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Abstract

In this work we study, and improve, applicability of variational correspon-

dence methods, used for calculating dense optical-flow and disparity fields,

to real scenes with realistic illumination conditions. It is well known that

under realistic illumination conditions and image noise, proper image rep-

resentation is crucial in order to generate both correct and temporally co-

herent optical-flow and disparity fields. We have studied 34 different image

representations and ranked these with respect to accuracy, robustness and

a combination of accuracy plus robustness. In the case of well known test

images with optimal (or quasi optimal) illumination conditions, effects of

image representation are not that important. On the other hand, with

scenes from real applications, such as robotic grasping, influence of image

representation is crucial. Also we have extended the basic models to in-

clude both spatial- and temporal-constraints. In the case of optical-flow,

for example, temporal constraint reduced ‘flickering’ of estimations. By

flickering we mean temporal changes in the displacement fields due to lack

of or ambiguity of spatial features in the images. We show that by using

spatial constraints in the disparity estimation, considerable improvements

are possible. These constraints are due to (a) what we know of the solution

before hand (e.g. roads are relatively flat surfaces, sky is far away) or (b)

what we can deduce from the scene itself. Effectively, we show how these

constraints can be obtained and refined in a hypothesis-forming-validation

loop (HFVL). In the example that we give of a HFVL loop, we segment an

initial disparity map and form constraint(s) based on the segments and feed

back these into the disparity calculation.

Apart from introducing the principal results obtained, we also explain in

detail how the models that we have used can be solved. Therefore, this



work can be considered as an introduction into the field of variational cor-

respondence methods.



Resumen

En este trabajo se ha estudiado, y mejorado, la aplicabilidad de los métodos

variacionales para el cálculo de flujo-óptico y disparidad en secuencias reales

bajo condiciones realistas de iluminación. Es conocido que, bajo condiciones

realistas de iluminación y ruido en la imágenes, la representación apropiada

de la imagen es crucial para generar estimaciones correctas y coherentes,

temporalmente, para el flujo-óptico y la disparidad. Hemos estudiado 34

representaciones diferentes de imágenes y estas han sido clasificadas con

respecto a la precisin, la robustez y una combinación de la precisión y la

robustez. En el caso de imágenes de prueba, t́ıpicamente las condiciones

de iluminación son óptimas (o casi óptimas) y, por lo tanto, el efecto de

la representacin no es tan importante. Por otro lado, con escenas de las

aplicaciones reales, como la de robótica, la influencia de la representación

es crucial, como hemos demostrado. También hemos ampliado los mode-

los básicos para incluir restricciones (ingl. constraints) espaciales y tem-

porales. En el caso del flujo-óptico, por ejemplo, la restricción temporal

reduce ‘parpadeo’ (ingl. flickering) de las estimaciones. Con el parpadeo

nos referimos a los cambios temporales en los campos de flujo-óptico debido

a la falta de, o a la ambigüedad de información espacial para que el mod-

elo pueda generar estimaciones correctas. Hemos mostrado que mediante el

uso de restricciones espaciales en la estimación de la disparidad se producen

mejoras considerables. Estas restricciones se deben a: (a) lo que sabemos

de la solución de antemano (por ejemplo las carreteras son superficies rela-

tivamente planas, el cielo está muy lejos) o (b) lo que podemos deducir de

la propia escena. Efectivamente, hemos demostrado que estas restricciones

pueden ser obtenidas y refinadas en bucles de formación y convalidación de

hipótesis (ingl. hypothesis-forming validation loop, HFVL). En el ejemplo



que damos de un bucle de HFVL, primero segmentamos un mapa de dis-

paridad inicial y a partir de esto, formamos la restricción (o restricciones)

y retroalimentamos esta (estas) en el calculo de disparidad.

Aparte de introducir los resultados principales obtenidos, en este documento

también explicamos, en detalle, como se pueden resolver los modelos que

hemos utilizado. Por lo tanto, este trabajo se puede considerar como una

introducción en el campo de los métodos variacionales para el cálculo de

flujo-óptico y la disparidad.
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2.5 Organización de los Caṕıtulos . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Variational Correspondence Methods 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Organisation of Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 What is Meant by Calculus of Variations? . . . . . . . . . . . . . . . . . 30

3.4 Motivation for Variational Correspondence . . . . . . . . . . . . . . . . . 31

3.5 Optical-flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.1 Early Linearisation . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.2 Late Linearisation . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Stereo Disparity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.1 Late Linearisation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 Smoothness Terms and Error Functions . . . . . . . . . . . . . . . . . . 39

3.8 Robust Data Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8.2 Background Material and Related Work . . . . . . . . . . . . . . 44

3.8.2.1 Related Work and Our Contribution . . . . . . . . . . . 44

3.8.2.2 Sources of Error . . . . . . . . . . . . . . . . . . . . . . 45

3.8.2.3 Variational Stereo . . . . . . . . . . . . . . . . . . . . . 45

3.8.3 Searching for Optimal Parameters with Differential Evolution . . 46

3.8.4 Image Transformations . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8.4.1 RGBN (Normalized RGB) . . . . . . . . . . . . . . . . 48

3.8.4.2 Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8.4.3 Gradient Magnitude . . . . . . . . . . . . . . . . . . . . 49

3.8.4.4 HS(V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8.4.5 Spherical . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.8.4.6 Log-Derivative . . . . . . . . . . . . . . . . . . . . . . . 50

3.8.4.7 Phase Component of Band-pass Filtered Image Using

Quadrature Filters . . . . . . . . . . . . . . . . . . . . . 50

3.8.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8.5.1 K-fold Cross-Validation . . . . . . . . . . . . . . . . . . 54

3.8.5.2 Induced Illumination Errors and Image Noise . . . . . . 54

3.8.5.3 Error Metric . . . . . . . . . . . . . . . . . . . . . . . . 56

Jarno Ralli, 2011 vi



CONTENTS

3.8.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.8.6.1 Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.8.6.2 Improvement Due to Combined Representation Spaces 60

3.8.7 Visual Qualitative Interpretation . . . . . . . . . . . . . . . . . . 62

3.8.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.9 Spatial and Temporal Constraints . . . . . . . . . . . . . . . . . . . . . 66

3.9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.9.2 Related Work and Our Contribution . . . . . . . . . . . . . . . . 68

3.9.3 System Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.9.4 Extended Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.9.5 Data Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.9.6 Regularization Terms . . . . . . . . . . . . . . . . . . . . . . . . 73

3.9.7 Spatial- and Temporal Constraints . . . . . . . . . . . . . . . . . 74

3.9.8 Predicted Temporal Constraints . . . . . . . . . . . . . . . . . . 75

3.9.9 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.9.9.1 Error Metrics . . . . . . . . . . . . . . . . . . . . . . . . 76

3.9.9.2 Quantitative Results for Spatial Constraint in Disparity

Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.9.9.3 Quantitative Results for Temporal Constraint in Optical-

flow Calculation . . . . . . . . . . . . . . . . . . . . . . 79

3.9.9.4 Qualitative results for spatio-temporal constraints . . . 81

3.9.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.10 Problems with the Models . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Segmentation of Disparity Maps 89

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Motivation for Level-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Implicit Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1 Dynamic Implicit Surfaces . . . . . . . . . . . . . . . . . . . . . . 92

4.3.2 Mean Curvature Motion . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Hypothesis-Forming-Validation-Loops and Segmentation . . . . . . . . . 94

4.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Jarno Ralli, 2011 vii



CONTENTS

4.4.2 Related Work and Our Contribution . . . . . . . . . . . . . . . . 96

4.4.3 Hypothesis-Forming-Validation-Loop . . . . . . . . . . . . . . . . 97

4.4.3.1 Variational Stereo . . . . . . . . . . . . . . . . . . . . . 98

4.4.3.2 Data Terms . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.3.3 Regularization Term . . . . . . . . . . . . . . . . . . . . 99

4.4.3.4 Spatial Constraint . . . . . . . . . . . . . . . . . . . . . 99

4.4.4 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.4.1 Two Regions . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.4.2 Standard Model . . . . . . . . . . . . . . . . . . . . . . 101

4.4.4.3 Surface Segmentation Model . . . . . . . . . . . . . . . 103

4.4.4.4 Multi-Region . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.4.5 Solving the Equations . . . . . . . . . . . . . . . . . . . 106

4.4.4.6 Segmentation Algorithm . . . . . . . . . . . . . . . . . 109

4.4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4.5.1 Error Metrics . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4.5.2 GRASP and Middlebury Images . . . . . . . . . . . . . 112

4.4.5.3 Reference Results for Middlebury . . . . . . . . . . . . 113

4.4.5.4 Segmentation for Robotic Grasping . . . . . . . . . . . 117

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Solving the Equations 123

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 A Word About the Used Notation . . . . . . . . . . . . . . . . . . . . . 124

5.2.1 Pixel Neighbourhoods . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3.1 Jacobi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3.2 Gauss-Seidel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.3 TDMA/ALR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3.4 SOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3.5 Multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4 Equations to be Solved . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.5 Finite Difference Discretisation . . . . . . . . . . . . . . . . . . . . . . . 140

5.5.1 Finite Difference Operators . . . . . . . . . . . . . . . . . . . . . 140

Jarno Ralli, 2011 viii



CONTENTS

5.5.2 Discretization of DIV Operator . . . . . . . . . . . . . . . . . . . 141

5.6 Solving Optical-Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.6.1 Early Linearisation . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.6.1.1 Coarse-To-Fine Algorithm . . . . . . . . . . . . . . . . 147

5.6.1.2 SOR-Jacobi . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.6.1.3 SOR-GS . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.6.1.4 GS-ALR . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.6.1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.6.2 Late Linearisation . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.6.2.1 Coarse-To-Fine Algorithm . . . . . . . . . . . . . . . . 158

5.6.2.2 SOR-Jacobi . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.6.2.3 SOR-GS . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.6.2.4 SOR-ALR . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.6.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.7 Solving Level-set Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.7.1 SOR-GS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6 Conclusions 171

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.4 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7 Conclusiones en Castellano 177

7.1 Sumario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.2 Trabajo Futuro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.3 Publicaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.4 Contribuciones Principales . . . . . . . . . . . . . . . . . . . . . . . . . . 181

References 183

Jarno Ralli, 2011 ix



CONTENTS

A Solvers 193

A.1 Optical-flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.1.1 Discrete Differential Operator . . . . . . . . . . . . . . . . . . . . 193

A.1.1.1 Early Linearisation . . . . . . . . . . . . . . . . . . . . 194

A.1.1.2 Late Linearisation . . . . . . . . . . . . . . . . . . . . . 195

A.1.2 Notation Used in the Matlab Code . . . . . . . . . . . . . . . . . 196

A.1.2.1 Early Linearisation . . . . . . . . . . . . . . . . . . . . 196

A.1.2.2 Late Linearisation . . . . . . . . . . . . . . . . . . . . . 197

B Euler-Lagrange Equations 199

B.1 Temporal Constraint for Optical-Flow . . . . . . . . . . . . . . . . . . . 199

B.1.1 Energy Functional . . . . . . . . . . . . . . . . . . . . . . . . . . 199

B.1.2 Related Euler-Lagrange Equations . . . . . . . . . . . . . . . . . 200

Jarno Ralli, 2011 x



List of Figures

1.1 DRIVSCO car. (a) DRIVSCO optical system; (b) corresponding GUI

(Graphical User Interface). . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 GUI showing the detected lanes in the current image and a history of

prediction and steering angles. . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 System architecture. IMO, PAR and GPU denote Independently Moving

Objects, Perception-Action Repository and Graphical Processing Unit,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Pot. (a) Random dot stereogram; (b) related disparity image. . . . . . . 5

1.5 Shark (a) Random dot streogram; (b) related disparity image. . . . . . . 6

1.6 (a) left stereo-image; (b) related disparity map; (c) segmentation. . . . . 7

1.7 Local features. (a) Lena image; (b) energy; (c) orientation; (d) phase.

In the case of orientation, color is used to codify the orientation of the

edge in question. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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Glossary

(u, v) Optical-flow (displacement) field. u is the horizontal component of move-

ment, while v is the vertical component.

κ Curvature of the interface, where κ = ∇ · ~N .

∇ Spatial gradient operator

(
∂

∂x
,
∂

∂y

)T
.

Ω Image domain.

Ωh Discretised image domain, where Ωh = Ω ∪Gh (see discretisation grid).

Ωi In the case of level sets, segments i defined by implicit functions Φi.

Φ(x, y) Implicit function used for defining level-sets.

Ψ(s2) Robust error function.

Ψ
′
(s2) Influence/penaliser function of Ψ(s2).

d Disparity (displacement) field. Horizontal component in rectified images.

DIV (F ) Divergence operator, where F is a differentiable vector function.

E(d) Energy of the stereo model (functional).

E(u, v) Energy of the optical-flow model (functional).

Gh Discretisation grid, whereGh := {(x, y) | x = xi = ihx, y = yj = jhy ; i, j ∈ Z}.

I(x, y, k, t) Image where, t defines the time and k defines the channel (i.e. channels R,

G or B in the case of RGB images).

Jarno Ralli, 2011 xxi



GLOSSARY

I{L,R},{0,1} Stereo image, where {L,R} refers to Left- or Right image taken at time

t = 0 or t = 1.

I{L,R} Stereo image, where {L,R} refers to Left- or Right image.

Iwk,0 Warped image in the case of optical-flow, Iwk,0 := I(x+u, y+v, t). All channels

(k) are warped.

IwR,k Warped image in the case of disparity, IwR,k := I(x+ d, y, t). All channels (k)

are warped.
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Introduction

1.1 General

Genesis. As per the UNECE report Statistics of Road Traffic Accidents in Europe

and North America1, during the decade 1998 - 2008, there were on average 150.000

killed and 5.5 million injured ANNUALLY in more than 3.8 million traffic accidents

in ECE countries (Europe and North America). Therefore, it is no wonder that there

is a great interest in developing both passive- and active vehicle safety systems to

decrease both the number of accidents and the consequences. Broadly speaking, the

term passive safety refers to the components of the vehicle that protect the driver and

the passengers, while the term active safety refers to the systems that help to prevent

the accident from happening in the first place. Amongst the best known passive safety

systems are seatbelts, airbags, laminated windshields, side impact protection beams

and so on. On the other hand, an interesting sub-class of active safety systems are so

called Advanced Driver Assistance Systems (ADAS). Such systems are, for example,

lane departure warning systems, traction control systems, infrared night vision and so

on.

This thesis got started as part of a research project DRIVSCO (Learning to Em-

ulate Perception-Action Cycles in a Driving School Scenario2, European Commission,

FP6) related to a driver assistance system capable of adapting to a particular drivers

driving style: Most technical systems, for example cars, must work reliably at key-turn.

1http://live.unece.org/trans/main/wp6/publications/stats_accidents2011.html
2http://cordis.europa.eu/fetch?CALLER=PROJ_ICT&ACTION=D&CAT=PROJ&RCN=80441
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1. INTRODUCTION

Therefore, such systems almost always employ conventional control strategies. Biolog-

ical systems, on the other hand, learn. In the beginning they are functional only at a

very basic level from which they improve their skills. No-one would, however, want to

use a learning car, which could in the beginning barely steer. Thus, learning techniques

have not really entered turn-key applications so far.

The goal of DRIVSCO is to devise, test and implement a strategy of how to combine

adaptive learning mechanisms with conventional control, starting with a fully opera-

tional human-machine interfaced control system and arriving at a strongly improved,

largely autonomous system after learning, that will act in a proactive way using dif-

ferent predictive mechanisms. In other words, the system needs to be able to analyze

the driving situation and make short term predictions of how things will evolve. To

this end, it is not enough only to analyze typical information coming from the central

computer of a vehicle, such as velocity, steering wheel position, gas- or brake pedal

positions, or even GPS signal. It can be argued that visual perception is the single

most important sensory information that we humans use when driving vehicles. This

assumption is also backed by the fact that many driving simulators are based only on

visual stimulus (more advanced simulators include other sensory information as accel-

eration and so on). Therefore, the front-end of the system, used for perception and

action extraction, is based on image processing. By combining visual stimulus with the

other information available from the vehicle, meaningful contextual interpretations of

the situation can be derived. The visual system is based on cameras working on both

the visible- and the infrared wavelengths of light, thus allowing the system to be used

during the night as well.

This short introduction brings us to the subject of this thesis which is related to

artificial vision (also known as computer vision, machine vision, or image process-

ing). Before jumping into the actual subject of artificial vision, we will mention that

there have been and are several projects similar to DRIVSCO going on at the time of

writing this thesis. Here are a few just to mention some: DIPLECS (Dynamic Interac-

tive Perception-Action Learning in Cognitive Systems1, European Commision, FP7),

COSPAL (Cognitive Systems using Perception-Action System2, European Commission,

1http://www.diplecs.eu/
2http://www.cospal.org/
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FP6) and IVSS (Intersection accidents: Analysis and Prevention 1, The Program Board

for Automotive Research, Sweden).

Figure 1.1 displays both the optical system and the screen displaying information for

the driver in the DRIVSCO project. Figures 1.2 and 1.3 shows both a GUI (Graphical

User Interface) and system architecture related to the system detecting inconsistent

driving behavior and IMOs (Independently Moving Objects) on a collision coarse [46].

(a) (b)

Figure 1.1: DRIVSCO car. (a) DRIVSCO optical system; (b) corresponding GUI (Graph-

ical User Interface).

By the time of writing this thesis Volvo announced its new collision warning system

with fully automatic breaking. Also, as will be shown later, the very same techniques

researched/designed in this thesis initially in the framework of the DRIVSCO project,

are general enough to be used in other fields where visual cues play an important role,

such as robotics.

Apart from this thesis, several others were made (or are being written currently)

related to the DRIVSCO project. Here I will mention of some them, in no particular

order: Karl Pauwels (Katholieke Universiteit Leuven, Leuven, Belgium), Anders Kær-

Nielsen2 and Lars Baunegaard With Jensen3 (University of Southern Denmark, Odense,

Denmark), Irene Markelić4 (Georg-August-University Göttingen, Göttingen, Germany)

and Matteo Tomasi5 (University of Granada, Granada, Spain).

1http://www.ivss.se/
2http://www.mip.sdu.dk/people/PhD_students/akn.html
3http://www.mip.sdu.dk/people/PhD_students/lbwj.html
4http://www.markelic.de/
5http://atc.ugr.es/~mtomasi/
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1. INTRODUCTION

Figure 1.2: GUI showing the detected lanes in the current image and a history of pre-

diction and steering angles.

Figure 1.3: System architecture. IMO, PAR and GPU denote Independently Moving

Objects, Perception-Action Repository and Graphical Processing Unit, respectively.

Artificial Vision. The field of artificial vision is typically associated with the study

of artificial intelligence and, indeed, these fields employ many similar techniques such

as pattern recognition and machine learning. Also many of the goals are similar. Since

making a machine that ‘understands’ the scene being perceived through cameras has

Jarno Ralli, 2011 4
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shown to be much more difficult problem that was thought initially, modern approach

to artificial vision adopts techniques/models from the biology: evolution has had much

more time to come up with viable solutions than the mankind has even existed. This

kind of a bio-inspired approach is also typical in the field of artificial intelligence,

robotics (e.g. cerebellar based control [44][45]) and so on. In some cases bio-inspired

approach has lead to the creation of concrete methods/algorithms, such as the phase-

based methods [27][28] for image correspondence (for depth and movement perception),

while in other cases this has lead to a system-like thinking. In the early days a complete

solution to the problem of image understanding was sought within one system. Nowa-

days tasks are divided into separate sub-tasks or sub-systems that, running together,

perform more complex tasks. These so called phase-based methods are based on the

fact that Gabor filters, named after Dennis Gabor, model response of simple cells in

primate visual cortex [35]. System-like thinking, on the other hand, has lead to the

separation of different visual tasks into so called low-, middle-, and high level tasks,

which is in line with how the process of perception and image understanding is thought

to function in the case of primates [38], for example.

(a) (b)

Figure 1.4: Pot. (a) Random dot stereogram; (b) related disparity image.

As is indicated by Kandel in Principles of Neural Science [38], there is a consensus

in the scientific community that visual perception is mediated by three different path-

ways in the visual cortex that process motion, depth and form, and color. As it can

be understood, these visual cues can be very useful when trying to come up with a

system that would capable of deducing contextual information from any given image.

Therefore, it is not a surprise that the kind of image cues that we deal with in this
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thesis are related to motion, depth and segmentation (grouping of image pixels). Both

motion and depth are considered to be low-level cues, while segmentation is thought to

be a middle-level cue. Not only extracting these kind of cues is motivated by what we

know of the primate vision system, but also makes sense in the DRIVSCO framework

where action-perception cycles need to be extracted. Three-dimensional vision depends

on both monocular depth cues and binocular disparity. Binocular disparity (stereop-

sis) is due to the fact that we have two eyes and thus we have two slightly different

vantage points of the scene being observed. In the case of primates there is evidence

that the same part of the visual system handles both motion and depth. Indeed, many

methods used in the artificial vision for motion detection (optical-flow) can also be

used for generating depth cues (stereo-disparity). Figures 1.4 and 1.51 display two dif-

ferent random-dot stereograms along with the related disparity maps calculated with

the method described in Section 3.6. Random-dot stereograms ‘hide’ 3D information

that can be perceived since both the eyes see the image from slightly different position.

What is interesting here is that the same system that is used for obtaining depth cues

from stereo-images also works with random-dot stereograms.

(a) (b)

Figure 1.5: Shark (a) Random dot streogram; (b) related disparity image.

Figure 1.6 displays both the disparity map and the related segmentation for a

robotic grasping scenario. Here the idea is to detect the position and type of the

object(s) in the 3D-space. Based on this information the planner can decide on the

best grasp type for manipulating the object of interest.

1http://www.eyecanlearn.com/
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(a) (b) (c)

Figure 1.6: (a) left stereo-image; (b) related disparity map; (c) segmentation.

(a) (b) (c) (d)

Figure 1.7: Local features. (a) Lena image; (b) energy; (c) orientation; (d) phase. In the

case of orientation, color is used to codify the orientation of the edge in question.

Figure 1.7 shows an image of a Swedish model Lena Söderberg, that was published

in the 1972 issue of Playboy magazine. The top part of the image, portraying the head

along with the hat, has become probably the most used test image in the machine

vision community. The sub-images display such local features, extracted with Gabor

filters, as energy, orientation and phase. It is thought that in a primate vision the

Parvocellular-interblob system (neurons in this system are sensitive, for example, to

the orientation of edges) processes similar kind of cues [38].

1.2 Scientific Objectives

Scientific objectives that were put forward when starting this thesis were related to

analysis of real image sequences coming from similar kind of camera assemblies (stereo-

rig) as shown in Figure 1.1 in the framework of both vehicular technology and robotics.
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To be more specific, the goals that were set are:

• Disambiguate low-level dense disparity approximations by using information/cues

either deduced from the observed scene, for example by using a symbolic process

[55], or by what is known of a possible solution beforehand.

• Study applicability of state-of-the-art algorithm(s) in the DRIVSCO and robotics

frameworks. In the fall of 2006 and winter 2007 it was deduced that so called

variational methods produced excellent results for both optical-flow and disparity

calculation [63][13][3][5], and that also real-time implementations of these are

possible running on a standard PC [18]. Therefore, variational methods were

chosen for further study.

• Based on the experience related to other known correspondence forming methods,

it was already known that image representation is crucial in order for any method

to produce reliable cues. Therefore, it was also agreed that different representa-

tion spaces would be tested with the variational methods in order to see which

ones would produce the most reliable and temporally coherent results.

• Since depth information is a very powerful cue for object detection, it was also

agreed that disparity based segmentation would be researched. The main idea

was to study if disparity can be used to differentiate between possible objects of

interest and the background.

1.3 Project Framework

The work carried out in this thesis has been done in relation to three European re-

search projects called DRIVSCO1, GRASP2, and TOMSY3 and a national (Spanish)

research project called DINAM-VISION4. The doctorate was initially directly funded

by DRIVSCO, while participation in GRASP and TOMSY were through research ex-

change program: the doctorate spent 6 months at the University of Lappeenranta,

Finland, in 2010 and 6 months at the Royal Institute of Technology (KTH), Sweden,

in 2011. In the following there is a brief description of each of the projects.

1http://www.pspc.dibe.unige.it/~drivsco/
2http://www.csc.kth.se/grasp/
3http://www.cas.kth.se/tomsy/
4http://atc.ugr.es/dvision/index.php?option=com_content&view=frontpage
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1.3 Project Framework

1.3.1 DRIVSCO

DRIVSCO, Learning to Emulate Perception-Action Cycles in a Driving School Sce-

nario, EU project FP6-IST-FET, contract 016276-2.

Project description. Most technical systems, for example cars, must work reliably

at key-turn. Therefore, such systems almost always employ conventional control strate-

gies. Biological systems, on the other hand, learn. In the beginning they are functional

only at a very basic level from which they improve their skills. No-one would, however,

want to use a learning car, which could in the beginning barely steer. Thus, learning

techniques have not really entered turn-key applications so far.

The goal of DRIVSCO is to devise, test and implement a strategy of how to combine

adaptive learning mechanisms with conventional control, starting with a fully opera-

tional human-machine interfaced control system and arriving at a strongly improved,

largely autonomous system after learning, that will act in a proactive way using dif-

ferent predictive mechanisms. DRIVSCO seeks to employ closed loop perception-action

learning and control to cars and their drivers; combining for the first time advanced

(largely hardware based) visual scene analysis techniques with supervised sequence learn-

ing mechanisms into a semi-autonomous and adaptive control system for cars and

other vehicles. The central idea of this project is that the car should learn to drive

autonomously from correlating scene information with the actions of the driver.

In the context of this project this system shall be tested and applied in night-vision sce-

narios with infra-red illumination, which is our main and commercially very relevant

application domain. Here we envision a system that can learn to drive a car during

daylight and apply the learned control strategies in an autonomous way to the system

and augmented field of infrared night-vision.

1.3.2 GRASP

GRASP, Emergence of Cognitive Grasping Through Introspection, Emulation and Sur-

prise, EU project IST-FP7-IP-215821.

Project description. The aim of GRASP is the design of a cognitive system capable

of performing grasping and manipulation tasks in open-ended environments, dealing

with novelty, uncertainty and unforeseen situations. To meet the aim of the project,

studying the problem of object manipulation and grasping will provide a theoretical and
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measurable basis for system design that is valid in both human and artificial systems.

This is of utmost importance for the design of artificial cognitive systems that are to be

deployed in real environments and interact with humans and other agents. Such systems

need the ability to exploit the innate knowledge and self-understanding to gradually

develop cognitive capabilities. To demonstrate the feasibility of our approach, we will

instantiate, implement and evaluate our theories and hypotheses on robot systems with

different embodiments and complexity.

GRASP goes beyond the classical perceive-act or act-perceive approach and implements

a predict-act-perceive paradigm that originates from findings of human brain research

and results of mental training in humans where the self-knowledge is retrieved through

different emulation principles. The knowledge of grasping in humans can be used to

provide the initial model of the grasping process that then has to be grounded through

introspection to the specific embodiment. To achieve open-ended cognitive behaviour,

we use surprise to steer the generation of grasping knowledge and modelling.

1.3.3 TOMSY

TOMSY, Topology Based Motion Synthesis for Dexterous Manipulation, EU project

IST-FP7-Collaborative Project-270436.

Project description. The aim of TOMSY is to enable a generational leap in the tech-

niques and scalability of motion synthesis algorithms. We propose to do this by learning

and exploiting appropriate topological representations and testing them on challenging

domains of flexible, multi-object manipulation and close contact robot control and com-

puter animation. Traditional motion planning algorithms have struggled to cope with

both the dimensionality of the state and action space and generalisability of solutions in

such domains. This proposal builds on existing geometric notions of topological metrics

and uses data driven methods to discover multi-scale mappings that capture key invari-

ances - blending between symbolic, discrete and continuous latent space representations.

We will develop methods for sensing, planning and control using such representations.

TOMSY, for the first time, aims to achieve this by realizing flexibility at all the three

levels of sensing, representation and action generation by developing novel object-action

representations for sensing based on manipulation manifolds and refining metamorphic

manipulator design in a complete cycle. The methods and hardware developed will be

tested on challenging real world robotic manipulation problems ranging from primarily
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‘relational’ block worlds, to articulated carton folding or origami and all the way to full

body humanoid interactions with flexible objects.

The results of this project will go a long way towards providing some answers to the long

standing question of the ‘right’ representation in a sensorimotor control and provide a

basis for a future generation of robotic and computer vision systems capable of real-time

synthesis of motion that result in fluent interaction with their environment.

1.3.4 DINAM-VISION

DINAM-VISION, Spanish national research project, DPI2007-61683.

Project description. This project aims at developing a real-time vision system, ca-

pable of dynamically adapting the inherent characteristics (for example, the dynamic

range of the spatio-temporal filters used in the low-level vision) of the used model(s) in

order to improve information extraction. First stage of the system deals with low-level

visual cues (e.g. local contrast changes and related magnitude, orientation and phase),

while in the second stage these primitives are fused into multimodal disperse entities.

The system has feed-back loops that allow feeding back information from later stages

to the earlier stages, so that optimal functionality at each stage is achieved. Real-time

processing is achieved by utilizing massively parallel platforms, such as FPGAs.

The project will explore potential use of the system in different application areas, where

the group has expertise, such as driver assistance systems. The system will be tested

in both daylight and nigh-time scenarios, using cameras working in the visible light and

infrared wavelengths. We will concentrate on IMOs (independently moving objects) and

ego-motion.

1.4 Methods and Tools

The algorithms introduced in this thesis were implemented as a combination of Mat-

lab/MEX (Mathlab EXecutable) code. The reason for choosing Matlab is that it allows

for quick implementation and testing of algorithms, as well as visualisation of the re-

sults. On the other hand, Matlab is known to be slow. However, the MEX interface of

Matlab allows to integrate compiled C code into Matlab code. In other words, functions

programmed in C, using the MEX interface, can be called from Matlab code. In order

to further improve the speed, some parts of the C code was programmed in assembler,
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directly accessing FPU (Floating Point Unit) and SSE (Streaming SIMD extensions).

The algorithms/methods introduced in this thesis are significantly less than half of all

the different methods that were implemented during 2006-2011.

1.5 Organization of Chapters

Main part of this work is divided into three chapters as follows. In Chapter 3 we intro-

duce the variational correspondence methods for disparity and optical-flow calculation.

This chapter is divided into following sections. In sections 3.5 and 3.6 the basic corre-

spondence models for optical-flow and stereo disparity are introduced, respectively. In

Section 3.8 we study robustness of different image representations against illumination

errors and image noise. Finally, in Section 3.9 the basic optical-flow and stereo dispar-

ity models are extended to include both temporal- and spatial constraints. In Chapter

4 we introduce the variational segmentation method based on level-set theorem and

we will also explain how information obtained through segmentation can be used to

disambiguate disparity estimations. In Chapter 5 we explain how the different models

can be solved efficiently. Finally, in Chapter 6 scientific contributions of this work are

discussed.
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2

Introducción en Castellano

2.1 General

Génesis. Como se indica en el informe Statistics of Road Traffic Accidents in Europe

and North America1 de UNECE, durante la década de 1998-2008, se han muerto unos

150.000 y han resultado heridos unos 5.5 millones de personas, por AÑO, en mas de

3.8 millones de accidentes de tráfico en los páıses ECE (Europa y America del norte).

Por lo tanto, no es una sorpresa que exista mucho interés en el desarrollo de sistemas

pasivos y activos de veh́ıculos para disminuir tanto la cantidad de accidentes como

las consecuencias. Con el termino de sistema pasivo se refiere a componentes de los

veh́ıculos que protegen tanto al conductor como a los pasajeros, mientras que con el

termino sistema activo se refiere a los sistemas que ayudan a evitar/prevenir los acci-

dentes. Entre los sistemas pasivos se encuentran dispositivos tales como: cinturones

de seguridad, parabrisas laminados. Por el otro lado, un subconjunto interesante de

sistemas activos son los ADAS (ingl. Advanced Driver Assistance Systems). Dichos sis-

temas son, por ejemplo, sistemas para detección de salida de carril, control de tracción,

visión nocturna (cámaras infrarrojas) etcétera.

Esta tesis se inició como parte de un proyecto europeo llamado DRIVSCO (ingl.

Learning to Emulate Perception-Action Cycles in a Driving School Scenario2, proyecto

europeo, FP6) con la intención de crear un sistema ADAS capaz de adaptarse a la

forma de conducción del conductor: Mayoŕıa de los sistemas técnicos, por ejemplo

1http://live.unece.org/trans/main/wp6/publications/stats_accidents2011.html
2http://cordis.europa.eu/fetch?CALLER=PROJ_ICT&ACTION=D&CAT=PROJ&RCN=80441
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2. INTRODUCCIÓN EN CASTELLANO

los automóviles, deben funcionar perfectamente desde el primer uso. Por lo tanto,

estos sistemas casi siempre usan las estrategias convencionales de control. Los sistemas

biológicos, por otro lado, aprenden. Al principio funcionan de forma muy sub-óptima,

pero el funcionamiento se va perfeccionando mientras aprenden. Nadie, sin embargo,

desea emplear un veh́ıculo ‘de aprendizaje’ que apenas se pueda conducir al ser usado

la primera vez. Por lo tanto, las técnicas de aprendizaje no han entrado realmente en

aplicaciones como esta, hasta ahora.

El objetivo de DRIVSCO es diseñar, probar e implementar una estrategia que permita

combinar diferentes sistemas de aprendizaje adaptativo. La idea es partir de un sistema

con una interfaz entre el usuario y la máquina y llegar a un sistema ampliamente

autónomo, a través de aprendizaje, que acta de forma proactiva, utilizando diferentes

mecanismos de predicción.

En otras palabras, el sistema tiene que ser capaz de analizar la situación y realizar

predicciones. No es suficiente analizar solamente la información obtenida de la CPU

del veh́ıculo como, por ejemplo, la velocidad, la posición de la dirección, la posición

de los pedales (acelerador, freno y/o embrague) o señal de GPS. Se puede argumentar

que la percepción visual es el sentido más importante que usamos los seres humanos

para conducir un veh́ıculo. Esta suposición se ve respaldada por el hecho que varios

simuladores de conducción usan principalmente información visual. Por lo tanto, la

parte delantera del sistema (ingl. front-end), el cual se usa para percepción y extracción

de eventos, está basado en el tratamiento de imágenes. Combinando estimulos visuales

con el resto de la información disponible de la CPU del veh́ıculo, se pueden extraer

interpretaciones contextuales de la situación donde se encuentra el veh́ıculo. El sistema

visual del sistema está basado tanto en cámaras diurnas como en cámaras nocturnas

(cámaras infrarrojas), el cual permite el funcionamiento del sistema incluso durante la

noche.

Esta breve introducción nos lleva al tema principal de esta tesis, la cual está rela-

cionada con visión artificial (también se conoce como visión maquina o visión por

ordenador). Antes de seguir con el tema de visión artificial, queremos mencionar que

existen (o han existido) varios proyectos similares a DRIVSCO. Aqúı mencionamos

algunos: DIPLECS (ingl. Dynamic Interactive Perception-Action Learning in Cog-

nitive Systems1, Comision Europeo, FP7), COSPAL (ingl. Cognitive Systems using

1http://www.diplecs.eu/
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Perception-Action System1, Comision Europeo, FP6) y IVSS (Intersection accidents:

Analysis and Prevention 2, Suecia).

En Figura 2.1 se demuestra tanto el sistema óptico como el monitor con la inter-

faz del sistema, que se han utilizado en el proyecto DRIVSCO. Las figuras 2.2 y 2.3

demuestran tanto el GUI (del ingl. Graphical User Interface) como el sistema que de-

tecta el comportamiento inconsistente del conductor tanto como los IMOs (del ingl.

Independently Moving Objects) que están en rumbo de colisión con el veh́ıculo [46].

(a) (b)

Figura 2.1: DRIVSCO coche. (a) sistema óptico de DRIVSCO; (b) la GUI (ingl. Graph-

ical User Interface) correspondiente.

Mientras se estaba escribiendo esta tesis, el fabricante de coches Volvo dio a conocer

un sistema para detectar posibles colisiones, con frenos completamente automáticos.

Por otro lado, las mismas técnicas que se investigaron inicialmente en el marco del

proyecto DRIVSCO, son suficientemente genéricos para ser utilizados en otros campos

cient́ıficos, donde se emplea visión artificial como, por ejemplo, la robótica.

En relación a DRIVSCO se han hecho varias tesis. Adjunto hemos puesto una lista

para mencionar algunas de ellas: Karl Pauwels (Katholieke Universiteit Leuven, Leu-

ven, Belgium), Anders Kær-Nielsen3 and Lars Baunegaard With Jensen4 (University

of Southern Denmark, Odense, Denmark), Irene Markelić5 (Georg-August-University

1http://www.cospal.org/
2http://www.ivss.se/
3http://www.mip.sdu.dk/people/PhD_students/akn.html
4http://www.mip.sdu.dk/people/PhD_students/lbwj.html
5http://www.markelic.de/
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Figura 2.2: La interfaz que en este caso demuestra los carriles junto con la historia de

predicción de ángulos de la dirección (volante).

Figura 2.3: Arquitectura del sistema. IMO, PAR y GPU significan significan, en inglés,

Independently Moving Objects, Perception-Action Repository y Graphical Processing Unit.

Göttingen, Göttingen, Germany) and Matteo Tomasi1 (University of Granada, Granada,

Spain).

Visión Artificial. El campo de visión artificial se asocia t́ıpicamente con el estudio

1http://atc.ugr.es/~mtomasi/
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de la inteligencia artificial y, de hecho, estos campos emplean muchas técnicas simi-

lares como, el reconocimiento de patrones y aprendizaje automático. También, varios

de los objetivos son similares. Crear una máquina que ‘entiende’ la escena que se

percibe a través de las cámaras, ha demostrado ser un problema mucho más dif́ıcil

de lo que se pensaba inicialmente. El enfoque moderno de la visión artificial adopta

técnicas/modelos de la bioloǵıa: la evolución ha tenido mucho más tiempo para llegar

a soluciones viables antes que los seres humanos (i.e. homo sapiens) existieran. Este

tipo de enfoque bio-inspirado también es usual en el campo de la inteligencia artificial

o robótica, por ejemplo, el control basado en cerebelo [44][45]. En algunos casos el

enfoque bio-inspirado ha dado lugar a la creación de métodos/algoritmos concretos,

como es el caso con los métodos de correspondencia (disparidad estéreo y la percepción

del movimiento) basados en la fase [27][28], mientras que, en otros casos, esto ha dado

lugar a un enfoque de procesamiento dividido en sub-tareas. Los métodos basados de

la fase se basan en el hecho de que los filtros de Gabor, nombrado en honor a Dennis

Gabor, modelan el funcionamiento de las células simples en la corteza visual de pri-

mates [35]. Al principio se trató de resolver el problema de percepción visual utilizando

un solo sistema/programa que fuera capaz de hacerlo todo. Hoy en d́ıa, el enfoque es

dividir el problema en distintas sub-tareas o subsistemas que juntos realicen tareas más

complejas. Este enfoque ha dado lugar a la separación de las diferentes tareas visuales

en tareas de bajo, medio y de alto nivel. Existe evidencia que la percepción visual

funciona de esta manera en el caso de los primates [38], por ejemplo.

(a) (b)

Figura 2.4: Tetera. (a) Estereograma de puntos aleatorios; (b) la disparidad asociada.

Como indica Kandel en Principios de la Neurociencia [38], existe un consenso en
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la comunidad cient́ıfica que la percepción visual está mediada por tres v́ıas diferentes

de la corteza visual que procesan el movimiento, la profundidad y la forma y el color.

Como se puede entender, estas señales visuales pueden ser muy útiles cuando se trata

de crear un sistema que sea capaz de deducir información contextual de cualquier

imagen procesada. Por lo tanto, no es una sorpresa que el tipo de señales/rasgos

que utilizamos en esta tesis estén relacionados con la detección del movimiento (flujo-

óptico), la profundidad y la segmentación (agrupación de los ṕıxeles de la imagen).

Tanto el movimiento como la profundidad, se consideran señales de bajo nivel, mientras

que la segmentación es una señal de nivel medio. La extracción de este tipo de señales

no sólo está motivada por lo que sabemos del sistema de visión de los primates, sino que

también tiene sentido en el marco de DRIVSCO donde se necesitan extraer ciclos de

percepción-acción de las imágenes procesadas. La visión en tres dimensiones depende

de indicios de profundidad monoculares como binoculares. La Disparidad binocular

(estereoscópica) se debe al hecho de que tenemos dos ojos y por lo tanto tenemos dos

puntos de vista ligeramente diferentes de la escena que observamos. En el caso de

los primates, hay evidencia de que la misma parte del sistema visual se encarga tanto

del procesamiento del movimiento como de la profundidad. De hecho, varios métodos

utilizados en la visión artificial para detección de movimiento (flujo-óptico) también

pueden ser utilizados para la generación de indicios relacionados con la profundidad

(disparidad estéreo). Las figuras 2.4 y 2.51 muestran dos diferentes estereogramas de

puntos aleatorios junto con los mapas de disparidad correspondientes, calculados con

el modelo que se describe en la sección 3.6. Los estereogramas de puntos aleatorios

‘ocultan’ información 3D que podemos percibir ya que los ojos ven la imagen de dos

posiciones ligeramente diferentes. Lo que es interesante aqúı,es que el mismo sistema

que se utiliza para la obtención de señales de profundidad en imágenes estéreo también

funciona con estereogramas de puntos aleatorios

Figura 2.6 muestra tanto el mapa de disparidad como la segmentación, relacionados

con robótica. Aqúı la idea es detectar la posición y el tipo de objeto de que se trata, en

el espacio 3D. Basado en esta información, el planificador puede decidir sobre el mejor

tipo de agarre para manipular el objeto de interés.

Figura 2.7 muestra una imagen de una modelo sueca, Lena Söderberg, que fue

publicado en la edición de 1972 de la revista Playboy. La parte superior de la ima-

1http://www.eyecanlearn.com/
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(a) (b)

Figura 2.5: Tiburon. (a) Estereograma de puntos aleatorios; (b) la disparidad asociada.

(a) (b) (c)

Figura 2.6: (a) Imagen izquierda; (b) el mapa de disparidad asociado; (c) resultados de

segmentación.

gen, retratando la cabeza junto con el sombrero, se ha convertido probablemente en la

imagen de prueba más utilizada en la comunidad de visión artificial. Las subfiguras

muestran caracteŕısticas tales como la enerǵıa, la orientación y la fase, obtenidas a

través de filtros de Gabor. Se piensa que en el caso de los primates, el sistema parvo-

cecular (las neuronas de este sistema son sensibles, por ejemplo, a la orientación de los

bordes) procesan este tipo de señales [38]..

2.2 Objetivos Cientificos

Los objetivos cient́ıficos que se establecieron al iniciar esta tesis están relacionados con

el análisis de secuencias de imágenes reales procedentes de sistemas parecidos al que

sale en la figura 2.1, relacionados con tecnoloǵıa vehicular y la robótica. Para ser más

espećıficos, las metas que se establecieron son las siguientes:
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(a) (b) (c) (d)

Figura 2.7: Caracteŕısticas locales. (a) Imagen de Lena; (b) la enerǵıa; (c) la orientación;

(d) la fase. En el caso de la orientación, el color codifica la orientación del borde en cuestión.

• Desambiguar aproximaciones de disparidad mediante el uso de la información (1)

deducido directamente de la escena observada (por ejemplo, utilizando un proceso

simbólico [55] o (2) por lo que se sabe de antemano de la posible solución.

• Estudio de la aplicabilidad del algoritmo de estado de la técnica (s) en los marcos

DRIVSCO y la robótica. En el otoño de 2006 y el invierno de 2007 se dedujo que

los llamados métodos variacionales han dado excelentes resultados, tanto para el

flujo óptico y el cálculo de la disparidad [63] [13], y que también, en tiempo real

de las implementaciones de estos, es posible ejecutar en un PC estándar [18]. Por

lo tanto, los métodos variacionales fueron elegidos para el desarrollo de nuestro

sistema.

• Investigar la aplicabilidad de algoritmos de estado-del-arte tanto en el marco de

DRIVSCO como en el de la robótica. Durante el otoño de 2006 y el invierno de

2007 se dedujo que los métodos variacionales daban excelentes resultados, tanto

para el flujo óptico como para la disparidad [63][13][3][5], con la posibilidad de

implementar esto metodos en tiempo real en un PC estandar [18]. Por lo tanto,

los métodos variacionales fueron elegidos.

• Debido a la experiencia con otros métodos usados para generar correspondencias

entre imágenes, ya se sabia que la representación de la imagen juega un papel

crucial para que cualquier método fuese capaz de crear dichas correspondencias

de alta confianza. Por lo tanto, se decidió investigar varias representaciones difer-

entes con el fin de ver cuales son capaces de generar resultados más fiables y
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coherentes temporalmente.

• Dado que la información de profundidad es una señal muy ’determinante’ para

la detección de objetos, también se acordó que la segmentación basada en la dis-

paridad seŕıa investigado. La idea principal fue estudiar si el mapa de disparidad

se puede utilizar para diferenciar entre los objetos de interés y el fondo.

2.3 Marco de Proyectos

El trabajo realizado en esta tesis se ha hecho en relación con tres proyectos europeos de

investigación, denominados DRIVSCO1, GRASP2 , y TOMSY3 y un proyecto nacional

de España denominado DINAM-VISION4. El doctorando fue inicialmente financiado

directamente por DRIVSCO, mientras que la participación en GRASP y TOMSY fué

a través de programa de intercambio: el doctorando pasó 6 meses en la Universidad

de Lappeenranta, Finlandia, en 2010 y 6 meses en el Instituto Real de Tecnoloǵıa

(KTH), Suecia, en 2011. A continuación, hay una breve descripción de cada uno de los

proyectos.

2.3.1 DRIVSCO

DRIVSCO (ingl. Learning to Emulate Perception-Action Cycles in a Driving School

Scenario), proyecto europeo FP6-IST-FET, contrato 016276-2.

Descripción del proyecto. Mayoŕıa de los sistemas técnicos, por ejemplo los au-

tomóviles, deben funcionar perfectamente desde el primer uso. Por lo tanto, estos

sistemas casi siempre usan las estrategias convencionales de control. Los sistemas

biológicos, por otro lado, aprenden. Al principio funcionan de forma muy sub-óptima,

pero el funcionamiento se va perfeccionando mientras aprenden. Nadie, sin embargo,

desea emplear un veh́ıculo‘de aprendizaje’ que apenas se pueda conducir al ser usado

la primera vez. Por lo tanto, las técnicas de aprendizaje no han entrado realmente en

aplicaciones como esta, hasta ahora.

El objetivo de DRIVSCO es diseñar, probar e implementar una estrategia que permita

1http://www.pspc.dibe.unige.it/~drivsco/
2http://www.csc.kth.se/grasp/
3http://www.cas.kth.se/tomsy/
4http://atc.ugr.es/dvision/index.php?option=com_content&view=frontpage
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combinar diferentes sistemas de aprendizaje adaptativo. La idea es partir de un sis-

tema con una interfaz entre el usuario y la máquina y llegar a un sistema ampliamente

autónomo, a través de aprendizaje, que acte de forma proactiva, utilizando diferentes

mecanismos de predicción.

En el contexto de este proyecto, este sistema será probado y aplicado en los escenarios

de visión nocturna, que es nuestro dominio de la aplicación principal y comercialmente

muy relevante. Aqúı imaginamos un sistema que puede aprender a conducir un coche

durante el d́ıa y aplicar las estrategias de control, aprendidos de manera autónoma, en

los escenarios de conducción nocturna.

2.3.2 GRASP

GRASP (ingl. Emergence of Cognitive Grasping Through Introspection, Emulation

and Surprise), projecto europeo IST-FP7-IP-215821.

Descripción del proyecto. El objetivo de GRASP es el diseño de un sistema cog-

nitivo capaz de realizar tareas de agarre y manipulación en entornos ‘abiertos’, capaz

de enfrentar la incertidumbre en situaciones novedosas y no previstas. Para cumplir

con el objetivo de este proyecto, el estudio del problema de la manipulación de objetos

proporcionará una base teórica y ‘medible’ para el diseño del sistema que es válido tanto

en los sistemas biológicos como artificiales. Esto es de suma importancia para el diseño

de los sistemas cognitivos artificiales que van a ser usados en entornos reales y que in-

teractúan con los seres humanos y otros agentes. Estos sistemas necesitan la habilidad

de explotar el conocimiento innato y la comprensión de uno mismo para desarrollar

gradualmente la capacidad cognitiva. Para demostrar la viabilidad de nuestro enfoque,

vamos a crear una instancia, ejecutar y evaluar las teoŕıas y las hipótesis sobre los

sistemas de robot con diferentes formas de realización y la complejidad.

GRASP va más allá de la clásico enfoque de percepción-actuación o actuación-percepción

e implementa un paradigma de predicción-actuación-percepción, el cual está basado en

los últimos hallazgos de la investigación del cerebro humano. El conocimiento de cómo

agarramos objetos los seres humanos puede ser utilizado para proporcionar el modelo

inicial del proceso de agarre.
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2.3.3 TOMSY

TOMSY (ingl. Topology Based Motion Synthesis for Dexterous Manipulation), pro-

jecto europeo IST-FP7-Collaborative Project-270436.

Descripción del proyecto. El objetivo de TOMSY es permitir un salto generacional

en las técnicas y la escalabilidad de los algoritmos de śıntesis de movimiento. Nos pro-

ponemos hacer esto por el aprendizaje y la explotación de la representación topológica

adecuada y ponerlos a prueba en los dominios de manipulación de varios objetos, control

de robots y la animación por ordenador. Los algoritmos tradicionales de planificación

de movimiento han tenido dificultades para enfrentar la dimensionalidad del espacio de

estados y de la acción y la generalización de las soluciones en tales dominios. Esta

propuesta se basa en las nociones geométricas de métricos topológicos y en métodos

basados en datos para descubrir mapeos (asignaciones) multi-escala que capturan in-

varianzas más relevantes - una mezcla entre representaciones de espacios simbólicos,

discretos y continuos. Por primera vez, TOMSY aspira a lograr esto al darse cuenta

de la flexibilidad en los tres niveles de percepción, representación y la generación de

acciones mediante el desarrollo de nuevas representaciones de objeto-acción para per-

cepción basado en ‘manipulación variedad’ (ingl. manipulation manifold) y el diseño

de manipuladores metamórficos. Los métodos y hardware desarrollados se pondrán a

prueba en retos del mundo real de manipulación que van desde mundos de bloque hasta

doblar cartón u origami e interacciones de cuerpos humanoides con objetos flexibles.

Los resultados de este proyecto nos proporcionarán algunas respuestas a la vieja pre-

gunta de cual es la ‘correcta’ representación en un control sensorio-motora y también

proporcionará una base para una futura generación de sistemas de visión robótica ca-

paces de śıntesis de movimiento en tiempo real que resultara en interactuación fluida

con su entorno.

2.3.4 DINAM-VISION

DINAM-VISION, proyecto nacional de España, DPI2007-61683.

Descripción del proyecto. El proyecto aborda el desarrollo de un sistema de visión

en tiempo real con capacidad de adaptación dinámica de sus caracteŕısticas inherentes

(por ejemplo el rango dinámico de los filtros espacio-temporales en los que se basan
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los modelos de visión de bajo nivel) para mejorar la capacidad de extracción de in-

formación. El sistema de visión está formado por una primera etapa de visión de

bajo nivel (en el que se extraen modalidades visuales como movimiento, profundidad a

partir de dos cámaras, caracteŕısticas de cambios locales de contraste como magnitud,

orientación y fase local, etc.) y una segunda etapa de fusión de estas primitivas en en-

tidades multi-modales dispersas. El sistema incluye lazos de realimentación (flujos de

información/modelos proyectados hacia atrás) con los que el sistema puede modificar

el procesamiento de imágenes en las distintas etapas que realizan la estructuración de

información de acuerdo con primitivas detectadas con mayor confianza en las distin-

tas etapas. La implementación en tiempo real de toda la plataforma utilizando proce-

samiento altamente paralelo en dispositivos de tipo FPGA permite su evaluación en el

marco de aplicaciones reales.

El proyecto explora el potencial del sistema de visión en varios campos de aplicación

en los que el grupo tiene experiencia. Nos hemos centrado en sistemas avanzados de

visión para ayuda a la conducción. Evaluamos el potencial del sistema de visión de

bajo y medio nivel en tiempo real con secuencias de conducción diurnas y nocturnas

(tomadas con sensores espećıficos). Nos centramos en la detección de eventos rele-

vantes (como objetos con movimiento independiente OMIs- y estimación de dirección

de ego-movimiento heading-).

2.4 Métodos y Herramientas

Los algoritmos introducidos en esta tesis se implementaron como una combinación de

código Matlab/MEX (ingl. Matlab EXecutable). La razón para elegir Matlab es que

permite una rápida implementación de algoritmos, aśı como la visualización de los re-

sultados. Por otro lado, Matlab es conocido por ser lento. Sin embargo, la interfaz

MEX de Matlab permite integrar código C (compilado) en el código Matlab. En otras

palabras, las funciones programadas en C, utilizando la interfaz de MEX, se pueden

llamar desde el código de Matlab. Con el fin de mejorar aún más la velocidad, algunas

partes del código de C se han programado en ensamblador, accediendo directamente a

la FPU (ingl. Floating Point Unit) y SSE (Streaming SIMD Extensions). Los algorit-

mos/métodos introducidos en esta tesis son menos de la mitad de todos los diferentes

métodos que se implementaron durante 2006-2011.
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2.5 Organización de los Caṕıtulos

Parte principal de este trabajo se divide en tres caṕıtulos de la siguiente manera. En

Caṕıtulo 3 se introducen los métodos variacionales de correspondencia para el cálculo

de disparidad y flujo óptico. Este caṕıtulo está dividido en las siguientes secciones.

En las secciones 3.5 y 3.6 se introducen los modelos básicos de flujo óptico y estéreo,

respectivamente. En Sección 3.8 se estudia la robustez de diferentes representaciones de

imágenes respecto a los errores en la iluminación y el ruido. Por último, en Sección 3.9

se ampĺıan los modelos básicos de flujo óptico y disparidad para incluir las restricciones

temporales y espaciales. En Caṕıtulo 4 se introduce el método de segmentación basado

en el teorema de conjunto de nivel (ingl. level sets) y también explicamos cómo la

información obtenida a través de la segmentación se puede utilizar para eliminar la

ambigüedad en las estimaciones de disparidad. En Caṕıtulo 5 se explica cómo los

diferentes modelos se pueden resolver de manera eficiente. Por último, en Caṕıtulo 6

se discuten los resultados obtenidos y las contribuciones cient́ıficas de este trabajo.
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3

Variational Correspondence

Methods

3.1 Introduction

In this chapter we introduce the variational framework for generating pixel-wise corre-

spondences between images and explain how these correspondences are related to the

motion (optical-flow) and the depth (disparity) cues mentioned in the Section 1.1. We

start by briefly explaining the concept of calculus of variations and its relation with

the Gauss-Seidel equations. After this we introduce the basic models, for both optical-

flow and stereo disparity, and talk about their properties. Then we study influence

of the image representation upon generating correct and coherent correspondences, in

disparity calculation, under illumination errors and image noise. Up to a limit, these

results are valid for optical-flow as well. Finally we extend the basic models to include

both spatial- and temporal-constraints. The main ‘target’ of our research has been

improving robustness of the models, so that they could be used with real world prob-

lems. Therefore, our main contributions are (1) finding a robust image representation

that allows generation of correct image correspondences under realistic illumination

conditions, and (2) introducing a way of using ‘a priori’ information in the models.

Another term used for generating correspondences is image registration, which is a

process of overlaying two or more images either taken at different times or at slightly

different positions/orientations. In our case we are not so much interested in the actual

overlaid images, but in the transformation needed to transform the images, so that
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the given features (e.g. object borders) become super-positioned. As it was already

mentioned, apparent movement of objects between two images can be due to the fact

that the images were taken at different times or from different vantage points. There-

fore, we identify two different cases. In the optical-flow case we have two (or several)

images taken with the same camera at different instances of time, while in the stereo-

disparity/binocular-disparity (or shortly disparity) case we have two (or more) cameras

next to each other that take images at the same time. As it can be understood, in the

first case movement (if any) is either due to the movement of the camera with relation

to the scene or due to movement of the actual objects between the images taken at t

and t + 1. In the second case parallax is due to the different vantage points between

the two cameras and is related to the distance between the cameras and the objects

seen in the images. ‘Parallax is an apparent displacement or difference in the appar-

ent position of an object viewed along two different lines of sight, and is measured by

the angle or semi-angle of inclination between those two lines’ 1. Figure 3.12 depicts

binocular disparity.

Since both optical-flow and disparity problems are well known in the machine vision

community, we do not spend great deal of time justifying why these are interesting

problems to solve or what the related physical phenomena is. An interested reader

is pointed to [31] for more information on the subject. Some examples where both

optical-flow and disparity can be used, are given in Table 3.1.

Table 3.1: Possible applications of optical-flow and disparity.

-Detection of moving objects -3D-reconstruction of the scene

-Video-surveillance -Video-surveillance (3D)

-Tracking of objects -Augmented reality

-Pedestrian detection vehicular technology -Robotics (e.g. grasping)

-Between frames generation (cinema effects) -Autonomous navigation

-Video compression

-Image registration (e.g. medical imaging)

Figures 3.2 and 3.3 display examples of both disparity (and possible uses) and

optical-flow. In the case of the optical-flow, colour codifies the direction while intensity

1http://en.wikipedia.org/wiki/Motion_parallax
2http://en.wikipedia.org/wiki/Binocular_disparity/
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Figure 3.1: Binocular disparity.

codifies the velocity.

(a) (b) (c)

Figure 3.2: A robotics related disparity example. (a) Left stereo-image; (b) corresponding

disparity map; (c) 3D-reconstruction of the object of interest. In the case of the disparity

map, gray-level codifies the disparity: objects with dark tones are closer to the cameras,

while objects with light tones are further away from the cameras.
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(a) (b)

Figure 3.3: Optical flow. (a) image at t=0; (b) corresponding optical-flow. Colour

codifies direction and intensity velocity.

3.2 Organisation of Sections

Since is the longest chapter in the thesis, we introduce the order of the sections here,

hopefully making it easier for the reader to follow the rest of the chapter. In Section

3.3 we briefly cover what is calculus of variations and its relation with the Gauss-

Seidel equations. In Section 3.4 we give some motivation for the use of the variational

methods. In sections 3.5 and 3.6 we introduce the basic optical-flow and disparity

models, in respective order. In Section 3.8 we analyse different image representations

from both accuracy and robustness points of view, while in the Section 3.9 we introduce

both spatial- and temporal constraints in the models.

3.3 What is Meant by Calculus of Variations?

Before proceeding any further, we will very briefly explain what is meant with calculus

of variations and how it is related to the so called Euler-Lagrange equations.

Calculus of variations. ‘Calculus of variations is a field of mathematics that deals

with extremising functionals, as opposed to ordinary calculus which deals with functions.

A functional is usually a mapping from a set of functions to the real numbers. Func-

tionals are often formed as definite integrals involving unknown functions and their

derivatives. The interest is in extremal functions that make the functional attain a

Jarno Ralli, 2011 30



3.4 Motivation for Variational Correspondence

maximum or minimum value or stationary functions those where the rate of change

of the functional is precisely zero.’ 1.

Now that we understand what is actually meant by calculus of variations, we will

see what is its relation with the Euler-Lagrange equation, as follows.

Euler-Lagrange equation. ‘In calculus of variations, the Euler-Lagrange equation,

is a differential equation whose solutions are the functions for which a given functional

is stationary. Because a differentiable functional is stationary at its local maxima and

minima, the Euler-Lagrange equation is useful for solving optimisation problems in

which, given some functional, one seeks the function minimising (or maximising) it.

This is analogous to Fermat’s theorem in calculus, stating that where a differentiable

function attains its local extrema, its derivative is zero.’ 2 In the following we given an

example of a functional and the related Euler-Lagrange equation.

S(f) =

∫ b

a
L(x, f(x), f ′(x)) (3.1)

where f(x) is a function of a real variable x and L is the functional. The Euler-Lagrange

equation is given by:

∂

∂f
L− d

dx

∂

∂f ′
L = 0 (3.2)

In the optical-flow case the functional (3.3) is defined with respect to functions u

and v (that are to be found), of real arguments x and y. In other words, the functional

is a mapping from the functions u(x, y) and v(x, y) into a real number that we call

energy. In the disparity case the functional (3.11) is defined with respect to a function

d (that is to be found), of real arguments x and y. In this case the functional is a

mapping from the function d(x, y) into a real number.

3.4 Motivation for Variational Correspondence

The reason for having chosen variational methods over other methods is motivated by

several issues. First of all, mathematical modelling of the problem is straight-forward

and, therefore, extending the model is easy. Secondly, the same model (model with late

1source:http://en.wikipedia.org/wiki/Calculus_of_variations
2source:http://en.wikipedia.org/wiki/Euler-Lagrange
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linearization), with only minor changes, can be used for both optical-flow and disparity

calculation. Thirdly, the governing mathematics are well known and efficient solvers for

the resulting PDEs (partial differential equations) are available, allowing even real-time

implementations [19][17][18]. Fourthly, with appropriate data and smoothness terms,

the results generated by the model are both accurate (for most practical applications)

and robust with respect to illumination changes and image noise [59][48].

In practice almost all correspondence methods can be described in terms of min-

imizing (or maximizing) an energy- or a cost function. Due to a built-in smoothness

term, that propagates the solution spatially (or spatio-temporally), variational meth-

ods search for a minimum of the energy function in a global fashion, and therefore are

referred as global-methods. On the other hand, methods that do not have this kind of a

spatial- or spatio-temporal smoothness term are called local-methods. Naturally, ad-hoc

methods for increasing spatial support in the local-methods do exist. Due to the global

nature of the variational methods they overcome the aperture problem. This comes at

a cost of increased computational effort. Therefore, it can be said that local methods

are more suitable for real-time implementations, especially in low-power platforms.

Table 3.2: Pros and cons of variational correspondence methods.

Pros Cons

-Easily understandable modeling -Computational complexity

-Extendibility

-Same model for both optical-flow and disparity

-Well known mathematics

-Efficient solvers exist

-Sub-pixel accuracy

In general, optical-flow calculation methods based on calculus of variations are

amongst the most accurate ones1 and also give reasonable results for disparity.

3.5 Optical-flow

In this section models for calculating the optical-flow, denoted by (u, v), are introduced.

First the ‘standard’ model with early linearisation is covered, after which a slightly

1http://vision.middlebury.edu/flow/
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more complex model with warping and late linearisation is discussed. As it was already

mentioned, optical-flow means apparent movement of objects in the camera plane which

can be either due to ego-motion or due to the movement of the perceived 3D objects.

The model with late linearisation is of special interest, since it can be used for both

optical-flow and disparity calculation with a very small change. Before going any further

we introduce the generalised energy functional describing the model. The optical-flow

field that we are searching for is the one that minimises the ‘generic’ energy functional

in (3.3).

E(u, v) =

∫
Ω

(
D(I0, I1)︸ ︷︷ ︸

data

+αS(∇I1,∇u,∇v)︸ ︷︷ ︸
smoothness

)
dx (3.3)

where D(I0, I1) is the data term, while S(∇I1,∇u,∇v) is the regularisation term, I{0,1}

denotes images taken at time t = 0 and t = 1, α is the ‘weight’ of the smoothness term

(i.e. how smooth the solution should be), ∇ = [
∂

∂x
,
∂

∂y
] is the spatial gradient operator

and Ω is the image domain. As it was already mentioned, this is the ‘generic’ energy

functional. Depending on how we define the data- and the smoothness-terms, we obtain

different instances of the functional and, therefore, different models. In the following

sections both the data- and smoothness terms will be introduced and discussed in more

details.

3.5.1 Early Linearisation

In order to calculate the optical-flow we need a constancy assumption that allows us to

formulate the problem mathematically. We assume that intensity level of an observed

image point does not change in time or, in other words, as the pixel ‘moves’ from one

position to another it maintains its intensity level. Therefore, any observed change in

intensity level is due to movement (e.g. shift in position) (x − u, y − v) in the image

plane as time changes from t to t+ 1, and thus we obtain the following constraint:

I(x, y, t) = I(x− u, y − v, t+ 1) (3.4)

As it can be observed from Equation (3.4), this is a nonlinear equation in u and

v. In the case of early linearisation, we directly approximate the equation using first

order Taylor series expansion, and thus obtain:
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∂I

∂t
− ∂I

∂x
u− ∂I

∂y
v = 0 (3.5)

This linearised version of the (3.4) is so called Optical Flow Constraint (OFC)[33].

So far we have formulated the constancy assumption only for intensity levels, but the

same holds for any vector valued, e.g. RGB image:

R(x, y, t) = R(x− u, y − v, t+ 1)

G(x, y, t) = G(x− u, y − v, t+ 1)

B(x, y, t) = B(x− u, y − v, t+ 1)

(3.6)

The linearisation is done exactly in the same way as in the intensity image case.

By examining the OFC (3.5) more closely, we notice two very important things: (1)

we have only one equation but two unknowns, u and v; and (2) where the spatial

derivatives are zero (e.g. in smooth zones), the OFC fails to give information of the

optical-flow field. Therefore, the problem is said to be ill-posed. As proposed by Horn

and Schunck [33], these problems are overcome by introducing an additional constraint

called the smoothness term. The displacement field (u, v) that is sought, is the one that

minimises the energy functional given in (3.7). This is the Horn&Schunck model that

is based on early linearisation.

E(u, v) =

∫
Ω

K∑
k=1

(∂Ik∂t − ∂Ik
∂x

u− ∂Ik
∂y

v
)2

︸ ︷︷ ︸
data

+α
(
|∇u|2 + |∇v|2

)
︸ ︷︷ ︸

smoothness

dx (3.7)

where the sub-index k refers to the channels (e.g. R, G or B) of a vector valued image

Ik, and α is the weight of the smoothness term and the spatial gradient operator is

given by ∇ :=

(
∂

∂x
,
∂

∂y

)T
. As can be observed from (3.7), the model has two terms:

(1) a data term, here OFC; and (2) a smoothness term which in this case is a Tikhonov

regulariser. Because of the smoothness term, the expected solution is ‘smooth’, since

changes in the displacement field are penalised. The smoothness term also has a fill-in

effect: where the OFC does not provide information, solution is propagated from the

neighbourhood. A necessary condition for the minimum of the energy functional (3.7)

is that its corresponding Euler-Lagrange equations, given in (3.8), are zero.
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K∑
k=1

(
∂Ik
∂t
− ∂Ik
∂x

u− ∂Ik
∂y

v

)
∂Ik
∂x

+KαDIV (∇u) =0

K∑
k=1

(
∂Ik
∂t
− ∂Ik
∂x

u− ∂Ik
∂y

v

)
∂Ik
∂y

+KαDIV (∇v) =0

(3.8)

with reflecting boundary conditions ∂nu = 0 and ∂nv = 0, where n denotes the normal

to the image boundary ∂Ωh. We need boundary conditions, since the images captured

by the cameras have finite domain. We can see from the Equation (3.8) that the

smoothness term has a divergence operator that is defined as follows: for a differentiable

vector function F = Ui + V j the divergence is defined as DIV
(
F
)

=
∂U

∂x
+
∂V

∂y
.

Here, physical interpretation of the divergence is, in a sense, that of diffusion [53].

Interestingly, we can see that the DIV operator emerges, not only in the optical-flow

and disparity case, but also in the segmentation model based on level-set:s. This basic

model has several weaknesses that are discussed next. First, the Tikhonov regulariser

smoothens across object borders. What this means is, that different objects with

different optical-flow fields will propagate information from one displacement field to

other. Another way of saying this is, that the model does not admit borders. Second,

the model does not take into account outliers in the data. These outliers are due to,

for example, changes/errors in the illumination levels or noise present in the images.

Influence of the outliers grows grows quadratically and the model is fitted to these.

Third, the model only works with small displacement fields. This is due to the fact

that we approximate derivatives using finite filters: if we increase size of the filter

we can approximate greater displacements but loose accuracy and vise versa. Fourth,

the OFC does not use all the information available in the images, but only the first

derivatives. In the next section the model with late linearisation, that addresses the

mentioned weaknesses, is introduced. One more problem arises from the data term

itself: a change in illumination between t and t + 1 would be registered as movement,

as is suggested by the OFC. This will be studied more in detail in Section 3.8.

3.5.2 Late Linearisation

Here we introduce the model with late linearisation of the constancy term(s). By

late linearisation we mean that linearisation of the constancy term(s) is postponed
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until discretisation of rest of the terms [50][3][15]. This model addresses several of

the weaknesses that the early linearisation model suffers from: (1) it works with large

displacements; (2) the model takes into account outliers in the data term; and (3) the

displacement fields are piece-wise smooth. Energy functional for the model is given in

(3.9).

E(u, v) =

∫
Ω

K∑
k=1

ΨD

((
Ik,1 − Iwk,0

)2)︸ ︷︷ ︸
data

+αΨR

(
|∇u|2 + |∇v|2

)︸ ︷︷ ︸
smoothness

dx (3.9)

where the sub-index k refers to the channels (e.g. R, G or B) of a vector valued image Ik,

α is the weight of the smoothness term, Ik,t = I(x, y, k, t) and Iwk,t = I(x+u, y+ v, k, t)

refers to a ‘warped’ image. The spatial gradient operator is given by ∇ :=

(
∂

∂x
,
∂

∂y

)T
.

Typical warping transformations are bilinear- or bicubic interpolation. In other words,

we are looking for a parametrised transformation, defined by (u, v), that transforms

the image taken at t = 0 into the image taken at t = 1. ΨD(s2) and ΨR(s2) are robust

error functions with the idea of admitting outliers in the model. These kind of error

functions can also be incorporated in the early linearisation model. In the smoothness

term case, the error function makes the solution piece-wise smooth, or in other words,

the model does not smoothen across object boundaries. In the data term case outliers

are, for example, occlusions and image structures not seen in the other image or noise

and illumination errors. The specific error function in the date term case, that we have

used, is ΨD(s2) =
√
s2 + ε2 (see Figure 3.4) [15][13] which is applied individually to

each channel [86][59] (ε is used for stabilisation [1]). The smoothness term that we

have used in Equation (3.9) is based on the flow. In Section 3.7 we will give detailed

information about different smoothness terms and error functions. The reason that

this model can cope with large displacements is that in a multi-resolution scheme the

original images are downscaled and at a coarse scale the apparent pixel-wise movement

is smaller. In other words, at coarser scales we can approximate the derivatives using

finite filters. Thus, by starting to solve the model from a coarse scale and propagating

(with warping) the solution to finer scales, movement per scale is smaller. In order

to have a better insight how these error functions work in practise, Euler-Lagrange
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equations corresponding to (3.9) are given in (3.10).

(Ek)D = (Ik,1 − Iwk,0)2

ER = |∇u|2 + |∇v|2

K∑
k=1

Ψ′D

(
(Ek)D

)(
Ik,1 − Iwk,0

)∂Iwk,0
∂x

+KαDIV
(

Ψ
′
R

(
ER
)
∇u
)

= 0

K∑
k=1

Ψ′D

(
(Ek)D

)(
Ik,1 − Iwk,0

)∂Iwk,0
∂y

+KαDIV
(

Ψ
′
R

(
ER
)
∇v
)

= 0

(3.10)

where Ψ′D(s2) and Ψ′R(s2) are the influence functions of their corresponding error func-

tions. Again we use reflecting boundary conditions ∂nu = 0 and ∂nv = 0, where n

denotes the normal to the image boundary ∂Ωh. Since the smoothness terms and the

error functions are the same, or behave similarly, in both the optical-flow and the dis-

parity cases, we talk more about these in Section 3.7. By introducing the models and

their components in this fashion we avoid having to repeat some of the information.

So far we have only mentioned the ‘pros’ of this model versus to the early linearisation

model. However, there are ‘cons’ as well. Here we only briefly mention some of the

problems related to this model. These will be discussed in more detail in Section 5.6.2,

where we also explain how this model can be solved. Firstly, due to the robust error

terms, the Euler-Lagrange equations are non-linear. Therefore, we need additional lin-

earisation steps. Secondly, Because of the non-linear data term, the energy functional

can be non-convex. This means, that several local minima might exist [3].

Since this model is of particular interest in this work, a few words of how it came

to be are in order. The original model is that of Horn&Schunck [33] that we already

saw in Section (3.5.1). An important step towards the model seen here was made by

Nagel&Enkelmann [50]. Their model already used late linearisation of the constancy

term. However, while the optical flow constraint is centred in Ik,1, the smoothness

term (anisotropic) is based on Ik,0. This ‘inconsistency’ was corrected in the model by

Alvarez et al. [3]: in their model both the optical flow constraint and the (anisotropic)

smoothness terms are based on Ik,1. They also used a linear scale-space framework, i.e.

coarse-to-fine processing, in order to avoid convergence to a physically irrelevant local

minima. Finally, Brox et al. [15][13] combined the ideas of TV-regulariser [36], late

linearisation and robust error function for the data term, resulting in the model that

we already saw in (3.9). This is the basic model that we use and extend in this work.
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To summarise, in this section optical-flow approximation models based on both

early- and late-linearisation of the constancy terms were introduced along with some

robust error functions. Therefore, at this stage we have a model that admits outliers

in both the data- and the smoothness terms and copes with large displacements. In

the following we show how this same model can be used for disparity calculation. In

Chapter 5 we show how the governing PDEs can be solved efficiently.

3.6 Stereo Disparity

In this section we introduce the model used for approximating disparities, denoted

by d, for rectified stereo-images. Here the term rectification means two things: (a)

correcting the lens aberration and (b) transforming the left- and right images so that

the corresponding vertical lines between the images are aligned, meaning that the

search for correspondences is limited to a line. Second part of the transformation can

be included directly in the model by parameterising the displacement based on the

fundamental matrix F and the disparity d as in [5]. However, in our model we expect

that the images are fully rectified. The disparity field that we are searching for is the

one that minimises the ‘generic’ energy functional given in (3.11).

E(d) =

∫
Ω

(
D(IL,k, IR,k, d) + αS(∇IL,∇d)

)
dx (3.11)

where D(IL,k, IR,k, d) is the data term, while S(∇IL,k,∇d) is the regularisation term,

I{L,R},k refers to a k:th channel of left or right image (defined by sub-index L or R)

and ∇ = [
∂

∂x
,
∂

∂y
] is the spatial gradient operator and Ω is the image domain. By

channel here we mean channel of a vector valued image, such as RGB. Without k

written explicitly, all channels are referred. α > 0 is the weight of the smoothness

term.

3.6.1 Late Linearisation

As it was already mentioned earlier, the model is basically the same as the late lin-

earisation model for optical-flow and was first described by Slesareva et al. [67]. The

energy functional of the model is given in (3.12).
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E(d) =

∫
Ω

K∑
k=1

ΨD

((
IL,k − IwR,k

)2)︸ ︷︷ ︸
data

+αΨR

(
|∇d|2

)︸ ︷︷ ︸
smoothness

dx (3.12)

where IL,k = IL(x, y, k) and IwR,k = IR(x + d, y, k) refers to a ‘warped’ image. Sub-

indices L and R refer to left and right images, correspondingly. Similarly as in the

optical-flow case, we are looking for a parametrised transformation, defined by d, that

transforms the right image into the left image. As in the optical-flow case, ΨD(s2)

and ΨR(s2) are robust error functions with the idea of admitting outliers in the model:

the solution is piece-wise smooth and the model admits outliers in the date. As in

the optical-flow case, the specific error function that we have used for the data term is

ΨD(s2) =
√
s2 + ε2 (see Figure 3.4). The smoothness term in Equation (3.12) is based

on the flow (disparity), but could be based on the image itself. For a more detailed

explanation of the smoothess terms and error functions, see Section 3.7. Corresponding

Euler-Lagrange equation is given in (3.13)

(Ek)D = (IL,k − IwR,k)2

ER = |∇d|2

K∑
k=1

Ψ′D

(
(Ek)D

)(
IL,k − IwR,k

)∂IwR,k
∂x

+KαDIV
(

Ψ
′
R

(
ER
)
∇d
)

= 0

(3.13)

where Ψ′D(s2) and Ψ′R(s2) are the influence functions of their corresponding error func-

tions. These are discussed in Section 3.7.

To summarise, we now have a model for approximating correspondences in rectified

stereo-images [31]. The model admits outliers in the data and the resulting disparity

map is piece-wise smooth. Due to the versatility of the variational calculus, modelling

of the problem is ‘transparent’. Therefore, using this mathematical machinery has

allowed us to model both the problems (optical-flow and disparity) in a concise way.

3.7 Smoothness Terms and Error Functions

The smoothness terms that we have used in this work are isotropic or, in other words,

diffusion is scalar valued. Another choice would be anisotropic diffusion, where di-

rectional information is taken into account by means of a diffusion tensor. Whereas
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isotropic diffusion stops the diffusion when an object boundary is encountered (i.e.

where the flows differ significantly), anisotropic diffusion stops the diffusion normal to

the boundary, but encourages diffusion tangent to the boundary, therefore, in general,

generating smoother results. We chose to use isotropic diffusion in order to reduce the

computational complexity of the model. Typically methods with anisotropic diffusivity

term are computationally more expensive. Apart from being isotropic or anisotropic,

the smoothness term can be based on the image (image-driven) or the flow (flow-driven),

or a combination of both (e.g. Constraint Adaptive Regulariser of Zimmer et al. [86]).

In the case of image-driven regulariser, diffusion is based on the image itself, i.e.

diffusivity weights are calculated based on the image. The idea here being that ‘big’

gradient values in the image correspond to object borders. This is similar to the diffu-

sion term used by Perona and Malik [53]. While this certainly makes sense, however,

not all image borders correspond with object borders, and the results can be, naturally

depending on the used image sequence, spurious. On the other hand, in the case of

flow-driven regulariser, diffusion is based on the flow field itself. Here the idea is to

reduce diffusion when there is a ‘big’ change (i.e. gradient) in the flow field, thus mak-

ing the solution piece-wise smooth. However, since the calculated flow fields are only

approximations of the true fields, the edges of the object borders might not be as sharp

as in the case of image-driven regularisers. Equation (3.14) displays the smoothness

terms used in this thesis for disparity, while Equation (3.15) shows the same for the

optical-flow.

S(∇IL,∇d)
)

=

{
g(|∇IL|2)(|∇d|2) , image-driven

ΨR(|∇d|2) , flow-driven
(3.14)

S(∇IL,1,∇u,∇v) =


g(|∇IL,1|2)(|∇u|2 + |∇v|2) , image-driven

ΨR(|∇u|2 + |∇v|2) , flow-driven

(|∇u|2 + |∇v|2) , flow-driven (Tikhonov)

(3.15)

where ΨR(s2) and g(s2) are functions which purpose is to reduce diffusivity at the pres-

ence of borders. The specific error functions (and corresponding influence functions)

that we have used in the smoothness term are given in Table 3.3

The first one is also known as Tikhonov regulariser, the second one is known as

total variance regulariser (TV) [36], while the third is the same used by Perona and
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Table 3.3: Error functions used in the smoothness term.

ERROR AND CORRESPONDING INFLUENCE FUNCTIONS

ΨR(s2) = s2 Ψ′R(s2) = 1

ΨR(s2) =
√
s2 + ε2 Ψ′R(s2) = 1/

√
s2 + ε2

ge(s2) = ln(1 + s2/λ2)λ2 g(s2) = 1/(1 + s2/λ2)

Malik [53]. Graphs of the above mentioned error- and influence functions are depicted

in Figure 3.4.

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

s

 

 

Ψ(s
2
)=s

2

Ψ(s
2
)=(s

2
+0.3

2
)
1/2

ge(s
2
)=ln(1+s

2
/0.75

2
)0.75

2

(a) Error functions.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

1

1.5

2

s

 

 

Ψ
′
(s

2
)=1

Ψ
′
(s

2
)=1/2(s

2
+0.3

2
)
−1/2

g(s
2
)=1/(1 + s

2
/0.75

2
)

(b) Influence/penalty functions.

Figure 3.4: Error- and influence functions. (a) Error functions; (b) corresponding influ-

ence functions. ε = 0.3 and λ = 0.75.

Figure 3.4 depicts both error- and influence functions for quadratic, TV and loga-

rithmic error functions. As it can be observed, influence functions of the corresponding

TV and logarithmic error functions are asymptotically decreasing: as the error in-

creases, the influence of the term in question decreases. This has the effect of making

the solution piecewise smooth: diffusion is decreased if |∇u|2 + |∇v|2, |∇d|2 or |∇IL|2

has a ‘big’ value.

Data Term Error Function. We have used the TV error function in the data term

as well: if the error in the data term is very big, it might be due to an occlusion (i.e.

image structure is only seen one of the images), for example, and less weight would be

given to these cases. Otherwise the model would be driven by occlusions.

Robust error functions and early linearisation. Although in this work we use
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a Horn&Schunck type of energy functional in the early linearisation case, robust error

functions can be used in this model as well. If the displacements are expected to be

reasonably small, then this model (with robust error function) should give reasonably

good results.

3.8 Robust Data Terms

In this section we describe an analysis carried out in order to find a data representation

space that would be robust under realistic illumination conditions. This is a critical

issue when dealing with real world problems.

3.8.1 Motivation

The optical flow constraint [33], based on the Lambertian reflection model, states that

a change in brightness of a pixel is proportional to a change in its position, i.e. the grey

level of a pixel is assumed to stay constant temporally. This same constancy concept

can also be used in disparity calculation by taking into account the epipolar geometry

of the imaging devices (e.g. a stereo-rig). The grey level constancy, that does not hold

for surfaces with non-Lambertian behavior, can be extended for vector valued images

with different image representations. In this work we use a method based on calculus

of variations for approximating the disparity map. Variational correspondence models

typically have two terms, the first one being a data term (e.g. based on the grey level

constancy), while the second one is a regularisation term used to make the solution

smooth. In order to make the data term more robust with respect to non-Lambertian

behaviour, different image representations can be used. Some of the problems in es-

tablishing correspondences arise from the imaging devices (e.g. camera/lens parame-

ters being slightly different, noise due to imaging devices) and some, from the actual

scene being observed (e.g. lighting conditions, geometrical deformations due to cam-

era setup). It is clear that the underlying image representation is crucial in order for

any correspondence method to generate correct, temporally coherent estimates in ‘real’

image sequences.

Here we propose we study how combinations of different image representations be-

have with respect to both illumination errors and noise, ranking the results accordingly.

We believe that such information is useful to that part of the visual community that
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concentrates on applications, such as obstacle detection in vehicle related scenarios

[34], segmentation [9] and so on. Although other authors address similar issues (e.g.

that of Mileva et al. [48]), we find these to be somewhat limited in scope due to a

reduced ‘test bench’, e.g. small amount of test images and/or image representations.

Also, in most of the cases it is not satisfactorily explained how parameters related to

the model(s) have been chosen. Therefore, the main contribution of this section is

an analysis of the different image representations supported by a more detailed and

systematical evaluation methodology. For example, we show how optimum (or near

optimum) parameters for the algorithm, related to each representation space, can be

found. This is a small but important contribution in the case of real, non controlled,

scenarios. The standard image representation is the RGB-space, the others being (ob-

tained via image transformations): gradient, gradient magnitude, log-derivative, HSV,

rφθ, and phase component of an image filtered using a bank of Gabor filters.

This work is a comparative study of the chosen image representations, and it is

beyond the scope of this study to explain why certain representations perform better

than others in certain situations. Under realistic illumination conditions, with surfaces

both complying and not complying with the Lambertian reflection model, theoretical

studies can become overly complex, as we show next. It is typically thought that

chromaticity spaces are illumination invariant, but under realistic lightning conditions,

this is not necessarily so [47]. One of the physical models that explains light reflected

by an object is the Dichromatic Reflection Model [64] (DRM), which in its basic form

assumes that there is a single source of light [64], which is unrealistic in the case of

real images (unless the lightning conditions can be controlled). A good example of

this is given by Maxwell et al. in their Bi-Illuminant Dichromatic Reflection paper

[47]: in a typical outdoor case, the main illuminants are sunlight and skylight, where

objects fully lit are dominated by the sunlight while objects in shadow are dominated by

skylight. Thus, as the illumination intensity decreases, the hue of the colour observed

becomes bluish. For the above mentioned reasons, chromatic spaces (e.g HSV, rφθ)

are not totally illumination invariant under realistic lightning conditions. Therefore,

in general, we do not speak of illumination invariance in this work but of illumination

robustness or robust image representation with respect to illumination changes and

noise. By illumination error we refer to varying illumination conditions between the

left- and right stereo cameras.
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Next, Section 3.8.2 presents the relevant related work, and some sources of error.

In Section 3.8.3 we explain how the parameters related to each representation can be

found. Section 3.8.4 introduces the image transformations, while Section 3.8.5 describes

the conducted experiments in details. Finally, conclusions are discussed in Section 3.8.8.

3.8.2 Background Material and Related Work

3.8.2.1 Related Work and Our Contribution

The idea of robust ‘key-point’ identification is an important aspect of many vision

related problems and has lead to such concepts as SIFT [43] (scale invariant feature

transform) or SURF [8] (speeded up robust features). This work can be seen related

to identifying robust features as well, however, in the framework of variational stereo.

Several works comparing different data- and/or smoothness terms for optical-flow exist,

for example, those of Bruhn [17] and Brox [13]. A similar work to the one presented

here, carried out in a smaller scale for the optical-flow, has been done by Mileva et al.

[48]. On the other hand, in [81] Wöhler et al. describe a method for 3D reconstruction

of surfaces with non-Lambertien properties. Those were just to name a few. However,

many comparative studies do not typically explain in detail how the parameters for each

different competing algorithm and/or representation were obtained. Also, sometimes it

is not mentioned, if the learn and test sets for obtaining the parameters were the same.

This poses problems related to biasing and over-training. If the parameters have been

obtained manually, they are prone to bias from the user: expected results might get

confirmed. On the other hand, if the learn and test sets were the same and/or they were

too small, it is possible that over-training has taken place and, therefore, the results

are not generalisable. We argue that in order to properly rank a set of representation

spaces and/or different algorithms, with respect to any performance measure, optimum

parameters related to each case need to be searched consistently, with minimum human

interference, avoiding over-fitting.

Our contribution. Where our work differs from the rest is that (a) we use an

advanced optimisation scheme to automatically optimise the parameters related to each

image representation space, (b) image sets for optimisation (learning) and testing are

different in order to avoid over fitting, (c) we study the robustness of each representation

space with respect to several image noise and illumination error models, and (d) we
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combine the results for both noise and illumination errors. Thus, the methodology can

be considered to be novel.

3.8.2.2 Sources of Error

Since the approach of this study is more experimental than theoretical, we only quickly

cover some of the sources of error that the correspondence methods suffer from. Al-

though optical-flow and stereo are similar in nature, they differ in a very important

aspect: in stereo, the apparent movement is due to a change of position of the observer

(e.g. left and right cameras), whereas in the optical-flow case, both the observer and the

objects in the scene can move with respect to each other. Thus, stereo and optical-flow

do not suffer from exactly the same shortcomings. For example, in the case of stereo,

shadows cast upon objects due to illumination conditions can provide information when

searching corresponding pixels between images. In the case of optical-flow, a stationary

shadow cast upon a moving object makes it more difficult to find the corresponding pix-

els. Also, as it was already mentioned in Section 3.8.1, the imaging devices also cause

problems in the form of noise, motion blur, and so on. Thus, an image representation

space should be robust with respect to (a) small geometrical deformations (geometrical

robustness), (b) changes in the illumination level (illumination robustness), both global

and local, and (c) noise present in the images (e.g. due to the acquisition device). Our

analysis was carried out for stereo but is directly applicable to optical-flow as well.

3.8.2.3 Variational Stereo

The energy functional to be minimised is given in (3.16). The difference between this

model and the one seen previously is that here the data term is composed of two

different ‘components’, namely D1() and D2(), each weighted by b1 and b2.

E(d) =

∫
Ω

(
b1D1(IL, IR, d) + b2D2(IL, IR, d)

)
dx + α

∫
Ω
S(∇d)dx (3.16)

where D1(IL, IR, d) and D2(IL, IR, d) are the data terms, S(∇d) is the regularisation

term, and I{L,R} refers to the left and right images (all the channels). b1 ≥ 0, b2 ≥ 0

and α ≥ 0 are the parameters of the model, defining weight of each of the terms. Both

the data and the regularisation terms are defined in Equation (3.17).
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D{1,2}(I1, I2, d) =



K∑
k=1

Ψ
((
IL,k − IwR,k

)2)
, type 1

K∑
k=1

Ψ
(
|∇IL,k −∇IwR,k|2

)
, type 2

S(∇d) = Ψ(|∇d|2)

(3.17)

where IL,k = I
(
x, y
)
L,k

is the k:th channel (e.g. R, G or B channel of a RGB image) of

the left image, IwR,k = I
(
x+ d(x, y), y

)
R,k

is the k:th channel of the right image warped

as per disparity d = d(x, y), and Ψ(s2) =
√
s2 + ε2 is the non-quadratic error function.

Usage of type 1 and type 2 is explained in the section 3.8.4. Now with both the energy

functional and the related data terms described, a physical interpretation of the model

can be derived: we are looking for a transformation described by d that transforms the

right image into the left image with the d being piecewise smooth. By transforming

the right image into the left image we mean that the image features described by the

data term(s) align.

3.8.3 Searching for Optimal Parameters with Differential Evolution

Since the main idea of this work is to rank the chosen image representation spaces with

respect to robustness, we have to find an optimum (or near optimum) set of parame-

ters [b1, b2, α] for each different case, avoiding over-fitting. As was already mentioned,

using a human operator would be prone to bias. Therefore, we have decided to use a

gradient free, stochastic, population based function minimiser called Differential Evo-

lution1 (DE) [70][71]. The rationale for using DE is that it has empirically been shown

to find the optimum (or near optimum), it is computationally efficient, and the cost

function evaluation can be parallelised efficiently. The principal idea behind DE is to

represent the parameters to be optimised as vectors where each vector is a population

member whose fitness is described by the function value. Two members (parents) are

stochastically combined into a new one (offspring) which then competes against the rest

on the coming cycles. By recurring to the survival of the fittest theorem, the ‘fittest’

members contribute more to the coming populations and thus, their characteristics

overcome those of the weak members, therefore minimising (or maximising) the func-

tion value [70][71]. In our case, this implies that the function value is the error between

1www.icsi.berkeley.edu/∼storn/code.html
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the calculated disparity map and ground truth (see Equation (3.28)) and the member

represents the algorithm’s parameters. DE itself is computationally cost efficient, the

problem being that several function evaluations (one per population member) per cycle

are needed. However, the optimisation can be parallelised by keeping the members on

the master computer and by calculating the function values on several slave computers

simultaneously, which was the adopted strategy. This method of parallelizing DE is

certainly not new and has been reported earlier by, for example, Plagianakos et al. [54],

Tasoulis et al. [72] and Epitropakis et al. [23].

In order to compare the results obtained using different combinations of the image

representations, we adopt a strategy typically used in pattern recognition: the input

set (a set of stereo-images) is divided into a learning, a validation, and a test set. The

learning set is used for obtaining the optimal parameters while the validation set is

used to prevent over fitting: during the optimisation, when the error for the validation

set starts to increase, we stop the optimisation process, therefore keeping the solution

‘general’. This methodology is completely general and it can be applied to any other

image registration algorithm with only some small modifications.

3.8.4 Image Transformations

In this section, we describe the image transformations that we have decided to evaluate.

We have chosen the most common image representations as well as other transforma-

tions that have been proposed in the literature, due to their robustness and possibility

of real-time implementation. The different tested data term combinations that have

been studied are given in Table 3.4. The first column (1st term) gives the image

representation for D1(IL, IR, d), while the second column (2nd term) gives the image

representation for D2(IL, IR, d) in Equation (3.17). Apart from the |∇I(RGB)|2 (gra-

dient magnitude) case, in the rest of the image representations type 1 data term is used

(see Equation (3.17)). As it was already mentioned previously, Mileva et al. tested

some of the same representations earlier in [48].
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Table 3.4: Tested image representation combinations.

1st term 2nd term

none RGB RGBN |∇I(RGB)|2 HS(V) (r)φθ phase logd

none

RGB X X X X X X X

RGBN X X X X X X

∇I(RGB) X X X X X X X X

HS(V) X X X X X

(r)φθ X X X X

phase X X

logd X X

In the following, we briefly describe the different input representations under study.

3.8.4.1 RGBN (Normalized RGB)

In the RGBN case, the standard RGB representation is simply normalised by using a

factor N . In our tests, both images are normalised by using their own factor which is

Ni = max(Ri, Gi, Bi), i being the image in question (e.g., left or right image). The

transformation is given by Equation (3.18).

[
R G B

]T 7→ [
R
N

G
N

B
N

]T
(3.18)

RGBN is robust with respect to global multiplicative illumination changes.

3.8.4.2 Gradient

The gradient (∇I(RGB)) constancy term matches components of the gradient between

the images. The transformation is given by Equation (3.19).

[
R G B

]T 7→ [
Rx Gx Bx Ry Gy By

]T
(3.19)

where sub-index states with respect to which variable the term in question has been

derived. Gradient constancy term is robust with respect to both global and local

additive illumination changes.
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3.8.4.3 Gradient Magnitude

The gradient magnitude (|∇I(RGB)|2) constancy term matches Euclidean norm of the

gradient as suggested in Equation (3.17) (type 2). The transformation is given by

Equation (3.20).

[
R G B

]T 7→ [
Rx Gx Bx Ry Gy By

]T
(3.20)

where sub-index states with respect to which variable the term in question has been de-

rived. In general, this term is illumination robust with respect to both local and global

additive illumination changes. As it can be observed, the actual image transformation

is the same as in the ∇I(RGB) case, however, embedding in the data term is different

as can be seen from Equation (3.17) (in this case type 2).

3.8.4.4 HS(V)

HSV(Hue Saturation Value) is a cylindrical representation of the colour-space where

the angle around the central axis of the cylinder defines ‘hue’, the distance from the

central axis defines ‘saturation’ and, the position along the central axis defines ‘value’

as defined in Equation (3.21).

[
R G B

]T 7→ [
H S V

]T

H =


0 , if max = min

(60◦ × G−B
max−min) mod 360◦ , if max = R

60◦ × B−R
max−min + 120◦ , if max = G

60◦ × R−G
max−min + 240◦ , if max = B

S =

{
0 , if max = 0
max−min
max , otherwise

V = max

(3.21)

where min = min(R,G,B) and max = max(R,G,B). As can be understood from

Equation (3.21), the H and S components are illumination robust while the V com-

ponent is not and, therefore, we exclude the V component from the representation.

In the rest of the text, HS(V) refers to image representation with only the H and S

components.
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3.8.4.5 Spherical

While HSV describes colours in a cylindrical space, rφθ does so in a spherical one. r

indicates the magnitude of the colour vector while φ is the zenith and θ is the azimuth,

as described by Equation (3.22).

[
R G B

]T 7→ [
r θ φ

]T
r =
√
R2 +G2 +B2

θ = arctan(GR )

φ = arcsin(
√
R2+G2√

R2+G2+B2
)

(3.22)

As can be observed from (3.22), both the φ and θ are illumination robust while

magnitude vector r is not and, therefore, we exclude r from the representation. In the

rest of the text, (r)φθ and spherical refer to an image representation based on the φ

and θ.

3.8.4.6 Log-Derivative

The transformation is given by Equation (3.23).

[
R G B

]T 7→ [
(ln R)x (ln G)x (ln B)x (ln R)y (ln G)y (ln B)y

]T
(3.23)

where sub-index states with respect to which variable the term in question has been

derived. The log-derivative image representation is robust with respect to both additive

and multiplicative local illumination changes.

3.8.4.7 Phase Component of Band-pass Filtered Image Using Quadrature

Filters

We define the phase component of a band-pass filtered image as a result of convolving

the input image with a set of filters [61][28][27] as proceeds. The complex-valued Gabor

filters are defined as in Equation (3.24)

h(x; f0, θ) = hc(x; f0, θ) + ihs(x; f0, θ) (3.24)

where x = (x, y) is the image position, f0 denotes the peak frequency, θ the orientation

of the filter in reference to the horizontal axis, and hc() and hs() denote the even (real)
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and odd (imaginary) parts. The filter responses (band-pass signals) are generated by

convolving an input image with a filter as defined in Equation (3.25)

Q(x; θ) = I ∗ h(x; f0, θ) = C(x; θ) + iS(x; θ) (3.25)

where I denotes an input image, ∗ denotes convolution, and C(x; θ) and S(x; θ) are the

even and odd responses corresponding to a filter with an orientation θ. From the even

and odd responses, two different representation spaces can be built, namely phase and

energy, as indicated by Equation (3.26).

E(x; θ) =
√
C(x, θ)2 + S(x; θ)2

ω(x; θ) = atan( S(x;θ
C(x;θ))

(3.26)

where E(fx; θ) is the energy response and ω(x; θ) is the phase response of a filter

corresponding to an orientation θ. As can be observed from (3.25), the input image

I can contain several components (eg. RGB, HSV) where each component would be

convolved independently to extract energy and phase. However, in order to maintain

the computation time reasonable, the input images are first converted into grey-level

images, after which the filter responses are calculated. Therefore, the transformation

can be defined as indicated by (3.27).

[
R G B

]T 7→ [
ω(x; θ)

]
θ = 1, 2, 3, . . . , 8 (3.27)

The reason for choosing the phase representation is threefold: (a) the phase compo-

nent is robust with respect to illumination changes; (b) cells with a similar behaviour

have been found in the visual cortex of primates [35] which might well mean that evo-

lution has found this kind of representation to be meaningful (even if we might not be

able to exploit it completely yet); and (c) the stability of the phase component with

respect to small geometrical deformations (as shown by Fleet and Jepson [28][27]).
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(a) (b) (c) (d)

Figure 3.5: Phase response of Cones stereo-image: (a) original image; (b) phase response

corresponding to θ = 0◦; (c) phase response corresponding to θ = 22.5◦; (d) phase response

corresponding to θ = 45◦.

3.8.5 Experiments

The purpose of the experiments was to study, both quantitatively and qualitatively,

how each of the chosen image representations performs using both the original images

and images with induced illumination errors and/or noise. This kind of an analysis

not only allows us to study how each of the representations behaves using the original

images (naturally containing some noise due to the imaging devices), but also gives an

insight of how robust each of the representations actually is: those representations that

produce similar results with or without induced errors can be regarded to be robust.

Due to the availability of stereo-images (with different illumination/exposure times)

at the Middlebury1 database, with ground-truth, these were used for the quantita-

tive experiments. For qualitative analysis and functional validation, images from the

DRIVSCO2, and the GRASP3 projects were used.

1http://vision.middlebury.edu/stereo/data/
2http://www.pspc.dibe.unige.it/∼drivsco/
3http://www.csc.kth.se/grasp/
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Figure 3.6: Stereo-images from the Middlebury database used in the quantitative exper-

iments. (a) Aloe; (b) Art; (c) Baby1; (d) Baby2; (e) Baby3; (f) Books; (g) Bowling; (h)

Cloth1; (i) Cloth2; (j) Cloth3; (k) Cones; (l) Dolls; (m) Lampshade1; (n) Lampshade2; (o)

Laundry; (p) Moebius; (q) Plastic; (r) Reindeer; (s) Rocks1; (t) Rocks2; (u) Teddy; (v)

Tsukuba; (x) Venus; (y) Wood1; (z) Wood2.

Even if no vigorous image analysis was used when choosing the images, both the

learn- and test sets were carefully chosen by taking the following into consideration:
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(a) none of the sets contains known cases where the variational method is known to

fail completely; (b) both very textured (e.g. Aloe and Cloth1) and less textured cases

are included (e.g Plastic and Wood1). The reason for not including cases where the

algorithm fails is that in these cases the effect of the used image representation would

be negligible and thus, would not convey useful information for our study. We have

researched the above mentioned cases using spatial (and temporal) constraints and

obtained good results even in these more challenging cases [58].

3.8.5.1 K-fold Cross-Validation

Because of the limited size of the data set for the quantitative experiment, a set of 25

different stereo-images, we have used a technique called k-fold cross-correlation [22][40]

to statistically test how well the obtained results are generalisable. In our case, due to

the size of the data set, we use a 5-fold cross-correlation: the data set is broken in five

sets, each containing five images. Then, we run the DE and analyse the results five

times using three of the sets for learning, one for validation and one for testing. In each

run the sets for learning, validation and testing will be different. Results are based on

all of the five runs. Below is a list of sets for one of the runs.

Learn: Lampshade2, Cloth1, Rocks2, Baby3, Reindeer, Baby2, Cones, Plastic, Tsukuba,

Art, Wood1, Rocks1, Dolls, Cloth3, Cloth2

Test: Aloe, Baby1, Books Lampshade1, Wood2

Validation: Bowling2, Laundry, Moebius, Venus, Teddy

3.8.5.2 Induced Illumination Errors and Image Noise

Following is a list of the types of illumination errors that we have used:

• global additive (GA)

• global multiplicative (GM)

• global multiplicative plus additive (GMA)

• local additive (LA)

• local multiplicative (LM)
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• local multiplicative plus additive (LMA)

Local illumination error was simulated using a 2D Gaussian probability density

function. For image noise, the following types were used:

• luminance mild (LM), luminance severe (LS)

• chrominance mild (CM), luminance severe (CS)

• salt&pepper mild (SPM), salt&pepper severe (SPS)

Luminance and chrominance noise were simulated using a Gaussian distribution

with the following parameters: (a) mild with mean 0 and deviation of 10 and (b)

severe with mean 0 and deviation of 30. Salt&pepper type of noise was simulated

with the following probabilities: (a) mild P (s) = 0.05 and P (p) = 0.05 and (b) severe

P (s) = 0.1 and P (p) = 0.1, where P (s) and P (p) denote the probability of salt and

pepper noise, correspondingly, being present at each image position [29]. We chose to

use the above mentioned types to simulate illumination errors, since the global error is

though to simulate a difference between the left- and right-cameras (i.e due to different

aperture), while the local illumination error is though to simulate a flare type of error.

On the other hand, luminance, chrominance and salt&pepper type of noise are though

to simulate the kind of noise that we might encounter in the case of digital imaging

devices.

Fig. 3.7 displays some of the illumination errors and image noise for the Baby2

image.

(a) (b) (c) (d)

Figure 3.7: Baby2. (a) Original; (b) Local multiplicative (LM) plus local additive (LA);

(c) Severe luminance (LS); (d) Severe salt&pepper (SPS).

It can be argued that the possible noise present in the images could be reduced

or eliminated by using a de-noising pre-processing step, and thus, the study should
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be centred more towards illumination type of errors. However, if any of the tested

image representations proves to be sufficiently robust with respect to both illumination

errors and image noise, this would mean that less pre-processing steps would be needed.

This certainly would be beneficial in real applications, possibly suffering from restricted

computational power.

3.8.5.3 Error Metric

The error metric that we decided to use is the mean average squared error (MASE) as

given in (3.28).

MASE :=
1

N

N∑
i=1

(
(d)i − (dgt)i

)2
(3.28)

where N is the number of pixels, d is the calculated disparity map, and dgt is the ground

truth.

3.8.6 Results

In this section we present the results, both quantity and visual quality wise. First, the

results are given by ranking how well each representation has done, both accuracy and

robustness wise. Then we study how combining different representations has affected

the accuracy and the robustness of these combined representations. After this we

present the results some for real applications visual quality wise, since ground-truth is

not available for these.

3.8.6.1 Ranking

Here we rank each of the representation spaces in order to gain a better insight on the

robustness and accuracy of each representation. By robustness and accuracy we mean

the following: (a) a representation is considered robust when results based on this are

affected only little by noise and/or image errors; (b) a representation is considered

accurate when results based on this gives good results using the original (i.e. noiseless)

images. While this may not be the standard terminology, we find that using these terms

makes it easier to explain the results. In Table 3.5, each of the representations is ranked

with respect to (a) the original images and (b) the combined illumination errors and

noise types, while Table 3.6 combines the aforementioned results into a single ranking.

Jarno Ralli, 2011 56



3.8 Robust Data Terms

Mean value in the tables is the mean of MASE based on all the five different runs (see

Section 3.8.5.1).
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Table 3.5: Ranking for combined noise+error and original images.

Rank Error+noise mean Original images mean

1. ∇I(RGB)+phase 72.3 ∇I(RGB)+HS(V) 35.1

2. ∇I(RGB)+none 83.6 HS(V)+logd 37.5

3. phase+|∇I(RGB)| 84.1 ∇I(RGB)+rgb 39.0

4. ∇I(RGB)+logd 87.4 ∇I(RGB)+rgbn 39.4

5. phase+none 92.3 HS(V)+phase 40.6

6. (r)φθ+phase 92.4 (r)φθ+phase 42.2

7. ∇I(RGB)+|∇I(RGB)| 92.6 ∇I(RGB)+none 44.9

8. rgbn+logd 92.8 ∇I(RGB)+logd 45.6

9. logd+none 97.5 ∇I(RGB)+phase 46.0

10. rgb+phase 102.7 rgb+logd 46.0

11. logd+|∇I(RGB)| 105.5 rgbn+logd 46.8

12. rgbn+|∇I(RGB)| 111.5 rgbn+phase 47.1

13. HS(V)+|∇I(RGB)| 112.0 phase+|∇I(RGB)| 47.7

14. rgb+|∇I(RGB)| 112.9 rgb+phase 47.9

15. ∇I(RGB)+rgbn 114.8 phase+none 48.3

16. rgbn+phase 120.0 logd+none 50.7

17. HS(V)+phase 120.2 HS(V)+(r)φθ 53.2

18. rgb+logd 125.7 (r)φθ+none 53.6

19. ∇I(RGB)+(r)φθ 134.1 logd+|∇I(RGB)| 55.2

20. (r)φθ+|∇I(RGB)| 139.8 HS(V)+|∇I(RGB)| 55.9

21. ∇I(RGB)+rgb 175.0 (r)φθ+|∇I(RGB)| 56.9

22. ∇I(RGB)+HS(V) 180.4 rgb+|∇I(RGB)| 57.7

23. HS(V)+logd 278.4 ∇I(RGB)+|∇I(RGB)| 59.8

24. HS(V)+none 293.8 rgbn+|∇I(RGB)| 62.1

25. rgb+HS(V) 360.8 rgbn+HS(V) 74.8

26. rgbn+HS(V) 373.8 ∇I(RGB)+(r)φθ 99.3

27. rgbn+none 374.4 (r)φθ+logd 103.7

28. rgb+none 380.7 rgb+(r)φθ 119.4

29. rgb+rgbn 394.3 HS(V)+none 134.3

30. (r)φθ+logd 394.8 rgbn+(r)φθ 166.3

31. HS(V)+(r)φθ 563.8 rgb+HS(V) 178.8

32. (r)φθ+none 712.2 rgb+none 224.8

33. rgbn+(r)φθ 716.7 rgb+rgbn 239.1

34. rgb+(r)φθ 727.4 rgbn+none 260.3
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Table 3.6: Combined ranking

Rank Representation space Combined ranking

1. ∇I(RGB)+none 9

2. ∇I(RGB)+phase 10

3. ∇I(RGB)+logd 12

4. (r)φθ+phase 12

5. phase+|∇I(RGB)| 16

6. ∇I(RGB)+rgbn 19

7. rgbn+logd 19

8. phase+none 20

9. HS(V)+phase 22

10. ∇I(RGB)+HS(V) 23

11. ∇I(RGB)+rgb 24

12. rgb+phase 24

13. HS(V)+logd 25

14. logd+none 25

15. rgb+logd 28

16. rgbn+phase 28

17. ∇I(RGB)+|∇I(RGB)| 30

18. logd+|∇I(RGB)| 30

19. HS(V)+|∇I(RGB)| 33

20. rgb+|∇I(RGB)| 36

21. rgbn+|∇I(RGB)| 36

22. (r)φθ+|∇I(RGB)| 41

23. ∇I(RGB)+(r)φθ 45

24. HS(V)+(r)φθ 48

25. (r)φθ+none 50

26. rgbn+HS(V) 51

27. HS(V)+none 53

28. rgb+HS(V) 56

29. (r)φθ+logd 57

30. rgb+none 60

31. rgbn+none 61

32. rgb+rgbn 62

33. rgb+(r)φθ 62

34. rgbn+(r)φθ 63
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As can be observed from Table 3.5, the most robust representation was

∇I(RGB)+phase, while the second was ∇I(RGB) without any combinations. Since

both ∇I(RGB) and phase represent different physical quantities (gradient and phase of

the image signal as the names suggest), and both of these have been shown to be robust,

it is not surprising that a combination of these was the most robust representation. In

general, representations based on both ∇I(RGB) and phase were amongst the most

robust representations, while ∇I(RGB)+HS(V) was the most accurate representation

with the original images (i.e. without induced errors or noise). In general, represen-

tations based on ∇I(RGB) have produced good results with the original images. On

the other hand, as can be observed from Table 3.6, the best combined ranking was

produced by ∇I(RGB) alone. Also it can be noted that the first three are all based on

∇I(RGB). However, ∇I(RGB)+phase is slightly more robust than ∇I(RGB) alone,

but not as accurate. This is clear from the figures presented in Section 3.8.7.

3.8.6.2 Improvement Due to Combined Representation Spaces

In the following we show how each of the basic representations (1st term in Table

3.4) has benefited, or deteriorated, by being combined with different representations

(2nd term in Table 3.4). In other words, we show, for example, how the error for

∇I(RGB) changes when combined with |∇I(RGB)|2, therefore, allowing us to deduce

if ∇I(RGB) benefits from the combination. In the figures ‘grad’, ‘gradmag’, and

‘spherical’ respectively denote ∇I(RGB), |∇(I(RGB)|2, and (r)φθ. Results are given

with respect to error, thus a positive change in the error naturally means greater error

and vice versa. Figure 3.8 displays the results for ∇I(RGB), phase, and logd while

Figure 3.9 gives the same for (r)φθ (spherical), HS(V) and RGB. We have left out

results for RGBN on purpose since this was the worst performer and the results, in

general, were similar to those of RGB. In the figures comb. means combined error and

noise (error+noise).

As it can be observed, combining ∇I(RGB) with any of the representations, apart

from (r)φθ, has improved both accuracy and robustness. Combining (r)φθ with∇I(RGB)

improves robustness but at the same time has worsens accuracy. The situation with

phase is similar: combining phase with other representations, apart from ∇I(RGB),

has improved both accuracy and robustness; when combined with ∇I(RGB) accu-
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racy worsens slightly while robustness improves. Note that less robust representations

benefit more from the combined representations than those that are already robust.
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Figure 3.8: Results for ∇I(RGB), phase and logd. Org. means original images, while

Comb. means combined error and noise (error+noise in the tables).
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Figure 3.9: Results for (r)φθ (spherical), HS(V) and RGB. Org. means original images,

while Comb. means combined error and noise (error+noise in the tables).

3.8.7 Visual Qualitative Interpretation

Figs. 3.10, 3.11 and 3.12 display results visually for the Cones, DRIVSCO, and GRASP

cases, using the following image representations: ∇I(RGB),∇I(RGB)+phase,∇I(RGB)+HS(V),
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phase, and RGB. A video of the results for DRIVSCO is available at 1. These represen-

tations were chosen since (a)∇I(RGB) was the overall ‘winner’ for the combined results

(see Table 3.6); (b) ∇I(RGB)+phase was the most robust; (c) ∇I(RGB)+HS(V) was

the most accurate; (d) phase is both robust and accurate and (e) RGB is the ‘stan-

dard’ representation from typical cameras. The parameters used were the same in all

the cases presented here and are those from the 1st run (out of five) for the 5-fold

cross-validation. The reasoning here is, confirmed by the results, that any robust rep-

resentation should be able to generate reasonable results for any of the parameters

found in the cross-validation scheme.

(a) (b) (c)

(d) (e) (f)

Figure 3.10: Cones. (a) Ground truth; (b) ∇I(RGB); (c) ∇I(RGB)+phase; (d)

∇I(RGB)+HS(V); (e) phase; (f) RGB.

As can be observed from Fig. 3.10, the results are somewhat similar for all the

representations. However, as it can be observed, RGB has visually produced slightly

worse results.

1http://atc.ugr.es/$\sim$jarnor/index.php/publications/more-information
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(a) (b) (c)

(d) (e) (f)

Figure 3.11: DRIVSCO scene. (a) Left image; (b) ∇I(RGB); (c) ∇I(RGB)+phase; (d)

∇I(RGB)+HS(V); (e) phase; (f) RGB.

Fig. 3.11 shows results for the DRIVSCO sequence. Here ∇I(RGB)+phase has

produced the most concise results: results for the road are far better than with any of

the other representations. On the other hand, ∇I(RGB)+logd has produced the best

results for the trailer: obtaining correct approximations for the trailer is challenging

since it tends to ‘fuse’ with the trees. RGB has produced very low quality results

and, for example, scene interpretation based on these would be very challenging if not

impossible.
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(a) (b) (c)

(d) (e) (f)

Figure 3.12: GRASP scene. (a) Left image; (b) ∇I(RGB); (c) ∇I(RGB)+phase; (d)

∇I(RGB)+HS(V); (e) phase; (f) RGB.

Fig. 3.12 shows results for a robotic grasping scene. Both∇I(RGB) and∇I(RGB)+HS(V)

have produced good results: the object of interest laying on the table is recognisable in

the disparity map. ∇I(RGB)+phase or phase alone has increased ‘leakage’ of disparity

values between the object of interest and the shelf. On the other hand, phase repre-

sentation has produced the best results for the table, especially for the lowest part.

has caused ‘leakage’ of values between the object of interest on the table and the shelf.

Again, RGB has produced low quality results.

Altogether, visual qualitative interpretation of the results using real image sequences

is in line with the quantitative analysis. Both∇I(RGB) and∇I(RGB)+phase produce

good results even with real image sequences. However, the former produces slightly

more accurate results while the latter representation is more robust.

3.8.8 Conclusions

We have shown that the quality of a disparity map, generated by a variational method,

under illumination changes and image noise, depends significantly on the used image
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representation type. By combining different representations, we have generated and

tested 34 different cases and found several complementary spaces that are affected only

slightly even under severe image distortions. Accuracy differences of 7-fold (without

noise) and 10-fold (with noise and illumination errors) were found between the best

and worst representation maps, which highlights the relevance of an appropriate input

representation for low level estimations such as stereo. This accuracy enhancing and ro-

bustness to noise can be of critical importance in specific application scenarios with real

uncontrolled scenes and not just well behaving test images (e.g. automatic navigation,

advanced robotics, CGI). Amongst the tested combinations, ∇I(RGB) representation

stood out as one of the most accurate and least affected by illuminations errors and/or

noise. By combining ∇I(RGB) with phase, the joined representation space was the

most robust one amongst the tested. This finding was also confirmed by the qualitative

experiments. Thus, we can say that the aforementioned representations complement

each other. These results were also confirmed in a qualitative evaluation of natural

scenes in uncontrolled scenarios.

There are some studies similar to ours, carried out in a smaller scale. However,

the other studies typically provide little information related to how the optimum (or

near optimum) parameters of the algorithm are achieved, related to each representation

space: in this work, we have used a well known, derivative free, stochastic algorithm

called Differential Evolution (DE) for the reasons given in the text. We argue that

manually obtained parameters are subjected to a bias from the human operator and

therefore can be expected to to confirm expected results. Three different sets of images

were used for obtaining the parameters and testing each of the representations, in or-

der to avoid over-fitting. The proposed methodology for estimating model parameters

can be extended to many other computer vision algorithms. Therefore, our contribu-

tion should lead to more robust computer vision systems capable of working with real

applications.

3.9 Spatial and Temporal Constraints

In this section we propose a new method for optical-flow and stereo estimation based

on the inclusion of both spatial and temporal constraints in a variational framework.

These constraints bound the solution based on a priori information, or in other words,
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based on what is known of a possible solution or how it is expected to change temporally.

This knowledge can be something that (a) is known since the geometrical properties of

the scene are known or (b) is deduced by a higher-level algorithm capable of inferring

this information.

We continue by giving motivation why we think that constraining the solution

is important in Section 3.9.1 and discuss related work in Section 3.9.2. After that

the extended model including the spatial- and temporal constraints are introduced in

Section 3.9.4. Both quantitative and qualitative results of the conducted experiments

are given in Section 3.9.9. Finally, the obtained conclusions are discussed in Section

3.9.10.

3.9.1 Motivation

Even though results of the latest correspondence forming methods are impressive (see

e.g. Middlebury Computer Vision Pages1 for stereo and optical-flow), in some cases,

the lack of a meaningful structure in the data deteriorates performance, which at worst

can render the method useless for the task at hand (e.g. object detection/recognition

and/or manipulation). However, in real image sequences something can typically be

assumed of the solution: the sky is, relatively speaking, far away from the cameras

(disparity zero or near zero); a road is a relatively flat surface; in the case of automatic

video surveillance something is known regarding the background; floors, ceilings, walls,

and other man made structures tend to be relatively flat surfaces; if the capture rate

of the camera(s) is high enough, then movements in the real world translate into small

movements between frames in the camera plane and so on. In the above mentioned

cases, it would be beneficial if this knowledge of the geometrical and/or temporal

setup could be plugged in the variational framework in order to constrain the solution

based on what is known. Also, as evidence is accumulated temporally to support

a certain solution, the lack of evidence in the immediate future (next frame or so)

should not change the solution, unless the data (evidence) points otherwise. This kind

of accumulation and propagation of evidence is called temporal coherency and is an

important aspect of real applications. On the other hand, outputs produced by higher

level vision (interpretation of cues contrasted with world models) are seldom used as a

feedback to refine low level estimations. This is paradoxical since it is at this high-level

1http://vision.middlebury.edu/
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where reasoning based on the extracted low-level cues takes place. For example, in the

case of object recognition, the low-level cues are compared with previously generated

object models. Therefore, once the object in question has been identified, the high-level

model of the object could be used for improving the noisy and sometimes ambiguous

low-level cues. This leads to the idea of a signal-symbol loop [57][41][37] where high-,

middle- and low-level vision systems could interchange and fuse data: e.g. a hypothesis

formed by the higher level method would either be accepted by the low-level algorithm,

if it fits the data, or rejected. Such a hypothesis forming and testing cycle would then

eventually lead to improved estimates and coherency generated on all the levels.

3.9.2 Related Work and Our Contribution

The idea of using temporal information in optical-flow calculation is certainly not new.

Amongst the first works on the use of using both spatial and temporal information

as energy terms are those by Black and Anandan [11][10]. In their work, they pro-

pose causality of the solution in the form of the temporal term. Roughly speaking,

energy based methods incorporating temporal information can be divided into causal-

and batch processing. In the case of causal processing, a solution calculated at t is

propagated forward in time, for example to t + 1, and then is used to improve tem-

poral coherence of the solution starting from t + 1. On the other hand, in the case of

batch processing, the complete sequence of interest is processed at once: in this case,

a 3D-regularisation (smoothness) term is needed. Batch type processing methods are

less suitable for real-time implementations than the causal type due to their increased

demand of processing power. More recent methods incorporating temporal terms are

those of Werlberger et al. [80], Weickert and Schnörr [77], and by Salgado and Sánchez

[62]. The first, by Werlberger, can be regarded to be causal whereas the latter belong to

the batch type. As is mentioned in both [62] and [80], incorporating temporal informa-

tion raises an additional challenge of modeling the movement between several frames.

If the movement is modeled by being symmetrical both forward and backward in time

between several frames, this imposes restrictions on the movement: it is expected to

be of a constant velocity (acceleration zero). As can be expected, and is shown in [80],

models accepting only constant velocities do fine as long as this assumption is not bro-

ken and actually perform worse when it does not hold. In our causal model, movement
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is modelled by having both the velocity and acceleration components, as in [11], and

therefore, the model does not suffer from this shortcoming.

Our contribution. Our work differs from the above mentioned ones in that we

use geometrical knowledge of the scene for constraining the disparity solution and

incorporate both the spatial- and temporal constraints simultaneously for the optical-

flow. We also give an example of a hypothesis forming-validation loop: a hypothesis

of a plane is made based on the data after which, iteratively, the hypothesis is verified

against the data and used to constrain the solution.

3.9.3 System Scheme

First of all, we describe the system schematically, making it therefore easier to follow

the rest of the text. By d we denote disparity and by (u, v) optical-flow (apparent

movement of pixels in the camera plane), while subscripts sc and tc denote spatial- and

temporal constraints, respectively. Fig. 3.13 shows the use of spatial constraint, dsc, in

disparity calculation; while Fig. 3.14 shows the same for optical-flow calculation with

the generation of predicted temporal constraints up and vp.

Disparity

Left

Right

Dsc

D

Figure 3.13: Use of spatial constraint in disparity calculation. Dsc (dsc in the text) is

the spatial constraint while D is the solution (disparity). This particular case shows how

the knowledge of the geometrical setup, in this case, related to the form of the road, of the

scene can be used to constrain the solution.
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I(t)

I(t-1)

Vsc Vtc

V

U

Usc Utc

Optical-flow

Vp

Up

Figure 3.14: Use of spatial and temporal constraints in optical-flow calculation. Usc and

Vsc (usc and vsc in the text) are the spatial constraints while Utc and Vtc (utc and vtc in

the text) are the temporal constraints. Up and Vp (up and vp in the text) is the predicted

optical-flow at time t+ 1.

3.9.4 Extended Models

We start by introducing the used notation and then, continue to the energy functionals

with the added spatial and temporal constraint terms. Finally, each of the terms is

described in more detail.

Table 3.7: Used notation for images and error functions.

DATA TERMS

I{L,R},k,t = I{L,R}(x, y, k, t)

Iw{L,R},k,t = I{L,R}(x+ u, y + v, k, t) optical-flow

Iw{L,R},k,t = I{L,R}(x+ d, y, k, t) disparity

ERROR AND CORRESPONDING INFLUENCE FUNCTIONS

ΨD(s2) =
√
s2 + ε2 Ψ′D(s2) = 1/

√
s2 + ε2

ΨR(s2) =
√
s2 + ε2 Ψ′R(s2) = 1/

√
s2 + ε2

ΨCS(s2) = ln(1 + s2/λ2)λ2 Ψ′CS(s2) = 1/(1 + s2/λ2)

ΨCT (s2) = exp(−s2/λ2)(−λ2) Ψ′CT (s2) = exp(−s2/λ2)

Table 3.7 has been included for convenience, since three different types of error
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functions are used in the model. The use of each error function will be justified later

on in the text. In the data terms, I{L,R},k,t refers to a k:th channel of left or right

image, defined by sub-index L or R, at time t. By channel here we mean channel of

a vector valued image, such as RGB. Without k written explicitly, all channels are

referred. Iw{L,R},k,t refers to a warped version of the image [3][15]. In the error function

case, sub-indices refer to functionality or, in other words, how the error function in

question is used in the model. Thus, D, R, CS, and CT refer to data, regularisation,

constraint-spatial, and constraint-temporal, respectively. The functionals for stereo

and optical-flow are given in (3.29) and (3.30), respectively:

E(d) =

∫
Ω

(
D(IL,1, IR,1, d) + αS(∇IL,1,∇d)

)
dx

+γs

∫
Ω

(
Cs(dsc, d)

)
dx

(3.29)

E(u, v) =

∫
Ω

(
D(IL,1, IL,0, u, v) + αS(∇IL,1,∇u,∇v)

)
dx

+γs

∫
Ω

(
Cs(usc, vsc, u, v)

)
dx

+γt

∫
Ω

(
Ct(utc, vtc, u, v)

)
dx

(3.30)

where the data terms for stereo and optical-flow areD(IL,1, IR,1, d) andD(IL,1, IL,0, u, v),

while S(∇IL,1,∇d) and S(∇IL,1,∇u,∇v) are the regularisation terms, respectively,

and α > 0 is the weight of the smoothness term. The spatial constraint for stereo is

Cs(dsc, d), where dsc is the constraining value. Cs(usc, vsc, u, v) is the spatial constraint

for optical-flow where usc and vsc are the constraints arising from geometry.

Ct(utc, vtc, u, v) is the temporal constraint for optical-flow, where utc and vtc are the

predicted values. γs > 0 and γt > 0 are the spatial- and temporal constraints’ weights,

defining the influence of the new terms.

In Appendix B we give the Euler-Lagrange equations related to optical-flow with a

temporal constraint. Derivation of the spatial constraint is similar.

3.9.5 Data Terms

For completeness’ sake, the data- and smoothness terms are introduced here again. We

have chosen to use a combination of a gradient and a gradient magnitude, since these are
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capable of producing reliable results under both (a) illumination errors and (b) image

noise [59]. As it was mentioned in Section 3.8.5.1, we used a 5-fold cross-correlation

when searching for the most robust representation. In the tests a combination of

gradient and gradient magnitude came first once and third and fourth in two other

experiments. However, it failed twice, thus decreasing its overall ranking. In any case,

it produces good results with the real scenes used here. As can be observed from (3.31)

and (3.32), late linearisation of the data terms is used [3][50].

D(IL,1, IR,1, d) =b1

K∑
k=1

ΨD

((∂IL,1,k
∂x

−
∂IwR,1,k
∂x

)2)
+ b1

K∑
k=1

ΨD

((∂IL,1,k
∂y

−
∂IwR,1,k
∂y

)2)
+ b2

K∑
k=1

ΨD

(
|∇IL,1,k −∇IwR,1,k|2

)
=b1

K∑
k=1

ΨD

((∂IL,1,k
∂x

−
∂IwR,1,k
∂x

)2)
+ b1

K∑
k=1

ΨD

((∂IL,1,k
∂y

−
∂IwR,1,k
∂y

)2)
+ b2

K∑
k=1

ΨD

((∂IL,1,k
∂x

−
∂IwR,1,k
∂x

)2
+
(∂IL,1,k

∂y
−
∂IwR,1,k
∂y

)2)
(3.31)

D(IL,1, IL,0, u, v) =b1

K∑
k=1

ΨD

((∂IL,1,k
∂x

−
∂IwL,0,k
∂x

)2)
+ b1

K∑
k=1

ΨD

((∂IL,1,k
∂y

−
∂IwL,0,k
∂y

)2)
+ b2

K∑
k=1

ΨD

(
|∇IL,1,k −∇IwL,0,k|2

)
=b1

K∑
k=1

ΨD

((∂IL,1,k
∂x

−
∂IwL,0,k
∂x

)2)
+ b1

K∑
k=1

ΨD

((∂IL,1,k
∂y

−
∂IwL,0,k
∂y

)2)
+ b2

K∑
k=1

ΨD

((∂IL,1,k
∂x

−
∂IwL,0,k
∂x

)2
+
(∂IL,1,k

∂y
−
∂IwL,0,k
∂y

)2)
(3.32)

where the spatial gradient operator is given by ∇ := (∂x, ∂y)
T and b1 > 0 and b2 > 0 are

the weights of the data terms. The benefit of non-linearised constancy terms (or late

linearisation) is that the model copes better with large displacements, especially when

used together with multi-resolution strategy where the solution is propagated from

coarse to finer levels together with warping. Another benefit is that the full range of
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information available in the images is used. Instead of using quadratic error function,

we use ΨD(s2) =
√
s2 + ε2 [15][13], which is applied individually to each channel in

each term [86]. ε is used for stabilisation [1] where s2 is near zero. This kind of a

robust error function gives less importance to outliers in the data, such as occlusions

and image noise.

3.9.6 Regularization Terms

For regularisation, we have used both image- and flow-driven isotropic-regularisations

and a combination (mixed regularisation) of the aforementioned. In the case of the

mixed regularisation, we propose swapping between image- and flow-driven regular-

isations. For example, on every fourth iteration, we use image-driven regularisation

instead of flow-driven one. Regularisation based solely on image information can pre-

vent smoothening within objects since not all image borders necessarily adjust with

object borders. On the other hand, where image borders indeed do coincide with ob-

ject borders, such information can prevent over smoothening across objects. Mixed

regularisation approach is both computationally attractive, since image-driven regu-

larisation is linear and thus, the diffusion weights need to be calculated only once per

image, and it also combines information of both the image- and the flow-field. There are

more complex and elaborated ways of combining both the image- and flow information

in order to achieve excellent results [86], and we expect that using such regularisation

terms would further improve the obtained results. Regularisation terms for stereo- and

optical-flow are given in (3.33) and (3.34), respectively.

S(∇IL,1,∇d)
)

=

{
g(|∇IL,1|2)(|∇d|2) if image driven,

ΨR(|∇d|2) if flow driven
(3.33)

S(∇IL,1,∇u,∇v) =

{
g(|∇IL,1|2)(|∇u|2 + |∇v|2) if image driven,

ΨR(|∇u|2 + |∇v|2) if flow driven
(3.34)

where the error functions are ΨR(s2) =
√
s2 + ε2 as in [13] and g(s2) = 1/(1 + s2/λ2)

[2][53]. The purpose of the error functions is to prevent the regularisation term from

smoothening across object boundaries and thus, to make the solution piece-wise smooth.

In the g(s2) case, λ is a parameter indicating which ‘strength’ of the edges of the image

are regarded important and thus, it controls diffusion strength. Again, ε is used for

stabilisation where s2 is near zero.
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3.9.7 Spatial- and Temporal Constraints

The last things that need to be defined are the spatial- and temporal constraint terms,

for both stereo and optical-flow, which are given in (3.35), (3.36), and (3.37).

Cs(dsc, d) = ΨCS

(
(dsc − d)2

)
(3.35)

Cs(usc, vsc, u, v) = ΨCS

(
(usc − u)2

)
+ ΨCS

(
(vsc − v)2

)
(3.36)

Ct(utc, vtc, u, v) = ΨCT

(
(utc − u)2

)
+ ΨCT

(
(vtc − v)2

)
(3.37)

where ΨCS(s2) = ln(1+ s2

λ2
)λ2 and ΨCT (s2) = exp(− s2

λ2
)(−λ2) are robust non-quadratic

error functions. utc and vtc are the temporal constraints, whereas dsc, usc, and vsc are

the spatial constraints. The constraints function as priors, therefore, in a sense guiding

the solution towards the constraint. λ is a parameter, that depends on the image scale,

used for determining the shape of the influence function: where the constraint does

not fit the data, its influence upon the solution is rejected. Influence functions of the

corresponding error functions are displayed graphically in Fig. 3.15.
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Figure 3.15: Influence functions Ψ′CS(s2) = 1/(1 + s2

λ2 ) and Ψ′CT (s2) = exp(− s2

λ2 ) for λ

of 0.2.

As can be observed from Fig. 3.15, the influence function based on the exponential

error function approaches zero faster than the influence function based on the logarith-

mic error function. For temporal constraints, we have chosen to use the exponential

error function, since we expect that the temporal displacements are small and, there-

fore, steeper influence functions are preferred. Thus, if there is no proper temporal
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continuum (e.g. a new object enters in the image) the temporal constraint should be

rejected and the solution should be based solely on the data and smoothness terms. On

the other hand, the expected dynamic range of the disparities is higher and, therefore,

in this case, it is beneficial that the influence function has a longer non-zero tail. The

shape of the function is controlled by λ. This is clearly beneficial, since the displace-

ment depends on the scale (multi-resolution processing) and thus, the shape of the

function can be adapted as per scale.

Now that the new terms have been introduced, the question from where do we

obtain the actual constraints remains. Partially we answered this question in Section

3.9.1. Spatial constraints reflect our knowledge related to the spatial properties of the

scene setup. In [57] Ralli et al. show how this kind of information related to the scene

setup can be deduced from the initial disparity map. In the case of optical-flow, the

spatial constraint can be embedded, for example, in the fundamental matrix F [25][30]

and it has been studied in [76][75]. On the other hand, the temporal constraint is used

for applying temporal coherency upon the solution and thus, reflects knowledge related

to how the observed scene is expected to change.

3.9.8 Predicted Temporal Constraints

For the temporal constraints, we need approximations of u(x, y, t) and v(x, y, t) at t+1.

At first sight this seems simple enough, but actually, the problem is two folded. We

already know the apparent movement in the camera plane at time t, since this is exactly

what we have calculated and is expressed by (u, v). Therefore, we know how each of

the pixels move between times t and t + 1, but what we do not know is what is the

actual value of u and v at t+ 1. In other words, we have to know how the optical-flow

changes temporally. This can be expressed, for example, using Taylor series as given

in (3.38).

up = u(x, y, t+ 1)

= u(x, y, t) +
∂u(x, y, t)

∂t
+
∞∑
n=2

u(n)(x, y, t)

n!

vp = v(x, y, t+ 1)

= v(x, y, t) +
∂v(x, y, t)

∂t
+

∞∑
n=2

v(n)(x, y, t)

n!

(3.38)
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where superscript (n) stands for the n:th derivative of the function, and up and vp are

the predicted values. We have used an approximation up to the first order (discarding

higher order terms), where the first order is approximated from the current and last

approximation: for example ∂u(x,y,t)
∂t ≈ u(x, y, t)−u(x, y, t−1). Physical interpretation

of these terms (∂u(x, y, t)/∂t and ∂v(x, y, t)/∂t) is the acceleration of the optical-flow.

In order to account for the current movement, as explained earlier, each of the predicted

terms needs to be warped as expressed in Equation (3.39).

utc = up(x− u, y − v)

vtc = vp(x− u, y − v)
(3.39)

where utc and vtc are the actual temporal constraints.

3.9.9 Experiments

We have evaluated effects of the spatial and temporal constraints, both quantitatively

and qualitatively, using known test images from the Middlebury1 database [32][6] and

images from the DRIVSCO2 and GRASP3 projects. Quantitative results justify the

model, but in fact, we are more interested in knowing how the model behaves with real

images.

3.9.9.1 Error Metrics

Formulae of the used error metrics are given in Equations (3.40), (3.41), and (3.42).

MAE :=
1

n

n∑
i=1

abs
(

(d)i − (dgt)i

)
(3.40)

C :=
1

n
#
{
i|abs

(
(d)i − (dgt)i

)
≤ 1
}

(3.41)

AAE :=
1

n

n∑
i=1

(ugt)iui + (vgt)ivi + 1√(
(ugt)2

i + (vgt)2
i + 1

)(
(u)2

i + (v)2
i + 1

) (3.42)

1http://vision.middlebury.edu/
2http://www.pspc.dibe.unige.it/∼drivsco/
3http://www.csc.kth.se/grasp/
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where n is the number of pixels, dgt ugt, and vgt are the ground truths of the disparity

and optical-flow maps. MAE is the mean average error, C is the percentage of disparities

with absolute error of 1 or smaller, and AAE is the average angular error [7].

3.9.9.2 Quantitative Results for Spatial Constraint in Disparity Calcula-

tion

The aim of this experiment is to demonstrate how spatial knowledge of the scenery, es-

pecially in difficult cases where disparity calculation normally tends to fail, can be used

to enhance the results. The reason for not testing with the standard set of Middlebury

images (Tsukuba, Venus, Teddy, and Cones) is that we consider those fairly ‘simple’,

with more or less planar surfaces containing texture, and therefore, these do not reflect

the challenges related to real applications. Fig. 3.16 shows the used stereo-images.

Parameters are the same through all the experiments.

(a) (b) (c)

Figure 3.16: (a) Monopoly; (b) Midd1; (c) Midd2.

It can be seen that in the case of the chosen test images (Fig. 3.16), the backgrounds

do not contain clearly visible structure that could be used for establishing correspon-

dences. Therefore, it is expected that any method generating correspondences based on

image structures (such as edges, corners, or differentiable pixels) will fail for most of the

background. The idea of using spatial constraint, therefore, is to use a priori knowledge

of the solution in order to improve the results in such cases. Fig. 3.17 shows the results

with and without the use of a spatial constraint. The spatial constraint used in this

case is taken from the ground-truth and is the background. Results corresponding to

Fig. 3.17 are given numerically in Table 3.8.
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Table 3.8: Results in MAE (mean average error) and percentage of correct disparities

using different regularisations without (WO) and with (W) a spatial constraint.

MAE

WO spatial constraint W spatial constraint

flow image mixed flow image mixed

Monopoly 8.3 7.5 8.0 4.9 2.4 2.1

Midd1 6.2 5.1 5.6 1.6 1.8 1.6

Midd2 6.3 5.5 5.9 1.9 2.3 1.9

Percentage of correct disparities

WO spatial constraint W spatial constraint

flow image mixed flow image mixed

Monopoly 66.3% 64.2% 66.3% 61.1% 76.9% 83.4%

Midd1 47.0% 46.9% 47.2% 81.9% 79.3% 82.3%

Midd2 48.4% 46.5% 48.3% 73.1% 72.5% 79.3%

In Fig. 3.17, the first row displays the ground-truths, the second row the results

with flow-driven regularisation, the third row shows the used spatial constraints for

generating the results seen on the fourth row (with mixed-regularisation and spatial

constraint). As can be observed, the results improve significantly, both visually and

numerically, using the spatial constraint. It can also be seen from Table 3.8 that by

mixing both image- and flow-field information (mixed regularisation) the results have

further improved.

It can be argued that the given example (and therefore, the results) are artificial

since the spatial constraints were obtained from the known ground-truths. However,

from the point of view of object detection, scene interpretation, or segmentation based

of disparity maps, it is not necessary for the used spatial constraint to be correct (or even

near correct). From the object detection and segmentation (based on disparity) point

of view, the main problem, in this case, is that the objects and the background tend to

‘fuse’ together. Even if we did not know the correct value for the backgrounds, we could

still make a guess, in order to improve object separability from the background. The

guess that we have made here is that the background is far away (zero disparity) from

the cameras. As can be observed from Fig. 3.18, such as a guess has also improved

object separability notably: we can still separate the background clearly from the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.17: (a) Monopoly ground-truth; (b) Midd1 ground-truth; (c) Midd2 ground-

truth; (d) Monopoly, mixed-diffusion without SC (e) Midd1, mixed-diffusion without SC;

(f) Midd2, mixed-diffusion without SC; (g) Monopoly SC; (h) Midd1 SC; (i) Midd2 SC;

(j) Monopoly, mixed-diffusion with SC; (k) Midd1, mixed-diffusion with SC; (l) Midd2,

mixed-diffusion with SC. SC stands for spatial constraint.

foreground even if the used spatial constraint is not correct.

3.9.9.3 Quantitative Results for Temporal Constraint in Optical-flow Cal-

culation

Here, we study the effects of the temporal constraint upon optical-flow calculation.

Fig. 3.19 shows the used image sequences while Table 3.9 displays the results. The
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(a) (b) (c)

Figure 3.18: (a) Monopoly; (b) Midd1; (c) Midd2. In each case the spatial constraint is

0 and mixed regularisation is used.

parameters are the same through all the experiments.

(a) (b) (c)

(d) (e) (f)

Figure 3.19: Sequences (a) Rubberwhale; (b) Grove2; (c) Grove3; (d) Hydrangea; (e)

Urban3; (f) Yosemite (with clouds).

In the case of (a) Rubberwhale (b) Grove2 (c) Grove3 (d) Hydrangea and (e) Urban3

frames 8 to 10 are used for calculating the optical-flow whereas in the (g) Yosemite

frames 5 to 8 are used. P.ERR (prediction error) is the angular error of the temporal

constraint (approximated from previous solutions).

As can be observed from the Table 3.9 using temporal constraint has reduced the
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Table 3.9: Results in AAE with and without temporal constraint. W.TEM, WO.TEM and

P.ERR denote ‘with temporal constraint’, ‘without temporal constraint’ and ‘prediction

error’ correspondingly.

AAE

W.TEM WO.TEM P.ERR

Rubberwhale 4.9◦ 4.9◦ 8.4◦

Grove 2 2.8◦ 3.0◦ 4.6◦

Grove 3 6.6◦ 7.1◦ 9.9◦

Hydrangea 2.6◦ 2.7◦ 9.6◦

Urban 3 5.2◦ 5.4◦ 7.0◦

Yosemite 3.2◦ 4.0◦ 5.0◦

error in all the cases, apart from the Rubberwhale sequence, where the error has re-

mained the same. Yosemite sequence has benefited the most. This is not surprising,

since in this case the movement is somewhat smooth which results in a lower prediction

error. Also it can be noted that even in the case where the predicted error is high, like

in the Hydrangea sequence, the robust non-quadratic error function, Equation (3.37),

quickly suppresses those predicted values that do not fit the data, and therefore, even

these cases can slightly benefit from the temporal coherency. In real applications, how-

ever, typically high frame rates are favoured, resulting in a smaller movement between

frames and thus, smaller prediction errors can be expected.

3.9.9.4 Qualitative results for spatio-temporal constraints

Here we give results for both disparity and optical-flow using a real stereo-image se-

quence from the DRIVSCO project and for a stereo-image pair from a video-surveillance

application. Complete videos of the results for DRIVSCO are available at 1. In the

disparity case results are given for (a) no spatial constraint and (b) spatial constraint.

For DRIVSCO the spatial constraint is based on the road and the sky, while in the

video-surveillance case the constraint is based only on the floor. In the optical-flow case

results are given for (a) no spatial- or temporal constraint (b) temporal constraint and

(c) both spatial and temporal constraints. In the optical-flow case a spatial constraint

of zero was used for both usc and vsc. The rationale for testing with a spatial constraint

1http://atc.ugr.es/∼jarnor/index.php/publications/more-information
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of zero was to study how such a constraint affects ‘flickering’ of the estimations in a

real sequence where no sufficient spatio-temporal structure is always present. In the

following we present images from the complete processed sequence. Complete video of

the results is available at 1

(a) (b) (c)

(d) (e) (f)

Figure 3.20: Frame 670. (a) Left image; (b) disparity without spatial constraint; (c)

disparity with spatial constraint; (d) velocity; (e) velocity with temporal constraint; (f)

velocity with temporal and spatial constraint. Only the optical-flow module is given in the

figure.

Several observations can be made from Fig. 3.20, although the observations are

clearer from the complete processed sequence. In the disparity case, without the spatial

constraint, the road has a ‘wavy’ form that changes constantly and the background (sky)

fuses with the foreground (forest), since the sky has no spatial information usable for

establishing correspondences. This can make scene interpretation based on disparity

or 3D-reconstructed points very difficult or even impossible [58]. In the optical-flow

case, using a temporal constraint reduces ‘flickering’ of the estimations and also makes

these more concise for the lower part of the road. By flickering, we mean erroneous

temporal changes in the solution. The problem with the road is that it contains very

1http://atc.ugr.es/$\sim$jarnor/index.php/publications/more-information

Jarno Ralli, 2011 82

http://atc.ugr.es/$\sim $jarnor/index.php/publications/more-information


3.9 Spatial and Temporal Constraints

few spatial features. However, the middle lane marker can be used for calculating

good approximations and propagating this information forward in time is beneficial,

especially when the lane marker is not present. Using a spatial constraint of zero

constrains the solution, as expected, to zero where no sufficient features are present

(even though movement would be present). In this case, the results are somewhat

similar to those from sparse methods: the values on the road assigned to zero movement

can be understood as ‘non-valid’ estimations (any other value apart from zero can be

used as well). In this way, the proposed method automatically provides a way to

detect unreliable solutions. Depending on the task at hand, this can be beneficial: high

quality movement estimations are available for those areas with enough spatio-temporal

features and these can easily be identified from the non-zero movement estimations.

(a) (b)

(c) (d)

Figure 3.21: Video-surveillance application. (a) Left image; (b) constraint; (c) disparity

without spatial constraint; (d) disparity with spatial constraint. It is difficult to spot the

suitcase, even for a human observer, from the left image or the disparity map without

constraint. On the other hand, by using a constraint for the floor, the results for disparity

improve so that detecting the object of interest becomes considerably easier.

Fig. 3.21 displays results for a video-surveillance application. In this case, the object

of interest has been intentionally camouflaged and is difficult to spot, even for a human
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observer, by taking a quick look at the image. Since the floor does not contain enough

spatial features, disparity calculation without a spatial constraint understandably fails

here and, therefore, the foreground fuses with the background. The spatial constraint

used here is a plane for the floor that covers the whole image space. In Fig. 3.21 (b) the

constraint is scaled so that the grey level values correspond to those with the resulting

disparity map. True disparity range in this case is approximately [−40.. − 10], while

the constraint contains values between [−42..33] (in Fig. 3.21 (b) values greater than

−10 become saturated and are therefore white). This clearly shows that where the

constraint does not agree with the data, it is discarded.

3.9.10 Conclusions

Here we have proposed a new method for optical-flow and stereo estimation based on

the inclusion of both spatial and temporal constraints in a variational framework. It

was shown that by using such constraints significant improvements can be obtained.

We have illustrated this with several real-world examples and with standard benchmark

sequences. For example in the case of disparity calculation, we showed that consider-

able improvements are achievable using spatial information. This is true especially for

cases containing surfaces with very little spatial information. On the other hand, if

enough spatial information is available then the improvements will be less significant.

The obtained results indicate that with the evaluated constraints (spatial and temporal

terms) the results improve to a point where tasks such as object recognition and grasp-

ing, fore- and background segmentation based upon the disparity and/or optical-flow

become easier for higher level vision stages.

3.10 Problems with the Models

Here we briefly discuss some of the problems associated with the late linearisation

optical-flow and disparity models. While the ‘warping’ effectively addresses the prob-

lem of large displacements, in order to solve the related equations, a coarse-to-fine

strategy must be used, as indicated in Section 3.5.2. The idea here being that displace-

ments are smaller on coarser scales and by warping the images correspondingly, we

can keep the displacements relatively small on finer scales and, therefore, approximate

the image derivatives properly. There is also the problem of non-convexity, but this
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will be discussed in more details in Chapter 5. Now, the problem is that small image

structure are not ‘visible’ in coarser approximations. If the small image structures only

have small displacements, then this will not really be a problem. It becomes a problem

when these small structures contain big displacements and, therefore, these do no nec-

essarily get good estimations from the coarser scales. This problem has been addressed,

in variational framework, by Steinbruecker et al. in [68]. They address the problem

by omitting warping and by conducting a ‘brute force’ type of a search for finding the

correlated pixels. By using the parallel nature of GPU (Graphical Processing Unit)

architectures, this kind of a search can be parallelised very effectively. While we do

not doubt the problem related to the small image structures and the coarse-to-fine

algorithms, we still get acceptable results for the Beanbags1 case, see Figure 3.22, as

opposed to the results presented in [68].

Another problem is related to the occlusions and the warping. The displacement

fields that we obtain with the variational methods are 100% dense. Although the data

term with the robust error function ΨD(s2) gives less influence to the outliers (such

as occlusions), we still have the occluded areas in the approximations. In Figure 3.23

we show the right Tsukuba stereo-image warped by (a) a calculated disparity map

and (b) the ground-truth. Surprisingly, the results are better using the calculated

disparity map. This is simply due to the warping process, which in our case is bilinear

interpolation. In fact, the disparity map tells us what is the displacement of each of

the pixels (i.e. where it can be found in the other image), but it is not a parameter of

a bilinear interpolation operation.

One way of detecting occlusions, keeping the warping operation as it is, is by us-

ing symmetrical estimation of optical-flow or disparity fields. This has been addressed

by Alvarez et el. in [4]. Typically displacement fields are calculated only in one di-

rection, for example displacement field between I0 and I1, at the same time emitting

the displacement field between I1 and I0. As it can be understood, the displacement

fields should be ‘symmetrical’. In variational methods the symmetry constraint can be

added, and emphasised, as an additional term in the model. Based on these symmet-

rical displacement fields, we can deduce possible occlusions. In disparity case, this is

very similar with left-to-right consistency check. In Figure 3.24 we give an example

1http://vision.middlebury.edu/flow/data/

Jarno Ralli, 2011 85

http://vision.middlebury.edu/flow/data/


3. VARIATIONAL CORRESPONDENCE METHODS

(a) Frame10 (b) Frame11

(c) Optical-flow. (d) Frame11 warped.

Figure 3.22: Optical-flow results for the Beanbags case. (d) displays the frame11 warped

using the optical-flow field given in (c).

(a) Right warped. (b) Right warped gt.

Figure 3.23: Right image warped by (a) calculated disparity map and (b) the ground-

truth.
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related to symmetrical disparity calculation. An interested reader is pointed to [4] for

more information.

(a) Left. (b) Right.

(c) Left-right. (d) Right-left.

(e) Ground-truth. (f) Occlusions.

Figure 3.24: Tsukuba case: (a) left image; (b) right image; (c) symmetrical disparity,

left-right; (d) symmetrical disparity, right-left; (e) ground truth; (f) occlusions (based on

(c) and (d)).

3.11 Summary

In this chapter we have introduced early- and late linearisation models for calculating

optical-flow fields and a late linearisation model for calculating stereo-disparity. We

have shown that proper image representation is crucial when trying to establish correct
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image correspondences in real scenes under realistic illumination conditions. We have

shown how a priori information, spatial or temporal, can be used to constraint the

solution. Also, in the disparity case, we have shown how such spatial constraints can

be generated automatically.
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Segmentation of Disparity Maps

4.1 Introduction

Typically segmentation methods aim at grouping image pixels into meaningful objects,

i.e. the segments describe objects more or less in the same sense as we humans perceive

these. Naturally, notation of an object can change accordingly to the problem at a

hand. Typical features, amongst others, used for grouping the pixels into segments are

colour, texture- and shape descriptors. We would like to point out that segmentation

per se is not the final objective in our case, but to be able to generate automatically

meaningful constraints from the segments and use these in disparity and/or optical-flow

calculation as introduced in Section 3.9. Therefore, we aim at segmenting the disparity

maps into meaningful surfaces that can be used as constraints. To summarise, in this

chapter we introduce segmentation based on level-sets theory and show how disparity

maps can be segmented into meaningful surfaces.

4.2 Motivation for Level-sets

In this part, which is adapted from the book Level Set Methods and Dynamic Implicit

Surfaces [51], we give motivation for the level-set based methods. This way a non-

expert reader should find it easier to read and understand the part that actually deals

with the segmentation model.
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4.3 Implicit Surfaces

In two spatial dimensions the interface ∂Γ is defined as an isocontour1 of the implicit

function Φ(x, y) and is mathematically given by ∂Γ = {(x, y)|Φ(x, y) = 0}. There is

nothing special about the zero isocontour and any other isocontour could have been

chosen instead without affecting the properties of the implicit function. The interface

separates inside and outside regions that are defined as in (4.1).
Γ ≡ ∂Γ = {(x, y) |Φ(x, y) = 0}

inside(Γ) ≡ Ω1 = {(x, y) |Φ(x, y) ≥ 0}
outside(Γ) ≡ Ω2 = {(x, y) |Φ(x, y) < 0}

(4.1)

In Fig. 4.1 both an implicit function Φ(x, y) and a zero plane cutting the function

are shown. That part of the function that is above the zero level defines the inside

region while the part that is below the zero level defines the outside region.

(a) (b)

Figure 4.1: (a) Graph of an implicit function Φ(x, y); (b) Graph of an implicit function

Φ(x, y) with ‘zero’ plain (yellow) plane cutting it at z = 0.

Fig. 4.2 displays the corresponding zero isocontour (green line) and the inside- and

outside regions.

As it can be understood from the definitions given in (4.13), the interface is given

implicitly, i.e. it is an isocontour of the function Φ(x, y), and has one dimension less

than the implicit function. If the implicit function has <n dimensions, then the interface

is <n−1 dimensional. Although at first it might seem wasteful to encode the interface

1isocontour is a curve along which the function has a constant value
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Figure 4.2: Zero isocontour (green) of the implicit function with inside- (Ω1) and outsize

(Ω2) regions.

as a higher dimensional object, the implicit formulation has several advantages over the

explicit formulation, which will be discussed next. In the explicit formulation the points

defining the interface need to be stored ‘explicitly’. In general, the curve is parametrised

by a vector function ~x(s) = (x(s), y(s)), where s is defined in [ss, sf ]. Since we are only

interested in closed curves, this implies ~x(ss) = ~x(sf ). In the explicit formulation,

determining if a given point belongs to the inside- or the outside region is not that

straight forward, since only information of the curve itself is stored. In practise, this can

be achieved, for example, by drawing a line between the point of interest and some point

that is known to lie in the outside region and count how many times the line intersects

with the curve (interface): odd number means that it is inside the curve, i.e. it belongs

to the inside region, while an even number means that it is outside the curve and thus

belongs to the outside region. In the implicit formulation only sign of the Φ(x, y) needs

to be checked. Topological changes are handled implicitly in the level-set formulation:

if a segment breaks into two or two (or more) segments fuse together, the encoding

of the interface(s) remain the same. In the explicit formulation fusing or breaking of

the segments must be handled by re-parametrisation of the curve(s). While in two

dimensional case this is relatively easy to do, in three or more dimensions this becomes

increasingly difficult to handle and one has to deal with issues such as connectivity and

so on. One more issue that we would like to bring up is discretisation. Direct, and the

most common way, of approximating an explicit representation is to discretise the s, or

in other words, to represent it by a set ss < ... < si−1 < si < si+1 < ... < sf . The
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intervals [si−1, si] are not necessarily of equal size: representing ‘kinks’ or places with

high curvature requires more sampling points. Since we are interested in interfaces that

change over time, i.e. front tracking [74], the curvature is not constant but changes

and, thus, this means that the discretisation might change over time. Also, if the

topology of the interface changes, this might affect the discretisation as well. If the

discretisation is not addressed properly, so that both smoothness and regularity of the

interface are maintained, numerical results can deteriorate to a level where they are

of no use at all [84][51]. In the case of the implicit representation, the function Φ,

in <2, is discretised by sampling at discrete points (xi, yi) where i = 1..N . This set

of data points is also called a grid. By far the most used grid is a Cartesian grid

{(xi, yj)|1 ≤ i ≤ m, 1 ≤ j ≤ n}. If the sub-intervals [xi, xi+1] and [yi, yi+1] are equal in

size, then it is a homogeneous Cartesian grid. In the case of dynamic implicit interfaces

we do not track explicitly the interface, but evolve the implicit function temporally.

Therefore, from numerical point of view, it is enough if the function Φ is smooth and

regular. One way of assuring this is setting Φ to a signed distance function[51].

4.3.1 Dynamic Implicit Surfaces

As it was already mentioned, interfaces that evolve with respect to time are of particular

interest. Suppose that the speed ~V (~x) is known for all the points on the interface ~x

such that Φ(~x) = 0 (any other isocontour apart from 0 could have been chosen). Given

the velocity field V = (u, v) we wish to know how the interface evolves temporally. In

Lagrangian formulation the system can be described as given in (4.2).

d~x

dt
= ~V (~x) (4.2)

which is an ordinary differential equation (ODE). However, we want to avoid the prob-

lems mentioned in Section 4.3 related to the explicit interfaces and use different for-

mulation. By using Eulerian formulation we can use the implicit function Φ for both

encoding the interface and evolving it with a convection equation (4.3).

∂Φ

∂t
+ ~V · ∇Φ = 0

∂Φ

∂t
+ u

∂Φ

∂x
+ v

∂Φ

∂y
= 0

(4.3)
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which is a partial differential equation (PDE) and it describes how the interface Φ(~x) =

0 evolves temporally in a general velocity field ~V . Equation (4.3) is also known as the

Level-set Equation and it was first introduced by Osher and Sethian in their landmark

paper [52].

4.3.2 Mean Curvature Motion

The equation (4.3) describes how the implicit interface evolves in a general, possibly

external, velocity field ~V . Here we describe a different kind of a velocity that is induced

by the curvature of the interface itself and, as will be shown later, this is of particular

interest from segmentation point of view. The motion induced by the curvature is

known as Mean Curvature Motion (or MCM for short) which can be formulated entirely

in terms of the implicit function Φ, as is shown next. Suppose that the velocity field

is described by components tangential and normal to the interface and, therefore, we

have ~V = Vn ~N + Vt ~T and therefore the convection equation (4.3) can be written as

given in (4.4).

∂Φ

∂t
+ (Vn ~N + Vt ~T ) · ∇Φ = 0 (4.4)

Now, if we suppose that the tangential component of the movement is zero (mean

curvature of the interface is defined as the divergence of the normal), i.e. Vt = 0, and

write ~N in terms of the implicit function, the movement can be described as in (4.5).

∂Φ

∂t
+ Vn ~N · ∇Φ = 0

∂Φ

∂t
+ Vn

∇Φ

|∇Φ|
· ∇Φ = 0

∂Φ

∂t
+ Vn|∇Φ| = 0

(4.5)

where Vn is the normal velocity, i.e. velocity in the normal direction. Fig. 4.3 depicts

normal of the implicit function.

Thus, mean curvature motion is characterised by Vn = −bκ, where κ is the curvature

and is defined as the divergence of the normal as in 4.6 [51].

κ = ∇ · ~N = ∇ ·
(
∇Φ

|∇Φ|

)
= DIV

(
∇Φ

|∇Φ|

)
(4.6)
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Figure 4.3: Normal of the implicit function Φ. ~N = ∇Φ/|∇Φ|.

Now, with the above definitions, the mean curvature motion (MCM) is given by

(4.7).

∂Φ

∂t
= b|∇Φ|DIV

(
∇Φ

|∇Φ|

)
(4.7)

where b is the strength of the curvature term.

4.4 Hypothesis-Forming-Validation-Loops and Segmenta-

tion

In this section we show how disparity estimations can be enhanced using spatial con-

straints based on segmentation, therefore leading to improved scene interpretation. By

using a Hypothesis-Forming-Validation-Loop (HFVL) our method effectively fuses low-

and middle-level vision cues, thus increasing coherency and quality of the estimations.

We describe a segmentation scheme based on physical model abstractions (polynomials

as generalised surfaces of interest) that can be efficiently used as middle-level module

to produce feedback cues towards enhancing low level disparity calculation methods.

Improvements are considerable, especially in difficult cases without sufficient spatial

features (e.g weakly textured scenes), where dense disparity methods typically tend to

fail, possibly leading to an incorrect scene interpretation.

Jarno Ralli, 2011 94



4.4 Hypothesis-Forming-Validation-Loops and Segmentation

4.4.1 Motivation

The lack of discernible features in stereo can have a profound negative impact on the

quality of the resulting dense disparity maps [82], making any scene interpretation

based on these very difficult. In this work we propose a method for improving both

coherency and quality of the dense disparity maps at areas with insufficient spatial

stereo features. As it was already mentioned in the introduction of this chapter, our

main goal is to make the existing methods more robust and thus more usable in real

applications. Such ‘difficult’ cases can be, amongst other things, areas without spatial

features (e.g. tables, walls and so on).

Improving quality of stereo disparity maps is not only of academic interest, espe-

cially in the case of real scenes, but is motivated by real applications such as robotic

vision. For example, in robotics the problem is often circumvented by placing tex-

tured dummy objects, such as a tablecloth, in the scene. The lack of visual structure

is especially prominent in indoor environments where little natural texture exists. In

everyday environments modifying the environment is often undesirable, and therefore

other solutions need to be devised in order for the dense stereo to be useful. In order

to cope with the lack of features, information propagation is typically used in stereo

algorithms. This can be achieved, for example, by using a regularisation (or smooth-

ness) term or local segmentation. Such information propagation performs well locally

but may fail over longer distances or when the original disparity approximations are

incorrect to start with. In these cases, feedback from a higher level of the visual pro-

cessing would be useful, but often such priors are not directly available. Higher-level

feedback is also strongly motivated by the human visual system, where the majority

of connections to most areas are in fact feedback processing pathways [38]. Here we

propose to automatically form a hypothesis of a possible scene interpretation (spatial

knowledge) based on segmentation of an initial disparity map, and then to use this

information as a constraint (or a priori information of the scene). If the hypothesis and

the data are in agreement, both the coherency and quality of the constrained disparity

map is increased, thus reinforcing correct scene interpretation. On the other hand, if

the hypothesis and the data disagree the hypothesis is rejected. Since segmentation

is generally considered to be a middle-level visual task, whereas disparity approxima-

tion is a low-level task, the method proposed in this work effectively combines both
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low- and middle-level cues for enhancing the scene interpretation. It is important to

note that the primary aim of this paper is not to propose another disparity estimation

or segmentation algorithm, but instead to exploit the idea of a Hypothesis-Forming-

Validation-Loop (HFVL), introduced in [60], in this context and show that it can be

used to significantly improve the coherence of scene interpretation. We would like to

point out that the hypothesis-forming-validation loop is not confined to any particular

segmentation method, or even to middle-level information, but cues from higher levels

of abstraction can be used as well. In more detail, the contributions of this paper are as

follows: The idea of hypothesis-forming-validation loop introduced in [60] is extended

by showing how hypotheses can be generated based on segmentation. In addition, to

the best of our knowledge, the surface segmentation model introduced in sec. 4.4.4.3 is

novel. The segmentation scheme makes efficient use of physical model abstractions as

polynomials of different degrees.

Next, section 4.4.2 presents the relevant related work. Then, the proposed general

approach as well as the disparity estimation and segmentation methods used in this

work are presented in sec. 4.4.3 and sec. 4.4.4, correspondingly. In sec. 4.4.5, related to

the experiments, we first validate the segmentation method using well known stereo-

images and then give an example of robotic grasping based on dense disparity. Finally

conclusions are discussed in Section. 4.5.

4.4.2 Related Work and Our Contribution

As it was already mentioned in Section 3.9.2, using constraints in variational correspon-

dence methods in itself is nothing new. For example in [11][10] Black and Anandan

introduced temporal continuity as an energy term. In their case, the temporal term can

be considered causal in the sense that the temporal information is progated forward in

time. A more recent work with similar kind of causality is that of Werlberger et al. [80].

On the other hand, in [78] Weickert and Schnörr propose a spatio-temporal smoothness

constraint where temporal information is propagated over the complete sequence. A

more recent work, with similar kind of processing, is that of Salgado and Sánchez [62].

However, we would like to point out that although the previously mentioned works

indeed use constraints, most of them stay on the low-level, whereas in this work be

propose combining middle- and low-level cues.
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Previously, several methods have been introduced which use color segments for

improving disparity calculation in areas with insufficient spatial stereo features. Yang

et al. [82] applied a window-based stereo algorithm to a stereo-image pair and then

fitted planes to the segments. Other methods assume that planes in disparity space

coincide with color-segments, improving pixel assignment to their respective disparity

plane, e.g. [39]. Dellen and Wörgötter [21] computed sparse disparities from stereo-

segment silhouettes, segmented correspondences, and created dense disparities from

these by interpolating disparity inside segments.

Our contribution. In Section 3.9 [60] we introduced the idea of the hypothesis-

forming-validation-loop (HFVL) by using a spatial constraint as an energy term in

variational disparity calculation. Here, the hypothesis is formed based on segmenting

the initial disparity map, therefore arriving at a higher abstraction level of the scene via

scene interpretation. This idea bears similarity to that of Brox et al. [16], where they

combine segmentation and optical-flow calculation, but on the other hand is different

in that (a) we directly search for meaningful surfaces (b) the way how constraints are

imposed upon the solution [60] and (c) to the best of our knowledge the segmentation

model devised in this work is novel.

4.4.3 Hypothesis-Forming-Validation-Loop

The idea of HFVL was put forward by Ralli et al. in [60]: in this work we proposed

constraining disparity based on what is known of the solution. Thus information from

different levels of abstractions can be used to ‘drive’ the solution towards a more co-

herent interpretation. Before moving on, we describe the data flow of the proposed

method, in order to make it easier to follow the rest of the paper. Since the method is

not confined to any particular choice of disparity and/or segmentation method, it can

be considered to be a framework. The data flow shown in Fig. 4.4 is as follows: first

an initial disparity map is calculated. It is then segmented in order to generate the

hypothesis used as a constraint in the final disparity calculation stage. Although here

we only do one iteration cycle of HFVL, several iterations could be carried out. If the

initial approximations are good enough, the such an iterative scheme should converge

to a more correct scene interpretation. As a last step, the constrained disparity map

is segmented. In the next sections the particular instances of the used disparity and

segmentation methods are described.
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Figure 4.4: Data flow in the proposed method, showing only one iteration cycle of HFVL.

4.4.3.1 Variational Stereo

The variational stereo model used here was already introduced in Section 3.9.4, but, in

order for this section to be self contained, the model is briefly explained here. The reason

for using a variational method is threefold: a) extending the model is straightforward;

b) the same mathematical formalism can be used for both optical-flow and stereo; and

c) the governing differential equation(s) can be solved efficiently. An interested reader

is pointed to [60][15][17][3]. The energy functional for stereo can be written

E(d) =

∫
Ω

(
D(IL, IR, d) + αS(∇IL,∇d)

)
dx

+γs

∫
Ω

(
Cs(dsc, d)

)
dx

(4.8)

where d is the disparity of a rectified stereo-image pair, and the images are referred

by Ii,k, where i ∈ {L,R} indicates either left- or right image of a stereo pair, and k

defines the channel of a vector valued image (without k written explicitly all channels

are referred). The data term is D(IL, IR, d), S(∇IL,∇d) is the regularisation term, and

Cs(dsc, d) is the spatial constraint. α > 0 is the weight of the smoothness term, and

γs > 0 is the weight of the spatial constraint.

4.4.3.2 Data Terms

The used image representation has a profound effect on the quality of the resulting

disparity map, especially under realistic illumination conditions, as we showed in Sec-

tion 3.8 [59]. The representation chosen here is a combination of gradient and gradient

magnitude due to its capability of producing reliable results under both realistic illu-
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mination conditions and image noise. The data constancy term is given in (4.9).

D(IL, IR, d) =b1

K∑
k=1

ΨD

((∂IL,k
∂x

−
∂IwR,k
∂x

)2)
+ b1

K∑
k=1

ΨD

((∂IL,k
∂y

−
∂IwR,k
∂y

)2)
+ b2

K∑
k=1

ΨD

(
|∇IL,k −∇IwR,k|2

)
(4.9)

where IL,k ≡ I
(
x, y
)
L,k

and IwR,k ≡ I
(
x + d(x, y), y

)
R,k

are the left and right (warped

as per disparity d(x, y)[15][3]) stereo-images, correspondingly, with k indicating the

channel in question. I{K,R} refers to all the channels of either left or right image. The

spatial gradient operator is given by ∇ ≡ (∂x, ∂y)
T , and b1 > 0 and b2 > 0 are weights

of the terms.

4.4.3.3 Regularization Term

As it was already mentioned in Section 3.9.6, the smoothness term can be image-

or flow-driven or a combination of the aforementioned (mixed regularisation). The

regularisation term that we have used here, however, is flow-driven, as given in Equation

(4.10). The reason for not having used mixed regularisation here is, that we were

more interested in the hypothesis-formation-validation-loop and its applicability to real

problems, than the actual numerical results. Also, visually flow-driven regularisation

produced acceptable results. Nevertheless, we have no reasons to believe that mixed

regularisation would not improve the results (quantitatively at least).

SI(∇IL,∇d) = g(|∇IL|2)(|∇d|2)

SF (∇IL,∇d) = ΨR(|∇d|2)
(4.10)

where ΨR(s2) =
√
s2 + ε2. The purpose of ΨR(s2) is to prevent the regularisation

term from smoothing across object boundaries, and thus make the solution smooth

piece-wise.

4.4.3.4 Spatial Constraint

The spatial constraint term is given in (4.11).
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Cs(dsc, d) = ΨCS{1,2}
(
(dsc − d)2

)
ΨCS{1}(s

2) = ln(1 +
s2

λ2
)λ2

ΨCS{2}(s
2) = exp(− s

2

λ2
)(−λ2)

(4.11)

where dSC is the spatial constraint, ΨCS{1} and ΨCS{2} are robust error functions, and

λ is a parameter, that depends on the image scale, used for determining shape of the

influence function: where the constraint does not fit the data its influence upon the

solution is reduced. Fig. 4.5 displays shapes of the corresponding influence functions

for λ = 0.2.
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Figure 4.5: Influence functions Ψ′CS{1}(s
2) = 1/(1 + s2

λ2 ) and Ψ′CS{2}(s
2) = exp(− s2

λ2 ) for

λ of 0.2.

In Section 3.9.7 we used ΨCS{1}(s
2) as error function in the spatial constraint for

disparity. Here, on the other hand, we have used ΨCS{2}(s
2). The reason is that

in Section 3.9.7 we expected more errors, especially in the DRIVSCO sequence, and,

therefore, we needed an error function with ‘broader’ influence area. Here, on the other

hand, we want a more precise error function, in order to not to fuse foreground objects

with the background. As it can be observed from Figure 4.5, the exponential influence

function approaches zero faster than the one based on the logarithmic error function.

4.4.4 Segmentation

The energy based segmentation model derived in this work is based on the Active

Regions [20] by Chan and Vese and Region Competition [85] by Zhu and Yuille, while
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the multi-region version is inspired by the model of Brox and Weickert [14][13]. Even

though here we segment disparity maps, the same model can be used for segmenting

optical-flow [14][13], or incorporate other cues apart from disparity, like disparity and

colour.

4.4.4.1 Two Regions

We first describe the standard model, that is a combination of [20] and [85] (see also

[13]), which is used for segmenting the image of interest into two non-lapping segments,

and then move on to describing our version of the model. Since our task is to segment a

disparity map into meaningful segments the model needs to be modified slightly: even

though disparity maps can be presented as grey-valued images, they reflect information

related to 3D structure of the scene. By meaningful segments in this context we mean

points belonging to the same surface.

4.4.4.2 Standard Model

The evolving curve Γ(x(s), y(s)) ≡ ∂Ω is defined in the domain Ω ∈ R2 as the closed

boundary separating the regions Ω1 and Ω2, with Ω = Ω1 ∪Ω2 and Ω1 ∩Ω2 = ∅. Thus

we can define inside(Γ) ≡ Ω1 to be the inside region separated by the closed boundary

Γ with outsize(Γ) ≡ Ω2 being the outside region. We expect that the disparity values

inside the regions are homogeneous, in some sense, and are generated by the probability

distribution functions p(d|αi), where i indicates the region in question, with αi being

the parameters [85]. αi depends on the used probability distribution and will be defined

later on.

E(Γ, α1, α2) =µ

∫
Γ
ds

−
∫

Ω1

log p (d|α1) dx

−
∫

Ω2

log p (d|α2) dx

p (d|αi) =p ({d(x, y) : (x, y) ∈ Ωi}|αi)

(4.12)

where the first term is the the length of the boundary curve, and the second and the

third terms are the cost of ‘coding’ the disparity values according to p(d|αi) for each

region. Instead of using explicit curve representation we use implicit representation
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where the interface (curve) is defined as the isocontour (or level-set) of the function Φ

as defined in (4.13). 
Γ ≡ ∂Γ = {(x, y) |Φ(x, y) = 0}

inside(Γ) ≡ Ω1 = {(x, y) |Φ(x, y) ≥ 0}
outside(Γ) ≡ Ω2 = {(x, y) |Φ(x, y) < 0}

(4.13)

Therefore using the level-set representation the energy functional (4.12) can be defined

as given in (4.14).

E(Φ, α1, α2) =µ

∫
δ(Φ)|∇Φ|dx

−
∫
H(Φ) log p (d|α1) dx

−
∫
H(1− Φ) log p (d|α2) dx

(4.14)

where H(Φ) is the Heaviside function and δ is the one dimensional Dirac measure as

defined in (4.15).

H(Φ) =

{
1, if Φ ≥ 0
0, if Φ < 0

δ(Φ) =
d

dΦ
H(Φ)

(4.15)

Now the only thing that needs to be defined is the probability density function p (d|αi).

Without loss of generality, in this work a Gaussian distribution has been used, since

we expect the disparities to be ‘correct’ values corrupted by a large number of random

processes. Therefore if αi = (µi, σ
2
i ), then the probability distribution function is

defined as in (4.16).

p ({d(x, y) : (x, y) ∈ Ωi}|αi) =
1

√
2πσi

2 exp

(
−
(
d(x, y)− µi

)2
2σ2

i

)
(4.16)

The problem with (4.16) is that when it is used for modelling stereo-disparity d(x, y)

(which is inherently related to the 3D setup of the scene) it only successfully describes

surfaces with a constant disparity value. In order to account for more complex surfaces

the model has to be modified to account for the physical model behind the disparity.
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4.4.4.3 Surface Segmentation Model

As it was already stated before, a better physical model is needed to account for the

disparity values. By reformulating (4.16) we obtain (4.17).

pr ({d(x, y) : (x, y) ∈ Ωi}|αi) =
1√

2πσ2
i

exp

(
−r2

i

2σ2
i

)
(4.17)

where r = d − d̂, with d being the observed disparity values, and d̂ being the dispar-

ity values generated by the physical model. Without loss of generality, the models

used in this work are parametric multivariate polynomials of first (linear) and second

(quadratic) degree, such that d̂ = Ami where mi are the parameters (of the physi-

cal model) for the region i and A is a ‘position’ matrix, that depends on the degree

of the multivariate polynomial. Therefore, the complete parameter vector would be

αi = (mi, σ
2
i ). The parametric physical model explains the observed disparity values

based on the position (x, y) of the observation and, therefore, in linear case A = [X Y 1],

while in the quadratic case A = [X2 Y 2XY X Y 1] with X and Y being the coordinate

vectors. The surface model in (4.16) would be a polynomial of 0:th degree (constant)

with A = [1], mi = µi and ri = d − µi and thus would only be suitable for describing

surfaces with constant disparity values, as was argued earlier. Both of the segments,

i = {1, 2}, are modelled by their respective parametric surfaces Am1 and Am2.

Now depending on the disparity map being segmented (into two), it may well be

that the two multivariate polynomials of degree one or two do not describe well the two

segments, since the 3D scene might consist of more than two distinct surfaces. Instead,

we segment the domain Ω into those points that belong to the surface in question, and

those that do not: Ω1 defines the segment described by the surface, while Ω2 is the

segment that does not fit the surface, with Ω = Ω1∪Ω2. If we go back to (4.14), we can

see that there are two terms, namely p (d|α1) and p (d|α2), that ‘compete’ for d(x, y).

Thus we need to define p (d|α2) so that it somehow represents Ω2. One possibility

is to define p (d|α2) in terms of p (d|α1). Thus the energy functional for the surface
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segmentation becomes as in (4.18).

E(Φ, α1) =µ

∫
δ(Φ)|∇Φ|dx

−
∫
H(Φ) log pr (d|α1) dx

−
∫
H(1− Φ) log pr (d|α1) dx

(4.18)

where the physical model for the surface is either of first or second order, as described

earlier. Now if pr (d(x, y)|α1) is as in (4.17), we want to define pr (d(x, y)|α1) so that

there is balanced ‘competition’ between the regions Ω1 and Ω2. Since the univariate

Gaussian distribution is described by N(r2, σ2) =
(
1/
√

2πσ2
)
exp
(
− r2/2σ2

)
, where

the first term (between parentheses) can be seen as a coefficient fixing shape (and

thus height) of the curve, therefore in order to have balanced competition between the

regions, we can approximate pr (d|α1), for example, with (4.19).

pr (d|α1) =
1√

2πσ2
1

exp

(
−r2

1

2σ2
1

)
pr (d|α1) =

1√
2πσ2

1

− pr (d|α1)

(4.19)

Figure 4.6 gives an example for terms p and p (σ2 = 1).
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Figure 4.6: Terms p and p̄ for σ2 = 1, as defined in (4.19).

Figure 4.7 shows the results of the surface segmentation for the Tsukuba case. This

case is, of coarse, the simplest possible case since all the objects are fronto-parallel.
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: Surface segmentation for Tsukuba. (a) Disparity ground truth; (b) 1st

segment; (c) 2nd segment; (d) 3rd segment; (e) 4th segment; (f) 5th segment.

4.4.4.4 Multi-Region

Since our surface segmentation model segments the disparity map into a meaningful

segment Ω1 (describing a surface) in order to find the rest of the surfaces one simply

needs to segment, successively, the remaining Ω2 (Ω1 is omitted from the successive

segmentations). Therefore we end up having Ω = ∪Ni=1Ωi where N is the number of

segments represented by N − 1 level-set functions. Even though each of the N − 1

segments (obtained by successive application of the two-region surface segmentation

model) describe a single meaningful surface, it is possible, due to incomplete compe-

tition, that the segments contain points corresponding to other surfaces and therefore

it is necessary to establish competition between all the regions meaning that coupling

between the different level-set functions is needed. As already mentioned, we segment

the image into N−1 meaningful segments where the N :th segment contains those posi-

tions that do not belong to any meaningful surface and therefore do not have a model.

Our reasoning is that due to the 3D setup of the scene not necessarily all of the points

can be explained by a surface: for example far away points may belong to a surface

Jarno Ralli, 2011 105



4. SEGMENTATION OF DISPARITY MAPS

but due to the distance (from the camera) the whole surface is seen as only few points

in the camera. Therefore Ω = ∪Ni=1Ωi where ΩN = Ω¬
(
∪N−1
i=1 Ωi

)
and Ωi ∩ Ωj = ∅

if i 6= j. The above mentioned means, simply, that segments
(
∪N−1
i=1 Ωi

)
contain the

segments that we have found by applying the segmentation process, while the segment

ΩN contains the pixels that have not been assigned to any particular segment.

The energy functional of our multi-region surface segmentation model is as given in

(4.20).

E(Φi, αi, αj) =µ

∫
δ(Φi)|∇Φi|dx−

∫
H(Φi) log pr (d|αi) dx

−
∫
H(1− Φi) max

H(Φj)>0
i6=j

(
log pr (d|αi) , log pr (d|αj)

)
dx

(4.20)

where the last term defines the competitive coupling between the different regions. In

the two region case the competing term was easy to deduce: it is the other segment.

In the multi-region case this is not so straight forward anymore. We have to deduce, in

the case of a segment Ωi, which of the segments Ωj , with i¬j, is competing the most

for the same positions, in order to have ‘balanced’ competition between the segments.

By defining the energy functional as given in (4.20), after we have deduced the most

competing segments for all of the existing segments, we have solve the corresponding

level-set equations all at once.

4.4.4.5 Solving the Equations

Now that we have defined the energy functionals for both the two- and the multi-region

segmentation models, we move on to describing how these can be solved efficiently. In

Section 4.4.4.6 we give a more detailed explanation of the actual algorithm and also

discuss about the initialisation. In order to avoid getting stuck on local minima, and

for increasing convergence speed, the energy functionals are solved in multi-grid fashion

[13][14][73][19]. We search for an initial solution on the finest scale and propagate the

solution sequentially to coarser scales and return back to to the finest scale. Since each

coarser scale is a simplified version of the finer scale problem, resolving the equation in

this fashion effectively avoids getting stuck on local minima and increases the conver-

gence speed. In the two region case, where we search for the initial segments, V-cycle

is used whereas in the multi-region case we use W-cycles. The rationale for this is that
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since in the multi-region case the competition is balanced, this is where most of the work

minimising the functionals should be done (avoiding the local minima simultaneously).

Both V- and W-cycles are depicted in Fig. 4.8. At each scale the functionals (4.18)

Figure 4.8: Multi-grid V- and W-cycles.

and (4.20) depend on both the level-set function Φi and the parameters αi. Therefore,

we use the same kind of algorithm, as proposed in [85], consisting of two steps: in the

first step Φi is kept constant while the functional is minimised for αi and in the second

step αi is kept constant while the functional is minimised for Φi. A single iteration step

consists of both the steps. The steps are as follows:

1. Minimisation of α

Minimising the energy functionals keeping the Φi constant (using the last known

value of Φ), as per Bayes rule, corresponds to maximising the conditional proba-

bility as given (for discrete case) in (4.21)

αi = arg max
αi

∏
(x,y)∈Ωi

p (αi|{d(x, y) : (x, y) ∈ Ωi}) (4.21)

where αi = (mi, σ
2
i ). Since our ‘generalised’ probability density functions depend

on the physical model Ami, we need to estimate the model’s parameters mi.

This is done using random sample consensus (RANSAC) due to it’s ability to

find structures consisting of substantially less than half of the data points [69][26].

One of the crucial parameters of the RANSAC method is the minimum number of

data required to fit the model. We call this simply RANn. If the Ω1 is initialised

so that it contains positions from the whole disparity domain, it is expected that

in the first iteration cycles only a small fraction of the data will fit the model

found by the RANSAC. However as the Ω1 converges towards the surface the
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number of data that fits the model is expected to increase and thus should reflect

RANn. Therefore we start with a RANn covering 5% of the data and arrive at

60-70%. The variance of the Gaussian distribution is estimated as given in (4.22).

σ2
i = max(

∫
r2
iH(Φi)∫
H(Φi)

, σmin) (4.22)

where r = d − d̂, with d being the observed disparity values, and d̂ being the

disparity values generated by the physical model. The purpose of σmin is to limit

the variance. Equation (4.22) is derived from the fact that, in our case, variance

is calculated by σ2 =
1

N

N∑
i=1

(di − d̂i)2. We simply use the Heaviside function to

define the segment of interest in question. If the variance is not limited, due to

the greedy nature of the algorithm it tends to over segment in some cases which

is effectively avoided by limiting the minimum allowed variance. Values between

0.25 and 1.0 were typically used for σmin.

2. Minimisation of Φ

Minimising the energy functionals with respect to Φi, keeping the αi constant,

is performed using gradient descent where descent direction is parametrised by

artificial time t ≥ 0 as in [20]. This involves solving the associated Euler-Lagrange

equations of the form Φi(t, x, y). The Euler-Lagrange equation for (4.18), keeping

the α1 fixed, is given in (4.23).

∂tΦ = H ′ε(Φ)

(
log pr (d|α1)− log pr (d|α1) +DIV

(
∇Φ

|∇Φ|

))
(4.23)

The Euler-Lagrange equation for (4.20), keeping the α{i,j} fixed, is given in (4.24).

∂tΦi = H ′ε(Φi)

(
log pr (d|αi)

− max
H(Φj)>0
i6=j

(
log pr (d|αi) , log pr (d|αj)

+DIV

(
∇Φi

|∇Φi|

)) (4.24)

where Hε(Φ) is a regularised version of the Heaviside function [20], where ε defines

the amount of spatial support, as given in (4.25) and shown in Fig. 4.9.

Hε(Φ) =
1

2

(
1 +

2

π
arctan

(
Φ

ε

))
(4.25)
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Figure 4.9: Graph of the regularised Heaviside function, as defined in (4.25).

Both (4.23) and (4.24) are solved in semi-implicit fashion using an additive

operator splitting scheme (AOS)[79] similar to [42].

4.4.4.6 Segmentation Algorithm

Now that the different parts of the algorithm are clear the complete segmentation

algorithm is given in Alg. 1. The surfaceSegment() function returns two segments:

points that belong to the surface found in the data (first region) and points that do

not belong to the surface (second region). An important part of the algorithm that

Algorithm 1 Segmentation algorithm where d is the disparity map to be segmented,

Ω is the domain of segmentation, reg is the region to be segmented, Ω(n)1 are the

level-set functions describing the segments and n is the number of equations.

reg = Ω, n = 1

while size(reg) > thr do

[Ω(n)1 Ω2] = surfaceSegment(d, reg)

reg = reg ∩ Ω2

n = n+ 1

end while

Ω1 = regionCompetition(d, Ω1)
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has not been addressed so far is the initialisation of the surface segmentation model

that produces the initial segments. By initialisation we mean the status of the level-

set function Φ(0, x, y) (at time t = 0). This presents a problem since there must be

enough points for the algorithm to be able to find all the surfaces of interest (including

fairly small surfaces) but on the other hand if there are too many initial points the

RANSAC method might find non-meaningful surfaces. We found out that by using

a somewhat tight initial grid (every fifth position in both x- and y-direction was set

to 1 the rest being -1) and by gradually changing the RANn as explained earlier and

solving the equations in multi-grid fashion produces desirable results. However, we

must add, that better initialisation is expected to produce even better segmentation

results. On interesting possibility would we using segmentation results based on colour,

for example, to initialise our method. Figure 4.10 shows the initialisation and the first

five iterations for the Tsukuba case.

4.4.5 Experiments

The purpose of the experiments is twofold. Firstly, we validate the surface segmentation

method using well known test images. Secondly, we show how the proposed hypothesis-

forming-validation loop enhances scene interpretation in a real, uncontrolled, scenario.

More results, including videos, are available at http://atc.ugr.es/~jarnor/index.

php/investigation/results.

4.4.5.1 Error Metrics

Formulae of the used error metrics for disparity are given in equations (4.26) and (4.27).

MAE :=
1

N

N∑
i=1

abs
(

(d)i − (dgt)i

)
(4.26)

C :=
#
{
i | abs

(
(d)i − (dgt)i

)
≤ 1

}
100

N
(4.27)

where N is the number of pixels and dgt is the ground truth. MAE stands for mean

average error while C is percentage of correct disparities (±1 disparity level).
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(a)

(b) (c)

(d) (e) (f)

Figure 4.10: Initialisation and the first five iteration cycles for Tsukuba. (a) Initialisation;

(b) 1st iterationM; (c) 2nd iteration; (d) 3rd iteration; (e) 4th iteration; (f) 5th iteration.
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4.4.5.2 GRASP and Middlebury Images

Both well known test images from Middlebury1 [32][6] database and application specific

images from the GRASP2 project for robotic grasping were used. Fig. 4.11 shows three

(a) (b) (c)

Figure 4.11: Middlebury images (a) Tsukuba; (b) Teddy; (c) Cones.

of the four Middlebury images used for ranking disparity calculation methods. As it can

be observed, Tsukuba contains only fronto-parallel objects, making it relatively easy

to segment, whereas Teddy and Cones are more demanding due to number of objects

and scene setup. However, at this point, we would like to point out that these images

contain sufficient spatial features for most disparity calculation methods to calculate

disparity maps good enough to be used for scene interpretation. Fig. 4.12 shows the

application specific images related to robotic grasping. GRASP 1 and 2 cases can be

considered easy, due to the number of objects and texture present in the table, whereas

GRASP 3 and 4 cases are considerably more difficult: the table contains only very few

useful spatial features for stereo and in the GRASP 4 case the objects on the table are

both textureless and of the same colour. GRASP 1 and 2 can be considered typical

cases where either additional objects are placed on the surface (table in this case) or the

surface itself contains sufficient spatial features for extracting the disparity correctly.

However, many man made objects, with painted or otherwise finished surfaces, tend to

lack texture and/or spatial features, as can be seen in GRASP 3 and 4. This is not

only true for tables, but also walls and paved roads (just to mention a few) [57] can

present problems for the dense disparity methods.

1http://vision.middlebury.edu/
2http://www.csc.kth.se/grasp/
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(a) (b)

(c) (d)

Figure 4.12: GRASP images (a) GRASP 1; (b) GRASP 2; (c) GRASP 3; (d) GRASP 4.

4.4.5.3 Reference Results for Middlebury

We start by validating the segmentation algorithm and demonstrate qualitatively, that

although the disparity maps generated by the used disparity calculation method are

far from being perfect, the segmentation algorithm is capable of producing satisfactory

results for scene interpretation. Therefore, for validation purposes, segmentation results

are given for both GT (ground-truth) and calculated disparity maps. Figs. 4.13 and

4.14 depict the disparities and the segmentation results. Segmentation parameters are

the same throughout the tests, and the physical model of the segments is a multivariate

polynomial of a second degree.

Fig. 4.13 shows the disparities for the test images. Upper row displays ground-

truths (a to c) while lower row contains the calculated disparities (d to f) without any

constraints.
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(a) (b) (c)

(d) (e) (f)

Figure 4.13: Disparity maps: (a) Tsukuba GT; (b) Teddy GT; (c) Cones GT; (d) Tsukuba

calculated; (e) Teddy calculated; (f) Cones calculated. GT stands for groud-truth.

Fig. 4.14 shows the segmentation results (upper row based on GTs while lower row

is based on the calculated disparities). Interestingly enough the segmentation algorithm

is capable of finding the table in the Cones case: a task which is seemingly difficult

even for a human observer when based on the disparity. In general, the results based on

calculated disparity are on par with the ones based on GT. In the following we apply a

constraint for the background in the Tsukuba case and segment the resulting disparity

map. The constraint is obtained by searching for a single ‘significant’ plane in the

disparity map, using the segmentation algorithm, which happens to be the background.

This clearly improves approximations for the background, especially near the table legs,

therefore leading to better scene interpretation. Without the constraint a part of the

background, near the table legs, is erroneously segmented as an independent segment,

even though it in reality belongs to the background, as can be observed in Fig. 4.15. For

Teddy and Cones cases we have ignored the first 35 columns from the error calculation

due to lack of stereo information.

The improvement of 3.6% approximately can also be seen in Table 4.1 by comparing
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(a) (b) (c)

(d) (e) (f)

Figure 4.14: Segmentation results: (a) Tsukuba GT; (b) Teddy GT; (c) Cones GT; (d)

Tsukuba calculated; (e) Teddy calculated; (f) Cones calculated.

Table 4.1: Results in MAE (mean average error) and C (percentage of correct dispari-

ties). Const. stands for constrained. The constraint is obtained, using the segmentation

algorithm, as mentioned in the text.

Image MAE C (%)

Tsukuba 0.55 90.5

Tsukuba (const.) 0.53 90.9

Teddy 1.06 82.5

Cones 0.99 85.4

‘Tsukuba’ and ‘Tsukuba (const.)’. This seemingly modest improvement in MAE (or

percentage of correct disparities) leads to a clearly better scene interpretation, as can

be observed in Fig. 4.15. Disparity approximations near the posterior table leg have

improved, leading to better segmentation results in that area.
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(a) (b)

(c) (d)

Figure 4.15: (a) Disparity WO constraint; (b) Disparity with constraint; (c) Segmenta-

tion based on a; (d) Segmentation based on b. With the constraint the estimations improve

for the background, especially near the table legs. WO stands for ‘without’.
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4.4.5.4 Segmentation for Robotic Grasping

Here we demonstrate qualitatively how the proposed method is used for (a) generating

useful spatial constraints, (b) generating high quality disparity maps and (c) segmenting

the disparity map. We show that spatial constraining effectively improves coherency of

the disparity estimations, leading to improved segmentation results and, therefore, to

better scene interpretation. Spatial constraint is obtained automatically by segmenting

the initial disparity map into a single planar object: since the table is the biggest planar

object available in the images, this is found as expected. The physical model of the

constraint is of first degree, while the final segments are of second degree. Imposing

a planarity constraint (arising from the table) in the whole disparity map domain has

effectively corrected the false estimations. Where the spatial constraint does not fit

the data it gets rejected, therefore allowing correct disparity estimation for rest of the

objects. In the figures const. is the constrained disparity solution.

(a) (b)

(c) (d)

Figure 4.16: GRASP 1 (a) Disparity (none); (b) Disparity (const.); (c) Segmentation

(based on a); (d) Segmentation (based on b). Constraining the solution leads to better

disparity estimations for the table, especially near the objects of interest, therefore leading

to better scene interpretation.
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(a) (b)

(c) (d)

Figure 4.17: GRASP 2 (a) Disparity (none); (b) Disparity (const.); (c) Segmentation

(based on a); (d) Segmentation (based on b). Segmentation based on the constrained

disparity map shows considerable improvement for the object of interest situated on the

table.

From figs. 4.16-4.19 it can be observed that the spatial constraint considerably

improves quality of the resulting disparity maps and therefore scene interpretation

based on the segmentation. With the spatial constraint, the disparity values change

smoothly, as a function of the distance, for the table.
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(a) (b)

(c) (d)

Figure 4.18: GRASP 3 (a) Disparity (none); (b) Disparity (const.); (c) Segmentation

(based on a); (d) Segmentation (based on b).

(a) (b)

(c) (d)

Figure 4.19: GRASP 4 (a) Disparity (none); (b) Disparity (const.); (c) Segmentation

(based on a); (d) Segmentation (based on b).
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Improvement is especially notable in the GRASP 3 and GRASP 4 cases: this is due

to the fact that the table contains only very few useful spatial features for extracting

stereo information. Fig. 4.20 shows objects of interest (based on the segmented image)

in the left stereo-image, while Fig. 4.21 displays 3D reconstructed point clouds for the

same. Object recognition and grasping is based on the 3D reconstructed information.

(a) (b)

(c) (d)

Figure 4.20: Object of interest: (a) GRASP 1; (b) GRASP 2; (c) GRASP 3; (d) GRASP

4.

Fig. 4.21 shows 3D reconstructed point clouds for the objects of interest (seen in

Fig. 4.20) based on the segmentation results.
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(a) (b)

(c) (d)

Figure 4.21: 3D reconstruction of objects of interest: (a) GRASP 1; (b) GRASP 2; (c)

GRASP 3; (d) GRASP 4.
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4.5 Conclusions

We have demonstrated how spatial constraints, obtained automatically from the dis-

parity data, can be used for enhancing coherency and quality of the resulting disparity

estimations, therefore leading to better scene interpretation. The described framework

is general enough to be used with other disparity estimation [57] and segmentation

methods, apart from the ones described in this work. The framework effectively allows

binding of low- and middle-level vision cues in a meaningful way for specific applications

such as robotic vision. We feel that this is the right way to proceed and the obtained

results back our thinking: instead of fine tuning the method used for obtaining the dis-

parity estimations to the maximum, possibly leading to over fitting, we effectively use

other visual cues for improving the overall quality, therefore making the scene interpre-

tation easier. Obtained results, especially in the difficult cases, show that considerable

enhancement of the disparity map is possible.

Same physical model was used for all the segments in the segmentation algorithm.

Even better results could be obtained by assigning a different physical model for each

segment, based either directly on the data, and/or other external cues. In order to avoid

over segmentation, segments can be fused, if sufficiently similar, therefore minimising

the overall energy.

In this study we have applied the HFVL cycle only once. An interesting possibility

of future work would be to apply the HFL loop several times, iteratively, for different

objects/surfaces. If the initial estimations are good enough, we expect that the model

should converge to an even better solution.
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Solving the Equations

5.1 Introduction

In this section, we describe how the previously introduced equations can be solved

efficiently. This is achieved by solving the corresponding Euler-Lagrange equations

using a multigrid approach. In the literature, depending on the field, multigrid is also

known as multilevel, multiscale or multiresolution method. The PDEs to be solved in

this work exhibit both space-type, and time-type characteristics, as described in [73].

The time-type is evolved with respect to a time variable t, until either a steady-state or

a desired time is reached. On the other hand, a time-type problem, when discretized

implicitly with respect to time, yields a discrete space-type problem which has to be

solved at each step. On the contrary to the time-type problems, in the space-type

problems the steady-state is searched directly.

In order to describe how the equations are solved, while trying to maintain a com-

mon notation in the field, we have used, and adapted where necessary, notation from

the book Multigrid [73] and the PhD theses of Dr. Bruhn [17], Dr. Brox [13], and Dr.

Javier Sánchez [63], therefore, avoiding ‘reinventing the wheel’. The PhD thesis of Dr.

Bruhn is one of the most thorough works covering the field of variational methods for

optical-flow, while the book Multigrid[73] covers the subject of efficient solvers using

multigrid techniques in a rigorous and understandable way. On the other hand, Dr.

Brox’s thesis covers both the optical-flow and segmentation using level-set based for-

mulation, obtaining very interesting results indeed. Last, but certainly not least, for

Spanish speaking population we can recommend the PhD thesis of Dr. Javier Sánchez.
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Amongst other things, it introduces the left-right consistency check in the variational

correspondence methods. There are other equally good studies about the subject of

variational methods for optical-flow, but we have mentioned these, since these are the

ones that we have mainly used.

We continue by introducing the used notation in Section 5.2. In Section 5.3, briefly

introduce concepts/solvers, such as, Successive Over Relaxation (SOR), Gauss-Seidel

(GS), Alternating Line Relaxation (ALR) and other crucial techniques that we have

used to solve the equations. In Section 5.4, for completeness’ sake, we re-introduce

the equations to be solved and discuss some of their properties. Discretisation of the

equations is discussed in Section 5.5, while in sections (5.6.1) and (5.7) we show how

to construct solvers for the optical-flow (both early- and late linearisation cases) and

the level-set equations. In Appendix A extra information related to stencil notation is

given.

5.2 A Word About the Used Notation

Before going any further, we need to introduce and explain some of the coming nota-

tion, conventions, and concepts, so that reading the rest of the section will be easier.

We consider the image to be a continuous function/mapping with I : R × R → R+,

where the domain of the image is Ω ⊂ R × R. It is in this regular domain where our

continuous PDEs are defined. However, in order for us to solve the PDEs, they need

to be discretised first. Also, the kind of images that we are dealing with are, in fact,

discretised versions that we receive from the imaging devices, such as digital- or thermal

cameras. We define a discretisation grid as given in (5.1):

Gh := {(x, y) | x = xi = ihx, y = yj = jhy ; i, j ∈ Z} (5.1)

where h = (hx, hy) is a discretisation parameter. With the discretisation grid, the

domain of the discretised images can be defined as Ωh = Ω ∩Gh. Instead of I(x, y) =

I(ihx, jhy), we typically use Ii,j when pointing to the pixels. Figure 5.1 depicts both

the image pixels and the calculation grid.

Figure 5.1 shows the grid used for discretising the equations. The blue cells can

be thought of representing the physical image sensors (e.g. CCD cells), while the red

grid shows the computational grid, where the nodes (points of interest) align with the
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hx

hy

Figure 5.1: A Cartesian grid. Blue grid defines the image pixels while the red grid is the

computational grid used for solving the PDEs. We assume that hx = hy. Origin of the

grid is in the left upper corner and pixel positions are defined by subindices (i, j).

centres of the image sensors. Due to Bayer alignment of the RGB image sensors, the

above description is not accurate for most cameras, but an acceptable simplification.

Sometimes positions on a grid are given using both cardinal- and inter-cardinal

directions, as defined in figure 5.2. The idea is to simplify the notation of the discretised

versions of the equations which can be rather messy.

NW N NE

W C E

SW S SE

Figure 5.2: Directions on a grid. To simplify the notation, both cardinal- and inter-

cardinal directions are used. Here W, N, E, S, and C refer to west, north, east, south, and

centre, respectively.

Pixel numbering schemes. As it was already mentioned, we can refer to any pixel in

the image by using Ii,j , where 0 ≤ i ≤ m, 0 ≤ j ≤ n. Here the discretisation parameter

h = (hx, hy) has been chosen so, that the discretised domain is Ωh : [1,m] × [1, n].

Another particularly useful way is to think of the discretised image as a vector I ∈ RN .

Now, the components of the vector are II where I ∈ {1, . . . , N} and N is the number

of pixels in image. This second numbering scheme is particularly useful for algorithmic

descriptions and in matrix notation, as will be shown later on.
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5.2.1 Pixel Neighbourhoods

In order to simplify the notation, for example in algorithmic descriptions, we define

different kinds of pixel neighbourhoods. The neighbourhoods are slightly different

depending on if we are talking about a element- or a block-wise solver. By element

wise solver we mean a Jacobi or Gauss-Seidel type iterative solvers, that search for the

solution for a single element at a time. On the other hand, block type solvers search for

a solution for a group of elements (or a block). However, since the neighbourhoods have

the same function in both the above mentioned cases, we use the same neighbourhood

operator to denote the neighbours. It should be clear from the structure of the solver

which kind of a neighbourhood is in question. J ∈ N(I) denotes the neighbours J of I,

as seen in Figure 5.3 (a).

Pixel wise. J ∈ N−(I) denotes the neighbours (J) of (I) with J < I (painted circles in

Figure 5.3 (b)), and J ∈ N+(I) denotes the neighbours (J) of (I) with J > I (unpainted

circles in Figure 5.3 (b)).

Block wise. J ∈ N−(I) denotes the neighbours (J) of (I) with J < I (painted circles

in Figure 5.3 (c)-(d)). Since we run the block wise solver both column- and row-wise,

depending on the direction, the neighbour(s) defined by this neighbourhood operator

changes. J ∈ N+(I) denotes the neighbours (J) of (I) with J > I (painted circles in

Figure 5.3 (c)-(d)). Again, the actual neighbours defined by this operator depends on

the direction of the solver.

In a Gauss-Seidel (see Equation (5.13)) type solver, whether a point- of block-wise,

a N−(I) denotes those neighbours that have a new solution (calculated at l+ 1), while

N+(I) denotes those neighbours that still have an old solution (calculated at l).

Jarno Ralli, 2011 126



5.3 Numerical Methods

jex xx
x

jex xjex x x
(a) 4-neighbourhood with elimi-

nated boundary conditions.

jex hx
h

jex xjex x h
(b) Element wise neighbourhood

with eliminated boundary condi-

tions.

jez j

? ? ? ? ? ? ? ? ?

(c) Block wise, column ordering.

jezj

-

-

-

-

-

-

-

-

-

(d) Block wise, row ordering.

Figure 5.3: Pixel neighbourhoods, where central pixel, I, is denoted with a double circle.

(a) Painted circles denote neighbouring pixels J that belong to the neighbourhood defined

by J ∈ N(I). (b) Painted circles denote pixels J that belong to the neighbourhood defined

by J ∈ N−(I), while unpainted circles denote pixels J that belong to the neighbourhood

defined by J ∈ N+(I). (c)-(d) Painted circles denote pixels J that belong to the neigh-

bourhood defined by J ∈ N−(I), while unpainted circles denote pixels J that belong to

the neighbourhood defined by J ∈ N+(I). Processing order is defined by the arrows. Due

to the eliminated boundary conditions ‘scheme’, the pixel neighbourhood operators only

point to valid neighbours, as shown in (a) and (b).

5.3 Numerical Methods

In this section some of the used numerical techniques are briefly introduced in order

to make this work more self-contained. We show, for example, how a linear system of

equations Ax = b can be solved using both element- and block wise iterative solvers.
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We denote this kind of an iterative solver by (5.2). Systems of equations can be solved

directly by using methods such as Gaussian elimination or Cholesky decomposition.

However, in our case the system matrix A is a highly sparse matrix (see Equations

(5.40) and (5.41)), meaning that most of the entries contain zeros. Therefore, the

above mentioned direct methods would be highly inefficient. Instead, we search for a

solution using iterative schemes.

xl+iter = SOLV ER(A, b, xl, iter) (5.2)

where xl as a solution at iteration cycle l and xl+iter is the solution (approximation)

after iter number of iterations. Later on, in Section (5.6.1), we show that it is not

necessary to construct the complete system matrix A in order to solve the system using

the iterative methods. This is highly beneficial in the case of sparse matrices where

most of the entries are zeros.

In what follows, we introduce three different kinds of iterative solvers, namely Ja-

cobi, Gauss-Seidel (GS) and Alternating Line-Relaxation (ALR). The first two are ele-

ment wise solvers, while the last is a block wise solver. What comes to the convergence

speed, ALR is the fastest, GS is the second and Jacobi method is the slowest. However,

depending on the system architecture, where the system will be implemented, ALR or

GS might not necessary be the fastest options run-time wise. Data dependency , to-

gether with the system architecture, define what would be the most convenient option.

An interested reader is pointed to [73] for more information on the subject.

5.3.1 Jacobi

Ax = b (5.3)

where the matrix A and the vectors x and b are as follows:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 , x =


x1

x2
...
xn

 , b =


b1
b2
...
bn

 (5.4)

The matrix A can be decomposed into D and R matrices containing the diagonal

and the residual elements, as given in (5.5).
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D =


a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...
0 0 . . . ann

 , R =


0 a12 . . . a1n

a21 0 . . . a2n
...

...
. . .

...
an1 an2 . . . 0

 , (5.5)

Using A = (D +R), we may rewrite the original system of equations as follows:

Dx = b−Rx (5.6)

In a matrix/vector format, Jacobi iteration can be written as follows:

xl+1 = D−1(b−Rxl) (5.7)

SinceD is diagonal, its inverse is trivial to calculate. Entry-wise new approximations

are obtained as given in (5.8).

xl+1
i =

1

aii

(
bi −

∑
j 6=i

aijx
l
j

)
(5.8)

As it can be observed from (5.8), ‘old’ solutions (i.e. xl) are used when approx-

imating new solutions xl+1. Due to this, the Jacobi method converges more slowly

than the Gauss-Seidel method (that will be explained next). However, since there is no

dependency of processing order between xl and xl+1, in certain parallel architectures,

such as GPUs, parallel implementations of Jacobi method can be more efficient than

corresponding Gauss-Seidel implementations.

5.3.2 Gauss-Seidel

Gauss-Seidel is an iterative method for solving a linear system of equations, which

convergence is guaranteed only if the ‘system’ matrix is either diagonally dominant, or

symmetric and positive definite. Equation (5.9) describes the linear system of equations

in matrix/vector format.

Ax = b (5.9)

where the matrix A and the vectors x and b are as follows:
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A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 , x =


x1

x2
...
xn

 , b =


b1
b2
...
bn

 (5.10)

By decomposing A into D − L − U , where D is a diagonal matrix, L is a strictly

lower triangular matrix and U is a strictly upper triangular matrix, we can re-order

the system as given in Equation (5.11).

Dx = b+ (L+ U)x (5.11)

Since D is diagonal, its inverse is trivial to calculate. In matrix/vector format a

Gauss-Seidel iteration can be defined as in (5.12).

xl+1 = D−1b+D−1(L+ U)xl (5.12)

Entry-wise new approximations are obtained as given in (5.13).

xl+1
i =

1

aii

(
bi −

∑
j>i

aijx
l
j︸ ︷︷ ︸

old solutions

−
∑
j<i

aijx
l+1
j︸ ︷︷ ︸

new solutions

)
(5.13)

From Equation (5.13) it can be noted that new solutions are used as they become

available. Later on, when deriving Gauss-Seidel type solvers for the different equations,

the fact that new- and old solutions are used, further complicates the notation, unfor-

tunately. x0 (guess on the first iteration) can be any vector, but the closer the initial

guess is of the true solution, the faster the method will converge.

5.3.3 TDMA/ALR

TDMA. Tridiagonal matrix algorithm (TDMA) is a simplified form of Gaussian elimi-

nation, that can be used for solving tridiagonal systems of equations. In matrix/vector

format this kind of a system can be written as in (5.14)
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b1 c1 0 0 0
a2 b2 c2 0 0

0 a3 b3
. . . 0

0 0
. . .

. . . cn−1

0 0 0 an bn


︸ ︷︷ ︸

A


x1

x2

x3
...
xn


︸ ︷︷ ︸
x

=


d1

d2

d3
...
dn


︸ ︷︷ ︸
d

(5.14)

The algorithm consists of two steps: the first (forward) sweep eliminates the ai,

while the second (backward) sweep calculates the solution. Equation (5.15) introduces

the forward sweep, while Equation (5.16) shows the backward sweep.

c′i =


c1

b1
, i = 1

ci
bi − c′i−1ai

, i = 2, 3, ..., n− 1

d′i =


d1

b1
, i = 1

di − d′i−1ai

bi − c′i−1ai
, i = 2, 3, ..., n

(5.15)

xn = d′n

xi = d′i − c′ixi+1 , i = n− 1, n− 2, ..., 1
(5.16)

Physical interpretation of the terms ai and bi is that they are diffusion weights, i.e.

how much the neighbouring solutions are taken into account.

Alternating Line Relaxation. As can be understood from the tridiagonal system

matrix A, this kind of a solver is used solving 1D problems, such as 1D Poisson equation.

The system matrix A, in the 2D problems that we are interested in is, in fact, block

tridigonal (see Equation (5.41)). In order to solve problems of higher dimensionality,

we use a scheme called Alternating Line Relaxation (ALR) that is based on TDMA.

In this kind of a solver TDMA is applied along each of the dimensions, by changing

pixel ordering, while maintaining A tridiagonal (those elements that are not on the

diagonals next to the main diagonal are transferred to d). In 2D case, using column

wise ordering, we solve for new estimations by traversing the system column by column,

while using row wise ordering ,we solve for new estimations by traversing the system

row by row, as shown in Figure 5.4. For example, in the case of column wise ordering,
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we first apply forward- and backward sweeps on the first column and, therefore, obtain

a new approximation for this column. Then we do the same for the rest of the columns.

The basic idea behind ALR is similar to that of an Additive Operator Splitting (AOS)

scheme [79].

1 2 3 4 5 6 7 8 9

? ? ? ? ? ? ? ? ?

(a)

1

2

3

4

5

6

7

8

9 -

-

-

-

-

-

-

-

-

(b)

Figure 5.4: Column- and row-wise pixel ordering. In ALR we apply, for example, TDMA

first along all the columns and then along all the rows. (a) Column wise ordering; (b) row

wise ordering. In both the cases we show the processing order.

jeh
hx hai

ci

? ? ? ? ? ? ? ? ?

(a)

je hh x
hai ci

-

-

-

-

-

-

-

-

-

(b)

Figure 5.5: Pixel positions ai and ci of bi, depending on the pixel ordering: (a) column

wise ordering; (b) row wise ordering. Painted and unpainted circles denote the pixel

neighbours, in Gauss-Seidel fashion, that are taken into account when calculating the

solution: painted circle denotes a neighbour that contains a solution from the current

iteration step, l+1, while unpainted circle denotes a neighbour that contains solution from

the last iteration step l.

The effect of changing pixel ordering is that the positions ai and ci (bi being the
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‘central’ pixel) point to different pixels in the image, as seen in Figure 5.5. Algorithm

2 gives a basic description of an SOR-GS-ALR scheme (ω is a relaxation parameter

like in Successive Over Relaxation (SOR) ). While the TDMA gives an exact solution

for 1D problems with tridiagonal matrix A, ALR is an iterative scheme. To be more

exact, as described here, it can be understood to be a block wise Gauss-Seidel method.

Output from the algorithm is an approximation of x after iter iterations.

Algorithm 2 Calculate xl+iter = SOR-GS-ALR(A, d, xl, ω, iter)

xl+iter = xl

for i→ iter do

xtemp = TDMAcol(A, d, x
l)

xtemp = TDMArow(A, d, xtemp)

xl+iter = (1− ω)xl+iter + ωxtemp

end for

5.3.4 SOR

Successive Over-Relaxation (SOR) [83] is a method for improving the convergence

speed. It can be combined with different kind of solvers, such as Jacobi- or Gauss-

Seidel methods. A SOR iteration cycle can be written as:

xl+1 = (1− ω)xl + ωSOLV ER(A, b, xl, iter), (5.17)

where ω is the relaxation factor. The choice of ω depends on the properties of the

system matrix A, and finding an optimal or quasi optimal factor might not be simple.

5.3.5 Multigrid

In this section, without going too much into details, we will briefly explain the multigrid.

Iterative solvers, such as the ones introduced previously, are efficient at ‘smoothening’

high frequency components of the error (here error = b − Ax). In other words, error

of the approximation becomes smooth, but not necessarily small. On the other hand,

a smooth error term can be approximated on a more coarse grid. This has two very

clear benefits, (1) any operation on a coarse grid is computationally less expensive

due to fewer grid points and (2) low frequency error components in fine grid become

high frequency components on a coarse grid [73]. As it can be understood, these have
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positive effect on the computational efficiency and the convergence speed. In our case,

there exists an additional reason, especially in the late linearisation case, why we want

to use multigrid: in order to avoid physically irrelevant minimizers that are due to the

fact, that the energy functional can be non-convex.

Basic multigrid. Let’s suppose that we want to solve a linear system of equations,

defined as follows:

Au = b (5.18)

Now, let’s suppose that we have an approximation ul of the real value of u. Now

we can calculate a defect:

dl = b−Aul (5.19)

By using the defect defined in (5.19), Equation (5.18) can be written as follows

(since Avl = b−Aul):

Avl = dl (5.20)

By solving for the correction vl term we obtain u = ul+vl. However, we can use an

approximation Â of A, so that the original defect equation is replaced with Equation

(5.21)

Âvl = dl (5.21)

Now, if this equation is easier/faster to solve than the original equation, then we

have effectively come up with a more effective solver, and this is the basic idea behind

the multigrid. Here, Â would be the system matrix on a coarse grid. Naturally, the

defect dl needs to be transferred to the same grid. In what follows, we will introduce

the needed transfer operators. Multigrid methods are based on two principles, namely

those of the smoothing principle and the coarse grid principle [73]:

Smoothing principle. Many traditional iterative solvers, such as Gauss-Seidel, have

strong smoothing effect on the error. Instead of making the error small, it first

efficiently makes the error smooth.
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Coarse grid principle. A smooth error term can be approximated well on a coarse

grid. At the same time, any procedure on a coarse action takes less time due to

reduced number of operations.

Related to the coarse grid principle, we need means to transfer defects/corrections

between different grid sizes. With this in mind, we introduce two operators called the

restriction- and the prolongation (interpolation) operators, that are used to transfer

defects/corrections from the coarse-to-fine grid and vice-versa:

dlH = OHh d
l
h , where OHh is a restriction operator

vlh = OhHv
l
H , where OhH is a prolongation operator

(5.22)

where the sub-index {h, H} defines the grid where the defect/correction term is defined.

An example of a fine- and a coarse grid are given in Figure 5.6.

-
OHh

�
OhH

Ωh ΩH

Figure 5.6: A fine (Ωh) and a coarse (ΩH) grid, in corresponding order.

Now that we have described all the necessary parts, and we suppose that we have

an iterative solver (for example Gauss-Seidel as explained in Section 5.3.2), such that

ul = SOLV ER(A, b, u0, l), where u0 is an initial approximation and l is the number

of iteration cycles, we move on to describing a two-grid cycle as follows:

Two-grid Cycle. Description of a two-grid cycle

1. Presmoothing

- Start from an initial approximation u0
h

- Run solver for l iterations to obtain ulh = SOLV ER(Ah, bh, u
0
h, l)
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2. Coarse Grid Correction (CGC)

- Compute defect: dlh = bh −Ahulh
- Restrict the defect: dlH = OHh d

l
h

- Solve on ΩH : vlH = SOLV ER(AH , d
l
H , u

0
H , l)

- Interpolate the correction: vlh = OhHv
l
H

- Corrected approximation ulh = ulh + vlh

3. Postsmoothing

- Run solver for l iterations ul+1
h = SOLV ER(Ah, bh, u

l
h, l)

The basic two-grid solver can be extended to run over several different grid sizes in

varying manner. Figure 5.7 depicts different multigrid cycles, namely V- and W-cycles

and a unidirectional Full MultiGrid (FMG) cycles.

1

2

3

4

V cycle W cycle Unidirectional

Figure 5.7: Multigrid V- and W-cycles and a unidirectional Full Multigrid (FMG) cycle.

The unidirectional cycle is also known as coarse-to-fine scheme.

Multigrid schemes, where a solution from a coarse scale is used to initialise a finer

scale, are also known as nested iteration or Full MultiGrid (FMG) schemes. Figure 5.7

depicts a unidirectional FMG cycle. Unidirectional means that the scheme advances

towards finer scales without re-visiting the coarser scales again. The algorithms that

we introduce in sections 5.6.1 and 5.6.2 for optical-flow are based on a unidirectional

scheme. On the other hand, in the case of segmentation, see Section 5.7, we either

perform a V- or a W-cycle. However, in our case we do not transfer the defect. Even

in this case the convergence of the method benefits from using coarser discretisation of

the coarser scales.

Our schemes are based on image pyramid, where the scale refers to a particular scale

(size) of image in the image pyramid, as seen in Figure 5.8. In a multigrid framework,
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solving the optical-flow on a coarser (downscaled) image is equivalent to solving the

problem using an approximation Âx = b that is easier/faster to solve than the original

problem Ax = b, as was explained earlier. Now, on the other hand, this kind of a

coarse-to-fine processing is inherently connected with the linear scale-space framework

(since we use linear filters to construct the pyramid). When we expect the displacement

to be small, starting from an initial guess of u0 = v0 = 0 is fine. However, when the

displacements are expected to be greater (e.g. in the case of the late linearization

model), this initial guess might not be such a good one and we might get trapped

in a local minima. By using a coarse-to-fine processing we initialise each finer scale

with a solution from the previous coarse scale [3][2]. This way not only do we avoid

getting trapped in a physically irrelevant minima, but also computational efficiency is

greatly enhanced. A reader interested in FMG and/or other efficiency related issues in

variational optical-flow calculation is pointed to [17][19][18].

(a) (b) (c) (d)

Figure 5.8: Image pyramid of Tsukuba with a scale factor of 0.5: (a) scale 1; (b) scale 2;

(c) scale 3; (d) scale 4.

5.4 Equations to be Solved

In order to make this section easier to follow, we re-introduce the Euler-Lagrange equa-

tions of the previously described models, therefore, hopefully making it unnecessary to

jump back and forth. Specifically, we show how both the early- and the late-linearisation

models for optical-flow, and the two-region level-set model can be solved. Since the
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stereo-disparity case is a simplified version of the optical-flow (i.e. displacements de-

pending on one variable), we feel that it is sufficient to show how the optical-flow model

can be solved, and an interested reader can work out the rest.

Optical-flow, early linearisation.

Equations (5.23) and (5.24) give the energy functional and the corresponding Euler-

Lagrange equations for the early-linearisation version of the optical-flow (i.e. Horn&Schunck

model [33]).

E(u, v) =

∫
Ω

K∑
k=1


(∂Ik
∂t
− ∂Ik
∂x

u− ∂Ik
∂y

v
)2

︸ ︷︷ ︸
data

+α
(
|∇u|2 + |∇v|2

)
︸ ︷︷ ︸

smoothness

dx (5.23)

where the sub-index k refers to the channels (e.g. R, G or B) of a vector valued image

Ik, and α is the weight of the smoothness term.

K∑
k=1

(
∂Ik
∂t
− ∂Ik
∂x

u− ∂Ik
∂y

v

)
∂Ik
∂x

+KαDIV (∇u) =0

K∑
k=1

(
∂Ik
∂t
− ∂Ik
∂x

u− ∂Ik
∂y

v

)
∂Ik
∂y

+KαDIV (∇v) =0

(5.24)

with reflecting boundary conditions ∂nu = 0 and ∂nv = 0, where n denotes the normal

to the image boundary ∂Ωh. For more details, see Section 3.5.1.

Optical-flow, late linearisation.

Equations (5.25) and (5.26) give the energy functional and the corresponding Euler-

Lagrange equations for the late-linearisation version of the optical-flow.

E(u, v) =

∫
Ω

K∑
k=1

ΨD

((
Ik,1 − Iwk,0

)2)︸ ︷︷ ︸
data

+αΨR

(
|∇u|2 + |∇v|2

)︸ ︷︷ ︸
smoothness

dx (5.25)

where the sub-index k refers to the channels (e.g. R, G or B) of a vector valued image Ik,

α is the weight of the smoothness term, Ik,t = I(x, y, k, t) and Iwk,t = I(x+u, y+ v, k, t)
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refers to a ‘warped’ image. Typical warping transformations are bilinear- or bicubic

interpolation.

(Ek)D = (Ik,1 − Iwk,0)2 = (Ik,1(x, y)− Ik,0(x+ u, y + v))2

ER = |∇u|2 + |∇v|2

K∑
k=1

Ψ′D

(
(Ek)D

)(
Ik,1 − Iwk,0

)∂Iwk,0
∂x

+KαDIV
(

Ψ
′
R

(
ER
)
∇u
)

= 0

K∑
k=1

Ψ′D

(
(Ek)D

)(
Ik,1 − Iwk,0

)∂Iwk,0
∂y

+KαDIV
(

Ψ
′
R

(
ER
)
∇v
)

= 0

(5.26)

Again, we use reflecting boundary conditions ∂nu = 0 and ∂nv = 0, where n denotes

the normal to the image boundary ∂Ωh. Instead of writing Ik,0(x+u, y+v), we typically

use Iwk,0 when referring to the ‘warped’ image. For more details, see Section 3.5.2.

Segmentation, 2-segment.

Equations (5.27) and (5.28) give the energy functional and the corresponding Euler-

Lagrange equations for the level-set based two-region segmentation model [58]. For

more details, see Section 4.4.4.5.

E(Φ, α1) =µ

∫
δ(Φ)|∇Φ|dx

−
∫
H(Φ) log pr (d|α1) dx

−
∫
H(1− Φ) log pr (d|α1) dx

(5.27)

where the first term is the the length of the boundary curve, and the second and the

third terms are the cost of ‘coding’ the disparity values according to p(d|αi) for each

region.

∂Φ

∂t
= H ′ε(Φ)

(
log pr (d|α1)− log pr (d|α1) +DIV

(
∇Φ

|∇Φ|

))
(5.28)

with reflecting boundary conditions ∂nΦ = 0 where n denotes the normal to the image

boundary ∂Ωh.
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From equations 5.24 and 5.26 it can be observed that the Euler-Lagrange equations

for the optical-flow are of the space-type, i.e. we search directly for the steady-state.

On the other hand, from Equation 5.28 it can be seen that the level-set formulation

is of time-type. From the above formulations, it is clear that we need to approximate

both first order derivatives and the divergence, DIV , operator in order to solve the

equations.

5.5 Finite Difference Discretisation

Equations 5.24, 5.26, and 5.28 are continuous equations, and in order to be solve these,

they need to be discretised first. To this end, we use finite-differences for approximating

the derivatives. In other words, the continuous PDEs are replaced by their respective

finite-difference discretised versions and we seek solutions to these. If the discretisation

has been done ‘carefully’, then the solution to the discretised version approximates close

enough a solution to the continuous version. On the other hand, incorrect discretisation

can render the results completely useless.

5.5.1 Finite Difference Operators

Before going any further, we remind the reader of the ‘standard’ finite difference oper-

ators [49][51], which are given below. We assume a uniform grid with ∆x = ∆y = 1.

1. First order forward difference is given by:

D+
x f(x) = f+

x (x) =
f(x+ ∆x)− f(x)

∆x
= f(x+ 1)− f(x) (5.29)

2. First order backward difference is given by:

D−x f(x) = f−x (x) =
f(x)− f(x−∆x)

∆x
= f(x)− f(x− 1) (5.30)

3. First order central difference is given by:

D0
xf(x) = f0

x(x) =
f(x+ 0.5∆x)− f(x− 0.5∆x)

∆x
= f(x+0.5)−f(x−0.5) (5.31)

4. Second order central difference is given by:

DD0
xf(x) = f0

xx(x) =
f(x+ ∆x)− 2f(x) + f(x−∆x)

∆x2
= f(x+1)−2f(x)+f(x−1)

(5.32)
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where in fx the sub-index (here x) indicates with respect to which variable the function

has been differentiated.

Another way of describing the difference operators, is to think of them as being

correlation kernels or derivative filters [66]. Correlation is an operation close to convo-

lution, with the difference that in correlation the weight matrix (i.e. kernel) values are

not reversed: the output of the operation is a weighted sum of the neighbourhood.

As it was already mentioned, choice of the difference operators has profound effect

on the solution of the discretised PDEs and an inappropriate choice of these can render

the results useless. In the case of the optical-flow and the stereo disparity, we have used

Simoncelli filters [66][24] to approximate both first-, and second order derivatives. In

[65] and [66] Simoncelli shows that calculating derivatives of multi-dimensional signals

using traditional forward-, backward- and central differences are often inaccurate, and

proposes a bank of filters that produce more accurate results.

5.5.2 Discretization of DIV Operator

Now that we know how to approximate first and second order derivatives, we need

a way to discretise the divergence, DIV , operator. This operator appears at each of

the equations to be solved, i.e (5.24), (5.26), and (5.28). Conceptually we have two

different cases, as given in (5.33).

DIV
(
∇f
)

DIV
(
g(x, y, t)∇f

) (5.33)

Here physical interpretation of the divergence is, in a sense, that of diffusion [53].

In the case of DIV (∇f), diffusivity is the same in each direction, whereas in the case

of DIV (g(x, y, t)∇f), diffusivity is defined (or controlled) by the function g and is not

necessarily the same in all the directions. Mathematically, for a differentiable vector

function F = Ui+ V j, divergence operator is defined as in Equation (5.34).

DIV
(
F
)

=
∂U

∂x
+
∂V

∂y
(5.34)

In other words, divergence is a sum of partial derivatives of a differentiable vector

function. Therefore, in our case, we have the following.
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DIV
(
∇f
)

=
∂

∂x

(
fx
)

+
∂

∂y

(
fy
)

=
∂2f

∂x2
+
∂2f

∂y2
= ∆f

DIV
(
g(x, y, t)∇f

)
=

∂

∂x

(
g(x, y, t)fx

)
+

∂

∂y

(
g(x, y, t)fy

)
= ∇g �∇f + g∆f

(5.35)

Now, by simply using the finite differences introduced above, one way of discretis-

ing the divergence terms in (5.35) is using the central difference. First we apply the

central difference and then the forward- and the backward differences for approximat-

ing the corresponding derivatives. The ‘trick’ here is to realise that (fx)(x + 0.5, y) is

actually the forward difference D+
x f(x), while (fx)(x − 0.5, y) is the backward differ-

ence D−x f(x). Equations (5.36), and (5.37) show the discretisations for DIV (∇f), and

DIV (g(x, y, t)∇f), respectively. This is the same discretisation as in the famous paper

by Perona and Malik [53].

∂

∂x

(
fx

)
(x, y) +

∂

∂y

(
fy

)
(x, y) =

(
fx

)
(x+ 0.5, y)−

(
fx

)
(x− 0.5, y)

+
(
fy

)
(x, y + 0.5)−

(
fy

)
(x, y − 0.5)

=f(x+ 1, y)− f(x, y) + f(x− 1, y)− f(x, y)

+ f(x, y + 1)− f(x, y) + f(x, y − 1)− f(x, y)

=∇Ef +∇W f +∇Sf +∇Nf

(5.36)

where ∇{W,N,E,S}f denotes the difference in the directions given by W,N,E, S. As it

was already mentioned, first we apply first order central difference on fx(x, y), and thus

obtain D0
xfx(x, y) =

(
fx

)
(x+ 0.5, y)−

(
fy

)
(x− 0.5, y). The rest should be clear.

∂

∂x

(
gfx

)
(x, y) +

∂

∂y

(
gfy

)
(x, y) =

(
gfx

)
(x+ 0.5, y)−

(
gfx

)
(x− 0.5, y)

+
(
gfy

)
(x, y + 0.5)−

(
gfy

)
(x, y − 0.5)

=g(x+ 0.5, y)
(
f(x+ 1, y)− f(x, y)

)
+ g(x− 0.5, y)

(
f(x− 1, y)− f(x, y)

)
+ g(x, y + 0.5)

(
f(x, y + 1)− f(x, y)

)
+ g(x, y − 0.5)

(
f(x, y − 1)− f(x, y)

)
=gE∇Ef + gW∇W f + gS∇Sf + gN∇Nf

(5.37)
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where g{W,N,E,S} denotes the diffusivity in the directions given by W,N,E, S. As can

be observed from Equation (5.37), we need to approximate the diffusivity between the

pixels. A simple ‘2-point’ approximation would be the average between neighbouring

pixels, for example g(x + 0.5, y) = [g(x + 1, y) + g(x, y)]/2. In general, a more precise

approximation leading to better results is a ‘6-point’ approximation of Brox [13].

As can be observed from equations 5.36 and 5.37, the divergence operator introduces

a ‘connectivity’ between the pixels. This simply means, as will be shown later on, that

a solution at any position (i, j) will depend on the solution at neighbouring positions.

Because of this kind of a dependency of the solution between the adjacent positions,

variational correspondence methods are said to be ‘global’. This kind of connectivity is

problematic at image borders, where we do not have neighbours anymore. In order to

deal with this problem we use a scheme called eliminated boundary conditions, shown

in Figure 5.9.

ejh hh
h

(a)

ejh h

(b)

Figure 5.9: Double circle denotes the position of interest while simple circles are the

neighbouring positions W,N,E,S; (b) shows the eliminated boundary conditions.
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5.6 Solving Optical-Flow

In this section we show how the equations for optical-flow can be solved. We use indices

i, j for marking pixel positions in the grid, while l and m indicate the iteration cycle in

question. We start with an initial solution of u0 = v0 = 0 and then iteratively search

for a new solution at step l + 1.

5.6.1 Early Linearisation

In the early linearisation case we search for a solution at l + 1 to the coupled PDEs

given in Equation (5.38). For the coupled terms we use the last known solution (e.g.

vl when solving ul+1).

K∑
k=1

(
∂Ik
∂t
− ∂Ik
∂x

ul+1 − ∂Ik
∂y

vl
)
∂Ik
∂x

+Kα∆ul+1 =0

K∑
k=1

(
∂Ik
∂t
− ∂Ik
∂x

ul − ∂Ik
∂y

vl+1

)
∂Ik
∂y

+Kα∆vl+1 =0

(5.38)

We plug-in the discretisation for the divergence term, use i, j to mark the pixel

positions, and obtain the following:

K∑
k=1

(
∂Ik
∂t

∂Ik
∂x

)
i,j

−
K∑
k=1

(
∂Ik
∂x

)2

i,j

ul+1
i,j −

K∑
k=1

(
∂Ik
∂y

∂Ik
∂x

)
i,j

vli,j

+Kα
(
ul+1
i+1,j − 2ul+1

i,j + ul+1
i−1,j + ul+1

i,j+1 − 2ul+1
i,j + ul+1

i,j−1

)
= 0

K∑
k=1

(
∂Ik
∂t

∂Ik
∂y

)
i,j

−
K∑
k=1

(
∂Ik
∂x

∂Ik
∂y

)
i,j

uli,j −
K∑
k=1

(
∂Ik
∂y

)2

i,j

vl+1
i,j

+Kα
(
vl+1
i+1,j − 2vl+1

i,j + vl+1
i−1,j + vl+1

i,j+1 − 2vl+1
i,j + vl+1

i,j−1

)
= 0

(5.39)

For each pixel position i, j we have equations similar to (5.39) that need to be

solved.

Matrix format. While Equation (5.39) shows the discretised Euler-Lagrange equa-

tions for a pixel position i, j, we can write the system equations in matrix/vector format,

covering the whole image, as given in (5.40). In Section 5.2 we mentioned that another
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useful way is to think of the discretised image as a vector I ∈ RN . Now, the compo-

nents of the vector are II where I ∈ {1, . . . , N} and N is the number of pixels in image.

We use I, J also to mark the positions in the system matrices A{1,2} given in (5.40).

This is done in order to convey clearly the idea that the domains of the discretised

images and the system matrices are different. If the domain of the discretised image

is Ωh : [1,m] × [1, n] (discrete image with m columns and n rows) the domain of the

system matrices is A{1,2} : [1,m]2 × [1, n]2

{
A1u

l+1 = b1

A2v
l+1 = b2

A1 = [a1I,J], A2 = [a2I,J]

a1I,J :=


−Kα [J ∈ N(I)],
K∑
k=1

(
∂Ik
∂x

)2

I

+
∑

J∈N−(I)
J∈N+(I)

Kα (J = I),

0 (else)

a2I,J :=


−Kα [J ∈ N(I)],
K∑
k=1

(
∂Ik
∂y

)2

I

+
∑

J∈N−(I)
J∈N+(I)

Kα (J = I),

0 (else)

b1 =

[
K∑
k=1

(
∂Ik
∂t

∂Ik
∂x

)
I

−
K∑
k=1

(
∂Ik
∂y

∂Ik
∂x

)
I

vlI

]T

b2 =

[
K∑
k=1

(
∂Ik
∂t

∂Ik
∂y

)
I

−
K∑
k=1

(
∂Ik
∂x

∂Ik
∂y

)
I

ulI

]T

(5.40)

Equation (5.41) gives an example of how the system matrix A1 would look like.

Here C and N are block matrices that refer to the ‘central’ and the ‘neighbouring’

matrices, correspondingly.
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A1 =

 C N 0
N C N
0 N C



C =



K∑
k=1

(
∂Ik
∂x

)2

I

+
∑

J∈N−(I)
J∈N+(I)

Kα −Kα 0

−Kα
K∑
k=1

(
∂Ik
∂x

)2

I

+
∑

J∈N−(I)
J∈N+(I)

Kα −Kα

0 −Kα
K∑
k=1

(
∂Ik
∂x

)2

I

+
∑

J∈N−(I)
J∈N+(I)

Kα


N =

 −Kα 0 0
0 −Kα 0
0 0 −Kα


(5.41)

From (5.40) we can see how the the matrix A1 looks like for a 3× 3 size image: it is

a block tridiagonal square matrix, of size 9× 9, that has non-zero components only on

the main diagonal and on the diagonals adjacent to this. Therefore, unless the image is

very small, it is infeasible to solve the system by inverting A{1,2} directly. Instead, we

search for a solution using iterative methods, such as those introduced in Section 5.3

(i.e. SOR-GS or SOR-GS-ALR). An algorithmic description of the SOR with a generic

solver for the early linearisation model is given in (5.42). A new approximation is a

weighted combination of the previous and the new solution.

{
ul+1 = (1− ω)ul + ωSOLV ERu(ul, vl, ∂I/∂t, ∂I/∂x, ∂I/∂y)
vl+1 = (1− ω)vl + ωSOLV ERv(u

l, vl, ∂I/∂t, ∂I/∂x, ∂I/∂y)
(5.42)

where SOLV ER{u,v}(u
l,vl, ∂I/∂t, ∂I/∂x, ∂I/∂y) can be any solver for linear system

of equations that calculates a new solution at l+1 for input ul, vl. Subscript u, v defines

which variable is solved. ω is a parameter that defines how much weight is given to the

old solution with respect to the new solution. In the following we re-order Equation

(5.39) so that ul+1
i,j and vl+1

i,j are on the left-hand side, while the rest of the terms are

on the right-hand side:
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ul+1
i,j

( K∑
k=1

(
∂Ik
∂x

)2

i,j

+ 4Kα
)

=
K∑
k=1

(
∂Ik
∂t

∂Ik
∂x

)
i,j

−
K∑
k=1

(
∂Ik
∂y

∂Ik
∂x

)
i,j

vli,j

+Kαul+1
i−1,j +Kαul+1

i+1,j +Kαul+1
i,j−1 +Kαul+1

i+1,j

vl+1
i,j

( K∑
k=1

(
∂Ik
∂y

)2

i,j

+ 4Kα
)

=
K∑
k=1

(
∂Ik
∂t

∂Ik
∂y

)
i,j

−
K∑
k=1

(
∂Ik
∂x

∂Ik
∂y

)
i,j

uli,j

+Kαvl+1
i−1,j +Kαvl+1

i+1,j +Kαvl+1
i,j−1 +Kαvl+1

i+1,j

(5.43)

This is the ‘basic’ form from which different solvers can be constructed easily. In

the following we show how the equations given in (5.43) can be solved.

5.6.1.1 Coarse-To-Fine Algorithm

Algorithm 3 gives a full description of a coarse-to-fine algorithm for the early linearisa-

tion case. Instead of iterating on each scale until a steady-state is reached, we run the

solver a ‘reasonable’ number of times before changing the scale. In Table 5.1 we show

typical values that can be used with the algorithm.
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Algorithm 3 Coarse-to-Fine algorithm for early linearization. Inputs are I0 and I1

(i.e. images at time t = 0 and t = 1), number of scales scl and scaling factor sclFactor.

INPUT : I0, I1, scl, sclFactor

OUTPUT : (u, v)

//Set u and v to zero

u = 0, v = 0;

//Create image pyramid

[Iscl0{}, Iscl1{}] = pyramid(I0, I1, scl, sclFactor);

//This is the coarse-to-fine loop

while s = scl : −1 : 1 do

I0 = Iscl0{s}, I1 = Iscl1{s};

Approximate derivatives for I0 and I1:
∂Ik
∂t

,
∂Ik,0
∂x

,
∂Ik,0
∂y

//Solve for new u and v

[u, v] = SOLV ER(u, v, nLoops,
∂Ik
∂t

,
∂Ik,0
∂x

,
∂Ik,0
∂y

);

//Interpolate (prolongate) solution

if s− 1 > 0 then

[u, v] = prolongate(u, v, sclFactor);

end if

end while

Table 5.1: Typical parameters: coarse-to-fine algorithm for early linearisation (m and n

refer to number of columns and rows).

Common

scl downscale until image size m < 20 or n < 20

sclFactor 0.75

ω 1.9

Solver iterations

SOR-GS 50

SOR-GS-ALR 20

5.6.1.2 SOR-Jacobi

From Equation (5.44) we can calculate a new solution at step l + 1 for position i, j.
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ul+1
I =(1− ω)ulI

+ ω

K∑
k=1

(
∂Ik
∂t

∂Ik
∂x

)
I

−
K∑
k=1

(
∂Ik
∂y

∂Ik
∂x

)
I

vlI +Kα

( ∑
J∈N−(I)

ulJ +
∑

J∈N+(I)

ulJ

)
K∑
k=1

(
∂Ik
∂x

)2

I

+ α
∑

J∈N+(I)
J∈N−(I)

K

vl+1
I =(1− ω)vlI

+ ω

K∑
k=1

(
∂Ik
∂t

∂Ik
∂y

)
I

−
K∑
k=1

(
∂Ik
∂x

∂Ik
∂y

)
I

ulI +Kα

( ∑
J∈N−(I)

vlJ +
∑

J∈N+(I)

vlJ

)
K∑
k=1

(
∂Ik
∂y

)2

I

+ α
∑

J∈N+(I)
J∈N−(I)

K

(5.44)

5.6.1.3 SOR-GS

From Equation (5.45) we can calculate a new solution at step l + 1 for position i, j.

Gauss-Seidel method advances so, that new solutions are taken into account as soon

they are available. Depending on what order the pixels are traversed (row- or column-

wise), this affects which neighbourhood positions have a new solution (i.e. at l + 1)

and which have a solution from the last iteration cycle (i.e. at l) in the last term on

the right-hand side.
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ul+1
I =(1− ω)ulI

+ ω

K∑
k=1

(
∂Ik
∂t

∂Ik
∂x

)
I

−
K∑
k=1

(
∂Ik
∂y

∂Ik
∂x

)
I

vlI +Kα

( ∑
J∈N−(I)

ul+1
J +

∑
J∈N+(I)

ulJ

)
K∑
k=1

(
∂Ik
∂x

)2

I

+ α
∑

J∈N+(I)
J∈N−(I)

K

vl+1
I =(1− ω)vlI

+ ω

K∑
k=1

(
∂Ik
∂t

∂Ik
∂y

)
I

−
K∑
k=1

(
∂Ik
∂x

∂Ik
∂y

)
I

ulI +Kα

( ∑
J∈N−(I)

vl+1
J +

∑
J∈N+(I)

vlJ

)
K∑
k=1

(
∂Ik
∂y

)2

I

+ α
∑

J∈N+(I)
J∈N−(I)

K

(5.45)

5.6.1.4 GS-ALR

Here we show how the GS-ALR solver is constructed for the early linearisation case.

As it was already mentioned in Section 5.3.3, the algorithm consists of two sweeps,

namely the forward- and the backward-sweeps, as given in equations (5.46) and (5.47).

The only thing that needs to be explained is what the aI, bI, cI and dI are.

c′I =


c1

b1
, I = 1

cI
bI − c′I−1aI

, I = 2, 3, ..., n− 1

d′I =


d1

b1
, I = 1

dI − d′I−1aI

bI − c′I−1aI
, I = 2, 3, ..., n

(5.46)

xn = d′n

xI = d′I − c′IxI+1 , I = n− 1, n− 2, ..., 1
(5.47)

Because in this case the diffusion weights are the same throughout the image, it

is enough to show how the algorithm advances in column wise ordering. The only

difference in row wise ordering is the order of traversing the image. Equation (5.48)

defines the elements when solving for u.
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aI =−Kα

bI =

K∑
k=1

(
∂Ik
∂x

)2

I

+ α
∑

J∈N(I)

K

cI =−Kα

dI =

K∑
k=1

(
∂Ik
∂t

∂Ik
∂x

)
I

−
K∑
k=1

(
∂Ik
∂y

∂Ik
∂x

)
I

vlI

+Kα

 ∑
J∈N−(I)

ul+1
J +

∑
J∈N+(I)

ulJ



(5.48)

Equation (5.49) defines the elements when solving for v.

aI =−Kα

bI =

K∑
k=1

(
∂Ik
∂y

)2

I

+ α
∑

J∈N(I)

K

cI =−Kα

dI =
K∑
k=1

(
∂Ik
∂t

∂Ik
∂x

)
I

−
K∑
k=1

(
∂Ik
∂y

∂Ik
∂x

)
I

ulI

+Kα

 ∑
J∈N−(I)

vl+1
J +

∑
J∈N+(I)

vlJ



(5.49)

5.6.1.5 Results

In the following we show some results for the early linearisation Horn&Schunck model

(with homogeneous diffusion term) using test images from Middlebury1. We would like

to remind the reader, that robust error functions can be incorporated also in the early

linearisation model, therefore, improving the results.

1http://vision.middlebury.edu/flow/data/
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(a) Rubberwhale. (b) Ground-truth. (c) Optical-flow.

(d) Urban3. (e) Ground-truth. (f) Optical-flow.

(g) Yosemite. (h) Ground-truth. (i) Optical-flow.

(j) Dumptruck. (k) Optical-flow.

Figure 5.10: Early linearisation results.

5.6.2 Late Linearisation

The late linearisation case with robust error function is basically similar to the early

linearisation with some important differences. Firstly, there are two sources of non-

linearities: the robust error function and the constancy term itself. Secondly, the

energy functional of the model, given in Equation (3.9), might be non-convex [3] due

to the non-linear data term. This means, that the energy functional in question can be
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multi-modal, meaning that several local minima might exist [3][2]. Therefore, unless

we do an exhaustive search in the argument space of the energy functional, we cannot

guarantee finding the global minimum, but might get trapped in a local minimum. In

order to deal with the problem of the local minima, we use a continuation method

similar to the Graduated Non-Convexity (GNC)[12]. We start searching for a possible

solution in a simplified version of the original problem, and use this solution to initialise

the search for a problem that is more alike with the original problem. By iteratively

repeating this process, we hope avoid getting stuck in a local minima and find a relevant

minimiser. On the other hand, we deal with the non-linearities using two fixed point

loops, as is explained in the following. We use sub-indices l and m to mark the iteration

cycles but, unfortunately, this makes the notation somewhat cluttered. However, we

give an algorithmic description of the solver later on.

First fixed point iteration loop. Purpose of the first fixed point iteration is to lin-

earised the constancy assumption. We search for the new solution at l+1 to the coupled

PDEs described by equations (5.50), and (5.51). However, this time the formulation is

semi-implicit : we use the last known solution at l to approximate the partial deriva-

tives
∂

∂x
I
w(l)
k,0 and

∂

∂y
I
w(l)
k,0 . Therefore, this scheme is semi-implicit in the data term and

fully implicit in the smoothness term. What we are actually trying to minimise is the

difference between the Ik,1 and the warped image I
w(l+1)
k,0 . In a sense, this difference

is also the temporal derivative and, therefore, we mark it with
∂

∂t
I l+1
k , thus making it

easier to see the similarity between the late- and the early-linearisation versions.

(
El+1
k

)
D

=
(
Ik,1 − I

w(l+1)
k,0

)2
=

(
Ik,1 − Ik,0

(
x+ ul+1, y + vl+1

))2

El+1
R = |∇ul+1|2 + |∇vl+1|2

∂I l+1
k

∂t
=
(
Ik,1 − I

w(l+1)
k,0

)
=
(
Ik,1(x, y)− Ik,0(x+ ul+1, y + vl+1)

) (5.50)

K∑
k=1

Ψ′D

((
El+1
k

)
D

)(
∂I l+1

k

∂t

)∂Iw(l)
k,0

∂x

+KαDIV

(
Ψ
′
R

(
El+1
R

)
∇ul+1

)
= 0

K∑
k=1

Ψ′D

((
El+1
k

)
D

)(
∂I l+1

k

∂t

)∂Iw(l)
k,0

∂y

+KαDIV

(
Ψ
′
R

(
El+1
R

)
∇vl+1

)
= 0

(5.51)
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We approximate the warped term I
w(l+1)
k,0 using first order Taylor expansion as given

in Equation (5.52)

I
w(l+1)
k,0 = Ik,0(x+ ul+1, y + vl+1) =Ik,0(x+ ul, y + vl)

+
∂Ik,0

(
x+ ul, y + vl

)
∂x

dul

+
∂Ik,0

(
x+ ul, y + vl

)
∂y

dvl

=I
w(l)
k,0 +

∂I
w(l)
k,0

∂x
dul +

∂I
w(l)
k,0

∂y
dvl

(5.52)

where the new solutions are ul+1 = ul + dul and vl+1 = vl + dvl. We plug-in the

linearised version of the warped term in
∂I l+1

k

∂t
, and obtain as follows:

∂I l+1
k

∂t
=
(
Ik,1 − I

w(l)
k,0︸ ︷︷ ︸

∂I lk
∂t

−
∂I

w(l)
k,0

∂x
dul −

∂I
w(l)
k,0

∂y
dvl
)
, (5.53)

where we denote
(
Ik,1 − I

w(l)
k,0

)
with

∂I lk
∂t

since, as previously, this is the temporal

derivative, but also it is the difference that we are trying to minimise. With these in

place, we can define the data- and smoothness terms as follows:

(
Elk

)
D

=

∂I lk
∂t
−
∂I

w(l)
k,0

∂x
dul −

∂I
w(l)
k,0

∂y
dvl

2

ElR = |∇(ul + dul)|2 + |∇(vl + dvl)|2

∂I lk
∂t

=
(
Ik,1 − I

w(l)
k,0

)
.

(5.54)

Euler-Lagrange equations with linearised constancy term are as follows:
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K∑
k=1

Ψ′D

((
Elk

)
D

)(
∂I lk
∂t
−
∂I

w(l)
k,0

∂x
dul −

∂I
w(l)
k,0

∂y
dvl

)
∂I

w(l)
k,0

∂x

+KαDIV

(
Ψ
′
R

(
ElR
)
∇(ul + dul)

)
= 0

K∑
k=1

Ψ′D

((
Elk

)
D

)(
∂I lk
∂t
−
∂I

w(l)
k,0

∂x
dul −

∂I
w(l)
k,0

∂y
dvl

)
∂I

w(l)
k,0

∂y

+KαDIV

(
Ψ
′
R

(
ElR
)
∇(vl + dvl)

)
= 0

(5.55)

As it was already mentioned, a new solution is obtained by solving for du and dv.

For the warped terms we use the last known solution at l: first we warp I
w(l)
k,0 (using the

known solution l) and then approximate the derivatives. By looking at Equation 5.55,

we can see that the only nonlinear terms that we are left with are the influence/penalty

functions Ψ′D
((
Elk
)
D

)
and Ψ

′
R

(
ElR
)
.

Second fixed point iteration loop. In order to deal with the non-linearities arising

from the robust error functions, we use the fixed point iteration method again. This

time we use the last known solution for du and dv in the influence functions (i.e. dum

and dvm), and search for a new solution at m + 1. This scheme is also called lagged

diffusivity fixed point method. The strategy to deal with the coupling is the same as

in the early-linearisation case: we use the last known solution for the linked terms.

(
El,mk

)
D

=

∂I lk
∂t
−
∂I

w(l)
k,0

∂x
dul,m −

∂I
w(l)
k,0

∂y
dvl,m

2

El,mR = |∇(ul + dul,m)|2 + |∇(vl + dvl,m)|2

∂I lk
∂t

=
(
Ik,1 − I

w(l)
k,0

)
(5.56)
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K∑
k=1

Ψ
′
(

(El,mk )D

)∂I lk
∂t
−
∂I

w(l)
k,0

∂x
dul,m+1

i,j −
∂I

w(l)
k,0

∂y
dvl,mi,j

 ∂I
w(l)
k,0

∂x

+KαDIV
(

Ψ
′(
El,mR

)
∇(uli,j + dul,m+1

i,j )
)

= 0

K∑
k=1

Ψ
′
(

(El,mk )D

)∂I lk
∂t
−
∂I

w(l)
k,0

∂x
dul,mi,j −

∂I
w(l)
k,0

∂y
dvl,m+1
i,j

 ∂I
w(l)
k,0

∂y

+KαDIV
(

Ψ
′(
El,mR

)
∇(vli,j + dvl,m+1

i,j )
)

= 0

(5.57)

We can see that the equations in (5.57) are now linear with respect to the arguments

dul,m+1 and dul,m+1. Now we plug-in the discretisation for the divergence term (here

we use Ψ
′(
El,mR

)
{W,N,E,S} to denote the diffusion weights), as given in Equation (5.37),

and obtain the following:

K∑
k=1

Ψ
′
(

(El,mk )D

)∂I lk
∂t

∂I
w(l)
k,0

∂x
−
(∂Iw(l)

k,0

∂x

)2
dul,m+1

i,j −
∂I

w(l)
k,0

∂y

∂I
w(l)
k,0

∂x
dvl,mi,j


+KαΨ

′(
El,mR

)
N

(
uli−1,j − uli,j + dul,m+1

i−1,j − du
l,m+1
i,j

)
+KαΨ

′(
El,mR

)
S

(
uli+1,j − uli,j + dul,m+1

i+1,j − du
l,m+1
i,j

)
+KαΨ

′(
El,mR

)
W

(
uli,j−1 − uli,j + dul,m+1

i,j−1 − du
l,m+1
i,j

)
+KαΨ

′(
El,mR

)
E

(
uli,j+1 − uli,j + dul,m+1

i,j+1 − du
l,m+1
i,j

)
= 0

K∑
k=1

Ψ
′
(

(El,mk )D

)∂I lk
∂t

∂I
w(l)
k,0

∂y
−
∂I

w(l)
k,0

∂x

∂I
w(l)
k,0

∂y
dul,mi,j −

(∂Iw(l)
k,0

∂y

)2
dvl,m+1
i,j


+KαΨ

′(
El,mR

)
N

(
vli−1,j − vli,j + dvl,m+1

i−1,j − dv
l,m+1
i,j

)
+KαΨ

′(
El,mR

)
S

(
vli+1,j − vli,j + dvl,m+1

i+1,j − dv
l,m+1
i,j

)
+KαΨ

′(
El,mR

)
W

(
vli,j−1 − vli,j + dvl,m+1

i,j−1 − dv
l,m+1
i,j

)
+KαΨ

′(
El,mR

)
E

(
vli,j+1 − vli,j + dvl,m+1

i,j+1 − dv
l,m+1
i,j

)
= 0

(5.58)

Equations in (5.58) are linear with respect to the arguments du and dv, and serve

for the purpose of constructing different kinds of solvers, like was shown previously for

the early linearisation. An algorithmic description of a SOR with a generic solver for
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the late linearisation scheme is given in 5.59. In order to construct an iterative solver,

we need to introduce a new iteration loop that we denote with the index n. The first

two iteration loops are due to the linearisation of the data term (index l) and due to

the non-linearities arising from the influence/penalty terms (index m). The question

how many iteration cycles per loop are needed has not been answered. In theory, for

the lagged diffusivity fixed point method to converge, the solver should be iterated as

long as needed so that the solution (du and dv) would not change anymore, and then

the fixed-point in to the influence/penaliser function would be changed. This scheme

should be repeated until the arguments would converge. However, we prefer to use

a variant called non-exact lagged diffusivity fixed point scheme, where we iterate the

solver a few cycles and then change the fixed point. We have obtained satisfactory

results, while considerably reducing the processing time, with this approach.
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dul,m,n+1 = (1− ω)dul,m,n + ωSOLV ERu

(
ul,m, vl,m, dul,m,n, dvl,m,

∂I lk
∂t

,

∂I
w(l)
k,0

∂x
,

∂I
w(l)
k,0

∂y
,

Ψ
′
(

(El,mk )D

)
,

Ψ
′(
El,mR

)
W
,

Ψ
′(
El,mR

)
N
,

Ψ
′(
El,mR

)
E
,

Ψ
′(
El,mR

)
S

)
;

dvl,m,n+1 = (1− ω)dvl,m,n + ωSOLV ERv

(
ul,m, vl,m, dul,m,n, dvl,m,

∂I lk
∂t

,

∂I
w(l)
k,0

∂x
,

∂I
w(l)
k,0

∂y
,

Ψ
′
(

(El,mk )D

)
,

Ψ
′(
El,mR

)
W
,

Ψ
′(
El,mR

)
N
,

Ψ
′(
El,mR

)
E
,

Ψ
′(
El,mR

)
S

)
;

(5.59)

SOLV ER{u,v}(.) calculates a new solution at n+ 1.

5.6.2.1 Coarse-To-Fine Algorithm

Algorithm 4 gives a full description of a coarse-to-fine algorithm, with warping, for the

late linearisation case. In Table 5.2 we give typical parameters that can be used with

the algorithm.
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Algorithm 4 Coarse-to-Fine algorithm for late linearisation. Inputs are I0 and I1 (i.e.

images at time t = 0 and t = 1), number of scales scl and scaling factor sclFactor.

INPUT : I0, I1, scl, sclFactor

OUTPUT : (u, v)

//Set u and v to zero

u = 0, v = 0;

//Create image pyramid

[Iscl0{} Iscl1{}] = pyramid(I0, I1, scl, sclFactor);

//Coarse-to-fine loop

while s = scl : −1 : 1 do

I0 = Iscl0{s}, I1 = Iscl1{s};
//Warping loop

while fstLoop do

//Warp image as per u and v

Iwk,0 = warp(Ik,0, u, v);

Approximate derivatives for Iw0 and I1:
∂Ik
∂t

= Ik,1 − Iwk,0,
∂Iwk,0
∂x

,
∂Iwk,0
∂y

//Reset du and dv

du = 0, dv = 0

//Fixed-point loop due to the robust error functions

while sndLoop do

//Calculate penalizer function values for data

Ψ
′
(

(Ek)D

)
, where (Ek)D =

(
∂Ik
∂t
−
∂Iwk,0
∂x

du−
∂Iwk,0
∂y

dv

)2

;

//Calculate the diffusion weights[
Ψ
′(
El,mR

)
W

Ψ
′(
El,mR

)
N

Ψ
′(
El,mR

)
E

Ψ
′(
El,mR

)
S

]
= weights(u+ du, v + dv);

//Solve for new du and dv

[du dv] = SOLV ER( u, v, du, dv, nLoops,
∂Ik
∂t

,
∂Iwk,0
∂x

,
∂Iwk,0
∂y

, Ψ
′
(

(Ek)D

)
,

Ψ
′(
El,mR

)
W
, Ψ

′(
El,mR

)
N
,

Ψ
′(
El,mR

)
S
, Ψ

′(
El,mR

)
E

);
end while

//Update u and v

u = u+ du, v = v + dv;

end while

//Interpolate (prolongate) solution

if s− 1 > 0 then

[u v] = prolongate(u, v, sclFactor);

end if

end while
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Table 5.2: Typical parameters: coarse-to-fine algorithm for early linearisation (m and n

refer to number of columns and rows).

Common

scl downscale until image size m < 20 or n < 20

sclFactor 0.75

fstLoop 4

sndLoop 6

ω 1.9

Solver iterations

SOR-GS 50

SOR-GS-ALR 4

5.6.2.2 SOR-Jacobi

Equations (5.60) and (5.61) (constructed from (5.58)) give formulation for a SOR-Jacobi

type solver for late linearisation case (with warping).

dul,m,n+1
I = (1− ω)dul,m,nI + ω

K∑
k=1

Ψ
′
(

(El,mk )D

)
I

∂I lk
∂t

∂I
w(l)
k,0

∂x


I

−

∂Iw(l)
k,0

∂y

∂I
w(l)
k,0

∂x


I

dvl,m,nI


K∑
k=1

Ψ′
(

(El,mk )D

)
I

∂Iw(l)
k,0

∂x

2

I

+Kα
∑

J∈N−(I)
J∈N+(I)

Ψ′
(
El,mR

)
I∼J

+ ω

Kα

( ∑
J∈N−(I)

Ψ
′(
El,mR

)
I∼J

(
ulJ − ulI + dul,m,nJ

))
K∑
k=1

Ψ′
(

(El,mk )D

)
I

∂Iw(l)
k,0

∂x

2

I

+Kα
∑

J∈N−(I)
J∈N+(I)

Ψ′
(
El,mR

)
I∼J

+ ω

Kα

( ∑
J∈N+(I)

Ψ
′(
El,mR

)
I∼J

(
ulJ − ulI + dul,m,nJ

))
K∑
k=1

Ψ′
(

(El,mk )D

)
I

∂Iw(l)
k,0

∂x

2

I

+Kα
∑

J∈N−(I)
J∈N+(I)

Ψ′
(
El,mR

)
I∼J

(5.60)
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dvl,m,n+1
I = (1− ω)dvl,m,nI + ω

K∑
k=1

Ψ
′
(

(El,mk )D

)∂I lk
∂t

∂I
w(l)
k,0

∂y


I

−

∂Iw(l)
k,0

∂x

∂I
w(l)
k,0

∂y


I

dul,m,nI


K∑
k=1

Ψ′
(

(El,mk )D

)
I

∂Iw(l)
k,0

∂y

2

I

+Kα
∑

J∈N−(I)
J∈N+(I)

Ψ′
(
El,mR

)
I∼J

+ ω

Kα

( ∑
J∈N−(I)

Ψ
′(
El,mR

)
I∼J

(
vlJ − vlI + dvl,m,nJ

))
K∑
k=1

Ψ′
(

(El,mk )D

)
I

∂Iw(l)
k,0

∂y

2

I

+Kα
∑

J∈N−(I)
J∈N+(I)

Ψ′
(
El,mR

)
I∼J

+ ω

Kα

( ∑
J∈N+(I)

Ψ
′(
El,mR

)
I∼J

(
vlJ − vlI + dvl,m,nJ

))
K∑
k=1

Ψ′
(

(El,mk )D

)
I

∂Iw(l)
k,0

∂y

2

I

+Kα
∑

J∈N−(I)
J∈N+(I)

Ψ′
(
El,mR

)
I∼J

(5.61)

5.6.2.3 SOR-GS

Equations (5.62) and (5.63) (constructed from (5.58)) give formulation for a SOR-GS

type solver for late linearisation (with warping).
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dul,m,n+1
I = (1− ω)dul,m,nI + ω

K∑
k=1

Ψ
′
(

(El,mk )D

)
I

∂I lk
∂t

∂I
w(l)
k,0

∂x


I

−

∂Iw(l)
k,0

∂y

∂I
w(l)
k,0

∂x


I

dvl,m,nI


K∑
k=1

Ψ′
(

(El,mk )D

)
I

∂Iw(l)
k,0

∂x

2

I

+Kα
∑

J∈N−(I)
J∈N+(I)

Ψ′
(
El,mR

)
I∼J

+ ω

Kα

( ∑
J∈N−(I)

Ψ
′(
El,mR

)
I∼J

(
ulJ − ulI + dul,m,n+1

J

))
K∑
k=1

Ψ′
(

(El,mk )D

)
I

∂Iw(l)
k,0

∂x

2

I

+Kα
∑

J∈N−(I)
J∈N+(I)

Ψ′
(
El,mR

)
I∼J

+ ω

Kα

( ∑
J∈N+(I)

Ψ
′(
El,mR

)
I∼J

(
ulJ − ulI + dul,m,nJ

))
K∑
k=1

Ψ′
(

(El,mk )D

)
I

∂Iw(l)
k,0

∂x

2

I

+Kα
∑

J∈N−(I)
J∈N+(I)

Ψ′
(
El,mR

)
I∼J

(5.62)

dvl,m,n+1
I = (1− ω)dvl,m,nI + ω

K∑
k=1

Ψ
′
(

(El,mk )D

)∂I lk
∂t

∂I
w(l)
k,0

∂y


I

−

∂Iw(l)
k,0

∂x

∂I
w(l)
k,0

∂y


I

dul,m,nI


K∑
k=1

Ψ′
(

(El,mk )D

)
I

∂Iw(l)
k,0

∂y

2

I

+Kα
∑

J∈N−(I)
J∈N+(I)

Ψ′
(
El,mR

)
I∼J

+ ω

Kα

( ∑
J∈N−(I)

Ψ
′(
El,mR

)
I∼J

(
vlJ − vlI + dvl,m,n+1

J

))
K∑
k=1

Ψ′
(

(El,mk )D

)
I

∂Iw(l)
k,0

∂y

2

I

+Kα
∑

J∈N−(I)
J∈N+(I)

Ψ′
(
El,mR

)
I∼J

+ ω

Kα

( ∑
J∈N+(I)

Ψ
′(
El,mR

)
I∼J

(
vlJ − vlI + dvl,m,nJ

))
K∑
k=1

Ψ′
(

(El,mk )D

)
I

∂Iw(l)
k,0

∂y

2

I

+Kα
∑

J∈N−(I)
J∈N+(I)

Ψ′
(
El,mR

)
I∼J

(5.63)

Jarno Ralli, 2011 162



5.6 Solving Optical-Flow

5.6.2.4 SOR-ALR

Here we show how the GS-ALR solver is constructed for the late linearisation case. As

it was already mentioned in Section 5.3.3, the algorithm consists of two sweeps, namely

the forward- and the backward-sweeps, as given in equations (5.64) and (5.65). The

only thing that needs to be explained is what the aI, bI, cI and dI are.

c′I =


c1

b1
, I = 1

cI
bI − c′I−1aI

, I = 2, 3, ..., n− 1

d′I =


d1

b1
, I = 1

dI − d′I−1aI

bI − c′I−1aI
, I = 2, 3, ..., n

(5.64)

xn = d′n

xI = d′I − c′IxI+1 , I = n− 1, n− 2, ..., 1
(5.65)

Here, however, since the diffusion weights change, we need to define the elements for

both column- and row-wise traversing. The only difference is, apart from the traversing

order, the diffusion weights denoted by aI:s and cI:s.

Column wise.

Equation (5.66) defines the elements when solving for du.

aI =−KαΨ
′(
El,mR

)
N,I

bI =
K∑
k=1

Ψ
′
(

(El,mk )D

)
I

∂Iw(l)
k,0

∂x

2

I

+Kα
∑

J∈N(I)

Ψ
′(
El,mR

)
I∼J

cI =−KαΨ
′(
El,mR

)
S,I

dI =
K∑
k=1

Ψ
′
(

(El,mk )D

)
I

∂I lk
∂t

∂I
w(l)
k,0

∂y


I

−

∂Iw(l)
k,0

∂x

∂I
w(l)
k,0

∂y


I

dvl,m,nI


+Kα

 ∑
J∈N−(I)

Ψ
′(
El,mR

)
I∼J

(
ulJ − ulI + dul,m,n+1

J

)
+Kα

 ∑
J∈N+(I)

Ψ
′(
El,mR

)
I∼J

(
ulJ − ulI + dul,m,nJ

)

(5.66)
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Equation (5.67) defines the elements when solving for dv.

aI =−KαΨ
′(
El,mR

)
N,I

bI =

K∑
k=1

Ψ
′
(

(El,mk )D

)
I

∂Iw(l)
k,0

∂y

2

I

+Kα
∑

J∈N(I)

Ψ
′(
El,mR

)
I∼J

cI =−KαΨ
′(
El,mR

)
S,I

dI =
K∑
k=1

Ψ
′
(

(El,mk )D

)
I

∂I lk
∂t

∂I
w(l)
k,0

∂y


I

−

∂Iw(l)
k,0

∂x

∂I
w(l)
k,0

∂y


I

dul,m,nI


+Kα

 ∑
J∈N−(I)

Ψ
′(
El,mR

)
I∼J

(
vlJ − vlI + dvl,m,n+1

J

)
+Kα

 ∑
J∈N+(I)

Ψ
′(
El,mR

)
I∼J

(
vlJ − vlI + dvl,m,nJ

)

(5.67)

Row wise.

Equation (5.68) defines the elements when solving for du.

aI =−KαΨ
′(
El,mR

)
W,I

bI =
K∑
k=1

Ψ
′
(

(El,mk )D

)
I

∂Iw(l)
k,0

∂x

2

I

+Kα
∑

J∈N(I)

Ψ
′(
El,mR

)
I∼J

cI =−KαΨ
′(
El,mR

)
E,I

dI =
K∑
k=1

Ψ
′
(

(El,mk )D

)
I

∂I lk
∂t

∂I
w(l)
k,0

∂y


I

−

∂Iw(l)
k,0

∂x

∂I
w(l)
k,0

∂y


I

dvl,m,nI


+Kα

 ∑
J∈N−(I)

Ψ
′(
El,mR

)
I∼J

(
ulJ − ulI + dul,m,n+1

J

)
+Kα

 ∑
J∈N+(I)

Ψ
′(
El,mR

)
I∼J

(
ulJ − ulI + dul,m,nJ

)

(5.68)

Equation (5.69) defines the elements when solving for dv.
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aI =−KαΨ
′(
El,mR

)
W,I

bI =

K∑
k=1

Ψ
′
(

(El,mk )D

)
I

∂Iw(l)
k,0

∂y

2

I

+Kα
∑

J∈N(I)

Ψ
′(
El,mR

)
I∼J

cI =−KαΨ
′(
El,mR

)
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(5.69)

5.6.2.5 Results

In the following we show some results for the late linearisation model with test images

from Middlebury1.

1http://vision.middlebury.edu/flow/data/
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(a) Rubberwhale. (b) Ground-truth. (c) Optical-flow.

(d) Urban3. (e) Ground-truth. (f) Optical-flow.

(g) Yosemite. (h) Ground-truth. (i) Optical-flow.

(j) Dumptruck. (k) Optical-flow. (l) Optical-flow.

Figure 5.11: Late linearisation results. In the last row we show (k) optical-flow and (l)

saturated optical-flow. With saturated we refer to how the flow is displayed. By limiting

the maximum movement, also the objects with lower speed can be observed.

5.7 Solving Level-set Equation

Previously we have shown how both the early- and the late-linearisation models for

optical-flow can be solved. As was explained earlier, these were defined as space-type

problems, where we directly search for the steady-state (i.e. where the solution does
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not change anymore). In what follows, we show how the segmentation method based on

implicit curves can be solved. This model exhibits type-type behaviour. However, as it

was already mentioned in the introduction of this chapter, a time-type problem, when

discretised implicitly with respect to time, yields a space-type problem that is solved at

each time step. Therefore, it is not a great surprise that the solver for the segmentation

model is very similar to those seen previously. Naturally, this is a great advantage, since

similar type of mathematical machinery can be used for conceptually different problems

(optical-flow vs. segmentation). Equation 5.70 is the same as seen previously ((5.28)

and (4.23)), with the difference that we use P to denote log pr (d|α1) − log pr (d|α1).

This is done to simplify the notation.

∂Φ

∂t
= H ′ε(Φ)

(
P + αDIV

(
∇Φ

|∇Φ|

))
(5.70)

We use a so called Euler forward method to discretise the time. Since we solve

for Φt+1 inside the DIV term, the complete scheme is known as Euler forward implicit

scheme and is given in (5.71)

Φt+1 − Φt

τ
= H ′ε(Φ

t)

(
P + αDIV

(
∇Φt+1

|∇Φt|

))
Φt+1 = Φt + τH ′ε(Φ

t)

(
P + αDIV

(
∇Φt+1

|∇Φt|

)) (5.71)

where τ is the step in time. Starting from Equation 5.71 we can discretise the DIV oper-

ator as seen previously. Instead of DIV

(
∇Φt+1

|∇Φt|

)
, we can write DIV

(
1

|∇Φt|
∇Φt+1

)
where

1

|∇Φt|
‘acts’ like a diffusion weight. The only difference is that we approxi-

mate this term using a finite difference scheme with harmonic averaging [42][77], and,

therefore, obtain the following.
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(5.72)

As we can see, Equation (5.72) is linear with respect to Φt+1, since in the derivative

of the Heaviside function, H ′ε(Φ
t
i,j), and in the

1

|∇Φt|
we use the last known approxi-

mation of Φ. In the following we re-organise Equation (5.72) in order to facilitate the

construction of concrete solvers.
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(5.73)
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An algorithmic description of the SOR with a generic solver is given in 5.74. A new

approximation is a weighted combination of the previous and the new solution.

Φt,l+1 = (1− ω)Φt,l + ωSOLV ER(Φt,l, P, |∇Φt|, gtW , gtN , gtE , gtS) (5.74)

where SOLV ER(Φt,l, P, |∇Φt|, gtW , gtN , gtE , gtS) can be any solver for linear system of

equations that calculates a new solution at l + 1 for the input at l.

5.7.1 SOR-GS

Equation 5.75 gives an example of a SOR-GS type solver.

Φt,l+1
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I + ω
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2

(|∇Φt|)I + (|∇Φt|)J

(5.75)

5.8 Conclusions

In this chapter we have shown some techniques that can be used for solving the optical-

flow and segmentation models, based on variational calculus, efficiently.

As it has been shown, the Euler-Lagrange equations related to the models lead, in

fact, to systems of partial differential equations (PDEs) that need to be solved.

The subject of solving PDEs is so huge, that understandably we have only scratched

surface here.
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However, we feel confident that the descriptions (and algorithms) given in this

chapter should be clear enough to encourage an interested reader to further research

the subject.
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6

Conclusions

6.1 Summary

Each of the sections related to the scientific goals established in Section 1.2 have intro-

duced both the motivation for the problem at hand, and also the related conclusions,

therefore hopefully making this document easier to follow. Relevant conclusions can

be found in the following sections: robust data terms, Section 3.8.8; temporal- and

spatial constraints in optical-flow and disparity calculation, Section 3.9.10; hypothesis-

forming-validation loops, Section 4.5. Apart from the results shown in this work, more

results are available at my homepage1. Following is a brief summary of the conclusions.

Our target has been improving robustness and, therefore, applicability, of the vari-

ational methods used for generating pixel correspondences, especially with real se-

quences. With real sequences image representation plays a crucial role when it comes

down to establishing correct pixel-wise correspondences. As we have shown, improper

image representation can render the results completely useless. Typically benchmarking

of different algorithms is done using test images that do not contain relevant illumi-

nation errors and/or image noise. This is, of course, a good starting point for the

evaluation, but does not convey enough information of how the algorithm in question

will behave with sequences where lightning or related conditions cannot be controlled.

Typical cases where lightning conditions cannot be controlled are outdoor sequences,

like those in the DRIVSCO project. Therefore, it is difficult to choose an algorithm

that would produce acceptable results for the task at hand. In Section 3.8.8 we have

1http://atc.ugr.es/~jarnor/
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studied and found several representations to be considerably more robust than the typi-

cal RGB-representation. Especially image representations based on gradient have given

very good results, both accuracy and robustness wise. In order to minimise ‘human

influence’ upon the parameters related to each representation, we have used a genetic

algorithm called differential evolution to search for the optimal (or pseudo-optimal)

parameters. In order to improve generality of the results, we have used 5-fold cross

validation.

Due to the local nature of low-level vision algorithms, these suffer from ambiguous

interpretations. Even though the variational methods used in this work for establishing

pixel correspondences are said to be global in nature, they are based on local interac-

tions between neighbouring pixels. In other words, these methods do not try to reach a

more ’global’ interpretation of the scene. Vision process is said to be a creative process

[38] where interpretations of the scene can change and, indeed, do change depending

on the task at hand. Many optical tricks are based on this fact. Therefore, it is logical

to use available a priori information to constrain the solution so that it would be ’co-

herent’ with what we know of the world we live in. There exists evidence that, indeed,

the primate vision system functions this way [38]: we are used to interpret depth cues

in a certain way since either a) the vision system has evolved this way or b) our brains

have learnt to interpret certain cues in a particular way due to the constraints of the

world we live in. We have shown in Section (3.9) that considerable improvements are

possible by using a priori information.

As it was already mentioned, there is consensus in the scientific community that

visual perception is a creative process [38]. Thus scene interpretation depends on the

context and the task at hand and, therefore, can change accordingly. In our hypothesis-

forming-validation loop scheme we have used this idea to automatically extract and gen-

erate spatial constraints using segmentation, and then use these constraints to improve

the results in a recurrent loop fashion. If the initial results, on which the segmentation

is based on, are ’good’ enough, then the model will converge towards a coherent scene

interpretation. On the other hand, if the obtained constraints are not in-line with the

data, then these simply get rejected [57][60][58] without influencing the final outcome

from the system. As has been shown in Section 4.5, considerable improvements are

possible, especially in the case of cases typically considered to be difficult.
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6.2 Future Work

We have added Chapter 5.1, related to how the equations can be solved, so that an

interested reader could get acquainted with the variational methods. Even though we

have shown how the equations related to the pixel correspondences (optical-flow and

disparity) and level-sets can be solved, using the same numerical methods many other

interesting problems, defined with calculus of variations, ca be solved.

6.2 Future Work

Future work consists of including more relevant cues in the segmentation in order to

further improve the results. Also, temporal coherency of the resulting segments should

be imposed in order to facilitate tracking of the segments temporally. Fusing segments

based on (a) optical-flow and (b) segment neighbourhood will be studied: neighbouring

segments that have similar optical-flow fields probably belong to the same objects and,

therefore, can be either fused together or tracked together.

6.3 Publications

During the coarse of this thesis, related to the goals given in Section 1.2, we have

studied the following: (1) how to propagate sparse disparity cues using a voting based

methodology [56]; (2) how to disambiguate dense low-level disparity cues by using either

more reliable cues or what is known on the solution beforehand [57]; (3) robustness of

different image representations with respect to illumination errors and image noise in

stereo-disparity [59]; (4) the influence of both spatial- and temporal constraints in both

optical-flow and stereo disparity calculation [60] and (5) using constraints based on

segmentation in disparity calculation [58]. Published papers (included those sent for

publication but not published at the time of writing this thesis) are:

• F. Naveros, T. Dı́az, J. Ralli, J. Dı́az, and E. Ros, ‘Flujo óptico variacional en

plataformas paralelas GPU’, submitted to a national (Spanish) conference.

• J. Ralli, F. Pelayo, and J. Dı́az, ‘Increasing Efficiency in Disparity Calcula-

tion’, LNCS, Advances in Brain, Vision, and Artificial Intelligence, 2007, 298-307,

url:http://dx.doi.org/10.1007/978-3-540-75555-5_28.
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• J. Ralli, J. Dı́az, and E. Ros, ‘A Method for Sparse Disparity Densification Using

Voting Mask Propagation’, Journal of Visual Communication and Image Rep-

resentation, 21(1):6774, 2009, url:http://dx.doi.org/10.1016/j.jvcir.2009.

08.005.

• J. Ralli, J. Dı́az, S. Kalkan, N. Krüger and E. Ros, ‘Disparity Disambiguation by

Fusion of Signal- and Symbolic-Level Information’, Machine Vision and Applica-

tions, 2010, url:http://dx.doi.org/10.1007/s00138-010-0266-z.

• J. Ralli, J. Dı́az, P. Guzmán and E. Ros, ‘Complementary Image Representation

Spaces in Variational Disparity Calculation’, submitted for publication.

• J. Ralli, J. Dı́az and E. Ros, ‘Spatial and Temporal Constraints in Variational

Correspondence Methods’, Machine Vision and Applications, 2011, url:http://

dx.doi.org/10.1007/s00138-011-0360-x.

• J. Ralli, J. Dı́az, E. Ros, J. Ilonen, and V. Kyrki, ‘External Constraints in Varia-

tional Disparity Calculation: Hypothesis-Forming-Validation-Loops and Segmen-

tation’, submitted for publication.

• N.R. Luque, J.A. Garrido, J. Ralli, J.J Laredo, and E. Ros, ‘From Sensors to

Spikes: Evolving Receptive Fields to Enhance Sensori-Motor Information in a

Robot-Arm’, submitted for publication.

• P. Guzmán, J. Dı́az, J. Ralli, R. Aǵıs, and E. Ros, ‘Low-cost Sensor to Detect

Overtaking Based on Optical-flow’, submitted for publication.

This represents a scientific production as follows: 5 journal papers with the author

of this work as first author; 1 published conference paper; 2 collaborative journal papers

and 1 collaborative conference paper.

6.4 Main Contributions

• We have shown that image representation has a profound effect on the resulting

disparity maps with real images containing both illumination errors and image

noise.
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6.4 Main Contributions

• We have tested several image representations and ranked those with respect to

the accuracy and the robustness of each representation. The best representations,

both accuracy and robustness wise, are based on image gradient.

• We have come up with a ’sound’ framework for finding pseudo-optimal parameters

for different representation spaces using a genetic algorithm. This framework is

general enough to be extended for other image processing problems as well.

• We have shown that using a priori information in establishing image correspon-

dences can increase quality of the results considerably. Therefore, further image

processing tasks based on the improved results, such as segmentation, will im-

prove considerably.

• These a priori:s can be extracted automatically and imposed recurrently using a

hypothesis-forming-validation loop.

• We have shown that segmenting an image into meaningful surfaces, where seg-

mentation is based on calculated disparity maps, is possible.
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7

Conclusiones en Castellano

7.1 Sumario

Cada una de las secciones de este trabajo, relacionados a los ‘retos’ cient́ıficos intro-

ducidos en la Sección 1.2, introducen tanto la motivación como las conclusiones de

los resultados obtenidos. De esta manera cada una de las secciones pretenden ser

‘auto-contenidas’ y, supuestamente, mas fáciles de leer. Las conclusiones más rele-

vantes se encuentran en las siguientes secciones: términos de datos robustos, Sección

3.8.8; restricciones espaciales y temporales en el cálculo de flujo-óptico y disparidad,

3.9.10; ’hypothesis-forming-validation loops’ (bucles de formación y convalidación de

hipótesis), Sección 4.5. Aparte de los resultados mostrados en esta tesis, más resul-

tados están disponibles en mi pgina web1. A continuación un resumen corto de las

conclusiones.

Nuestro objetivo ha sido mejorar la robustez y, por tanto, la aplicabilidad de los

métodos variacionales utilizados para la generación de correspondencias de ṕıxeles, es-

pecialmente con secuencias reales. Utilizando secuencias ‘reales’, la representación de la

imagen tiene un papel muy importante cuando se trata de establecer correspondencias

correctas entre imágenes temporales (flujo óptico) o estéreo (disparidad). Como hemos

comprobado, una representación inadecuada puede dejar los resultados completamente

inservibles. T́ıpicamente las secuencias/imágenes que se usan para comparación cuali-

tativa no contienen errores relevantes de iluminación y/o ruido. Este, obviamente, es

un punto de partida muy válido para tal comparación, pero lamentablemente no provee

1http://atc.ugr.es/~jarnor/
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información clave de como se portaŕıa el algoritmo en cuestión en situaciones donde las

condiciones de la iluminación no se pueden controlar. Casos t́ıpicos donde no se pueden

controlar las condiciones son las de ‘aire libre’, tales como las del proyecto DRIVSCO.

Por lo tanto, es dif́ıcil escoger un algoritmo apropiado, capaz de producir resultados

aceptables para la tarea que se pretende a resolver. En Sección 3.8.8 hemos estudiado

varias representaciones diferentes y hemos encontrado varias que son considerablemente

más robustas que la de RGB. Sobre todo representaciones basados en gradiente han

dado muy buenos resultados en cuanto a la precisión y la robustez. Para minimizar

la influencia humana relacionada a cada representación, se ha utilizado un algoritmo

genético llamado evolución diferencial (ingl. differential evolution) en la búsqueda los

parámetros. Con el fin de mejorar la generalidad de los resultados, se han utilizado

validación cruzada , dividiendo la muestra en cinco conjuntos (ingl. 5-fold cross vali-

dation)

Por la naturaleza local de los algoritmos de nivel bajo, estos sufren de interpreta-

ciones ambiguas. Aunque los métodos variacionales, utilizados para establecer corre-

spondencias, supuestamente son globales, estos están basados en interacciones locales

entre los pixeles más próximos. En otras palabras, estos modelos no tratan de llegar

a una interpretación más global de la escena. El proceso visual es un proceso creativo

[38], en el cual la interpretación de la escena se puede cambiar debido a la tarea que

se está realizando. Varios trucos ’ópticos’ empleados por los magos están basados en

este hecho. Por lo tanto, es natural usar información a priori para restringir la solución

para que esta sea coherente con lo que sabemos del mundo donde vivimos. Existe

evidencia que la visión en los primates funciona de esta manera [38]: interpretamos

rasgos visuales de cierta manera ya que (a) el sistema visual ha evolucionado en esta

dirección o (b) hemos aprendido a interpretar dichos rasgos de cierta manera debido a

las restricciones del mundo donde vivimos. Hemos comprobado en la Sección (3.9) que

mejoras considerables son posibles utilizando información a priori.

Tal cual como hemos indicado en caṕıtulos/párrafos anteriores, existe un consenso

en la comunidad cient́ıfica que la percepción visual es un proceso creativo [38]. Esto

quiere decir que la interpretación de la escena depende tanto del contexto como del

problema que estamos tratando de resolver y, por lo tanto, la interpretación se puede

cambiar. Hemos utilizado la idea de ’hypothesis-forming-validation loop’ (bucles de

formación y confirmación de hipótesis) para generar restricciones espaciales utilizando
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segmentación de la escena. Si los resultados iniciales son suficientemente buenos, es

este caso el sistema converge hacia una interpretación más coherente de la escena. Por

otro lado, si las restricciones obtenidos no están de acuerdo con la evidencia (datos), en

este caso simplemente se rechaza dicha restricción [57][60][58] sin que esta influya en el

resultado. Tal cual como hemos demostrado en la Sección 4.5, incluso en casos dif́ıciles,

se pueden extraer hipótesis útiles que luego se usan para mejorar los resultados. Son

justamente estos casos dif́ıciles donde se ven mejoras considerables.

Hemos agregado Caṕıtulo 5.1, donde se demuestra como se pueden resolver las ecua-

ciones numéricamente, para que un lector interesado pueda conocer mejor los métodos

variacionales. La misma maquinaria matemática es suficientemente genérica para ser

utilizada en otros casos, aparte de calculo de flujo-óptico o disparidad, relacionados a

tratamiento de imágenes con métodos variacionales.

7.2 Trabajo Futuro

El trabajo futuro consiste en incluir otros rasgos relevantes en la segmentación para

mejorar los resultados mas allá de los obtenidos. Además, se pretende investigar como

se podŕıa imponer coherencia temporal en la segmentación para facilitar el seguimiento

(ingl. tracking) de los segmentos. También se pretende estudiar el fusionado de los

segmentos basado en (a) flujo-óptico como (b) vecindad de los segmentos: segmentos

vecinos con flujo-óptico parecido probablemente pertenecen al mismo objeto y, por lo

tanto, se podŕıan fusionar.

7.3 Publicaciones

Durante la creación de esta tesis, relacionado a las metas introducidas en la Sección 1.2,

hemos investigado lo siguiente: (1) como propagar estimaciones dispersas de disparidad

utilizando filtros de votación [56]; (2) como se pueden desambiguar aproximaciones

densas de disparidad utilizando aproximaciones mas confiables, pero menos densos a la

vez [57]; (3) la robustez de varias representaciones de imágenes con respecto a errores de

iluminación y ruido [59]; (4) la influencia de restricciones espaciales y temporales en el

cálculo de flujo-óptico y estéreo [60] y (5) como obtener dichas restricciones espaciales
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automáticamente utilizando segmentación [58]. Los art́ıculos escritos (incluyendo los

que están en proceso de publicación) son:

• F. Naveros, T. Dı́az, J. Ralli, J. Dı́az, and E. Ros, ‘Flujo óptico variacional en

plataformas paralelas GPU’, enviado a conferencia nacional.

• J. Ralli, F. Pelayo, and J. Dı́az, ‘Increasing Efficiency in Disparity Calcula-

tion’, LNCS, Advances in Brain, Vision, and Artificial Intelligence, 2007, 298-307,

url:http://dx.doi.org/10.1007/978-3-540-75555-5_28.

• J. Ralli, J. Dı́az, and E. Ros, ‘A Method for Sparse Disparity Densification Using
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7.4 Contribuciones Principales

Esto representa una producción cient́ıfica de cinco publicaciones, enviadas a revistas

cient́ıficas relevantes, donde el doctorando es el primer autor, un articulo relacionado

a un congreso internacional, dos colaboraciones en publicaciones enviadas a revistas

cient́ıficas y una colaboración en una publicacin enviada a un congreso nacional.

7.4 Contribuciones Principales

• Hemos demostrado que la representación de la imagen influye considerablemente

en la calidad de los mapas de disparidad.

• Hemos probado varias representaciones distintas y hemos clasificado estas de

acuerdo a los resultados obtenidos. Las mejores representaciones, según nuestro

estudio, están basadas en la gradiente de la imagen.

• Hemos creado una metodoloǵıa para obtener parámetros pseudo-óptimos rela-

cionados a diferentes representaciones en el cálculo de disparidad. La metodoloǵıa

es suficientemente genérica para ser usada en otros problemas de tratamiento de

imágenes.

• Hemos demostrado que utilizando información a priori se puede mejorar, consid-

erablemente, los resultados en los cálculos de flujo-óptico y/o disparidad. Por

lo tanto, el procesamiento de imágenes basado en los resultados mejorados, por

ejemplo segmentación, también se mejorará considerablemente.

• Esta información a priori se puede extraer e imponer automáticamente utilizando

’hypothesis-forming-validation loop’ (bucles de formación y convalidación de hipótesis).

• Hemos demostrado que la segmentación de mapas de disparidad en superficies

que representan objetos (o partes de objetos) es posible.
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Appendix A

Solvers

A.1 Optical-flow

A.1.1 Discrete Differential Operator

We have added this appendix in order to link the notation typically used in the machine

vision literature with the notation/terminology used typically with PDEs. Hopefully it

will further clarify construction of the solvers as given in Section 5. As it was shown in

Section 5.6.1, using matrix/vector notation is not always the most convenient way of

describing PDEs. From discretisation point of view it is more convenient to talk about

discrete differential operators rather than matrices, and of grid functions rather than

vectors.

For the definition of discrete differential operators, Lh, we use a ’stencil’ notation

as in [73]. A general stencil

[sk1k2 ]h =



...
...

...
. . . s−1,−1 s0,−1 s1,−1 . . .
. . . s−1,0 s0,0 s1,0 . . .
. . . s−1,1 s0,1 s1,1 . . .

...
...

...


h

(sk1k2 ∈ R) (A.1)

defines an operator on the grid functions (in our case u, v, du or dv) as defined by

Equation A.2

[sk1k2 ]hw(i, j) =
∑
k1,k2

sk1k2w(i+ k1hx, j + k2hy) (A.2)
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where w(i, j) denotes the grid function. The kind of stencil that we use in this thesis

is a so called 5-point stencil, as defined next. s0,−1

s−1,0 s0,0 s1,0

s0,1


h

(A.3)

Other stencils are, for example, 9-point stencil and 27-point stencil (in 3D neigh-

bourhoods).

A.1.1.1 Early Linearisation

From Equation 5.39 we can easily detect the discrete differential operators, as given in

Equation A.4.

Kα
(
ul+1
i+1,j − 2ul+1

i,j + ul+1
i−1,j + ul+1

i,j+1 − 2ul+1
i,j + ul+1

i,j−1

)
−

K∑
k=1

(
∂Ik
∂x

)2

i,j

ul+1
i,j︸ ︷︷ ︸

Lhu

=

K∑
k=1

(
∂Ik
∂y

∂Ik
∂x

)
i,j

vli,j −
K∑
k=1

(
∂Ik
∂t

∂Ik
∂x

)
i,j︸ ︷︷ ︸

f

Kα
(
vl+1
i+1,j − 2vl+1

i,j + vl+1
i−1,j + vl+1

i,j+1 − 2vl+1
i,j + vl+1

i,j−1

)
−

K∑
k=1

(
∂Ik
∂y

)2

i,j

vl+1
i,j︸ ︷︷ ︸

Lhv

=

K∑
k=1

(
∂Ik
∂x

∂Ik
∂y

)
i,j

uli,j −
K∑
k=1

(
∂Ik
∂t

∂Ik
∂y

)
i,j︸ ︷︷ ︸

f

(A.4)

Now we can construct the discrete differential stencils as given in equations A.5 and

A.6.


Kα

Kα −4−
K∑
k=1

(
∂Ik
∂x

)2

i,j

Kα

Kα


h

ul+1
i,j =

K∑
k=1

(
∂Ik
∂y

∂Ik
∂x

)
i,j

vli,j −
K∑
k=1

(
∂Ik
∂t

∂Ik
∂x

)
i,j

(A.5)
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(A.6)

Figure A.1 visualises the correspondence between the stencil notation and the grid.

xh hh
h

Figure A.1

A.1.1.2 Late Linearisation

Here we only identify the discrete differential operators from Equation 5.58. Construct-

ing the stencil(s) is similar than in the early linearisation case.
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(A.7)
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A.1.2 Notation Used in the Matlab Code

In order to write the programs in Matlab, we need to simplify the notation. This is

done as follows.

A.1.2.1 Early Linearisation

We denote the terms as given in (A.9).
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(
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∂x

)
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)
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(
∂Ik
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)2

i,j
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(
∂Ik
∂y

)2

i,j

(A.9)

With the above definitions, we can write the discretised, early linearisation, equa-

tions for u and v as follows:
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A.1.2.2 Late Linearisation

We denote the terms and the diffusion weights as given in (A.11)
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(A.11)

With the above definitions, we can write the discretised, late linearisation, equations

for du and dv as follows:
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Appendix B

Euler-Lagrange Equations

B.1 Temporal Constraint for Optical-Flow

Here, we show a derivation of the Euler-Lagrange equations for a given optical-flow for-

mulation. The energy functional has two data terms, gradient direction and magnitude

of the gradient, a temporal constraint, and a flow-based regularisation term. As can be

observed, non-linearised constancy assumptions are used in the data terms. One of the

implications of the non-linearised constancy terms is that the model copes better with

large displacements. Firstly, the energy functional is given in (B.1) and the related

Euler-Lagrange equations are given in (B.3).

B.1.1 Energy Functional

E(u, v) =

∫
Ω

K∑
k=1

{
b1ΨD

(
(
∂I1,k

∂x
−
∂Iw0,k
∂x

)2

)
+ b1ΨD

(
(
∂I1,k

∂y
−
∂Iw0,k
∂y

)2

)
+ b2ΨD

((∂I1,k

∂x
−
∂Iw0,k
∂x

)2
+
(∂I1,k

∂y
−
∂Iw0,k
∂y

)2)
+ γtΨCT

(
(utc − u)2

)
+ γtΨCT

(
(vtc − v)2

)
+ αΨR

(
|∇u|2 + |∇v|2

)}
dx

(B.1)

where I1,k = I(x, y, k, t = 1), Iw0,k = I(x + u, y + v, k, t = 0), and utc and vtc are the

constraints. The robust functions are as explained in Section 3.9.7. In other words,

we are looking for a transformation defined by (u, v) that warps the image from t = 0

to t = 1. Typically, bilinear- or bicubic interpolation is used for the transformation.
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The curly brackets have no special meaning and are simply used in order to make the

equation more readable.

B.1.2 Related Euler-Lagrange Equations

Firstly, we introduce some auxiliary variables in order to simplify the notation.

ED1 =

(
∂I1,k

∂x
−
∂Iw0,k
∂x

)2
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(
∂I1,k
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+
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−
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∂y

)2

(B.2)

Using the above mentioned auxiliary variables, the Euler-Lagrange equations can

be written as follows:
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(B.3)

At a first look, it might seem that the gradient and the gradient magnitude data

terms contain redundant information, but this is certainly not the case: gradient con-

tains directional information (implicitly also magnitude), while gradient magnitude

term contains the magnitude explicitly without directional information. This is clear

from the robust functions as can be observed from ED1, ED2, and ED3.
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