0.
01

1
±

0.
01

9
±

0.
01

1
±

0.
02

4
±

0.
00

9
±

0.
02

0
±

0.
01

7
±

0.
02

1
±

0.
02

5
C

on
ti

nu
ed

on
ne

xt
pa

ge

Additional tables of results for the multi-objective evolutionary algorithm 270

Ta
bl

e
B.

1
A

ve
ra

ge
qu

al
it

y
in

di
ca

to
rs

of
th

e
Pa

re
to

fr
on

ts
(t

ra
in

in
g)

–
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

Fu
nc

ti
on

FL
S

N
oi

se
le

ve
l(
σ

)
0

0.
05

0.
1

0.
15

0.
2

0.
25

0.
3

0.
4

0.
5

y 3

ST
1

0.
04

3
0.

15
0

0.
27

6
0.

35
8

0.
45

4
0.

45
0

0.
50

1
0.

52
6

0.
51

5
±

0.
00

7
±

0.
01

0
±

0.
00

8
±

0.
02

7
±

0.
01

6
±

0.
01

6
±

0.
03

2
±

0.
02

1
±

0.
03

8

N
ST

1
0.

04
5

0.
16

9
0.

29
8

0.
39

3
0.

44
6

0.
49

7
0.

54
4

0.
56

9
0.

58
1

±
0.

00
5
±

0.
01

2
±

0.
00

6
±

0.
00

5
±

0.
00

4
±

0.
01

4
±

0.
01

6
±

0.
00

2
±

0.
00

2

T2
0.

07
8

0.
15

7
0.

23
4

0.
34

5
0.

42
4

0.
41

8
0.

50
5

0.
51

4
0.

53
1

±
0.

02
2
±

0.
01

8
±

0.
02

8
±

0.
04

6
±

0.
06

1
±

0.
05

7
±

0.
04

0
±

0.
04

7
±

0.
04

2

y 5

ST
1

0.
14

1
0.

19
8

0.
26

4
0.

34
7

0.
38

8
0.

40
5

0.
44

4
0.

51
8

0.
53

1
±

0.
00

6
±

0.
01

1
±

0.
00

9
±

0.
01

1
±

0.
01

4
±

0.
01

8
±

0.
02

1
±

0.
01

5
±

0.
03

2

N
ST

1
0.

13
3

0.
20

8
0.

30
8

0.
37

5
0.

41
7

0.
45

7
0.

47
3

0.
54

6
0.

56
7

±
0.

00
4
±

0.
00

6
±

0.
00

8
±

0.
00

2
±

0.
00

5
±

0.
00

3
±

0.
00

7
±

0.
00

2
±

0.
00

1

T2
0.

16
2

0.
20

4
0.

22
5

0.
33

4
0.

38
8

0.
37

8
0.

36
9

0.
45

0
0.

46
0

±
0.

00
3
±

0.
01

9
±

0.
02

1
±

0.
02

4
±

0.
01

4
±

0.
04

0
±

0.
03

7
±

0.
04

1
±

0.
04

8

Additional tables of results for the multi-objective evolutionary algorithm 271
TA

B
L

E
B

.2
:A

ve
ra

ge
qu

al
it

y
in

di
ca

to
rs

of
th

e
Pa

re
to

fr
on

ts
ob

ta
in

ed
by

th
e

M
O

EA
fo

r
th

e
th

re
e

ty
pe

s
of

FL
Ss

(v
al

id
at

io
n)

Fu
nc

ti
on

FL
S

N
oi

se
le

ve
l(
σ

)
0

0.
05

0.
1

0.
15

0.
2

0.
25

0.
3

0.
4

0.
5

f 1

ST
1

0.
18

3
0.

18
7

0.
18

4
0.

18
8

0.
19

6
0.

20
3

0.
20

9
0.

22
3

0.
27

7
±

0.
00

9
±

0.
00

8
±

0.
00

9
±

0.
01

0
±

0.
00

6
±

0.
01

0
±

0.
00

5
±

0.
01

2
±

0.
02

0

N
ST

1
0.

14
8

0.
14

8
0.

15
8

0.
16

2
0.

16
9

0.
17

5
0.

19
1

0.
22

3
0.

24
6

±
0.

00
9
±

0.
00

4
±

0.
00

5
±

0.
00

8
±

0.
00

6
±

0.
01

0
±

0.
00

9
±

0.
00

9
±

0.
01

0

T
2

0.
17

7
0.

18
2

0.
18

1
0.

18
7

0.
19

0
0.

19
1

0.
20

5
0.

21
1

0.
25

4
±

0.
01

0
±

0.
01

2
±

0.
01

0
±

0.
01

3
±

0.
00

6
±

0.
01

0
±

0.
01

7
±

0.
02

3
±

0.
02

4

f 1
0

ST
1

0.
14

3
0.

16
8

0.
16

5
0.

18
3

0.
18

5
0.

19
9

0.
21

1
0.

21
3

0.
25

4
±

0.
02

5
±

0.
02

6
±

0.
02

3
±

0.
03

2
±

0.
01

7
±

0.
03

2
±

0.
02

1
±

0.
02

6
±

0.
04

5

N
ST

1
0.

12
9

0.
13

9
0.

14
1

0.
15

1
0.

16
7

0.
18

1
0.

18
8

0.
22

9
0.

28
6

±
0.

01
3
±

0.
00

9
±

0.
01

0
±

0.
01

0
±

0.
00

9
±

0.
00

8
±

0.
00

9
±

0.
01

4
±

0.
01

7

T
2

0.
16

7
0.

15
9

0.
16

9
0.

17
1

0.
18

5
0.

20
3

0.
18

7
0.

21
5

0.
23

1
±

0.
01

8
±

0.
01

6
±

0.
01

6
±

0.
02

7
±

0.
02

1
±

0.
02

8
±

0.
02

5
±

0.
04

3
±

0.
03

1

f 2

ST
1

0.
11

6
0.

12
6

0.
12

3
0.

14
1

0.
15

1
0.

14
9

0.
19

5
0.

22
7

0.
27

2
±

0.
01

8
±

0.
01

3
±

0.
01

5
±

0.
01

8
±

0.
01

4
±

0.
01

0
±

0.
01

9
±

0.
02

1
±

0.
01

8

N
ST

1
0.

10
2

0.
11

2
0.

12
2

0.
13

8
0.

14
7

0.
17

2
0.

20
2

0.
27

8
0.

32
3

±
0.

00
8
±

0.
00

9
±

0.
00

9
±

0.
00

7
±

0.
00

7
±

0.
00

9
±

0.
01

4
±

0.
01

6
±

0.
01

3

T
2

0.
11

3
0.

12
6

0.
13

1
0.

14
1

0.
14

2
0.

15
8

0.
17

2
0.

20
2

0.
24

6
±

0.
00

9
±

0.
01

2
±

0.
01

3
±

0.
01

7
±

0.
01

7
±

0.
01

8
±

0.
01

9
±

0.
01

8
±

0.
04

1

f 4

ST
1

0.
35

8
0.

36
7

0.
37

6
0.

40
8

0.
42

2
0.

47
0

0.
48

1
0.

55
7

0.
67

6
±

0.
02

3
±

0.
01

0
±

0.
01

2
±

0.
02

1
±

0.
02

3
±

0.
03

2
±

0.
05

5
±

0.
02

8
±

0.
11

4

N
ST

1
0.

31
5

0.
32

7
0.

35
6

0.
37

2
0.

39
1

0.
45

9
0.

46
5

0.
53

8
0.

71
1

±
0.

02
0
±

0.
01

9
±

0.
02

4
±

0.
02

4
±

0.
03

3
±

0.
00

9
±

0.
01

9
±

0.
01

9
±

0.
06

5

T
2

0.
36

5
0.

36
5

0.
35

9
0.

38
6

0.
41

7
0.

44
6

0.
43

8
0.

50
4

0.
58

7
±

0.
00

9
±

0.
01

9
±

0.
02

6
±

0.
02

9
±

0.
02

0
±

0.
03

6
±

0.
02

0
±

0.
05

0
±

0.
04

0
C

on
ti

nu
ed

on
ne

xt
pa

ge

Additional tables of results for the multi-objective evolutionary algorithm 272

Ta
bl

e
B.

2
A

ve
ra

ge
qu

al
it

y
in

di
ca

to
rs

of
th

e
Pa

re
to

fr
on

ts
(v

al
id

at
io

n)
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

Fu
nc

ti
on

FL
S

N
oi

se
le

ve
l(
σ

)
0

0.
05

0.
1

0.
15

0.
2

0.
25

0.
3

0.
4

0.
5

f 5

ST
1

0.
24

3
0.

25
0

0.
24

9
0.

25
6

0.
24

0
0.

25
6

0.
25

6
0.

27
1

0.
28

2
±

0.
01

3
±

0.
02

3
±

0.
01

4
±

0.
02

3
±

0.
01

9
±

0.
02

8
±

0.
01

9
±

0.
01

7
±

0.
01

8

N
ST

1
0.

21
3

0.
20

9
0.

21
1

0.
22

4
0.

22
8

0.
23

5
0.

24
0

0.
25

0
0.

26
6

±
0.

01
4
±

0.
01

5
±

0.
01

6
±

0.
01

5
±

0.
00

4
±

0.
01

4
±

0.
01

4
±

0.
01

2
±

0.
01

1

T2
0.

25
9

0.
25

5
0.

25
7

0.
26

6
0.

26
0

0.
25

4
0.

25
2

0.
26

0
0.

27
7

±
0.

02
2
±

0.
01

9
±

0.
01

9
±

0.
01

1
±

0.
02

6
±

0.
01

5
±

0.
01

7
±

0.
01

3
±

0.
01

3

f 6

ST
1

0.
12

3
0.

14
3

0.
12

6
0.

13
1

0.
14

0
0.

14
4

0.
14

9
0.

16
3

0.
15

7
±

0.
01

4
±

0.
01

2
±

0.
01

5
±

0.
01

5
±

0.
00

8
±

0.
01

6
±

0.
01

6
±

0.
01

3
±

0.
01

3

N
ST

1
0.

12
5

0.
13

6
0.

12
8

0.
14

4
0.

13
5

0.
15

1
0.

15
1

0.
15

7
0.

17
4

±
0.

01
5
±

0.
00

9
±

0.
01

1
±

0.
01

1
±

0.
01

3
±

0.
00

7
±

0.
00

8
±

0.
01

1
±

0.
01

1

T2
0.

13
4

0.
13

3
0.

13
4

0.
14

0
0.

13
6

0.
13

3
0.

14
3

0.
14

3
0.

15
4

±
0.

01
0
±

0.
01

2
±

0.
01

1
±

0.
00

9
±

0.
00

8
±

0.
01

5
±

0.
01

1
±

0.
01

0
±

0.
01

4

f 7

ST
1

0.
17

1
0.

17
8

0.
17

6
0.

18
3

0.
18

4
0.

19
0

0.
20

0
0.

19
8

0.
22

1
±

0.
01

4
±

0.
01

6
±

0.
02

0
±

0.
01

8
±

0.
01

2
±

0.
01

4
±

0.
01

1
±

0.
01

2
±

0.
01

8

N
ST

1
0.

19
0

0.
19

3
0.

18
8

0.
19

9
0.

19
0

0.
19

8
0.

21
6

0.
21

4
0.

22
1

±
0.

01
1
±

0.
01

7
±

0.
00

5
±

0.
01

4
±

0.
01

2
±

0.
01

4
±

0.
01

4
±

0.
00

8
±

0.
00

9

T2
0.

18
5

0.
18

5
0.

18
7

0.
19

3
0.

18
7

0.
19

3
0.

19
8

0.
19

5
0.

22
2

±
0.

01
1
±

0.
01

2
±

0.
00

8
±

0.
00

8
±

0.
01

3
±

0.
01

0
±

0.
00

7
±

0.
00

9
±

0.
00

8

y 2

ST
1

0.
08

3
0.

09
3

0.
09

1
0.

10
2

0.
09

3
0.

12
0

0.
11

6
0.

13
1

0.
14

7
±

0.
00

7
±

0.
00

8
±

0.
00

7
±

0.
00

8
±

0.
00

9
±

0.
01

3
±

0.
00

8
±

0.
01

2
±

0.
00

7

N
ST

1
0.

07
0

0.
07

7
0.

07
8

0.
08

6
0.

09
0

0.
11

7
0.

11
4

0.
13

6
0.

14
9

±
0.

00
7
±

0.
00

5
±

0.
00

5
±

0.
00

4
±

0.
00

7
±

0.
00

7
±

0.
00

8
±

0.
00

6
±

0.
00

6

T2
0.

09
5

0.
09

6
0.

08
5

0.
09

4
0.

11
1

0.
11

3
0.

12
0

0.
12

6
0.

13
2

±
0.

01
0
±

0.
01

9
±

0.
00

8
±

0.
01

9
±

0.
00

9
±

0.
01

4
±

0.
01

3
±

0.
01

1
±

0.
01

3
C

on
ti

nu
ed

on
ne

xt
pa

ge

Additional tables of results for the multi-objective evolutionary algorithm 273
Ta

bl
e

B.
2

A
ve

ra
ge

qu
al

it
y

in
di

ca
to

rs
of

th
e

Pa
re

to
fr

on
ts

(v
al

id
at

io
n)

–
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

Fu
nc

ti
on

FL
S

N
oi

se
le

ve
l(
σ

)
0

0.
05

0.
1

0.
15

0.
2

0.
25

0.
3

0.
4

0.
5

y 3

ST
1

0.
04

3
0.

06
9

0.
13

2
0.

17
5

0.
23

5
0.

27
4

0.
30

5
0.

43
8

0.
55

7
±

0.
00

7
±

0.
01

0
±

0.
00

4
±

0.
01

0
±

0.
00

7
±

0.
01

3
±

0.
03

7
±

0.
02

3
±

0.
03

1

N
ST

1
0.

04
6

0.
08

4
0.

12
9

0.
19

8
0.

25
2

0.
32

6
0.

36
6

0.
46

3
0.

61
0

±
0.

00
5
±

0.
00

8
±

0.
01

0
±

0.
00

6
±

0.
00

7
±

0.
00

4
±

0.
02

0
±

0.
01

2
±

0.
01

1

T
2

0.
07

9
0.

08
6

0.
11

9
0.

16
7

0.
21

4
0.

23
8

0.
29

0
0.

39
7

0.
49

6
±

0.
02

2
±

0.
01

4
±

0.
01

8
±

0.
02

1
±

0.
03

8
±

0.
04

2
±

0.
02

5
±

0.
05

2
±

0.
05

7

y 5

ST
1

0.
14

9
0.

16
6

0.
17

8
0.

20
6

0.
23

6
0.

26
0

0.
30

0
0.

38
8

0.
41

5
±

0.
00

5
±

0.
01

1
±

0.
00

7
±

0.
00

6
±

0.
00

8
±

0.
01

0
±

0.
01

2
±

0.
01

4
±

0.
04

3

N
ST

1
0.

14
1

0.
16

6
0.

17
9

0.
21

5
0.

24
7

0.
29

3
0.

31
7

0.
41

4
0.

40
0

±
0.

00
4
±

0.
00

5
±

0.
01

5
±

0.
00

4
±

0.
00

7
±

0.
00

9
±

0.
00

3
±

0.
00

7
±

0.
00

6

T
2

0.
17

0
0.

17
7

0.
16

4
0.

19
9

0.
23

1
0.

23
0

0.
24

8
0.

30
2

0.
33

7
±

0.
00

5
±

0.
01

7
±

0.
01

1
±

0.
01

2
±

0.
00

7
±

0.
01

9
±

0.
02

4
±

0.
02

2
±

0.
03

4

Appendix C

High-performance computing
architecture for the MOEA

Parallel architectures have been employed for the experimentation related to

the multi-objective optimization of type-1 and type-2 FLS (see chapte 6), thus

providing a high-performance computing environment. As it is well known,

MOEAs are generally costly both in computation time and resources (mainly

memory space) [Coello et al., 2007; Zhang and Li, 2007]. For this reason we have

used the computer cluster BIOATC, available at the Department of Computer

Architecture and Computer Technology of the University of Granada. In this

appendix, we describe the configuration and main properties of this cluster.

The cluster BIOATC is made up of 19 hosts and provides up to 304 CPUs and

304 GB of memory. Fig. C.1 depicts the configuration of the cluster and the way

it has been used to distribute the execution of the experiments. The main node

is in charge of distributing the different instances of the experiments among the

remaining 18 nodes. The total number of problem instances tested is 270 (all

the combinations of the 10 functions, 9 levels of noise and 3 FLSs) and the total

number of executions is 2700 (i.e., 10 repetitions for each instance). Thus, the

work load has been distributed as uniformly as possible among all the nodes,

following a round-robin scheme [Silberschatz et al., 2008].

Each case of the optimization problem was executed in a separate MATLAB

instance in the assigned node. Additionally, MATLAB’s Global Optimization

Toolbox provides the possibility of using a pool of MATLAB workers to add

High-performance computing architecture for the MOEA 276

Node 0

16 CPUs @ 2.26 GHz

Memory: 16 GB

Node 17

16 CPUs @ 2.26 GHz

Memory: 16 GB

Main node

Instance i Instance i+1 Instance i+17

Matlab client

Matlab worker 1

Fitness(subpopulation_1)

Matlab worker 4

Fitness(subpopulation_4)

BIOATC cluster

19 Nodes (main + 18)

304 CPUs (total)

304 GB of memory (total)

FIGURE C.1: Use of the cluster BIOATC for the execution of the MOEA

another degree of parallelism [MATLAB, 2010b]. More precisely, these workers

can be used to evaluate the fitness of the population at each generation, by split-

ting the population into several subpopulations and evaluating them in parallel.

Although in theory it is possible to have as many workers as CPUs are available

in a node, the use of BIOATC is restricted to up to four workers per MATLAB

instance. Fig. C.1 shows the detail of the workers in node 1, which is the same

in all the other nodes.

Therefore, it can be considered that this procedure provides parallelism at

two different levels, in the following sense: (i) Task-parallelism is provided through

the distribution of the problem instances among the nodes in the system, and (ii)

data-parallelism is obtained through the distribution of subpopulations among

the workers for their evaluation. Nonetheless, it has to be kept in mind that,

strictly speaking, data-parallelism refers to the distribution of data across differ-

ent parallel computing resources [Rauber and Rünger, 2010] and, in this case,

we are referring to a set of individuals as “data”.

Bibliography

Alcalá, R., Alcalá-Fdez, J., Casillas, J., Cordón, O., and Herrera, F. (2006). Hybrid

learning models to get the interpretability-accuracy trade-off in fuzzy model-

ing. Soft Computing, 10(9):717–734.

Alcalá, R., Ducange, P., Herrera, F., Lazzerini, B., and Marcelloni, F. (2009).

A multiobjective evolutionary approach to concurrently learn rule and data

bases of linguistic Fuzzy-Rule-Based systems. IEEE Trans. Fuzzy Syst.,

17(5):1106–1122.

Alsina, C., Trillas, E., and Valverde, L. (1983). On some logical connectives for

fuzzy sets theory. Journal of mathematical analysis and applications, 93:15–26.

Andersen, H., Lotfi, A., and Tsoi, A. (1997). A new approach to adaptive fuzzy

control: the controller output error method. IEEE Trans. Syst., Man, Cybern. B,

27(4):686–691.

Angelov, P. (2004). A fuzzy controller with evolving structure. Information Sci-

ences, 161(1-2):21–35.

Angelov, P. and Buswell, R. (2002). Identification of evolving fuzzy rule-based

models. IEEE Trans. Fuzzy Syst., 10(5):667–677.

Angelov, P., Filev, D. P., and Kasabov, N. K. (2010). Evolving Intelligent Systems:

Methodology and Applications. Wiley-IEEE.

Angelov, P. and Kasabov, N. (2005). Evolving computational intelligence sys-

tems. 1st International Workshop on Genetic Fuzzy Systems.

Bibliography 278

Antonelli, M., Ducange, P., Lazzerini, B., and Marcelloni, F. (2010). Learning

concurrently data and rule bases of mamdani fuzzy rule-based systems by

exploiting a novel interpretability index. Soft Computing, 15:1981–1998.

Antsaklis, P. J. (1994). Defining intelligent control – report of the task force on

intelligent control. IEEE Control Syst. Mag., pages 4–5, 56–58.

Antsaklis, P. J. and Passino, K. M., editors (1993). An introduction to intelligent

and autonomous control. Kluwer Academic Publishers, Norwell, MA, USA.

Baeck, T., Fogel, D., and Michalewicz, Z. (1997). Handbook of Evolutionary Com-

putation. Taylor & Francis, 1 edition.

Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. Princeton Univer-

sity.

Bellomo, D., Naso, D., and Babuska, R. (2008). Adaptive fuzzy control of a non-

linear servo-drive: Theory and experimental results. Engineering Applications

of Artificial Intelligence, 21(6):846–857.

Biglarbegian, M., Melek, W., and Mendel, J. (2011). On the robustness of type-

1 and interval type-2 fuzzy logic systems in modeling. Information Sciences,

181(7):1325–1347.

Bikdash, M. (1999). A highly interpretable form of sugeno inference systems.

IEEE Trans. Fuzzy Syst., 7(6):686–696.

Bleris, L. G., Vouzis, P. D., Garcia, J. G., Arnold, M. G., and Kothare, M. V. (2007).

Pathways for optimization-based drug delivery. Control Engineering Practice,

15(10):1280–1291.

Bode, H. W. (1945). Network analysis and feedback amplifier design. Van Nostrand.

Bouchachia, A. (2010). Fuzzy classification in dynamic environments. Soft Com-

puting, 15(5):1009–1022.

Bouchachia, A. and Mittermeir, R. (2006). Towards incremental fuzzy classifiers.

Soft Computing, 11(2):193–207.

Bibliography 279

Box, G. E. P., Hunter, W. G., Hunter, J. S., and Hunter, W. G. (1978). Statistics

for Experimenters: An Introduction to Design, Data Analysis, and Model Building.

John Wiley & Sons.

Buckley, J. (1992). Universal fuzzy controllers. Automatica, 28(6):1245–1248.

Buckley, J. (1993). Sugeno type controllers are universal controllers. Automatica,

53:299–304.

Buckley, J. and Hayashi, Y. (1994). Can fuzzy neural networks approximate con-

tinuous fuzzy functions? Fuzzy Sets and Systems, 61:43–52.

Cao, Z. and Kandel, A. (1992). Investigations on the applicability of fuzzy infer-

ence. Fuzzy Sets and Systems, 49:151–169.

Cara, A. B., Herrera, L. J., Pomares, H., and Rojas, I. (2012). New online self-

evolving neuro-fuzzy controller based on the TaSe-NF model. Information Sci-

ences. Accepted with minor revision.

Cara, A. B., Lendek, Zs., Babuska, R., Pomares, H., and Rojas, I. (2010a). On-

line self-organizing adaptive fuzzy controller: application to a nonlinear servo

system. In Proc. 2010 IEEE World Congress on Computational Intelligence, pages

2491–2498.

Cara, A. B., Pomares, H., and Rojas, I. (2010b). An algorithm for online self-

organization of fuzzy controllers. In Garcı́a-Pedrajas, N., Herrera, F., Fyfe, C.,

Benı́tez, J. M., and Ali, M., editors, Trends in Applied Intelligent Systems, volume

6097, pages 212–221. Springer Berlin Heidelberg, Berlin, Heidelberg.

Cara, A. B., Pomares, H., and Rojas, I. (2011a). A new methodology for the

online adaptation of fuzzy self-structuring controllers. IEEE Trans. Fuzzy Syst.,

19(3):449–464.

Cara, A. B., Pomares, H., Rojas, I., Lendek, Zs., and Babuska, R. (2010c). On-

line self-evolving fuzzy controller with global learning capabilities. Evolving

systems, 1(4):225–239.

Bibliography 280

Cara, A. B., Rojas, I., Pomares, H., Wagner, C., and Hagras, H. (2011b). On

comparing non-singleton type-1 and singleton type-2 fuzzy controllers for a

nonlinear servo system. In 2011 IEEE Symposium on Advances in Type-2 Fuzzy

Logic Systems (T2FUZZ), pages 126–133.

Cárdenas, E., Castillo, J., Cordón, O., Herrera, F., and Peregrı́n, A. (1993). In-

fluence of fuzzy implication functions and defuzzification methods in fuzzy

control. BUSEFAL, 57:69–79.

Casillas, J. (2003). Accuracy Improvements in Linguistic Fuzzy Modeling. Springer-

Verlag New York, Inc., Secaucus, NJ, USA.

Casillas, J., Cordón, O., del Jesus, M. J., and Herrera, F. (2005). Tuning of fuzzy

rule deep structures preserving interpretability and its interaction with fuzzy

rule set reduction. IEEE Trans. Fuzzy Syst., 13(1):12–29.

Casillas, J., Cordón, O., Triguero, F. H., and Magdalena, L. (2003). Interpretability

Issues in Fuzzy Modeling (Studies in Fuzziness and Soft Computing). Springer, 1

edition.

Castillo, E. (1991). Expert systems: Uncertainty and learning. Elsevier Applied

Science.

Castillo, O., Melin, P., Alanis, A., Montiel, O., and Sepulveda, R. (2011). Op-

timization of interval type-2 fuzzy logic controllers using evolutionary algo-

rithms. Soft Computing, 15(6):1145–1160.

Castro, J. (1995). Fuzzy logic controllers are universal approximators. IEEE

Trans. Syst., Man, Cybern., 25(4):629–635.

Castro, J. and Delgado, M. (1996). Fuzzy systems with defuzzification are uni-

versal approximators. IEEE Trans. Syst. Man and Cyber., 26(1):149–152.

Celikyilmaz, A. and Turksen, I. B. (2008). Uncertainty modeling of improved

fuzzy functions with evolutionary systems. IEEE Trans. Syst., Man, Cybern. B,

38(4):1098–1110.

Bibliography 281

Chang, M. (2010). An adaptive self-organizing fuzzy sliding mode controller for

a 2-DOF rehabilitation robot actuated by pneumatic muscle actuators. Control

Engineering Practice, 18(1):13–22.

Chen, C. H., Lin, C. J., and Lin, C. T. (2009). Nonlinear system control using

adaptive neural fuzzy networks based on a modified differential evolution.

IEEE Trans. Syst., Man, Cybern. C, 39(4):459–473.

Chen, F. and Khalil, H. (1995). Adaptive control of a class of nonlinear discrete-

time systems using neural networks. IEEE Trans. Autom. Control, 40(5):791–

801.

Chen, L. and Narendra, K. S. (2003). Intelligent control using multiple neu-

ral networks. International Journal of Adaptive Control and Signal Processing,

17(6):417–430.

Chen, P., Hsu, C., Lee, T., and Wang, C. (2008). Fuzzy-identification-based adap-

tive backstepping control using a self-organizing fuzzy system. Soft Comput-

ing, 13(7):635–647.

Cherkassky, V., Gehring, D., and Mulier, F. (1996). Comparison of adaptive

methods for function estimation from samples. IEEE Trans. Neural Netw.,

7(4):969–984.

Coello, C. A. C., Lamont, G. B., and Veldhuizen, D. A. V. (2007). Evolutionary

algorithms for solving multi-objective problems. Springer.

Cordón, O. (2001). Genetic fuzzy systems: evolutionary tuning and learning of fuzzy

knowledge bases. World Scientific.

Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., and Magdalena, L. (2004). Ten

years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets

and Systems, 141(1):5–31.

Cordón, O. (2011). A historical review of evolutionary learning methods for

mamdani-type fuzzy rule-based systems: Designing interpretable genetic

fuzzy systems. International Journal of Approximate Reasoning, 52(6):894–913.

Bibliography 282

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE Trans.

Inf. Theory, 13(1):21–27.

da Fonseca, V., Fonseca, C., and Hall, A. (2001). Inferential performance assess-

ment of stochastic optimisers and the attainment function. In Zitzler, E., Deb,

K., Thiele, L., Coello, C., and Corne, D., editors, Evolutionary Multi-Criterion

Optimization, Proceedings, volume 1993, pages 213–225. Springer-Verlag Berlin,

Berlin.

Dagher, I., Georgiopoulos, M., Heileman, G., and Bebis, G. (1999). An ordering

algorithm for pattern presentation in fuzzy ARTMAP that tends to improve

generalization performance. IEEE Trans. Neural Netw., 10(4):768–778.

de Barros, J. and Dexter, A. (2007). Evolving fuzzy model-based adaptive con-

trol. In IEEE International Conference on Fuzzy Systems, 2007. FUZZ-IEEE 2007,

pages 1–5.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. John

Wiley and Sons.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist mul-

tiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput., 6(2):182–

197.

Derrac, J., Garcı́a, S., Molina, D., and Herrera, F. (2011). A practical tutorial

on the use of nonparametric statistical tests as a methodology for compar-

ing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary

Computation, 1(1):3–18.

Doctor, F., Hagras, H., and Callaghan, V. (2005a). A fuzzy embedded agent-

based approach for realizing ambient intelligence in intelligent inhabited en-

vironments. IEEE Trans. Syst., Man, Cybern. A, 35(1):55– 65.

Doctor, F., Hagras, H., and Callaghan, V. (2005b). A type-2 fuzzy embedded

agent to realise ambient intelligence in ubiquitous computing environments.

Information Sciences, 171(4):309–334.

Bibliography 283

Driankov, D., Hellendoorn, H., and Reinfrank, M. (1993). An introduction to fuzzy

control. Springer-Verlag.

Dubois, D. and Prade, H. M. (1980). Fuzzy sets and systems: theory and applications.

Academic Press.

Echanobe, J., Delcampo, I., and Bosque, G. (2007). An adaptive neuro-fuzzy

system for efficient implementations. Information Sciences, 178(9):2150–2162.

Eiben, A. E. and Smith, J. (2008). Introduction to Evolutionary Computing. Springer.

Eshelman, L. and Schaffer, J. (1993). Real-coded genetic algorithms and interval-

schemata. Morgan Kaufmann Pub Inc, San Mateo.

Espejo, P. G., Ventura, S., and Herrera, F. (2010). A survey on the application

of genetic programming to classification. IEEE Trans. Syst., Man, Cybern. C,

40(2):121–144.

Evans, W. R. (1950). Control system synthesis by root locus method. IEEE Trans.

American Institute of Electrical Engineers, 69(1):66–69.

Figueroa, J., Posada, J., Soriano, J., Melgarejo, M., and Rojas, S. (2005). A type-

2 fuzzy controller for tracking mobile objects in the context of robotic soccer

games. In IEEE International Conference on Fuzzy Systems, 2005. FUZZ-IEEE

2007, pages 359–364.

Filev, D. and Yager, R. (1993). An adaptive approach to defuzzification based on

level sets. Fuzzy Sets and Systems, 54:355–360.

Florido, J. P., Pomares, H., and Rojas, I. (2011). Generating balanced learning and

test sets for function approximation problems. International Journal of Neural

Systems, 21(03):247–263.

Fonseca, C. M. and Fleming, P. J. (1993). Genetics algorithms for multiobjective

optimization - Formulation, discussion and generalization. Morgan Kaufmann Pub

Inc, San Mateo.

French, R. (1999). Catastrophic forgetting in connectionist networks. Trends in

Cognitive Sciences, 3(4):128–135.

Bibliography 284

Friedman, M. (1937). The use of ranks to avoid the assumption of normality im-

plicit in the analysis of variance. Journal of the American Statistical Association,

32(200):675–701.

Gacto, M. J., Alcalá, R., and Herrera, F. (2009). Adaptation and application of

multi-objective evolutionary algorithms for rule reduction and parameter tun-

ing of fuzzy rule-based systems. Soft Computing, 13(5):419–436.

Galluzzo, M. and Cosenza, B. (2009). Control of the biodegradation of mixed

wastes in a continuous bioreactor by a type-2 fuzzy logic controller. Computers

& Chemical Engineering, 33(9):1475–1483.

Gao, Y. and Er, M. J. (2003). Online adaptive fuzzy neural identification and con-

trol of a class of MIMO nonlinear systems. IEEE Trans. Fuzzy Syst., 11(4):462–

477.

Gao, Y. and Er, M. J. (2005). An intelligent adaptive control scheme for postsur-

gical blood pressure regulation. IEEE Trans. Neural Netw., 16(2):475–483.

Garcı́a, S., Fernández, A., Luengo, J., and Herrera, F. (2010). Advanced nonpara-

metric tests for multiple comparisons in the design of experiments in compu-

tational intelligence and data mining: Experimental analysis of power. Infor-

mation Sciences, 180(10):2044–2064.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1st edition.

González, J., Rojas, I., Pomares, H., Herrera, L. J., Guillén, A., Palomares, J. M.,

and Rojas, F. (2007). Improving the accuracy while preserving the inter-

pretability of fuzzy function approximators by means of multi-objective evo-

lutionary algorithms. International Journal of Approximate Reasoning, 44(1):32–

44.

González, J., Rojas, I., Pomares, H., Rojas, F., and Palomares, J. (2006). Multi-

objective evolution of fuzzy systems. Soft Computing, 10(9):735–748.

Bibliography 285

Grossberg, S. (1988). Nonlinear neural networks - principles, mechanisms, and

architectures. Neural Networks, 1(1):17–61.

Guenounou, O., Belmehdi, A., and Dahhou, B. (2009). Multi-objective optimiza-

tion of TSK fuzzy models. Expert Systems with Applications, 36(4):7416–7423.

Guillaume, S. (2001). Designing fuzzy inference systems from data: An

interpretability-oriented review. IEEE Trans. Fuzzy Syst., 9(3):426–443.

Guillén, A., Pomares, H., González, J., Rojas, I., Valenzuela, O., and Prieto, B.

(2009). Parallel multiobjective memetic RBFNNs design and feature selection

for function approximation problems. Neurocomputing, 72(16-18):3541–3555.

Gupta, M. and Qi, J. (1991). Theory of t-norms and fuzzy inference methods.

Fuzzy Sets and Systems, 40:431–450.

Gupta, M. M. (2000). Soft computing and intelligent systems: theory and applications.

Elsevier.

Hagras, H. (2004). A hierarchical type-2 fuzzy logic control architecture for au-

tonomous mobile robots. IEEE Trans. Fuzzy Syst., 12(4):524–539.

Hagras, H. (2007). Type-2 FLCs: a new generation of fuzzy controllers. IEEE

Computational Intelligence Magazine, 2(1):30–43.

Hagras, H., Callaghan, V., and Colley, M. (2004). Learning and adaptation

of an intelligent mobile robot navigator operating in unstructured environ-

ment based on a novel online Fuzzy-Genetic system. Fuzzy Sets and Systems,

141(1):107–160.

Hagras, H., Doctor, F., Callaghan, V., and Lopez, A. (2007). An incremental

adaptive life long learning approach for type-2 fuzzy embedded agents in

ambient intelligent environments. IEEE Trans. Fuzzy Syst., 15(1):41–55.

Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. Prentice Hall, 2

edition.

Hazen, H. L. (1934). Theory of servomechanism. Journal of the Franklin Institute,

218:543–580.

Bibliography 286

Hellendoorn, H. and Thomas, C. (1993). The -quality defuzzification method.

Fifth IFSA World Congress, pages 1159–1162.

Herrera, F. (2008). Genetic fuzzy systems: taxonomy, current research trends

and prospects. Evolutionary Intelligence, 1:27–46.

Herrera, F., Lozano, M., Pérez, E., Sánchez, A. M., and Villar, P. (2002). Multiple

crossover per couple with selection of the two best offspring: An experimental

study with the blx-alpha crossover operator for real-coded genetic algorithms.

In Proceedings of the 8th Ibero-American Conference on AI: Advances in Artificial

Intelligence, IBERAMIA 2002, pages 392–401. Springer-Verlag.

Herrera, F., Lozano, M., and Sanchez, A. (2003). A taxonomy for the crossover

operator for real-coded genetic algorithms: An experimental study. Interna-

tional Journal of Intelligent Systems, 18(3):309–338.

Herrera, L. J. (2007). Sistemas inteligentes adaptativos para aproximación y predicción

utilizando arquitecturas avanzadas (in Spanish). PhD thesis, University of

Granada.

Herrera, L. J., Pomares, H., Rojas, I., Guillén, A., Gonzalez, J., Awad, M., and

Herrera, A. (2007). Multigrid-based fuzzy systems for time series prediction:

CATS competition. Neurocomputing, 70(13-15):2410–2425.

Herrera, L. J., Pomares, H., Rojas, I., Guillén, A., Rubio, G., and Urquiza,

J. (2011a). Global and local modelling in RBF networks. Neurocomputing,

74(16):2594–2602.

Herrera, L. J., Pomares, H., Rojas, I., Guillén, A., and Valenzuela, O. (2011b). The

TaSe-NF model for function approximation problems: Approaching local and

global modelling. Fuzzy Sets and Systems, 171(1):1–21.

Herrera, L. J., Pomares, H., Rojas, I., Valenzuela, O., and Prieto, A. (2005). TaSe,

a taylor series-based fuzzy system model that combines interpretability and

accuracy. Fuzzy Sets and Systems, 153:403–427.

Holland, J. H. and Reitman, J. S. (1977). Cognitive systems based on adaptive

algorithms. SIGART Bull., (63):49–49.

Bibliography 287

Hornick, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward

networks are universal approximators. Neural Networks, 2(5):359–366.

Hsu, C. (2007). Self-Organizing adaptive fuzzy neural control for a class of non-

linear systems. IEEE Trans. Neural Netw., 18(4):1232–1241.

Hsu, C. and Lin, C. (2005). Fuzzy-identification-based adaptive controller design

via backstepping approach. Fuzzy Sets and Systems, 151(1):43–57.

Ishibuchi, H. (2007). Multiobjective genetic fuzzy systems: Review and future

research directions. In 2007 IEEE International Conference on Fuzzy Systems,

pages 911–916.

Ishibuchi, H., Murata, T., and Turksen, I. (1997). Single-objective and two-

objective genetic algorithms for selecting linguistic rules for pattern classifi-

cation problems. Fuzzy Sets and Systems, 89(2):135–150.

Ishibuchi, H., Nakashima, T., and Murata, T. (2001). Three-objective genetics-

based machine learning for linguistic rule extraction. Information Sciences,

136(1-4):109–133.

Ishibuchi, H. and Nojima, Y. (2007). Analysis of interpretability-accuracy trade-

off of fuzzy systems by multiobjective fuzzy genetics-based machine learning.

International Journal of Approximate Reasoning, 44(1):4–31.

Ishibuchi, H., Nozaki, K., Yamamoto, N., and Tanaka, H. (1995). Selecting fuzzy

if-then rules for classification problems using genetic algorithms. IEEE Trans.

Fuzzy Syst., 3(3):260–270.

Isidori, A. (1995). Nonlinear Control Systems. Springer, 3rd edition.

Jager, R. (1995). Fuzzy Logic in Control. Tesis Doctoral, Amsterdam.

Jammeh, E. A., Fleury, M., Wagner, C., Hagras, H., and Ghanbari, M. (2009).

Interval type-2 fuzzy logic congestion control for video streaming across IP

networks. IEEE Trans. Fuzzy Syst., 17(5):1123–1142.

Jang, J. (1993). ANFIS - adaptive-network-based fuzzy inference system. IEEE

Trans. Syst., Man, Cybern., 23(3):665–685.

Bibliography 288

Jang, J. and Sun, C. (1993). Functional equivalence between radial basis function

networks and fuzzy inference systems. IEEE Trans. Neural Netw., 4(1):156–159.

Jeng, W. R., Yeh, C., and Lee, S. (2009). General type-2 fuzzy neural network

with hybrid learning for function approximation. In 2009 IEEE International

conference on fuzzy systems, pages 1534–1539.

Jiang, X. and Han, Q. (2008). On designing fuzzy controllers for a class of non-

linear networked control systems. IEEE Trans. Fuzzy Syst., 16(4):1050–1060.

Johansen, T. A. and Babuska, R. (2003). Multiobjective identification of takagi-

sugeno fuzzy models. IEEE Trans. Fuzzy Syst., 11(6):847–860.

Juang, C. (2008). A symbiotic genetic algorithm with local-and-global mapping

search for reinforcement fuzzy control. Journal of Intelligent and Fuzzy Systems,

19(2):103–114.

Juang, C., Huang, R., and Cheng, W. (2010). An interval type-2 Fuzzy-Neural

network with Support-Vector regression for noisy regression problems. IEEE

Trans. Fuzzy Syst., 18(4):686–699.

Juang, C. and Tsao, Y. (2008). A Self-Evolving interval type-2 fuzzy neural net-

work with online structure and parameter learning. IEEE Trans. Fuzzy Syst.,

16(6):1411–1424.

Karnik, N. and Mendel, J. (2001a). Operations on type-2 fuzzy sets. Fuzzy Sets

and Systems, 122(2):327–348.

Karnik, N., Mendel, J., and Liang, Q. (1999). Type-2 fuzzy logic systems. IEEE

Trans. Fuzzy Syst., 7(6):643–658.

Karnik, N. N. and Mendel, J. M. (2001b). Centroid of a type-2 fuzzy set. Informa-

tion Sciences, 132(1-4):195–220.

Klein, M. (1998). Calculus: An Intuitive and Physical Approach. Dover.

Klement, E. P., Mesiar, R., and Pap, E. (2000). Triangular norms. Springer.

Bibliography 289

Knowles, J. D. and Corne, D. W. (2000). Approximating the nondominated

front using the pareto archived evolution strategy. Evolutionary Computation,

8(2):149–172.

Kosko, B. (1992). Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ,

Prentice Hall.

Kosko, B. (1994). Fuzzy systems as universal approximators. IEEE Trans. Com-

puters, 43(1):1329–1333.

Kovalerchuk, B. and Taliansky, V. (1992). Comparison of empirical and com-

puted values of fuzzy conjunction. Fuzzy Sets and Systems, 46:49–53.

Kruse, R., Gebhardt, J., and Klawonn, F. (1994). Foundations of fuzzy systems. John

Wiley & Sons.

Lalouni, S., Rekioua, D., Rekioua, T., and Matagne, E. (2009). Fuzzy logic con-

trol of stand-alone photovoltaic system with battery storage. Journal of Power

Sources, 193(2):899–907.

Lee, C. (1990). Fuzzy logic in control systems: fuzzy logic controller. II. IEEE

Trans. Syst., Man, Cybern., 20(2):419–435.

Leng, G., McGinnity, T. M., and Prasad, G. (2006). Design for self-organizing

fuzzy neural networks based on genetic algorithms. IEEE Trans. Fuzzy Syst.,

14(6):755–766.

Li, C. and Lee, C. (2003). Self-organizing neuro-fuzzy system for control of un-

known plants. IEEE Trans. Fuzzy Syst., 11(1):135–150.

Li, J. D. (2008). A two-step rejection procedure for testing multiple hypotheses.

Journal of Statistical Planning and Inference, 138(6):1521–1527.

Liang, Q. and Mendel, J. (2000). Interval type-2 fuzzy logic systems: Theory and

design. IEEE Trans. Fuzzy Syst., 8(5):535–550.

Lin, C. and Xu, Y. (2006). A novel genetic reinforcement learning for nonlinear

fuzzy control problems. Neurocomputing, 69(16-18):2078–2089.

Bibliography 290

Lin, C. T., Lin, C. J., and Lee, C. S. G. (1995). Fuzzy adaptive learning control

network with on-line neural learning. Fuzzy Sets and Systems, 71(1):25–45.

Lin, T., Liu, H., and Kuo, M. (2009). Direct adaptive interval type-2 fuzzy con-

trol of multivariable nonlinear systems. Engineering Applications of Artificial

Intelligence, 22(3):420–430.

Linda, O. and Manic, M. (2011). Uncertainty-Robust design of interval type-

2 fuzzy logic controller for delta parallel robot. IEEE Trans. Ind. Informat.,

7(4):661–670.

Linkens, D. A. and Nyongesa, H. O. (1996). Learning systems in intelligent con-

trol: an appraisal of fuzzy, neural and genetic algorithm control applications.

IEE Proceedings of Control Theory and Applications, 143(4):367–386.

Liu, X., Mendel, J. M., and Wu, D. (2012). Study on enhanced Karnik–Mendel

algorithms: Initialization explanations and computation improvements. In-

formation Sciences, 184(1):75–91.

Liu, Y. and Zheng, Y. (2009). Adaptive robust fuzzy control for a class of uncer-

tain chaotic systems. Nonlinear Dynamics, 57(3):431–439.

Luengo, J., Garcı́a, S., and Herrera, F. (2009). A study on the use of statistical tests

for experimentation with neural networks: Analysis of parametric test condi-

tions and non-parametric tests. Expert Systems with Applications, 36(4):7798–

7808.

Lughofer, E. (2011). Evolving Fuzzy Systems: Methodologies, Advanced Concepts

and Applications. Springer.

Lughofer, E. and Angelov, P. (2011). Handling drifts and shifts in on-line data

streams with evolving fuzzy systems. Applied Soft Computing, 11(2):2057–2068.

Luo, A. C. J. (2009). Discontinuous Dynamical Systems on Time-varying Domains.

Springer, 1 edition.

Bibliography 291

MacQueen, J. (1967). Some methods for classification and analysis of multivari-

ate observations. In Proceedings of the 5th Berkeley Symposium on Mathemati-

cal Statistics and Probability, volume 1, pages 281–297. University of California

Press.

Maloof, M. and Michalski, R. (2004). Incremental learning with partial instance

memory. Artificial Intelligence, 154(1-2):95–126.

Mamdani, E. (1974). Application on fuzzy algorithms for the control of a dy-

namic plant. Proc. IEEE, 121(12):1585–1588.

Martinez, R., Rodriguez, A., Castillo, O., Melin, P., and Aguilar, L. T. (2009).

Optimization of type-2 fuzzy logic controllers for mobile robots using evolu-

tionary methods. In 2009 IEEE International Conference on Systems, Man and

Cybernetics (SMC 2009), pages 4764–4769.

MATLAB (2007a). Optimization Toolbox User’s Guide (version 3.1.2 R2007b).

MATLAB (2007b). Statistics Toolbox User’s Guide (version 6.1 R2007b).

MATLAB (2010a). Global Optimization Toolbox User’s Guide (version 3.1 R2010b).

MATLAB (2010b). Parallel Computing Toolbox User’s Guide (version 5.0 R2010b).

Maxwell, J. (1868). On governors. Proceedings of the Royas Society, 16:270–283.

Mendel, J. (1995). Fuzzy logic systems for engineering. IEEE Proceeding,

83(3):345–377.

Mendel, J. (2004). Computing derivatives in interval type-2 fuzzy logic systems.

IEEE Trans. Fuzzy Syst., 12(1):84–98.

Mendel, J. (2005). On a 50% savings in the computation of the centroid of a

symmetrical interval type-2 fuzzy set. Information Sciences, 172(3-4):417–430.

Mendel, J. and John, R. (2002). Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy

Syst., 10(2):117–127.

Bibliography 292

Mendel, J. and Wu, H. (2002). Uncertainty versus choice in rule-based fuzzy

logic systems. In 2002 IEEE International conference on fuzzy systems, pages

1336—1341.

Mendel, J., Zadeh, L., Trillas, E., Yager, R., Lawry, J., Hagras, H., and Guadar-

rama, S. (2010). What computing with words means to me [Discussion forum].

IEEE Computational Intelligence Magazine, 5(1):20–26.

Mendel, J. M. (2001). Uncertain Rule-Based Fuzzy Logic Systems: Introduction and

New Directions. Prentice Hall.

Mendel, J. M. (2007a). Advances in type-2 fuzzy sets and systems. Information

Sciences, 177(1):84–110.

Mendel, J. M. (2007b). Type-2 fuzzy sets and systems: An overview [corrected

reprint]. IEEE Computational Intelligence Magazine, 2(2):20–29.

Michels, K., Klawonn, F., Kruse, R., and Nürnberger, A. (2006). Fuzzy Control:

Fundamentals, Stability and Design of Fuzzy Controllers. Springer, 1 edition.

Mingzhi, H., Jinquan, W., Yongwen, M., Yan, W., Weijiang, L., and Xiaofei, S.

(2009). Control rules of aeration in a submerged biofilm wastewater treat-

ment process using fuzzy neural networks. Expert Systems with Applications,

36(7):10428–10437.

Minorsky (1922). Directional stability of automatically steered bodies. Journal of

the American Society for Naval Engineers, 34(2):280–309.

Mizumoto, M. and Tanaka, K. (1976). Some properties of fuzzy sets of type-2.

Information and Control, 31(4):312–340.

Mizumuoto, M. and Tanaka, K. (1981). Fuzzy-sets of type-2 under algebraic

product and algebraic sum. Fuzzy Sets and Systems, 5(3):277–290.

Mollov, S., Babuska, R., Abonyi, J., and Verbruggen, H. B. (2004). Effective

optimization for fuzzy model predictive control. IEEE Trans. Fuzzy Syst.,

12(5):661–675.

Bibliography 293

More, J. (1978). The Levenberg-Marquardt algorithm: Implementation and the-

ory. Lecture Notes in Mathematics, 630:105–116.

Mucientes, M. and Casillas, J. (2007). Quick design of fuzzy controllers with

good interpretability in mobile robotics. IEEE Trans. Fuzzy Syst., 15(4):636–

651.

Navale, R. L. and Nelson, R. M. (2010). Use of evolutionary strategies to develop

an adaptive fuzzy logic controller for a cooling coil. Energy and Buildings,

42(11):2213–2218.

Nieminen, J. (1997). On the algebraic structure of fuzzy sets of type 2. Kyber-

netika, 13(4):(261)–273.

Nounou, H. and Passino, K. (2004). Stable Auto-Tuning of adaptive

Fuzzy/Neural controllers for nonlinear Discrete-Time systems. IEEE Trans.

Fuzzy Syst., 12(1):70–83.

Nyquist, H. (1932). Regeneration theory. Bell System Technical Journal, 11:126–

147.

Ogata, K. (2001). Modern Control Engineering. Prentice Hall, 4 edition.

Ordonez, R., Zumberge, J., Spooner, J., and Passino, K. (1997). Adaptive fuzzy

control: Experiments and comparative analyses. IEEE Trans. Fuzzy Syst.,

5(2):167–188.

Pachter, M. and Chandler, P. R. (1998). Challenges of autonomous control. IEEE

Control Systems, 18(4):92–97.

Park, J., Park, G., Kim, S., and Moon, C. (2005). Direct adaptive self-structuring

fuzzy controller for nonaffine nonlinear system. Fuzzy Sets and Systems,

153(3):429–445.

Park, K., Oh, S., and Pedrycz, W. (2009). Design of interval type-2 fuzzy neural

networks and their optimization using real-coded genetic algorithms. In 2009

IEEE International conference on fuzzy systems, pages 2013–2018.

Bibliography 294

Phan, P. A. and Gale, T. J. (2008). Direct adaptive fuzzy control with a self-

structuring algorithm. Fuzzy Sets and Systems, 159(8):871–899.

Pomares, H. (2000). Nueva metodologı́a para el diseño automático de sistemas difusos

(in Spanish). PhD thesis, University of Granada.

Pomares, H., Rojas, I., Gonzalez, J., Damas, M., Pino, B., and Prieto, A. (2004).

Online global learning in direct fuzzy controllers. IEEE Trans. Fuzzy Syst.,

12(2):218–229.

Pomares, H., Rojas, I., Gonzalez, J., and Prieto, A. (2002a). Structure identifica-

tion in complete rule-based fuzzy systems. IEEE Trans. Fuzzy Syst., 10(3):349–

359.

Pomares, H., Rojas, I., Gonzalez, J., Rojas, F., Damas, M., and Fernandez, F. J.

(2002b). A two-stage approach to self-learning direct fuzzy controllers. Inter-

national Journal of Approximate Reasoning, 29(3):267–289.

Pomares, H., Rojas, I., Ortega, J., Gonzalez, J., and Prieto, A. (2000). A system-

atic approach to a self-generating fuzzy rule-table for function approximation.

IEEE Trans. Syst., Man, Cybern. B, 30(3):431–447.

Pulkkinen, P. and Koivisto, H. (2008). Fuzzy classifier identification using deci-

sion tree and multiobjective evolutionary algorithms. International Journal of

Approximate Reasoning, 48(2):526–543.

Rajapakse, A., Furuta, K., and Kondo, S. (2002). Evolutionary learning of fuzzy

logic controllers and their adaptation through perpetual evolution. IEEE

Trans. Fuzzy Syst., 10(3):309–321.

Rauber, T. and Rünger, G. (2010). Parallel Programming: for Multicore and Cluster

Systems. Springer, 1st edition. edition.

Rojas, I., Pomares, H., Gonzalez, J., Herrera, L., Guillén, A., Rojas, F., and Valen-

zuela, O. (2006). Adaptive fuzzy controller: Application to the control of

the temperature of a dynamic room in real time. Fuzzy Sets and Systems,

157(16):2241–2258.

Bibliography 295

Rojas, I., Pomares, H., Ortega, J., and Prieto, A. (2000). Self-organized fuzzy

system generation from training examples. IEEE Trans. Fuzzy Syst., 8(1):23–

36.

Rovatti, R. and Guerrieri, R. (1996). Fuzzy sets of rules for system identification.

IEEE Trans. Fuzzy Syst., 4(2):89–102.

Sala, A. and Ario, C. (2009). Polynomial fuzzy models for nonlinear control: A

taylor series approach. IEEE Trans. Fuzzy Syst., 17(6):1284–1295.

Schaal, S. and Atkeson, C. (2010). Learning control in robotics. IEEE Robotics &

Automation Magazine, 17(2):20–29.

Sepúlveda, R., Castillo, O., Melin, P., Rodrı́guez-Dı́az, A., and Montiel, O. (2007).

Experimental study of intelligent controllers under uncertainty using type-1

and type-2 fuzzy logic. Information Sciences, 177(10):2023–2048.

Sheskin, D. J. (2007). Handbook of Parametric and Nonparametric Statistical Proce-

dures: Fourth Edition. Chapman and Hall/CRC, 4 edition.

Silberschatz, A., Galvin, P. B., and Gagne, G. (2008). Operating System Concepts.

Wiley, 8 edition.

Smith, S. F. (1980). A learning system based on genetic adaptive algorithms. PhD

thesis, University of Pittsburgh, Pittsburgh, PA, USA.

Spears, W. M., De Jong, K. A., Bäck, T., Ba, T., Fogel, D. B., and De Garis, H.

(1993). An overview of evolutionary computation. Lecture Notes in Computer

Science, 667(1):442–459.

Spooner, J., Ordonez, R., and Passino, K. (1997). Direct adaptive fuzzy control

for a class of discrete-time systems. In Proceedings of the 1997 American Control

Conference, volume 3, pages 1814–1818.

Srinivas, N. and Deb, K. (1994). Multiobjective optimization using nondomi-

nated sorting in genetic algorithms. Evolutionary Computation, 2(3):221–248.

Sugeno, M. (1985a). Industrial applications of fuzzy control. Amsterdam, North-

Holland.

Bibliography 296

Sugeno, M. (1985b). An introductory survey of fuzzy control. Information Sci-

ences, 36:59–83.

Sugeno, M. and Kang, G. (1988). Structure identification of fuzzy model. Fuzzy

Sets and Systems, 28:15–33.

Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its appli-

cations to modelling and control. IEEE Trans. Syst. Man and Cyber., 15:116–132.

Tewari, A. and Macdonald, M. (2010). Knowledge-based parameter identifica-

tion of TSK fuzzy models. Applied Soft Computing, 10(2):481–489.

Uncu, O. and Turksen, I. B. (2007). Discrete interval type 2 fuzzy system models

using uncertainty in learning parameters. IEEE Trans. Fuzzy Syst., 15(1):90–

106.

Wagner, C. and Hagras, H. (2007). Evolving type-2 fuzzy logic controllers for

autonomous mobile robots. In Melin, P., Castillo, O., Ramı́rez, E., Kacprzyk,

J., and Pedrycz, W., editors, Analysis and Design of Intelligent Systems using Soft

Computing Techniques, volume 41 of Advances in Soft Computing, pages 16–25.

Springer Berlin / Heidelberg.

Wang, C., Cheng, C., and Lee, T. (2004). Dynamical optimal training for inter-

val type-2 fuzzy neural network (T2FNN). IEEE Trans. Syst., Man, Cybern. B,

34(3):1462–1477.

Wang, L. and Frayman, Y. (2002). A dynamically generated fuzzy neural net-

work and its application to torsional vibration control of tandem cold rolling

mill spindles. Engineering Applications of Artificial Intelligence, 15(6):541–550.

Wang, L. X. and Mendel, J. M. (1992). Fuzzy basis functions, universal ap-

proximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw.,

3(5):807–814.

Wang, S., Huang, X., and Yam, Y. (2010). A neural network of smooth hinge

functions. IEEE Trans. Neural Netw., 21(9):1381–1395.

Bibliography 297

Wang, W., Chien, Y., and Li, I. (2008). An on-line robust and adaptive T-S fuzzy-

neural controller for more general unknown systems. International Journal of

Fuzzy Systems, 10(1):33–43.

Wu, D. and Mendel, J. M. (2009). Enhanced Karnik–Mendel algorithms. IEEE

Trans. Fuzzy Syst., 17(4):923–934.

Wu, D. and Nie, M. (2011). Comparison and practical implementation of Type-

Reduction algorithms for type-2 fuzzy sets and systems. In 2011 IEEE Interna-

tional Conference on Fuzzy Systems, pages 2131–2138.

Yen, J. and Wang, L. (1996). An SVD-based fuzzy model reduction strategy. In

1996 IEEE International Conference on Fuzzy Systems, volume 2, pages 835–841.

Ying, H. (2000). Fuzzy Control and Modeling: Analytical Foundations and Applica-

tions. Wiley-IEEE Press.

Ying, H. (2008). General interval type-2 mamdani fuzzy systems are universal

approximators. In Fuzzy Information Processing Society, 2008. NAFIPS 2008.

Annual Meeting of the North American, pages 1–6. IEEE.

Ying, H. (2009). Interval type-2 Takagi-Sugeno fuzzy systems with linear rule

consequent are universal approximators. In Fuzzy Information Processing Soci-

ety, 2009. NAFIPS 2009. Annual Meeting of the North American, pages 1–5. IEEE.

You, F. and Ying, H. (2010). Interval type-2 boolean fuzzy systems are universal

approximators. In Fuzzy Information Processing Society (NAFIPS), 2010 Annual

Meeting of the North American, pages 1–4. IEEE.

Zadeh, L. (1965). Fuzzy sets. Information and Control, 8:338–353.

Zadeh, L. (1973). Outline of a new approach to the analysis of complex systems

and decision processes. IEEE Trans. Syst., Man and Cyber., 3:28–44.

Zadeh, L. (1975). Concept of a linguistic variable and its application to approxi-

mate reasoning, 1. Information Sciences, 8(3):199–249.

Zadeh, L. A. (1996). Fuzzy logic = computing with words. IEEE Trans. Fuzzy

Syst., 4(2):103–111.

Bibliography 298

Zarandi, M. (2008). Reinforcement learning for fuzzy control with linguistic

states. Journal of Uncertain Systems, 2(1):54–66.

Zhang, Q. and Li, H. (2007). MOEA/D: a multiobjective evolutionary algorithm

based on decomposition. IEEE Trans. Evol. Comput., 11(6):712–731.

Zhang, Y., Wu, X.-b., Xing, Z.-y., and Hu, W. (2011). On generating interpretable

and precise fuzzy systems based on pareto multi-objective cooperative co-

evolutionary algorithm. Applied Soft Computing, 11(1):1284–1294.

Zhao, R. and Govind, R. (1991). Defuzzification of fuzzy intervals. Fuzzy Sets

and Systems, 43:45–55.

Zhou, S. and Gan, J. (2004). Improving the interpretability of Takagi-Sugeno

fuzzy model by using linguistic modifiers and a multiple objective learning

scheme. In Proc. 2004 IEEE International Joint Conference on Neural Networks,

volume 3, pages 2385–2390.

Zilouchian, A. and Jamshidi, M., editors (2000). Intelligent Control Systems Us-

ing Soft Computing Methodologies. CRC Press, Inc., Boca Raton, FL, USA, 1st

edition.

Zitzler, E., Brockhoff, D., and Thiele, L. (2007). The hypervolume indicator re-

visited: On the design of pareto-compliant indicators via weighted integra-

tion. In Evolutionary Multi-Criterion Optimization, volume 4403, pages 862–876.

Springer-Verlag Berlin, Berlin.

Zitzler, E., Knowles, J., and Thiele, L. (2008). Multiobjective optimization. page

373–404. Springer-Verlag, Berlin, Heidelberg.

Zitzler, E., Laumanns, M., and Thiele, L. (2002). SPEA2: Improving the strength

pareto evolutionary algorithm for multiobjective optimization. In Evolution-

ary Methods for Design Optimization and Control with Applications to Industrial

Problems, EUROGEN 2001, pages 95–100.

Zitzler, E. and Thiele, L. (1998). Multiobjective optimization using evolutionary

algorithms - a comparative case study. In Parallel Problem Solving from Nature,

volume 1498, pages 292–301. Springer-Verlag Berlin.

	List of Figures
	List of Tables
	List of Abbreviations
	Abstract
	Resumen
	Introducción
	Antecedentes
	Aportaciones de la tesis
	Estructura de la tesis

	1 Introduction
	1.1 Antecedents
	1.2 Contributions of the dissertation
	1.3 Structure of the dissertation

	2 Preliminaries
	2.1 Fuzzy logic
	2.1.1 Fuzzy sets. Concepts and definitions
	2.1.2 Operations on fuzzy sets
	2.1.2.1 Intersection. T-norms
	2.1.2.2 Union. T-conorms
	2.1.2.3 Complement. Negation operators

	2.1.3 Approximate reasoning
	2.1.4 Fuzzy logic systems as universal approximators

	2.2 Structure of a fuzzy controller
	2.2.1 Fuzzification
	2.2.2 Knowledge base
	2.2.3 Fuzzy inference engine
	2.2.4 Defuzzification

	2.3 Type-2 fuzzy logic
	2.3.1 Type-2 fuzzy sets. Concepts and definitions
	2.3.2 Operations on interval type-2 fuzzy sets
	2.3.2.1 Intersection. Meet operator
	2.3.2.2 Union. Join operator
	2.3.2.3 Complement. Negation operator

	2.3.3 Type-2 fuzzy logic systems as universal approximators

	2.4 Structure of a type-2 fuzzy logic system
	2.4.1 Fuzzification
	2.4.2 Rule base
	2.4.3 Fuzzy inference engine
	2.4.4 Type reduction
	2.4.4.1 Computing the centroids of the rule consequents
	2.4.4.2 Computing the type-reduced sets

	2.4.5 Defuzzification

	3 Evolving fuzzy control. Concepts and state of the art
	3.1 Introduction. Historical origins of intelligent control
	3.2 Evolving fuzzy systems
	3.2.1 From first principle to evolving models
	3.2.2 Incremental learning in evolving systems
	3.2.2.1 Stability-plasticity dilemma
	3.2.2.2 Accuracy-interpretability trade-off

	3.2.3 Essential requirements and goals for evolving fuzzy systems

	3.3 State of the art

	4 OSEFC: Online Self-Evolving Fuzzy Controller
	4.1 Motivation and goals
	4.2 Problem formulation
	4.3 Architecture of the Online Self-Evolving Fuzzy Controller
	4.3.1 Phase 1: Online parameter learning
	4.3.1.1 Online local learning of the rule consequents
	4.3.1.2 Value of the normalization constant C
	4.3.1.3 Effect of the presence of actuator bounds
	4.3.1.4 Comments on the stability of the parameter learning process

	4.3.2 Phase 2: Topology self-evolution
	4.3.2.1 Selection of the most relevant controller input
	4.3.2.2 Location of the new membership function
	4.3.2.3 Initial parameters for the new fuzzy controller
	4.3.2.4 Input variable selection
	4.3.2.5 Comments on the stability of the topology self-evolving process

	4.3.3 Alternative methodology for parameter learning
	4.3.4 Additional comments

	4.4 Experimentation and results
	4.4.1 Description of the basic features of OSEFC
	4.4.1.1 Parameter learning for a given topology
	4.4.1.2 Global operation of OSEFC
	4.4.1.3 Automatic input variable selection
	4.4.1.4 Tolerance to noise

	4.4.2 Simulation of real-world systems
	4.4.2.1 Control of a tank of liquid
	4.4.2.2 Control of a mechanical suspension system
	4.4.2.3 Control of a 1-DOF helicopter
	4.4.2.4 Robustness against changes in the plant

	4.4.3 Experiments with a real system: Control of a nonlinear servo system

	4.5 Conclusions

	5 OSENF-TaSe: Online Self-Evolving Neuro-Fuzzy Controller based on the TaSe-NF model
	5.1 Motivation and goals
	5.2 Problem formulation
	5.3 The TaSe-NF model
	5.3.1 Equivalence between RBFNNs and TSK fuzzy systems
	5.3.2 Description of the TaSe-NF model for control problems
	5.3.2.1 Partitioning of the input space
	5.3.2.2 Interpretability of the fuzzy rules

	5.4 Architecture of the Online Self-Evolving Neuro-Fuzzy Controller based on the TaSe-NF model
	5.4.1 Phase 1: Online local learning of the rule consequents
	5.4.2 Phase 2: Structure self-evolution method
	5.4.2.1 Selection of the rule to be split
	5.4.2.2 Generation of the new rules
	5.4.2.3 Optimization of the parameters of the new controller

	5.4.3 Comments on the stability of OSENF-TaSe

	5.5 Experimentation and results
	5.5.1 Description of the basic features of OSENF-TaSe
	5.5.1.1 Reduction of the number of rules
	5.5.1.2 Improvement of the interpretability
	5.5.1.3 Further examples

	5.5.2 Control of a real-world system
	5.5.2.1 Control of a mechanical suspension system
	5.5.2.2 Robustness against changes in the plant. Comparison with a classic controller

	5.6 Conclusions

	6 Multi-objective optimization of type-1 and type-2 fuzzy systems with comparative purposes
	6.1 Motivation and goals
	6.1.1 Handling uncertainties: comparing type-1 and type-2 fuzzy systems
	6.1.2 Multi-objective optimization of type-2 fuzzy systems

	6.2 Multi-objective evolutionary algorithms
	6.2.1 Evolutionary algorithms
	6.2.2 Multi-objective evolutionary optimization. NSGA-II

	6.3 Multi-objective evolutionary algorithm for the optimization of the parameters and structure of type-1 and type-2 fuzzy systems
	6.3.1 Description of the fuzzy systems considered
	6.3.2 Proposed multi-objective evolutionary algorithm
	6.3.2.1 Solution encoding
	6.3.2.2 Initial population
	6.3.2.3 Fitness evaluation
	6.3.2.4 Genetic operators
	6.3.2.5 Optimal consequents

	6.4 Experimentation and results
	6.4.1 Optimized type-1 and type-2 fuzzy systems for function approximation
	6.4.1.1 Experimental setup
	6.4.1.2 Comparing the quality of the Pareto fronts
	6.4.1.3 Example of the approximation obtained
	6.4.1.4 Effect of the use of optimal consequents

	6.4.2 Analysis of a sample application: control of a nonlinear servo system
	6.4.2.1 Ideal case: no noise or a small level of noise
	6.4.2.2 Experiments with medium levels of noise
	6.4.2.3 Experiments with high levels of noise

	6.5 Conclusions

	7 Conclusions of the dissertation and list of publications
	7.1 Conclusions and contributions
	7.2 List of publications

	Conclusiones de la tesis y lista de publicaciones
	Conclusiones y aportaciones
	Lista de publicaciones

	A Description of the plants used in this dissertation
	A.1 Tank of liquid
	A.2 Mechanical suspension system
	A.3 1-DOF Helicopter setup
	A.4 Nonlinear servo system

	B Additional tables of results for the multi-objective evolutionary algorithm
	C High-performance computing architecture for the MOEA
	Bibliography

