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Abstract

The use of ontologies as appropriate formalisms for the representation of

the knowledge of many different domains of application has received a lot

of attention recently. Nevertheless, classical ontologies are not suitable to

represent imprecise, vague and uncertain knowledge, which is inherent to

several real-world domains. As a solution, fuzzy ontologies have been pro-

posed as a combination of ontologies with techniques from fuzzy set theory

and fuzzy logic.

This dissertation presents several contributions to the field of fuzzy on-

tologies. Our chosen formalism is a fuzzy extension of the very expressive

fuzzy Description Logic SROIQ(D), the basis of the language OWL 2. After

a definition of the logic, their main properties are investigated. A reasoning

algorithm is provided, based on a reduction to a classical ontology which

allows to reuse current languages and reasoners. Two semantics, based on

two different families of fuzzy operators (Zadeh and Gödel), are considered,

and the properties of the reduction (correctness, modularity, and complex-

ity) are studied in detail. Several optimizations have also been investigated.

A possibilistic extension enabling an additional representation of uncertain

pieces of knowledge is also outlined. Finally, the reasoning algorithm is im-

plemented in a prototype called DELOREAN, the first reasoner that supports

fuzzy extensions of the standard language for ontology representation OWL

and its recent extension OWL 2.
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CHAPTER 1
Introduction

1.1 Antecedents

In the last years, the use of ontologies as formalisms for knowledge repre-

sentation in many different application domains has grown significantly. An

ontology is defined as an explicit and formal specification of a shared con-

ceptualization [107], which means that ontologies represent the concepts

and the relationships in a domain promoting interrelation with other mod-

els and automatic processing. Ontologies have a lot of advantages, such as

making possible to add semantics to data, making knowledge maintenance,

information integration as well as the reuse of components easier. For exam-

ple, ontologies have been successfully used as part of expert and multiagent

systems, as well as a core element in the Semantic Web, which proposes to

extend the current web to give information a well-defined meaning.

The current standard language for ontology creation is the Web Ontol-

ogy Language (OWL [327]), which comprises three sublanguages of increas-

ing expressive power: OWL Lite, OWL DL and OWL Full. However, since

its first development, several limitations on expressivity of OWL have been

identified, and consequently several extensions to the language have been

3



4 Introduction

proposed. Among them, the most significant is OWL 2 [75] which is its most

likely immediate successor.

Description Logics (DLs for short) [13] are a family of logics for repre-

senting structured knowledge. Each logic is denoted by using a string of

capital letters which identify the constructors of the logic and therefore its

complexity. DLs have proved to be very useful as ontology languages. For

instance, an ontology in OWL Lite, OWL DL or OWL 2 is equivalent to an

ontology in SHIF(D), SHOIN (D) or SROIQ(D) respectively [139].
Nevertheless, it has been widely pointed out that classical ontologies are

not appropriate to deal with imprecise, vague and uncertain knowledge,

which is inherent to several real-world domains. Fuzzy and possibilistic lo-

gics have proved to be suitable formalisms to handle imprecise/vague and

uncertain knowledge respectively. Consequently, several fuzzy extensions of

DLs can be found in the literature [181], yielding fuzzy ontologies. Several

definition of fuzzy ontology have been proposed, and they have proved to be

useful in several applications, such as information retrieval or the Semantic

Web.

The appearance of fuzzy ontologies brings about that crisp standard lan-

guages are not suitable and can no longer be used, so new fuzzy languages

must be developed. Hence, the large number of resources available for crisp

ontologies are no longer appropriate and need to be adapted to the new

framework, requiring an important effort. This issue affects especially rea-

soning engines. Previous experiences with crisp DLs have shown that there

exists a significant gap between the design of a decision procedure and the

achievement of a practical implementation [276], since expressive DLs has

a very high worst-case complexity. Therefore, optimization of fuzzy DL rea-

soners will be presumably very hard and costly.

Although there has been a relatively significant amount of work in ex-

tending DLs with fuzzy set theory, the representation of them using crisp DLs

has not received such attention. Furthermore, the expressivity of the logics

considered in this context can be enriched. For instance, the seminal of work

on reduction of fuzzy DLs to crisp DLs was restricted to ALCH [302].
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Either way, the expressivity of fuzzy DLs can be enriched in several ways,

since current fuzzy DLs have several limitations:

• The nominal constructor is not fuzzified in the logics which support it.

• Although fuzzy GCIs and RIAs have been proposed, reasoning with

them is not usually allowed.

• Current reasoning algorithms do not support full SROIQ(D).

• There are no fuzzy DL reasoners supporting fuzzy extensions of the

languages OWL and OWL 2.

• There is a lack of a general formalism joining the management of im-

precise and uncertain knowledge in DLs.

On a different topic, it is common in fuzzy logic to group the fuzzy oper-

ators in families, each of them containing a t-norm, a t-conorm, a negation

and an implication function. There are three main families of fuzzy oper-

ators: Łukasiewicz, Gödel and Product [121]. The operators than L. Zadeh

initially considered when he introduced fuzzy set theory (Gödel conjunction

and disjunction, Łukasiewicz negation and Kleene-Dienes implication) are

also of great importance in the literature, and we refer to them as Zadeh

family.

It is well known that different families of fuzzy operators lead to fuzzy

DLs with different properties. Most of the existing works in fuzzy DLs con-

sider Zadeh family. Some few works consider Łukasiewicz or Product fam-

ilies, but Gödel family has not received such attention. In our opinion, the

logical properties of Gödel family make interesting its study. For example,

as well as Zadeh family, Gödel family includes an idempotent t-norm (mini-

mum) so the conjunction is independent of the granularity of the fuzzy on-

tology, which is interesting in some applications. This is not the case in

Łukasiewicz or Product families. But an important difference with respect to

Zadeh family is that the implication of Gödel family has better logical prop-

erties than the implication of Zadeh family. For example, using the latter

implication, concepts and roles do not fully subsume themselves.
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1.2 Objectives

The general aim of this dissertation is to promote the achievement of fuzzy

ontologies, in order to able to represent and reason with imprecise and vague

pieces of knowledge.

In accordance to this, the concretes objectives of this thesis are the fol-

lowing:

• To review and analyze the state of the art in fuzzy ontologies and re-

lated areas such as fuzzy DLs.

– To compare different definition of fuzzy ontologies and to analyze

their limitations.

– To identify limitations in the expressivity of current proposals for

fuzzy DLs.

• To propose a new definition of fuzzy DL.

– To increase the expressivity with respect to the related work.

– To include some way of representing not only imprecise and vague,

but also uncertain knowledge.

• To provide a crisp representation for such an expressive fuzzy DL.

– To support the expressivity of fuzzy OWL 2.

– To support a semantics given by different families of fuzzy opera-

tors (in particular, Gödel logic).

– To design some optimization techniques reducing the size of the

representation.

• To implement a small prototype demonstrating the feasibility of our

approach.

1.3 Thesis Structure

This dissertation is structured in five clearly defined parts, each of them being

composed of one or more chapters.
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After this introduction, Part II starts with some necessary preliminaries.

Chapter 2 reviews some basic notions on fuzzy set theory, fuzzy logic, and

possibilistic logic. Chapter 3 is dedicated to classical ontologies and DLs, as

the most successful formalism for ontology representation. Special attention

is dedicated to the DL SROIQ(D) and the language OWL 2. Chapter 4

includes the state of the art in fuzzy extensions of ontologies and DLs, pro-

viding a more detailed contextualization of our work.

Part III presents our contributions at a theoretical level. Chapter 5 defines

our fuzzy extension of the DL SROIQ(D), highlights the enhancements

in the expressivity, and studies its logical properties. Chapter 6 restricts to

Zadeh family and describes a reasoning preserving procedure to reduce this

fuzzy DL to a classical one, in such a way that existing DL reasoners can be

applied to the resulting KB. Then, Chapter 7 presents a similar result but for

Gödel family. In both cases, some interesting optimizations of the reduction

are presented.

Part IV covers the practical developments of this thesis. Chapter 8 presents

the design and implementation of our prototype fuzzy DL reasoner, called DE-

LOREAN, which implements the reduction algorithms and the optimizations

described in the precedent part. A preliminary evaluation of the procedure

is also performed.

Finally, Part V concludes with some conclusiones and future work. In

Chapter 9 we summarize the contributions of this thesis to the field of fuzzy

ontologies. The results are analyzed in accordance with the objectives estab-

lished in this introductory chapter. Finally, some ideas for future research are

pointed out.





Part II

Preliminaries
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CHAPTER 2
Fuzzy Set Theory and Fuzzy Logic

This chapter reviews some basic notions on fuzzy set theory and fuzzy logic,

which will be necessary to read the rest of this document. For a more detailed

overview, the interested reader may give look at [92, 121, 157].

Fuzzy set theory and fuzzy logic were both proposed by L. Zadeh [343]1.

While in classical sets theory elements either belong to a set or not, in fuzzy

set theory elements can belong to some degree.

One of the most important features of fuzzy logic is its ability to perform

approximate reasoning [344], a mode of reasoning with linguistic rather than

numerical variables, and hence with vague information. This involves infer-

ence with premises and consequences containing fuzzy propositions, which

is closest to human reasoning than classical two-valued logic.

Although Zadeh’s ideas were initially met with some skepticism, fuzzy

sets and fuzzy logic are well recognized as appropriate formalisms to man-

age imprecise and vague knowledge, and have found numerous applications

in fields such as control systems of industrial processes, decision support

systems, expert systems, image processing, pattern recognition, information

retrieval, data mining, classification . . .

Section 2.1 starts with the definition of a fuzzy set. Section 2.2 studies

the connection of fuzzy sets with classical sets by means of α-cuts. Next,

1However, the first use of the term “fuzzy logic” is in [105]

11



12 Fuzzy Set Theory and Fuzzy Logic

Section 2.3 includes some basic operations with fuzzy sets. Then, Section 2.4

considers fuzzy relations. At that point the reader will be ready to approach

fuzzy logic as a whole, which is done in Section 2.5. Section 2.6 is devoted to

fuzzy numbers. Finally, Section 2.7 concludes this chapter with some notions

on possibilistic logic, a related formalism.

2.1 Fuzzy Sets: A Generalization of Classical

Sets

The classical notion of set is deeply related to the fulfilment of a given prop-

erty which is satisfied by all the members of the set. We may think of a

property as a function defined over a set of objects U (which is referred as

the referential set or domain of discourse) relating each of these objects to a

element of the set {0,1}. A particular element belongs to the set if the func-

tion assigns 1 to it; otherwise (if the function assigns 0 to it), the element

does not belong to the set. These sets are called crisp or classical.

According to this, any property P determines a set SP which is composed

by the following elements:

SP = {u ∈ U : P(u) = 1}

In the same way, any subset S ⊆ U induces a property PS which is deter-

mined by the following expression:

PS(u) = 1 if and only if u ∈ S

Fuzzy set theory, originally proposed by L. A. Zadeh in 1965 [343], gen-

eralizes this classical notion of set, having into account that the properties

which define a set are defined over the referential U , but now using as an

image the real interval [0, 1]. Any property satisfying these characteristic

is said to be a fuzzy property, and the set that it determines is given by the

following expression:

SP = {< u,α >: P(x) = α, u ∈ U ,α ∈ [0,1]}
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Definition 1 Fuzzy set. Let U be a referential set. A fuzzy subset A of U is

every set of the form A = {(u,α), u ∈ U ,α ∈ [0, 1])}, that is, every set formed

by the objects from U, having associated each of them some membership degree,

defined in the interval [0,1], to A.

Consequently, a fuzzy set A defined over the domain of discourse U is

univocally characterized using a membership function µA(u), or simply A(u),
which assigns any u ∈ U to a value in the interval of real numbers between

0 and 1, representing the membership degree of the element u to A. As in

the classical case, 0 means no-membership and 1 full membership, but now

a value between 0 and 1 represents the extent to which u can be considered

as an element of A. For example, in Figure 2.1 the elements in [a, b] fully

belong to A, whereas the elements in (b, c) partially belong to A.

Figure 2.1: Membership function of a fuzy set A

If the domain of discourse U is discrete (U = {u1, u2, ..., un}), the fuzzy

set is usually expressed using the following notation:

A= µA(u1)/u1+µA(u2)/u2+ ...+µA(un)/un

When U is continuous, the fuzzy set is denoted by:

A=

∫

u∈U

µA(u)/u
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The set of all fuzzy subsets which can be defined over a domain of dis-

course U is called ℘̃(U). Classical sets are a special case of fuzzy sets and

hence ℘(U)⊆ ℘̃(U).

2.2 Level cuts: Connection with Classical Sets

Definition 2 α-cut. For each α ∈ [0,1] and each fuzzy set A, the α-cut of

A is defined as the set of all elements of the domain of universe which have a

membership degree to A which is greater or equal than α, that is:

A≥α = u ∈ U : µA(u)≥ α

The different α-cuts of a fuzzy set have an inclusion relation between

them which is determined by the following property:

(α > β)⇒ (A≥α ⊆ A≥β)

Definition 3 Strict α-cut. Analogously, for each α ∈ [0,1] and each fuzzy

set A, the strict α-cut of A is defined as the set of all elements of the domain of

universe which have a membership degree to A which is strictly greater than α,

that is:

A>α = u ∈ U : µA(u)> α

Obviously, strict α-cuts are contained in α-cuts:

A>α ⊆ A≥α

Among the crisp sets which can be defined from a fuzzy set, there are two

of special significance: the support and the core.

Definition 4 Support. The support of a fuzzy set A defined over a domain of

discourse U is the set of elements of U which have a membership degree strictly

greater than 0, that is:

supp(A) = {u ∈ U : µA(u)> 0}
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Definition 5 Core. The core (or kernel) of a fuzzy set A defined over a domain

of discourse U is the set of elements of U which have a membership degree equal

to 1, that is:

core(A) = {u ∈ U : µA(u) = 1}

It is easy to see that the support of a fuzzy set A corresponds to the strict

0-cut, and that the core corresponds to the 1-cut.

Finally, Zadeh’s Resolution’s Identity [345] shows that a fuzzy set A can

be univocally represented from its decomposition in α-cuts in the following

way:

Theorem 1 Resolution’s Identity. µA(u) = supα∈[0,1]α · A≥α(u)

More precisely, a fuzzy set A can be univocally represented from the set

of all its relevant α-cuts.

Definition 6 Set of levels. The set of values α ∈ [0, 1] such that there exists

at least one element of the domain of universe belonging to A with degree α, it

is called the set of levels of A. Formally:

Λ(A) = {α : µA(u) = α for some u ∈ U}

Then, it holds that:

µA(u) =
⋃

α∈Λ(A)

α · A≥α(u)

2.3 Operations with Fuzzy Sets

The decomposition of fuzzy sets using α-cuts introduces a relation between

classical sets and fuzzy sets which allows the operations which are performed

over classical sets to be extended in such a way that they are applied over

fuzzy sets. The most relevant operations over sets are union, intersection and

complement. The generalization of these operations should be performed in

such a way that they maintain the same behaviour when applied to classical

sets.
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Intersection

The intersection of two fuzzy sets is defined in the following way:

µA∩B(x) = µA(x)⊗µB(x)

where ⊗ denotes a t-norm function.

Definition 7 T-norm. A triangular norm or t-norm is a function ⊗ : [0,1]×
[0,1]→ [0, 1] verifying the following properties:

1. α⊗ 1= α, ∀α ∈ [0,1] (Boundary)

2. β ≤ γ⇒ α⊗ β ≤ α⊗ γ, ∀α,β ,γ ∈ [0, 1] (Monotonicity)

3. α⊗ β = β ⊗α, ∀α,β ∈ [0,1] (Commutativity)

4. α⊗ (β ⊗ γ) = (α⊗ β)⊗ γ, ∀α,β ,γ ∈ [0,1] (Associativity)

From this definition, it follows that every t-norm satisfies some interesting

properties:

• α,β ≥ α⊗ β .

• α⊗ 0= 0.

For example, minimum is a t-norm, and it has traditionally been the most

used function in the intersection of fuzzy sets. Table 2.1 shows some exam-

ples of t-norm functions. Linear t-norm is usually called Łukasiewicz t-norm

because it corresponds to Łukasiewicz logic, although it was never explicitly

used by Łukasiewicz. For the same reason, minimum t-norm is also called

Gödel t-norm. For a definition of some families of fuzzy operators (or fuzzy

logics), see Section 2.5.

Table 2.1: Popular examples of t-norms

Name Definition
Linear max{α+ β − 1, 0}

Minimum min{α,β}
Product α · β
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A t-norm is called idempotent iff α⊗α= α, or subidempotent iff α⊗α < α,

∀α ∈ [0,1]. Minimum is the only idempotent t-norm.

From a historical point of view, the concept of t-norm was proposed in

1942 by K. Menger in the frame of statistical metrics [201]. Only in the

eighties, it was suggested to use t-norms to model the conjunction of fuzzy

sets [6].

Definition 8 Residuum of a t-norm. Given a left-continuous t-norm ⊗, there

is a unique operation ⇒, called the residuum of ⊗, verifying the residuation

property:

α⊗ β ≤ γ iff α≤ β ⇒ γ,∀α,β ,γ ∈ [0, 1]

and this operation is defined as:

α⇒ β = supγ∈[0,1]{α⊗ γ≤ β}

Given a left-continuous t-norm⊗ and its residuum⇒, the following iden-

tities are true:

• min{α,β}= α⊗ (α⇒ β)

• max{α,β}= min{(α⇒ β)⇒ β , (β ⇒ α)⇒ α}

Union

The intersection of two fuzzy sets is defined as follows:

µA∪B(x) = µA(x)⊕µB(x)

where ⊕ denotes a t-conorm function.

Definition 9 T-conorm. A t-conorm (also known as s-norm) is a function ⊕ :

[0,1]× [0, 1]→ [0, 1] verifying the following properties:

1. α⊕ 0= α, ∀α ∈ [0, 1] (Boundary)

2. β ≤ γ⇒ α⊕ β ≤ α⊕ γ, ∀α,β ,γ ∈ [0,1] (Monotonicity)

3. α⊕ β = β ⊕α, ∀α,β ∈ [0, 1] (Commutativity)

4. α⊕ (β ⊕ γ) = (α⊕ β)⊕ γ, ∀α,β ,γ ∈ [0,1] (Associativity)
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From this definition, it follows that every t-conorm satisfies some inter-

esting properties:

• α,β ≤ α⊕ β .

• α⊕ 1= 1.

For example, maximum is a t-conorm, and it has traditionally been the

most used function in the union of fuzzy sets. Table 2.2 shows some examples

of t-conorm functions.
Similarly as in the case of t-norms, bounded sum, maximum, and prob-

abilistic sum are also called Łukasiewicz, Gödel and Product t-conorms re-

spectively, due to their relation to these logics.

Table 2.2: Popular examples of t-conorms

Name Definition
Bounded sum min{1,α+ β}

Maximum max{α,β}
Probabilistic sum α+ β −α · β

A t-conorm is called idempotent iff α⊕ α = α, or superidempotent iff α⊕
α > α, ∀α ∈ [0,1]. Maximum is the only idempotent t-conorm.

Complement

The complement of a fuzzy set is defined as:

µĀ(x) =	µA(x)

where 	 represents a negation function [315].

Definition 10 Negation function. A negation (or complement) function 	 :

[0, 1]→ [0, 1] is a function satisfying the following properties:

1. 	0= 1, 	1= 0 (Boundary)

2. α≤ β ⇒	α≥	β , ∀α,β ∈ [0,1] (Monotonicity)

The following properties are usually interesting from a practical point of

view:
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1. 	 is a continous function (Continuity)

2. 	(	α) = α, ∀α ∈ [0, 1] (Involution)

Table 2.3 shows some examples of negation functions. The standard (or

Łukasiewicz) negation is continuous and involutive, while the Gödel nega-

tion is non continuous and non involutive.

Table 2.3: Popular examples of negation functions

Name Definition
Standard 1−α

Gödel
�

1 if α= 0
0 if α > 0

Threshold
�

1 if α≤ threshold
0 if α > threshold

Set Inclusion

Definition 11 Inclusion of fuzzy sets. A fuzzy set A is included in (or, alter-

natively, a subset of / contained in / less or equal than) a fuzzy set B if its

membership function takes no higher values over all elements of the domain of

discourse:

A⊆ B⇔∀u ∈ U ,µA(u)≤ µB(u)

This definition of fuzzy set inclusion is usually referred to Zadeh’s inclu-

sion of fuzzy sets [343]. Note that according to this definition, set inclusion

is a yes-no question. In order to overcome this limitation, several alternative

definitions have been proposed (for instance, Definition 22).

Fuzzy Modifiers

Definition 12 Fuzzy modifier. A fuzzy modifier (or hedge) mod is an operator

which transforms a fuzzy set into another, that is, an application fmod : [0,1]→
[0,1].
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Fuzzy modifiers can be used to define the formal semantics for a linguistic

term such as very, few, enough, more or less, around, about . . .
Table 2.4 collects some examples of functions which have been used to

define fuzzy modifiers.

Table 2.4: Popular examples of modifiers

Name Definition

Triangular t r i(x; t1, t2, t3) =







(x − t1)/(t2− t1) if x ∈ [t1, t2]
(t3− x)/(t3− t2) if x ∈ [t2, t3]
0 if x ∈ [0, t1]∪ [t3, 1]

Lineal l in(x; l) =
�

(l2/l1)x x ∈ [0, l1]
1− (x − 1)(1− l2)/(1− l1) x ∈ [l1, 1]

Exponential ex p(x; e) = x e

2.4 Fuzzy Relations

L. A. Zadeh also generalized the notion of relation to the fuzzy case, making

use of the new notion of fuzzy set [343].

Definition 13 Fuzzy relation. A fuzzy (binary) relation R is a fuzzy subset of

the cartesian product of two domains of discourse U and V :

R : U × V → [0, 1]

More generally, an n-ary fuzzy relation is a fuzzy subset R of the product

space U1× U2× · · · × Un:

R : U1× U2× · · · × Un→ [0,1]

Definition 14 Composition of fuzzy relations. Let R1, . . . , Rn be fuzzy rela-

tions. The composition of them is an operation defined as follows:

R1 ◦ · · · ◦ Rn = sup
u1∈U1,...,un+1∈Un+1

R1(u1, u2)⊗ · · · ⊗ Rn(un, un+1)

In the rest of this document we will consider fuzzy relations such that

U1 = U2 = · · ·= Un.
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Some Properties of Fuzzy Relations

Given a fuzzy relation R, it is interesting to know if the following properties

are verified.

Definition 15 Transitivity. R is transitive iff

∀u1, u2 ∈ U , R(u1, u2)≥ sup
ui∈U

R(u1, ui)⊗ R(ui, u2)

Definition 16 Reflexivity. R is reflexive iff

∀u ∈ U , R(u, u) = 1

Definition 17 Irreflexivity. R is irreflexive iff

∀u ∈ U , R(u, u) = 0

Definition 18 Symmetry. R is symmetric iff

∀u1, u2 ∈ U , R(u1, u2) = R(u2, u1)

Definition 19 Asymmetry. R is asymmetric iff

∀u1, u2 ∈ U , R(u1, u2)> 0 implies R(u2, u1) = 0

Definition 20 Disjointness of fuzzy relations. We say that two fuzzy relation

R1, R2 are disjoint iff

∀u1, u2 ∈ U , R(u1, u2) = 0 or R(u2, u1) = 0

Implication Functions

A specially interesting case of fuzzy relations is that of fuzzy implications.

Definition 21 Fuzzy implication. A fuzzy implication is a function⇒: [0, 1]×
[0,1]→ [0,1] verifying the following properties:

1. α≤ β implies α⇒ γ≥ β ⇒ γ, ∀α,β ,γ ∈ [0,1] (Antitonicity)

2. β ≤ γ implies α⇒ β ≤ α⇒ γ, ∀α,β ,γ ∈ [0,1] (Monotonicity)

3. 0⇒ α= 1, ∀α ∈ [0,1] (Boundary)
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4. α⇒ 1= 1, ∀α ∈ [0, 1] (Boundary)

5. 1⇒ 0= 0 (Boundary)

Recall that according to Definition 11, set inclusion is a yes-no question.

In order to overcome this limitation, different alternatives have been pro-

posed to define the set inclusion. For instance, the following definition uses

a fuzzy implication function⇒:

Definition 22 Degree of inclusion of fuzzy sets. The degree of inclusion

Inc(A, B) of a fuzzy set A in a fuzzy set B is defined as:

Inc(A, B) = inf
u∈U

A(u)⇒ B(u)

There are several ways of obtaining implication functions satisfying the

requisites of Definition 21. According to how these functions are obtained, it

is common to consider two types of fuzzy implications:

• R-implications (Residuated implications), which correspond to the residuum

of a left continuous t-norm:

α⇒R β = supγ∈[0,1]{α⊗ γ≤ β}

• S-implications (Strong implications), which extend the proposition

α→ b = ¬α ∨ b to the fuzzy case, and are obtained from a t-conorm

and a negation function as follows:

α⇒S β = (	α)⊕ β

R-implications verify some interesting properties:

• α⇒ β = 1 if and only if α≤ β (Ordering)

• A negation function can be defined as 	a = a⇒ 0.

• If a proposition φ is true to degree α and φ ⇒ ϕ is true to degree

β , then ϕ is true to degree α⊗ β , where ⊗ is the corresponding left

continuous t-norm (Modus ponens).

On the other hand, S-implications verify the following property:

• α⇒ β = (	β)⇒ (	α) for some negation function 	 (Contraposition)

Table 2.5 shows some examples of implication functions.
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Table 2.5: Popular examples of implication functions

Name Type Definition

Goguen R-implication
�

1 α≤ β
β/α, α > β

Gödel R-implication
�

1 if α≤ β
β if α > β

Łukasiewicz R-implication, S-implication min{1, 1−α+ β}
Kleene-Dienes (KD) S-implication max{1−α,β}

Reichenbach S-implication 1−α+α · β

2.5 Fuzzy Logic (in a Narrow Sense)

The distinguishing characteristic of fuzzy logic is that everything is (or can

be) a matter of degree. However, a common source of confusion is that the

term fuzzy logic is used in two different senses:

• A narrow sense, in which fuzzy logic is a logical system which is a gener-

alization of many-valued logic. Fuzzy logic in a narrow sense is usually

referred to as mathematical fuzzy logic. However, even in its narrow

sense the agenda of fuzzy logic is very different from the agendas of

multi-valued logical systems.

• A wide (or broad) sense where fuzzy logic is the logic of classes with

unsharp boundaries, including fuzzy set theory, possibility theory, cal-

culus of fuzzy if-then rules, fuzzy arithmetic, calculus of fuzzy quanti-

fiers and related concepts and calculi. Fuzzy logic in a narrow sense is

a branch of fuzzy logic in a wide sense.

Today, fuzzy logic is mostly used in its wide sense. However, this section

is devoted to the formal background of fuzzy logic in a narrow sense, that

is, the study of many-valued logical systems aiming at a formalization of

approximate reasoning. Fuzzy logics are truth-functional: the degree of truth

of a formula can be computed from the degrees of truth of its constituents.

We will focus on the so-called t-norm based fuzzy logics, which cor-

respond to [0,1]-valued calculi defined by a left-continuous t-norm, giv-

ing semantics to the strong conjunction connective, and its residuum. The
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residuum is an R-implication and specifies a negation as 	α = α ⇒ 0.

Then, a t-conorm is defined by using duality with the t-norm, as α ⊕ β =
	((	α)⊗ (	β)).

The three main families of fuzzy operators are Łukasiewicz [179] (de-

noted Ł), Gödel [104] (denoted G) and Product [105] (denoted Π). These

three cases are important since each continuous t-norm is definable as an

ordinal sum of copies of Łukasiewicz, Gödel and Product t-norms (Mostert-

Shields theorem [203]). As a matter of fact, Łukasiewicz and Gödel infinitely-

valued logics, were defined much before fuzzy logic was born. Jan Łukasiewicz

proposed in 1930 the so-called Łukasiewicz logic [179], while in 1932 Kurt

Gödel proposed the fuzzy operators of the so-called Gödel logic [104].

An S-implication⇒ also makes possible to specify a family of fuzzy oper-

ators. ⇒ determines a negation and a t-conorm since α⇒ β =	α⊕β , and a

t-norm can be defined from them by using duality as α⊗β =	((	α)⊕(	β)).
For example, under Kleene-Dienes implication we get what we call here

Zadeh family (the fuzzy operators originally considered by L. A. Zadeh [343],
and partially inspired by Kleene’s many-valued logics [156]).

Table 2.6 groups these main families of fuzzy operators: Zadeh, Łukasiewicz,

Gödel and Product.

Table 2.6: Popular families of fuzzy operators.

Family t-norm t-conorm negation implication

Zadeh min{α,β} max{α,β} 1−α max{1−α,β}
Łukasiewicz max{α+ β − 1, 0} min{α+ β , 1} 1−α min{1, 1−α+ β}

Gödel min{α,β} max{α,β}
¨

1, α= 0
0, α > 0

¨

1 α≤ β
β , α > β

Product α · β α+ β −α · β
¨

1, α= 0
0, α > 0

¨

1 α≤ β
β/α, α > β

Let ⊗, ⊕, 	 and ⇒ denote the fuzzy operators of Łukasiewicz family

(t-norm, t-conorm, negation and implication, respectively) and let ∧, ∨, ¬
and → denote the fuzzy operators of Zadeh family. Interestingly, using the

Łukasiewicz family it is possible to represent the operators of Zadeh family:
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¬α = 	α
α∧ β = α⊗ (α⇒ β)
α∨ β = ¬((¬α)∧ (¬β))
α→ β = (¬α)∨ β

There are many other important fuzzy logics, and we will only cite here

a few outstanding examples:

• P. Hájek introduced the Basic Fuzzy logic [121] (BL) as a common frag-

ment of Łukasiewicz, Gödel and Product logics.

• F. Esteva and L. Godo proposed the Monoidal t-norm-based logic [99]
(MTL), a weaker logic than BL corresponding to the logic of left-continuous

t-norms.

• Rational Pavelka logic (RPL) [235], originally proposed by J. Pavelka,

extends Łukasiewicz logic with truth constants (rational numbers in

[0, 1]). Several expansions with truth-constants of other fuzzy logics

have also been proposed (see [92] for a collection of references).

• ŁΠ combines operators from Łukasiewicz and Product logics [100],
allowing operators of Gödel logic to be defined.

The large number of different logics proposed raises the question of what

the best fuzzy logic is. This question has been discussed in [216], but with

no definite answer.

2.6 Fuzzy Numbers

In the same way as precise numerical quantities are represented by real num-

bers, fuzzy numbers are useful to represent imprecise or vague quantities.

Although several definitions of fuzzy number have been proposed in the lit-

erature, we will consider the following one [96].

Definition 23 Fuzzy number. A fuzzy number F is a fuzzy subset of the real

line F : R→ [0,1] which is normal and convex:

1. ∃x ∈ R : µF(x) = 1 (Normality)

2. µF(λ·x1+(1−λ)·x2)≥min{µF(x1),µF(x2)}, x1, x2 ∈ [0,1] (Convexity)
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(a) (b)

(c) (d)

Figure 2.2: Popular examples of fuzzy numbers: (a) Trapezoidal; (b) Trian-
gular; (c) Left-shoulder function; (d) Right-shoulder function

Some interesting cases of fuzzy numbers are triangular and trapezoidal

fuzzy numbers (although they are actually intervals), as well as left and right

shoulder functions (see Figure 2.2).

Definition 24 Trapezoidal fuzzy number. A trapezoidal fuzzy number Q =
t rap(q1, q2, q3, q4) is a fuzzy number which is determined by a quadruple of

real numbers (q1, q2, q3, q4) such that:

1. q1 ≤ q2 ≤ q3 ≤ q4

2. µQ(u) = (u− q1)/(q2− q1),∀u ∈ [q1, q2]

3. µQ(u) = 1,∀u ∈ [q2, q3]

4. µQ(u) = (q4− u)/(q4− q3),∀u ∈ [q3, q4]
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5. µQ(u) = 0,∀u ∈ [k1, q1]∪ [q4, k2]

Definition 25 Triangular fuzzy number. A triangular fuzzy number T =
t r i(t1, t2, t3) is a fuzzy number which is determined by a triple of real numbers

(t1, t2, t3) such that:

1. t1 ≤ t2 ≤ t3

2. µT (u) = (u− t1)/(t2− t1),∀u ∈ [t1, t2]

3. µT (u) = (t3− u)/(t3− t2),∀u ∈ [t2, t3]

4. µT (u) = 0,∀u ∈ [k1, t1]∪ [t3, k2]

Definition 26 L-function. A left-shoulder function or L-function L = L(l1, l2)
is a fuzzy number which is determined by a pair of real numbers (l1, l2) such

that:

1. l1 ≤ l2

2. µL(u) = 1,∀u ∈ [k1, l1]

3. µL(u) = (l2− u)/(l2− l1),∀u ∈ [l1, l2]

4. µL(u) = 0,∀u ∈ [l2, k2]

Definition 27 R-function. A right-shoulder function or R-function R= R(r1, r2)
is a fuzzy number which is determined by a pair of real numbers (r1, r2) such

that:

1. r1 ≤ r2

2. µR(u) = 0,∀u ∈ [k1, r1]

3. µR(u) = (r2− u)/(r2− r1),∀u ∈ [r1, r2]

4. µR(u) = 1,∀u ∈ [r2, k2]

Notice that a trapezoidal fuzzy number defined over an interval [k1, k2] (in-

stead of over the real line) can be used to represent the other previous fuzzy

numbers:

• A triangular fuzzy number t r i(t1, t2, t3) can be represented using a

trapezoidal fuzzy number t rap(t1, t2, t2, t3).
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• A L-function L(l1, l2) can be represented using a trapezoidal fuzzy

number t rap(k1, k1, l1, l2).

• A R-function R(r1, r2) can be represented using a trapezoidal fuzzy

number t rap(l1, l2, k2, k2).

• A crisp number x can be represented using a trapezoidal fuzzy number

t rap(x , x , x , x).

2.7 Possibilistic Logic

Possibilistic logic is a weighted logic which aims to enable reasoning with

uncertain knowledge using possibility and necessity measures. It was in-

troduced by L. Zadeh in 1978 [342] , although previously (1961) G. L. S.

Shackle introduced a degree of impossibility as the degree of necessity of the

opposite event [264]. This section contains the basic notions that will be used

in this document; for a larger introduction the reader is referred to [93].

Vagueness and Uncertainty

Fuzzy and possibilistic logics have proved to be suitable formalisms to handle

imprecise/vague and uncertain knowledge respectively. Imprecision/vague-

ness and uncertainty are very different conceptually. The former case covers

all those approaches where statements are true to some degree, rather than

being just either true or false. For example, “it is hot today”. In the latter

case fall all those approaches in which statements are true or false in any

world, but there is no knowledge about which world is the right one. For

instance, “it will rain tomorrow”. In this case, it is only possible to say that

statements are true or false to some degree of certainty (for example, to some

probability or possibility).

Fuzzy and possibilistic logics are orthogonal, the former handling degrees

of truth and the latter handling degrees of certainty. Despite that they are

very different, there has been a confusion in the literature of Artificial In-
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telligence between their roles, meaning and properties. A good clarification

paper pointing out the differences between them is [97]2.

An example proposed in [97] to emphasize the differences is that of a

bottle. In terms of classical logic, a bottle is viewed as full or empty. Taking

into account the amount of liquid in the bottle, one can say that the bottle is

“half-full”3. In this sentence, “full” is a fuzzy predicate and the degree of truth

of the fuzzy proposition “the bottle is full” represents how much liquid there

is in the bottle. A very different case consists of expressing our ignorance

about the state of the bottle, whether it is either full or empty, assuming that

only one of the two situations is possible. Saying that the probability that the

bottle is full is 1
2

does not mean that the bottle is half full.

Actually, this misunderstanding has an old origin. Even in the three-

valued propositional logic of Łukasiewicz [178], proposed to solve the prob-

lem of contingent futures by omitting the principle of contradiction in logic,

the third truth-value is often wrongly understood as a lack of knowledge

about truth, instead of an intermediate value between true and false.

Another well-known formalism for the management of uncertainty knowl-

edge is probabilistic logic [214]. However, they represent different facets of

uncertainty. In probability theory, the probability of an event is the sum of

the probabilities of all the worlds satisfying the event. On the other hand, the

possibility of an event is the maximum of the possibilities of all the worlds

satisfying the event, thus taking the most optimistic world. Possibilistic logic

is based on the idea of ordering elements along an ordinal scale, rather than

counting as it happens with probabilistic logic. Moreover, reasoning in possi-

bilistic logic usually requires less computational effort.

Note that while in fuzzy logic statements are truth-functional, uncertain

statements cannot be a function of the uncertainties of their constituents [95].
In particular, in possibility theory only the disjunction in the possibility of

an event and only the conjunction in the necessity of an event are truth-

functional.

2However, the distinction was noticed many time before [82].
3or “half-empty”, depending on how optimistic you are.
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Possibility Distributions

According to L. Zadeh, a variable is a more general notion than the notion

of propositional variable in logic, and is used to represent some piece of in-

formation. The ill-known value of these variables can be associated with

possibility distributions or distributions mapping the domain of the variable

to the interval [0, 1]. Let x be a variable defined over a universe of discourse

U . A possibility distribution πx associated to x is a function π: U → [0, 1]
expressing to what extent it is plausible or possible that x takes a particu-

lar value. This value, although unknown, is unique. πx(u) represents the

possibility degree that x takes value u (x = u) for some u ∈ U .

If πx(u) = 0, it means that it is absolutely impossible that x takes value

u. The larger πx(u), the larger u is considered to be a more possible (or in

fact, less impossible) value of x . In the extreme case, if πx(u) = 1, there

is nothing preventing u to be considered as a possible value for x , although

there may exist other values u′ such that πx(u′) = 1.

Since in the real world knowledge is often expressed linguistically, Zadeh

uses fuzzy sets to represent incomplete pieces of information about the value

of a variable. Let A be a fuzzy subset of U . A is used to represent an in-

complete piece of information about the value of x . The membership degree

attached to a value represents to what extent if is possible that this value is

indeed the value of the variable.

If the only available knowledge about x is that “x is A”, then A is inter-

preted as a possibility distribution representing the levels of plausibility of

the possible values of x . The possibility that x = u is given by the compati-

bility of u with the concept expressed by A (i.e., the membership degree of u

to A):

πx(u) = µA(u),∀u ∈ U

In general, πx ranges on [0,1], but the range of a possibility distribution

can be any linearly ordered scale bounded by a bottom and a top element.

Note that “x is A” does not mean that possibility distribution πx is the same

as the membership function µA. The equality πx = µA means that given that
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the only available knowledge is “x is A”, the degree of possibility that x = u

is evaluated by the degree of membership µA(u).
The fuzzy set A is viewed as a fuzzy restriction which serves as an elastic

constraint on the value of x . For example, the sentence “John is tall” is

considered as a piece of incomplete evidence, and is supposed to be the only

available information about x . This is completely different to a situation

where the value of x is known (e.g., x = 180 cm) and “tall” is used as a

linguistic substitute to this value.

Possibility and Necessity Measures

The extent to which the information “x is A”, represented by the possibility

distribution πx = µA, is consistent with a statement like “the value of x is

in subset P”, for a crisp set P ⊆ U , is estimated by means of the possibility

measure Π.

Definition 28 Possibility measure. A possibility measure is a functionΠ: U →
[0,1] satisfying:

1. Π(U) = 1,

2. Π(;) = 0,

3. Π(p ∨ q) =max{Π(p),Π(q)},

The degree of possibility is computed by the equation:

Π(P) = supu∈Pπx(u)

Π(P) estimates the consistency of the statement x ∈ P with what we

know about the possible values of x . Π(P) = 0 means x ∈ P is impossible

knowing that “x is A”. The value of Π(P) corresponds to the elements of P

having the greatest possibility degree according to πx .
A necessity measure N can be defined as the dual measure of the possi-

bility, since when the negation of P is impossible, then P is certain. Since

they are dual, the measures verify:

N(P) = 1−Π(P̄)

Π(P) = 1− N(P̄)
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Definition 29 Necessity measure. A necessity measure is a function N : U →
[0,1] satisfying:

1. N(U) = 1,

2. N(;) = 0,

3. N(p ∧ q) =min{N(p), N(q)},

The degree of necessity is computed by the equation:

N(P) = in fu6∈P1−πx(u)

Some interesting properties of these measures are the following:

• The larger the possibilityΠ(P), the smaller the necessity of the contrary

event N(P̄),

• The larger the necessity N(P), the smaller the possibility of the contrary

event Π(P̄),

• Π(P) = 1⇔ N(P̄) = 0. If an event is fully possible, then its contrary

event cannot be necessary.

• N(P) = 1⇔ Π(P̄) = 0. If an event is fully necessary, then its contrary

event is fully impossible.

• N(P) = 1 ⇒ Π(P) = 1. If an event is fully necessary, then it must be

possible. However, the reciprocal is not true.



CHAPTER 3
Ontologies and Description Logics

This chapter presents some basic notions on ontologies and Description

Logics. Firstly, Section 3.1 discusses what ontologies are, providing an in-

troductory historical note, a short route around the existing definitions, a

description of their elements, a summary of the advantages of the use and a

revision of some key applications. Then, Section 3.2 focuses on description

logics, as one of the most successful logical formalisms behind ontologies.

We also begin with a historical note before analyzing how they structure the

knowledge. Then, we explore some important examples of logics and dif-

ferent approaches to reasoning with them. A particular description logic,

SROIQ(D), is formally defined in Section 3.3. Finally, Section 3.4 explores

the use of description logics as ontology languages, describing in detail the

language OWL 2.

3.1 Ontologies

Introduction

The development of a Knowledge-Based System requires the development of

a knowledge base. Unfortunately, knowledge acquisition is a difficult and

complex process due to many reasons. Therefore, the possibility of reusing

33
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components from different Knowledge-Bases Systems and sharing the repre-

sentations of an application domain that different agents have, seems to be

very promising. Furthermore, Knowledge-Based Systems (as any other piece

of software) are usually developed using their own vocabulary and assump-

tions about the modeled world. This leads to communication problems due

to a lack of mutual understanding.

In 1991, the ARPA Knowledge Sharing Effort proposed to build Intelligent

Systems by assembling reusable components [212], which meant a revolu-

tion in the way these systems were built. This way, system developers would

not need to start from scratch, but they would be able to reuse the general

knowledge and to concentrate on the specific knowledge of their system.

In this scenario, ontologies are developed in order to make knowledge

interchange and reuse easier, as well as to interoperate with existing systems.

Ontologies turn also to be very useful in such applications where it is crucial

to have an explicit representation of the assumptions that we humans handle

in an easy and natural way, but that are hard to represent using classical tools

from Knowledge Engineering. And, most importantly, they promise to help

to achieve an effective communication among humans and machines thanks

to a mutual understanding.

Ontologies are becoming more and more popular nowadays and since

their apparition, ontology engineering has received an important attention

and has been the object of a lot of study in the field of Artificial Intelligence

(see for example [279]).

Definition

The term ontology has been taken from philosophy, from the subfield that

is concerned with the study of being or existence [50]. An ontology is de-

fined there as the study of part-of relationships and entity dependencies. For

example, the observation that the world is made up of objects that can be

grouped into abstract classes based on shared properties us a typical onto-

logical commitment [8]. The name comes from the juxtaposition of the Greek

terms ontoc and logoc, which denote being and study, respectively.
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In Artificial Intelligence, the term a very different meaning. A lot of def-

initions have been proposed, but we shall cite here only some of the most

relevant:

• Although ontologies were already used in the 1980’s, probably the first

definition was proposed in 1991 by R. Neches et al. (1991), for whom

“an ontology defines the basic terms and relations comprising the vocabu-

lary of a topic area as well as the rules for combining terms and relations

to define extensions to the vocabulary” [212].

• The most widely cited definition in literature is probably that provided

by T. Gruber (1993), who defined an ontology as “an explicit specifica-

tion of a conceptualization” [107].

• N. Guarino et al. (1995) defined an ontology as “a logical theory which

gives an explicit, partial account of a conceptualization” [110].

• Later on (1997) W. N. Borst slightly altered Gruber’s definition, stating

that an ontology is “a formal specification of a shared conceptualiza-

tion” [45].

• R. Studer, V. R. Benjamins y D. Fensel interpreted this definition in the

following way [308]:

– “Conceptualization refers to an abstract model of some phenomenon

in the world by having identified the relevant concepts of that phe-

nomenon.

– Explicit means that the type of concepts used, and the constraints on

their use are explicitly defined.

– Formal refers to the fact that the ontology should be machine-readable.

– Shared reflects the notion that an ontology captures consensual knowl-

edge, that is, it is not private of some individual, but accepted by a

group”.

In summary, the literature provides with a wide range of definitions of

the term ontology, each of them offering different and complementary points

of view (see [69] for a comparative view of them).
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But one should have into account that many philosophical theories con-

cerning the construction of ontologies can provide useful guidelines for com-

puter scientists [256]. Actually, Aristotle was responsible of the definition of

a predecesor of a universal ontology [9]. Some authors even consider com-

putational ontology as a kind of applied philosophy [278].

Components

An ontology offers some type of formalism to represent the following ele-

ments:

• Classes or concepts. They are collections of objects of the domain, rep-

resenting the basic ideas in the world which is being formalized. Typi-

cally an ontology can be viewed as a taxonomic hierarchy where some

concepts are explained by using others.

• Individuals, representing particular elements or instances of a given

class.

• Relations, which represent interactions among individuals of the do-

main and determine the ontology structure. Relations are usually bi-

nary, but in general they can have n arguments. Formally, an n-ary

relation R is defined as a subset of the Cartesian product of n classes

C1, . . . Cn:

R⊆ C1× C2× · · · × Cn

There can also be relations among concepts. Typically, concepts are

structured in a concept hierarchy by means of a taxonomic relation, but

there can be non-taxonomic relations (for example, meronimy relations

of the form partOf).

• Functions, which constitute a special case of relations where the n-th

argument has always the same value for the n−1 previous arguments.

Formally, a function F is defined as:

F : C1× C2× · · · × Cn−1→ Cn
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• Attributes, which describe properties of the individuals of a class. They

are usually called datatypes or concrete domains.

• Axioms, formally expressing expressing conditions to be verified by the

elements of the ontology in order to guarantee its correctness, and

allowing to infer new knowledge, not explicitly represented in the on-

tology.

Advantages

The use of ontologies offers a lot of benefits, such as the following ones:

• They offer a way to represent and share knowledge by using a common

vocabulary. Since ontologies are, by definition, agreed among different

parts, they are closer to become an standard than other knowledge

models. Hence, they provide a format for exchanging knowledge and

a specific communication vocabulary, thus promoting interoperability.

• They promote knowledge reuse and information integration, simplify-

ing the development process of knowledge bases, taking advantage of

previous experiences with the knowledge and making possible an au-

tomatic validation of the acquired knowledge.

• They make possible to maintain a separation between declarative and

procedural knowledge, making assumptions about the domain explicit,

promoting the modularity of the knowledge base.

• Ontologies allow knowledge to be used by intelligent applications, due

to its formal basis and the fact that they can be automatically accessed

by agents.

Applications

Ontologies have been used to build the knowledge base of expert systems

and, in general, knowledge-based systems due to the advantages already

mentioned, specially their ability to promote reuse and modularity. Ontolo-

gies have been used in different domains of application such as education,
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computer software, government, business services, life sciences, communi-

cations, media, healthcare providers, financial services, etc. [64].

Ontologies are very important in multi-agent systems, enabling automatic

communication among agents by supplying knowledge sharing [89]. They

have also been applied to information retrieval, since they allow to switch

from a keyword-based to a much more effective content-based information

retrieval [117]. Their formal nature makes them useful for word disambigua-

tion in natural language processing [106].

But perhaps the best-known application is the Semantic Web, which was

envisioned in 2001 by T. Berners-Lee et al. as a solution to the limitation of

the current web of being only understood by humans. The Semantic Web is

an extension of the current one, in which information is given well-defined

meaning, better enabling computers and people to work in cooperation [24].
Semantic Web (sometimes also called Web 3.0) makes the automation of

tasks easier. Some examples of Semantic Web use cases are grouped in [331].

In order for web resources to be directly accessed for automatic processes,

they have to be annotated with metadata describing the content of the doc-

uments. Ontologies are a core element in the layered architecture of the

Semantic Web as a source of shared and precisely defined terms which can

be used as metadata for other resources.

3.2 Description Logics

Introduction

Description Logics (DLs) are a family of logics for representing structured

knowledge (see [13] for a thorough reference).

From a historical point of view, DLs were born to provide a semantics for

semantic works and frames, two classical models of structured knowledge

representation. In order to overcome their lack of semantics, it was observed

that they could be given a semantics by using First Order Logic (FOL) [123].
But, since in most of the cases frames and semantic networks do not need

the full expressivity of FOL, DLs were born as a subset of FOL limiting the
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expressivity in exchange of a lower complexity in the reasoning. It should be

noted, however, that there are some DLs which are not subsets of FOL (for

instance, [63]).

Initially, they were called terminological systems, emphasizing the fact

that they are used to define the basic terminology of an application domain.

Then, the label description logics prevailed, reflecting the fact that the do-

main is described using complex concept descriptions and that they have a

logic-based semantics.

The different constructors supported in a DL lead to different fragments

of FOL, with different computational complexities. The different logics in the

family are related through the following principle: the more expressive the

language, the most difficult the reasoning [46].

The history of DLs can be summarized in the following phases:

• Phase 0 (1965–1980). Other models for the representation of struc-

tured knowledge (such as semantic networks and frames) were used

for the representation of structured knowledge, until their lack of a

formal semantics was reported (see e.g. [123]).

• Phase 1 (1980–1990) included incomplete systems based on structural

algorithms. The first DL system took place in this place and was KL-

ONE [47].

• Phase 2 (1990–1995) included the development of tableau algorithms

and the study of the complexity of the logics, their relation with modal

logics [259] and optimization techniques.

• Phase 3 (1995–2000) included the development of tableau algorithms

for expressive DLs and the implementation of optimized reasoners,

such as RACER [111] or FACT [136]).

• Phase 4 (2000–. . . ). This phase includes mature and commercial im-

plementation of the reasoners (such as RACERPRO, PELLET [277] or

FACT++ [135, 316]) and a big range of applications and tools. Less

expressive but tractable DLs (which allow to manage very large KBs)

have also grown attention.



40 Ontologies and Description Logics

Knowledge Bases

A DL consist of a Knowledge Base (KB) and some reasoning capabilities.

This subsection covers the KB, and the next one is devoted to the reasoning

services.
The vocabulary of a DL contains three types of elements: individuals, con-

cepts and roles. Concepts denote unary sets of individuals, and roles denote

binary relations between individuals.
A KB comprises different types of knowledge, grouped in different com-

ponentes:
• Extensive knowledge, or particular knowledge about some specific sit-

uation. This type of knowledge is contingent (it depends on several

circumstances and is subject to changes) and is stored in an Assertional

Box (or simply ABox).

• Intensive knowledge, or general knowledge about the application do-

main, which is usually unchangeable. This type of knowledge is struc-

tured in a Terminological Box (or TBox) with information about the

concepts, and a Role Box (or RBox) with information about the roles.
DLs have a formal semantics based on the notion of interpretation, where

the interpretation domain can be arbitrarily chosen (and can be infinite).

Differently from other models such as databases, DLs are based on the Open

World Assumption. A very nice example to illustrate the differences between

these two formalisms may be found in [16].

Example 1 According to Greek mythology, Oedipus killed his father, married

his mother Iokaste, and had children with her, among them Polyneikes. Finally,

also Polyneikes had children, among them Thersandros, which is known to not

be a patricide.
Suppose that one wants to know whether Iokaste has a child that (i) is a

patricide and, (ii) has a child that is not a patricide.
Under Close World Assumption, we do not know that Polyneikes is a not a

patricide, so the answer to the question is no. On the other hand, under Open

World Assumption, either if Polyneikes is a patricide or not, the answer is yes.

In the former case, the child is Polyneikes, while in the second case the child is

Oedipus. ut
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Some Interesting Description Logics

In this subsection we will recall some of the most important DLs without

getting too much into details of the particular syntax and semantics (Sec-

tion 3.3 will formally define the DL SROIQ(D). Each DL is denoted by

using a string of capital letters which identify the constructors of the logic,

and therefore its complexity. We will firstly present the constructors of the

logic AL (Attributive Language) and then we will describe some extensions.
The concept constructors of AL are the following:

• Top and bottom concepts.

• Atomic concepts.

• Negation of atomic concepts.

• Concept intersection.

• Universal quantifications.

• Existential restrictions, but restricted to the top concept.

AL can be extended with several concept or role constructors, as shown

in Table 3.1.

Label Constructor
U concept Union
E unrestricted Existential restriction
C Complement, concept negation
R+ transitive Roles
H role Hierarchies
O nOminals
I Inverse roles
F Functional roles
N Number (unqualified cardinality) restrictions
(D) Datatypes
R additional Role constructors
(◦) role composition
Q Qualified number restrictions

Table 3.1: Some common constructors in Description Logics

Some examples of interesting DLs are the following:
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• ALC is considered as an standard DL. It extends AL with concept

negation (not being restricted to atomic concepts). It is equivalent to

the modal logic K [259] and to the DL ALUE (since once that concept

negation has been added to the language, it is possible to simulate the

constructors U and E [261]).

• FL− is a subset of AL without atomic concept negation [46].

• EL is a subset of ALE without bottom concept, atomic concept nega-

tion and universal quantifications [160].

• EL++ extends EL with the bottom concept, nominals, concrete do-

mains and GCIs [12].

• DL-Lite is a subset of ALIF specially designed to be efficient in the

management of large numbers of individuals [62]. An n-ary extension

is called DLR-Lite [61].

• S is an abbreviation for the logicALCR+ [257], due to its equivalence

with the modal logic S4 [259].

• SHIF(D) is the subjacent logic to the OWL Lite language [138].

• SHOIN (D) is the subjacent logic to the OWL DL language [140].

• SROIQ(D) is the subjacent logic to the OWL 2 language [137].

Table 3.2 shows the complexity of reasoning in some of the most impor-

tant DLs (see [225] for some background on complexity theory, and [354]
for the complexity of other DLs). A recent result is that SROIQ(D) is expo-

nentially harder than SHOIN (D), due to complex RIAs, and in particular

due to their ability to chain a fixed exponential number of roles [153].

Logic Complexity class
ALC with simple GCIs PSPACE

SHIF(D) EXPTIME

SHOIN (D) NEXPTIME

SROIQ(D) N2EXPTIME

Table 3.2: Complexity of reasoning in some important DLs
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Reasoning in Description Logics

A DL not only stores axioms and assertions, but also offers some reasoning

services. Most of the common reasoning tasks are the following:

• KB satisfiability or consistency: Checks if there exists a logical model

satisfying all the axioms in the KB.

• Concept satisfiability: Checks if a concept does not necessarily denotes

the empty set.

• Entailment: Checks if a given fact is a logical consequence which can

be derived from the axioms in the KB. If this fact is a concept assertion,

the reasoning task is also called instance checking.

• Concept subsumption: Checks if a concept C can be considered more

general than a concept D, that is, if D is a subset of (or subsumes) C .

• Classification: Computes a concept hierarchy based on the relation of

concept subsumption. Essentially, classification checks subsumption for

every possible pair of concepts in the KB.

However, if a DL is closed under negation, all the basic reasoning tasks

concerning concepts are reducible to KB satisfiability [258], so it is usually

the only task considered.

Example 2 The following reasoning tasks can be reduced to KB satisfiability:

• Concept satisfiability. C is satisfiable w.r.t. a KB K iff K ∪ {x : C} is

satisfiable, where x is a new individual, i.e., an individual which does not

appear in K.

• Entailment: A concept assertion a : C is entailed by a KB K (denoted

K |= a : C) iff K∪ {a : ¬C} is unsatisfiable.

A role assertion (a, b): R is entailed by a KB K (denoted K |= (a, b): R)

iff K∪ {b : C} |= {a : ∃R.C}, for a new concept C [298].

If the DL contains negative role assertions, it is also true thatK |= (a, b): R

iff K∪ {(a, b): ¬R} is unsatisfiable.

• Concept subsumption: D subsumes C (denoted C v D) w.r.t. a KB K iff

C u¬D is unsatisfiable.
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• Classification: Classification is computed performing a subsumption test

for every possible pair of concepts in the KB, so it can also be reduced to

KB satisfiability. ut

There are several approaches to reason with DLs, the most popular ones

being the following:

• Tableau algorithms. Tableau algorithms solve the problems of concept

and KB satisfiability. Due to the Open World Assumption, they try to

build an abstraction of a model for the KB, that is, a logical interpre-

tation satisfying each of its axioms. The first tableaus algorithm was

proposed for ALC [261]. Tableau algorithms for the DLs SHOIQ and

SROIQ may be found in [141] and [137] respectively.

More precisely, tableau algorithms try to create a completion graph for

the KB, where the nodes represent individuals and the arcs between

nodes represent binary relations between individuals. Each node is la-

beled with a set of concepts that the individual satisfies in this particu-

lar model. Starting from the initial KB, the graph is built by repeatedly

applying a serie of expansion rules, which transform complex concept

descriptions into simpler ones (in such a way that the semantics of

the constructors is preserved) until no additional rules can be applied

or a clash (an obvious contradiction in the label) occurs. If there are

no clashes, the concept or the KB is satisfiable and the algorithm has

found a model for the KB. If there does not exist a clash-free completion

graph, then the KB is unsatisfiable.

Although these algorithms have a high computational complexity in the

worst case, they behave very well in practice, mainly to the existence

of a lot of optimization techniques [142, 265, 276, 317].

• Resolution-based algorithms. Resolution algorithms translate KBs into

FOL, given that in most of the cases DLs are subsets of First Order

Logic. This allows existing reasoning algorithms and implementations

of them to be reused. This approach is useful from a theoretical point

of view, providing an upper bound for the complexity. In some cases,

the algorithms are also worst-case optimal.Nevertheless, the practical
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feasibility of these algorithms is more doubtful since they do not take

advantage of the fact that DLs have a lower complexity.

• Structural algorithms. These algorithms compute concept subsump-

tion. They normalize the concepts to be tested and compare the syn-

tactic structure of the normalized concept descriptions. These kind of

algorithms are sound, but only complete for not very expressive DLs

(sub-Boolean DLs).

• Automata-based algorithms. These algorithms solve the problem of con-

cept satisfiability for DLs with the tree model property. The main idea

is to translate a KB into a tree automata in such a way that they ac-

cept the same models, and them to apply an emptiness test over the

automaton model.

The majority of the existing DL reasoners implement tableau algorithms.

We will describe right now some of the most popular DL reasoners. A com-

parison of the expressivity of the supported logics may be found in Table 3.3,

together with some information about the use of DIG interface.

• RACER (Renamed ABox and Concept Expression Reasoner) [111]1. RACER

is a tableau reasoner which supports SHIQ with some datatypes. The

improvements of the initial versions have lead to RACERPRO, imple-

mented in Lisp and fully supporting OWL DL datatypes. RACERPRO is a

commercial product, although there are some free licences for educa-

tional and research purposes.

• PELLET [277]2. Probably the most popular among the DL reasoners,

from a historical point of view it was the first reasoner fully supporting

OWL DL (including nominals and datatypes). Nowadays, is supports

SROIQ(D) and hence OWL 2 (with the exception of n-ary datatypes).

It is implemented in Java, has multiple interfaces to access it (including

its own API) and is freely available under GNU licence. There is also

an active user mailing list.

1http://www.racer-systems.com/
2http://pellet.owldl.com

http://www.racer-systems.com/
http://pellet.owldl.com
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• FACT++ [135, 316]3 is the successor of FACT(FAst Classification of Ter-

minologies) [136]), using a different architecture and a more efficient

implementation in C++. It is available under a GNU licence. From a

historical point of view it was the first reasoner fully supporting OWL

2 and SROIQ(D).

• KAON2 [206]4 is a reasoner for SHIQ and other ontology languages.

It does not support nominals, datatypes nor cardinality restrictions in-

volving large integer numbers. KAON2 does not implement a tableau

algorithm, but the reasoning algorithm is based on resolution,Its use is

free for non commercial purposes.

• HERMIT [265]5. HERMIT implements a hypertableau reasoning algo-

rithm which is much less nondeterministic than current tableau algo-

rithms. Some preliminary experimentation shows that HERMIT outper-

forms other DL reasoners. Currently it supports SHIQ, although the

extension to SHOIQ is on its way.

Most of them implement the DIG interface; a common interface to ac-

cess DL reasoners independently of the particular input language of each of

them [23].

Reasoner DL supported DIG supported
RACER, RACERPRO SHIQ(D) Yes

PELLET SROIQ(D) Yes
FACT++ SROIQ(D) Yes
KAON2 SHIQ Yes
HERMIT SHIQ No

Table 3.3: DL reasoners, supported logics and DIG interface

3http://owl.man.ac.uk/factplusplus/
4http://kaon2.semanticweb.org
5http://www.comlab.ox.ac.uk/people/boris.motik/HermiT/

http://owl.man.ac.uk/factplusplus/
http://kaon2.semanticweb.org
http://www.comlab.ox.ac.uk/people/boris.motik/HermiT/
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3.3 The Description Logic SROIQ(D)

This section overviews SROIQ(D) [137], the DL which will be mainly

treated throughout this document.

Syntax

Definition 30 Concrete domain A concrete domain is a pair 〈∆D,ΦD〉, where

∆D is a concrete interpretation domain and ΦD is a set of concrete predicates d

with a predefined arity n and an interpretation dD ⊆∆n
D [14, 182].

Concrete domains or datatypes are used to represent integer, real num-

bers, string, dates, etc.

Definition 31 Alphabet of SROIQ(D). SROIQ(D) assumes three alpha-

bets of symbols, for individuals, roles and concepts.

• Abstract individuals are denoted a, b.

• Concrete individuals are denoted v.

• The abstract roles (denoted R) of the language can be built inductively

according to the following syntax rule:

R→ RA | (atomic role)

R− | (inverse role)

U (universal role)

Concrete roles are denoted T and cannot be complex.

• Let n, m be natural numbers with n ≥ 0, m > 0 and let ]X denote the

cardinality of the set X . The concepts (denoted C or D) of the language

can be built inductively from atomic concepts (A), top concept >, bottom

concept ⊥, named individuals (oi), abstract roles (R), concrete roles (T),

simple roles (S, which will be defined below) and concrete predicates d as

follows:
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C , D→ A | (atomic concept)

> | (top concept)

⊥ | (bottom concept)

C u D | (concept conjunction)

C t D | (concept disjunction)

¬C | (concept negation)

∀R.C | (universal quantification)

∃R.C | (existential quantification)

∀T.d | (concrete universal quantification)

∃T.d | (concrete existential quantification)

{o1, . . . , om} | (nominals)

(≥ n S.C) | (at-least qualified number restriction)

(≤ n S.C) | (at-most qualified number restriction)

(≥ n T.d) | (concrete at-least qualified number restriction)

(≤ n T.d) | (concrete at-most qualified number restriction)

∃S.Self (local reflexivity)

Example 3

• Man and Woman are atomic concepts.

• hasChild and likes are atomic roles.

• Man u ≥ 2hasChild.Woman is a complex concept representing a father

with at least two daughters.

• ∃likes.Self represents a narcissist, a person who loves himself. ut

Expression of the form (≥ n S), (≤ n S) are called unqualified number

restrictions. (= n S.C) is an abbreviation for (≥ n S.C) u (≤ n S.C), and

(= n S) is an abbreviation for (≥ n S) u (≤ n S). The case for concrete

number restrictions is similar.

Definition 32 Knowledge Base. A Knowledge Base (KB) comprises two parts:

the intensional knowledge, i.e., general knowledge about the application do-

main (a Terminological Box or TBox T , and a Role Box or RBox R), and the

extensional knowledge, i.e., particular knowledge about some specific situation

(an Assertional Box or ABox A with statements about individuals).



3.3. The Description Logic SROIQ(D) 49

• An ABox consists of a finite set of assertions about individuals:

– Concept assertions a : C, meaning that individual a is an instance

of C.

– Role assertions (a, b):R, meaning that (a, b) is an instance of R.

– Negated role assertions (a, b) : ¬R, meaning that (a, b) is not an

instance of R.

– Concrete role assertions (a, v): T.

– Negated concrete role assertions (a, v):¬T.

– Inequality assertions a 6= b.

– Equality assertions a = b.

• A TBox consists of a finite set of general concept inclusion (GCI) axioms

C v D (C is more specific than D). A GCI is also called a terminological

axiom. We also say that C2 is a superclass of C1, and that C1 is a subclass

of C2.

A concept equivalence C ≡ D (C and D are equivalent) is a shorthand for

the pair of axioms C v D and D v C.

• Let w be a role chain (a finite string of roles not including the universal

role U). An RBox consists of a finite set of role axioms:

– Role inclusion axioms (RIAs) w v R (role chain w is more specific

than R) or T1 v T2 (concrete role T1 subsumes concrete role T2). In

RIAs of the form R1 v R2 we also say that R2 is a super-role of R1,

and that R1 is a sub-role of R2.

– Transitive role axioms trans(R).

– Disjoint role axioms dis(S1, S2) or dis(T1, T2).

– Reflexive role axioms ref(R).

– Irreflexive role axioms irr(S).

– Symmetric role axioms sym(R).

– Asymmetric role axioms asy(S).

A role equivalence R ≡ R′ (R and R′ are equivalent) is a shorthand for

the pair of axioms Rv R′ and R′ v R.
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Table 3.4: Syntax of the Axioms of the Fuzzy Description Logic SROIQ(D)

ABox

Concept assertion a :C
Role assertion (a, b):R, (a, b):¬R, (a, v): T, (a, v):¬T
Inequality assertion a 6= b
Equality assertion a = b

TBox

Fuzzy GCI C v D

RBox

Fuzzy RIA R1R2 . . . Rn v R, T1 v T2

Transitive role axiom trans(R)
Disjoint role axiom dis(S1, S2),dis(T1, T2)
Reflexive role axiom ref(R)
Irreflexive role axiom irr(S)
Symmetric role axiom sym(R)
Asymmetric role axiom asy(S)

Example 4

• The concept assertion paul: Man states that the individual Paul belongs to

the class of men.

• The role assertion (paul, john): ¬hasChild states that John is not the child

of Paul.

• The GCI Manv Human states that all men are human.

• The RIA owns hasPartv owns states the fact if somebody owns something,

he also owns its components. ut

The adjective “general” in GCIs emphasizes that these axioms involve

generic concepts without any restrictions on them, in contrast to some works

which impose some limitations. For example, a common restriction is to

assume acyclic T-Box where GCIs are of the form A v D and such that no

atomic concept appears in more than one axiom, since KBs with such TBoxes

can be transformed into an equivalent KB with an empty TBox by using an

unfolding algorithm [210].
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We note in passing that asymmetric role axioms were erroneously called

antisymmetric called in the original paper [137]. As a matter fact, their se-

mantics actually correspond to the one of asymmetric role axioms as pointed

out in [275].
Now we are ready the define the notion of simple roles.

Definition 33 Simple role. Simple roles are inductively defined as follows:

• RA is simple if does not occur on the right side of a RIA.

• R− is simple if R is.

• If R occurs on the right side of a RIA, R is simple if, for each w v R, w = S

for a simple role S.

Note that concrete roles are always simple and non-complex.

Now we will introduce some definitions which will be useful to impose

some limitations in the language.

Definition 34 Strict partial order. A strict partial order ≺ on a set A is an

irreflexive and transitive relation on A.

Definition 35 Regular order. A strict partial order ≺ on the set of roles is

called a regular order if it also satisfies R1 ≺ R2 ⇔ R−2 ≺ R1, for all roles R1

and R2.

Definition 36 ≺-regularity. A RIA w v R is ≺-regular if R= RA and:

• w = RR, or

• w = R−, or

• w = S1 . . . Sn and Si ≺ R for all i = 1, . . . , n, or

• w = RS1 . . . Sn and Si ≺ R for all i = 1, . . . , n, or

• w = S1 . . . SnR and Si ≺ R for all i = 1, . . . , n.

In order to guarantee the decidability of the logic, we need to assume

some restrictions in the use of roles:

• Some concept constructors require simple roles: non-concrete qualified

number restrictions and local reflexivity.
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• Some role axioms also require simple roles: disjoint, irreflexive and

asymmetric role axioms.

• Role axioms cannot contain the universal role U .

• Given a regular order ≺, every RIA should be ≺-regular.

Semantics

Definition 37 Interpretation. An interpretation I with respect to a concrete

domain D is a pair (∆I , ·I) consisting of a non empty set∆I (the interpretation

domain) disjoint with ∆D and an interpretation function ·I mapping:

• Every abstract individual a onto an element aI of ∆I .

• Every concrete individual v onto an element of vD of ∆D.

• Every atomic concept A onto a set AI ⊆∆I .

• Every abstract atomic role RA onto a relation RIA ⊆∆
I ×∆I .

• Every concrete role T onto a relation TI ⊆∆I ×∆D.

• Every n-ary concrete predicate d onto the interpretation dD ⊆∆n
D.

The interpretation is extended to complex concepts and roles by the inductive

definitions in Table 3.5.

Unique Name Assumption (UNA) is not imposed, i.e., two individual names

(or nominals) might refer to the same individual.

Let ◦ be the standard composition of relations. An interpretation I satis-

fies (is a model of):

• a :C iff aI ∈ CI ,

• (a, b):R iff (aI , bI) ∈ RI ,

• (a, b):¬R iff (aI , bI) 6∈ RI ,

• (a, v): T iff (aI , vD) ∈ TI ,

• (a, v):¬T iff (aI , vD) 6∈ TI ,

• a 6= b iff aI 6= bI ,

• a = b iff aI = bI ,
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Table 3.5: Semantics of the Concepts and Roles in SROIQ(D)

Constructor Semantics
(A)I AI ⊆∆I
(>)I ∆I

(⊥)I ;
(C u D)I CI ∩ DI

(C t D)I CI ∪ DI

(¬C)I ∆I \ CI

(∀R.C)I {x | ∀y, (x , y) /∈ RI or y ∈ CI}
(∃R.C)I {x | ∃y, (x , y) ∈ RI and y ∈ CI}
(∀T.d)I {x | ∀v, (x , v) /∈ TI or v ∈ dD}
(∃T.d)I {x | ∃v, (x , v) ∈ TI and v ∈ dD}
({o1, . . . , om})I {oI1 , . . . , oIm}
(≥ n S.C)I {x | ]{y :(x , y) ∈ SI and y ∈ CI} ≥ n}
(≤ n S.C)I {x | ]{y :(x , y) ∈ SI and y ∈ CI} ≤ n}
(≥ n T.d)I {x | ]{v :(x , v) ∈ TI and v ∈ dD} ≥ n}
(≤ n T.d)I {x | ]{v :(x , v) ∈ TI and v ∈ dD} ≤ n}
(∃S.Self)I {x : (x , x) ∈ SI}
(RA)I RIA ⊆∆

I ×∆I
(R−)I {(y, x) ∈∆I ×∆I | (x , y) ∈ RI}
(U)I ∆I ×∆I

• C v D iff CI ⊆ DI ,

• R1 . . . Rm v R iff RI1 ◦ · · · ◦ RIm ⊆ RI

• T1 v T2 iff TI1 ⊆ TI2

• trans(R) iff (x , y) ∈ RI and (y, z) ∈ RI imply (x , z) ∈ RI , ∀x , y, z ∈
∆I ,

• dis(S1, S2) iff SI1 ∩ SI2 = ;,

• dis(T1, T2) iff TI1 ∩ TI2 = ;,

• ref(R) iff (x , x) ∈ RI ,∀x ∈∆I ,

• irr(S) iff (x , x) 6∈ SI ,∀x ∈∆I ,

• sym(R) iff (x , y) ∈ RI implies (y, x) ∈ RI ,∀x ∈∆I ,

• asy(S) iff (x , y) ∈ SI implies (y, x) 6∈ SI ,∀x ∈∆I ,

• a KB K = 〈A,T ,R〉 iff it satisfies each element in A, T and R.
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Note that GCIs can be used to express some features of OWL which are

just syntactic sugar:

• Disjointness of concepts. The fact that C1 . . . Cn are disjoint can be ex-

pressed as C1 u · · · u Cn v⊥.

• Domain of a concept. The fact that concept C is the domain of a role R

can be expressed as >v ∀R−.C or ∃R.>v C .

• Range of a concept. The fact that concept C is the range of a role R can

be expressed as >v ∀R.C .

• Functionality of a role. A role R is functional iff RI(a, b) and RI(a, c)
imply b = c. This can be expressed as >v (≤ 1 R.>).

3.4 Ontology Languages

DLs have proved to be very useful as ontology languages [15]. The current

standard language for ontology representation is the Web Ontology Lan-

guage (OWL) [327].

OWL

OWL is a W3C (World Wide Web Consortium) recommendation since Febru-

ary 2004. Essentially, OWL combines RDF [329] and RDF Schema [330]with

some DLs [140], while trying to maintain backwards compatibility with pre-

vious ontology languages (such as SHOE, DAML, OIL or DAML+OIL [124]).

OWL comprises three sublanguages of increasing expressive power: OWL

Lite, OWL DL and OWL Full.

• OWL Lite is the less expressive level and, accordingly, reasoning with it

has the lowest computational complexity (EXPTIME). It is equivalent to

the DL SHIF(D).

• OWL DL is a balanced tradeoff between expressiveness and complexity

(NEXPTIME), with reasoning still being decidable. OWL DL corresponds

to the DL SHOIN (D), and allows all the constructors of OWL, but

there are some restrictions in their usage. Every OWL Lite is a valid

OWL DL ontology.
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• OWL Full is the most expressive level, but reasoning with it becomes

undecidable. OWL Full allows any constructor of OWL with no restric-

tions. Every OWL DL is a valid OWL Full ontology. OWL Full subsumes

RDF, so every RDF document is a valid OWL Full document.

In fact, ontology entailment for OWL Lite and OWL Lite can be reduced

to KB satisfiability in SHIF(D) and SHOIN (D) respectively [139].

However, since its first development, several extensions to OWL have

been proposed [286].

OWL 2

Among these extensions, the most significant one is OWL 2 [75, 233] which

is its most likely immediate successor. In November 2005, the participants

of the first workshop “OWL: Experiences and Directions” decided to start

working on a extension of OWL. The result of a working group was OWL

1.1, is a W3C Member Submission since December 2006. Recently, the name

has changed to OWL 2, and future versions of the language will be presented

under this name.

Essentially, OWL 2 is based on the DL SROIQ(D) (which provides qual-

ified cardinality restrictions and some new property axioms), but also includ-

ing extended datatype support (customized datatypes), some syntactic sugar,

changes in the meta-modelling (punning) and extended annotations. This

increment in the expressivity makes reasoning harder (N2EXPTIME) [153].

There are several syntaxes for OWL 2:

• Functional-style syntax [205] is the most common one, and intends to

be easier for specification and for reasoning tools, and that replaces

OWL abstract syntax [328] because of some problems with it [204].

• XML syntax is defined by an XML Schema and easier to implement [77].

• RDF/XML syntax allows the serialization of ontologies in RDF [76].

• Manchester syntax aims to be easier for non-logicians (by giving a user-

friendly syntax based on the DL syntax but avoiding mathematical sym-

bols) [133, 134].
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• Sydney syntax is closer to natural language, using a subset of the En-

glish language [73].

An OWL 2 ontology contains descriptions of classes (or concepts in DL

terminology), properties (roles in DL terminology) and individuals. There are

two types of properties: object properties (abstract roles) and datatype proper-

ties (concrete roles). Table 3.6 includes the clases and properties constructors

of OWL 2, together with their correspondences in SHOIN (D).
There are two additional types of properties which do not have a coun-

terpart in the DL, namely annotation properties (owl:AnnotationProperty)

and ontology properties (owl:OntologyProperty), but they just include some

meta-properties of the ontology.

An OWL 2 document consists of optional ontology headers plus any num-

ber of axioms: facts about individuals, class axioms and property axioms,

which according to the DL terminology correspond to the ABox, TBox and

RBox, respectively. Ontology headers are used for meta-information, ontol-

ogy import and relationships. Table 3.7 shows the OWL 2 axioms and their

equivalences in SHOIN (D).

Relation Among OWL 2 and Other Languages

OWL DL and OWL Lite are two subsets of OWL 2. Table 3.8 shows the

relation among OWL 2, OWL DL and OWL Lite classes, while Table 3.9 shows

the relation among OWL 2, OWL DL and OWL Lite axioms.

OWL DL is a subset of OWL 26 which does not allow:

• Concept constructors:

– ObjectMinCardinality (n, S, C)

– ObjectMaxCardinality (n, S, C)

– ObjectExactCardinality (n, S, C)

– DataMinCardinality (n, T,d)

– DataMaxCardinality (n, T,d)

– DataExactCardinality (n, T,d)
6Note, however, that the functional-style syntax of OWL 2 is not valid in OWL.
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Table 3.6: Class and property constructors in OWL 2

OWL 2 abstract syntax DL syntax

Class (A) A
Class (owl:Thing) >
Class (owl:Nothing) ⊥
ObjectIntersectionOf (C , D) C u D
ObjectUnionOf (C , D) C t D
ObjectComplementOf (C) ¬C
ObjectAllValuesFrom (R, C) ∀R.C
ObjectSomeValuesFrom (R, C) ∃R.C
ObjectHasValue (R, o) ∃R.{o}
DataAllValuesFrom (T,d) ∀T.d
DataSomeValuesFrom (T,d) ∃T.d
DataHasValue (T, v) ∃T.{v}
ObjectOneOf (o1, . . . , om) {o1, . . . , om}
ObjectMinCardinality (n, S, C) (≥ n S.C)
ObjectMaxCardinality (n, S, C) (≤ n S.C)
ObjectExactCardinality (n, S, C) (≥ n S.C)u (≤ n S.C)
ObjectMinCardinality (n, S) (≥ n S.>)
ObjectMaxCardinality (n, S) (≤ n S.>)
ObjectExactCardinality (n, S) (≥ n S.>)u (≤ n S.>)
DataMinCardinality (n, T,d) (≥ n T.d)
DataMaxCardinality (n, T,d) (≤ n T.d)
DataExactCardinality (n, T,d) (≥ n T.d)u (≤ n T.d)
DataMinCardinality (n, T) (≥ n T.>)
DataMaxCardinality (n, T) (≤ n T.>)
DataExactCardinality (n, T) (≥ n T.>)u (≤ n T.>)
ObjectExistsSelf (S) ∃S.Self
ObjectProperty (RA) RA

TopObjectProperty U
BottomObjectProperty ¬U
DatatypeProperty (T) T
TopDataProperty UD

BottomDataProperty ¬UD
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Table 3.7: Axioms in OWL 2

OWL 2 abstract syntax DL syntax

ClassAssertion (a, C) a : C
ObjectPropertyAssertion (R, a, b)) (a, b): R
NegativeObjectPropertyAssertion (R, a, b) (a, b): ¬R
DataPropertyAssertion (T, a, v)) (a, v): T
NegativeDataPropertyAssertion (T, a, v) (a, v): ¬T
SameIndividual (a1, . . . , am) ai = a j, 1≤ i < j ≤ m
DifferentIndividuals (a1, . . . , am) ai 6= a j, 1≤ i < j ≤ m

SubClassOf (C1, C2) C1 v C2

EquivalentClasses (C1, . . . , Cm) C1 ≡ · · · ≡ Cm

DisjointClasses (C1, . . . , Cm) C1 u · · · u Cm v⊥, 1≤ i < j ≤ m
DisjointUnion (C , C1, . . . , Cm) C ≡ C1 t · · · t Cm,

Ci u C j v⊥, 1≤ i < j ≤ m

SubObjectPropertyOf (subObjectPropertyChain (R1, . . . , Rm) R) R1 . . . Rm v R
SubObjectPropertyOf (R1R2) R1 v R2

SubDataPropertyOf (T1, T2) T1 v T2

EquivalentObjectProperties (R1, . . . , Rm) R1 ≡ · · · ≡ Rm

EquivalentDataProperties (T1, . . . , Tm) T1 ≡ · · · ≡ Tm

ObjectPropertyDomain (R, C) ∃R.>v C
ObjectPropertyRange (R, C) >v ∀R.C
DataPropertyDomain (T, C) ∃T.>v C
DataPropertyRange (T,d) >v ∀T.d
InverseObjectProperties (R1, R2) R1 ≡ R−2
FunctionalObjectProperty (S) >v (≤ 1 S.>)
FunctionalDataProperty (T) >v (≤ 1 T.>)
InverseFunctionalObjectProperty (S) >v (≤ 1 S−.>)
TransitiveObjectProperty (R) trans(R)
DisjointObjectProperties (S1, S2) dis(S1, S2)
DisjointDataProperties (T1, T2) dis(T1, T2)
ReflexiveObjectProperty (R) ref(R)
IrreflexiveObjectProperty (S) irr(S)
SymmetricObjectProperty (R) sym(R)
AsymmetricObjectProperty (S) asy(S)
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– ObjectExistsSelf (S)

• Role constructors:

– TopObjectProperty

– BottomObjectProperty

– TopDataProperty

– BottomDataProperty

• Axioms:

– NegativeObjectPropertyAssertion (R, a, b)

– NegativeDataPropertyAssertion (T, a, v)

– DisjointUnion (C , C1, . . . , Cm)

– SubObjectPropertyOf (subObjectPropertyChain (R1, . . . , Rm) R)

– DisjointObjectProperties (S1, S2)

– DisjointDataProperties (T1, T2)

– ReflexiveObjectProperty (R)

– IrreflexiveObjectProperty (S)

– AsymmetricObjectProperty (S)

OWL Lite is a subset of OWL DL which does not allow:

• Concept constructors:

– ObjectHasValue (R, o)

– DataHasValue (T, v)

– ObjectOneOf (o1, . . . , om)

– ObjectMinCardinality (n, S)

– ObjectMaxCardinality (n, S)

– ObjectExactCardinality (n, S)

– DataMinCardinality (n, T)

– DataMaxCardinality (n, T)

– DataExactCardinality (n, T)
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Table 3.8: Relation among OWL 2, OWL DL and OWL Lite classes

Constructor OWL 2 OWL DL OWL Lite

Class (A) Ø Ø Ø
Class (owl:Thing) Ø Ø Ø
Class (owl:Nothing) Ø Ø Ø
ObjectIntersectionOf (C , D) Ø Ø Ø
ObjectUnionOf (C , D) Ø Ø Ø
ObjectComplementOf (C) Ø Ø Ø
ObjectAllValuesFrom (R, C) Ø Ø Ø
ObjectSomeValuesFrom (R, C) Ø Ø
ObjectHasValue (R, o) Ø Ø
DataAllValuesFrom (T,d) Ø Ø Ø
DataSomeValuesFrom (T,d) Ø Ø Ø
DataHasValue (T, v) Ø Ø
ObjectOneOf (o1, . . . , om) Ø Ø
ObjectMinCardinality (n, S) Ø Ø
ObjectMaxCardinality (n, S) Ø Ø
ObjectExactCardinality (n, S) Ø Ø
DataMinCardinality (n, T) Ø Ø
DataMaxCardinality (n, T) Ø Ø
DataExactCardinality (n, T) Ø Ø
ObjectMinCardinality (n, S, C) Ø
ObjectMaxCardinality (n, S, C) Ø
ObjectExactCardinality (n, S, C) Ø
DataMinCardinality (n, T,d) Ø
DataMaxCardinality (n, T,d) Ø
DataExactCardinality (n, T,d) Ø
ObjectExistsSelf (S) Ø
ObjectProperty (RA) Ø Ø Ø
TopObjectProperty Ø
BottomObjectProperty Ø
DatatypeProperty (T) Ø Ø Ø
TopDataProperty Ø
BottomDataProperty Ø
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Table 3.9: Relation among OWL 2, OWL DL and OWL Lite axioms

Axiom OWL 2 OWL DL OWL Lite

ClassAssertion (a, C) Ø Ø Ø
ObjectPropertyAssertion (R, a, b)) Ø Ø Ø
NegativeObjectPropertyAssertion (R, a, b) Ø
DataPropertyAssertion (T, a, v)) Ø Ø Ø
NegativeDataPropertyAssertion (T, a, v) Ø
SameIndividual (a1, . . . , am) Ø Ø Ø
DifferentIndividuals (a1, . . . , am) Ø Ø Ø
SubClassOf (C1, C2) Ø Ø Ø
EquivalentClasses (C1, . . . , Cm) Ø Ø Ø
DisjointClasses (C1, . . . , Cm) Ø Ø Ø
DisjointUnion (C , C1, . . . , Cm) Ø
SubObjectPropertyOf (subObjectPropertyChain (R1 . . . Rm) R) Ø
SubObjectPropertyOf (R1R2) Ø Ø Ø
SubDataPropertyOf (T1, T2) Ø Ø Ø
EquivalentObjectProperties (R1, . . . , Rm) Ø Ø Ø
EquivalentDataProperties (T1, . . . , Tm) Ø Ø Ø
ObjectPropertyDomain (R, C) Ø Ø Ø
ObjectPropertyRange (R, C) Ø Ø Ø
DataPropertyDomain (T, C) Ø Ø Ø
DataPropertyRange (T,d) Ø Ø Ø
InverseObjectProperties (R1, R2) Ø Ø Ø
FunctionalObjectProperty (S) Ø Ø Ø
FunctionalDataProperty (T) Ø Ø Ø
InverseFunctionalObjectProperty (S) Ø Ø Ø
TransitiveObjectProperty (R) Ø Ø Ø
DisjointObjectProperties (S1, S2) Ø
DisjointDataProperties (T1, T2) Ø
ReflexiveObjectProperty (R) Ø
IrreflexiveObjectProperty (S) Ø
SymmetricObjectProperty (R) Ø Ø Ø
AsymmetricObjectProperty (S) Ø





CHAPTER 4
Fuzzy Ontologies and Fuzzy

Description Logics

This chapter contains the state of the art in fuzzy extensions of ontologies

and Description Logics. Section 4.1 is dedicated to fuzzy ontologies, and

then Section 4.2 focuses on fuzzy Description Logics, as the most developed

formalism to work with fuzzy ontologies.

4.1 Fuzzy Ontologies

This section is devoted to the field of fuzzy ontologies, including a motivation

of their birth, a revision of the proposed definitions and some pointers to the

most relevant applications that have been presented in the literature.

Motivation

With the sake of concrete illustration of the limitations of classical ontologies,

let us consider an example in the application domain of accommodation. Our

example is based on a possibilistic ontology originally proposed in [172].
Another example of application domain is medicine, since there exist some

medical categories that cannot be defined in an Aristotelian sense [309].
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Firstly, the concepts which are used to describe different types of lodging

are inherently vague. For example, it is usually assumed that a guesthouse is a

“cheap, small and more hospitable hotel”. But the notions of cheap, small and

hospitable are clearly not well defined, having unsharp boundaries. Hence,

the nature of the concepts does not make appropriate a crisp definition.

As a consequence, it may be difficult to say that a particular establishment

fully belongs to one of these concepts, and that does not belong to any of the

others. It is more reasonable to think that it belongs to several concepts up

to different degrees.

Similarly, instead of having a concept hierarchy, we would have a fuzzy

concept hierarchy, where guesthouse can be considered a subconcept of hotel

to some degree. These degrees are different for the different subconcepts of

hotel, since some of them can be considered hotels preferably than others.

Furthermore, a complex concept can have attributes taking vague values.

For example, a guesthouse can have an attribute hasPrice being a linguis-

tic variable taking values as cheap or expensive defined by means of fuzzy

numbers.

Definition

There have been proposed several definitions of fuzzy ontology in the liter-

ature, although we think that neither of them is general enough. A list of

the most relevant definitions is included here, where the notation has been

homogenized and, in some cases, summarized. It is worth to note, however,

that some of the authors do not claim to be proposing a universal definition

of the term.

• A fuzzy ontology is a quintuple (I , C , R, F, A) where I is a set of indi-

viduals, C is a set of fuzzy concepts, R is a set of fuzzy n-ary relations

(including fuzzy taxonomic relations), F is a set of fuzzy n-ary concrete

relations, and A is the set of axioms [52, 53].

• A fuzzy ontology is a quadruple (C , R, F, A) where C is a set of fuzzy

concepts, R is a set of fuzzy n-ary relations (including fuzzy taxonomic

relations), F is a set of fuzzy n-ary concrete relations, and A is the set



4.1. Fuzzy Ontologies 65

of axioms [55, 58, 60]. Since an ontology does not contain individuals,

a fuzzy Knowledge Base is also defined as a pair (O, I) where O is a

fuzzy ontology, and I is a set of individuals.

• A fuzzy ontology is a quadruple (C , R, H, A), where C is a set of concepts

(possibly with fuzzy attributes), R is a set of fuzzy relations, H is a

concept hierarchy, and A is a set of axioms [254].

• A fuzzy ontology is a quintuple (C , R, H, P, A), where C is a set of fuzzy

concepts, R is set of fuzzy relations between individuals, H is a con-

cept hierarchy, P is a set of non-taxonomic fuzzy relations between

concepts, and A is a set of fuzzy axioms [255]. According to this, an

ontology does not contain individuals. They define the notion of fuzzy

knowledge Base as a pair (O, I) where O is a fuzzy ontology, and I is a

set of individuals.

• A fuzzy ontology is a quadruple (C , R, P, A), where C is a set of con-

cepts, R is a set of binary relations between two individuals, P is a

set of binary relations between two concepts, and A is a set of fuzzy

axioms1 [346].

• A fuzzy ontology is a quadruple (C , R, l,µF), where C is a finite set of

nodes (concepts), R⊆ C × C is a set of fuzzy edges (relations) that are

assigned by a continuous fuzzy value and a label, l is a mapping from

edges to a set L of strings called labels, and µF is the set of membership

functions µF : R→ [0,1] [162].

• A fuzzy ontology is a quintuple (C , F, H, R, E) where C is set of fuzzy

concepts, F is the set of attributes of a concept, H is a concept hierar-

chy, R is a set of fuzzy relations, and E is the set of fuzzy events of a

concept [353].

• A fuzzy ontology is a quadruple (C , R, F, U), where C is a set of con-

cepts, R is a set of fuzzy abstract relations, F is a set of fuzzy concrete

relations, and U is the universe of discourse. [1, 3].

1To be more precise, this is the definition of a fuzzy domain ontology. The authors also
introduce definitions for an extended fuzzy ontology and a basic fuzzy ontology.
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• A fuzzy ontology is a quadruple (C , F C , R, A), where C is a set of con-

cepts, F C is a collection of sets of fuzzy attributes (one set for each

concept), R is a set of relations (including taxonomic relations), and A

is a set of axioms [242].

• A fuzzy ontology is a triple (C , I , R), where, C is a set of concepts, I is

a set of individuals, and R is a set of binary relations between some el-

ements of C and I , including two special types of fuzzy relations [108,

170].

• A fuzzy ontology is a quadruple (C , R, P, I), where C is a set of fuzzy

concepts, R is a set of fuzzy binary relations, P is a set of fuzzy proper-

ties of concepts, and I is a set of individuals [11, 51].

• A fuzzy ontology is a pair (C , R), where C is a set of concepts, and R is

a set of fuzzy relations between concepts [87].

• A fuzzy ontology is a triple (S, C , f ), where C is a set of concepts, S is

a set of analytic sentences describing the meaning of the symbols in C ,

and f : C → [0,1] [219].

• A fuzzy ontology is an ontology extended with fuzzy values which are

assigned through the functions r : (C ∪ I)× R→ RelationValues)×
[0,1], and c : C ∪ I → [0, 1], where C is a set of concepts, R is a set of

relations, and I is a set of individuals [54].

• A fuzzy ontology is an ontology extended with fuzzy values which are

assigned through the functions c : I → [0, 1] and r : RelationValues→
[0,1], where I is a set of individuals [57].

• A fuzzy ontology is an extended domain ontology with fuzzy concepts

and fuzzy relations [163].

• A fuzzy ontology is a set of FUZZY OWL axioms [288].

Discussion

A first group of the existing definitions try to formalize the notion of fuzzy

ontologies by means of an enumeration of the elements of the ontology

which are extended in order to support vague knowledge representation [52,
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53, 55, 58, 60, 254, 255]. Despite the merit of these definitions, this ap-

proach has some problems. Typically, different domains will need to rep-

resent vagueness and imprecision at different levels. Furthermore, future

languages will offer new possibilities to be extended which are unknown

nowadays, but these definition do not allow other fuzzy elements than the

explicitly mentioned. As a consequence, the scalability and reusability of the

definition are compromised. For example, a fuzzy role hierarchy falls out of

these definitions since taxonomic relations between roles are not mentioned.

Most of the approaches are even more restrictive and are application-

dependent, since they propose the minimal extensions which are sufficient

to cover a particular application [1, 3, 54, 57, 87, 108, 162, 163, 170, 219,

242, 346, 353]. For example, [1, 3, 87] do not fuzzify concepts, whereas

[219] does not fuzzify relations.

Moreover, some definitions are tied to a particular formalism. For exam-

ple [288] is attached to the fuzzy language FUZZY OWL based on a fuzzy

extension of the DL SHOIN . But even if it became a standard language

for fuzzy ontologies representation, there are still some interesting features

which cannot be represented in it, such as fuzzy nominals or fuzzy concept

or role hierarchies.

We understand fuzzy ontologies in a more general sense. In our opinion,

a fuzzy ontology is simply an ontology which uses fuzzy logic to provide a

natural representation of imprecise and vague knowledge, and eases reasoning

over it. We emphasize the fact that the representation should be natural,

because nowadays it is possible to represent some kind of fuzziness in crisp

ontologies by means of ad-hoc solutions.

Typically, concepts, (abstract and concrete) relations and axioms can be

fuzzified. But fuzziness can also be in fuzzy concrete domains. Or in exter-

nal formalisms such as a fuzzy rule layer. Our informal definition is general

enough to allow the ontologists to decide in which levels they want to intro-

duce the fuzziness, makes possible to have a crisp ontology with fuzziness

being dealt with using a external formalism, and, what seems more impor-

tant to us, will not be compromised by the apparition of future ontology

languages.
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It is also worth to recall that since fuzzy logic is a generalization of clas-

sical logic, classical ontologies are special case of fuzzy ontologies, so this

formalism is by nature backwards compatible with current crisp ontologies.

Finally, we note in passing that, although in the Artificial Intelligence

literature the term approximate reasoning is directly related to fuzzy logic,

in the ontology literature this term has nothing to do with fuzziness [248].

Applications

Without the aim of being exhaustive, we will mention in this subsection some

examples of applications of fuzzy ontologies.

One of the most important applications is Semantic Web [71, 213, 232,

242] and, more generally, the Internet [253]. The World Wide Web Consor-

tium (W3C) recently set up an incubator group on Uncertainty Reasoning

for the Web, where “uncertain is intended to encompass a variety of aspects

of imperfect knowledge, including incompleteness, inconclusiveness, vagueness,

ambiguity, and others” [42].

Another important application is information retrieval [87, 21, 56, 58,

59, 60, 102, 103, 148, 217, 218, 236, 263, 332]. More specifically, medical

information retrieval [228, 227, 229, 230, 231], personalized multimedia

information retrieval [207, 208, 226, 333, 81] and query enrichment [19,

49, 158, 215, 336, 337] have been the subject of considerable research.

Among the other examples that appear in the literature we may cite mul-

tilingual ontologies [74], ontology mapping [215], ontology integration [3],
ontology dynamics [57], context management [341], image interpretation [143],
document content representation [48], data mining [98], text mining [1, 2,

4, 85, 86, 88]2, development of computing with words based systems [247],
temporal knowledge representation [209], economy (a fuzzy Balanced Score-

card [36]), design process management [353], transportation systems [346],
Chinese news summarization [163], semantic help-desk Support [241] or

educational computer games [108, 170].

2 [88] uses rough fuzzy ontologies.
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The construction of fuzzy ontologies has for instance been considered

in [1, 3, 7, 109, 163, 183, 242, 336, 337]. Regarding fuzzy ontology edi-

tors, [54, 55] presents an extension of the ontology editor KAON.

Fuzzy extensions of Semantic Web languages such as RDF [185, 196,

197, 321], OWL [101, 288] (a fuzzy probabilistic version has also been out-

lined [312]), OWL 2 [281], RuleML [78], SWRL [223, 335], or RIF [351]
have also been proposed.

Conceptual Fuzzy Sets (CFSs) were proposed in order to overcome the

fact that ordinary fuzzy sets do not dealt with the context-dependent mean-

ing representation concerning language ambiguity. Conceptual Fuzzy Sets

(CFSs) explain the meaning of concepts by chaining other related concepts,

where the activation values of the other concepts correspond to the member-

ship values [310]. By fusing CFSs with ontologies, a region of words com-

monly relevant to the original keyword is formed. In a series of works, T.

Takagi et al. propose the combination of ontologies and Conceptual Fuzzy

Sets (see e.g., [311]).

Finally, some crisp ontologies have been used for the representation of

different types of fuzzy [25] and, more generally, uncertain knowledge, un-

derstanding uncertain in a general sense [42] (see also the discussion about

this ontology in [66]).

4.2 Fuzzy Description Logics

This section exhaustively compiles the state of the art in fuzzy DLs, extending

and updating in a very significant way the existing survey papers [79, 181,

297]. Due to the very important number of works, we have classified them

and the structure of this section is as follows. The first subsection quickly

illustrates the path followed in the field, from the oldest seminal works to

more recent proposals dealing with expressive logics. The next subsection

is devoted to some specific elements which are of interest in the fuzzy DL

that we propose in this document (namely GCIs, families of fuzzy operators,

fuzzy modifiers, fuzzy concrete domains, cut concepts and roles, number

restrictions, reductions to crisp DLs, and fuzzy DL reasoners). We compare
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our contributions with the related work. Finally, the third subsection is a

hotchpotch which covers the rest of the work in fuzzy DLs and some related

fields, such as possibilistic DLs.

The Path Followed in Fuzzy DLs

First steps. The work of J. Yen [340] (1991) is the first effort in this area.

The author defined a fuzzy extension of FL− called FT SL−. He only con-

sidered a TBox. He extended conjunction and universal quantification con-

cepts to the fuzzy case, considering Zadeh family. He also considered some

fuzzy modifiers (Not, Very and Slightly) applied to atomic concepts, and

fuzzy concrete domains. The extension of number restrictions is proposed,

although they do not belong to FL−. Regarding the reasoning, he proposes

an structural algorithm for concept subsumption (where this reasoning task

is considered as a yes/no question).

In 1994, R. M. da Silva et al. [268] described a system for annotating

variables of first order predicate calculus using a fuzzy DL.

In 1998, C. Tresp and R. Molitor [314] proposed ALCFM , a multivalued

extension of ALC under Zadeh family. They also allow the use of some

fuzzy modifiers (manipulators, a special family of triangular membership

functions). Concept negation is not allowed as part of the language, but

it has to be simulated by using a fuzzy modifiers. Consequently, they allow

the use of different types of negation functions (as long as they are manipula-

tors). This work provides a tableau algorithm for fuzzy concept subsumption

which generates an equation system to be solved by using a linear program-

ming algorithm [249]. The algorithm is sound and complete, although not

really efficient for large KBs.

The most important works in the first years of fuzzy DLs are authored by

U. Straccia. In 1997, he (together with other authors) extended ALC with

the possibility of representing fuzzy assertions of the form 〈τ,α〉 stating that

the fuzzy assertion τ is true with (at least) degree α [200]. However, this

work does not describe any reasoning algorithm. In 1998 he presented an

extended fuzzy extension of ALC, as well as a reasoning algorithm for KB
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satisfiability [292]. He also reduced other problems (entailment and compu-

tation of the Best Truth-Value Bound) to this reasoning task.

These works assume a simple TBox, as originally proposed in the crisp

case by B. Nebel [211]. A simple TBox is assumed to be acyclic, to include

only axioms of the form Av C , and to be such that no atomic concept appear

in the left hand side of more than one terminological axiom. In this case, it

is possible to apply an unfolding algorithm to remove the TBox.

In 2001, in the most referenced paper in the field, he extended his pre-

vious works with fuzzy assertions of the form 〈τ ≤ α〉 and a reduction of

concept subsumption to KB satisfiability [299].

Expressive logics. After this initial phase of research in the area, more

recent works have considered expressive (and very expressive) fuzzy DLs. In

2005, U. Straccia proposed a fuzzy extension of SHOIN (D) [291, 300],
the logic subjacent to OWL DL, including fuzzy modifiers, fuzzy concrete

domains, general families of fuzzy operators and fuzzy axioms (fuzzy GCIs

and RIAs). Despite of the very high expressivity of the logic, reasoning is not

dealt with.

Recently, S. Calegari and D. Ciucci extended this work with role modi-

fiers, some kind of threshold concepts (for instance, C≥α is the fuzzy set of

elements belonging to the fuzzy set C with a degree greater or equal than

α) and proposing an alternative semantics for number restrictions forcing

them to be crisp concepts [52, 53]. Unfortunately, they did not provide any

reasoning algorithm either.

G. Stoilos et al. provided tableau algorithms to decide KB satisfiability for

SI [287, 285], SHIN [289, 285] and SHOIN [288]. In the latter work

they do not provide a fuzzy semantics for fuzzy nominals, but their most

important contribution is the definition of FUZZY OWL, a fuzzy extension of

OWL based on their fuzzy extension of SHOIN . However, the language

still lacks fuzzy nominals, fuzzy GCIs and fuzzy concrete domains, so in our

opinion it should not be considered a full extension of OWL. We extended

this logic with fuzzy nominals and fuzzy GCIs, and provided a reasoning

algorithm based on a reduction to classical SHOIN [26, 27].
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A extension of the reasoning algorithm for fuzzy SHIF which aims to

support some special kinds of relations (fuzzy concept relations and fuzzy

concept base relations, which come from the experience in building fuzzy

ontologies) is outlined in [109]. Let C , D be fuzzy concepts, C1,C2,. . . ,Cm

be subconcepts of C and D1,D2,. . . ,Dn be subconcepts of D. If µR(a, b) is

always the same for all a ∈ C and b ∈ D, R is a fuzzy concept relation

(FCR) 〈C , D,µR(C , D)〉. If there are FCRs 〈Ci, D j,µR(Ci, D j)〉 for all pairs

(Ci, D j) where 1 ≤ i ≤ m and 1 ≤ j ≤ n, there is a fuzzy concept base re-

lation (FCBR) R on C and D. A FCBR can be represented by a set of triples

{〈Ci, D j,µR(Ci, D j)〉|(Ci, C), (D j, D) ∈ Rk f }.
G. Stoilos et al. defined fuzzy SHOIQ [284], proposing a more general

semantics for qualified number restrictions and studying the logical proper-

ties, but without any reasoning algorithm. Later on, some of the authors

proposed a fuzzy extension of SROIQ [281]. However, the reasoning algo-

rithm only considers a fragment of it (SR−OIN ).
All these works restrict themselves to the Zadeh family. Regarding other

families of fuzzy operators, a reasoning algorithm for fuzzy SHIF under

Łukasiewicz family has been recently presented [298].
In this document, we extend the reduction of fuzzy SROIQ(D) into a

crisp DL (under Zadeh and Gödel semantics). Part of the work has been

published in [32, 33, 29].

Comparing our Contributions

General Concept Inclusions. As we have already mentioned, the first works

on fuzzy DLs assumed simple TBoxes. The first work which allowed the use

of GCIs used a crisp representation for the fuzzy DL ALCH [302]. The se-

mantics for GCIs was based on Zadeh’s inclusion of fuzzy sets, thus making

concept subsumption a yes/no question.
G. Stoilos et al. (for the logic ALC) [290] and Y. Li et al. (for the logic

SHI) [187] developed in parallel specific reasoning algorithms for DLs with

GCIs. Roughly speaking, these works introduced a disjunction for every pos-

sible degree of truth appearing in the KB. This is based on the observation

that, under Zadeh family, if C v D, for each individual a and each degree α
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it must hold that C(a) ≤ α or D(a) ≥ α. Later on, Y. Li et al. applied the

result to SHIN [189] and ALCN [168].
Later on, a more promising solution from a practical point of view has

been presented for fuzzy GCIs, which hold to some degree. The solution,

based on a combination of tableau rules and Mixed Integer Linear Program-

ming (MILP) optimization problems [249], can be used for Zadeh and Łuka-

siewicz logics [304, 305], since the constructors are MILP representable.

By combining tableau rules with MIQCP, a version of Product logic with

Łukasiewicz negation [38] can be supported. For example, considering the

semantics given by Zadeh’s inclusion of fuzzy sets, for each individual a we

create a new variable x ∈ [0, 1], add the restrictions C(a)≤ x and D(a)≥ x ,

and finally we maximize the value of x .

A very recent work considered a fixpoint-based decision procedure for

ALC with GCIs [154, 155].
D. Dubois et al. proposed several levels of inclusion for a GCI, based on

the core and support of fuzzy sets [94]. This way, C v D is defined as:

• core(C)⊆ supp(D),

• core(C)⊆ core(D) or supp(C)⊆ supp(D),

• core(C)⊆ core(D) and supp(C)⊆ supp(D),

• supp(C)⊆ core(D)

These definitions also force the inclusion to be either true or false; moreover,

since in general suppor t(C) 6⊆ core(C), using the latter semantics for GCIs

implies that a concept does not fully subsume itself.

U. Straccia proposed to use implication functions in the semantics of

fuzzy GCIs. The big advantage is that now concept subsumption hold to

a certain degree in [0, 1] [291]. F. Bobillo et al. proposed the use of KD

implication in the semantics of GCIs [26, 27], providing the first reasoning

algorithm with fuzzy GCIs. Some recent works consider Łukasiewicz impli-

cation [304, 305], Gödel implication [29, 32, 33] and Goguen (or product)

implication [38].
V. Haarslev et al. presented a reasoning algorithm for KBs with fuzzy

GCIs in the context of a more general framework, but it only works with

S-implications [113, 115].
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As an example of the importance of GCIs, A. Bahri et al. defined some

similarity relation between concepts (MoreGeneral, LessGeneral, Equivalent,

Disjoint, Overlap), which are reduced to GCIs [17, 18].
Finally, although U. Straccia proposed to use implication functions also

in the semantics of fuzzy RIAs [291, 300], making role subsumption hold to

a certain degree; [32, 33, 298] are the only works that currently support

reasoning with them.

Families of fuzzy operators. Most of the research have been restricted to

the Zadeh family of fuzzy operators.
A more general logic, the Łukasiewicz family, has also been investigated.

A first category of works consider reasoning algorithms based on a mixture of

tableau rules and MILP optimization problems. [304, 305] consider the logic

ALCF(D) with GCIs, firstly proposing a key extension of the usual blocking

conditions for expressive DLs. This work has been extended in several di-

rections: [298] moves to SHIF , while [40] considers ALCQ, proposing a

novel semantics for qualified number restrictions. On a different matter, H.

Habiballa considered a fuzzy extension of ALC extended with role negation,

top role and bottom role, presenting a novel reasoning algorithm based on

resolution [118].
The use of other fuzzy operators has been more limited. In [32, 33] we

combined Zadeh family with the use of Gödel implication in the semantics of

GCIs and RIAs. [37] gives a step further and considers SROIQ under Gödel

family. In Chapter 7, we finally consider fuzzy SROIQ(D). G. Stoilos et al.

also considered Gödel family, but for the non expressive logics EL+ [283]
and EL++ [195].

Product logic has been studied, but replacing Gödel negation with Łuka-

siewicz negation [38]. In this case, the reasoning algorithm is based on a

mixture of tableau rules and Mixed Integer Quadratically Constrained Pro-

gramming (MIQCP).
P. Hájek studied the use of a more general family of fuzzy operators [120,

122]. In particular, he proposed a fuzzy extension of ALC under arbitrary

continuous t-norms and defined a reasoning algorithm for concept satisfia-

bility and validity based on a reduction to propositional logic (more precisely,
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to BL). Later on, he extended the results to Rational Pavelka logic, making

possible to introduce degrees as upper and lower bound of the fuzzy ax-

ioms [119].

He also introduced the notion of witnessed model [122, 120]. Consider a

formula ϕ(x; y1, . . . , yn). A model I is witnessed iff it verifies: supϕ(x; y1,

. . . , yn) = (ϕ(v; y1, . . . , yn))I and infϕ(x; y1, . . . , yn) = (ϕ(v; y1, . . . , yn))I for

some individual v. Since fuzzy DLs are used in knowledge representation,

non-witnessed models are not interesting; what is interesting for us are those

role fillers which can be represented by specifying some particular individ-

ual of the domain. Quoting P. Hájek, “for the aims of Description Logic non-

witnessed models appear to be pathological”. In particular, he shows that in

Łukasiewicz logic, if a concept is satisfiable there always exists a witnessed

model satisfying it; while in Gödel and Product logics there are concepts

which have an infinite model but no witnessed model (for example, the con-

cept (¬∀R.A) u (¬∃R.¬A)). He also pointed out that, under a finite set of

degrees of truth including 0 and 1, in Gödel logic all models are witnessed.

V. Haarslev et al. proposeD a general framework to represent uncertainty

in DLs [112, 113, 114, 115, 116], where uncertainty is understood in a gen-

eral sense. This way, fuzzy, probabilistic and possibilistic extensions are only

particular cases of their general approach. The different degrees correspond-

ing to the different formalism are represented using a lattice. Currently, they

are able to support ALC.

Fuzzy modifiers. In his seminal work, J. Yen allowed the application of

some fuzzy modifiers (Not, Very and Slightly) to atomic concepts [340].
C. Tresp and R. Molitor also allowed the use of manipulators, a special case

of triangular membership functions, as fuzzy modifiers [314].

S. Hölldobler et al. have widely worked in this field. Firstly they proposed

the use of exponential modifiers. Their reasoning algorithm is an extension

of [299], although the reduction of the BTVB problem to KB satisfiability

is not valid anymore. Initially, they only allowed modifiers to be applied

to atomic concepts (logic ALCFH) [127], then they extended the work to

complex concepts [128, 129]. As a minor comment, S. Singh et al. slightly
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changed the semantics of the modifiers in the context of an information re-

trieval problem application [274]. A later work considers linear modifiers

which can be applied to concepts and (atomic) roles (logic ALCFLH) [126].

Later on, the authors reported a problem of the previous works: the fact

that modifiers are not associative. For example, the concept VeryMol(C)
(where Mol is a shorthand for MoreOrLess) can be interpreted as VeryMol(C)
(with VeryMol being a modifier) or Very(Mol(C)) (with Very and Mol being

two different modifiers). This is solved in [90] (logicALCFL), although they

do not allow role modifiers any more.

U. Straccia allowed concept modifiers which are MILP representable to be

used [295, 296]. FUZZYDL reasoner [39] implements this theoretical works,

being the only current implementation allowing concept modifiers. In par-

ticular, it allows the use of modifiers defined in terms of linear hedges and

triangular functions. In our logic, we support these concept modifiers, but in

addition, we allow the application of linear modifiers over fuzzy roles.

Finally, S. Calegari et al. also suggested the use of role modifiers, but

unfortunately they did not detail which membership function to use nor how

to reason within their proposal [52, 53].

Fuzzy concrete domains. U. Straccia introduced the concept of fuzzy con-

crete domains, which enable one to express that an individual has a datatype

which is true with a certain degree. A fuzzy datatype is represented using

a membership function associated to the fuzzy set. [295, 296] provide a

fuzzy extension of ALC(D) where fuzzy concrete domains are defined using

trapezoidal, triangular, left-shoulder or right shoulder functions. Reason-

ing is achieved using a combination of tableau rules and MILP optimization

problems. A subsequent extension to SHOIN (D) has also been proposed,

although reasoning is not supported yet [291, 300].

In this work we allow trapezoidal numbers, which extend the previous

cases.

H. Wang et al. extended to the fuzzy case [334] an existing approach for

the classical case, which allows the use of customized datatypes in the OWL

language (the extended language is called OWL-Eu [220]).
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S. Schockaert argued that, instead of using general fuzzy DLs, crisp DLs

with fuzzy concrete domains were preferable, because most of the times it

is not very clear how to compute the degrees of the truth of the fuzzy ax-

ioms in the fuzzy KB, managing vagueness at a query processing level [262].
However, we know from the classical case that the concrete and the abstract

interpretation domains (the interpretation domains of the KB and the fuzzy

concrete domains) should be disjoint [14], so this approach does not allow

vagueness to be introduced in abstract individuals.

The remaining approaches use a combination of crisp DLs and concrete

domains managing fuzziness.

M. d’Aquin et al. considered ALC with fuzzy concrete domains (specifi-

cally, left-shoulder and right-should functions) [80]. They considered several

types of concept subsumption and showed that reasoning may be performed

by using a classical ALC reasoner together with a fuzzy datatype reasoner.

However, their approach is not efficient to compute the GLB of a GCI. An-

other point to be kept in mind is that they lose too much useful information

since they use the representation for fuzzy sets proposed in [94], which only

considers the support and the kernel of a fuzzy set.

C. Barranco et al. considered fuzzy datatypes such as fuzzy numbers,

fuzzy sets defined over a scalar domain, or collections of fuzzy atomic con-

cepts among others, and proposed to represent them using a Fuzzy Object

Relation Database Management System (FORDBMS) [20].

G. Nagypál used crisp ontologies with datatypes representing vague tem-

poral knowledge [209].

Fuzzy DLs with cut concepts and roles. Cut concepts and roles as used

in our logic is not original. Y. Li et al. proposed a family of the so-called

extended fuzzy DLs, which use α-cuts as atomic concept and roles [190,

174]. For example, it is possible to express using ∀R0.7.C0.5 the set of indi-

viduals which are related with degree 0.7 using role R with some individual

which belongs to concept C with degree at least 0.5.

A extension ofALCN is defined in [191]. Subsequent works propose dif-

ferent extension of DLs and tableau reasoning algorithms for KB satisfiability
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for ALCH [147, 184], ALCN [167, 177], ALCQ [173] and S [145]. They

also consider the reduction to reasoning in crisp DLs for ALCH [147] and

ALCQ [188, 192]. However, they usually assume restricted TBoxes, such as

in [152, 151].

In this work, we will allow elements of the form [C ≥ α], [C ≤ β], [R ≥
α], and [R≤ β].

Number restrictions. As early as 1991, J. Yen proposed a (somewhat strange)

extension of number restrictions to the fuzzy case [340]. A more natural se-

mantics was proposed in [291, 300], which was extended in [281]. An al-

ternative semantics for number restrictions was also presented in [17, 18],
although it is not an extension of the classical case. Reasoning with qualified

number restrictions (restricted to ALCIQ) is deal with in [282].

A very interesting alternative is the application of fuzzy quantification.

Fuzzy quantifiers are linguistic labels representing imprecise quantities or

percentages. D. Sanchez and A. Tettamanzi proposed a fuzzy extension of

ALCQ, where quantification is extended allowing the use of not only usual

quantifiers (∀,∃), but also fuzzy quantifiers defined using piecewise-linear

membership functions [251].

The evaluation of the fuzzy quantifiers is computed using the method

GD [84], which is based on a nonconvex definition of fuzzy cardinality [83].
A reasoning algorithm for fuzzy concept satisfiability was proposed in [252].
For a given concept, the algorithm computes the interval [LUB, GLB], so the

BTVB problem is directly solved. [250] slightly modified their approach by

defining the semantics of the quantifiers by using fuzzy concrete domains.

The authors also showed than giving a fuzzy semantics to universal quan-

tification and giving a crisp semantics to GCIs is inconsistent and lead to

paradoxes [43].

The extension with fuzzy quantifiers greatly increases the expressive power

of the language, but makes reasoning particularly hard. As a solution, [91]
proposes to use non exact evolutionary algorithms to solve concept satisfia-

bility, and applies the result to a real-world problem with promising results.
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The semantics of qualified number restrictions is still open to discussion,

as pointed out in [40], where a new semantics (which we use in this docu-

ment) is also introduced.

Reductions to crisp DLs. The first effort in this direction is due to U. Strac-

cia, who showed a reasoning preserving procedure to reduce fuzzyALCH to

its crisp version [302]. Additionally, it was the first time that fuzzy DLs with

fuzzy GCIs were supported.

A similar work from him considers fuzzy ALC with truth values taken

from an uncertainty lattice [294], therefore supporting quantitative reason-

ing (by using the interval [0,1]) and qualitative reasoning (by relying on a

set {false, likelyfalse, unknown, likelytrue, true}.

We extended the former work of U. Straccia to fuzzy SHOIN and al-

lowed fuzzy GCIs with a semantics given by Kleene-Dienes implication [26,

27].

An empirical evaluation of the reduction for fuzzy SHIN (with non-

fuzzy GCIs) has been reported in [67]. The authors consider ontologies with

different complexities and study the scalability of the reduction (depending

on the number of individuals) for fuzzy query answering. In general, the

resulting ontologies were only feasible using an optimized reduction and a

small numbers of degrees of truth, and fuzzy query answering is feasible in

real time in those cases where query answering with respect to the original

crisp ontology is.

G. Stoilos et al. extended this work and considered the reduction of a

extension of fuzzy SHOIN with additional role axioms: general RIAs, re-

flexive, asymmetric and role disjointness axioms [281]. It is not a reduction

of fuzzy SROIQ (not even SROIN ) because they do not show how to

reduce:

• the universal role,

• qualified number restrictions,

• local reflexivity concepts in expressions of the form ρ(∃S.Self,Cγ),

• negative role assertions.
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Another limitation of the work is that GCIs and RIAs are forced to be either

true or false. They also define a fuzzy version of OWL 2, but their logic still

does not include fuzzy concrete domains, fuzzy nominals, fuzzy GCIs nor

fuzzy RIAs, so in our opinion the extension is not really complete.
We extended this work providing a crisp representation of full SROIQ

with fuzzy GCIs and RIAs (using a semantics given by Gödel implication) [32,

33]. A crisp representation of full SROIQ(D) under Zadeh family is given

in Chapter 6, while the use of Gödel family is described in Chapter 7.
Ad-hoc solutions to represent fuzzy DLs using OWL have also been pre-

sented [52, 53, 108, 280, 320, 319]. However, it is not possible to reason

directly with the resulting crisp ontology, e.g. unsatisfiability of the fuzzy KB

is not equivalent to unsatisfiability of the crisp KB.
A different approach is due to Y. Li et al., who introduced a family of

fuzzy DLs using α-cuts as atomic concept and roles [190, 174]. The approach

is slightly different because, in general, these logics need their own decision

procedures. However, the authors have shown how to reduce an ALCQ
ABox [188, 192] and an ALCH concept [147] to their crisp versions. But

unfortunately, both of these works assume an empty TBox.
D. Dubois et al. combined possibilistic and fuzzy logics in the context

of DLs (more concretely, in ALCIN (◦)) [94]. Interestingly, they proposed

to represent every fuzzy set using two crisp sets (its support and its core)

and commented the possibility of extending their work by using more crisp

sets (intermediate α-cuts), in order to have a more refined representation.

Although for some applications this representation may be enough, there is

a loss of information which do not come about in other approaches.
The previous work has restricted to Zadeh family, with the exception of a

reduction of ALCHIO under Łukasiewicz family [41] (which is more gen-

eral than Zadeh family). There are two important remarks which are worth

to be kept it mind. Firstly, under this family is necessary to assume a fixed

set of allowed degrees of truth. Secondly, from a practical point of view, the

size of the resulting KB is much more complex in this case, so the practical

feasibility of this approach has to be empirically verified.
Finally, we mention in passing that P. Vojtáš also sketched a reduction of

fuzzy EL to crisp EL with concrete domains [325].
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Reasoners. There exist several implementations of reasoners for fuzzy DLs.

• The oldest one is FUZZYDL [39], which is publicly available3, and under

constant update. It is perhaps the most worked reasoner, supporting

some unique features. FUZZYDL extends fuzzy SHIF(D) with con-

cept modifiers (using linear hedges and triangular functions), explicit

definitions of fuzzy concepts (by means of triangular, trapezoidal, left-

shoulder and right-shoulder functions), concrete features or datatypes,

which can have a value with is an integer, a real or a string, among

other novel constructors: weighted concepts, weighted sum concepts

and threshold concepts. From a reasoning point of view, it is able to

compute several queries, ranging from typical reasoning tasks such as

the BDB, concept satisfiability and subsumption problems, to variable

optimization and defuzzifications. FUZZYDL also supports both Zadeh

and Łukasiewicz families of fuzzy operators, being the only one sup-

porting it. Reasoning is based on a mixture of a tableau and a MILP

optimization problem. Another interesting feature is that the degrees

of the fuzzy axioms may not only be numerical constants, but also vari-

ables, thus being able to deal with unknown degrees of truth.

• DLMEDIA [306, 307]4 is an ontology-based multimedia information re-

trieval system combining logic-based retrieval with multimedia feature-

based similarity retrieval. An ontology layer may be used to define the

application domain, using DLR-Lite with fuzzy concrete domains ex-

pressing similarity relations between keywords.

• FIRE [272, 280] implements the tableau algorithm for fuzzy SHIN
described in [289, 290]. It restricts itself to the Zadeh family. It is

also publicly available5, An interesting feature is its graphical interface,

although users need to deal directly with the syntax of the language for

the representation of the fuzzy KB. Moreover, it can serialize ontologies

in fuzzy SHIF into RDF triples, and is integrated with classical RDF

3http://faure.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html
4http://faure.isti.cnr.it/~straccia/software/DL-Media/DL-Media.html
5http://www.image.ece.ntua.gr/~nsimou/FiRE/

http://faure.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html
http://faure.isti.cnr.it/~straccia/software/DL-Media/DL-Media.html
http://www.image.ece.ntua.gr/~nsimou/FiRE/
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storing systems, which provide persistent storing and querying over

large-scale fuzzy information [273].

• GURDL [114] supports an extension ofALC with an abstract and more

general notion of uncertainty. The reasoning algorithm is also based

on a mixture of tableau rules and the resolution of a set of inequations.

Moreover, it implements some interesting techniques of optimization:

lexical normalization, concept simplification, partitions based on indi-

vidual connectivity and caching. The applicability of some techniques

used in the crisp case is also studied.

• GERDS [118]6 implements a resolution algorithm for fuzzy ALC with

role negation, top role and bottom role under Łukasiewicz family.

• KAON27 implements the reduction of fuzzy DLs to crisp DLs proposed

in [302], as mentioned in [5]. An empirical study of the scalability

of reasoning with fuzzy ontologies using this reasoner has been per-

formed in [67].

• ONTOSEARCH2 [313, 224] 8 is the first scalable query engine for fuzzy

ontologies. It implements an instance retrieval algorithm from a KB

in fuzzy DL-Lite [221], allowing queries to be defined using a fuzzy

extension of SPARQL [237].

• YADLR [159]9 is a recent implementation of a resolution-based algo-

rithm for Łukasiewicz logic, which also allows dealing with unknown

degrees of truth in the fuzzy assertions of the KB.

• Our proposal is DELOREAN [30, 32, 33], which reduces reasoning in

fuzzy SROIQ(D) under Zadeh or Gödel family to reasoning in crisp

SROIQ(D), taking into account several interesting optimizations. As

a consequence, it allows the reuse of classical languages and resources

(editors, tools, reasoners . . . ). For a full description, see Chapter 8.

6http://www.volny.cz/habiballa/files/gerds.zip
7http://kaon2.semanticweb.org/
8http://dipper.csd.abdn.ac.uk/OntoSearch/
9http://sourceforge.net/projects/yadlr/

http://www.volny.cz/habiballa/files/gerds.zip
http://kaon2.semanticweb.org/
http://dipper.csd.abdn.ac.uk/OntoSearch/
http://sourceforge.net/projects/yadlr/
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Other Related Work

Complexity. In general, fuzzy DLs (under Zadeh family) belong to the same

complexity classes as in the crisp case. This is probably the reason why com-

plexity analysis has not received a lot of attention in the literature.

U. Straccia proved that the reasoning algorithm for KB satisfiability in

fuzzyALC with restricted TBoxes under Zadeh family is PSPACE [299]. Some

extensions of this logic have also shown to be in PSPACE [127, 167, 252, 294,

303]. Recently, U. Keller and H. Heymans have shown that several reasoning

tasks in ALC with GCIs are EXPTIME [155].
P. Bonatti y A. Tettamanzi analyzed the complexity of reasoning (concept

satisfiability, KB satisfiability and concept subsumption) in the former logic

extended with GCIs, obtaining some interesting results [44].

Tractable logics. In the last years, less expressive but tractable fuzzy DLs

have started to receive attention.

U. Straccia proposed a fuzzy extension of DL-Lite and a novel reasoning

algorithm to solve the problem of the fuzzy retrieval of a yes/no query [293].
Reusing previous reasoning algorithms would be very inefficient, because it

would require to solve the BTVB for every individual of the KB, and then to

rank the individuals according to this value.

Some related works considered a complementary perspective: crisp DL-

Lite but allowing fuzzy predicates in the queries [246, 301]. Methods for a

efficient handling of fuzzy retrieval are proposed, and implemented in the

DLMEDIA system [306, 307].
J. Pan et al. proposed two query languages which increment the expres-

sivity of the language proposed in [293]. In particular, they allow the repre-

sentation of more general queries and the specification of different thresholds

in them. They also introduced some reasoning algorithms, an implementa-

tion and a preliminar evaluation [221, 222].
P. Vojtáš proposed a fuzzy extension of EL [323, 324, 325]. His extension

assumes that roles are crisp and makes possible to express aggregation func-

tions with the aim of combining user preferences to obtain a global result. He

did not allow concept negation either, assuming that it can be represented
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using atomic concepts. A short consideration about the combination of fuzzy

EL and Bayesian EL can be found in [322, 326].
G. Stoilos et al. proposed a fuzzy extension of EL+ and efficient algo-

rithms to compute fuzzy subsumption and hence to classify fuzzy ontologies

under Gödel family [283]. In a subsequent work they considered a fuzzy

extension of EL++ [195].

Qualitative reasoning. U. Straccia is the author of several works which

allow qualitative reasoning in fuzzy DLs, that is, degrees of truth are not

numbers, but they are taking from a certainty lattice. Complex concepts are

defined using the lattice operators. For example, concept conjunction and

disjunction are defined using meet and join operators, respectively. This is

a more general approach than fuzzy logic. [294, 303] define the logic L-

ALC and provided an algorithm for KB satisfiability. If the lattice verifies

some reasonable conditions (safe lattices), the algorithm is decidable. If the

lattice verifies some additional conditions (ps-safe lattices), the complexity

is PSPACE. However, the reduction of the BTBV problem to KB satisfiability

deserves special attention.
D. Dinh-Khac et al. extended the expressivity of the logic by adding con-

cept modifiers, given rise to the logic ALCFL [90]. In particular, they used a

linear symmetric hedge algebra.
Another work which considers lattices is [347], which defines fuzzy inter-

pretations based on boolean lattices. In order to obtain a fuzzy DL verifying

laws of contradiction and excluded middle, Boolean lattice based member-

ship degrees are mapped to Zadeh membership degrees. In this work the

degree of truth of a fuzzy assertion is equal to the proportion of observers

who think that the (crisp) assertion is true.

Applications. In addition to the purely theoretical works, fuzzy DLs have

been applied to some particular application domains, such as medicine [202,

260], oncology [80], matchmaking and electronic commerce [5, 243, 244,

245, 246], information retrieval [274], multimedia information representa-

tion and retrieval [166, 199, 271, 269, 270, 306, 307], semantic web por-

tals [350], semantic search engines [165], context representation [35] (an
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extension of the cider model [28, 34]), planning [70, 266], ontology map-

ping [339, 68], fuzzy control [39], modeling [144, 171, 349, 348], human

models [273] or appraisal of Chinese spirits [109].

Miscellaneous. A type-2 fuzzy DL has also been presented, allowing the

definition of a lower and an upper bound for the membership degree of an

individual to a fuzzy concept and a pair of individuals to a fuzzy role [165].
Such an interval can also be added to the GCIs. This approach generalizes

type-1 fuzzy DLs. An hybrid model allowing type-1 and type-2 fuzzy sets has

also been proposed [166].
An extension of SI with vague sets, allowing degrees of truth and degrees

of falsity, has been presented in [194].
Another interesting extension of fuzzy DLs allows the use of comparison

expressions [146, 149, 150, 175], making possible to represent, for instance,

that “a is taller than b” without knowing explicitly to what extent the indi-

viduals a and b belong to the concept TALL.
Distributed fuzzy DLs have been introduced in [186, 176, 352], permit-

ting to use e-connections to relate individuals belonging to different inter-

pretation domains, corresponding to different fuzzy KBs [161].
Fuzzy DLs have also been criticized because the lack of an explicit ex-

amination of the underlying epistemological issues about the source of the

numerical values causes several problems [267].

Beyond fuzzy DLs. Possibilistic logic has been used to extend DLs in or-

der to deal with uncertain knowledge. Some works reduce reasoning to the

classical case, taking advantage of existing DL reasoners [130, 239, 240].
Tableaux algorithms have also been proposed [72, 164, 238]. Information

retrieval has been investigated as an application of possibilistic DLs [169],
whereas trustworthiness in the Semantic Web has been considered a poten-

tial application [65]. Possibilistic extensions of fuzzy DLs have also been pre-

sented [31, 94], as we will see at the end of this chapter.
In addition to fuzzy and possibilistic logic, DLs have also been extended

with other formalisms, such as probabilistic logic, neutrosophic logic, tetra-

valued logic (for paraconsistent reasoning) and modal supervaluation logics.
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There are also some extensions of DL programs, rule languages and other

Semantic Web languages. For more information on some of these extensions

we refer the reader to [297].
There have been some attempts to handle both uncertainty and vagueness

in DLs. There exist several fuzzy and probabilistic / possibilistic extensions

of DLs in the literature. These extensions are appropriate to handle either

vagueness or uncertainty, but handling both of them has not received such

attention. An exception is [94], where every fuzzy set is represented using

two crisp sets (its support and its core) and then axioms are extended with

necessity degrees. Although for some applications this representation may

be enough (and the own authors suggest to consider more α-cuts), there is a

loss of information.

Our approach combines possibilistic and fuzzy logics by building a possi-

bilistic layer on top of a fuzzy DL [31], solving the mentioned loss of infor-

mation.

Another related work combines fuzzy vagueness and probabilistic uncer-

tainty but in the field of DL programs [180]. A fuzzy probabilistic version of

OWL language has also been sketched [312].
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CHAPTER 5
The Fuzzy Description Logic

SROIQ(D)

In this chapter we define the fuzzy DL SROIQ(D), which is a fuzzy

extension of the logic SROIQ(D) where concepts denote fuzzy sets of indi-

viduals, roles denote fuzzy binary relations, and axioms are extended to the

fuzzy case in such a way that some of them hold to a degree in [0, 1]. Then,

we sketch how to build a layer to deal with uncertain knowledge on top of a

fuzzy KB, by annotating the axioms with possibility and necessity degrees.

This chapter is organized as follows. Section 5.1 provides a formal defi-

nition of the syntax and semantics of the logic. Then, Section 5.2 studies its

main logical properties. Finally, Section 5.3 shows how to build a possibilistic

layer on top of the fuzzy DL.

5.1 Definition

Syntax

Definition 38 Fuzzy concrete domain [295]. A fuzzy concrete domain D is

a pair 〈∆D,ΦD〉, where:

• ∆D is a concrete interpretation domain.

89
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• ΦD is a set of fuzzy concrete predicates d with an arity n and an interpre-

tation dD :∆n
D→ [0,1], which is an n-ary fuzzy relation over ∆D.

For simplicity we assume arity 1.

Definition 39 Alphabet of fuzzy SROIQ(D). Similarly as in their crisp

counterpart, fuzzy SROIQ(D) assumes three alphabets of symbols, for con-

cepts, roles and individuals.

• Let n, m be natural numbers (n ≥ 0, m > 0) and αi ∈ (0, 1]. The con-

cepts (denoted C or D) of the language can be built inductively from

atomic concepts (A), top concept >, bottom concept ⊥, named individuals

(oi), abstract roles (R), concrete roles (T), simple roles (S, which will be

defined below) and fuzzy concrete predicates (d) as:

C , D→ A | (atomic concept)

> | (top concept)

⊥ | (bottom concept)

C u D | (concept conjunction)

C t D | (concept disjunction)

¬C | (concept negation)

∀R.C | (universal quantification)

∃R.C | (existential quantification)

∀T.d | (concrete universal quantification)

∃T.d | (concrete existential quantification)

{α1/o1, . . . ,αm/om} | (fuzzy nominals)

(≥ m S.C) | (at-least qualified number restriction)

(≤ n S.C) | (at-most qualified number restriction)

(≥ m T.d) | (concrete at-least qualified number restriction)

(≤ n T.d) | (concrete at-most qualified number restriction)

∃S.Self | (local reflexivity)

mod(C) | (modified concept)

[C ≥ α] | (cut concept)

[C ≤ β] (cut concept)
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• The abstract roles (denoted R) of the language can be built inductively

according to the following syntax rule:

R→ RA | (atomic role)

R− | (inverse role)

U | (universal role)

mod(R) | (modified role)

[R≥ α] | (cut role)

Concrete roles are denoted T and cannot be complex1.

• Abstract individuals are denoted a, b ∈∆I , and concrete individuals are

denoted v ∈∆D.

In the case of concepts, the only difference with the crisp case are fuzzy

nominals [26], modified and cut concepts. Regarding roles, the only differ-

ence with the crisp case are modified and cut roles.

Note that negative cut roles of the form [R ≤ β] are somewhat equiva-

lent to negated roles. Since negated roles cannot be arbitrarily used in crisp

SROIQ, we will not allow negative cut roles.

Example 5

• {1/germany, 1/austria, 0.67/switzerland} represents the concept of German-

speaking country, with Germany and Austria fully belonging to it, but

Switzerland belonging only with degree 0.67.

• very(Tall) represents the fuzzy set of individuals which are very tall.

• [isFriendOf≥ 0.8] represents the pairs of individuals which are friends at

least to degree 0.8. ut

In the rest of the paper we will assume ./ ∈ {≥, <,≤,>}, α ∈ (0, 1],
β ∈ [0, 1) and γ ∈ [0,1].

Definition 40 Symmetric and negation of an operator. Let ./ ∈ {≥,<,≤,

>}. The symmetric ./− and the negation ¬ ./ of an operator are defined as:
1Extending the logic with concrete cut roles is immediate, but it is omitted here for

simplicity of the presentation.
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./ ./− ¬ ./
≥ ≤ <

> < ≤
≤ ≥ >

< > ≥

Definition 41 Fuzzy Knowledge Base. A fuzzy Knowledge Base comprises a

fuzzy ABox A , a fuzzy TBox T and a fuzzy RBox R.

• A fuzzy ABox consists of a finite set of fuzzy assertions of one of the

following types:

– A fuzzy concept assertion, or constraint on the truth value of a con-

cept assertion, 〈a :C ≥ α〉, 〈a :C > β〉, 〈a :C ≤ β〉 or 〈a :C < α〉.

– A fuzzy role assertion, or constraint on the truth value of a role

assertion, 〈Ψ≥ α〉, 〈Ψ> β〉, 〈Ψ≤ β〉 or 〈Ψ< α〉, where Ψ is of the

form (a, b):R, (a, b):¬R, (a, v): T or (a, v):¬T.

– An inequality assertion 〈a 6= b〉.

– An equality assertion 〈a = b〉.

• A fuzzy TBox consists of fuzzy GCIs, which constrain the truth value of

a GCI i.e., they are expressions of the form 〈C v D ≥ α〉 or 〈C v D > β〉.

• A fuzzy RBox consists of a finite set of role axioms of the following types:

– Fuzzy RIAs 〈w v R ≥ α〉, 〈w v R > β〉, where w = R1R2 . . . Rm is a

role chain, 〈T1 v T2 ≥ α〉, or 〈T1 v T2 > β〉.

– Transitive role axioms trans(R).

– Disjoint role axioms dis(S1, S2), dis(T1, T2).

– Reflexive role axioms ref(R).

– Irreflexive role axioms irr(S).

– Symmetric role axioms sym(R).

– Asymmetric role axioms asy(S).

The types of axioms in a KB are summarized in Table 5.1.
Note that all the role axioms except RIAs are syntactically equivalent to

the crisp case.
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Table 5.1: Syntax of the Axioms of the Fuzzy Description Logic SROIQ(D)

Fuzzy ABox

Concept assertion 〈a :C ≥ α〉, 〈a :C > β〉, 〈a :C ≤ β〉, 〈a :C < α〉

〈(a, b):R≥ α〉, 〈(a, b):R> β〉, 〈(a, b):R≤ β〉, 〈(a, b):R< α〉,
Role assertion 〈(a, b):¬R≥ α〉, 〈(a, b):¬R> β〉, 〈(a, b):¬R≤ β〉, 〈(a, b):¬R< α〉,

〈(a, v): T ≥ α〉, 〈(a, v): T > β〉, 〈(a, v): T ≤ β〉, 〈(a, v): T < α〉

Inequality assertion 〈a 6= b〉
Equality assertion 〈a = b〉

Fuzzy TBox

General concept inclusion 〈C v D ≥ α〉, 〈C v D > β〉
Fuzzy RBox

Role inclusion axiom 〈R1R2 . . . Rm v R≥ α〉, 〈R1R2 . . . Rm v R> β〉,
〈T1 v T2 ≥ α〉, 〈T1 v T2 > β〉

Transitive role axiom trans(R)
Disjoint role axiom dis(S1, S2),dis(T1, T2)
Reflexive role axiom ref(R)
Irreflexive role axiom irr(S)
Symmetric role axiom sym(R)
Asymmetric role axiom asy(S)

Example 6

• The fuzzy concept assertion 〈paul: Tall ≥ 0.5〉 states that Paul is tall with

at least degree 0.5.

• The fuzzy RIA 〈isFriendOf isFriendOf v isFriendOf ≥ 0.75〉 states that the

friends of my friends can also be considered my friends with at least degree

0.75. ut

We are ready now to formally define simple roles.

Definition 42 Simple role. Simple roles are defined as in the crisp case:

• RA is simple if it does not occur on the right side of a RIA.

• R− is simple if R is.

• If R occurs on the right side of a RIA, R is simple if, for each 〈w v R Bγ〉,
w = S for a simple role S.

Note that concrete roles are always simple.
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Definition 43 Positive fuzzy axiom. A fuzzy axiom is positive (denoted 〈τB

α〉) if it is of the form 〈τ≥ α〉 or 〈τ > β〉.

Definition 44 Negative fuzzy axiom. A fuzzy axiom is negative (denoted

〈τCα〉) if it is of the form 〈τ≤ β〉 or 〈τ < α〉.

Notice that negative fuzzy GCIs or RIAs are not allowed, because they

correspond to negated GCIs and RIAs respectively, which are not part of crisp

SROIQ(D).
〈τ= α〉 is equivalent to the pair of axioms 〈τ≥ α〉 and 〈τ≤ α〉 [127].
Of course, if nothing is specified we assume that a fuzzy axiom is true

with degree 1, so we can use the abbreviation:

τ= 〈τ≥ 1〉

Now we will introduce some definitions which will be useful to impose

some limitations in the expressivity of the language.

Definition 45 Strict partial order. A strict partial order ≺ on a set S is an

irreflexive and transitive relation on S.

Definition 46 Regular order. A strict partial order ≺ on the set of roles is

called a regular order if it also satisfies R1 ≺ R2 ⇔ R−2 ≺ R1, for all roles R1

and R2.

Definition 47 ≺-regularity. A RIA 〈w v R B γ〉 is ≺-regular if R= RA and:

• w = RR, or

• w = R−, or

• w = S1 . . . Sn and Si ≺ R for all i = 1, . . . , n, or

• w = RS1 . . . Sn and Si ≺ R for all i = 1, . . . , n, or

• w = S1 . . . SnR and Si ≺ R for all i = 1, . . . , n.

As in the crisp case, there are some restrictions in the use of roles, in

order to guarantee the decidability of the logic:

• Firstly, some concept constructors require simple roles: non-concrete

qualified number restrictions and local reflexivity.
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• Some role axioms also require simple roles: disjoint, irreflexive and

asymmetric role axioms.

• Role axioms cannot contain the universal role U .

• Finally, given a regular order ≺, every RIA should be ≺-regular.

Semantics

Definition 48 Fuzzy interpretation. A fuzzy interpretation I with respect

to a fuzzy concrete domain D is a pair (∆I , ·I) consisting of a non empty set

∆I (the interpretation domain) disjoint with ∆D and a fuzzy interpretation

function ·I mapping:

• Every abstract individual a onto an element aI of ∆I .

• Every concrete individual v onto an element vD of ∆D.

• Every concept C onto a function CI :∆I → [0, 1].

• Every abstract role R onto a function RI :∆I ×∆I → [0, 1].

• Every concrete role T onto a function TI :∆I ×∆D→ [0, 1].

• Every n-ary concrete fuzzy predicate d onto the fuzzy relation dD :∆n
D→

[0, 1].

• Every modifier mod onto a function fmod : [0, 1]→ [0, 1].

Given arbitraries t-norm ⊗, t-conorm ⊕, negation function 	 and impli-

cation function ⇒, the fuzzy interpretation function is extended to complex

concepts and roles as shown in Table 5.2. Our semantics of fuzzy number

restrictions is appropriated to several fuzzy logics, as shown in [40].
The fuzzy interpretation function is extended to fuzzy axioms in Table 5.3.

CI denotes the membership function of the fuzzy concept C with respect

to the fuzzy interpretation I. CI(x) gives us the degree of being the individ-

ual x an element of the fuzzy concept C under I.

Similarly, RI denotes the membership function of the fuzzy role R with

respect to I. RI(x , y) gives us the degree of being (x , y) an element of the

fuzzy role R under I.

As in the classical case, we do not impose Unique Name Assumption.
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Table 5.2: Semantics of the Fuzzy Concepts and Roles in Fuzzy SROIQ(D)

Constructor Semantics

(>)I(x) 1
(⊥)I(x) 0
(A)I(x) AI(x)

(C u D)I(x) CI(x)⊗ DI(x)
(C t D)I(x) CI(x)⊕ DI(x)
(¬C)I(x) 	CI(x)
(∀R.C)I(x) infy∈∆I{RI(x , y)⇒ CI(y)}
(∃R.C)I(x) supy∈∆I{RI(x , y)⊗ CI(y)}
(∀T.d)I(x) infv∈∆D

{TI(x , v)⇒ dD(v)}
(∃T.d)I(x) supv∈∆D

{TI(x , v)⊗ dD(v)}
({α1/o1, . . . ,αm/om})I(x) supi | x=oIi

αi

(≥ m S.C)I(x) supy1,...,ym∈∆I[(minm
i=1{S

I(x , yi)⊗ CI(yi)})
⊗

(⊗ j<k{y j 6= yk})]
(≤ n S.C)I(x) infy1,...,yn+1∈∆I[(minn+1

i=1 {S
I(x , yi)⊗ CI(yi)})⇒ (⊕ j<k{y j = yk})]

(≥ m T.d)I(x) supv1,...,vm∈∆D
[(⊗m

i=1{T
I(x , vi)⊗ dD(vi)})

⊗

(⊗ j<k{v j 6= vk})]
(≤ n T.d)I(x) infv1,...,vn+1∈∆D

[(⊗n+1
i=1 {T

I(x , vi)⊗ dD(vi)})⇒ (⊕ j<k{v j = vk})]
(∃S.Sel f )I(x) SI(x , x)
(mod(C))I(x) fmod(CI(x))
([C ≥ α])I(x) 1 if CI(x)≥ α, 0 otherwise
([C ≤ β])I(x) 1 if CI(x)≤ β , 0 otherwise

(RA)I(x , y) RIA(x , y)
(R−)I(x , y) RI(y, x)
(U)I(x , y) 1

(mod(R))I(x , y) fmod(RI(x , y))
([R≥ α])I(x , y) 1 if RI(x , y)≥ α, 0 otherwise

(T )I(x , v) TI(x , v)

Table 5.3: Semantics of the Axioms in Fuzzy SROIQ(D)

Axiom Semantics

(a :C)I CI(aI)
((a, b):R)I RI(aI , bI)
((a, b):¬R)I 	RI(aI , bI)
((a, v): T )I TI(aI , vD)
((a, v):¬T )I 	TI(aI , vD)
(C v D)I infx∈∆I CI(x)⇒ DI(x)

(R1 . . . Rm v R)I supx1...xn+1∈∆I(R
I
1(x1, x2)⊗ · · · ⊗ RIn(xn, xn+1))⇒ RI(x1, xn+1)

(T1 v T2)I supx∈∆I ,v∈∆D
TI1 (x , v)⇒ TI2 (x , v)
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Definition 49 Satisfaction of a fuzzy axiom. A fuzzy interpretation I satis-

fies (is a model of):

• 〈a :C ./ γ〉 iff (a :C)I ./ γ,

• 〈(a, b):R ./ γ〉 iff ((a, b):R)I ./ γ,

• 〈(a, b):¬R ./ γ〉 iff ((a, b):¬R)I ./ γ,

• 〈(a, v): T ./ γ〉 iff ((a, v): T )I ./ γ,

• 〈(a, v):¬T ./ γ〉 iff ((a, v):¬T )I ./ γ,

• 〈a 6= b〉 iff aI 6= bI ,

• 〈a = b〉 iff aI = bI ,

• 〈C v D B γ〉 iff (C v D)I B γ,

• 〈R1 . . . Rm v R B γ〉 iff (R1 . . . Rm v R)I B γ,

• 〈T1 v T2 B γ〉 iff (T1 v T2)I B γ,

• trans(R) iff ∀x , y ∈∆I , RI(x , y)≥ supz∈∆I RI(x , z)⊗ RI(z, y),

• dis(S1, S2) iff ∀x , y ∈∆I , SI1 (x , y) = 0 or SI2 (x , y) = 0,

• dis(T1, T2) iff ∀x ∈∆I , v ∈∆D, TI1 (x , v) = 0 or TI2 (x , v) = 0,

• ref(R) iff ∀x ∈∆I , RI(x , x) = 1,

• irr(S) iff ∀x ∈∆I , SI(x , x) = 0,

• sym(R) iff ∀x , y ∈∆I , RI(x , y) = RI(y, x),

• asy(S) iff ∀x , y ∈∆I , if SI(x , y)> 0 then SI(y, x) = 0,

• a fuzzy KB iff it satisfies each element in A, T and R.

Notice that individual assertions are considered to be crisp, since the

equality and inequality of individuals has always been considered crisp in

the fuzzy DL literature [291, 289].

From a historical point of view, the reduction to a crisp DL was the first

reasoning algorithm supporting to reason with fuzzy GCIs and RIAs.

As in the crisp case, fuzzy GCIs can be used to express some interesting

axioms.
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• Disjointness of concepts. The fact that C1 . . . Cn are disjoint can be ex-

pressed as 〈C1 u · · · u Cn v⊥≥ 1〉.

• Domain of a concept. The fact that concept C is the domain of a role R

can be expressed as 〈> v ∀R−.C ≥ 1〉 or 〈∃R.>v C ≥ 1〉.

• Range of a concept. The fact that concept C is the range of a role R can

be expressed as 〈> v ∀R.C ≥ 1〉.

• Functionality of a role. The fact that a role R is functional can be ex-

pressed as 〈> v (≤ 1 R.>)≥ 1〉.

In the rest of the paper we will only consider fuzzy KB satisfiability, since

(as in the crisp case) most inference problems can be reduced to it [299].

Example 7 The following reasoning tasks can be reduced to fuzzy KB satisfia-

bility:

• Concept satisfiability. C is α-satisfiable w.r.t. a fuzzy KB K iff K ∪
{〈x : C ≥ α〉} is satisfiable, where x is a new individual, i.e., an individual

which does not appear in K.

• Entailment: A fuzzy concept assertion a : C ./ α is entailed by a fuzzy KB

K (denoted K |= 〈a : C ./ α〉) iff K∪ {〈a : C ¬./ α〉} is unsatisfiable.

The case for fuzzy role assertions is similar. A fuzzy role assertion (a, b): R

./ α is entailed by a fuzzy KB K (denoted K |= 〈(a, b): R ./ α〉) iff

K∪ {〈(a, b): R ¬./ α〉} is unsatisfiable.

• Greatest lower bound. The greatest lower bound of a concept or role

assertion τ is defined as the sup{α : K |= 〈τ ≥ α〉}. Under Łukasiewicz,

Zadeh and Gödel semantics it can be computed by performing several

entailment tests, more concretely at most log|NK| tests [299].2.

• Concept subsumption: Under an S-implication, D subsumes C to degree

α (C v D ≥ α) w.r.t. a fuzzy KB K iff C u¬D is not α-satisfiable. ut

In order to manage correctly infima and suprema in the reasoning, we

need to define the notion of witnessed interpretations or models [120].
2In Zadeh and Łukasiewicz logics, NK is the set of degrees of truth γ in the fuzzy KB

together with their complementaries 1− γ [299], while in Gödel logic we need to assume a
finite set of degrees of truth NK including 0 and 1 [120].
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Definition 50 Witnessed interpretations. A fuzzy interpretation I is wit-

nessed iff it verifies:

• for all x ∈∆I , there is y ∈∆I such that (∃R.C)I(x) = RI(x , y)⊗CI(y),
and

• for all x ∈∆I , there is v ∈∆D such that (∃T.d)I(x) = TI(x , v)⊗dD(v),
and

• for all x ∈ ∆I , there is y ∈ ∆I such that (∀R.C)I(x) = RI(x , y) ⇒
CI(y), and

• for all x ∈ ∆I , there is v ∈ ∆D such that (∀T.d)I(x) = TI(x , v) ⇒
dD(v), and

• there is x ∈∆I such that (C v D)I = CI(x)⇒ DI(x), and

• there are x1, . . . , xm+1 ∈∆I such that (R1 . . . Rm v R)I = (RI1(x1, x2)
⊗

. . .
⊗

RIn(xm, xm+1))⇒ RI(x1, xm+1), and

• there are x ∈ ∆I , v ∈ ∆D such that (T1 v T2)I = TI1 (x , v)⇒ TI2 (x , v),
and

• if I |= trans(R), for all x , y ∈ ∆I , there is z ∈ ∆I such that supz′∈∆I

RI(x , z′)⊗ RI(z′, y) = RI(x , z)⊗ RI(z, y).

Fuzzy nominals. Recall that previous approaches [284, 288, 291, 300]
considered a crisp semantics defined as:

{oi}I(x) =

(

1 if x = oIi
0 otherwise

Furthermore, [284, 288] are restricted to Zadeh logic (so it uses maxi-

mum t-conorm), whereas [291, 300] do not show how to reason with nomi-

nals.

Now we will shortly justify our decision of fuzzifying the nominal con-

struct by showing an example.

Example 8 Suppose we want to represent the concept of country where Ger-

man is a widely spoken language. Previous approaches allow the representation

of a fuzzy disjunction of nominals C ≡ {germany} t {austria} t {switzerland}.
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Since the semantics of the nominal construct is crisp, it forces switzerland to

fully belong to the concept or not, despite of German-speaking community of

Switzerland represents only about two thirds of the total population of the

country. On the contrary, following our approach we are able to define C ≡
{1/germany, 1/austria, 0.67/switzerland}. ut

Let us comment the semantics of the fuzzy nominals (recall that it is de-

fined as {α1/o1, . . . ,αm/om}I(x) = supi | x=oIi
αi). Since we are not imposing

Unique Name Assumption, it is possible that x = oIi for more than one oi.

This is the reason why we need to compute the supremum over the αi associ-

ated to these named individuals oi. And, of course, if ∀i ∈ {1, . . . , m}, x 6= oIi ,

then {α1/o1, . . . ,αm/om}I(x) = sup;= 0.
Note that previous approaches consider nominals to be crisp singletons

arguing that they do not represent real-life concepts [284, 288, 291, 300].
In these approaches it is possible to represent a fuzzy disjunction of crisp

singletons. However, we consider fuzzy nominals as proper fuzzy sets, which

do represent real-life concepts. It is easy to see that our definition general-

izes the previous definition for the nominal construct, as {o1} t · · · t {om} is

equivalent to {1/o1, . . . , 1/om} under maximum t-conorm.
Sometimes it is possible to represent explicitly the vagueness of a con-

cept by defining a fuzzy concrete domain [295], for example, a trapezoidal

membership function defined over the rational numbers. However, some-

times there exist concepts without a subjacent semantic representation, so it

is not possible or unnatural to define a fuzzy concrete domain (for example,

the concept in Example 8). In these cases, fuzzy nominals make possible to

explicitly define the membership function of a fuzzy set, stating the meaning

that a fuzzy concept has for the ontology developer.

Fuzzy concrete domains. Apart from our work, FUZZYDL reasoner is the

only current implementation allowing fuzzy concrete domains to be used.

In particular, it allows the use of trapezoidal, triangular, left shoulder and

right shoulder functions. In the rest of this work we will restrict ourselves to

the trapezoidal membership function (see Chapter 2 for details) defined over

an interval [k1, k2] because it can be used to represent the other membership
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Figure 5.1: Trapezoidal membership function defined in [k1, k2].

functions. Hence, we assume a unique fuzzy predicate d= t rapk1,k2
(q1, q2, q3,

q4) defined as in Figure 5.1.

Fuzzy modifiers. In the rest of this work we will restrict ourselves to the

triangular modifier and the linear modifier, which are defined as follows:

• The semantics of a triangular modifier mTri (Figure 5.2 (a)) is given

by a function fmTri(x; t1, t2, t3), where t1, t2, t3 ∈ [0, 1] and:

fmTri(x; t1, t2, t3) =

(

fle f t(x; t1, t2, t3) = t1+ x(1− t1)/t2 x ∈ [0, t2]
fri ght(x; t1, t2, t3) = 1− (x − t2)(1− t3)/(1− t2) x ∈ [t2, 1]

Note that fmTri(0) = t1, fmTri(t2) = 1 and fmTri(1) = t3.

• The semantics of a linear modifier mLin (Figure 5.2 (b)) is given by a

function fmLin(x; l), with l ∈ [0,1], l1 =
l

l+1
and l2 =

1
l+1

, defined as

follows:

fmLin(x; c) =

(

(l2/l1)x x ∈ [0, l1]
1− (x − 1)(1− l2)/(1− l1) x ∈ [l1, 1]

Note that fmLin(0) = 0, fmLin(l1) = l2 and fmLin(1) = 1.

The reason for this assumption is the fact that FUZZYDL, the only current

implementation apart from our work allowing concept modifiers to be used,
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(a) (b)

Figure 5.2: Popular examples of fuzzy modifiers (a) Triangular modifier; (b)
Linear modifier.

only supports modifiers defined in terms of linear and triangular membership

functions. In addition, we allow the application of linear modifiers over fuzzy

roles.

5.2 Logical Properties

The following proposition shows that fuzzy SROIQ(D) is a sound extension

of its crisp counterpart SROIQ(D).

Proposition 1 Fuzzy interpretations coincide with crisp interpretations if we

restrict the membership degrees to {0, 1}.

Due to the standard properties of the fuzzy operators, the following con-

cept equivalences hold [299]:
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¬> ≡ ⊥,

¬⊥ ≡ >,

C u> ≡ C ,

C t⊥ ≡ C ,

C u⊥ ≡ ⊥,

C t> ≡ >,

∃R.⊥=⊥,

∀R.>=>.

Laws of excluded middle and contradiction do not hold in general:

C t¬C 6≡ >
C u¬C 6≡ ⊥.

In the fuzzy DLs literature, the notation fiDL has been proposed [288],
where i is the fuzzy implication function considered. We point out, however,

that this notation is not appropriate for the logic considered in [38], which

combines Goguen implication with Łukasiewicz negation. The notation that

we will use is F DL [298], where F is a symbol denoting a family of fuzzy

operators such as Z for Zadeh, G for Gödel, Ł for Ł ukasiewicz or Π for

Product.

Zadeh Family

In this subsection we will concentrate on Z SROIQ(D), restricting ourselves

to the Zadeh family: minimum t-norm, maximum t-conorm, Łukasiewicz

negation and KD implication.

The choice of the fuzzy operators implies that the following properties

(which extend the crisp case) hold:

1. Involution: ¬¬C ≡ C .

2. De Morgan laws: ¬(C u D)≡ ¬C t¬D and ¬(C t D)≡ ¬C u¬D.

3. Inter-definability of conjunction and disjunction: C u D ≡ ¬(¬C u ¬D)
and C t D ≡ ¬(¬C t¬D).

4. Idempotence of conjunction and disjunction: C u C ≡ C and C t C ≡ C .
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5. Inter-definability of quantifiers: ∀R.C = ¬∃R.(¬C) and ∃R.C = ¬∀R.(¬C).
Obviously, this is equivalent to ¬∃R.C = ∀R.(¬C) and ¬∀R.C = ∃R.(¬C).

6. Inter-definability of number restrictions: (≤ n S.C) ≡ ¬(≥ m+1 S.C)
and (≥ m S.C)≡ ¬(≤ m−1 S.C).

It would be possible to transform concept expressions into a semantically

equivalent Negation Normal Form (NNF) [131], which is obtained by using

the previous equivalences to push negation in front of atomic concepts, fuzzy

nominals and local reflexivity concepts.
We can assume that negated role assertions of the form 〈(a, b) :¬R ./ γ〉

do not appear in the fuzzy KB (and similarly for concrete roles) due to the

following equivalence:

〈(a, b):¬R ./ γ〉 ≡ 〈(a, b):R ./− 1− γ〉

The use of KD implication in the semantics of fuzzy GCIs allows reasoning

with modus tolens since they verify:

C v D ≡ ¬D v ¬C

Unfortunately, using KD in the semantics of fuzzy GCIs and RIAs brings

about two counter-intuitive effects:

• Firstly, a concept does not fully subsume itself i.e. C v C iff infx∈∆I max{1−
CI(x), CI(x)} ≥ 0.5. The case for roles is similar: a role does not fully

subsume itself since R v R iff infx ,y∈∆I max{1− RI(x , y), RI(x , y)} ≥
0.5

• Secondly, crisp concept subsumption forces fuzzy concepts to be crisp

i.e. 〈C v D ≥ 1〉 ⇒ infx∈∆I max{1− CI(x), DI(x)} ≥ 1 which is true

iff for each element of the domain DI(x) = 1 or 1 − CI(x) ≥ 1 ⇔
CI(x) = 0. Again, the case for roles is similar.

These problems point out the need of alternative fuzzy operators. For

example, using an R-implication it is always true that a ⇒ b = 1 if a ≤ b,

which would fix the first problem; while Łukasiewicz (as in [41]) or Gödel

(as in the next subsection) implications fix the second one.
Similarly as in [292], Z SROIQ(D) allows some sort of modus ponens

over concepts and roles, even with the new semantics of fuzzy GCIs:
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Proposition 2 For α,β ∈ [0,1], B ∈ {≥,>} and α +B 1− β (+≥ = >,+>
=≥), the following properties are verified:

(i) 〈a : C Bα〉 and 〈C v D B β〉 imply 〈a : D B β〉.

(ii) 〈(a, b) : R Bα〉 and 〈Rv R′B β〉 imply 〈(a, b) : R′B β〉.

(iii) 〈(a, b) : R Bα〉 and 〈a : ∀R.C B β〉 imply 〈b : C B β〉.

Proof.

(i) 〈a : C B α〉 implies CI(aI) B α. 〈C v D B β〉 implies infx∈∆I CI(x)
⇒ DI(x)Bβ = infx∈∆I max{1−CI(x), DI(x)}Bβ . Since this is true for

the infimum, it is also true for aI , so max{1−CI(aI), DI(aI)}Bβ . But

since CI(aI)Bα and α +B 1−β , it is not possible that 1−CI(aI)Bβ .

Hence, DI(aI)B β , so 〈a : D B β〉 holds.

(ii) 〈(a, b):RBα〉 implies RI(aI , bI)Bα. 〈Rv R′Bβ〉 implies infx ,y∈∆I RI(x ,

y)⇒ R′I(x , y)Bβ = infx ,y∈∆I max{1−RI(x , y), R′I(x , y)}Bβ . Since

this is true for the infimum, it is also true for the pair (aI , bI), so

max{1−RI(aI , bI), R′I(aI , bI)}Bβ . But since RI(aI , bI)Bα and α +
B 1−β , it is not possible that 1−RI(aI , bI)Bβ . Hence, R′I(aI , bI)Bβ ,

so 〈a :R′B β〉 holds.

(iii) 〈(a, b):RBα〉 implies RI(aI , bI)Bα. 〈a :∀R.CBβ〉 implies infx∈∆I RI(aI ,

x)⇒ CI(x)Bβ = infx∈∆I max{1−RI(aI , x), CI(x)}Bβ . Since this is

true for the infimum, it is also true for bI , so max{1−RI(aI , bI), CI(bI)}
Bβ . But since RI(aI , bI)B α and α +B 1− β , it is not possible that

1− RI(aI , bI)B β . Hence, CI(bI)B β , so 〈b :C B β〉 holds. ut

Gödel Family

In this subsection, we will concentrate on G SROIQ, restricting ourselves

to the Gödel family: minimum t-norm, maximum t-conorm, Gödel negation

and Gödel implication.

In general, Gödel logic does not have the witnessed model property, i.e.,

there can exist fuzzy KBs which have an infinite model, but they do not have

a witnessed model. For instance, the concept (¬∀R.A) u (¬∃R.(¬A)) [120].
However, due to the limited precision of computers, we will deal with a finite
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set of truth values, and in Gödel logic over a fixed finite subset of degrees of

truth including 0 and 1, all models (finite or infinite) are witnessed [120].
We will use such a set of degrees of truth, and hence in our logic every

interpretation I is witnessed.

The choice of the fuzzy operators implies the following properties:

1. Negation is not involutive: ¬¬C 6≡ C .

2. Law of contradiction: C u¬C ≡⊥.

3. Idempotence of conjunction and disjunction: C u C ≡ C and C t C ≡ C .

4. De Morgan laws: ¬(C t D)≡ ¬C u¬D and ¬(C u D)≡ ¬C t¬D.

5. Non inter-definability of conjunction and disjunction: C t D 6≡ ¬(¬C u
¬D) and C u D 6≡ ¬(¬C t¬D).

6. Non inter-definability of quantifiers: ∀R.C 6≡ ¬∃R.(¬C) and ∃R.C 6≡
¬∀R.(¬C). Moreover, ¬∀R.C 6≡ ∃R.(¬C) but ¬∃R.C ≡ ∀R.(¬C).

7. Non inter-definability of qualified number restrictions: (≥ m S.C) 6≡ ¬(≤
m−1 S.C), but (≤ n S.C)≡ ¬(≥ n+1 S.C).

Properties 1–5 follow immediately from the semantics of the fuzzy op-

erators. Although in general quantifiers and qualified number restrictions

are not inter-definable, the following proposition shows that two interesting

equivalences hold.

Proposition 3 Under G SROIQ the following properties hold:

1. ¬∃R.C ≡ ∀R.(¬C)

2. (≤ n S.C)≡ ¬(≥ m+1 S.C)

Proof.

1. (¬∃R.C)I(x) =	(supy∈∆I{RI(x , y)⊗CI(y)}). There are two possibil-

ities.

• (¬∃R.C)I(x) = 1 if the supremum is 0, that is, ∀y ∈∆I , RI(x , y)⊗
CI(y) = 0, which is true if ∀y ∈ ∆I , RI(x , y) = 0 or CI(y) = 0

holds. In other words, the value is 1 if there does not exist any

element y of the domain such that RI(x , y)> 0 and CI(y)> 0.
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• (¬∃R.C)I(x) = 0 if the supremum is greater than 0, that is, ∃y ∈
∆I , RI(x , y)⊗CI(y)> 0, which is true if ∃y ∈∆I , with RI(x , y)>
0 and CI(y) > 0. In other words, the value is 0 if there ex-

ists some element y of the domain such that RI(x , y) > 0 and

CI(y)> 0.

Now, consider (∀R.(¬C))I(x) = infy∈∆I{RI(x , y)⇒ (¬C)I(y)}. Firstly,

assume that there does not exist any element y of the domain such

that RI(x , y) > 0 and CI(y) > 0. Then, ∀y ∈ ∆I , RI(x , y) = 0 or

CI(y) = 0 hold, which is equivalent to say that ∀y ∈∆I , RI(x , y) = 0

or (¬C)I(y) = 1 holds.

• If RI(x , y) = 0, then RI(x , y)⇒ (¬C)I(y) = 0⇒ (¬C)I(y) = 1.

• If (¬C)I(y) = 1, then RI(x , y)⇒ (¬C)I(y) = RI(x , y)⇒ 1= 1.

In any case, we end up with infy∈∆I{RI(x , y)⇒ (¬C)I(y)}= 1.

Finally, assume that there exists some element y of the domain such

that RI(x , y) > 0 and CI(y) > 0. Then, ∃y ∈∆I such that RI(x , y) >
0 and CI(y) > 0 holds. Hence, ∃y ∈ ∆I such that RI(x , y) > 0 and

(¬C)I(y) = 0 holds, and hence it satisfies RI(x , y) ⇒ (¬C)I(y) = 0.

So, infy∈∆I{RI(x , y)⇒ (¬C)I(y)}= 0.

Summing up, in any case (either there does not exist any element y of

the domain such that RI(x , y) > 0 and CI(y) > 0, or there exists such

an element), ¬∃R.C ≡ ∀R.(¬C).

2. (≤ n S.C)I(x) = infy1,...,yn+1∈∆I[(⊗
n+1
i=1 {S

I(x , yi)⊗CI(yi)})⇒ (⊕ j<k{y j =
yk})]. Note that ⊕ j<k{y j = yk} can be either 0 or 1, so the result of

the Gödel implication is either 0 or 1 and hence (≤ n S.C) is actually a

crisp concept.

• Let infy1,...,yn+1∈∆I[(⊗
n+1
i=1 {S

I(x , yi)⊗CI(yi)})⇒ (⊕ j<k{y j = yk})] =
0. Then, there exist y1, . . . , yn+1 ∈∆I such that [(⊗n+1

i=1 {S
I(x , yi)

⊗CI(yi)}) ⇒ (⊕ j<k{y j = yk})] = 0. This is true if there exist

n+ 1 mutually different elements yi such that (⊗n+1
i=1 {S

I(x , yi)⊗
CI(yi)})> 0, that is, SI(x , yi)> 0 and CI(yi)})> 0.
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• Assume that infy1,...,yn+1∈∆I[(⊗
n+1
i=1 {S

I(x , yi)⊗CI(yi)})⇒ (⊕ j<k{y j =
yk})] = 1. Then, ∀y1, . . . , yn+1 ∈∆I , [(⊗n+1

i=1 {S
I(x , yi)⊗CI(yi)})⇒

(⊕ j<k{y j = yk})] = 1. This is true in two cases:

– ⊗n+1
i=1 {S

I(x , yi)⊗CI(yi)}= 0, so there exist some yi such that

SI(x , yi) = 0 or CI(yi) = 0 holds.

– ⊕ j<k{y j = yk}= 0 holds.

This means that there do not exist n+ 1 mutually different indi-

viduals such that SI(x , yi)> 0 and CI(yi)> 0.

Now, consider (¬(≥ m+1 S.C))I(x) =	(supy1,...,yn+1∈∆I(⊗
n+1
i=1 {S

I(x , yi)
⊗CI(yi)})

⊗

(⊗ j<k{y j 6= yk})). Firstly, assume that there exist n + 1

mutually different elements yi such that SI(x , yi)> 0 and CI(yi)}> 0.

Then, supy1,...,yn+1∈∆I(⊗
n+1
i=1 {S

I(x , yi) ⊗CI(yi)})
⊗

(⊗ j<k{y j 6= yk})> 0,

so 	(supy1,...,yn+1∈∆I(⊗
n+1
i=1 {S

I(x , yi) ⊗CI(yi)})
⊗

(⊗ j<k{y j 6= yk})) = 0.

Now, assume that there exist n+ 1 mutually different individuals such

that SI(x , yi)> 0 and CI(yi)> 0. Then, supy1,...,yn+1∈∆I(⊗
n+1
i=1 {S

I(x , yi)
⊗CI(yi)})

⊗

(⊗ j<k{y j 6= yk}) = 0, so 	(supy1,...,yn+1∈∆I(⊗
n+1
i=1 {S

I(x , yi)
⊗CI(yi)})

⊗

(⊗ j<k{y j 6= yk})) = 1.

Summing up, in any case (either there do not exist n + 1 mutually

different individuals such that SI(x , yi) > 0 and CI(yi) > 0, or there

do exist such elements), (≤ n S.C)≡ ¬(≥ m+1 S.C). ut

In crisp DLs, the assertion a :C is equivalent to the GCI {a} v C . This can

be extended to the fuzzy case, as the following proposition shows:

Proposition 4 In fuzzy SROIQ under an R-implication, the following equiv-

alence holds:

〈a :C ≥ α〉 ≡ 〈{α/a} v C ≥ 1〉

Proof. On the one hand, 〈a :C ≥ α〉 implies CI(aI)≥ α. On the other hand,

from 〈{α/a} v C ≥ 1〉 and under an R-implication, we can deduce that, for

every individual x of the domain, ({α/a})I(x)≤ CI(x). In particular, for aI

we have that CI(aI)≥ ({α/a})I(aI) = α. ut
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Similarly as in [292], G SROIQ allows some sort of modus ponens and

chaining of GCIs and RIAs:

Proposition 5 For α,β ∈ [0,1] and B ∈ {≥,>}, the following properties are

verified:

(i) 〈a :C Bα〉 and 〈C v D B β〉 imply 〈a : D Bα⊗ β〉.

(ii) 〈(a, b):R Bα〉 and 〈Rv R′B β〉 imply 〈(a, b):R′Bα⊗ β〉.

(iii) 〈C v D Bα〉 and 〈D v E B β〉 imply 〈C v E Bα⊗ β〉.

(iv) 〈Rv R′Bα〉 and 〈R′ v R′′B β〉 imply 〈Rv R′′Bα⊗ β〉.

Proof.

(i) 〈a : C B α〉 implies CI(aI)B α. 〈C v D B β〉 implies infx∈∆I CI(x)⇒
DI(x)B β . Since this is true for the infimum, it is also true for aI , so

CI(aI)⇒ DI(aI)Bβ . But from CI(aI)Bα and CI(aI)⇒ DI(aI)Bβ ,

using modus ponens with Gödel implication, it follows that DI(aI)B
min{α,β}. Hence, 〈a : D B min{α,β}〉 holds.

(ii) 〈(a, b):RBα〉 implies RI(aI , bI)Bα. 〈Rv R′Bβ〉 implies infx ,y∈∆I RI(x ,

y) ⇒ R′I(x , y)B β . Since this is true for the infimum, in particular

RI(aI , bI) ⇒ R′I(aI , bI) B β . Similarly as in the previous case, us-

ing modus ponens with Gödel implication, it follows that R′I(aI , bI)B
min{α,β}. Hence, 〈(a, b):R′B min{α,β}〉 holds.

(iii) 〈C v D B α〉 implies infx∈∆I CI(x) ⇒ DI(x) B α, and 〈D v E B β〉
implies infx∈∆I DI(x)⇒ EI(x)Bβ . Now, for an individual x there are

three possibilities:

1. CI(x) ≤ DI(x) and DI(x) ≤ EI(x). It follows that CI(x) ≤
EI(x) and hence CI(x)⇒ EI(x) = 1 B min{α,β}.

2. CI(x) > DI(x) and DI(x) ≤ EI(x). From CI(x) ⇒ DI(x)B α
it follows that DI(x)B α. Since EI(x) ≥ DI(x), then EI(x)B α.

Since the result of Gödel implication is either 1 or EI(x), CI(x)⇒
EI(x)Bα, and hence CI(x)⇒ EI(x)B min{α,β}.

3. DI(x)> EI(x). From DI(x)⇒ EI(x)Bβ it follows that EI(x)B
β . Since the result of Gödel implication is either 1 or EI(x),
CI(x)⇒ EI(x)B β , and hence CI(x)⇒ EI(x)B min{α,β}.
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In summary, for every element x of the domain we can always conclude

that CI(x)⇒ EI(x)B min{α,β}, so 〈C ⇒ E B min{α,β}〉 holds.

(iv) 〈Rv R′Bα〉 implies infx ,y∈∆I RI(x , y)⇒ R′I(x , y)Bα, and 〈R′ v R′′B

β〉 implies infx ,y∈∆I R′I(x , y)⇒ R′′I(x , y)B β . Now, for an individual

x , y there are three possibilities:

1. RI(x , y) ≤ R′I(x , y) and R′I(x , y) ≤ R′′I(x , y). It follows that

RI(x , y) ≤ R′′I(x , y) and hence RI(x , y) ⇒ R′′I(x , y) = 1 B

min{α,β}.

2. RI(x , y) > R′I(x , y) and R′I(x , y) ≤ R′′I(x , y). From RI(x , y)⇒
R′I(x , y) B α it follows that R′I(x , y) B α. Since R′′I(x , y) ≥
R′I(x , y), then R′′I(x , y)B α. Since the result of Gödel implica-

tion is either 1 or R′′I(x , y), RI(x , y)⇒ R′′I(x , y)Bα, and hence

RI(x , y)⇒ R′′I(x , y)B min{α,β}.

3. R′I(x , y) > R′′I(x , y). From R′I(x , y)⇒ R′′I(x , y)B β it follows

that R′′I(x , y)B β . Since the result of Gödel implication is either

1 or R′′I(x , y), RI(x , y)⇒ R′′I(x , y)B β , and hence RI(x , y)⇒
R′′I(x , y)B min{α,β}.

Hence, in every case and for every pair of elements x , y of the domain

we can conclude that RI(x , y)⇒ R′′I(x , y)B min{α,β}, so 〈R⇒ R′′B

min{α,β}〉 holds. ut

Irreflexive, transitive and symmetric role axioms are syntactic sugar for

any R-implication (and consequently it can be assumed that they do not ap-

pear in fuzzy KBs) due to some equivalences with fuzzy GCIs and RIAs.

Proposition 6 In fuzzy SROIQ under an R-implication, the following equiv-

alences hold:

• irr(S)≡ 〈> v ¬∃S.Self≥ 1〉,

• trans(R)≡ 〈RRv R≥ 1〉,

• sym(R)≡ 〈Rv R− ≥ 1〉.

Proof.
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• On the one hand, irr(S) implies that ∀x ∈ ∆I , SI(x , x) = 0. On

the other hand, 〈> v ¬∃S.Self ≥ 1〉 implies that, for every individ-

ual x of the domain, (>)I(x) ⇒ (¬∃S.Self)I(x) ≥ 1. Since it is

an R-implication, (>)I(x) = 1 ≤ (¬∃S.Self)I(x). Due to the stan-

dard properties of negation functions, (¬∃S.Self)I(x)≥ 1 implies that

(∃S.Self)I(x) = 0. Hence, ∀x ∈∆I , SI(x , x) = 0.

• On the one hand, trans(R) implies that ∀x , y ∈∆I , RI(x , y)≥ supz∈∆I

RI(x , z) ⊗ RI(z, y). On the other hand, 〈RR v R ≥ 1〉 implies that,

for every pair of individuals (x , y) of the domain, supz∈∆I(R
I(x , z)⊗

RI(z, y)) ⇒ RI(x , y) ≥ 1. Since it is an R-implication, it follows that

RI(x , y)≥ supz∈∆I RI(x , z)⊗ RI(z, y).

• On the one hand, sym(R) implies that ∀x , y ∈∆I , RI(x , y) = RI(y, x).
On the other hand, 〈R v R− ≥ 1〉 implies that, for every pair of indi-

viduals (x , y) of the domain, RI(x , y) ⇒ (R−)I(x , y) ≥ 1. Since it is

an R-implication, RI(x , y) ≤ (R−)I(x , y) = RI(y, x). But if we con-

sider the pair (y, x), it follows than RI(y, x) ≤ (R−)I(y, x) = RI(x , y).
Hence, ∀x , y ∈∆I , RI(x , y) = RI(y, x). ut

Joining Zadeh and Gödel Logics

There is no conceptual problem in assuming an arbitrary combination of the

fuzzy operators of Zadeh and Gödel logics in our context (recall that our

interpretations are witnessed). This has also been done in for Zadeh, Gödel

and Łukasiewicz logics [39].

Another interesting possibility is to have a representation language sup-

porting the use of two types of GCIs and RIAs vKD y vG (with semantics

based on KD and Gödel implications respectively). This is similar to other

works which allow several types of subsumption (for instance, [193]). This

way, the ontology developer would be free to choose the better option for his

own needs. In general, Gödel implication provides better logical properties

than KD, but KD for example makes possible to reason with modus tolens.
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5.3 A Possibilistic Extension

Imprecision/vagueness and uncertainty are very different conceptually, being

possible to manage them by means of fuzzy and possibilistic logics, respec-

tively.

In this section we will combine them by means of a possibilistic and fuzzy

extension of an ontology. In particular, we build a layer to deal with uncertain

knowledge on top of a fuzzy KB, by annotating the axioms with possibility

and necessity degrees.

Syntax

Definition 51 Possibilistic fuzzy knowledge base. Let α ∈ (0, 1]. A possi-

bilistic fuzzy KB P is a fuzzy KB K = 〈A,T ,R〉 where each fuzzy axiom τ ∈A
is equipped with one of the following degrees:

• A possibility degree (τ,Π α).

• A necessity degree (τ, N α).

The possibility degree expresses to what extent a formula is possible,

whereas the necessity degree expresses to what extent a formula is neces-

sarily true.

Example 9 The following axiom means that it is possible with degree 0.2 that

Tom is considered a high person with (at least) degree 0.5:

(〈tom: High≥ 0.5〉,Π 0.2)

ut

By default axioms are interpreted as necessarily true, i.e., if no degree is

specified, τ is interpreted as (τ, N 1).
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Semantics

Firstly, we define the notion of negation a fuzzy axiom. We will restrict

ourselves to fuzzy axioms in a fuzzy ABox, that is, fuzzy concept and role

assertions.

Definition 52 Negation of an SROIQ(D) fuzzy axiom. Let τ be a fuzzy

axiom in an SROIQ(D) ABox. The negation ¬τ is defined as such a way that

a fuzzy interpretation I satisfies τ iff I does not satisfy ¬τ.

Proposition 7 Let φ be a concept or role assertion in SROIQ(D). Then:

¬(〈φ ./ γ〉) = 〈φ¬ ./ γ〉

Proof. Assume that φ = a : C . A fuzzy interpretation I satisfies 〈φ ./ γ〉 iff

CI(aI) ./ γ. Then, I does not satisfy CI(aI)¬ ./ γ. Hence, I does not satisfy

¬(〈a : C ./ γ) = ¬τ. The cases φ = (a, b): R, φ = (a, b): ¬R, φ = (a, v): T ,

φ = (a, v): ¬T are similar. ut

Definition 53 Possibilistic interpretation. Let I be the set of all (possibly

fuzzy) interpretations. A possibilistic interpretation is a mapping π : I→ [0,1]
such that π(I) = 1 for some I ∈ I.

The intuition here is that π(I) represents the degree to which the world

I is possible. I is impossible if π(I) = 0 and fully possible if π(I) = 1.

Definition 54 Possibility of an axiom. The possibility of a fuzzy axiom τ in

a possibilistic interpretation π is defined as:

Poss(τ) = sup{π(I) | I ∈ I,I |= τ}

where sup;= 0.

Definition 55 Necessity of an axiom. The necessity of a fuzzy axiom τ in a

possibilistic interpretation π is defined as:

Nec(τ) = 1− Poss(¬τ)
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The reason for the restriction to fuzzy axioms in the fuzzy ABox is the fol-

lowing. According to the latter two definitions, the possibility and the neces-

sity of an axiom is based on the notion of entailment, which in the fuzzy DLs

literature has only been defined for fuzzy concept and role assertions [299].
A similar definition could be given for the rest of axioms in SROIQ(D), but

most of them seem to be counter-intuitive or unnatural. For example, let

NK be the set of relevant degrees of truth of a fuzzy KB K. We could define

the negation of a transitive role axiom by introducing some new individuals

preventing the role to be transitive:

¬(trans(R) = 〈(x1, x2):R≥ α〉 ∪ 〈(x2, x3):R≥ α〉 ∪ 〈(x1, x3):R< α〉

where x1, x2, x3 are new individuals in K, and for some α ∈ NK. But note

that this is true for some α and we do not know exactly for which of them

(so we would need to try with all of them).



CHAPTER 6
A Crisp Representation for Fuzzy

SROIQ(D) under Zadeh Family

In this chapter we show how to reduce a Z SROIQ(D) fuzzy KB to a

crisp KB. The procedure preserves reasoning, in such a way that existing

SROIQ(D) reasoners could be applied to the resulting KB. First we will

describe the reduction and then we will provide an illustrating example.

The basic idea is to create some new crisp concepts and roles, represent-

ing the α-cuts of the fuzzy concepts and relations, and to rely on them. Next,

some new axioms are added to preserve their semantics. Finally, every axiom

in the ABox, the TBox and the RBox is represented, independently of other

axioms, using these new crisp elements.

Section 6.1 studies the relevant set of degrees of truth to be considered

in the reasoning. Section 6.2 describes the process of creation of new crisp

concepts and roles. Then, the elements in the fuzzy DL are mapped: abstract

concepts and roles (Section 6.3), concrete predicates (Section 6.4), axioms

(Section 6.5) and modified concepts and roles (Section 6.7). An illustrating

example is presented in Section 6.6. Section 6.8 studies some properties of

the reduction. Some important optimizations of the reasoning procedure are

described in Section 6.9. Finally, Section 6.10 shows how to reason with a

possibilistic extension of the fuzzy DL.

115
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6.1 Relevant Set of Degrees of Truth

Let A be the set of atomic concepts, R the set of atomic abstract roles and T

the set of concrete roles in a fuzzy KB K = 〈A,T ,R〉.
U. Straccia showed [302] that the set of the degrees which must be con-

sidered for any reasoning task in fuzzy Z ALCH is composed of those de-

grees appearing in the fuzzy KB together with their complementaries. For-

mally, the set of degrees is defined as

NK = XK ∪ {1− γ | γ ∈ XK}

where XK = {0, 0.5,1}∪{γ | 〈τ ./ γ〉 ∈K}. This also holds in Z SROIQ(D),
but it must be noted that it is not necessarily true when other fuzzy operators

are considered.

Without loss of generality, it can be assumed that NK = {γ1, . . . ,γ|NK|}
and γi < γi+1, 1≤ i ≤ |NK| − 1. It is easy to see that γ1 = 0 and γ|NK| = 1.

6.2 Adding New Elements

For each α,β ∈ NK with α ∈ (0, 1] and β ∈ [0, 1), for each A ∈ A, two

new atomic concepts A≥α, A>β are introduced. A≥α represents the crisp set of

individuals which are instance of A with degree higher or equal than α i.e.

the α-cut of A. A>β is defined in a similar way.

Similarly, for each RA ∈ R and for each T ∈ T two new atomic abstract

roles RA≥α, RA>β and two new concrete roles T≥α, T>β are introduced.

The atomic elements A>1, RA>1, T>1, A≥0, RA≥0 and T≥0 are not considered

because they are not necessary, due to the restrictions on the allowed degree

of the axioms in the fuzzy KB. For example, we do not allow fuzzy axioms of

the forms τ≥ 0, τ > 1, τ≤ 1 or τ < 0.

The semantics of these newly introduced atomic concepts and roles is

preserved by some terminological and role axioms. For each 1 ≤ i ≤ |NK| −
1,2≤ j ≤ |NK|−1 and for each A∈ A, T (NK) is the smallest T-Box containing

these two axioms:
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A≥γi+1
v A>γi

A>γ j
v A≥γ j

Similarly, for each RA ∈ R, Ra(NK) is the smallest R-Box containing:

RA≥γi+1
v RA>γi

RA>γi
v RA≥γi

and for each T ∈ T, Rc(NK) is the smallest R-Box containing:

T≥γi+1
v T>γi

T>γi
v T≥γi

Now we will introduce some customized datatypes which will be used

to represent membership trapezoidal functions. real[a, b] denotes a real

number defined in the interval [a, b] and can be defined in OWL 2 syntax as

follows:

<owl : DataRange rd f : about="#r e a l [a , b]">
<owl2 : onDataRange rd f : resource="&xsd ; double "/>
<owl2 : min Inc lus ive rd f : datatype="&xsd ; double">a</owl2 : minInc lus ive>
<owl2 : maxInc lus ive rd f : datatype="&xsd ; double">b</owl2 : maxInclusive>

</owl : DataRange>

real(a, b) denotes a real number defined in (a, b) and can be defined

similarly as before, but using owl2:minExclusive and owl2:maxExclusive

instead of owl2:minInclusive and owl2:maxInclusive.

Finally, union–real[k1, a, b, k2] stands for a real number in [k1, a]∪[b, k2]
and can be defined in the following way:

<owl : DataRange rd f : about="#union−r e a l [k1 , a , b , k2]">
<owl : complementOf>
<owl : DataRange>
<owl2 : onDataRange rd f : resource=" r e a l (a , b)"/>

</owl : DataRange>
</owl : complementOf>
<owl2 : min Inc lus ive rd f : datatype="&xsd ; double">k1</owl2 : minInc lus ive>
<owl2 : maxInc lus ive rd f : datatype="&xsd ; double">k2</owl2 : maxInclusive>

</owl : DataRange>

Notice that these customized datatypes are just subsets of R, that is, dou-

ble numbers with a restricted set of allowed values. Hence, it is possible
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to use current available algorithms to reason with customized real numbers.

Observe that using our own datatype representing trapezoidal membership

functions is possible but we would need to implement a new reasoning pro-

cedure capable of dealing with them.

6.3 Mapping Fuzzy Concepts and Roles

Fuzzy concept and role expressions are reduced using mapping ρ, as shown

in Tables 6.1 and 6.2. Concrete predicates are reduced in Section 6.4, while

modified concept and roles are discussed in Section 6.7.
Given a fuzzy concept C , ρ(C ,≥ α) is the α-cut of C , a crisp set containing

all the elements which belong to C with a degree greater or equal than α.

The other cases ρ(C ,./ γ) are similar.
Given a fuzzy role R, ρ(R,≥ α) is a crisp set containing all the pair of

elements which are related through R with a degree greater or equal than α.

The other cases ρ(R,./ γ) and ρ(T,./ γ) are similar.
Obviously, the mapping verifies some interesting properties. Firstly, we

have the following equivalences:

ρ(C ,./ γ)≡ ¬ρ(C ,¬ ./ γ)
ρ(R,./ γ)≡ ¬ρ(R,¬ ./ γ)

It is also interesting to remark that ρ(A,≤ β) = ¬A>β is different from

ρ(¬A,≥ α) = ρ(A,≤ 1−α) = ¬A>1−α.
Finally, due to the restrictions in the definition of the fuzzy KB, some

expressions cannot appear during the process:

• ρ(A,≥ 0),ρ(A,> 1),ρ(A,≤ 1),ρ(A,< 0).

• ρ(>,≥ 0),ρ(>,> 1),ρ(>,≤ 1),ρ(>,< 0).

• ρ(⊥,≥ 0),ρ(⊥,> 1),ρ(⊥,≤ 1),ρ(⊥,< 0).

• ρ(RA,≥ 0),ρ(RA,> 1),ρ(RA,≤ 1),ρ(RA,< 0).

• ρ(T,≥ 0),ρ(T,> 1),ρ(T,≤ 1),ρ(T,< 0).

• ρ(U ,≥ 0),ρ(U ,> 1),ρ(U ,≤ 1),ρ(U ,< 0).

• ρ(R,Cγ),ρ(U ,Cγ) and ρ(T,Cγ) can only appear in a (crisp) negated

role assertion.
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Table 6.1: Mapping of concept expressions under Zadeh semantics.

x y ρ(x , y)
> Bγ >
> Cγ ⊥
⊥ Bγ ⊥
⊥ Cγ >
A Bγ ABγ

A Cγ ¬A¬Cγ
¬C ./ γ ρ(C ,./− 1− γ)

C u D Bγ ρ(C ,Bγ)uρ(D,Bγ)
C u D Cγ ρ(C ,Cγ)tρ(D,Cγ)
C t D Bγ ρ(C ,Bγ)tρ(D,Bγ)
C t D Cγ ρ(C ,Cγ)uρ(D,Cγ)
∃R.C Bγ ∃ρ(R,Bγ).ρ(C ,Bγ)
∃R.C Cγ ∀ρ(R,¬C γ).ρ(C ,Cγ)
∃T.d Bγ ∃ρ(T,Bγ).ρ(d,Bγ)
∃T.d Cγ ∀ρ(T,¬C γ).ρ(d,Cγ)
∀R.C {≥,>}γ ∀ρ(R, {>,≥}1− γ).ρ(C , {≥,>}γ)
∀R.C Cγ ∃ρ(R,C−1− γ).ρ(C ,Cγ)
∀T.d {≥,>}γ ∀ρ(T, {>,≥}1− γ).ρ(d, {≥,>}γ)
∀T.d Cγ ∃ρ(T,C−1− γ).ρ(d,Cγ)

{α1/o1, . . . ,αm/om} ./ γ {oi | αi ./ γ, 1≤ i ≤ n}
≥ m S.C Bγ ≥ m ρ(S,Bγ).ρ(C ,Bγ)
≥ m S.C Cγ ≤ m−1 ρ(S,¬C γ).ρ(C ,¬C γ)
≥ m T.d Bγ ≥ m ρ(T,Bγ).ρ(d,Bγ)
≥ m T.d Cγ ≤ m−1 ρ(T,¬C γ).ρ(d,¬C γ)
≤ n S.C {≥,>} γ ≤ n ρ(S, {>,≥} 1− γ).ρ(C , {>,≥} 1− γ)
≤ n S.C Cγ ≥ n+1 ρ(S,C− 1− γ).ρ(C ,C− 1− γ)
≤ n T.d {≥,>} γ ≤ n ρ(T, {>,≥} 1− γ).ρ(d, {>,≥} 1− γ)
≤ n T.d Cγ ≥ n+1 ρ(T,C− 1− γ).ρ(d,C− 1− γ)
∃S.Self Bγ ∃ρ(S,Bγ).Self
∃S.Self Cγ ¬∃ρ(S,¬C γ).Self
[C ≥ α] Bγ ρ(C ,≥ α)
[C ≥ α] Cγ ρ(C ,< α)
[C ≤ β] Bγ ρ(C ,≤ β)
[C ≤ β] Cγ ρ(C ,> β)
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Table 6.2: Mapping of role expressions under Zadeh semantics.

x y ρ(x , y)
RA Bγ RABγ

RA Cγ ¬RA¬Cγ
R− ./ γ ρ(R,./ γ)−

U Bγ U
U Cγ ¬U

[R≥ α] Bγ ρ(R,≥ α)
[R≥ α] Cγ ρ(R,< α)

T Bγ TBγ

6.4 Mapping Concrete Predicates

Concrete predicate expressions are reduced using mapping ρ, as shown in

Table 6.3. We recall that we are allowing only fuzzy concrete predicates

d= t rapk1,k2
(q1, q2, q3, q4).

In the case < α we use a sufficiently small number ε > 0 which simulates

strict inequalities, since a ≥ b+ ε is equivalent to a > b.

Table 6.3: Mapping of concrete expressions.

x y ρ(x , y)
d ≥ α real[q1+α(q2− q1), q4−α(q4− q3)]
d > β real(q1+ β(q2− q1), q4− β(q4− q3))
d ≤ β union–real[k1, q1+ β(q2− q1), q4− β(q4− q3), k2]
d < α union–real[k1, q1+α(q2− q1)− ε, q4−α(q4− q3) + ε, k2]

6.5 Mapping Fuzzy Axioms

Axioms are reduced as in Table 6.4, where κ(τ) maps a fuzzy axiom τ in

Z SROIQ(D) to a set of crisp axioms in SROIQ(D). We note κ(A) (resp.
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κ(T ), κ(R)) the union of the reductions of all the fuzzy axioms in A (resp.

T , R)1.

Example 10 Let us consider some cases of the reduction.

• Consider an assertion 〈a : ∀R.C ≥ α〉. If it is satisfied, there exists a

fuzzy interpretation I such that infy∈∆I max{1−RI(aI , y), CI(y)} ≥ α.

For an arbitrary y, RI(aI , y) ≤ 1− α or CI(y) ≥ α must hold. Hence,

if RI(aI , y) ≤ 1− α is not satisfied (i.e., RI(aI , y) > 1− α), then we

deduce that CI(y) ≥ α, which is the semantics of the crisp assertion

a : ∀ρ(R,> 1−α).ρ(C ,≥ α).

• Consider 〈a : (≥ m S.C)≤ β〉. If it is satisfied, it follows that supy1,...,ym∈∆I

(minm
i=1 {S

I(aI , yi)⊗ CI(yi)}) ≤ β , so there cannot exist m different in-

dividuals yi with (minm
i=1 {S

I(aI , yi)⊗ CI(yi)})> β , and it follows that

the crisp assertion a : (≤ m−1 ρ(S,> β).ρ(C ,> β)) is satisfied. ut

In the definition of the logic we have not allowed negative fuzzy GCIs and

RIAs because they do not have a clear equivalence in the crisp case. How-

ever, it would be possible to include fuzzy GCIs in the logic. The interesting

difference is that they can be reduced to concept assertions respectively. The

reduction of these axioms has also been included in Table 6.4, where x is a

new individual (not appearing in the original fuzzy KB).

Summing up, a fuzzy KB K = 〈A,T ,R〉 is reduced to a KB crisp(K) =
〈κ(A), T (NK)∪ κ(T ), Ra(NK)∪ Rc(NK)∪ κ(R)〉.

6.6 Examples

In this section, we will illustrate the procedure with a couple of examples.

Firstly, we will present an example concerning interchange of medical knowl-

edge. Then, we will consider an accommodation domain.

1More precisely, the reduction of transitive and symmetric role axioms should be noted
as κ(τ, NK). Similarly, the reduction of the fuzzy RBox should be noted as κ(R, NK) respec-
tively. However, for the sake of simplicity we omit NK since it is clear from the context.
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Table 6.4: Reduction of the axioms under Zadeh semantics.

τ κ(τ)
〈a :C ./ γ〉 {a :ρ(C ,./ γ)}
〈(a, b):R ./ γ〉 {(a, b):ρ(R,./ γ)}
〈(a, v): T ./ γ〉 {(a, v):ρ(T,./ γ)}
〈a 6= b〉 {a 6= b}
〈a = b〉 {a = b}
〈C v D ≥ α〉 {ρ(C ,> 1−α)v ρ(D,≥ α)}
〈C v D > β〉 {ρ(C ,≥ 1− β)v ρ(D,> β)}
〈C v D ≤ β〉 {x :ρ(C ,≥ 1− β)uρ(D,≤ β)}
〈C v D < α〉 {x :ρ(C ,> 1−α)uρ(D,< α)}
〈R1 . . . Rm v R≥ α〉 {ρ(R1,> 1−α) . . .ρ(Rm,> 1−α)v ρ(R,≥ α)}
〈R1 . . . Rm v R> β〉 {ρ(R1,≥ 1− β) . . .ρ(Rm,≥ 1− β)v ρ(R,> β)}
〈T1 v T2 ≥ α〉 {ρ(T1,> 1−α)v ρ(T2,≥ α)}
〈T1 v T2 > β〉 {ρ(T1,≥ 1− β)v ρ(T2,> β)}
trans(R)

⋃

γ∈NK\{0}{trans(ρ(R,≥ γ))}
⋃

γ∈NK\{1}{trans(ρ(R,> γ))}
dis(S1, S2) {dis(ρ(S1,> 0),ρ(S2,> 0))}
dis(T1, T2) {dis(ρ(T1,> 0),ρ(T2,> 0))}
ref(R) {ref(ρ(R,≥ 1))}
irr(S) {irr(ρ(S,> 0))}
sym(R)

⋃

γ∈NK\{0}{sym(ρ(R,≥ γ))}
⋃

γ∈NK\{1}{sym(ρ(R,> γ))}
asy(S) {asy(ρ(S,> 0)}

Example 11 A known issue in health-care support is that consensus in the used

vocabulary is required to achieve understanding among different physicians and

systems. Medical taxonomies are an effort in this direction, as they provide a

well-defined catalogue of codes to label diseases univocally. Two examples are

ICD2 (for general medicine) and DSM-IV [10] (for mental disorders), which

identify prototypical clinical medical profiles with a name and a code. Medical

taxonomies have been developed to be essentially crisp, so they can be tran-

scribed almost directly to OWL.

However, vagueness could be introduced at different levels of the taxonomy

so that richer semantics would be represented:

• In order to associate diagnostic codes to patient electronic records, fuzzy

assertions would be be useful, allowing the knowledge base to contain

2http://www.who.int/classifications/icd/en/

http://www.who.int/classifications/icd/en/
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statements such as “Patient001’s Serotonin Level is quite low” or “Pa-

tient001’s disease is likely to be an Obsessive-Compulsive Disorder”.

• In the current version of DSM-IV, “Substance-Induced Anxiety Disorder” is

defined as a subclass of “Substance-Related Disorder”. A fuzzy GCI could

express that a “Substance-Induced Anxiety Disorder can be partially con-

sidered a Substance-Related Disorder”, as well as an “Anxiety Disorder”.

Assume a fuzzy KB K representing this knowledge:

K = {
〈patient001 : ∃hasSerotoninLevel.HighLevel≤ 0.25〉,
〈patient001 : ∃hasDisease.ObsessiveCompulsiveDisorder≥ 0.75〉,
〈SubstanceInducedAnxietyDisorderv AnxietyDisorder≥ 0.75〉

}

Firstly, we compute the number of degrees of truth to be considered: XK =
NK = {0, 0.25,0.5, 1,0.75}.

Next, we create some new elements and some axioms preserving their se-

mantics. The new axioms in Ra(NK), due to the new atomic roles, are:

Ra(NK) = {
hasSerotoninLevel≥1 v hasSerotoninLevel>0.75,

hasSerotoninLevel>0.75 v hasSerotoninLevel≥0.75,

hasSerotoninLevel≥0.75 v hasSerotoninLevel>0.5,

hasSerotoninLevel>0.5 v hasSerotoninLevel≥0.5,

hasSerotoninLevel≥0.5 v hasSerotoninLevel>0.25,

hasSerotoninLevel>0.25 v hasSerotoninLevel≥0.25,

hasSerotoninLevel≥0.25 v hasSerotoninLevel>0,

hasDisease≥1 v hasDisease>0.75,

hasDisease>0.75 v hasDisease≥0.75,

hasDisease≥0.75 v hasDisease>0.5,

hasDisease>0.5 v hasDisease≥0.5,

hasDisease≥0.5 v hasDisease>0.25,

hasDisease>0.25 v hasDisease≥0.25,

hasDisease≥0.25 v hasDisease>0

}
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The new axioms in T (NK), due to the new atomic concepts, are:

T (NK) = {
HighLevel≥1 v HighLevel>0.75,

HighLevel>0.75 v HighLevel≥0.75,

HighLevel≥0.75 v HighLevel>0.5,

HighLevel>0.5 v HighLevel≥0.5,

HighLevel≥0.5 v HighLevel>0.25,

HighLevel>0.25 v HighLevel≥0.25,

HighLevel≥0.25 v HighLevel>0,

AnxietyDisorder≥1 v AnxietyDisorder>0.75,

AnxietyDisorder>0.75 v AnxietyDisorder≥0.75,

AnxietyDisorder≥0.75 v AnxietyDisorder>0.5,

AnxietyDisorder>0.5 v AnxietyDisorder≥0.5,

AnxietyDisorder≥0.5 v AnxietyDisorder>0.25,

AnxietyDisorder>0.25 v AnxietyDisorder≥0.25,

AnxietyDisorder≥0.25 v AnxietyDisorder>0,

ObsessiveCompulsiveDisorder≥1 v ObsessiveCompulsiveDisorder>0.75,

ObsessiveCompulsiveDisorder>0.75 v ObsessiveCompulsiveDisorder≥0.75,

ObsessiveCompulsiveDisorder≥0.75 v ObsessiveCompulsiveDisorder>0.5,

ObsessiveCompulsiveDisorder>0.5 v ObsessiveCompulsiveDisorder≥0.5,

ObsessiveCompulsiveDisorder≥0.5 v ObsessiveCompulsiveDisorder>0.25,

ObsessiveCompulsiveDisorder>0.25 v ObsessiveCompulsiveDisorder≥0.25,

ObsessiveCompulsiveDisorder≥0.25 v ObsessiveCompulsiveDisorder>0,

SubstanceInducedAnxietyDisorder≥1 v SubstanceInducedAnxietyDisorder>0.75,

SubstanceInducedAnxietyDisorder>0.75 v SubstanceInducedAnxietyDisorder≥0.75,

SubstanceInducedAnxietyDisorder≥0.75 v SubstanceInducedAnxietyDisorder>0.5,

SubstanceInducedAnxietyDisorder>0.5 v SubstanceInducedAnxietyDisorder≥0.5,

SubstanceInducedAnxietyDisorder≥0.5 v SubstanceInducedAnxietyDisorder>0.25,

SubstanceInducedAnxietyDisorder>0.25 v SubstanceInducedAnxietyDisorder≥0.25,

SubstanceInducedAnxietyDisorder≥0.25 v SubstanceInducedAnxietyDisorder>0

}
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Finally, we add the reduction of every axiom in the fuzzy KB:

• κ(〈patient001 : ∃hasSerotoninLevel.HighLevel≤ 0.25〉) =
patient001 : ∀hasSerotoninLevel>0.25.HighLevel≤0.25

• κ(〈patient001 : ∃hasDisease.ObsessiveCompulsiveDisorder≥ 0.75〉) =
patient001 : ∃hasDisease≥0.75.ObsessiveCompulsiveDisorder≥0.75

• κ(〈SubstanceInducedAnxietyDisorderv AnxietyDisorder)≥ 0.75) =
SubstanceInducedAnxietyDisorder>0.25 v AnxietyDisorder≥0.75 ut

Example 12 Consider a travel agency, offering accommodation to the audience

of some language courses, aiming to represent the following knowledge:

• h1 is a hotel located at a German speaking country, being this axiom true

with at least degree 0.75,

• the price of h1 can be defined using a trapezoidal function t rap0,150(x;

0, 50,100, 150) with at least degree 0.5,

• h2 is not a hotel.

• h1 and h2 are close with a degree not greater than 0.5.

In order to represent the previous knowledge, K is defined as follows:

K = {
〈h1: Hotelu ∃isIn.{(germany, 1), (austria, 1), (switzerland, 0.67)} ≥ 0.75〉,
〈h1: ∃hasPrice.t rap0,150(x; 0, 50, 100,150)≥ 0.5〉,
〈h2: ¬Hotel≥ 1〉,
〈(h1, h2): isCloseTo≤ 0.5〉}

}

Then, we compute the number of truth values which have to be considered:

XK = {0,0.5, 1,0.75}, so NK = {0,0.25, 0.5,0.75, 1}.
In the next step, we create some new elements and some axioms preserving

their semantics.
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The new axioms due to the new concepts are:
T (NK) = {

Hotel≥1 v Hotel>0.75,

Hotel>0.75 v Hotel≥0.75,

Hotel≥0.75 v Hotel>0.5,

Hotel>0.5 v Hotel≥0.5,

Hotel≥0.5 v Hotel>0.25,

Hotel>0.25 v Hotel≥0.25,

Hotel≥0.25 v Hotel>0

}
The new axioms generated for the abstract roles are:

Ra(NK) = {
isIn≥1 v isIn>0.75,

isIn>0.75 v isIn≥0.75,

isIn≥0.75 v isIn>0.5,

isIn>0.5 v isIn≥0.5,

isIn≥0.5 v isIn>0.25,

isIn>0.25 v isIn≥0.25,

isIn≥0.25 v isIn>0,

isCloseTo≥1 v isCloseTo>0.75,

isCloseTo>0.75 v isCloseTo≥0.75,

isCloseTo≥0.75 v isCloseTo>0.5,

isCloseTo>0.5 v isCloseTo≥0.5,

isCloseTo≥0.5 v isCloseTo>0.25,

isCloseTo>0.25 v isCloseTo≥0.25,

isCloseTo≥0.25 v isCloseTo>0

}



6.7. Mapping Modified Fuzzy Concepts and Roles 127

Similarly, for the concrete role hasPrice we have:

Rc(NK) = {
hasPrice≥1 v hasPrice>0.75,

hasPrice>0.75 v hasPrice≥0.75,

hasPrice≥0.75 v hasPrice>0.5,

hasPrice>0.5 v hasPrice≥0.5,

hasPrice≥0.5 v hasPrice>0.25,

hasPrice>0.25 v hasPrice≥0.25,

hasPrice≥0.25 v hasPrice>0

}

Finally, we add the reduction of every axiom in the fuzzy ABox of K:

• κ(〈h1: Hotelu ∃isIn.{(germany, 1), (austria, 1), (switzerland, 0.67)}
≥ 0.75〉) = h1: Hotel≥0.75 u ∃isIn≥0.75.{germany, austria}.

• κ(〈h1: ∃hasPrice.t rap0,150(x; 0, 50, 100,150)≥ 0.5〉) = h1: ∃hasPrice≥0.5.

real[25,125].

• κ(〈h2: ¬Hotel≥ 1〉) = h2: ρ(¬Hotel,≥ 1) = h2: ¬Hotel>0.

• κ(〈(h1, h2): isCloseTo≤ 0.5〉) = (h1, h2):¬isCloseTo>0.5.

We also need to include the following definition of real[25,125]:

<owl : DataRange r d f : about="# r e a l [25 ,125]">
<owl2 : onDataRange r d f : r e s o u r c e="&xsd ; double "/>
<owl2 : m i n I n c l u s i v e r d f : da ta type="&xsd ; double ">25</owl2 : m in In c l u s i v e>
<owl2 : max In c lu s i v e r d f : da ta type="&xsd ; double ">125</owl2 : max Inc lu s i v e>

</owl : DataRange>
ut

6.7 Mapping Modified Fuzzy Concepts and Roles

In this section we will show how to extend our reduction in order to allow

concept and role modifiers in the language. We will restrict ourselves to the

triangular modifier and the linear modifier (see Chapter 2).

The first thing to be kept in mind is that it is no longer enough to consider

the degrees in NK. Consider a fuzzy KB with one assertion 〈a : mod(C)≥ γ〉,
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where the modifier mod is defined as in Figure 5.2 (a). We can deduce that

〈a : C ≥ t1〉 and 〈a : C ≤ t2〉, so we should also consider the degree t1, t2

in NK. But this is not enough, since we might have a concept of the form

mod(mod(mod(. . . mod(C)) . . . )).

Our solution to this problem is to restrict the modifiers to those such that

its membership function verifies the following property:

∀γ ∈ NK, fmod(γ) ∈ NK

Let x1 ∈ [0, b] and x2 ∈ [b, 1] be those numbers such that fle f t(x1; t1, t2,

t3) = γ and fri ght(x2; t1, t2, t3) = γ respectively, for a triangular modifier

mTri. Note that x1 does not exist if γ < t1, and that x2 does not exist if

γ > t2. The reduction of modified concepts depend on the values of the

parameters of the modifier, as Table 6.5 shows.

In the case of role modifiers, we only allow linear modifiers, because

triangular modifiers would need to use role conjunction, role disjunction

and expressions of the form ρ(R,Cγ) outside the ABox, which are not part

of crisp SROIQ(D).
On the other hand, linear modifiers are reduced as:

ρ(mLin(C),./ γ) = ρ(C ,./ x l)
ρ(mLin(R),./ γ) = ρ(R,./ x l)

with x l being that number such that fmLin(x l; l)(l in) = γ.

Example 13 Assume a fuzzy KB such that NK = {0,0.1, 0.2,0.3, 0.4,0.5, 0.6,

0.7,0.8, 0.9,1}. Let us consider the reduction of the axiom a : around(C)≥ 0.8,

where around is a triangular modifier defined as follows: faround(x; 0.6, 0.4, 0.4).

Firstly, we verify that indeed ∀γ ∈ NK, faround(γ) ∈ NK:

• faround(0) = 0.6 ∈ NK,

• faround(0.1) = 0.7 ∈ NK,

• faround(0.2) = 0.8 ∈ NK,

• faround(0.3) = 0.9 ∈ NK,

• faround(0.4) = 1 ∈ NK,
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Table 6.5: Reduction of modified concepts.

Reduction of ρ(mTri(C),≥ γ)
if (α > t1) and (α > t3) then ρ(C ,≥ x1)uρ(C ,≤ x2)
if (α > t1) and (α≤ t3) then ρ(C ,≥ x1)
if (α≤ t1) and (α > t3) then ρ(C ,≤ x2)
if (α≤ t1) and (α≤ t3) then >

Reduction of ρ(mTri(C),> γ)
if (β ≥ t1) and (β ≥ t3) then ρ(C ,> x1)uρ(C ,< x2)
if (β ≥ t1) and (β < t3) then ρ(C ,> x1)
if (β < t1) and (β ≥ t3) then ρ(C ,< x2)
if (β < t1) and (β < t3) then >

Reduction of ρ(mTri(C),≤ γ)
if (β ≥ t1) and (β ≥ t3) then ρ(C ,≤ x1)tρ(C ,≥ x2)
if (β ≥ t1) and (β < t3) then ρ(C ,≤ x1)
if (β < t1) and (β ≥ t3) then ρ(C ,≥ x2)
if (β < t1) and (β < t3) then ⊥

Reduction of ρ(mTri(C),< γ)
if (α > t1) and (α > t3) then ρ(C ,≥ x1)tρ(C ,≤ x2)
if (α > t1) and (α≤ t3) then ρ(C ,< x1)
if (α≤ t1) and (α > t3) then ρ(C ,> x2)
if (α≤ t1) and (α≤ t3) then ⊥

• faround(0.5) = 0.9 ∈ NK,

• faround(0.6) = 0.8 ∈ NK,

• faround(0.7) = 0.7 ∈ NK,

• faround(0.8) = 0.6 ∈ NK,

• faround(0.9) = 0.5 ∈ NK,

• faround(1) = 0.4 ∈ NK,

Now, x1, x2 are those points such that the modifier takes the value 0.8, so

x1 = 0.2 and x2 = 0.6. Hence, the reduction of the axiom is κ(〈a : around(C)≥
0.8〉) = a : ρ(C ,≥ x1)uρ(C ,≤ x2) = a : ρ(C ,≥ 0.2)uρ(C ,≤ 0.6).
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6.8 Properties of the Reduction

Firstly, it is worth to note that the reduction preserves simplicity of the roles

and regularity of the RIAs.

Correctness of the Reduction

The following theorem shows that the reduction preserves reasoning.

Theorem 2 A Z SROIQ(D) fuzzy KB K is satisfiable iff crisp(K) is satisfi-

able.

Proof. We will show the proof for the only-if direction. From K is satisfiable

we know that there is a fuzzy interpretation I = {∆I , ·I} with respect to a

fuzzy concrete domain D = 〈∆D,ΦD〉, where ΦD only contains the fuzzy con-

crete predicate d = t rapk1,k2
(x; a, b, c, d), satisfying every axiom in K. Now,

it is possible to build a (crisp) interpretation IC = {∆IC , ·IC} with respect to

a crisp concrete domain DC = 〈∆DC
,ΦDC
〉 as:

• ∆IC =∆I .

• ∆DC
=∆D.

• xIC = xI , for all x ∈∆I .

• vDC
= vD, for all v ∈∆D.

• AIC≥α = {x ∈∆
I | AI(x)≥ α}, for each A∈ A,α ∈ NK \ {0}.

• AIC>β = {x ∈∆
I | AI(x)> β}, for each A∈ A, β ∈ NK \ {1}.

• RICA≥α = {x , y ∈∆I ×∆I | RIA(x , y)≥ α}, for each RA ∈ R, α ∈ NK \ {0}.

• RICA>β = {x , y ∈∆I×∆I | RIA(x , y)> β}, for each RA ∈ R, β ∈ NK \{1}.

• TIC≥α = {x ∈∆
I , v ∈∆D | TI(x , v)≥ α}, for each T ∈ T, α ∈ NK \ {0}.

• TIC>β = {x ∈∆
I , v ∈∆D | TI(x , v)> β}, for each T ∈ T, β ∈ NK \ {1}.

• ΦDC
will contain some concrete predicates of the form real[a, b], real(a, b)

and union–real[k1, a, b, k2], with a, b, k1, k2 ∈ R.

Now, we will show that IC satisfies every axiom in crisp(K). For every

axiom τ ∈K, there are several cases:
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1. τ is an inequality assertion. Assume that I |= 〈a 6= b〉. Then, aI 6= bI .

By definition of IC, aIC 6= bIC , so IC |= 〈a 6= b〉 ⇔ IC |= κ(〈a 6= b〉).
The case of equality assertions is similar.

2. τ is a role assertion. Assume that I |= 〈(a, b) : R ./ γ〉. We show, by

induction on the structure of roles, that IC |= κ(〈(a, b):R ./ γ〉).

• Atomic role. Assume that I |= 〈(a, b) : RABγ〉. Then, RIA(a
I , bI)B

γ. By definition of IC, it follows that (aIC , bIC) ∈ RICABγ. By defini-

tion of ρ, (aIC , bIC) ∈ (ρ(RA,Bγ))IC⇔ IC |= (a, b) : ρ(RA,Bγ)⇔
IC |= κ(〈(a, b) : RA B γ〉).
Now assume that I |= 〈(a, b) : RA C γ〉. Then, RIA(a

I , bI) C γ.

By definition of IC, it follows that (aIC , bIC) 6∈ (RA¬Bγ)IC and

hence (aIC , bIC) ∈ (¬RA¬Bγ)IC . By definition of ρ, (aIC , bIC) ∈
(ρ(RA,Cγ))IC ⇔ IC |= (a, b) : ρ(RA,Cγ) ⇔ IC |= κ(〈(a, b) :

RA C γ〉).

• Concrete roles. This case is similar to that of atomic roles.

• Inverse role. Assume that I |= 〈(a, b) : R− ./ γ〉. Then, RI(bI , aI) ./
γ. By induction hypothesis, (bIC , aIC) ∈ ρ(R,./ γ)IC . Conse-

quently, (aIC , bIC) ∈ (ρ(R,./ γ)IC)− ⇔ IC |= (a, b) ∈ ρ(R,./

γ)−⇔ IC |= κ(〈(a, b) : R− ./ γ〉).

• Universal role. Assume that I |= 〈(a, b) : UBγ〉. Then, UI(aI , bI) =
1 ≥ γ. By definition of IC, it follows that (aIC , bIC) ∈ ∆IC ×∆IC

and consequently (aIC , bIC) ∈ UIC⇔ (aIC , bIC) ∈ (ρ(U ,Bγ))IC⇔
IC |= (a, b) : ρ(U ,Bγ) ⇔ IC |= κ(〈(a, b) : U B γ〉). The case

I |= 〈(a, b) : U C γ〉 is similar.

• Modified role. Assume that I |= 〈(a, b) : mLin(R)B γ〉 for a lin-

ear modifier mLin such that fmLin(x; l). Then, it follows that

fmLin(RI(aI , bI); l)B γ. Let x l ∈ [0,1] be such that fmLin(x l; l) =
γ. Then, it follows that RI(aI , bI)B x l . By induction hypothe-

sis, (aIC , bI) ∈ ρ(R,Bx l)IC ⇔ IC |= (a, b) : ρ(R,Bx l)⇔ IC |=
κ(〈(a, b) : mLin(R)B γ〉).
The case I |= 〈(a, b) : mLin(R)C γ〉 is similar, but now it follows

that RI(aI , bI)C x l so we end up with IC |= (a, b) : ρ(R,Cx l)⇔
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IC |= κ(〈(a, b) : mLin(R)C γ〉).

• Cut role. Assume that I |= 〈(a, b) : [R ≥ α]B γ〉. Then, it follows

that ([R ≥ α])I(aI , bI) = 1, which is the case if RI(aI , bI) ≥ α.

By induction hypothesis, (aIC , bIC) ∈ ρ(R,≥ α)IC⇔ IC |= (a, b) :

ρ(R,≥ α)⇔ IC |= (a, b) : ρ([R ≥ α],Bγ)⇔ IC |= κ((a, b) :

[R≥ α]B γ).
Now assume that I |= 〈(a, b) : [R ≥ α]C γ〉. Then, it follows that

([R ≥ α])I(aI , bI) = 0, which is the case if RI(aI , bI) < α. By

induction hypothesis, (aIC , bIC) ∈ ρ(R,< α)IC ⇔ IC |= (a, b) :

ρ(R,< α)⇔ IC |= (a, b) : ρ([R ≥ α],Cγ)⇔ IC |= κ((a, b) :

[R≥ α]C γ).

3. τ is a concept assertion. Assume that I |= 〈a : C ./ γ〉. We show, by

induction on the structure of concepts and roles, that IC |= κ(〈a : C ./

γ〉).

• Atomic concept. Assume that I |= 〈a : A B γ〉. Then, AI(aI) B
γ. By definition of IC, it follows that aIC : AICBγ. Consequently,

aIC ∈ (ρ(A,Bγ))IC ⇔ IC |= a : ρ(A,Bγ) ⇔ IC |= κ(〈a : A B

γ〉). Now assume that I |= 〈a : A C γ〉. Then, AI(aI) C γ. By

definition of IC, it follows that aIC 6∈ AIC¬Bγ ⇔ aIC ∈ ¬AIC¬Bγ ⇔
aIC ∈ (ρ(A,Cγ))IC⇔ IC |= a : ρ(A,Cγ)⇔ IC |= κ(〈a : AC γ〉).

• Top concept. Assume that I |= 〈a : > B γ〉. Then, >I(aI) B γ.

By definition of IC, it follows that aIC ∈ ∆IC = >. Consequently,

aIC ∈ (ρ(>,Bγ))IC⇔ IC |= a : ρ(>,Bγ)⇔ IC |= κ(〈a :>Bγ〉).
The case I |= 〈a : > C γ〉 is not possible. If I |= 〈a : > ≤ β〉
we have that 1 ≤ β , which is a contradiction with the restriction

β ∈ [0,1). If I |= 〈a : > < α〉 we have that 1 < α, which is a

contradiction with the restriction α ∈ (0, 1].

• Bottom concept. This case is similar to the previous one.

• Concept negation. Assume that I |= 〈a : ¬C ./ γ〉. Then, 1 −
CI(aI) ./ γ, so it follows that CI(aI) ./− 1 − γ. By induction

hypothesis, aIC ∈ ρ(C ,./− 1 − γ)IC ⇔ IC |= a ∈ ρ(C ,./− 1 −
γ)⇔ IC |= κ(〈a : ¬C ./ γ〉).
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• Concept conjunction. Assume that I |= 〈a : C u D B γ〉. Then,

min{CI(aI), DI(aI)}Bγ, so it follows that CI(aI)Bγ and DI(aI)B
γ. By induction hypothesis, aIC ∈ ρ(C ,Bγ)IC and aIC ∈ ρ(D,Bγ)IC .

Consequently, aIC ∈ (ρ(C ,Bγ) u ρ(D,Bγ))IC ⇔ aIC ∈ (ρ(C u
D,Bγ))IC⇔ IC |= a : ρ(C u D,Bγ)⇔ IC |= κ(〈a : C u D B γ〉).

In the case I |= 〈a : C u D C γ〉, it follows that CI(aI) C γ or

DI(aI)C γ. By induction hypothesis, aIC ∈ ρ(C ,Cγ)IC or aIC ∈
ρ(D,Cγ)IC . In this case, we end up with IC |= κ(〈a : C u D Cγ〉).

• Concept disjunction. It can be easily obtained using inter-definability

of conjunction and disjunction.

• Universal quantification. Assume that I |= 〈a : ∀R.C ≥ α〉. Then,

infb∈∆I max{1− RI(aI , b), CI(b)} ≥ α. Since this is true for the

infimum, an arbitrary individual b ∈ ∆I must satisfy RI(aI , b) ≤
1− α or CI(b) ≥ α. By induction hypothesis, (aIC , b) ∈ ρ(R,≤
1− α)IC or b ∈ ρ(C ,≥ α)IC for an arbitrary individual b ∈ ∆IC ,

which is equivalent to aIC ∈ (∀ρ(R,> 1 − α).ρ(C ,≥ α))IC ⇔
aIC ∈ (ρ(∀R.C ≥ α))IC⇔ IC |= a : (ρ(∀R.C ≥ α)⇔ IC |= κ(〈a :

∀R.C ,≥ α〉). The case > β is quite straightforward.

Now, assume that I |= 〈a : ∀R.C ≤ β〉. Then, infb∈∆I max{1 −
RI(aI , b), CI(b)} ≤ β . P. Hájek showed for Łukasiewicz logic

(which is a more general case of Zadeh logic), that if there is a

model, then there is also a witnessed model [120] so we can as-

sume that, if this is true for the infimum, there exists an individual

b satisfying RI(aI , b) ≥ 1− β and CI(b) ≤ β . By induction hy-

pothesis, (aIC , b) ∈ (ρ(R,≥ 1− β))IC and b ∈ (ρ(C ,≤ β))IC for

some individual b ∈∆IC . In this case, we end up with IC |= κ(〈a :

∀R.C ,≤ β〉). The case < α is quite straightforward.

• Existential quantification. Use inter-definability of quantifiers.

• Fuzzy nominals. Assume that I |= 〈a : {α1/o1, . . . ,αn/on} B γ〉.
Let oi1, . . . , oik be such that αi j B γ. Then, sup{αi1 , . . . ,αik}B γ,

with aI ∈ {oi1 , . . . , oik}
I . By construction of IC, it holds that aIC ∈

{oi1 , . . . , oik}
IC ⇔ aIC ∈ ρ({α1/o1, . . . ,αn/on}IC ,Bγ)⇔ IC |= a :
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ρ({α1/o1, . . . ,αn/on}, Bγ)〉)⇔ IC |= κ(〈a : {α1/o1, . . . ,αn/on}B
γ〉). The case Cγ is quite straightforward.

• At-least qualified number restriction. Assume that I |= 〈a : (≥
m S.C)≥ α〉. Then, supb1,...,bm∈∆I [(minm

i=1 {S
I(aI , bi)⊗CI(bi)})

⊗

(⊗ j<k{b j 6= bk})] ≥ α. Note that (⊗ j<k{b j 6= bk}) can be ei-

ther 0 or 1. If it is 0, then we have that supb1,...,bm∈∆I [(minm
i=1

{SI(aI , bi)⊗CI(bi)})
⊗

0] = 0≥ α, which is not possible because

by definition α ∈ (0, 1]. Hence, (⊗ j<k{b j 6= bk}) = 1 and conse-

quently supb1,...,bm∈∆I[(minm
i=1 {S

I(aI , bi) ⊗CI(bi)})
⊗

1]. This is

equivalent to supb1,...,bm∈∆I(minm
i=1{S

I(aI , bi)⊗CI(bi)})≥ α. This

implies that there exist m different bi ∈IC such that minm
i=1{S

I(aI ,

bi)⊗ CI(bi)} and hence SI(aI , bi) ≥ α and CI(bi) ≥ α, for 1 ≤
i ≤ m. By induction hypothesis, (aIC , bi) ∈ (ρ(S,≥ α))IC and

bi ∈ (ρ(C ,≥ α))IC , for 1 ≤ i ≤ m. Consequently, aIC ∈ (≥
m ρ(S,≥ α).ρ(C ,≥ α))IC ⇔ aIC ∈ ρ(≥ m S.C ,≥ α)IC ⇔ IC |=
a : ρ(≥ m S.C ,≥ α)⇔ IC |= κ(〈a : (≥ m S.C) ≥ α〉). The case

> β is quite similar.

Now assume that I |= 〈a : (≥ m S.C)≤ β〉. In this case, it follows

that supb1,...,bm∈∆I (minm
i=1 {S

I(aIC , bi) ⊗ CI(bi)}) ≤ β . Conse-

quently, there cannot exist m different individuals bi with (minm
i=1

{SI(aIC , bi)⊗ CI(bi)}) > β , so we end up with IC |= κ(〈a : (≥
m S.C)≤ β〉). The case < α is quite similar.

• At-most qualified number restriction. It can be easily obtained us-

ing inter-definability of qualified number restrictions.

• Local reflexivity. Assume that I |= 〈a : ∃S.Sel f B γ〉. Then,

SI(aI , aI)Bγ. By induction hypothesis, (aIC , aIC) ∈ ρ(S,Bγ)IC⇔
IC |= (a, a) : ρ(S,Bγ)⇔ IC |= κ(〈a : ∃S.Sel f Bγ〉). Now assume

that I |= 〈a : ∃S.Sel f C γ〉. Then, SI(aI , aI) C γ. By induc-

tion hypothesis, (aIC , aIC) ∈ ρ(S,Cγ)IC . Hence, it follows that

(aIC , aIC) 6∈ (ρ(S,¬C γ))IC ⇔ (aIC , aIC) ∈ ¬(ρ(S,¬C γ))IC ⇔
aIC ∈ (ρ(∃S.Sel f ,Cγ))IC ⇔ IC |= a : ρ(∃S.Sel f ,Cγ)⇔ IC |=
κ(〈a : ∃S.Sel f ,Cγ〉).
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• Modified concept. Firstly, let us consider the case of a triangular

modifier mTri such that fmTri(x; t1, t2, t3). Assume that 〈I |= a :

mTri(C) ≥ α〉. Then, it follows that fmTri(CI(aI; t1, t2, t3) ≥ α.

Let x1 ∈ [0, t2] and x2 ∈ [t2, 1] be those numbers such that

fle f t(x1; t1, t2, t3) = α and fri ght(x2; t1, t2, t3) = α. There are sev-

eral options now, depending on the value of α with respect to t1

and t3.

a) If (α > t1) and (α > t3), then CI(aI) is lower bounded by

x1 (since fle f t(x1; t1, t2, t3) = α and fmTri(CI(aI; t1, t2, t3) ≥
α) and upper bounded by x2 (since fri ght(x2; t1, t2, t3) = α
and fmTri(CI(aI; t1, t2, t3) ≥ α). That is, CI(aI) ≥ x1 and

CI(aI) ≤ x2. By induction hypothesis, aIC ∈ ρ(C ,≥ x1)IC

and aIC ∈ ρ(C ,≤ x2)IC . It follows that aIC ∈ ρ(C ,≥ x1)IC u
ρ(C ,≤ x2)IC ⇔ IC |= a : ρ(C ,≥ x1) u ρ(C ,≤ x2)⇔ IC |=
κ(〈a : mTri(C)≥ α〉).

b) If (α > t1) and (α≤ t3), then CI(aI) is lower bounded by x1

as in the previous case, but x2 does not introduce an upper

bounded now: as noted in Section 6.7, fmTri(1) = t3, and

since α ≤ t3 and fri ght is a strictly decreasing function, the

possible upper bound for CI(aI)would be greater than 1, but

we already know that CI(aI) ∈ [0, 1]. That is, CI(aI) ≥ x1.

By induction hypothesis, aIC ∈ ρ(C ,≥ x1)IC ⇔ IC |= a :

ρ(C ,≥ x1)⇔ IC |= κ(〈a : mTri(C)≥ α〉).

c) The case (α ≤ t1) and (α > t3) is similar, but now CI(aI) is

upper bounded by x2 and not lower bounded. Now, CI(aI)≤
x2. By induction hypothesis, aIC ∈ ρ(C ,≤ x2)IC ⇔ IC |= a :

ρ(C ,≤ x2)⇔ IC |= κ(〈a : mTri(C)≥ α〉).

d) Finally, in the case (α≤ t1) and (α≤ t3) there are no bounds,

so we only now that CI(aI) ∈ [0, 1] and hence we only know

that >I(aI). By induction hypothesis, aIC ∈ >IC⇔ IC |= a :

>⇔ IC |= κ(〈a : mTri(C)≥ α〉).

The other cases 〈I |= a : mTri(C) ./ γ〉 are similar.
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Now, let us consider the case of a triangular modifier mLin such

that fmLin(x; l). Assume that 〈I |= a : mLin(C) B γ〉. Then,

it follows that fmLin(CI(aI; l) B γ. Let x l ∈ [0, 1] be such that

fmLin(x l; l) = γ. Then, it follows that CI(aI)B x l . By induction

hypothesis, aIC ∈ ρ(C ,Bx l)IC ⇔ IC |= a : ρ(C ,Bx l)⇔ IC |=
κ(〈a : mLin(C)B γ〉).

The case 〈I |= a : mLin(C)C γ〉 is similar, but now it follows that

CI(aI)C x l so we end up with IC |= a : ρ(C ,Cx l)⇔ IC |= κ(〈a :

mLin(C)C γ〉).

• Cut concept. Assume that 〈I |= a : [C ≥ α]B γ〉. Then, it follows

that ([C ≥ α])I(aI) = 1, which is the case if CI(aI) ≥ α. By

induction hypothesis, aIC ∈ ρ(C ,≥ α)IC ⇔ IC |= a : ρ(C ,≥
α)⇔ IC |= a : ρ([C ≥ α],Bγ). The case I |= a : [C ≤ α] ≤ γ〉 is

similar.

Now assume that 〈I |= a : [C ≥ β]C γ〉. Then, it follows that

([C ≥ β])I(aI) = 0, which is the case if CI(aI)< β . By induction

hypothesis, aIC ∈ ρ(C ,< β)IC⇔ IC |= a : ρ(C ,< β)⇔ IC |= a :

ρ([C ≥ β],Cγ). The case I |= a : [C ≤ β]≥ γ〉 is similar.

• Concrete concept constructs. Concrete concept constructs are sim-

ilar to their abstract versions. The only point which deserves

a special comment is the existence of some expressions of the

form vi : dD ./ γ, with d = t rapk1,k2
(x; a, b, c, d). Assume that

vi : dD > β . In order to guarantee that the trapezoidal func-

tion takes a value xvi
which is greater or equal than β , we have

that xvi
> a + β(b − a) and xvi

< d − β(d − c), which is equiv-

alent to say that vi ∈ real(a + β(b − a), d − β(d − c)). The

case ≥ α is similar, but using a customized datatype of the form

real[x , y] instead of real(x , y). Now, assume that vi : dD ≤ β .

In this case we have that either xvi
≤ k1, a + β(b − a) or xvi

≥
d − β(d − c), k2], which is equivalent to say that vi ∈ union–

real[k1, a + β(b − a), d − β(d − c), k2]. The case < α is similar,

using ε to get the strict inequality.
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4. τ is a fuzzy GCI. Assume that I |= 〈a : C v D ≥ α〉. Then, infa∈∆I max{1
−CI(a), DI(a)} ≥ α. As this is true for the infimum, every individual

a of the domain must satisfy that condition, which is equivalent to sat-

isfy 〈CI(a) ≤ 1 − α〉 or 〈DI(a) ≥ α〉. By induction, it follows that

∀a ∈ ∆IC , a ∈ (ρ(C ,≤ 1−α))IC or a ∈ (ρ(D,≥ α))IC⇔ IC |= ρ(C ,>

1− α) v ρ(D,≥ α)⇔ IC |= κ(〈C v D ≥ α〉). Similar arguments can

be used for 〈C v D > β〉.

5. τ is a fuzzy RIA. Assume that I |= 〈R1 . . . Rm v R ≥ α〉. The case is

similar to the previous one, with the difference that there appears a

minimum i.e., min{RI1(b1, b2), . . . , RIn(bn, bn+1)} ⇒ {RI(b1, bn+1) ≥ α.

As a consequence, the left side of the crisp RIAs will contain ρ(R1,>

1−α) . . .ρ(Rm,> 1−α) in the left side, instead of ρ(C ,> 1−α). The

case for > β is similar.

6. τ is a transitive role axiom. Assume that I |= trans(R). Then, ∀x , y ∈
∆I ×∆I , RI(x , y) ≥ supz∈∆I min{RI(x , z), RI(z, y)}. It is easy to see

that this implies that κ(τ) holds i.e. R≥α, R>β are transitive, for each

α,β ∈ NK. For example, assume that RI(x , z)≥ γ and RI(z, y)≥ γ for

some individual z. By transitivity, RI(x , y) ≥ γ holds. By induction,

(xIC , zIC) ∈ RIC≥γ, (z
IC , yIC) ∈ RIC≥γ and (xIC , yIC) ∈ RIC≥γ. Since ∀x , y, z ∈

∆I , (xIC , zIC) ∈ RIC≥γ and (zIC , yIC) ∈ RIC≥γ imply (xIC , yIC) ∈ RIC≥γ, then

R≥γ is transitive.

7. τ is a role disjoint axiom. Assume that I |= dis(S1, S2). Then, ∀x , y ∈
∆I , SI1 (x , y) = 0 or SI2 (x , y) = 0. By induction, ∀x , y ∈ ∆IC , (x ,

y) ∈ (ρ(S1,≤ 0))IC or (x , y) ∈ (ρ(S2,≤ 0))IC⇔∀x , y ∈∆IC , (x , y) 6∈
(ρ(S1,> 0))IC or (x , y) 6∈ (ρ(S2,> 0))IC ⇔ (ρ(S1,> 0))IC ∩ (ρ(S2,>

0))IC = ;⇔ IC |= (dis(ρ(S1,> 0),ρ(S2,> 0)))⇔ IC |= κ(dis(S1, S2)).
The case τ= dis(T1, T2) is similar.

8. τ is a reflexive role axiom. Assume that I |= ref(R). Then, ∀x ∈
∆I , RI(x , x) = 1. By induction, ∀x ∈ ∆IC , (x , x) ∈ (ρ(R,≥ 1))IC ⇔
∀x ∈∆IC ,IC |= (x , x) : ρ(R,≥ 1)⇔ IC |= κ(ref(R)).

9. τ is an irreflexive role axiom. Assume that I |= irr(S). Then, ∀x ∈
∆I , SI(x , x) = 0. By induction, ∀x ∈ ∆IC , (x , x) ∈ (ρ(S,≤ 0))IC ⇔
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∀x ∈ ∆IC , (x , x) 6∈ (ρ(S,> 0))IC ⇔ IC |= irr(ρ(S,> 0))⇔ IC |=
κ(irr(S)).

10. τ is a symmetry role axiom. Assume that I |= sym(R). Then, ∀x , y ∈
∆I ×∆I , RI(x , y) = RI(y, x). It is easy to see that this implies that

κ(τ) holds i.e. R≥α, R>β are symmetric, for each α,β ∈ NK. For ex-

ample, assume that RI(x , y) ≥ γ. By symmetry, RI(y, x) ≥ γ holds.

By induction, (xIC , yIC) ∈ RIC≥γ and (yIC , xIC) ∈ RIC≥γ. Since ∀x , y ∈
∆I , (xIC , yIC) ∈ RIC≥γ implies (yIC , xIC) ∈ RIC≥γ, then R≥γ is symmetric.

11. τ is an asymmetry role axiom. Assume that I |= asy(S). Then, ∀x , y ∈
∆I , if SI(x , y) > 0 then SI(y, x) = 0. By induction, ∀x , y ∈ ∆IC , if

(x , y) ∈ (ρ(S,> 0))IC then (y, x) ∈ (ρ(S,≤ 0))IC ⇔ ∀x , y ∈ ∆IC ,

if (x , y) ∈ (ρ(S,> 0))IC then (y, x) 6∈ (ρ(S,> 0))IC . Consequently,

IC |= κ(asy(ρ(S,> 0))).

The proof for the converse can be obtained using similar arguments: from

a classical interpretation we build a fuzzy interpretation. There is only one

point which is worth mentioning. If crisp(K) is satisfiable, it is not possible

(due to the axioms in T (NK)) to have an individual a such that aIC ∈ (ABγ1
)IC

and aIC 6∈ (ABγ2
)IC with γ2 < γ1, so for every individual a we can compute

the maximum value α such that a : A≥α holds, or the maximum value β

such that a : A>β holds, and use these values in the construction of the fuzzy

interpretation. The case for roles in Ra(NK) and Rc(NK) is similar. ut

Modularity

An interesting property of the procedure is that, under certain conditions

given by Theorem 3, the reduction of an ontology can be reused when adding

new axioms, and only the reduction of the new axioms has to be included.

From an implementation point of view, this property makes possible to com-

pute the reduction off-line and update it incrementally. We note that the

reduction of the new axioms may include the definitions of new customized

datatypes in case concrete concepts appear in them.

Theorem 3 Let K be a Z SROIQ(D) fuzzy knowledge base involving a set

of fuzzy atomic roles A, a set of a set of atomic roles Ra and a set of concrete
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roles Rc, let NK be the set of relevant degrees to be considered and let τ be a

Z SROIQ(D) axiom such that:

1. for every atomic concept A which appears in τ, A∈ A,

2. for every atomic role RA which appears in τ, RA ∈ Ra,

3. for every concrete role T which appears in τ, T ∈ Rc,

4. if γ appears in τ, then γ ∈ NK.

Then, the reduction of the union of the KB and the axiom is equivalent to the

union of the reduction of K and the reduction of τ:

cr isp(K∪τ) = crisp(K)∪ κ(τ)

Proof. Trivial from the following observations:

• Every axiom is reduced to a combination of new crisp elements.

• New elements depend on fuzzy atomic concepts, fuzzy roles and the

membership degrees appearing in the fuzzy KB.

• τ does not introduce atomic concepts, atomic abstract roles, concrete

roles nor new membership degrees with respect to the fuzzy KB.

• Every axiom is mapped independently from the others.
ut

The theorem assumes that the set of possible degrees in the language

is restricted and that the basic vocabulary (concepts and roles) is fully ex-

pressed in the ontology and does not change often, which are reasonable

assumptions because ontologies do not usually change once that their de-

velopment has finished, and because it has been shown that the set of the

degrees which must be considered for any reasoning task is NK [302].
Consequently, even in case of an entailment test, it makes sense to use a

degree in NK. Regarding the computation of any greatest lower bound, we

recall that it has been shown that, in the worst case, it requires to compute

log|NK| satisfiability tests [299], which is another argument to fix the set of

allowed degrees.
This property is very useful when it is necessary to add a new axiom to

an ontology in order to perform some reasoning task.
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Example 14 Suppose that we want to classify a fuzzy ontology O i.e., to com-

pute a fuzzy hierarchy for the concepts. Then, for every pair of concepts C , D ∈
O we have to compute the degree of subsumption of C v D w.r.t. O. Recall that

we can reduce this to a (un)satisfiability test. Using this property, while C v D

has to be reduced for every pair of concepts (generating one new axiom every

time), O only has to be reduced the first time. ut

Now we will consider what to do if the conditions of Theorem 3 are not

satisfied.

• If τ introduces a new atomic concept, T (N f K) needs to be recomputed.

• If τ introduces a new atomic abstract role, Ra(N f K) needs to be recom-

puted.

• If τ introduces a new concrete role, Rc(N f K) needs to be recomputed.

• If τ introduces a new degree of truth, XK changes. As a consequence,

NK may change. If NK changes, we need to recompute:

– T (N f K),

– Ra(N f K),

– Rc(N f K),

– The reduction of every transitive role axiom in K.

– The reduction of every symmetric role axiom in K.

Complexity

Definition 56 Depth of a concept expression. The depth of a concept expres-

sion is inductively defined as follows:

• depth(A) = depth(>) = depth(⊥) = depth({α1/o1, . . .αm/om}) =
depth(∃S. Sel f ) = 1,

• depth(∃R.C) = depth(∀R.C) = depth(¬C) = depth(≥ m S.C) =
depth(≤ n S.C) = depth( mod(C)) = depth(C ≥ α]) = depth([C ≤
β]) = depth(C),

• depth(C u D) = depth(C t D) = max{depth(C), depth(D)},
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It is easy to see that:

• Every fuzzy concept expression of depth k generates a crisp concept

expression of depth k.

• Most of the axioms of the fuzzy KB generate one crisp axiom, but some

of them (transitive and symmetric role axioms) generate several (2 ·
(|NK| − 1)) crisp axioms.

Recall that in order to preserve the semantics of the new elements, we

are also introducing some new crisp axioms.

Now, the size of the resulting KB is O(|K|2). The ABox is actually linear

while the TBox and the RBox are both quadratic:

• |NK| is linearly bounded by |K|: |NK| ≤ |A|+ |T |+ |R|,

• |κ(A)|= |A|,

• |T (NK)|= (2 · (|NK| − 1)− 1) · |A|,

• |κ(T )|= |T |,

• |Ra(NK)|= (2 · (|NK| − 1)− 1) · |R|,

• |Rc(NK)|= (2 · (|NK| − 1)− 1) · |T|,

• |κ(R)| ≤ 2 · (|NK| − 1) · |R|.

The resulting KB is quadratic because it depends on the number of rele-

vant degrees |NK|. An immediate solution to obtain a KB which is linear in

complexity is to fix the number of degrees which can appear in the knowl-

edge base. From a practical point of view, in most of the applications it is

sufficient to consider a small number of degrees.

Example 15 Let NK = {0,0.25, 0.5,0.75, 1}, i.e., α ∈ {0.25, 0.5,0.75, 1} and

β ∈ {0,0.25, 0.5,0.75}. Now, the size of the resulting KB is linear since now:

• |T (NK)|= 7 · |A|,

• |Ra(NK)|= 7 · |R|,

• |Rc(NK)|= 7 · |T|,

• |κ(R)| ≤ 8 · |R|. ut
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6.9 Optimizations

Reducing the Number of New Elements

Previous works [302, 26] use two more atomic concepts A≤β , A<α and the

following additional axioms (for 2≤ k ≤ |NK|):

A<γk
v A≤γk

, A≤γi
v A<γi+1

A≥γk
u A<γk

v ⊥, A>γi
u A≤γi

v ⊥
> v A≥γk

t A<γk
, > v A>γi

t A≤γi

In contrast to this, we use ¬A>γk
rather than A≤γk

and ¬A≥γk
instead of

A<γk
. The six axioms above follow immediately from the semantics of the

crisp concepts as Proposition 8 shows:

Proposition 8 If A≥γi+1
v A>γi

and A>γk
v A≥γk

hold, then the followings ax-

ioms are verified:

(1) ¬A≥γk
v ¬A>γk

(2) ¬A>γi
v ¬A≥γi+1

(3) A≥γk
u¬A≥γk

v⊥ (4) A>γi
u¬A>γi

v⊥
(5) >v A≥γk

t¬A≥γk
(6) >v A>γi

t¬A>γi

Proof.

• (1) and (2) derive from the fact that in crisp DLs Av B ≡ ¬B v ¬A.

• (3) and (4) come from the law of contradiction Au¬Av⊥.

• (5) and (6) derive from the law of excluded middle >v At¬A. ut

As a minor comment, those works also introduce unnecessarily a couple

of elements A≥0 and R≥0, as well as the axioms A>0 v A≥0, R>0 v R≥0 [302,

26].

In the case of roles, this optimization is essential in order to represent

some role constructors of SROIQ(D) (negated role assertions and self re-

flexivity concepts). Actually, it is not possible to use a role of the form RA≤γk

rather than ¬RA>γk
and RA<γk

instead of ¬RA≥γk
. The reason is that the logic

does not make possible to express the corresponding version of the axioms
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(3), (4), (5) and (6), which would be necessary to guarantee the correctness

of the reduction, because the role conjunction and the bottom role are not

allowed, and the universal role cannot appear in RIAs. On the contrary, we

have represented expressions of the form ρ(RA,Cγ) using ¬RA¬Cγ.

Without this optimization, the size of T (NK) is:

|T (NK)|= 8 · (|NK| − 1) · |A|

Optimizing Irreflexive Role Axioms

We note that [281] proposes the following reduction for irreflexive role ax-

ioms:

κ(ir r(R)) =
⋃

γ∈NK\{0}

ir r(ρ(R,≥ γ))
⋃

γ∈NK
ir r(ρ(R,> γ))

However, this reduction could be optimized to κ(ir r(R)) = ir r(ρ(R,>

0)). Proposition 9 shows that the other axioms follow immediately.

Proposition 9 If R1 v R2 and ir r(R2), then it holds that ir r(R1).

Proof. Assume that (x , y) ∈ RI1 . Since R1 v R2 is satisfied, then (x , y) ∈ RI2
for some interpretation I. Since ir r(R2), then it holds that (y, x) 6∈ RI2 . But

the role inclusion also implies that (y, x) 6∈ RI1 . For every pair of individuals,

we have shown that (x , y) ∈ RI1 implies (y, x) 6∈ RI1 . Hence, ir r(R1) holds.

ut

Allowing Crisp Concepts and Roles

It is easy to see that the complexity of the crisp representation is caused

by fuzzy atomic concepts and roles. Fortunately, in real applications not all

concepts and roles will be fuzzy. Therefore, an interesting optimization is

enabling to specify that an atomic concept (resp. an atomic abstract role, a

concrete role) is crisp.

For instance, suppose that A is a fuzzy atomic concept. Then, we need

|NK| − 1 concepts of the form A≥α and another |NK| − 1 concepts of the
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form A>β to represent it, as well as 2(|NK| − 1)− 1 axioms to preserve their

semantics. On the other hand, if A is declared to be crisp, we just need one

crisp concept Acrisp to represent it and no new axioms.

The case for atomic abstract roles Ra (resp. concrete roles T) is similar,

only one crisp element RA crisp (resp. Tcrisp) is needed.

Handling these crisp elements is very easy, because we only need to con-

sider the following extension of ρ for those elements asserted to be inter-

preted as crisp:

x y ρ(x , y)

A Bγ Acrisp

A Cγ ¬Acrisp

RA Bγ RA crisp

RA Cγ ¬RA crisp

T Bγ Tcrisp

T Cγ ¬Tcrisp

Let Fc, Fra
, Frc

be the set of fuzzy concepts, abstract roles and concrete

roles, respectively (that is, we exclude the crisp ones). Now the complexity

is reduced:

• |T (NK)|= (2 · (|NK| − 1)− 1) · |Fc|,

• |Ra(NK)|= (2 · (|NK| − 1)− 1) · |Fra
|,

• |Rc(NK)|= (2 · (|NK| − 1)− 1) · |Frc
|.

Of course, this optimization requires some manual intervention: the on-

tology developer needs to identify which elements can be interpreted as crisp.

Reasoning Ignoring Superfluous Elements

Our reduction is optimized to promote reusing under the conditions shown

in Theorem 3. However, before performing a satisfiability test, some axioms

do not need to be considered. These axioms cannot be removed from the

crisp KB, because they may be necessary when new axioms are added to it,

but they are superfluous for computing the satisfiability of the current crisp

KB.
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Definition 57 Superfluous element for reasoning in crisp(K). Let crisp(K)
= 〈κ(A), T (NK)∪ κ(T ), Ra(NK)∪ Rc(NK)∪ κ(R)〉.

• An atomic concept A is superfluous for reasoning in crisp(K) if A ∈
T (NK) but A 6∈ crisp(K) \ T (NK) (i.e., it does not appear in the other

parts of crisp(K)).

• An atomic abstract role RA is superfluous for reasoning in crisp(K) if

RA ∈ Ra(NK) but RA 6∈ crisp(K) \ Ra(NK) (i.e., it does not appear in the

other parts of crisp(K)).

• A concrete role T is superfluous for reasoning in crisp(K) if T ∈ Rc(NK)
but T 6∈ crisp(K) \ Rc(NK) (i.e., it does not appear in the other parts of

crisp(K)).

The intuition here is that superfluous concepts and roles cannot cause

a contradiction. But please note that if additional axioms are added to K,

crisp(K) will be different and superfluous concept and roles may not be

superfluous any more.

Let 1≤ i ≤ |NK| − 1, 2≤ j ≤ |NK| − 1 and let v∗ be the transitive closure

of v. Before reasoning with crisp(K) we replace some parts of it with other

such that they do not contain any superfluous concept or role. More precisely,

we proceed as follows:

1. Replace T (NK) with T ′(NK), which is defined as the smallest termi-

nology containing, for each A1, A2 ∈ T (NK) such that A1, A2 are not

superfluous and A1 v∗ A2, the axiom A1 v A2.

2. Replace Ra(NK) with R′a(N
K), which is defined as the smallest termi-

nology containing, for each R1, R2 ∈ Ra(NK) such that R1, R2 are not

superfluous and R1 v∗ R2, the axiom R1 v R2.

3. Replace Rc(NK) with R′c(N
K), which is defined as the smallest termi-

nology containing, for each T1, T2 ∈ Rc(NK) such that T1, T2 are not

superfluous and T1 v∗ T2, the axiom T1 v T2.

Note that T ′(NK), R′a(N
K) and R′c(N

K) are the versions of T (NK), Ra(NK)
and Rc(NK) respectively, but including only non superfluous concepts, ab-

stract roles and concrete roles.
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A very interesting case is when there do not exist two atomic non super-

fluous concepts A1, A2 in T (NK) such that A1 v∗ A2, so T ′(NK) is empty. A

very common situation is that, for a non superfluous concept A1 there is no

A2 in T (NK) such that it is not superfluous and A1 v∗ A2. The case for roles

is similar.

Proposition 10 〈κ(A), T (NK)∪κ(T ), Ra(NK)∪Rc(NK)∪κ(R)〉 is satisfiable

iff cr isp(K) = 〈κ(A), T ′(NK)∪ κ(T ), R′(NK)∪ R′c(N
K)∪ κ(R)〉 is satisfiable.

Proof. Consider a superfluous atomic concept A. By definition, A ∈ T (NK)
and A 6∈ crisp(K)\T (NK). A 6∈ crisp(K)\T (NK) implies that it cannot cause

a contradiction with crisp(K) \ T (NK), so it does not affect the satisfiability.

Moreover, from the structure of T (NK), it follows that it cannot cause a

contradiction in T (NK), so it cannot cause it with crisp(K). But T ′(NK)
is a modification of T (NK) including only non superfluous concepts, so the

satisfiability of the full fuzzy KB is preserved. The case of roles is similar. ut

Finally, a couple of examples will illustrate how the optimization works.

Example 16 Consider Example 12 again. The procedure has created atomic

concepts Hotel≥1, Hotel>0.75, Hotel≥0.75, Hotel>0.5, Hotel≥0.5, Hotel>0.25, Hotel≥0.25

and Hotel>0. However, if we consider crisp(K) \ TK, it only contains Hotel≥0.75

and Hotel>0. Hence, the other concepts are superfluous. Since it follows that

Hotel≥0.75 v∗ Hotel>0, we may replace T (NK) with T ′(NK) = {Hotel≥0.75 v
Hotel>0}. ut

Example 17 Consider Example 11 again. If we consider crisp(K)\TK, it only

contains atomic concepts HighLevel≤0.25, ObsessiveCompulsiveDisorder≥0.75,

SubstanceInducedAnxietyDisorder>0.25, AnxietyDisorder≥0.75. The other concepts

are hence superfluous, so we may replace T (NK) with T ′(NK) = ;. Note that

the set is empty, because there are no atomic non superfluous concepts such that

they are subclasses or superclasses of any of the non superfluous concepts.

In a similar way, the KB without RKa only contains hasSerotoninLevel>0.25

and hasDisease≥0.75 only. Hence, the other roles are superfluous, so we may

replace Ra(NK) with R′a(N
K) = ;.
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But please note that if additional axioms are added to K, crisp(K) will be

different and previous superfluous concept and roles may not be superfluous any

more. For example, if we want to check if K∪〈disorder : AnxietyDisorder ≥ 0.5〉
is satisfiable, then the concept AnxietyDisorder≥0.5 is no longer superfluous. Now,

T ′(NK) = {AnxietyDisorder≥0.75 v AnxietyDisorder≥0.5}.
ut

6.10 Reasoning with a Possibilistic Extension

B. Hollunder showed that reasoning within a possibilistic DL can be reduced

to reasoning within a classical DL [130]. He used a result which applies to

every fragment of first-order logic such that classical entailment is decidable

for it. Let KB be a possibilistic knowledge base, p be a first-order formula,

α ∈ (0, 1] and:

KBα = {p | (p, Nα′) ∈ KB,α′ ≥ α}
KBα = {p | (p, Nα′) ∈ KB,α′ > α}

Then:

1. KB |= (p, Nα) iff KBα |= p, and

2. KB |= (p,Πα) iff

a) KB0 |= p or,

b) there is some (q,Πβ) ∈ KB such that β ≤ α and KB1−β ∪{q} |= p.

We will reduce here our possibilistic fuzzy DL to a possibilistic DL. As

already seen, a fuzzy KB K can be reduced to a crisp KB crisp(K) and every

axiom τ ∈K is reduced to κ(τ), which can be an axiom or a set of axioms.

Adding degrees of certainty to an axiom τ ∈ K is equivalent to adding

degrees of certainty to their reductions κ(τ) ∈ crisp(K), as long as we also

consider the axioms preserving the semantics of the whole process T (NK)∪
Ra(NK)∪Rc(NK) (which are assumed to be necessarily true and do not have

any degree of certainty associated). Hence:

• For every axiom (τ,Πγ) ∈ pK, Poss(τ)≥ γ iff Poss(κ(τ))≥ γ.

• For every axiom (τ, Nγ) ∈ pK, Nec(τ)≥ γ iff Nec(κ(τ))≥ γ.
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The following theorem shows that the reductions preserves reasoning.

Theorem 4 A possibilistic fuzzy ontology P defined over K is satisfiable iff the

possibilistic ontology P defined over crisp(K) is satisfiable.

Proof. The proof is trivial since entailment is reduced to KB satisfiability and

that testing the satisfiability of K is equivalent to testing the satisfiability of

crisp(K). Given a fuzzy interpretation I such that I |= τ for every axiom

τ ∈ K, we can build a crisp interpretation IC such that IC |= κ(τ) (and

viceversa). Hence, sup{π(I) | I ∈ I,I |= τ} = sup{π(Ic) | Ic ∈ I,Ic |=
κ(τ)} ut

Example 18 Consider again Example 9. The axiom (〈tom: High≥ 0.5〉,Π 0.2)
is reduced to:

(〈tom: High≥0.5〉,Π 0.2)

This new axiom means that it is possible with degree 0.2 that Tom belongs

to the crisp set High≥0.5.

The final crisp KB would also need some additional axioms (consequence of

the reduction of the fuzzy KB):

T (NK) = {
High≥0.5 v High>0,

High>0.5 v High≥0.5,

High≥1 v High>0.5

}

ut

In the previous sections of this chapter, we have reduced a fuzzy KB to a

crisp KB. Then, reasoning is performed by computing a consistency test on

the crisp KB. The case is more difficult now, because we need to perform

several entailment tests.

It is also worth to keep in mind that, although it is possible to reason using

a crisp reasoner, how to represent a possibilistic ontology using a classical

ontology remains an open issue.



6.10. Reasoning with a Possibilistic Extension 149

Figure 6.1 illustrates the differences between the reduction of fuzzy on-

tologies and the reduction of possibilistic fuzzy ontologies.

Figure 6.1: Reasoning with fuzzy ontologies and possibilistic fuzzy ontolo-
gies.





CHAPTER 7
A Crisp Representation for Fuzzy

SROIQ(D) under Gödel Family

In this chapter we show how to reduce a G SROIQ(D) fuzzy KB to a

crisp KB. The procedure preserves reasoning, so existing SROIQ(D) reason-

ers could be applied to the resulting KB. First we will describe the reduction

and then we will provide an illustrating example.

Once again, the basic idea is to create some new crisp concepts and roles,

representing the α-cuts of the fuzzy concepts and relations, and to rely on

them. Next, some new axioms are added to preserve their semantics. Finally,

every axiom in the ABox, the TBox and the RBox is represented, indepen-

dently of other axioms, using these new crisp elements.

Section 7.1 studies the relevant set of degrees of truth to be considered

in the reasoning. Section 7.2 describes the process of creation of new crisp

concepts and roles. Abstract concepts and roles are mapped in Section 7.3,

whereas axioms are reduced in Section 7.4. The cases of concrete concepts

and roles, and modified concept and roles are not addressed in this chapter,

since they are dealt with exactly as in Zadeh family, and hence we refer the

reader to Chapter 6. An illustrating example of the reduction is presented

in Section 7.5. Section 7.6 studies some properties of the reduction. Finally,

151
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some important optimizations are described in 7.7. Reasoning with the pos-

sibilistic layer is not repeated here either, since it can be dealt with exactly as

in Zadeh family (Section 6.10).

7.1 Relevant Set of Degrees of Truth

In the previous chapter we have seen that in Zadeh logic, it is enough to

consider the set of degrees of truth NK. Interestingly, in Gödel logic it is

enough to consider a fixed set of degrees truth NK including 0 and 1, since

the fuzzy operators of this family do not introduce new degrees of truth. We

define T V = {0, 1} ∪ {γ | 〈τ ./ γ〉 ∈K}. For every γ1,γ2 ∈ T V:

• The value of 	γ1 is either 0 or 1.

• The value of γ1⊗ γ2 and γ1⊕ γ2 is either γ1 or γ2.

• The value of γ1⇒ γ2 is either 1 or γ2.

And, by definition, 0, 1, γ1 and γ2 belong to NK.

Given a fuzzy KB K, we will assume a fixed set of degrees of truth NK

such that it includes at last every degree in K plus 0 and 1. For convenience

we also define (NK)+ =NK \ {0}.

7.2 Adding New Elements

Now we proceed exactly as for Zadeh logic. Let A be the set of atomic con-

cepts, R the set of atomic abstract roles and T the set of concrete roles in a

fuzzy KB K = 〈A,T ,R〉. Let 1 ≤ i ≤ |NK| − 1,2 ≤ j ≤ |NK| − 1. For each

α,β ∈NK with α ∈ (0, 1] and β ∈ [0,1), we introduce:

• For each A∈ A,

– We create two new atomic concepts A≥α, A>β .

– We add to T (NK) the set of axioms:

A≥γi+1
v A>γi

A>γ j
v A≥γ j

• For each RA ∈ R.
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– Two new atomic abstract roles RA≥α, RA>β .

– We add to Ra(NK) the set of axioms:

RA≥γi+1
v RA>γi

RA>γi
v RA≥γi

• For each T ∈ T,

– Two concrete roles T≥α, T>β .

– We add to Rc(NK) the set of axioms:

T≥γi+1
v T>γi

T>γi
v T≥γi

7.3 Mapping Fuzzy Concepts and Roles

Fuzzy concept and role expressions are reduced using mapping ρ, as shown

in Tables 7.1 and 7.2 respectively. Concrete predicates are reduced exactly

as in Section 6.7, while modified concept and roles are reduced exactly as in

Section 6.9.

Once again, note that ρ(A,≤ β) = ¬A>β is different from ρ(¬A,≥ α) =
ρ(A,≤ 0) = ¬A>0 and that, due to the restrictions in the definition of the

fuzzy KB, there are some expressions that cannot appear during in the re-

duction:

• ρ(A,≥ 0),ρ(A,> 1),ρ(A,≤ 1),ρ(A,< 0).

• ρ(>,≥ 0),ρ(>,> 1),ρ(>,≤ 1),ρ(>,< 0).

• ρ(⊥,≥ 0),ρ(⊥,> 1),ρ(⊥,≤ 1),ρ(⊥,< 0).

• ρ(RA,≥ 0),ρ(RA,> 1),ρ(RA,≤ 1),ρ(RA,< 0).

• ρ(T,≥ 0),ρ(T,> 1),ρ(T,≤ 1),ρ(T,< 0).

• ρ(U ,≥ 0),ρ(U ,> 1),ρ(U ,≤ 1),ρ(U ,< 0).

• ρ(R,Cγ),ρ(U ,Cγ) and ρ(T,Cγ) can only appear in a (crisp) negated

role assertion.
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Table 7.1: Mapping of concept expressions under Gödel semantics.

x y ρ(x , y)
> Bγ >
> Cγ ⊥
⊥ Bγ ⊥
⊥ Cγ >
A Bγ ABγ

A Cγ ¬A¬Cγ
¬C Bγ ρ(C ,≤ 0)
¬C Cγ ρ(C ,> 0)

C u D Bγ ρ(C ,Bγ)uρ(D,Bγ)
C u D Cγ ρ(C ,Cγ)tρ(D,Cγ)
C t D Bγ ρ(C ,Bγ)tρ(D,Bγ)
C t D Cγ ρ(C ,Cγ)uρ(D,Cγ)
∃R.C Bγ ∃ρ(R,Bγ).ρ(C ,Bγ)
∃R.C Cγ ∀ρ(R,¬C γ).ρ(C ,Cγ)
∃T.d Bγ ∃ρ(T,Bγ).ρ(d,Bγ)
∃T.d Cγ ∀ρ(T,¬C γ).ρ(d,Cγ)
∀R.C ≥ α uγ∈(NK)+ | γ≤α(∀ρ(R,≥ γ).ρ(C ,≥ γ))uγ∈NK | γ<α(∀ρ(R,> γ).ρ(C ,> γ))
∀R.C > β uγ∈(NK)+ | γ≤β(∀ρ(R,≥ γ).ρ(C ,≥ γ))uγ∈NK | γ≤β(∀ρ(R,> γ).ρ(C ,> γ))
∀R.C ≤ β tγ∈NK | γ≤β(∃ρ(R,> γ).ρ(C ,≤ γ))
∀R.C < α tγ∈(NK)+ | γ≤α(∃ρ(R,≥ γ).ρ(C ,< γ))
∀T.d ≥ α uγ∈(NK)+ | γ≤α(∀ρ(T,≥ γ).ρ(d,≥ γ))uγ∈NK | γ<α(∀ρ(T,> γ).ρ(d,> γ))
∀T.d > β uγ∈(NK)+ | γ≤β(∀ρ(T,≥ γ).ρ(d,≥ γ))uγ∈NK | γ≤β(∀ρ(T,> γ).ρ(d,> γ))
∀T.d ≤ β tγ∈NK | γ≤β(∃ρ(T,> γ).ρ(d,≤ γ))
∀T.d < α tγ∈(NK)+ | γ≤α(∃ρ(T,≥ γ).ρ(d,< γ))

{α1/o1, . . . ,αm/om} ./ γ {oi | αi ./ γ, 1≤ i ≤ m}
≥ m S.C Bγ ≥ m ρ(S,Bγ).ρ(C ,Bγ)
≥ m S.C Cγ ≤ m−1 ρ(S,¬C γ).ρ(C ,¬C γ)
≥ m T.d Bγ ≥ m ρ(T,Bγ).ρ(d,Bγ)
≥ m T.d Cγ ≤ m−1 ρ(T,¬C γ).ρ(d,¬C γ)
≤ n S.C Bγ ≤ n ρ(S,> 0).ρ(C , S,> 0)
≤ n S.C Cγ ≥ n+1 ρ(S,> 0).ρ(C , S,> 0)
≤ n T.d Bγ ≤ n ρ(T,> 0).ρ(d,> 0)
≤ n T.d Cγ ≥ n+1 ρ(T,> 0).ρ(d,> 0)
∃S.Sel f Bγ ∃ρ(S,Bγ).Sel f
∃S.Sel f Cγ ¬∃ρ(S,¬C γ).Sel f
[C ≥ α] Bγ ρ(C ,≥ α)
[C ≥ α] Cγ ρ(C ,< α)
[C ≤ β] Bγ ρ(C ,≤ β)
[C ≤ β] Cγ ρ(C ,> β)
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Table 7.2: Mapping of role expressions under Gödel semantics.

x y ρ(x , y)
RA Bγ RABγ

RA Cγ ¬RA¬Cγ
R− ./ γ ρ(R,./ γ)−

U Bγ U
U Cγ ¬U

[R≥ α] Bγ ρ(R,≥ α)
[R≥ α] Cγ ρ(R,< α)
¬R Bγ ρ(R,≤ 0)
¬R Cγ ρ(R,> 0)
T Bγ TBγ

7.4 Mapping Fuzzy Axioms

Axioms are reduced as in Table 7.3, where κ(τ) maps a fuzzy axiom τ in

G SROIQ(D) to a set of crisp axioms in SROIQ(D).
Note that in fuzzy GCIs and RIAs of the form 〈τBγ〉, the number of new

crisp axioms depends on the value of γ: the higher γ, the more axioms are

generated.

Observe that κ(〈C v D ≥ 1〉) is equivalent to the reduction of a GCI, un-

der a semantics based on Zadeh’s inclusion of fuzzy sets, proposed in [302],
although this work introduces two unnecessary axioms C≥0 v D≥0 and C>1 v
D>1.

Recall that in Gödel family we may assume that irreflexive, transitive and

symmetric role axioms do not appear.

Let us illustrate how the reduction of an axiom works by showing an

example.

Example 19 Consider the GCI 〈C v D ≥ α〉. If it is satisfied, infx∈∆I CI(x)⇒
DI(x) ≥ α. As this is true for the infimum, an arbitrary x ∈ ∆I must satisfy

CI(x) ⇒ DI(x) ≥ α. From the semantics of Gödel implication, this is true if

CI(x) ≤ DI(x) or DI(x) ≥ α. Hence, for each γ ∈ (NK)+ such that γ ≤ α,

CI(x) ≥ γ implies DI(x) ≥ γ (which is expressed as ρ(C ,≥ γ) v ρ(D,≥ γ))
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and for each γ ∈NK | γ < α, CI(x)> α implies DI(x)> α (which is expressed

as ρ(C ,> α)v ρ(D,> α)). ut

Table 7.3: Reduction of the axioms under Gödel semantics.

τ κ(τ)
〈a :C ./ γ〉 {a :ρ(C ,./ γ)}
〈(a, b):R ./ γ〉 {(a, b):ρ(R,./ γ)}
〈(a, b):¬R ./ γ〉 {(a, b):ρ(¬R,./ γ)}
〈a 6= b〉 {a 6= b}
〈a = b〉 {a = b}
〈C v D ≥ α〉

⋃

γ∈(NK)+ | γ≤α{ρ(C ,≥ γ)v ρ(D,≥ γ)}
⋃

γ∈NK | γ<α{ρ(C ,> γ)v ρ(D,> γ)}
〈C v D > β〉 κ(C v D ≥ β)∪ {ρ(C ,> β)v ρ(D,> β)}
〈R1 . . . Rm v R≥ α〉

⋃

γ∈(NK)+ | γ≤α{ρ(R1,≥ γ) . . .ρ(Rm,≥ γ)v ρ(R,≥ γ)}
⋃

γ∈NK | γ<α{ρ(R1,> γ) . . .ρ(Rm,> γ)v ρ(R,> γ)}
〈R1 . . . Rm v R> β〉 κ(〈R1 . . . Rm v R≥ β〉)∪ {ρ(R1,> β) . . .ρ(Rm,> β)v ρ(R,> β)}
〈T1 v T2 ≥ α〉

⋃

γ∈(NK)+ | γ≤α{ρ(T1,≥ γ)v ρ(T2,≥ γ)}
⋃

γ∈NK | γ<α{ρ(T1,> γ)v ρ(T2,> γ)}
〈T1 v T2 > β〉 κ(〈T1 v T2 ≥ β〉)∪ {ρ(T1,> β)v ρ(T2,> β)}
dis(S1, S2) {dis(ρ(S1,> 0),ρ(S2,> 0))}
dis(T1, T2) {dis(ρ(T1,> 0),ρ(T2,> 0))}
ref(R) {ref(ρ(R,≥ 1))}
asy(S) {asy(ρ(S,> 0)}

Summing up, a fuzzy KBK = 〈A,T ,R〉 is reduced to a KB 〈κ(A), T (NK)∪
κ(T ), Ra(NK)∪ Rc(NK)∪ κ(R)〉.

7.5 Example

Now we will illustrate the whole procedure with an example.

Example 20 Consider a fuzzy KB K in a musical domain where we define

T V = {0, 0.3,0.5, 0.7,1} and that represents the following knowledge:

• Radiohead is very likely not among Fernando’s favourite bands:

〈(fernando, radiohead): ¬hasFavouriteBand≥ 0.7〉
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• Fernando has at most two favourite bands playing flamenco:

〈fernando: ≤ 2 hasFavouriteBand.FlamencoBand≥ 0.7〉

• Every Radiohead’s record is not a live record (we introduce a degree to

reflect the fact that there exist several non-official live records):

〈radiohead: ∀hasRecord.(¬LiveRecord)≥ 0.7〉

Next, we create some new elements and some axioms preserving their se-

mantics. The new axioms due to the new concepts are:

T (NK) = {
LiveRecord≥1 v LiveRecord>0.75,

LiveRecord>0.75 v LiveRecord≥0.75,

LiveRecord≥0.75 v LiveRecord>0.5,

LiveRecord>0.5 v LiveRecord≥0.5,

LiveRecord≥0.5 v LiveRecord>0.25,

LiveRecord>0.25 v LiveRecord≥0.25,

LiveRecord≥0.25 v LiveRecord>0,

FlamencoBand≥1 v FlamencoBand>0.75,

FlamencoBand>0.75 v FlamencoBand≥0.75,

FlamencoBand≥0.75 v FlamencoBand>0.5,

FlamencoBand>0.5 v FlamencoBand≥0.5,

FlamencoBand≥0.5 v FlamencoBand>0.25,

FlamencoBand>0.25 v FlamencoBand≥0.25,

FlamencoBand≥0.25 v FlamencoBand>0

}

The new axioms generated for the roles are:
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Ra(NK) = {
hasFavouriteBand≥1 v hasFavouriteBand>0.75,

hasFavouriteBand>0.75 v hasFavouriteBand≥0.75,

hasFavouriteBand≥0.75 v hasFavouriteBand>0.5,

hasFavouriteBand>0.5 v hasFavouriteBand≥0.5,

hasFavouriteBand≥0.5 v hasFavouriteBand>0.25,

hasFavouriteBand>0.25 v hasFavouriteBand≥0.25,

hasFavouriteBand≥0.25 v hasFavouriteBand>0,

hasRecord≥1 v hasRecord>0.75,

hasRecord>0.75 v hasRecord≥0.75,

hasRecord≥0.75 v hasRecord>0.5,

hasRecord>0.5 v hasRecord≥0.5,

hasRecord≥0.5 v hasRecord>0.25,

hasRecord>0.25 v hasRecord≥0.25,

hasRecord≥0.25 v hasRecord>0

}

Finally, we map the three axioms in the ABox:

• κ(〈(fernando, radiohead): ¬hasFavouriteBand≥ 0.7〉) =
(fernando, radiohead): ρ(¬hasFavouriteBand,≥ 0.7) =
(fernando, radiohead): ρ(hasFavouriteBand,≤ 0) =
(fernando, radiohead): ¬ρ(hasFavouriteBand>0.

• κ(〈fernando: ≤ 2 hasFavouriteBand.FlamencoBand≥ 0.7〉) =
fernando: ≤ 2 hasFavouriteBand>0.FlamencoBand>0.

• κ(〈radiohead: ∀hasRecord.(¬LiveRecord)≥ 0.7〉) =
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radiohead : (∀hasRecord>0.ρ(¬LiveRecord,> 0)) u
(∀hasRecord≥0.3.ρ(¬LiveRecord,≥ 0.3)) u
(∀hasRecord>0.3.ρ(¬LiveRecord,> 0.3)) u
(∀hasRecord≥0.5.ρ(¬LiveRecord,≥ 0.5)) u
(∀hasRecord>0.5.ρ(¬LiveRecord,> 0.5)) u
(∀hasRecord≥0.7.ρ(¬LiveRecord,≥ 0.7)) =

radiohead : (∀hasRecord>0.LiveRecord≤0) u
(∀hasRecord≥0.3.LiveRecord≤0) u
(∀hasRecord>0.3.LiveRecord≤0) u
(∀hasRecord≥0.5.LiveRecord≤0) u
(∀hasRecord>0.5.LiveRecord≤0) u
(∀hasRecord≥0.7.LiveRecord≤0) =

radiohead : (∀hasRecord>0.¬LiveRecord>0) u
(∀hasRecord≥0.3.¬LiveRecord>0) u
(∀hasRecord>0.3.¬LiveRecord>0) u
(∀hasRecord≥0.5.¬LiveRecord>0) u
(∀hasRecord>0.5.¬LiveRecord>0) u
(∀hasRecord≥0.7.¬LiveRecord>0)

Observe that the reduction of the latter axiom can be simplified to

radiohead: ∀hasRecord>0.¬LiveRecord>0

but in general, this is not possible and the reduction of a fuzzy universal

quantification is a conjunction of universal quantifications. ut

7.6 Properties of the Reduction

Firstly, the reduction preserves simplicity of the roles and regularity of the

RIAs.

Decidability of the Logic and Correctness of the Reduction

The following theorem shows the logic is decidable under Gödel semantics

and that the reductions preserves reasoning.
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Theorem 5 The satisfiability problem in G SROIQ(D) is decidable. Fur-

thermore, a G SROIQ(D) fuzzy KB K = 〈A,T ,R〉 is satisfiable iff its crisp

representation crisp(K) = 〈κ(A), T (NK)∪ κ(T ), Ra(NK)∪ Rc(NK)∪ κ(R)〉
is satisfiable.

Proof. We will show the proof for the only-if direction. From K is satisfiable

we know that there is a fuzzy interpretation I = {∆I , ·I} with respect to a

fuzzy concrete domain D = 〈∆D,ΦD〉, where ΦD only contains the fuzzy con-

crete predicate d= t rapk1,k2
(q1, q2, q3, q4), satisfying every axiom in K. Now,

it is possible to build a (crisp) interpretation IC = {∆IC , ·IC} with respect to

a crisp concrete domain DC = 〈∆DC
,ΦDC
〉 as:

• ∆IC =∆I .

• ∆DC
=∆D.

• xIC = xI , for all x ∈∆I .

• vDC
= vD, for all v ∈∆D.

• AIC≥α = {x ∈∆
I | AI(x)≥ α}, for each A∈ A,α ∈ NK \ {0}.

• AIC>β = {x ∈∆
I | AI(x)> β}, for each A∈ A, β ∈ NK \ {1}.

• RICA≥α = {x , y ∈∆I ×∆I | RIA(x , y)≥ α}, for each RA ∈ R, α ∈ NK \ {0}.

• RICA>β = {x , y ∈∆I×∆I | RIA(x , y)> β}, for each RA ∈ R, β ∈ NK \{1}.

• TIC≥α = {x ∈∆
I , v ∈∆D | TI(x , v)≥ α}, for each T ∈ T, α ∈ NK \ {0}.

• TIC>β = {x ∈∆
I , v ∈∆D | TI(x , v)> β}, for each T ∈ T, β ∈ NK \ {1}.

• ΦDC
will contain some concrete predicates of the form real[a, b], real(a, b)

and union–real[k1, a, b, k2], with a, b, k1, k2 ∈ R.

Now, we will show that IC satisfies every axiom in crisp(K). For every

axiom τ ∈K, there are several cases:

1. τ is an inequality assertion. Assume that I |= 〈a 6= b〉. Then, aI 6= bI .

By definition of IC, aIC 6= bIC , so IC |= 〈a 6= b〉 ⇔ IC |= κ(〈a 6= b〉).
The case of equality assertions is similar.

2. τ is a role assertion. Assume that I |= 〈(a, b) : R ./ γ〉. We show, by

induction on the structure of roles, that IC |= κ(〈(a, b):R ./ γ〉).
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• Atomic role. Assume that I |= 〈(a, b) : RABγ〉. Then, RIA(a
I , bI)B

γ. By definition of IC, it follows that (aIC , bIC) ∈ RICABγ. By defini-

tion of ρ, (aIC , bIC) ∈ (ρ(RA,Bγ))IC⇔ IC |= (a, b) : ρ(RA,Bγ)⇔
IC |= κ(〈(a, b) : RA B γ〉).

Now assume that I |= 〈(a, b) : RA C γ〉. Then, RIA(a
I , bI) C γ.

By definition of IC, it follows that (aIC , bIC) 6∈ (RA¬Bγ)IC and

hence (aIC , bIC) ∈ (¬RA¬Bγ)IC . By definition of ρ, (aIC , bIC) ∈
(ρ(RA,Cγ))IC ⇔ IC |= (a, b) : ρ(RA,Cγ) ⇔ IC |= κ(〈(a, b) :

RA C γ〉).

• Concrete roles. This case is similar to that of atomic roles.

• Negated role. Assume that I |= 〈(a, b) : ¬R≥ α〉. Then,	RI(aI , bI)
≥ α. Since the result of Gödel negation is either 0 or 1, and

given that α > 0, it follows that 	RI(aI , bI) = 1 and hence

RI(aI , bI) = 0. By induction hypothesis, (aIC , bIC) 6∈ ρ(R,>

0)IC⇔ (aIC , bIC) ∈ ρ(R,≤ 0)IC⇔ (aIC , bIC) ∈ ρ(¬R,≥ α)IC⇔
IC |= (a, b) : ρ(¬R,≥ α)⇔ IC |= κ(〈(a, b) : ¬R ≥ α〉). The other

cases are similar.

• Inverse role. Assume that I |= 〈(a, b) : R− ./ γ〉. Then, RI(bI , aI) ./
γ. By induction hypothesis, (bIC , aIC) ∈ ρ(R,./ γ)IC . Conse-

quently, (aIC , bIC) ∈ (ρ(R,./ γ)IC)− ⇔ IC |= (a, b) ∈ ρ(R,./

γ)−⇔ IC |= κ(〈(a, b) : R− ./ γ〉).

• Universal role. Assume that I |= 〈(a, b) : UBγ〉. Then, UI(aI , bI) =
1 ≥ γ. By definition of IC, it follows that (aIC , bIC) ∈ ∆IC ×∆IC

and consequently (aIC , bIC) ∈ UIC⇔ (aIC , bIC) ∈ (ρ(U ,Bγ))IC⇔
IC |= (a, b) : ρ(U ,Bγ) ⇔ IC |= κ(〈(a, b) : U B γ〉). The case

I |= 〈(a, b) : U C γ〉 is similar.

• Modified role. Assume that I |= 〈(a, b) : mLin(R)B γ〉 for a lin-

ear modifier mLin such that fmLin(x; l). Then, it follows that

fmLin(RI(aI , bI); l)B γ. Let x l ∈ [0, 1] be such that fmLin(x l; l) =
γ. Then, it follows that RI(aI , bI)B x l . By induction hypothe-

sis, (aIC , bI) ∈ ρ(R,Bx l)IC ⇔ IC |= (a, b) : ρ(R,Bx l)⇔ IC |=
κ(〈(a, b) : mLin(R)B γ〉).
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The case I |= 〈(a, b) : mLin(R)C γ〉 is similar, but now it follows

that RI(aI , bI)C x l so we end up with IC |= (a, b) : ρ(R,Cx l)⇔
IC |= κ(〈(a, b) : mLin(R)C γ〉).

• Cut role. Assume that I |= 〈(a, b) : [R ≥ α]B γ〉. Then, it follows

that ([R ≥ α])I(aI , bI) = 1, which is the case if RI(aI , bI) ≥ α.

By induction hypothesis, (aIC , bIC) ∈ ρ(R,≥ α)IC⇔ IC |= (a, b) :

ρ(R,≥ α)⇔ IC |= (a, b) : ρ([R ≥ α],Bγ)⇔ IC |= κ((a, b) :

[R≥ α]B γ).
Now assume that I |= 〈(a, b) : [R ≥ α]C γ〉. Then, it follows that

([R ≥ α])I(aI , bI) = 0, which is the case if RI(aI , bI) < α. By

induction hypothesis, (aIC , bIC) ∈ ρ(R,< α)IC ⇔ IC |= (a, b) :

ρ(R,< α)⇔ IC |= (a, b) : ρ([R ≥ α],Cγ)⇔ IC |= κ((a, b) :

[R≥ α]C γ).

3. τ is a concept assertion. Assume that I |= 〈a : C ./ γ〉. We show, by

induction on the structure of concepts and roles, that IC |= κ(〈a : C ./

γ〉).

• Atomic concept. Assume that I |= 〈a : A B γ〉. Then, AI(aI) B
γ. By definition of IC, it follows that aIC : AICBγ. Consequently,

aIC ∈ (ρ(A,Bγ))IC ⇔ IC |= a : ρ(A,Bγ) ⇔ IC |= κ(〈a : A B

γ〉). Now assume that I |= 〈a : A C γ〉. Then, AI(aI) C γ. By

definition of IC, it follows that aIC 6∈ AIC¬Bγ ⇔ aIC ∈ ¬AIC¬Bγ ⇔
aIC ∈ (ρ(A,Cγ))IC⇔ IC |= a : ρ(A,Cγ)⇔ IC |= κ(〈a : AC γ〉).

• Top concept. Assume that I |= 〈a : > B γ〉. Then, >I(aI) B γ.

By definition of IC, it follows that aIC ∈ ∆IC = >. Consequently,

aIC ∈ (ρ(>,Bγ))IC⇔ IC |= a : ρ(>,Bγ)⇔ IC |= κ(〈a :>Bγ〉).
The case I |= 〈a : > C γ〉 is not possible. If I |= 〈a : > ≤ β〉
we have that 1 ≤ β , which is a contradiction with the restriction

β ∈ [0,1). If I |= 〈a : > < α〉 we have that 1 < α, which is a

contradiction with the restriction α ∈ (0, 1].

• Bottom concept. This case is similar to the previous one.

• Concept negation. Assume that I |= 〈a : ¬C ≥ α〉. Then,	CI(aI)≥
α. Since α > 0, it follows that 	CI(aI) = 1 and hence CI(aI) =
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0. By induction hypothesis, aIC 6∈ ρ(C ,> 0)IC ⇔ aIC ∈ ρ(C ,≤
0)IC ⇔ IC |= a : ρ(C ,≤ 0)⇔ IC |= κ(〈a : ¬C ≥ α〉). The case

> β is similar.

In the case I |= 〈a : ¬C ≤ β〉 it follows that 	CI(aI) ≤ β . Since

β < 1, it follows that 	CI(aI) = 0 and hence CI(aI) > 0. By in-

duction hypothesis, aIC ∈ ρ(C ,> 0)IC ⇔ IC |= a : ρ(C ,> 0)⇔
IC |= κ(〈a : ¬C ≤ β〉). The case < α is similar.

• Concept conjunction. Assume that I |= 〈a : C u D B γ〉. Then,

min{CI(aI), DI(aI)}Bγ, so it follows that CI(aI)Bγ and DI(aI)B
γ. By induction hypothesis, aIC ∈ ρ(C ,Bγ)IC and aIC ∈ ρ(D,Bγ)IC .

Consequently, aIC ∈ (ρ(C ,Bγ) u ρ(D,Bγ))IC ⇔ aIC ∈ (ρ(C u
D,Bγ))IC⇔ IC |= a : ρ(C u D,Bγ)⇔ IC |= κ(〈a : C u D B γ〉).

In the case I |= 〈a : C u D C γ〉, it follows that CI(aI) C γ or

DI(aI)C γ. By induction hypothesis, aIC ∈ ρ(C ,Cγ)IC or aIC ∈
ρ(D,Cγ)IC . In this case, we end up with IC |= κ(〈a : C u D Cγ〉).

• Concept disjunction. This case is similar to concept conjunction.

• Universal quantification. Assume that I |= 〈a : ∀R.C ≥ α〉. Then,

infb∈∆I{RI(aI , b) ⇒ CI(b)} ≥ α. Since this is true for the infi-

mum, an arbitrary individual b ∈∆I must satisfy that RI(aI , b)⇒
CI(b) ≥ α and hence one of the following conditions holds (i)

RI(aI , b) ≤ CI(b) (which makes the Gödel implication equal to

1 ≥ α), or (ii) CI(b) ≥ α (which makes the Gödel implication

take a value≥ α). The former condition is equivalent to RI(aI , b)≥
γ implies CI(b) ≥ γ for every γ ∈ NK 1.The latter condition

enables us to restrict to those γ ∈ such that γ ≤ α. By induc-

tion hypothesis, it follows that (aIC , b) ∈ (ρ(R,Bγ))IC implies

bIC ∈ (ρ(C ,Bγ))IC or bIC ∈ (ρ(C ,≥ α))IC for an arbitrary b ∈
∆IC . Consequently, IC |= a : uγ∈NK\{0} | γ≤α(∀ρ(R,≥ γ).ρ(C ,≥

1It is easy to see that (i) implies this condition. To see the equivalence, consider γ′ such
that RI(aI , b) = γ′ and assume that RI(aI , b) ≥ γ implies CI(b) ≥ γ. Since RI(aI , b) ≥ γ′
is true, CI(b) ≥ γ′ holds. Now, it follows that RI(aI , b) ≤ CI(b), because if RI(aI , b) >
CI(b), then RI(aI , b) > CI(b) ≥ γ′, which is in contradiction with the assumption that
RI(aI , b) = γ′.
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γ))uγ∈NK | γ<α(∀ρ(R,> γ). ρ(C ,> γ)) ⇔ IC |= κ(〈a : ∀R.C ≥
α〉). The case for > β is quite similar.

Now assume that I |= 〈a : ∀R.C ≤ β〉. Then, infb∈∆I{RI(aI , b)⇒
CI(b)} ≤ β . Due to the witnessed model property, there is an

individual b ∈ ∆I satisfying that RI(aI , b)⇒ CI(b)} ≤ β . Since

β < 1, it follows that (i) RI(aI , b) > CI(b), and (ii) CI(b) ≤ β .

In this case we end up with IC |= a : tγ∈N | γ≤β(∃ρ(R,> γ).ρ(C ,≤
γ)) and hence IC |= κ(〈a : ∀R.C ≤ β〉). The case for < α is quite

similar.

• Existential quantification. Assume that I |= 〈a : ∃R.C B γ〉. Then,

supb∈∆I min{RI(aI , b), CI(b)} B γ. P. Hájek showed for Gödel

logic under a finite set of degrees of truth, that if there is a model,

then there is also a witnessed model [120]. Hence, if this is true

for the supremum, then there exists an individual b satisfying

min{RI(aI , b), CI(b)} Bγ, so RI(aI , b)Bγ and CI(b)Bγ. By in-

duction hypothesis, (aIC , b) ∈ (ρ(R,Bγ))IC and b ∈ (ρ(C ,Bγ))IC

for some individual b ∈ ∆IC , which is equivalent to say that

aIC ∈ (∃ρ(R,Bγ).ρ(C ,Bγ))IC⇔ aIC ∈ (ρ(∃R.C Bγ))IC⇔ IC |=
a : ρ(∃R.C B γ)⇔ IC |= κ(〈a : ∃R.C ,Bγ〉).
Now, assume that I |= 〈a : ∃R.C ≤ β〉. Then, supb∈∆I min{RI(aI ,

b), CI(b)} ≤ β . Since this is true for the supremum, an arbi-

trary individual b ∈ ∆I must satisfy RI(aI , b) ≤ β or CI(b) ≤
β . By induction hypothesis, (aIC , b) ∈ (ρ(R,≤ β))IC or b ∈
(ρ(C ,≤ β))IC for some individual b ∈∆IC , which is equivalent to

aIC ∈ (∀ρ(R,> β).ρ(C ,≤ β))IC ⇔ aIC ∈ (∀ρ(R,¬ ≤ β).ρ(C ,≤
β))IC ⇔ aIC ∈ (ρ(∃R.C ≤ β))IC ⇔ IC |= a : ρ(∃R.C ≤ β)⇔
IC |= κ(〈a : ∃R.C ,≤ β〉). The case < α is similar.

• Fuzzy nominals. Assume that I |= 〈a : {α1/o1, . . . ,αn/on} B γ〉.
Let oi1, . . . , oik be such that αi j B γ. Then, sup{αi1 , . . . ,αik}B γ,

with aI ∈ {oi1 , . . . , oik}
I . By construction of IC, it holds that aIC ∈

{oi1 , . . . , oik}
IC ⇔ aIC ∈ ρ({α1/o1, . . . ,αn/on}IC ,Bγ)⇔ IC |= a :

ρ({α1/o1, . . . ,αn/on}, Bγ)〉)⇔ IC |= κ(〈a : {α1/o1, . . . ,αn/on}B
γ〉). The case Cγ is quite straightforward.



7.6. Properties of the Reduction 165

• At-least qualified number restriction. Assume that I |= 〈a : (≥
m S.C)≥ α〉. Then, supb1,...,bm∈∆I [(minm

i=1 {S
I(aI , bi)⊗CI(bi)})

⊗

(⊗ j<k{b j 6= bk})] ≥ α. Note that (⊗ j<k{b j 6= bk}) can be ei-

ther 0 or 1. If it is 0, then we have that supb1,...,bm∈∆I [(minm
i=1

{SI(aI , bi) ⊗ CI(bi)})
⊗

0] = 0 ≥ α, which is not possible be-

cause by definition α ∈ (0, 1]. Hence, (⊗ j<k{b j 6= bk}) = 1 and so

supb1,...,bm∈∆I[(minm
i=1 {S

I(aI , bi)⊗ CI(bi)})
⊗

1]. This is equiv-

alent to supb1,...,bm∈∆I(minm
i=1{S

I(aI , bi)⊗ CI(bi)}) ≥ α. This im-

plies that there exist m different bi ∈IC such that minm
i=1{S

I(aI , bi)
⊗CI(bi)} and hence SI(aI , bi) ≥ α and CI(bi) ≥ α, for 1 ≤
i ≤ m. By induction hypothesis, (aIC , bi) ∈ (ρ(S,≥ α))IC and

bi ∈ (ρ(C ,≥ α))IC , for 1 ≤ i ≤ m. Consequently, aIC ∈ (≥
m ρ(S,≥ α).ρ(C ,≥ α))IC ⇔ aIC ∈ ρ(≥ m S.C ,≥ α)IC ⇔ IC |=
a : ρ(≥ m S.C ,≥ α)⇔ IC |= κ(〈a : (≥ m S.C) ≥ α〉). The case

> β is quite similar.

Now assume that I |= 〈a : (≥ m S.C)≤ β〉. In this case, it follows

that supb1,...,bm∈∆I (minm
i=1 {S

I(aIC , bi) ⊗ CI(bi)}) ≤ β . Conse-

quently, there cannot exist m different individuals bi with (minm
i=1

{SI(aIC , bi)⊗ CI(bi)}) > β , so we end up with IC |= κ(〈a : (≥
m S.C)≤ β〉). The case < α is quite similar.

• At-most qualified number restriction. Assume that I |= 〈a : (≤
n S.C)≥ α〉. Then, infb1,...,bn+1∈∆I[(minn+1

i=1 {S
I(aI , bi)⊗CI(bi)})⇒

(⊕ j<k{b j = bk})] ≥ α. Note that (⊕ j<k{b j = bk}) can be either

0 or 1, so the result of the Gödel implication is either 0 or 1 and

hence (≤ n S.C) is actually a crisp concept. Since α > 0, it follows

that infb1,...,bn+1∈∆I[(minn+1
i=1 {S

I(aI , bi)⊗ CI(bi)}) ⇒ (⊕ j<k{b j =
bk})] ≥ α = 1. Then, ∀b1, . . . , bn+1 ∈ ∆I , [(minn+1

i=1 {S
I(aI , bi)⊗

CI(bi)}) ⇒ (⊕ j<k{b j = bk})] = 1. This is true in two cases: (i)

(minn+1
i=1 {S

I(aI , bi) ⊗ CI(bi)}) = 0, so there exist some bi such

that SI(x , bi) = 0 or CI(bi) = 0 hold, or (ii) ⊕ j<k{b j = bk} = 0

holds. This means that there do not exist n+1 mutually different

individuals such that SI(aI , bi)> 0 and CI(bi)> 0. By induction

hypothesis, there do not exist n+1 mutually different individuals
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bi ∈∆IC such that SIC(aIC , bi)> 0 and CIC(bi)> 0. Hence, aIC ∈
(≤ n ρ(S,> 0).ρ(C ,> 0))IC ⇔ IC |= a : (≤ n ρ(S,> 0).ρ(C ,>

0))⇔ IC |= a : ρ(≤ n S.C ,≥ α)⇔ IC |= κ(〈a : (≤ n S.C) ≥ α〉).
The case > β is quite similar.

Let us assume now the case I |= 〈a : (≤ n S.C) ≤ β〉. Then,

infb1,...,bn+1∈∆I[(minn+1
i=1 { SI(aI , bi)⊗CI(bi)})⇒ (⊕ j<k{b j = bk})]≤

β . Thanks to the witnessed model property, it follows that there

exist n+ 1 mutually different individuals such that SI(aI , bi)> 0

and CI(bi) > 0. By induction hypothesis, there exist n+ 1 mutu-

ally different individuals bi ∈ ∆IC such that SIC(aIC , bi) > 0 and

CIC(bi) > 0. Hence, aIC ∈ (≥ n+ 1 ρ(S,> 0). ρ(C ,> 0))IC ⇔
IC |= (≥ n+ 1 ρ(S,> 0).ρ(C ,> 0))⇔ IC |= a : ρ(≤ n S.C ,≤
β)⇔ IC |= κ(〈a : (≤ n S.C)≤ β〉). The case < α is similar.

• Local reflexivity. Assume that I |= 〈a : ∃S.Sel f B γ〉. Then,

SI(aI , aI)Bγ. By induction hypothesis, (aIC , aIC) ∈ ρ(S,Bγ)IC⇔
IC |= (a, a) : ρ(S,Bγ)⇔ IC |= κ(〈a : ∃S.Sel f Bγ〉). Now assume

that I |= 〈a : ∃S.Sel f C γ〉. Then, SI(aI , aI) C γ. By induc-

tion hypothesis, (aIC , aIC) ∈ ρ(S,Cγ)IC . Hence, it follows that

(aIC , aIC) 6∈ (ρ(S,¬C γ))IC ⇔ (aIC , aIC) ∈ ¬(ρ(S,¬C γ))IC ⇔
aIC ∈ (ρ(∃S.Sel f ,Cγ))IC ⇔ IC |= a : ρ(∃S.Sel f , Cγ)⇔ IC |=
κ(〈a : ∃S.Sel f ,Cγ〉).

• Modified concept. Firstly, let us consider the case of a triangular

modifier mTri such that fmTri(x; t1, t2, t3). Assume that 〈I |= a :

mTri(C) ≥ α〉. Then, it follows that fmTri(CI(aI; t1, t2, t3) ≥ α.

Let x1 ∈ [0, t2] and x2 ∈ [t2, 1] be those numbers such that

fle f t(x1; t1, t2, t3) = α and fri ght(x2; t1, t2, t3) = α. There are sev-

eral options now, depending on the value of α with respect to t1

and t3.

a) If (α > t1) and (α > t3), then CI(aI) is lower bounded by

x1 (since fle f t(x1; t1, t2, t3) = α and fmTri(CI(aI; t1, t2, t3) ≥
α) and upper bounded by x2 (since fri ght(x2; t1, t2, t3) = α
and fmTri(CI(aI; t1, t2, t3) ≥ α). That is, CI(aI) ≥ x1 and

CI(aI) ≤ x2. By induction hypothesis, aIC ∈ ρ(C ,≥ x1)IC
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and aIC ∈ ρ(C ,≤ x2)IC . It follows that aIC ∈ ρ(C ,≥ x1)IC u
ρ(C ,≤ x2)IC ⇔ IC |= a : ρ(C ,≥ x1) u ρ(C ,≤ x2)⇔ IC |=
κ(〈a : mTri(C)≥ α〉).

b) If (α > t1) and (α≤ t3), then CI(aI) is lower bounded by x1

as in the previous case, but x2 does not introduce an upper

bounded now: as noted in Section 6.7, fmTri(1) = t3, and

since α ≤ t3 and fri ght is a strictly decreasing function, the

possible upper bound for CI(aI)would be greater than 1, but

we already know that CI(aI) ∈ [0,1]. That is, CI(aI) ≥ x1.

By induction hypothesis, aIC ∈ ρ(C ,≥ x1)IC ⇔ IC |= a :

ρ(C ,≥ x1)⇔ IC |= κ(〈a : mTri(C)≥ α〉).

c) The case (α ≤ t1) and (α > t3) is similar, but now CI(aI) is

upper bounded by x2 and not lower bounded. Now, CI(aI)≤
x2. By induction hypothesis, aIC ∈ ρ(C ,≤ x2)IC ⇔ IC |= a :

ρ(C ,≤ x2)⇔ IC |= κ(〈a : mTri(C)≥ α〉).

d) Finally, in the case (α≤ t1) and (α≤ t3) there are no bounds,

so we only now that CI(aI) ∈ [0, 1] and hence we only know

that >I(aI). By induction hypothesis, aIC ∈ >IC⇔ IC |= a :

>⇔ IC |= κ(〈a : mTri(C)≥ α〉).

The other cases 〈I |= a : mTri(C) ./ γ〉 are similar.

Now, let us consider the case of a triangular modifier mLin such

that fmLin(x; l). Assume that 〈I |= a : mLin(C) B γ〉. Then,

it follows that fmLin(CI(aI; l) B γ. Let x l ∈ [0,1] be such that

fmLin(x l; l) = γ. Then, it follows that CI(aI)B x l . By induction

hypothesis, aIC ∈ ρ(C ,Bx l)IC ⇔ IC |= a : ρ(C ,Bx l)⇔ IC |=
κ(〈a : mLin(C)B γ〉).

The case 〈I |= a : mLin(C)C γ〉 is similar, but now it follows that

CI(aI)C x l so we end up with IC |= a : ρ(C ,Cx l)⇔ IC |= κ(〈a :

mLin(C)C γ〉).

• Cut concept. Assume that 〈I |= a : [C ≥ α]B γ〉. Then, it follows

that ([C ≥ α])I(aI) = 1, which is the case if CI(aI) ≥ α. By

induction hypothesis, aIC ∈ ρ(C ,≥ α)IC ⇔ IC |= a : ρ(C ,≥
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α)⇔ IC |= a : ρ([C ≥ α],Bγ). The case I |= a : [C ≤ α] ≤ γ〉 is

similar.

Now assume that 〈I |= a : [C ≥ β]C γ〉. Then, it follows that

([C ≥ β])I(aI) = 0, which is the case if CI(aI)< β . By induction

hypothesis, aIC ∈ ρ(C ,< β)IC⇔ IC |= a : ρ(C ,< β)⇔ IC |= a :

ρ([C ≥ β],Cγ). The case I |= a : [C ≤ β]≥ γ〉 is similar.

• Concrete concept constructs. Concrete concept constructs are sim-

ilar to their abstract versions. The only point which deserves

a special comment is the existence of some expressions of the

form vi : dD ./ γ, with d = t rapk1,k2
(x; a, b, c, d). Assume that

vi : dD > β . In order to guarantee that the trapezoidal func-

tion takes a value xvi
which is greater or equal than β , we have

that xvi
> a + β(b − a) and xvi

< d − β(d − c), which is equiv-

alent to say that vi ∈ real(a + β(b − a), d − β(d − c)). The

case ≥ α is similar, but using a customized datatype of the form

real[x , y] instead of real(x , y). Now, assume that vi : dD ≤ β .

In this case we have that either xvi
≤ k1, a + β(b − a) or xvi

≥
d − β(d − c), k2], which is equivalent to say that vi ∈ union–

real[k1, a + β(b − a), d − β(d − c), k2]. The case < α is similar,

using ε to get the strict inequality.

4. τ is a fuzzy GCI. Assume that I |= 〈C v D ≥ α〉. Then, infx∈∆I CI(x)⇒
DI(x) ≥ α. Hence, for an arbitrary individual x ∈ ∆I it follows

that CI(x) ⇒ DI(x) ≥ α and hence one of the following conditions

holds (i) CI(x) ≤ DI(x) (which makes the Gödel implication equal

to 1 ≥ α), or (ii) DI(x) ≥ α (which makes the Gödel implication

take a value ≥ α). Note that the former condition is equivalent to:

CI(x)B γ implies DI(x)B γ for every γ ∈ NK. The latter condition

enables us to restrict to those γ ∈ T V such that γ ≤ α. By induc-

tion, it follows that xIC ∈ (ρ(C ,≥ γ))IC implies xIC ∈ (ρ(D,≥ γ))IC or

xIC ∈ (ρ(D,≥ α))IC , for an arbitrary x ∈∆IC . Consequently, it follows

that IC |=
⋃

γ∈NK\{0} | γ≤α{ρ(C ,≥ γ) v ρ(D,≥ γ)}
⋃

γ∈NK | γ<α{ρ(C ,>

γ) v ρ(D,> γ)} ⇔ IC |= κ(〈C v D ≥ α〉). The case for > β is quite

similar.
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5. τ is a fuzzy RIA. Assume that I |= 〈R1 . . . Rm v R B γ〉. The case is sim-

ilar to the previous one, with the difference that there appears a min-

imum i.e., min{RI1(y1, y2), . . . , RIn(yn, yn+1)} ≤ {RI(y1, yn+1). As a con-

sequence, the left side of the crisp RIAs will contain ρ(R1,Bγ) . . .ρ(Rm,

Bγ) in the left side, instead of ρ(C ,Bγ).

6. τ is a role disjoint axiom. Assume that I |= dis(S1, S2). Then, ∀x , y ∈
∆I , SI1 (x , y) = 0 or SI2 (x , y) = 0. By induction, ∀x , y ∈ ∆IC , (x , y) ∈
(ρ(S1,≤ 0))IC or (x , y) ∈ (ρ(S2,≤ 0))IC ⇔ ∀x , y ∈ ∆IC , (x , y) 6∈
(ρ(S1,> 0))IC or (x , y) 6∈ (ρ(S2,> 0))IC ⇔ (ρ(S1,> 0))IC ∩ (ρ(S2,>

0))IC = ;⇔ IC |= (dis(ρ(S1,> 0),ρ(S2,> 0)))⇔ IC |= κ(dis(S1, S2)).
The case τ= dis(T1, T2) is similar.

7. τ is a reflexive role axiom. Assume that I |= ref(R). Then, ∀x ∈
∆I , RI(x , x) = 1. By induction, ∀x ∈ ∆IC , (x , x) ∈ (ρ(R,≥ 1))IC ⇔
∀x ∈∆IC ,IC |= (x , x) : ρ(R,≥ 1)⇔ IC |= κ(ref(R)).

8. τ is an asymmetry role axiom. Assume that I |= asy(S). Then, ∀x , y ∈
∆I , if SI(x , y) > 0 then SI(y, x) = 0. By induction, ∀x , y ∈ ∆IC , if

(x , y) ∈ (ρ(S,> 0))IC then (y, x) ∈ (ρ(S,≤ 0))IC ⇔ ∀x , y ∈ ∆IC ,

if (x , y) ∈ (ρ(S,> 0))IC then (y, x) 6∈ (ρ(S,> 0))IC . Consequently,

IC |= κ(asy(ρ(S,> 0))).

The proof for the converse can be obtained using similar arguments: from

a classical interpretation we build a fuzzy interpretation. There is only one

point which is worth mentioning. If crisp(K) is satisfiable, it is not possible

(due to the axioms in T (NK)) to have an individual a such that aIC ∈ (ABγ1
)IC

and aIC 6∈ (ABγ2
)IC with γ2 < γ1, so for every individual a we can compute

the maximum value α such that a : A≥α holds, or the maximum value β

such that a : A>β holds, and use these values in the construction of the fuzzy

interpretation. The case for roles in Ra(NK) and Rc(NK) is similar. ut

Modularity

As it is the case for Zadeh logic, the reduction of an ontology can be reused

when adding new axioms and only the reduction of the new axioms has to

be included.



170 A Crisp Representation for Fuzzy SROIQ(D) under Gödel Family

Theorem 6 Let K be a G SROIQ(D) fuzzy knowledge base involving a set of

fuzzy atomic roles A, a set of a set of atomic roles Ra and a set of concrete roles

Rc, let NK be the set of relevant degrees to be considered (including 0 and 1)

and let τ be a G SROIQ(D) axiom such that:

1. for every atomic concept A which appears in τ, A∈ A,

2. for every atomic role RA which appears in τ, RA ∈ R,

3. for every concrete role T which appears in τ, T ∈ Rc,

4. if γ appears in τ, then γ ∈NK.

Then, the reduction of the union of the KB and the axiom is equivalent to the

union of the reduction of K and the reduction of τ:

cr isp(K∪τ) = crisp(K)∪ κ(τ)

Proof. Trivial from the following observations:

• Every axiom is reduced to a combination of new crisp elements.

• New elements depend on fuzzy atomic concepts, fuzzy roles and the

membership degrees appearing in the fuzzy KB.

• τ does not introduce atomic concepts, atomic abstract roles, concrete

roles nor new membership degrees with respect to the fuzzy KB.

• Every axiom is mapped independently from the others. ut

If the conditions of Theorem 6 are not satisfied, we proceed similarly as

with Zadeh logic:

• If τ introduces a new atomic concept, T (N f K) needs to be recomputed.

• If τ introduces a new atomic abstract role, Ra(N f K) needs to be recom-

puted.

• If τ introduces a new concrete role, Rc(N f K) needs to be recomputed.

• If τ introduces a new degree of truth, XK changes. As a consequence,

NK may change. If NK changes, we need to recompute:

– T (N f K),

– Ra(N f K),
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– Rc(N f K),

– The reduction of every universal quantification concept in K.

– The reduction of every fuzzy GCI in K.

– The reduction of every fuzzy RIA in K.

Complexity

Definition 58 Depth of a universal quantification concept. The depth of a

universal quantification concept is inductively defined as follows:

• depth(A) = depth(>) = depth(⊥) = depth({α1/o1, . . .αm/om}) =
depth(∃S.Sel f ) = 1,

• depth(∃R.C) = depth(¬C) = depth(≥ m S.C) = depth(≤ n S.C) =
depth(mod(C)) = depth(C ≥ α]) = depth([C ≤ β]) = depth(C),

• depth(C u D) = depth(C t D) = max{depth(C), depth(D)},

• depth(∀R.C) = 1+ depth(C),

It is easy to see that:

• Every fuzzy concept expression of depth k generates a crisp concept

expression of depth k except universal restrictions.

• The reduction of a universal quantification concept of depth k gener-

ates a crisp concept expression of depth 2 · (|NK| − 1) · k.

• Most of the axioms of the fuzzy KB generate one crisp axiom, but some

of them (fuzzy GCIs and fuzzy RIAs) generate several crisp axioms.

|NK| is bounded by |K| + 2. In this case, the size of the resulting KB

is O(|NK|k), where k is the maximal depth of the universal quantification

concepts appearing in KB:

• |κ(A)|= |A|,

• |T (NK)|= (2 · (|NK| − 1)− 1) · |A|,

• |κ(T )| ≤ 2 · (|NK| − 1) · |T |,

• |Ra(NK)|= (2 · (|NK| − 1)− 1) · |R|,

• |Rc(NK)|= (2 · (|NK| − 1)− 1) · |T|,
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• |κ(R)| ≤ 2 · (|NK| − 1) · |R|.

We recall that under Zadeh semantics, the size of the resulting KB is

quadratic (or linear if we fix the number of degrees of truth). The incre-

ment of spatial complexity is due to the use of Gödel implication in universal

quantifications. In this case it is not possible to infer the exact degrees of

truth, but we need to guess them, building disjunctions or conjunctions over

all possible combinations of the degrees of truth.

However, in most of the cases universal quantifications of the form (∀R.C)
can be approximated by using cut concepts and roles, replacing them by

(∀[R≥ α1].[C ≥ α2]), meaning that every individual which is related through

role R with degree (at least) α1 must belong to C with (at least) degree α2.

Now the reduction is:
ρ(∀[R≥ α1].[C ≥ α2],Bγ) = ∀ρ(R,≥ α1).ρ(C ,≥ α2)
ρ(∀[R≥ α1].[C ≥ α2],Cγ) = ∃ρ(R,≥ α1).ρ(C ,< α2)

Whenever this approximation is possible, the resulting KB is linear (O(|NK|)
(recall that we are assuming a fixed finite set of degrees of truth |NK|)).

7.7 Optimizations

All the optimization that we have described for Zadeh logic (Chapter 6.9)

can also be applied in Gödel logic:

• Reducing the number of new elements.

• Optimizing irreflexive role axioms2.

• Allowing crisp concepts and roles.

• Reasoning ignoring superfluous elements.

In addition, we can optimize the reductions of some fuzzy GCIs.

2For the sake of clarity, we have assumed that irreflexive axioms do not appear under
Gödel logic and that they and are represented using fuzzy RIAs, but however the optimized
representations is preferable.
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Optimizing Fuzzy GCI Reductions

Firstly, 〈C v>B γ〉 and 〈⊥ v D B γ〉 are tautologies for every fuzzy implica-

tion function, so their reductions are unnecessary in the resulting KB.
Furthermore, in some particular (but important) cases, the reduction of

a fuzzy GCI can be optimized, by applying the following proposition:

Proposition 11 If an ontology contains the axioms C1 v C2, C1 v C3 and

C2 v C3, then C1 v C3 is unnecessary.

Proof. From C1 v C2 it follows that CI1 ⊆ CI2 for some interpretation I, and

from C2 v C3 it follows that CI2 ⊆ CI3 . It follows that CI1 ⊆ CI2 ⊆ CI3 and

hence C1 v C3 holds. ut

There are several cases in which this proposition can be applied:
• κ(〈> v D B γ〉) = {> v ρ(D,Bγ)}. Note that this kind of axiom

appears in domain, range, and functional role axioms.

Example 21 Let us consider the range axiom 〈> v ∀madeFromFruit.

(NonSweetFruitt SweetFruit)≥ 1〉 with NK = {0,0.25, 0.5,0.75, 1}.

The original reduction is:

{
> v ∀madeFromFruit>0.(NonSweetFruit≥1 t SweetFruit≥1),
>v ∀madeFromFruit≥0.25.(NonSweetFruit>0.75 t SweetFruit>0.75),
>v ∀madeFromFruit>0.25.(NonSweetFruit≥0.75 t SweetFruit≥0.75),
>v ∀madeFromFruit≥0.5.(NonSweetFruit>0.5 t SweetFruit>0.5),
>v ∀madeFromFruit>0.5.(NonSweetFruit≥0.5 t SweetFruit≥0.5),
>v ∀madeFromFruit≥0.75.(NonSweetFruit>0.25 t SweetFruit>0.25),
>v ∀madeFromFruit>0.75.(NonSweetFruit≥0.25 t SweetFruit≥0.25),
>v ∀madeFromFruit≥1.(NonSweetFruit>0 t SweetFruit>0),

}

but it can be simplified to:

>v ∀madeFromFruit>0.(NonSweetFruit≥1 t SweetFruit≥1)

since the other unnecessary axioms trivially hold. ut
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• κ(〈C v ⊥ B γ〉) = {ρ(C ,> 0) v ⊥}. This axiom appears when two

concepts are disjoint.

Example 22 AssumingNK = {0,0.25, 0.5,0.75, 1}, the reduction of the

axiom 〈ReadMeatuNonReadMeatv⊥≥ 1〉 is:

{
ReadMeat>0 uNonReadMeat>0 v⊥,

ReadMeat≥0.25 uNonReadMeat≥0.25 v⊥,

ReadMeat>0.25 uNonReadMeat>0.25 v⊥,

ReadMeat≥0.5 uNonReadMeat≥0.5 v⊥,

ReadMeat>0.5 uNonReadMeat>0.5 v⊥,

ReadMeat≥0.75 uNonReadMeat≥0.75 v⊥,

ReadMeat>0.75 uNonReadMeat>0.75 v⊥,

ReadMeat≥1 uNonReadMeat≥1 v⊥,

}

but it can be optimized to:

ReadMeat>0 uNonReadMeat>0 v⊥

since the other unnecessary axioms trivially hold. ut

• The optimization is also useful in concept definitions involving the

nominal constructor or a crisp concept, as Examples 23 and 24 show:

Example 23 Assuming NK = {0, 0.25,0.5, 0.75,1}, the reduction of the

fuzzy GCI 〈C v {1/o1, 0.5/o2}〉 is:

{
C>0 v {o1, o2},
C≥0.5 v {o1, o2},
C>0.5 v {o1},
C≥1 v {o1}

}

but it can be optimized to:
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{
C>0 v {o1, o2},
C>0.5 v {o1},

}

since the two unnecessary axioms trivially hold:

{C≥0.5 v C>0, C>0 v {o1, o2}} |= C≥0.5 v {o1, o2}
{C≥1 v C>0.5, C>0.5 v {o1}} |= C≥1 v {o1}

ut

Example 24 Assuming NK = {0,0.25, 0.5,0.75, 1} and that Port is a

crisp concept, the reduction of the fuzzy GCI 〈Port v RedWine ≥ 1〉 is as

follows:

κ(〈Portv RedWine≥ 1〉) = {
Portv RedWine>0,

Portv RedWine≥0.25,

Portv RedWine>0.25,

Portv RedWine≥0.5,

Portv RedWine>0.5,

Portv RedWine≥0.75,

Portv RedWine>0.75,

Portv RedWine≥1

}

but it can be optimized to:

Portv RedWine>0

since the other unnecessary axioms trivially hold. ut

One could think that this optimization makes reasoning harder, because

the reasoning algorithm needs to deduce the axiom C1 v C3, but due to

the existence of terminological optimizations such as lazy unfolding, these

axioms are computed only when necessary [317].
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CHAPTER 8
DELOREAN Fuzzy Description Logic

Reasoner

This chapter describes our implementation of the reduction algorithms

and optimizations already described in this document, as well as a prelimi-

nary evaluation. Our prototype implementation is called DELOREAN (DEscrip-

tion LOgic REasoner with vAgueNess) and is the first reasoner that supports

fuzzy extensions of the languages OWL and OWL 2. Given a fuzzy ontol-

ogy in our fuzzy extension of OWL or OWL 2, DELOREAN computes its crisp

representation in OWL or OWL 2, respectively.
Relying on OWL is important since it is the current standard language for

ontology representation. Furthermore, supporting a fuzzy extension of OWL

2 (or OWL 2) is very interesting since “the broad acceptance of the forthcoming

OWL 1.1 ontology language will largely depend on the availability of editors,

reasoners and numerous other tools that support the use of OWL 1.1 from a

high-level/application perspective” [132].
In a strict sense, DELOREAN is not a reasoner but a translator from a fuzzy

ontology language to a classical ontology language (the standard language

OWL or OWL 2, depending on the expressivity of the original ontology).

Then, a classical DL reasoner is employed to reason with the resulting ontol-

ogy. But due to this ability of combining the reduction procedure with the

crisp reasoning, we will refer to DELOREAN as a reasoner.

179
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Section 8.1 describes the main features and the architecture of the rea-

soner. The syntax of the fuzzy language and the functions of the API are

analyzed in Sections 8.2 and 8.3 respectively. Finally, a concrete use case

is presented in Section 8.4, together with a preliminary evaluation of the

usefulness of the optimizations and the performance of the reasoner.

8.1 Main Features and Architecture

In 2007 we developed a first version based on Jena API. This first version was

developed in Java programming language, and using the parser generator

JavaCC to read the inputs, and DIG 1.1 interface to communicate with crisp

DL reasoners.
JavaCC1 (Java Compiler Compiler) is an open-source parser generator

for the Java programming language. Given a formal specification in EBNF

(Extended Backus-Naur Form, [338]) notation of a grammar, it produces as

output the Java source code of the parser.
Jena [198]2 is probably the most used Semantic Web API. It is an open-

source framework which includes an RDF API, a SPARQL query engine and

an OWL API. Jena does not allow directly to reason with OWL ontologies,

but it can use an external reasoner by means of the DIG interface.
DIG (Description logic Implementation Group) is a common interface to

access DL reasoners [23], avoiding the need to know the particularities of

the representation languages of all of them. Currently, the latest version is

1.1 and it supports SHOIQ. Version 2.03 is still under development and it

is expected to support SROIQ [318].
The use of Java makes DELOREAN platform independent. Moreover, DE-

LOREAN can take advantage of any crisp reasoner as long as it supports DIG

interface. However, DIG interface does not yet support full SROIQ, so the

logic supported by this first version of DELOREAN was restricted to Z SHOIN
(OWL DL). From a historical point of view, this version was the first reasoner

that supported a fuzzy extension of the OWL DL language [32].
1https://javacc.dev.java.net
2http://jena.sourceforge.net
3http://dig.cs.manchester.ac.uk/

https://javacc.dev.java.net
http://jena.sourceforge.net
http://dig.cs.manchester.ac.uk/
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With the aim of augmenting the expressivity of the logic, we have imple-

mented a newer version which uses OWL API 2 instead of Jena API.
OWL API 24 is an open-source API for manipulating OWL 2 ontologies [132],

which extends the previous OWL API (or WonderWeb API) [22] that only

supported OWL ontologies. Applications can use some integrated DL rea-

soners such as Pellet [277] and FaCT++ [316], but the API also supports

integration with DIG-compliant DL reasoners. Currently, the API does not

support the use of the universal role.
In the current version, DELOREAN supports the fuzzy DLs Z SROIQ(D)

and G SROIQ(D), which correspond to fuzzy versions of the DL SROIQ(D)
(equivalent to OWL 2) under a semantics given by Zadeh and Gödel families

of fuzzy operators, respectively. The only limitation is that the universal role

cannot be used, since OWL API 2 does not currently allow it. DELOREAN is

the first reasoner that supports a fuzzy extension of OWL 2.
Since DIG interface does not currently allow the full expressivity of OWL

2, our solution was to integrate directly DELOREAN with a concrete crisp on-

tology reasoner: PELLET, which can be directly used from the current version

of the OWL API 2. This way, the user is free to choose to use either a generic

crisp reasoner (restricting the expressivity to SHOIQ) or PELLET (with no

expressivity limitations).
Figure 8.1 illustrates the architecture of the system:

Figure 8.1: Architecture of DELOREAN reasoner.

4http://owlapi.sourceforge.net

http://owlapi.sourceforge.net
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• The Parser reads a fuzzy ontology contained in an input physical URI

and translates it into an internal representation of a fuzzy KB. The point

here is that we can use any language to encode the fuzzy ontology, as

long as the Parser can understand the representation and the reduction

is properly implemented. Moreover, we could have several parsers,

each of them being responsible of the translation of a different fuzzy

ontology language.

• The Reduction module implements the reduction procedures described

in Chapters 6 and 7, building an OWL API 2 model with an equiv-

alent crisp ontology, which can be exported to an OWL 2 file. The

implementation also takes into account all the optimizations already

discussed along this document. Given an input fuzzy KB and an output

physical URI, the pseudo-code of the reduction is:

// Get degrees in the KB and t h e i r complementaries

TreeSet x = kb . getDegrees ( ) ;

// Create axioms fo r the new alpha−cu t s and alpha−r o l e s

createNewAxioms ( x ) ;

// Reduce every axiom in the ABox

reduceABox ( ) ;

// Reduce every axiom in the TBox

reduceTBox ( x ) ;

// Reduce every axiom in the RBox

reduceRBox ( x ) ;

// Create output OWL f i l e

wr i te ( ontology , phys ica lURI ) ;

// Perform a cons i s t ency t e s t

boolean c o n s i s t e n t = i sOnto logyCons i s t en t ( ontology ) ;

• The Inference module tests the consistency of the ontology, using either

PELLET or any crisp reasoner through the DIG interface. Interestingly,
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crisp reasoning does not take into account superfluous elements as dis-

cussed in Section 6.9.

• A simple User interface manages inputs and outputs (see Figure 8.2

for a screen shot). The inputs of the system are the path of the fuzzy

ontology, the path of the output crisp ontology and the reasoner. The

reasoner can be Pellet, or the URL of any DIG-complaint DL reasoner.

The outputs of the system are the result of the consistency test, the

reduction time and the reasoning time. Of course, some error messages

are shown if necessary.

Figure 8.2: User interface of DELOREAN reasoner.
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8.2 Syntax of the Fuzzy Language

In this section we shall describe the syntax of the fuzzy language supported

by DELOREAN. We will begin by introducing the notation that we will use:

• C denotes a concept.
• a denotes an individual.
• R denotes a role.
• S denotes a simple role.
• M denotes a strictly positive natural number.
• N denotes a natural number.
• ./ denotes one of the following: >= (greater or equal), > (greater), <= (less

or equal) or < (less).
• B denotes one of the following: >= (greater or equal) or > (greater).
• γ denotes a rational number in [0,1].

Input files are text files with a fuzzy KB. A fuzzy KB consists of a set of

axioms (one per line) with the syntax shown in Table 8.1. Fuzzy concepts can

be built by using complex expressions with the syntax shown in Table 8.1.

It can be seen that the syntax of axioms and fuzzy concepts draws inspi-

ration from the Knowledge Representation System Specification [234].
There are some restrictions in the degree that can be used. If ./ is >= or

<, then γ has to be in (0, 1], while if ./ is > or <=, then γ has to be in [0, 1).
Of course, if ./ γ are omitted, ≥ 1 is assumed.

Furthermore, in fuzzy nominal concepts, γi should be in (0, 1] and, in

case it is not specified, 1 is assumed.

In order to make the representation of fuzzy KBs easier, DELOREAN also

allows the possibility of importing OWL 2 ontologies. These (crisp) ontolo-

gies are saved as a text file which the user can edit and extend, for example

adding membership degrees to the fuzzy axioms or specifying a particular

fuzzy operator (Zadeh or Gödel family) for some complex concept.
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Table 8.1: Axioms and fuzzy concepts in DELOREAN

Fuzzy axioms
(instance a C [./ γ]) Concept assertion
(related a1 a2 R [./ γ]) Role assertion
(not-related a1 a2 R [./ γ]) Negated role assertion
(different-as a1 a2) Inequality assertion
(same-as a1 a2) Equality assertion
(cris-concept C Crisp concept axiom
(implies-concept C1 C2 [B γ]) GCI
(equivalent-concepts C1 C2) Concept equivalence
(disjoint-concepts C1 . . . Cn) Disjoint concept axiom
(domain R C) Domain axiom
(range R C) Range axiom
(cris-role R Crisp role axiom
(implies-role R1 . . . Rm R [B γ]) RIA
(equivalent-roles R1 R2) Equivalence role axiom
(inverse-role R1 R2) Inverse role axiom
(disjoint-roles S1 . . . Sn) Disjoint role axiom
(transitive R) Transitive role axiom
(symmetric R) Symmetric role axiom
(asymmetric S) Asymmetric role axiom
(reflexive R) Reflexive role axiom
(irreflexive S) Irreflexive role axiom

Fuzzy concepts
A Atomic concept
*top* Top concept
*bottom* Bottom concept
(and C1 . . . Cn) Concept conjunction
(or C1 . . . Cn) Concept disjunction
(not C) Concept negation
(some R C) Existential quantification
(all R C) Universal quantification
(one-of I1 [γ1] I2 [γ2] . . . In [γn] ) Fuzzy nominal
(at-least M S) At-least unqualified number restriction
(at-most N S) At-most unqualified number restriction
(exactly N S) Exact unqualified number restriction
(at-least M S C) At-least qualified number restriction
(at-most N S C) At-most qualified number restriction
(exactly M S C) Exact qualified number restriction
(self S) Local reflexivity
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Example 25 This is a fuzzy ontology about wines (see Section 8.4):

( c r i s p−c on c ep t A l sa t ianWine )
( c r i s p−c on c ep t AmericanWine )
( . . . )
( c r i s p−c on c ep t Wine )
( c r i s p−c on c ep t WineDes c r ip to r )
( c r i s p−c on c ep t WineGrape )
( c r i s p−c on c ep t Winery )
( c r i s p−r o l e madeFromFruit )
( c r i s p−r o l e madeFromGrape )
( c r i s p−r o l e madeIntoWine )
( c r i s p−r o l e producesWine )
( i n s t a n c e Chicken LightMeatFowl >= 0.5)
( i n s t a n c e Steak NonSpicyRedMeat >= 0.8)
( i n s t a n c e Roa s tBe e f NonSpicyRedMeat >= 0.85)
( . . . )
( r e l a t e d AnjouRegion Lo i r eReg i on l o c a t e d I n >= 0.95)
( r e l a t e d Longr idgeMer lo t Moderate hasF lavor >= 0.4)
( . . . )
( d i f f e r e n t −as Sweet Dry )
( d i f f e r e n t −as OffDry Sweet )
( d i f f e r e n t −as OffDry Dry )
(g−imp l i e s−c on c ep t RedBurgundy ( at−most 1 madeFromGrape ) >= 0.5)
(g−imp l i e s−c on c ep t RedBurgundy ( some madeFromGrape ( one−o f P inotNoirGrape )) >= 0.5)
(g−imp l i e s−c on c ep t S w e e t R i e s l i n g ( a l l ha sF lavor ( one−o f Moderate Strong )) >= 0.5)
(g−imp l i e s−c on c ep t S w e e t R i e s l i n g ( some hasBody ( one−o f F u l l ) ) >= 0.5)
(g−imp l i e s−c on c ep t S w e e t R i e s l i n g Des ser tWine >= 0.5)
( . . . )
(g−imp l i e s−c on c ep t ( and NonRedMeat RedMeat ) ∗bottom∗ >= 1.0)
(g−imp l i e s−c on c ep t ( some ad ja c en tReg i on ∗ top ∗) Region >= 1.0)
(g−imp l i e s−c on c ep t ∗ top ∗ ( a l l ad ja c en tReg i on Region ) >= 1.0)
(g−imp l i e s−c on c ep t ( some hasWineDes c r ip to r ∗ top ∗) Wine >= 1.0)
(g−imp l i e s−c on c ep t ∗ top ∗ ( a l l hasWineDes c r ip to r ( or WineTaste WineColor )) >= 1.0)
(g−imp l i e s−c on c ep t ∗ top ∗ ( at−most 1 hasSugar ) >= 1.0)
(g−imp l i e s−c on c ep t ∗ top ∗ ( a l l hasSugar ( one−o f Sweet Of fDry Dry )) >= 1.0)
( . . . )
( e qu i va l en t−c o n c e p t s RedBurgundy (and Burgundy RedWine ))
( equ i va l en t−c o n c e p t s WineDe s c r i p to r ( or WineTaste WineColor ))
( . . . )
( t r a n s i t i v e l o c a t e d I n )
( i n v e r s e madeFromGrape madeIntoWine )
( i n v e r s e hasMaker producesWine )
(g−imp l i e s−r o l e hasCo lor hasWineDes c r ip to r >= 1.0)
(g−imp l i e s−r o l e hasF lavor hasWineDes c r ip to r >= 1.0)
(g−imp l i e s−r o l e hasBody hasWineDes c r ip to r >= 1.0)
(g−imp l i e s−r o l e hasSugar hasWineDes c r ip to r >= 1.0)
(g−imp l i e s−r o l e madeFromGrape madeFromFruit >= 1.0)
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8.3 DeLorean API

As we have seen, DELOREAN can be used as a stand-alone application, but it

can also be used as an API from other Java applications. In this section we

explain how to use the latter feature.
Firstly, we present a sample template code which can be adapted accord-

ing to the user needs:

// Import packages

import edu . es . ugr . a r a i . delorean . ∗ ;

import edu . es . ugr . a r a i . delorean . par se r . ∗ ;

pub l i c c l a s s UsingDeLorean

{

pub l i c s t a t i c void main( S t r ing args [] )
{

// Create KB

KnowledgeBase kb = new KnowledgeBase ( ) ;

// Add axioms to the KB

// . . .

// Prepare reduct ion

Reduction r = new OptimizedReduction (kb , reasonerURL ,

nameSpace , jTextArea , outputPath ) ;

// S t a r t reduct ion

r . run ( ) ;

}
}

Note that KnowledgeBase class represents a fuzzy ontology and that the

constructor of the OptimizedReduction class receives five arguments:

1. kb: a fuzzy knowledge base, instance of the KnowledgeBase class.

2. reasonerURL: URL of the DIG reasoner. For example, a string of the

form "http://localhost:8080". In order to use the integrated Pellet rea-

soner, the value should be "Pellet".
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3. nameSpace: name space of the ontology. For example, a possible

namespace is the string "http://arai.ugr.es/testont.owl".

4. printableArea: an instance of the JTextArea class which is used to print

output messages. If it takes the value "null", then no messages will be

shown.

5. outputFilePath: path of the output file. For example, in Windows sys-

tems, a string of the form "c:/example.owl".

The remaining part of this section explains how to populate the fuzzy KB

with axioms.

Adding axioms to the fuzzy KB. The easiest way to do this is by loading

an input file with the syntax specified in Section 8.2. Assume that inputFile

is a string with the path of the input file. For example, in Windows sys-

tems, something of the form "c:/example.txt". The source code for this is the

following:

// Load input f i l e

Par se r par se r = new Parser (new Fi le InputSt ream ( i n p u t F i l e ) ) ;

// Create fuzzy KB from f i l e

KnowledgeBase kb = parse r . S t a r t ( ) ;

An alternative is to use the API to add each of the axioms. Table 8.2 de-

scribes the representation that the KnowledgeBase class uses for the different

elements of the fuzzy KB. Having into account this representation, the user

can use the following methods to add new axioms:

• addAsymmetricRole(Role role).

• addConceptAssertion(Individual a, Concept c, int inequality, double degree).

• addConceptEquivalence(Concept c1, Concept c2).

• addCrispConcept(String conceptName).

• addCrispRole(String roleName).

• addDisjointConcepts(ArrayList disjointConcepts).
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• addDisjointRoles(ArrayList disjointRoles).

• addEquality(String ind1, String ind2).

• addGoedelGCI(Concept c1, Concept c2, int inequality, double degree).

• addGoedelNegatedRoleAssertion(Individual a, Role role, Individual b, int in-

equality, double degree).

• addGoedelRIA(ArrayList roleC, Role roleP, int inequality, double degree).

• addIndividual(String indName, Individual ind).

• addInequality(String ind1, String ind2).

• addInverseRole(String roleName, String inverseRoleName).

• addIrreflexiveRole(Role role).

• addKDGCI(Concept c1, Concept c2, int inequality, double degree).

• addKDRIA(ArrayList roleC, Role roleP, int inequality, double degree).

• addNegatedRoleAssertion(Individual a, Role role, Individual b, int inequality,

double degree).

• addReflexiveRole(Role role).

• addRoleAssertion(Individual a, Role role, Individual b, int inequality, double

degree).

• addRoleDomain(Role role, Concept conc).

• addRoleEquivalence(Role role1, Role role2).

• addRoleRange(Role role, Concept conc).

• addSymmetricRole(Role role).

• addTransitiveRole(Role role).

• addZadehGCI(Concept c1, Concept c2).

• addZadehRIA(ArrayList roleC, Role roleP).

The names of the methods are self-descriptive, and there is only a remark.

If the semantics of the axioms depends on the choice of the fuzzy operators,

there are different methods to create them (one for each of them):
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Table 8.2: Variables of the KnowledgeBase class

Variable Meaning
ArrayList<ConceptAssertion> assertions Concept assertions
ArrayList<Role> asymmetricRoles Asymmetric role axioms
ArrayList<ConceptEquivalence> conceptEquivalences Concept equivalence axioms
Hashtable concepts Alphabet of concepts
HashSet<java.lang.String> crispConcepts Crisp concepts
HashSet<java.lang.String> crispRoles Crisp roles
Hashtable disjointRoles Disjoint role axioms
ArrayList<ConceptInclusion> gcis GCIs
Hashtable individuals Alphabet of individuals
Hashtable inverseRoles Inverse roles
ArrayList<Role> irreflexiveRoles Irreflexive role axioms
ArrayList<Role> reflexiveRoles Reflexive role axioms
ArrayList<RoleInclusion> rias RIAs
ArrayList<RoleEquivalence> roleEquivalences Role equivalence axioms
Hashtable roles Alphabet of roles
ArrayList<Role> symmetricRoles Symmetric role axioms
ArrayList<Role> transitiveRoles Transitive role axioms

• In fuzzy GCIs, addKDGCI adds a fuzzy GCI with a semantics given by

Kleene-Dienes implication, addGoedelGCI uses Gödel implication and

addZadehGCI uses Zadeh’s inclusion of fuzzy sets.

• In fuzzy RIAs, addKDRIA adds a fuzzy RIA with a semantics given by

Kleene-Dienes implication, addGoedelRIA uses Gödel implication and

addZadehRIA uses Zadeh’s inclusion of fuzzy sets.

• In negated role assertions, addGoedelNegatedRoleAssertion uses Gödel

negation in the semantics, and addNegatedRoleAssertion uses standard

negation.

Now, it only remains to explain how to build inequalities, degrees, indi-

viduals, roles and concepts.

Adding inequalities. Inequalities can be built by using some public con-

stants of the class Inequality, namely:
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• Inequality.GREATEREQUAL for ≥.

• Inequality.GREATER for >.

• Inequality.LESS for <.

• Inequality.LESSEQUAL for ≤.

Adding degrees of truth. Degrees are double numbers, with the special

feature that they are required to be in [0, 1].

Adding individuals. Individuals are created using the method getIndivid-

ual of the class KnowledgeBase, which returns an individual with a specified

name creating it in case there does not already exist an individual with such

a name:

I n d i v i d u a l ind = kb . g e t I n d i v i d u a l ( individualName ) ;

Adding roles. Roles are directly built using the constructor of the class

Role:

Role aRole = new Role ( S t r i ng roleName ) ;

Adding concepts. Concepts can be obtained by using the different con-

structors of the Concepts class:

• Concept(String name): Constructor for atomic concepts.

• Concept(String name, int type): Constructor for top and bottom concepts.

• Concept(int type, Concept c1, Concept c2, String name): Constructor for

union and intersection concepts.

• Concept(int type, Role role, Concept c): Constructor for existential and

universal quantifications.

• Concept(int type, Role role, TrapezoidalNumber t): Constructor for con-

crete existential and universal quantifications.

• Concept(int type, int card, Role role): Constructor for at-most and at-least

unqualified number restrictions.
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• Concept(int type, String name, ArrayList nom): Constructor for fuzzy nom-

inal concepts.

• Concept(int type, int card, Role role, Concept c): Constructor for at-most

and at-least qualified number restrictions.

• Concept(int type, int card, Role role, TrapezoidalNumber t): Constructor for

concrete at-most and at-least qualified number restrictions.

• Concept(int type, Role role): Constructor for local reflexivity concepts.

The type of a concept can be one of the public constants defined in the

Concept class, namely:

• Concept.ATOMIC

• Concept.TOP

• Concept.BOTTOM

• Concept.COMPLEMENT

• Concept.GOEDEL_COMPLEMENT

• Concept.AND

• Concept.OR

• Concept.SOME

• Concept.ALL

• Concept.GOEDEL_ALL

• Concept.NOMINAL

• Concept.ATLEAST

• Concept.ATMOST

• Concept.GOEDEL_ATMOST

• Concept.QATLEAST

• Concept.QATMOST

• Concept.GOEDEL_QATMOST

• Concept.SELF
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• Concept.CONCRETE_SOME

• Concept.CONCRETE_ALL

• Concept.CONCRETE_GOEDEL_ALL

• Concept.CONCRETE_ATLEAST

• Concept.CONCRETE_ATMOST

• Concept.CONCRETE_GOEDEL_ATMOST

• Concept.CONCRETE_QATLEAST

• Concept.CONCRETE_QATMOST

• Concept.CONCRETE_GOEDEL_QATMOST

In fuzzy nominals, nom is an ArrayList of objects of the class Nominal,

which are created using the constructor:

Nominal nom = new Nominal ( I n d i v i d u a l i , double n ) ;

Finally, trapezoidal membership functions are built by using the construc-

tor of the TrapezoidalNumber class:

TrapezoidalNumber t rap = new TrapezoidalNumber ( double a ,

double b , double c , double d ) ;

8.4 Use case: A fuzzy Wine ontology

This section considers a concrete use case, a fuzzy extension of the well-

known Wine ontology5, a highly expressive ontology (in SHOIN (D)). Some

metrics of the ontology are shown in the first column of Table 8.3. In the con-

text of an empirical evaluation of the reductions of fuzzy DLs to crisp DLs,

P. Cimiano et al. wrote that “the Wine ontology showed to be completely in-

tractable both with the optimized and unoptimized reduction even using only

3 degrees” [67]. They only considered there what we have called here “op-

timization of the number of new elements and axioms”. We will show that

the rest of the optimizations, specially the (natural) assumption that there
5http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine.rdf

http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine.rdf
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are some crisp elements, reduce significantly the number of axioms, even if

tractability of the reasoning is to be verified.

A fuzzy extension of the ontology. We have defined a fuzzy version of the

Wine ontology by adding a degree to the axioms. Given a variable set of

degrees NK, the degrees of the truth for fuzzy assertions is randomly chosen

in NK. In the case of fuzzy GCIs and RIAs, the degree is always 1 in special

GCIs (that is, in concept equivalences and disjointness, and in domain, range

and functional role axioms) or if there is a crisp element in the left side;

otherwise, the degree is 0.5.

Moreover, in most of the times fuzzy assertions are of the form 〈τ B

β〉 with β 6= 1. Clearly, this favors the use of elements of the forms CBβ

and RBγ, reducing the number of superfluous concepts. As a consequence,

we are in the worst case from the point of view of the size of the resulting

crisp ontology. Nonetheless, in practice we will be often able to say that an

individual fully belongs to a fuzzy concept, or that two individuals are fully

related by means of a fuzzy role.

An excerpt of the fuzzy Wine ontology has been included in Example 25.

Crisp concepts and roles. A careful analysis of the fuzzy KB brings about

that most of the concepts and the roles should indeed be interpreted as crisp.

For example, most of the subclasses of the class Wine refer to the geo-

graphical origin of the wines. For instance, Alsatian wine is a wine which has

been produced in the French region of Alsace:

AlsatianWine≡Wineu ∃locatedAt.{alsaceRegion}

Although there are geographical areas which do not have a well defined

meaning, all of the geographical places used in the Wine ontology have a

clear boundary and thus can be interpreted as crisp. Some examples of im-

precise geographical areas are Scandinavia or Lapland (as shown in [125],
a crisp relation partOf cannot represent the partial overlap between Lapland

and the countries Finland, Sweden, Norway, and Russia).
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Another important number of subclasses of Wine refer to the type of grape

used, which is also a crisp concept. For instance, Riesling is a wine which has

been produced from Riesling grapes:

Riesling≡Wineu ∃madeFromGrape.{RieslingGrape}u ≥ 1 madeFromGrape.>

The result of our study has identified 50 fuzzy concepts in the Wine on-

tology. The source of the vagueness is summarized in several categories6:

• Color of the wine: WineColor, RedWine, RoseWine, WhiteWine, Red-

Bordeaux, RedBurgundy, RedTableWine, WhiteBordeaux, WhiteBurgundy,

WhiteLoire, WhiteTableWine.

• Sweetness of the wine: WineSugar, SweetWine, SweetRiesling, WhiteNon-

SweetWine, DryWine, DryRedWine, DryRiesling, DryWhiteWine.

• Body of the wine: WineBody, FullBodiedWine.

• Flavor of the wine: WineFlavor, WineTaste.

• Age of the harvest: LateHarvest, EarlyHarvest.

• Spiciness of the food: NonSpicyRedMeat, NonSpicyRedMeatCourse, Spicy-

RedMeat, PastaWithSpicyRedSauce, PastaWithSpicyRedSauceCourse, Pas-

taWithNonSpicyRedSauce, PastaWithNonSpicyRedSauceCourse, SpicyRed-

MeatCourse.

• Sweetness of the food: SweetFruit, SweetFruitCourse, SweetDessert, Sweet-

DessertCourse, NonSweetFruit, NonSweetFruitCourse.

• Type of the meat: RedMeat, NonRedMeat, RedMeatCourse, NonRed-

MeatCourse. These concept are fuzzy because, according to the age

of the animal, pork and lamb are classified as red (old animals) or

white (young animals) meat.

• Heaviness of the cream: PastaWithHeavyCreamSauce, PastaWithLight-

CreamSauce. In this case the terms “heavy” and “light” depend on the

fat percentage, and thus can be a matter of degree.
6Clearly, these categories are not disjoint and some concepts may belong to more than

one, meaning that they are fuzzy for several reasons. For example, DryRedWine is a fuzzy
concept because both “dry” and “red” are vague terms.
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• Desserts: Dessert, CheeseNutsDessert, DessertCourse, CheeseNutsDessert-

Course, DessertWine. We make these concepts fuzzy because the ques-

tion whether something is a dessert or not does not have a clear answer.

As already discussed, the color, the sweetness, the body and the flavor

of a wine are fuzzy. As a consequence, we can identify 5 fuzzy roles: has-

Color, hasSugar, hasBody, hasFlavor, and hasWineDescriptor, where the role

hasWineDescriptor is a super-role of the other four roles.

Measuring the importance of the optimizations. We have focused our

experimentation in a variant of Z SHOIN (so we have omitted the con-

crete role yearValue) using Gödel implication in the semantics of fuzzy GCIs

and RIAs. This combination is reasonable in order to overcome the already

mentioned counter-intuitive effects of Kleene-Dienes implication.

We have performed several reductions of the fuzzy ontology. Figure 8.3

shows an excerpt of the crisp representation of the fuzzy Wine ontology with

5 degrees of truth. Note for example that the reduction of the fuzzy concept

WineColor introduces 8 new crisp concepts.

Table 8.3 show the metrics of the crisp ontologies obtained after apply-

ing different optimizations. The meaning of the columns of the table is the

following:

1. Column “Original” shows some metrics of the original ontology.

2. “None” considers the reduction obtained without applying any opti-

mization.

3. “(NEW)” considers the reduction obtained after optimizing the number

of new elements and axioms.

4. “(GCI)” considers the reduction obtained after optimizing GCI reduc-

tions.

5. “(C/S)” considers the reduction obtained after allowing crisp concepts

and roles and ignoring superfluous elements.

6. Finally, “All” applies all the previous optimizations.



8.4. Use case: A fuzzy Wine ontology 197

Figure 8.3: An excerpt of the crisp representation of the fuzzy Wine ontology.
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Table 8.3: Metrics of the Wine ontology and its fuzzy versions with 5 degrees

Original None (NEW) (GCI) (C/S) All
Individuals 206 206 206 206 206 206

Named concepts 136 2176 486 2176 800 191
Abstract roles 16 128 128 128 51 20
Concrete roles 1 0 0 0 0 0

Concept assertions 194 194 194 194 194 194
Role assertions 246 246 246 246 246 246

Inequality assertions 3 3 3 3 3 3
Equality assertions 0 0 0 0 0 0

New GCIs 0 4352 952 4352 1686 324
Subclass axioms 275 1288 1288 931 390 390

Concept equivalences 87 696 696 696 318 318
Disjoint concepts 19 152 152 19 152 19

Domain role axioms 13 104 104 97 104 97
Range role axioms 10 80 80 10 80 10

Functional role axioms 6 48 48 6 48 6
New RIAs 0 136 119 136 34 34

Sub-role axioms 5 40 40 40 33 33
Role equivalences 0 0 0 0 0 0

Inverse role axioms 2 16 16 16 2 2
Transitive role axioms 1 8 8 8 1 1

We have put together the optimizations of crisp and superfluous elements

because in this ontology handling superfluous concepts is not always useful,

due to the existence of a lot of concept definitions, as we will see in the next

example.

Example 26 Consider the fuzzy concept NonRedMeat.

Firstly, this concept appears as part of a fuzzy assertion stating that pork is

a non read meat:

σ(〈Pork : NonRedMeat Bα1〉) = Pork : NonRedMeatBα1

Secondly, non read meat is declared to be disjoint from read meat:

κ(〈RedMeatuNonRedMeatv⊥≥ 1〉) = RedMeat>0 uNonRedMeat>0 v⊥
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Thirdly, non read meat is a kind of meat:

κ(〈NonRedMeatv Meat≥ α2〉) = NonRedMeat>0 v Meat

If these were the only occurrences of NonRedMeat, then the reduction would

create only two non-superfluous crisp concepts, namely NonRedMeat>0 and

NonRedMeatBα1
, and in order to preserve the semantics of them we would need

to add just one axiom during the reduction:

NonRedMeatBα1
v NonRedMeat>0

However, this is not true because NonRedMeat appears in the definition

of the fuzzy concept NonRedMeatCourse. In fact, κ(NonRedMeatCourse ≡
MealCourse u ∀hasFood.NonRedMeat) introduces non-superfluous crisp con-

cepts for the rest of the degrees in NK. Consequently, for each 1 ≤ i ≤ |NK| −
1, 2≤ j ≤ |NK| − 1, the reduction adds to T (NK) the following axioms:

NonRedMeat≥γi+1
v NonRedMeat>γi

NonRedMeat>γ j
v NonRedMeat≥γ j

ut

Note that the size of the ABox is always the same, because every axiom

in the fuzzy ABox generates exactly one axiom in the reduced ontology.

The number of new GCIs and RIAs added to preserve the semantics of

the new elements is much smaller in the optimized versions. In particular,

we reduce from 4352 to 324 GCIs (7.44%) and from 136 to 34 RIAs (25%).

This shows the importance of reducing the number of new crisp elements

and their corresponding axioms, as well as of defining crisp concepts and

roles and (to a lesser extent) handling superfluous concepts.

Optimizing GCI reductions turns out to be very useful in reducing the

number of disjoint concepts, domain, range and functional role axioms: 152

to 19 (12.5 %), 104 to 97 (93.27 %), 80 to 10 (12.5 %), and 48 to 6 (12.5

%), respectively.
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In the case of domain role axioms the optimization is not very high be-

cause, in order to apply the optimizations, we need to use an inverse role,

which is defined only for one of the roles that are involved in this kind of

axiom.

Every fuzzy GCI or RIA generates several axioms in the reduced ontology.

Combining the optimization of GCI reductions with the definition of crisp

concepts and roles reduces the number of new axioms, from 1288 to 390

subclass axioms (30.28 %), from 696 to 318 concept equivalences (45.69 %)

and from 40 to 33 sub-role axioms (82.5 %).

Finally, the number of inverse and transitive role axioms is reduced in

the optimized version because fuzzy roles interpreted as crisp introduce one

inverse or transitive axiom, instead of several ones. This allows a reduction

from 16 to 2 axioms, and from 8 to 1, respectively, which corresponds to the

12.5 % in both cases.

Table 8.4 shows the influence of the number of degrees on the size of the

resulting crisp ontology, as well as on the reduction time (which is shown

in seconds). The reduction time is small enough to make possible to recom-

pute the reduction of an ontology in real-time when necessary, thus allowing

superfluous concepts and roles in the reduction to be avoided.

Table 8.4: Influence of the number of degrees in the reduction.

Crisp 3 5 7 9 11 21
Number of axioms 811 1166 1674 2182 2690 3198 5738

Reduction time - 0.343 0.453 0.64 0.782 0.859 1.75
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CHAPTER 9
Conclusions and Future Work

This chapter summarizes the contributions of this thesis to the field of fuzzy

ontologies, analyzing the results in accordance with the initial objectives.

This dissertation means an important step towards the achievement of

fuzzy ontologies, capable of representing and handling imprecise, vague and

uncertain knowledge. Throughout the document, we have presented ex-

amples in different application domains, such as medicine, accommodation,

music, or enology.

Objective 1. Chapter 4 fulfills the first of our objectives, which was to per-

form a critical review of the state of the art in fuzzy ontologies and fuzzy DLs.

We have observed that none of the existing definitions of fuzzy ontology fits

well with our more general view, and we have provided an alternative defini-

tion. We have also identified some limitations on the expressivity of current

fuzzy DLs. Some of them have been overcome in the next chapter.

Objective 2. Our definition of the fuzzy DL SROIQ(D) in Chapter 5 ful-

fills the second of our objectives, which was to obtain a fuzzy DL increasing

the expressivity with respect to the related work and representing uncertain

knowledge.

Among other features, our logic includes fuzzy nominals, making possi-

ble to give extensive definitions to fuzzy sets, cut concept and roles, fuzzy
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GCIs and RIAs, modified concepts and roles, and fuzzy concrete domains.

We accept all the fuzzy modifiers and fuzzy concrete domains which have

previously been implemented in some fuzzy DL reasoner. Historically, we

provided the first reasoning algorithm that supported fuzzy GCIs and RIAs,

as well as modified roles.

The properties of the logic have been studied, paying special attention to

the cases of Zadeh and Gödel families of fuzzy operators. They have some dif-

ferent features, and each of them has some advantages and some drawbacks,

so different applications may require one or the other. One of the most inter-

esting properties of Zadeh family is that the use of Kleene-Dienes implication

in the semantics of fuzzy GCIs and RIAs brings about two counter-intuitive

effects. On the other hand, Gödel family forces at-most qualified number

restrictions to be crisp concepts, just to cite an example. These families can

also be combined, and their fuzzy operators can be used together.

We have also added a possibilistic layer on top of the fuzzy DL allowing

uncertain knowledge to be represented.

Objective 3. Chapters 6 and 7 fulfill the third objective: the representation

of fuzzy ontologies using crisp ontologies, in such a way that crisp ontology

languages, reasoners and other related tools can be reused. An immediate

practical application of fuzzy ontologies is feasible, because of its tight re-

lation with already existing languages and tools which have proved their

validity.

Our proposal has several advantages:

• There is no need to agree on a new standard fuzzy language, but every

developer could use its own language expressing a fuzzy DL, as long as

he implements the reduction to the standard language.

• We can continue using standard languages with a lot of resources avail-

able, avoiding the need (and cost) of adapting them to the new fuzzy

language. Although it would be desirable to assist the user in tasks

such as fuzzy ontology editing, reducing the fuzzy ontology into a crisp

one or fuzzy querying, once the reduction is performed, we may use

the resources available for the crisp language.
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• We may continue using existing crisp reasoners. Even if we do not

claim that reasoning will be more efficient, this approach offers a work-

around to support early reasoning in future fuzzy languages. Nowa-

days, the unique fuzzy DL reasoner fully supporting fuzzy extensions

of the languages OWL and OWL 2 is based on this approach.

• It can help to proof the decidability of reasoning tasks in fuzzy DLs for

which no other reasoning algorithm is known. For instance, we have

proved that fuzzy SROIQ(D) under Gödel family is decidable.

• It is possible to reason with more expressive fuzzy DLs. Current spe-

cific reasoning algorithms to reason with fuzzy DLs are restricted to

SHOIN [288] or SHIF(D) [298] under Zadeh family, orALC [120]
under Gödel family, but we have considered instead SROIQ(D).

We have studied the complexity of the resulting crisp KBs, which is quadratic

in the case of Zadeh family, or linear if we fix the set of degrees of truth. In

the case of Gödel family, the complexity is polinomial, or linear if we approx-

imate universal quantification concepts by using cut concepts and roles.

We have shown that, under some reasonable conditions, the reduction

of a fuzzy KB can be reused when additional axioms are added to it. These

requirements are to use the ontology vocabulary and to restrict the set of

possible degrees of truth. This is not a very restrictive assumption, since in

practical applications it is usual to work with a small number of them.

In the case of Gödel family, using a fixed set of degrees of truth including

0 and 1 is mandatory in order to guarantee the witnessed model property.

We recall that in the case of Łukasiewicz family (not addressed in this disser-

tation) it is also mandatory the use of a fixed set of degrees [41].

Restricting the degrees of truth turned also to be essential in order to

compute efficiently greatest lower bounds, since they need to perform several

entailment tests and the number depends on the size of set of degrees of

truth.

We have introduced some interesting optimization techniques which al-

low a reduction of the size of the resulting KB, namely a reduction of the

number of new crisp atomic elements and their corresponding axioms, the
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use of crisp concepts and roles, reasoning ignoring superfluous elements, and

an optimization of the reductions of irreflexive role axioms and, in the case

of Gödel family, of some cases of fuzzy GCIs.

We have also studied how to reason with a possibilistic fuzzy DL using

only a crisp reasoner, although in this case a crisp representation has not

been found.

Objective 4. Chapter 8 fulfills the fourth objective, an implementation of a

small prototype demonstrating the feasibility of our approach, which is called

DELOREAN. It is the more expressive fuzzy DL reasoner that we are aware

of, since it supports fuzzy OWL 2. A preliminary evaluation has confirmed

that the designed optimizations help to reduce significantly the size of the

resulting ontology. Moreover, the reduction time is small enough to enable

recomputing the reduction of an ontology in real-time.

Future work. The main direction for future work is to perform a more

detailed benchmark of the reasoner, taking into account not only the size of

the resulting ontology but also the reasoning time. On the one hand, we will

compare fuzzy reasoning with DELOREAN and crisp reasoning. On the other

hand, we will compare DELOREAN with other fuzzy DL reasoners.

In the former case, we will consider a real-world fuzzy ontology. As far

as we know, there does not exist any significant fuzzy KB; the only one that

we are aware of is a fuzzy extension of LUBM [222], but it is also a non

expressive ontology (in fuzzy DL Lite). Wine ontology was designed as an

exercise of use of all the features of OWL, and reasoning with it is unneces-

sary difficult. We hope that fuzzy versions of more realistic ontologies would

be tractable under our approach.

The latter option is complicated because different reasoners support dif-

ferent features and expressivities, and have different input formats. In that

regard, it would be interesting to design a common fuzzy DIG interface. In

the case of Gödel family, we plan to design and implement a tableau algo-

rithm for some fuzzy DL. Otherwise, we will not be able to compare the two

approaches.
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It would also be of interest to consider alternative reasoning tasks, such

as the computation of the greatest lower bound and answering conjunctive

fuzzy queries, a reasoning task which has not investigated in expressive fuzzy

DLs.

In future versions of DELOREAN, we will adapt it to DIG 2.0 as soon as it is

available. We would also like to rely on the hypertableau reasoner HERMIT,

which seems to outperform other DL reasoners [265] but, unfortunately, it

does not yet support DIG interface. In the meanwhile of the definition of a

fuzzy common language for the different reasoners, we will develop a parser

for each of them (or, more precisely, the fragment of them that our reasoner is

able to support). We will also adapt the user interface to support alternative

reasoning tasks.

From a theoretical point of view, we would like to increase the expres-

sivity of the logic and to consider alternative fuzzy operators. In the former

case, we would like to consider some kind of fuzzy quantifiers [250]. In the

latter case, we will study Łukasiewicz logic and try to extend the current

results which are restricted to ALCHOI [41].
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Resumen

El uso de ontologías como un formalismo apropiado para la representación

del conocimiento perteneciente a diferentes dominios de aplicación ha sido

objeto de mucha atención durante los últimos años. Sin embargo, las on-

tologías clásicas no resultan apropriadas para representar conocimiento afec-

tado por imprecisión, vaguedad e incertidumbre; aspectos que son inherentes

a numerosos dominios del mundo real. Como solución se han propuesto las

ontologías difusas, que combinan las ontologías con técnicas pertenecientes

a la teoría de conjuntos difusos y a la lógica difusa.

Esta tesis presenta numerosas contribuciones al área de las ontologías

difusas. Como formalismo se ha escogido una extensión difusa de la muy

expresiva lógica de descripciones difusa SROIQ(D), en la que se basa el

lenguaje OWL 2. Una vez introducida la definición de la lógica, se han in-

vestigado sus principales propiedades. Se ha proporcionado un algoritmo de

razonamiento basado en una reducción a una ontología clásica, que permite

la reutilización de lenguajes y razonadores existentes en la actualidad. Se han

considerado dos semánticas, basadas en dos familias de operadores difusos

diferentes (Zadeh y Gödel), se han estudiado con detalle las propiedades

de la reducción (corrección, modularidad, complejidad) y se han propuesto

varias optimizaciones. También se ha introducido una extensión posibilística

que permite la representación adicional de conocimiento afectado por incer-

tidumbre. Finalmente, el algoritmo de razonamiento ha sido implementado

en un prototipo llamado DELOREAN, que constituye el primer razonador que

soporta extensiones difusas del lenguaje estándar para la representación de

ontologías OWL, así como de su reciente extensión OWL 2.

263
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Introducción y Motivación

En los últimos años, el uso de ontologías como formalismos para la repre-

sentación del conocimiento perteneciente a numerosos dominios de apli-

cación ha aumentado de un modo significativo. Una ontología se define co-

mo una especificación explícita y formal de una conceptualización compar-

tida [107], lo que significa que las ontologías representan los conceptos y

las relaciones de un dominio, fomentado la interrelación con otros modelos,

así como el procesamiento automático. Las ontologías presentan numerosas

ventajas, como permitir que se añada semántica a los datos, haciendo más

fácil el mantenimiento del conocimiento, la integración de información y la

reutilización de componentes. Por ejemplo, las ontologías se han utilizado

satisfactoriamente como parte de sistemas expertos y multiagente, además

de ser un elemento fundamental en la Web Semántica, que propone exten-

der la web actual dando a la información un significado definido de forma

precisa.

El actual lenguaje estándar para la creación de ontologías es OWL (Web

Ontology Language [327]), que incluye tres sublanguajes con una capaci-

dad expresiva creciente: OWL Lite, OWL DL y OWL Full. Sin embargo, desde

su nacimiento se han identificado diversas limitaciones en la expresividad

de OWL y, como consecuencia, se han propuesto numerosas extensiones al

lenguaje. Entre ellas, la más significativa es OWL 2 [75] que muy probable-

mente se convertirá en su sucesor.

Las lógicas de descripciones son una familia de lógicas utilizadas para

la representación de conocimiento estructurado [13]. Cada lógica se deno-

ta mediante una cadena de letras mayúsculas que identifican los construc-

tores admitidos en la lógica y por consiguiente su complejidad. Las lógi-

cas de descripciones han demostrado son muy útiles como lenguajes para

ontologías. Por ejemplo, una ontología en OWL Lite, OWL DL o OWL 2 es

equivalente a una ontología en SHIF(D), SHOIN (D) o SROIQ(D) res-

pectivamente [139].

Las lógicas difusa y posibilística han mostrado ser formalismos apropia-

dos para manejar conocimiento impreciso/vago e incierto, respectivamente.
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La lógica difusa es una extensión de la lógica clásica donde los elementos

no están limitados a pertenecer o no pertenecer a un determinado conjunto,

sino que puede hacerlo con un cierto grado. Por otra parte, la lógica posi-

bilística permite asignar grados de posibilidad y necesidad a los axiomas,

permitiendo manejar incertidumbre sobre ellos.

Sin embargo, ha sido ampliamente discutido el hecho de que las on-

tologías clásicas no son apropiadas para manejar conocimiento impreciso,

vago e incierto, aspectos que son inherentes a muchos dominios del mundo

real. Como medio para la obtención de ontologías difusas, pueden encon-

trarse en la literatura varias extensiones difusas de las lógicas de descrip-

ciones [181]. Las ontologías difusas han demostrado su utilidad en diferentes

aplicaciones como en recuperación de información o en la Web Semántica.

La aparición de las ontologías difusas origina que los lenguajes clási-

cos para su representación dejen de ser apropiados, debiendo desarrollarse

nuevos lenguajes difusos. Por tanto, el gran número de recursos disponibles

actualmente para las ontologías dejarían también de ser apropiados y re-

querirían ser adaptados al nuevo marco de trabajo, lo que supondría un im-

portante esfuerzo.

Esto afecta especialmente a los motores de inferencia. La experiencia pre-

via con lógicas de descripciones clásicas ha mostrado que existe un salto im-

portante entre el diseño de un algoritmo de razonamiento y la obtención

de una implementación que funcione bien en la práctica [276], puesto que

las lógicas de descripciones expresivas presentan una complejidad muy alta

en el peor caso. Por ello, la optimización de los razonadores para lógicas de

descripciones difusas será presumiblemente muy complicada y costosa.

Aunque se ha realizado un cantidad considerable de trabajo extendiendo

lógicas de descripciones con la teoría de conjuntos difusos, la representación

de ellas utilizando lógicas de descripciones clásicas no ha recibido tanta aten-

ción. Además, la expresividad de las lógicas consideradas en este contexto

puede enriquecerse. Por ejemplo, el trabajo seminal en reducción de lógicas

de descripciones difusas se restringe a ALCH [302].

Aumentar la expresividad de las lógicas de descripciones difusas es posi-

ble puesto que las propuestas actuales poseen varias limitaciones:
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• El constructor nominal no se extiende al caso difuso.

• Aunque se han propuesto axiomas difusos de inclusión de conceptos y

relaciones , razonar con ellos no siempre se permite.

• Los algoritmos de razonamientos actuales no soportan completamente

la lógica SROIQ(D).

• No hay razonadores implementados que soporten extensiones difusas

de los lenguajes OWL y OWL 2.

• No existe un formalismo general que permita una gestión unificada

del conocimiento impreciso e incierto en el ámbito de las lógicas de

descripciones.

Por otra parte, es común en la lógica difusa agrupar los operadores difu-

sos en familias, cada una de las cuales contiene una t-norma, una t-conorma,

una negación y una función de implicación. Hay tres familias principales de

operadores difusos: Łukasiewicz, Gödel y del Producto [121]. Los operadores

que L. Zadeh consideró cuando introdujo la lógica difusa (es decir, la conjun-

ción y la disyunción de Gödel, la negación de Łukasiewicz y la implicación

de Kleene-Dienes) son también de gran importancia en la literatura, y nos

referiremos a ellos como la familia de Zadeh.

Es un hecho bien conocido que diferentes familias de operadores difu-

sos conducen a lógicas de descripciones difusas con diferentes propiedades.

La mayor parte de los trabajos existentes en el campo de las lógicas de de-

scripciones difusas consideran la familia de Zadeh. Algunos otros trabajos

consideran las familias de Łukasiewicz o del Producto, pero la familia de

Gödel no ha recibido tanta atención.

En nuestra opinión, las propiedades lógicas de la familia de Gödel ha-

cen interesante su studio. Por ejemplo, al igual que la familia de Zadeh, la

familia de Gödel incluye una t-norma idempotente (el mínimo), por lo que

la conjunción es independiente de la granularidad de la ontología difusa, lo

que es interesante en algunas aplicaciones. Esto no sucede en las familias

de Łukasiewicz o del Producto. Sin embargo, existe una importante diferen-

cia con respecto a la familia de Zadeh, y es que la implicación de la familia

de Gödel presenta mejores propiedades lógicas. Por ejemplo, utilizando la
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implicación de la familia de Zadeh, los conceptos y relaciones no están com-

pletamente incluidos en sí mismos.

Objetivos

El objetivo general de esta tesis es la obtención de ontologías difusas, ca-

paces de representar y razonar con conocimiento afectado por imprecisión

y vaguedad. De acuerdo con esto, los objetivos concretos de la tesis son los

siguientes:

1. Revisar y analizar la literatura previa sobre ontologías difusas y sus

áreas relacionadas, como las lógicas de descripciones difusas.

• Comparar diferentes definiciones de ontología difusa y analizar

sus limitaciones.

• Identificar las limitaciones en la expresividad de las propuestas

actuales para lógicas de descripciones difusas.

2. Proponer una nueva definición de lógica de descripciones difusa.

• Aumentar la expresividad con respecto al trabajo previo.

• Incluir algún modo de representar no solamente conocimiento

impreciso y vago, sino también conocimiento afectado por incer-

tidumbre.

3. Proporcionar una representación no difusa para una lógica de descrip-

ciones difusa tan expresiva.

• Soportar la expresividad equivalente al lenguaje OWL 2 (difuso).

• Permitir una semántica dada por varias familias de operadores

difusos.

• Diseñar técnicas de optimización que permitan reducir el tamaño

de la representación.

4. Implementar un pequeño prototipo que demuestre la viabilidad de

nuestra propuesta.
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Contenidos

Esta tesis se estructura en cinco partes bien diferenciadas, cada una de las

cuales se compone de uno o más capítulos.

La Parte I contiene el Capítulo 1, que incluye una introducción donde,

partiendo de los antecedentes en el área, se motiva nuestro trabajo, se es-

tablecen los objetivos de la tesis y se describe el contenido del documento.

A continuación, la Parte II recuerda algunos preliminares necesarios para

la lectura del texto. El Capítulo 2 revisa algunas nociones básicas sobre la

teoría de conjuntos difusos, la lógica difusa y la lógica posibilística. El Capí-

tulo 3 se dedica a las ontologías y lógicas de descripciones, como el principal

formalismo utilizado para la representación de ontologías. Se dedica espe-

cial atención a la lógica de descripciones SROIQ(D) y al lenguaje OWL

2. El Capítulo 4 incluye con una revisión de la literatura sobre extensiones

difusas de ontologías y lógicas de descripciones, proporcionando una contex-

tualización más detallada de nuestro trabajo.

La Parte III presenta nuestras contribuciones teóricas. El Capítulo 5 define

nuestra extensión difusa de la lógica de descripciones SROIQ(D), subra-

yando el aumento en la expresividad obtenido, y estudia sus propiedades

lógicas. El Capítulo 6 se restringe a la familia de Zadeh y describe un procedi-

miento para representar una ontología difusa utilizado una ontología clásica,

de modo que se pueden utilizar los razonadores existentes para razonar sobre

la ontología obtenida. El Capítulo 7 presenta un resultado similar para la

familia de Gödel. En ambos casos, se incluyen optimizaciones del procedi-

miento de reducción interesantes desde un punto de vista práctico.

La Parte IV se ocupa de nuestras aportaciones prácticas. El Capítulo 8

presenta el diseño e implementación de nuestro prototipo, un razonador para

lógicas de descripciones difusas denominado DELOREAN, que implementa el

algoritmo de reducción y las optimizaciones descritas en la parte anterior.

También se lleva a cabo una evaluación preliminar del procedimiento.

Finalmente, la Part V concluye la memoria. El Capítulo 9 incluye las prin-

cipales conclusiones, resume nuestras contribuciones relacionándolas con los

objetivos de la tesis y apunta algunas ideas para el trabajo futuro.
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Aportaciones y Consecución de los Objetivos

Nuestro trabajo supone un importante avance hacia la obtención de on-

tologías difusas, capaces de representar y tratar conocimiento impreciso, va-

go e incierto. A lo largo de este documento, se han presentado ejemplos en

diferentes dominios como medicina, alojamiento, música o enología, lo que

refleja la naturaleza imprecisa de la mayor parte de los campos de aplicación

del mundo real. En esta sección se resumen las principales aportaciones de

la tesis al área de las ontologías difusas, estableciendo una relación entre los

resultados y el procedimiento de consecución de los objetivos inicialmente

establecidos. No nos centraremos por tanto en las capítulos exclusivamente

dedicados a la introducción, los preliminares y conclusiones.

Capítulo 4

Este capítulo satisface el primero de nuestros objetivos, que era llevar a cabo

una revisión crítica de la literatura relativa a las extensiones difusas de on-

tologías y lógicas de descripciones. En primer lugar, se ha realizado un es-

tudio detallado acerca de las propuestas previamente existentes sobre on-

tologías difusas. Tras haber observado que ninguna de las definiciones ex-

istentes de ontología difusa se adecúa a nuestra visión más general, hemos

propuesto una definición alternativa más adecuada.
A continuación, el estudio se ha centrado en las extensiones difusas de

las lógicas de descripciones. Esto permite identificar una serie de limita-

ciones en la expresividad de las lógicas de descripciones difusas existentes

que se superarán a lo largo de la tesis. De esta manera, se obtiene una con-

textualización más detallada de nuestro trabajo, al permitir diferenciar las

aportaciones propias de las de otros autores.

Capítulo 5

En este capítulo se introduce una definición de la lógica de descripciones

difusa SROIQ(D) que cumple el segundo de nuestros objetivos, que era la

obtención de una lógica de descripciones difusa que aumente la expresividad

con respecto al trabajo previo.
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El aumento de la expresividad de la lógica se ha logrado así:

• Se ha definido una extensión difusa del constructor nominal, de forma

que se permiten definiciones extensivas de conjuntos difusos (esto es,

definiciones mediante una definición de los elementos que lo compo-

nen junto a su grado de pertenencia).

• Se utiliza una semántica para las restricciones cualificadas de cardi-

nalidad que modifica otras propuestas previas y que presenta algunas

propiedades lógicas deseables desde el punto de vista práctico.

• Se permite el uso de conceptos y relaciones basados en α-cortes po-

sitivos y negativos. Es decir, es posible definir el conjunto (crisp) for-

mado por aquellos elementos que pertenecen a un conjunto difuso con

grado mayor o igual que α, o menor o igual que α. Análogamente, se

puede definir la relación (crisp) formada por aquellos pares de elemen-

tos relacionados con grado mayor o igual que α.

• Se permite la aplicación de modificadores difusos sobre conceptos y

relaciones. El razonamiento con relaciones modificadas no era posible

con anterioridad a nuestra propuesta.

• Se permite el razonamiento con axiomas difusos de inclusión de con-

ceptos y relaciones, que hacen posible representar que un concepto es-

tá parcialmente incluido en otro, o que una relación está parcialmente

incluida en otra.

La definición es independiente de la elección de la familia de operadores

difusos, por lo que posee una gran generalidad. Se han estudiado las propie-

dades de la lógica obtenida, prestando especial atención a los casos espe-

ciales de las familias de operadores difusos de Zadeh y Gödel. Cada familia

posee ventajas e inconvenientes, y la elección de una u otra depende de la

aplicación concreta.

Adicionalmente, se permite la representación de conocimiento afectado

por incertidumbre, cumpliendo así el segundo de los subobjetivos. Para ello,

se establece una una capa posibilística sobre la lógica de descripciones di-

fusa, de forma que es posible añadir grados de posibilidad y necesidad a los

axiomas de una ontología difusa.
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Capítulo 6

Este capítulo y el siguiente satisfacen el tercer objetivo: la representación

de ontologías difusas utilizando ontologías clásicas. De esta forma, es posi-

ble reutilizar los lenguajes, razonadores y otras herramientas actualmente

disponibles para ellas. En esta primera parte del bloque de capítulos que

cumplen el tercer objetivo nos centramos en los operadores difusos de la

familia de Zadeh.

La idea de la reducción se basa en la introducción de una serie de nuevos

conceptos y relaciones, que se utilizan para representar los α-cortes de los

conceptos y relaciones difusos de la ontología difusa. A continuación, los

axiomas de la ontología se representan utilizando una ontología clásica, y

los conceptos y relaciones difusos se representan mediante estos nuevos ele-

mentos. Esta transformación utiliza una aplicación κ que transforma axiomas

de la ontología difusa en axiomas de la ontología crisp, y otra aplicación ρ

que calcula el α-corte (posiblemente estricto) de un concepto o una relación.

Este procedimiento es posible porque el número de α-cortes relevantes

puede conocerse de antemano, debido a la semántica de los operadores de

la familia de Zadeh. Además, es necesario introducir nuevos axiomas para

mantener la semántica entre los diferentes α-cortes introducidos.

Las propiedades de la reducción (corrección, modularidad, complejidad)

se analizan en detalle, incluyendo demostraciones de las proposiciones y de

los teoremas formulados.

También se han introducido algunas técnicas de optimización interesantes

que permiten reducir el tamaño de la ontología resultante. Estas técnicas

son la reducción del número de nuevos α-cortes introducidos (así como de

sus correspondientes axiomas), el uso de conceptos y relaciones no difusos

en el lenguaje, el razonamiento ignorando elementos superfluos y una opti-

mización de la reducción de las relaciones irreflexivas.

Para finalizar, se ha estudiado cómo razonar con nuestra extensión posi-

bilística de una ontología difusa. En este caso es posible utilizar únicamente

un razonador clásico, si bien no se ha encontrado una representación clásica

para una ontología de este tipo.
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Capítulo 7

Junto al anterior, en este capítulo se lleva a cabo la satisfacacción del tercero

de los objetivos: la representación de ontologías difusas utilizando ontologías

clásicas. Pero en este caso, la familia de operadores difusos considerada es la

de Gödel.
La idea del procedimiento es similar, por lo que en este capítulo se mues-

tran únicamente aquellos aspectos que difieren al caso anterior. La defini-

ción de κ y de ρ es diferente ahora, lo que causa ciertas diferencias en las

propiedades de la reducción, especialmente en cuanto a la complejidad de la

ontología resultante. Además, es necesario asumir un conjunto de grados de

verdad para poder trabajar correctamente con los modelos de la lógica.
Adicionalmente, se estudian las optimizaciones de algunos casos espe-

ciales de axiomas difusos de inclusión de conceptos, como son los axiomas de

dominio, rango y funcionalidad de una relación, o los axiomas que estable-

cen que dos conceptos son disjuntos. En general, se define una condición

para la optimización que puede aplicarse en otros casos (como por ejemplo

cuando aparecen nominales difusos o conceptos crisp en la definición de un

concepto difuso).

Capítulo 8

Finalmente, este capítulo cumple el cuarto objetivo mediante la implementa-

ción de un pequeño prototipo que demuestra la viabilidad de nuestra pro-

puesta. El prototipo se denomina DELOREAN y supone el razonador para ló-

gicas de descripciones más expresivo en la actualidad, puesto que soporta

versiones difusas del lenguaje estándar OWL y de su extensión OWL 2.
A partir de una ontología difusa en OWL difuso o en OWL 2 difuso, DE-

LOREAN calcula una representación no difusa, es decir, una ontología equi-

valente en OWL u OWL 2, respectivamente. Terminar utilizando OWL es

importante porque es el lenguaje estándar actual para la representación de

ontologías. OWL 2 se perfila como el próximo lenguaje estándar, por lo que

la posibilidad de terminar utilizándolo es también muy interesante.
Para evaluar hasta qué punto nuestra propuesta es factible, se ha reali-

zado una evaluación preliminar que ha confirmado que las optimizaciones
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propuestas permiten una reducción muy significativa del tamaño de la on-

tología no difusa resultante, y que el tiempo que se consume en obtener la

ontología equivalente es suficientemente pequeño como para permitir su cál-

culo en tiempo real.

Conclusiones

La aplicación práctica inmediata de las ontologías difusas es factible, debido a

su estrecha relación con los lenguajes y herramientas actualmente existentes

y que han demostrado su validez. Nuestra propuesta presenta varias ventajas:

• No hay necesidad de consensuar un nuevo lenguaje estándar difuso,

sino que cada desarrollador puede utilizar su propio lenguaje para ex-

presar una lógica de descripciones difusa, siempre que implemente la

reducción a un lenguaje estándar.

• Es posible continuar utilizando lenguajes estándar con muchos recur-

sos disponibles, evitando la necesidad (y el coste) de adaptarlos a un

nuevo lenguaje difuso. Aunque sería deseable asistir al usuario en ta-

reas como la edición de ontologías difusas, la reducción a ontologías

clásicas o el razonamiento difuso, una vez que la reducción se lleva a

cabo, es posible reutilizar los recursos existentes para el lenguaje crisp.

• Es posible continuar utilizando razonadores para lógicas de descrip-

ciones existentes. Si bien el razonamiento no necesariamente será más

eficiente, se ofrece un método para soportar fácilmente el razonamien-

to en futuros lenguajes difusos. Actualmente, el único razonador para

lógicas de descripciones difusas que soporta completamente extensiones

difusas de los lenguajes OWL y OWL 2 se basa en esta idea.

• Permite ayudar a demostrar la decidibilidad del razonamiento en lógi-

cas de descripciones difusas para los cuales no se conoce otro algoritmo

de razonamiento. Por ejemplo, hemos demostrado que SROIQ(D) di-

fusa con la semántica de la familia de Gödel es decidible.

• Es posible razonar con lógicas de descripciones difusas más expresivas.

Los algoritmos específicos actuales para razonar con lógicas de descrip-
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ciones difusas se restringen a SHOIN [288] o SHIF(D) [298] para

la familia de Zadeh, o ALC [120] para la familia de Gödel, mientras

que por el contrario nosotros hemos considerado SROIQ(D).

Nuestra definición de la lógica de descripciones difusa SROIQ(D) per-

mite el uso de todos los modificadores y dominios de concretos difusos que

soporta algún razonador para lógicas de descripciones difusas. Desde un pun-

to de vista histórico, supone el primer algoritmo de razonamiento para una

lógica con axiomas difusos de inclusión de conceptos y relaciones , así como

con modificadores de relaciones .

La posibilidad de utilizar las familias de operadores difusos de Zadeh y

Gödel aumenta la flexibilidad del lenguaje. Cada una de estas familias pre-

senta algunas características especiales, algunas ventajas y algunos inconve-

nientes, por lo que diferentes aplicaciones pueden requerir el uso de una u

otra. Una de las propiedades más relevantes de la familia de Zadeh es que

el uso de la implicación de Kleene-Dienes en la semántica de los axiomas

difusos de inclusión de conceptos y relaciones implica dos efectos contrain-

tuitivos. Por otra parte, la familia de Gödel obliga a que las restricciones

cualificadas de cardinalidad mínima sean conceptos no difusos, por citar un

ejemplo concreto. Estas familias también pueden combinarse, de modo que

sus operadores difusos pueden usarse simultáneamente.

La complejidad de las ontologías clásicas obtenidas como resultado de

nuestro procedimiento es cuadrática en el caso de la familia de Zadeh, o

lineal si fijamos el conjunto de posibles grados de verdad. En el caso de

la familia de Gödel, la complejidad es polinomial, o lineal si aproximamos

la cuantificación universal utilizando conceptos y relaciones basados en α-

cortes.

Bajo ciertas condiciones razonables, la reducción de una ontología difusa

puede reutilizarse cuando se añaden axiomas adicionales. Estos requisitos

son el uso del vocabulario de la ontología y de un conjunto fijo de posibles

grados de verdad. Esto último se trata de una suposición razonable, ya que

en las aplicaciones prácticas es habitual trabajar con un número pequeño de

grados.
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En el caso de la familia de Gödel, utilizar un conjunto fijo de grados de

verdad que incluya 0 y 1 es necesario para garantizar el cumplimiento de la

propiedad de modelos witnessed. Es conveniente recordar que en el caso de

la familia de Łukasiewicz (que no se ha considerado en esta tesis) también

es necesario utilizar un conjunto fijo de grados de verdad para obtener una

representación no difusa [41].
Fijar el conjunto de grados de verdad también resulta ser esencial para

calcular de un modo eficiente el mayor límite inferior posible para un axio-

ma difuso, puesto que esta tarea requiere el cálculo de varios tests lógicos,

el número de los cuales depende logarítmicamente del número de posibles

grados de verdad.

DELOREAN es el razonador para lógicas de descripciones difusas más ex-

presivo que conocemos, puesto que soporta una versión difusa de OWL 2.

Una evaluación preliminar ha confirmado que las optimizaciones diseñadas

ayudan a reducir de un modo significativo el tamaño de la ontología obteni-

da como resultado de la reducción. Además, el tiempo necesario para la re-

ducción es suficientemente pequeño como para permitir volver a calcular la

reducción de una ontología en tiempo real.

Trabajo Futuro

La principal línea de investigación en el futuro será la realización de una

evaluación más detallada del razonador, teniendo en cuanta no solamente el

tamaño de la ontología resultante, sino también el tiempo de razonamiento.

Por una parte, se comparará el razonamiento difuso en DELOREAN con el

razonamiento en el caso clásico. Por otro lado, se comparará DELOREAN con

otros razonadores para lógicas de descripciones difusas.

En el primer caso, consideraremos una ontología difusa perteneciente

al mundo real. Hasta donde nosotros conocemos, no existe ninguna base

de conocimiento difusa significativa. Si bien existe una versión difusa de la

ontología LUBM [222], se trata de una ontología muy poco expresiva (en DL-

Lite difuso). La ontología Wine que hemos utilizado nosotros fue designada

como un ejercicio que permitiera el uso de todas las posibilidades de OWL, lo

que hace que el razonamiento en ella sea innecesariamente complicado. Se
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espera que el razonamiento con ontologías difusas más realísticas sea factible

bajo nuestra aproximación.

La segunda línea de investigación presenta ciertas dificultades porque

diferentes razonadores soportan diferentes características y expresividad en

sus lenguajes, además de requerir diferentes formatos para la especificación

de las ontologías difusas de entrada. En este sentido, sería interesante dise-

ñar una versión de la interfaz DIG común a las ontologías difusas. En el caso

de la lógica de Gödel, también se planea el diseño y la implementación de

un algoritmo tableau para alguna lógica de descripciones. De otro modo, no

sería posible la comparación con nuestra propuesta.

También resultaría de interés el considerar tareas de razonamiento al-

ternativas, como el cálculo del mayor límite inferior posible para un axioma

difuso, o la resolución de respuesta a consultas conjuntivas difusas, una tarea

que no ha sido investigada para lógicas de descripciones difusas expresivas.

En futuras versiones de DELOREAN, lo adaptaremos a la interfaz DIG 2.0

tan pronto como esté disponible. También nos gustaría utilizar como ra-

zonador crisp HERMIT, basado en la técnica del hipertableau y que parece

mejorar sustancialmente a los demás razonadores para lógicas de descrip-

ciones [265], si bien desafortunadamente todavía no soporta la interfaz DIG.

Mientras tiene lugar la definición de un lenguaje común para las ontologías

difusas, desarrollaremos diferentes módulos para aceptar como entrada los

lenguajes de cada uno de ellos (o, de modo más preciso, el fragmento de

ellos que seamos capaces de soportar). También adaptaremos la interfaz de

usuario para soportar tareas de razonamiento alternativas.

Desde un punto de vista teórico, nos gustaría aumentar la expresividad

de la lógica y considerar operadores difusos alternativos. En el primer caso,

nos gustaría estudiar algunos tipos de cuantificadores difusos [250]. En el

segundo caso, estudiaremos la familia de Łukasiewicz, intentando extender

los resultados actuales que se restringen a la lógica ALCHOI [41].
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