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grado de doctor, ha sido realizada dentro del programa de doctorado ”Mode-
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Caṕıtulo 1

Introducción

Los Sistemas de Recomendación (en adelante SR) son técnicas y her-
ramientas software que ofrecen sugerencias sobre productos (o acciones) en
un dominio concreto que el usuario considera interesante [1]. Las sugerencias
están relacionadas con procesos de toma de decisión, tal como qué canción
escuchar, qué peĺıcula ver o qué viaje realizar. A lo largo de la literatura pode-
mos encontrar distintos métodos para predecir las preferencias que tienen los
usuarios respecto a los productos, normalmete expresadas en forma de votos:
KNN, Naive Bayes, árboles de decisión, redes neuronales y modelos proba-
biĺısticos entre otros. El trabajo que presentamos en esta memoria está basado
en los modelos probabiĺısticos, concretamente en Redes Bayesianas [2, 3, 4],
mediante las que hemos creado modelos que nos permiten obtener buenas
recomendaciones.

Este trabajo tiene su origen dentro del proyecto TIN2005-02516 bajo el
t́ıtulo de “Aplicación de Modelos Gráficos Probabiĺısticos a la Recuperación
de Información Estructurada”. El objetivo principal del proyecto era el desarro-
llo de un Sistema de Recuperación de Información Estructurada basado en
el formalismo de los Modelos Gráficos Probabiĺısticos. Nuestro trabajo se en-
marca en el objetivo número 5 de la memoria del proyecto: “Desarrollo de
Sistemas de Recomendación”, que trata sobre la adaptación de las soluciones
encontradas en Recuperación de Información estructurada a los dominios
de aplicación concretos de los Sistemas de Recomendación (libreŕıas, via-
jes, inmobiliarias, etc.). La tarea clave será la de modelar las relaciones entre
usuarios y productos (mediante modelos basados en contenido) y los usuarios
entre śı (modelos colaborativos). Para ello, usaremos las Redes Bayesianas,
que nos permitirán combinar una representación cualitativa de esas relaciones
(representando expĺıcitamente las relaciones de dependencia e independencia
en una estructura gráfica) con una representación cuantitativa, que mide la
fuerza de las relaciones mediante un conjunto de distribuciones de probabili-
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CAṔITULO 1. INTRODUCCIÓN

dad.
Las distintas problemáticas de los SR que se abordarán en esta memoria

se pueden clasificar en:

Sistemas Basados en Contenido: El objetivo de estos sistemas es el de
recomendar al usuario productos que son similares a aquellos que le
gustó en el pasado. Enmarcado en esta problemática se propondrá un
modelo capaz de tener en cuenta las descripciones de un producto.

Sistemas Colaborativos: Estos sistemas recomiendan aquellos produc-
tos que han sido votados positivamente por usuarios similares. En este
marco, se diseñará un modelo que permita representar el conjunto de
usuarios similares a un usuario mediante una Red Bayesiana, diseñando
mecanismos eficientes de almacenamiento y propagación de las proba-
bilidades implicadas en el proceso. Además, se abordará uno de los
problemas que presentan los sistemas colaborativos como es la disper-
sión de la matriz de votos, que hace que sea dif́ıcil recomendar aquellos
productos que no han sido votados previamente. Para ello, se diseñarán
mecanismos que alivien esta problemática mediante el uso de informa-
ción de segunda mano. Por otra parte, se diseñará un nuevo modelo
cuyo objetivo será encontrar el vecindario que con mayor verosimilitud
pueda generar los votos dados por el usuario.

Sistemas Hı́bridos: Se desarrollará un modelo que sea capaz de inte-
grar la información de contenido y la colaborativa. Esta integración
se conseguirá permitiendo las conexiones entre la Red Bayesiana que
representa el contenido, con la red que representa la componente co-
laborativa.

Recomendación para grupos: Se estudiarán los problemas de la re-
comendación a grupos junto con los problemas relacionados con los
mecanismos de agregación de la incertidumbre. Para ello desarrollare-
mos modelos que permitan manejar criterios como el mayoritario, el
máximo o mı́nimo.

Los resultados obtenidos, que presentamos en este trabajo mediante la
fórmula de compendio de art́ıculos, se concretan en las siguientes cuatro
publicaciones:

Managing Uncertainty in Group Recommending Processes - Manejando
la incertidumbre en el proceso de la Recomendación en Grupo. User
Modeling and User-Adapted Interaction. 2008. JCR: 3.074
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Combining Content-based and Collaborative Recommendations: a Hy-
brid approach based on Bayesian networks - Combinando Recomenda-
ciones Colaborativas y Basadas en Contenido: una aproximación Hı́bri-
da basada en redes Bayesianas. International Journal of Approximate
Reasoning. 2010. JCR: 1.679

Using second-hand information in Collaborative Recommender Sys-
tems - Usando Información de Segunda Mano en Sistemas de Recomen-
dación Colaborativos. Soft Computing. 2009. JCR: 1.512

Using past-predictions accuracy in Recommender Systems - Usando
las predicciones precisas del pasado en Sistemas de Recomendación.
Information Sciences. 2011 (sometido). JCR: 2.833

El contenido de esta memoria está estructurado de la forma: en el Caṕıtulo
2 realizaremos una introducción sobre los SR, mostrando sus caracteŕısticas y
diferenciando los tipos de sistemas que podemos encontrarnos. En el Caṕıtu-
lo 3 expondremos unas nociones básicas sobre Redes Bayesianas, haciendo
hincapié en los modelos canónicos [5], básicos para nuestro trabajo. En el
Caṕıtulo 4 presentaremos las contribuciones de los trabajos que componen
esta memoria, haciendo un breve resumen del planteamiento del problema, la
solución propuesta y los resultados obtenidos. A continuación, en el Caṕıtulo
5, mostraremos los art́ıculos completos y, para terminar, en el Caṕıtulo 6
presentaremos un listado de aquellas publicaciones realizadas a lo largo del
periodo de trabajo y que han servido de complemento para los trabajos que
aqúı presentamos.
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Caṕıtulo 2

Sistemas de Recomendación

Internet se ha convertido en una herramienta indispensable para nuestro
d́ıa a d́ıa. Hace no muchos años, a la hora de buscar información sobre algún
tema, hab́ıa que recurrir a enciclopedias, revistas especializadas impresas, bi-
bliotecas públicas, etc. Desde el auge de Internet, el acceso a la información
es mucho más rápido y sencillo. No obstante, lo que parećıa ser una ventaja,
se ha convertido en un gran problema ya que existe una gran cantidad de
información sobre tantos y tantos productos. Para intentar paliar este proble-
ma se han popularizado herramientas automáticas que ayudan a los usuarios
a encontrar productos que coincidan con sus gustos. Los SR surgen por este
motivo. En términos generales, un SR ofrece sugerencias sobre productos (o
acciones) en un dominio concreto que el usuario considera interesante [1].
Normalmente denominamos producto o ı́tem al término general que se usa
para indicar qué es lo que el sistema recomienda a los usuarios (canciones,
peĺıculas, noticias, etc.).

Existen una serie de problemas bien identificados que un SR puede ayudar
a resolver [6]:

Encontrar buenos items: Recomendar por medio de una lista ordenada
aquellos items que se consideran buenos indicando cuánto les gustaŕıa
(por ejemplo mediante una escala de 1 a 5 estrellas).

Encontrar todos los items buenos: Recomendar todos los items que
pueden satisfacer las necesidades de algún usuario. En estos casos es
insuficiente encontrar sólo algunos items buenos, han de ser todos.
Podemos encontrar ejemplos de este tipo cuando el número total de
items es relativamente pequeño o bien el SR tiene aplicaciones cŕıticas
(medicina, finanzas).

Anotación en contexto: Dado un contexto existente, como por ejem-
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CAṔITULO 2. SISTEMAS DE RECOMENDACIÓN

plo una lista de items, enfatizar algunos de ellos dependiendo de las
preferencias del usuario, superponiendo la información de la recomen-
dación a la información listada.

Recomendar una secuencia: En vez de centrarse en la generación de
una recomendación individual, la idea es recomendar una secuencia de
items que agrade en su conjunto. Ejemplos clásicos: compilaciones de
música o series de TV.

Recomendar un paquete: Sugerir un conjunto de items que encajan bien
juntos. Un ejemplo muy claro es la planificación de unas vacaciones, que
puede estar compuesto por varios destinos, varias atracciones y varios
hoteles para pernoctar. Desde el punto de vista del usuario, todas estas
alternativas pueden considerarse como un único destino vacacional.

Sólo navegar: En esta tarea, el usuario navega por un catálogo sin la in-
tención inminente de comprar un producto. La tarea del recomendador
es ayudar al usuario a encontrar los items en los que probablemente
esté interesado en esa sesión de navegación.

Encontrar recomendaciones créıbles: Algunos usuarios no se creen los
resultados propuestos por los SR de primeras. Lo que hacen es jugar
con ellos para ver si son buenos realizando recomendaciones (probando
si les recomiendan sus peĺıculas favoritas, por ejemplo).

Mejorar el perfil: El usuario ha de proporcionar información al SR sobre
lo que le gusta y lo que no. Ésta es una tarea fundamental que es
estrictamente necesaria apara proporcionar recomendaciones persona-
lizadas.

Auto-expresarse: A algunos usuarios no les importan tanto las recomen-
daciones como que se les permita contribuir con sus votos y expresar
sus opiniones y creencias.

Ayudar a otros: Algunos usuarios son felices contribuyendo con infor-
mación (sus votos), ya que creen que la comunidad se verá beneficiada
con su aportación. Ésta podŕıa ser una gran motivación para introducir
información en un SR que no se usa de forma habitual. Un ejemplo claro
lo podemos encontrar en un sistema de recomendación de coches, en el
que, si un usuario introduce su opinión sobre un coche, lo más probable
es sea útil para otros usuarios, ya que él no volverá a usarlo hasta la
siguiente vez que vaya a comprarse un coche nuevo.
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Influenciar a otros: En sistemas de recomendación basados en Web
existen usuarios cuya finalidad principal es influenciar expĺıcitamente
a otros usuarios para comprar determinados productos. Por ejemplo
votar alto (y muchas veces) un producto para que esté bien valorado y
que le sea recomendado a otros usuarios.

Como podemos deducir de todos estos puntos, el rol de un SR en un sis-
tema de información puede ser muy diverso, como también lo son las técnicas
mediante las que los SR indentifican las recomendaciones correctas. Existen
distintas taxonomı́as para clasificar los SR, pero la más extendida es la pro-
porcionada por Burke [7], que distingue entre las siguientes seis clases:

Basados en contenido: El sistema recomienda items similares a aquellos
que al usuario le han gustado en el pasado. La similitud entre items se
calcula basándose en las caracteŕısticas que poseen los items compara-
dos. Por ejemplo, si un usuario ha votado positivamente a una peĺıcula
que pertenece al género comedia, entonces el sistema puede aprender
a recomendar otras peĺıculas de este género. En la sección 2.1 veremos
en detalle este tipo de SR.

Filtrado colaborativo: El sistema recomenda al usuario activo los items
que a otros usuarios con gustos similares les han gustado en el pasado.
La similitud entre usuarios se basa en el historial de voto. Es la técnica
más popular y ampliamente implementada en los SR. En la sección 2.2
veremos en detalle este tipo de SR.

Demográficos: Este tipo de sistemas recomienda items basados en el
perfil demográfico del usuario. Se asume que, para nichos demográficos
distintos, se generarán recomendaciones distintas. Por ejemplo, usuarios
que son atendidos por una web en particular dependiendo del lenguaje
o el páıs, o sugerencias que pueden modificarse dependiendo de la edad
del usuario.

Basados en conocimiento: Estos sistemas recomiendan items basándose
en un matching entre las necesidades del usuario y un conjunto de op-
ciones disponibles (mediante las caracteŕısticas del ı́tem), esto es, cómo
es de útil el ı́tem para el usuario. Existen varios tipos de SR basa-
dos en conocimiento. Un tipo son los basados en casos (case-based)
donde se usa una función de similitud para estimar cuánto necesita
el usuario (que se corresponde con la descripción del problema) la re-
comendación (la solución del problema). Podemos interpretar el valor
de similitud como la utilidad de la recomendación para el usuario. Otro
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CAṔITULO 2. SISTEMAS DE RECOMENDACIÓN

tipo de sistemas parecidos son los sistemas basados en restricciones. Es-
tos sistemas se diferencian de los basados en casos en la forma en que
se encuentran soluciones. Mientras que el primero se basa en métri-
cas de similitud, los sistemas basados en restricciones utilizan bases
de conocimiento predefinido que contienen reglas para relacionar las
necesidades del usuario con las caracteŕısticas del item.

Basados en comunidad: Este tipo de sistemas recomienda items basán-
dose en las preferencias de los usuarios amigos. Podŕıamos decir que
esta técnica se basa en “Dime quiénes son tus amigos y te diré quién
eres”. Las evidencias sugieren que las personas tienden a creer más
en las recomendaciones proporcionadas por sus amigos en vez de las
realizadas por otras personas que, aun siendo similares a ellos, son
desconocidos. Ésto, combinado con el gran auge de las redes sociales,
está generando un gran interés en estos sistemas.

Hı́bridos: Estos sistemas están basados en la combinación de las técnicas
anteriores. El uso de un sistema h́ıbrido de técnicas A y B trata de usar
las ventajas de A para resolver las desventajas de B y viceversa. En la
sección 2.3 veremos algo más en profundidad estos sistemas.

2.1. Sistemas de Recomendación basados en con-
tenido

Los SR basados en contenido tienen su ráız en la Recuperación de Infor-
mación [8] y utilizan muchas de sus técnicas. La filosof́ıa con la que trabajan
se puede resumir, coloquialmente hablando, en “recomiéndame productos co-
mo los que me han gustado en el pasado”. En un SR basado en contenido,
los productos de interés están definidos por sus caracteŕısticas asociadas. Por
ejemplo, en un sistema de recomendación de peĺıculas, se usaŕıan como ca-
racteŕısticas a los actores, directores, productores, etc. Un sistema de este
tipo aprende un perfil de usuario basándose en las caracteŕısticas de los pro-
ductos sobre los que el usuario ya ha mostrado interés. Los productos son
recomendados por medio de una comparación entre las caracteŕısticas que
tienen y el perfil de usuario. Este perfil dependerá del algoritmo de apren-
dizaje que se emplee. A tal efecto, se han usado árboles de decisión, redes
neuronales y representaciones basadas en vectores.

Formalmente, podemos definir un Sistema de Recomendación basado en
contenido de la forma: Existe una gran cantidad m de items o productos
I = {I1, I2, . . . , Im}, que se describen por medio de un conjunto de l atributos
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2.2. SISTEMAS DE RECOMENDACIÓN COLABORATIVOS

o caracteŕısticas, F = {F1, F2, . . . , Fl}. En el Cuadro 2.1 podemos ver una
matriz en la que las filas representan a los items o productos y las columnas
todas las caracteŕısticas posibles para describirlos. En la matriz resultante, el
valor de la tupla a, j será 1 en el caso que el producto Ia posea la caracteŕıstica
Fj y 0 en caso contrario. Por otra parte, tenemos un conjunto de n usuarios,
U = {U1, U2, . . . , Un} junto con un conjunto de votos de cada usuario sobre
sus items evaluados en I.

I / F F1 F2 F3 F4 F5 . . .

I1 1 1 1 0 0 ·
I2 1 1 1 0 0 ·
I3 0 0 1 1 1 ·
I4 0 0 0 1 1 ·
I5 0 0 0 1 1 ·
. . . · · · · · ·

Cuadro 2.1: Base de Datos de descripción del contenido.

El principal problema de los Sistemas de Recomendación basados en con-
tenido es que el uso de las caracteŕısticas para representar el contenido de un
ı́tem puede ser una representación pobre (mientras que podŕıan existir otras
caracteŕısticas que pudieran ser muy usables, pero que no pueden ser fácil-
mente estraidas); la dificultad de realizar buenas recomendaciones a usuarios
con pocos votos y, finalmente, la sobreespecialización del sistema ya que
tiende a recomendar items similares a aquellos que ya se han recomendado
[9].

2.2. Sistemas de Recomendación colaborativos

La aproximación colaborativa para la recomendación es bastante dife-
rente: En vez de recomendar items o productos porque son similares a otros
que le gustaron al usuario, recomienda los que les han gustado a otros usua-
rios similares, es decir, en vez de calcular la similaridad entre items, usa la
similaridad entre usuarios. A grandes rasgos, para cada usuario, obtendremos
un conjunto de usuarios (usuarios vecinos) que se caracterizarán porque su
patrón de voto está áltamente correlado con el del usuario. Aśı, para un pro-
ducto no valorado por un usuario, obtendremos un valor para él basándonos
en una combinación de los valores que han dado sus usuarios vecinos a ese
item.
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CAṔITULO 2. SISTEMAS DE RECOMENDACIÓN

Formalmente, podemos definir un SR colaborativo de la forma siguiente:
Tenemos un conjunto de m productos I = {I1, I2, · · · , Im} cuyo dominio
puede ser variado: libros, peĺıculas, restaurantes, páginas web, etc. Tenemos
un conjunto de n usuarios U = {U1, U2, · · · , Un}. Un usuario Ui puede dar su
opinión sobre cada uno de los productos asignándole un valor discreto s, s ∈
{1, 2, · · · ,#r}. Los datos observados podemos verlos como una matriz n×m
muy dispersa debido a que, normalmente, un usuario sólo vota una pequeña
cantidad de productos. En la matriz R, ra,j representa el voto que el usuario
Ua dio al producto Ij y asumimos que es cero si no lo votó. Por ejemplo, en
el Cuadro 2.2 podemos ver una matriz en la que las filas representan a los
usuarios, las columnas a los productos y #r = 2.

U I1 I2 I3 I4 I5 . . .

U1 2 2 0 1 0 ·
U2 0 0 1 2 0 ·
U3 2 2 0 0 0 ·
U4 2 1 0 0 0 ·
U5 0 0 0 0 2 ·
. . . · · · · · ·

Cuadro 2.2: Base de Datos de votos.

Podemos agrupar los algoritmos usados en las recomendaciones colabo-
rativas en dos clases [10, 9]: basados en memoria y basados en modelos.

SR Colaborativos basados en memoria.
Estos modelos son heuŕısticas que realizan la predicción basándose en las
votaciones ya realizadas por los usuarios. Este tipo de sistemas se conocen
también como SR basados en los vecinos más cercanos.

Existen dos formas de calcular el valor de un voto del sistema: Una me-
diante una predicción basada en usuario y otra basada en item. La predicción
del voto basada en usuario ra,j para el usuario Ua del ı́tem Ij se calcula como
una agregación de los votos de otros usuarios, los N más similares, para el
mismo item. Por el contrario, las aproximaciones basadas en ı́tem usan los
votos dados por el usuario Ua a los items más similares al actual Ij para
calcular la predicción dada por el sistema.

Los métodos más comunes para el cálculo de la similitud entre usuarios
y entre items son los métodos basados en correlación:

Coeficiente de Correlación de Pearson (PCC): Mide el grado de aso-
ciación entre patrones de votos usando un valor entre -1 y +1. Un valor
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positivo significa que, votos altos para el usuario U se corresponden
con votos altos del usuario V y que los votos bajos tienen la mis-
ma correspondencia (un valor negativo para la correlación implica una
asociación inversa). Se calcula de la forma:

PCC(U, V ) =

∑
j(ru,j − ru) · (rv,j − rv)√∑

j(ru,j − ru)2 ·∑j(rv,j − rv)2
, (2.1)

donde las sumas sobre j se aplican sobre aquellos items que tanto U
como V han votado. Si no existen items comunes entre ambos, entonces
PCC(U, V ) = 0 por defecto. ru es el voto medio del usuario U .

La misma idea se puede aplicar para calcular el valor de similitud de
Pearson entre dos items I y J :

PCC(I, J) =

∑
u(ru,j − rj) · (ru,i − ri)√∑

u(ru,j − rj)2 ·
∑

u(ru,i − ri)2
, (2.2)

Medida Coseno: Esta métrica define la similitud entre dos objetos A
y B (usuarios o items) como el coseno del ángulo entre los vectores de
votos, con valores entre 0 y 1. Un valor alto significa que la similitud
es mayor (los dos vectores están muy próximos). La similitud Coseno
entre un usuario U y otro V se define como:

COS(U, V ) =

∑
i∈RU∩RV

ru,i · rv,i√∑
i∈RU

r2u,i ·
∑

i∈RV
r2v,i

(2.3)

Podemos encontrar distintos tipos de SR colaborativos basados en memo-
ria según los recursos utilizados para determinar el vecindario, aśı como para
determinar el voto propuesto por el sistema, es decir, existen distintos méto-
dos para predecir los votos que los usuarios daŕıan a los productos: KNN,
Naive Bayes, árboles de decisión, redes neuronales y modelos probabiĺısticos
entre otros.

SR Colaborativos basados en modelos.
En contraste con los métodos basados en memoria, los algoritmos basados
en modelos usan la colección de votos para aprender un modelo (se realiza
offline), que será usado posteriormente para realizar las predicciones (online).
Constituyen un enfoque alternativo con el que se consigue la transformación
de los items y usuarios al mismo espacio latente de factores (también se
conocen como latent factor models), esto es, tratan de obtener los votos de
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los usuario caracterizando los items y los usuarios en una serie de factores
inferidos del feedback dado por los usuarios (sus votos).

Por ejemplo, para peĺıculas, los factores descubiertos pueden ser dimen-
siones obvias como la calificación para adultos, comedia contra drama, la
cantidad de acción, etc.; otras menos definidas como la rareza o los giros in-
esperados en el argumento; y otras dimensiones totalmente ininterpretables.

Para ello se usan redes neuronales [11], pLSA (Probabilistic Latent Se-
mantic Analysis) [12], Latent Dirichlet Allocation [13], y modelos que son
inducidos por la factorización de la matriz de votos usuarios-items (conoci-
dos como modelos SVD o métodos matriz de factorización), que han obtenido
una gran popularidad debido a una buena precisión y escalabilidad:

Los modelos matriz de factorización mapean a los usuarios e items a un
espacio de factores conjunto de dimensión f , de tal forma que las interacciones
entre los usuarios y los items se modelan como el producto escalar en dicho
espacio. Como consecuencia, cada ı́tem i está asociado con un vector qi ∈ <f

y cada usuario está asociado a un vector pu ∈ <f .

Para un ı́tem dado i, los elementos de qi miden el grado en el que el ı́tem
posee esos factores, de forma positiva o negativa. Para un usuario dado u, los
elementos de pu miden el grado de interés que el usuario tiene en items que
tiene una gran correspondencia en los factores, también de forma positiva o
negativa.

El resultante producto escalar qTi pu captura la interacción entre el usuario
u y el ı́tem i (el interés global del usuario en las caracteŕısticas del item).
Esto aproxima el voto del usuario al item, rui, llegando a estimar r̂ui = qTi pu.

Para aprender los vectores de factores (pu y qi), el sistema ha de minimizar
el error cuadrático normalizado en el conjunto de votos conocidos:

mı́n
q·,p·

∑

(u,i)∈K
(rui − qTi pu)2 + λ(||qi||2 + ||pu||2) (2.4)

donde K es el conjunto de pares (u, i) para los que rui es conocido (el
conjunto de entrenamiento).

El sistema aprende el modelo adaptando los votos previamente realizados.

La constante λ controla el grado de regularización de los parámetros y se
determina normalmente mediante validación cruzada. Con ello evitamos la
sobreadaptación de los datos observados.

La minimización se realiza normalmente usando dos tipos de algoritmos
de aprendizaje: El descenso de gradiente estocástico o alternando los mı́ni-
mos cuadrados (stochastic gradient descent o alternating least squares). Las
técnicas de alternancia de mı́nimos cuadrados rotan entre fijar los pu para
resolver los qi y viceversa, es decir, fijar los qi para resolver los pu.
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El descenso de gradiente estocástico [14] itera a través de todos los vo-
tos del conjunto de entrenamiento. Para cada voto dado rui, se realiza una

predicción r̂ui y se calcula la predicción del error asociado eui
def
= rui − r̂ui.

Entonces, se modifican los parámetros por una magnitud proporciona a γ en
dirección contraria al gradiente produciendo:

qi ← qi + γ · (eui · pu − λ · qi)

pu ← pu + γ · (eui · qi − λ · pu)

Uno de los beneficios de usar la aproximación matriz de factorización
en el filtrado colaborativo es su flexibilidad tratando con varios aspectos de
los datos y con otros requisitos espećıficos de la aplicación. Esto requeriŕıa
que se modificase la ecuación 2.4 para incorporar estos nuevos aspectos. Un
ejemplo muy claro podŕıa ser el prejuicio de algunos usuarios e items, esto
es, tendencias sistemáticas para algunos usuarios a votar más alto que otros
y, para algunos items, recibir votaciones más altas que otros. Otra opción es
la de incorporar el feedback impĺıcito, como puede ser el de los items votados
(aparte del voto que se les ha dado, que seŕıa el expĺıcito) [15, 16, 17]. Por otra
parte, podemos incorporar el dinamismo temporal, ya que la percepción de los
productos y su popularidad está cambiando constantemente y surgen nuevas
selecciones. De forma similar, las inclinaciones de los usuarios evolucionan,
llevando a redefinir sus gustos. Aśı, el sistema debeŕıa tener en cuenta los
efectos temporales reflejando el dinamismo de las interacciones usuario-item.

Los problemas principales que tienen los sistemas de recomendación co-
laborativos son: el inicio fŕıo y el problema del usuario nuevo. El problema del
inicio fŕıo ocurre cuando hay pocas entradas registradas en la base de datos,
es decir, para un producto determinado, hay pocos usuarios del sistema que
han dado su opinión sobre el producto. El problema del usuario nuevo ocurre
cuando las recomendaciones deben hacerse para usuarios que tienen pocos
votos registrados [9, 18]. Aqúı existe un problema, ya que cuanto mayor sea
el número de votos realizados por el usuario, mejor será la asignación del
grupo de usuarios similares. Adicionalmente, como un número relativamente
alto de usuarios suelen votar a un número relativamente pequeño de items, es
bastante complicado encontrar un grupo de usuarios con un patrón de voto
similar significativo [9, 19]. Por esto, usuarios con gustos poco comunes no
pueden ser alojados en grupos correctos y se obtienen para ellos recomenda-
ciones pobres.
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2.3. SR H́ıbridos

Debido a los problemas y limitaciones que tienen las aproximaciones
basadas en contenido y colaborativas, surgen bastantes Sistemas de Recomen-
dación que usan una aproximación h́ıbrida.

Existen cuatro métodos para obtener la predicción para un usuario[9]:

Combinando recomendaciones separadas: Se implementan dos modelos
distintos, uno colaborativo y otro basado en contenido y la recomen-
dación se obtiene combinando las salidas de ambos sistemas.

Añadiendo caracteŕısticas basadas en contenido a los modelos colabo-
rativos: Se basa en técnicas tradicionales colaborativas pero, para cada
usuario, se mantiene un perfil de usuario basado en contenido que es el
que se utiliza para calcular la similitud entre dos usuarios.

Añadiendo caracteŕısticas colaborativas en modelos basados en con-
tenido: La aproximación más popular en esta categoŕıa consiste en
obtener una vista colaborativa de una colección de perfiles de usuario.

Desarrollando un único modelo unificado de recomendación: Existen
distintos métodos como la creación de un clasificador simple basado
en reglas, modelos de regresión bayesianos que emplean cadenas de
Markov y Monte Carlo para estimar y predecir parámetros, métodos
probabiĺısticos unificados, etc.
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Caṕıtulo 3

Redes Bayesianas: modelos
canónicos

3.1. Redes Bayesianas

3.1.1. Definición

Una red bayesiana [2, 3, 4] consta de dos componentes. El primero de el-
los, cualitativo, está representado por un grafo aćıclico dirigido G = (V,E)
donde los nodos (el conjunto finito V ) son variables aleatorias del proble-
ma, y los arcos (E ⊂ V × V ) indican relaciones entre variables. El segundo
de ellos, cuantitativo, se trata de un conjunto de distribuciones de proba-
bilidad condicionadas (una por nodo) donde la distribución en cada nodo
está condicionada al posible valor de cada uno de los padres.

Aunque puede pensarse que una red bayesiana de nodos Xi, i = 1, . . . , n
no es más que una expresión más cómoda para la distribución de proba-
bilidad conjunta p(x1, . . . , xn), realmente es más que eso. Como veremos, su
estructura permite determinar fácilmente relaciones de independencia entre
diferentes variables, lo cuál puede ser útil a la hora de realizar cálculos.

3.1.2. Independencia e independencia condicional

Definición

Uno de los conceptos clásicos de la teoŕıa de la probabilidad es el de inde-
pendencia de sucesos; se dice que dos sucesos (representados por las variables
aleatorias A y B) son independientes si P (A = a,B = b) = P (A = a)·P (B =
b), o lo que es lo mismo, la probabilidad de que ocurra uno de los sucesos es
independiente de que ocurra el otro. Dos variables aleatorias se dicen inde-
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pendientes si lo son para todos sus valores. Resulta fácil pensar en sucesos
independientes, pues estamos rodeados de ellos. Por ejemplo, la probabilidad
de que un d́ıa sea fiesta en Granada es independiente de que ese mismo d́ıa
el precio del petróleo suba en Estados Unidos (siempre y cuando no exista
una complicada conspiración que relacione ambos sucesos).

Para problemas con un amplio número de variables, aparece un fenómeno
que relaciona a más de dos de ellas y que también es estudiado: el de inde-
pendencia condicional. Sean tres variables aleatorias X, Y y Z. Decimos que
X e Y son condicionalmente independientes dada Z si y sólo si todo par de
valores x e y es condicionalmente independiente para cada z tal que p(z) > 0;
es decir:

∀x,∀y,∀z, p(z) > 0⇒ p(x, y|z) = p(x|z) · p(y|z)

El concepto de la independencia condicional es extensible a conjuntos de
variables.

Si existe una variable que está observada, es decir, que ha tomado un
cierto valor de su conjunto de valores, y queremos comprobar independen-
cias respecto a ella, basta con comprobar la independencia con dicho valor.
Generalmente, al observar una variable, pueden cambiar las relaciones de
independencia de un conjunto de variables.

Si un conjunto de variables {X1, . . . , Xn} es independiente habiéndose
observado otro conjunto {Y1, . . . , Yn}, lo notaremos como:

I(X1, . . . , Xn|Y1, . . . , Yn)

Obviamente, la independencia condicional es un caso general del concepto
de independencia de variables anteriormente mencionado, ya que podemos
decir que las variabes del conjunto {X1, . . . , Xn} son independientes entre
śı si I(X1, . . . , Xn|∅) (siendo esa una forma válida de notarlo).

Criterios gráficos

Resulta bastante sencillo encontrar criterios gráficos mediante los que
podemos encontrar relaciones de independencia (condicional o no) entre con-
juntos de variables tan solo observando el grafo correspondiente a la red
bayesiana. El más importante es el llamado criterio de d-separación (véase
[20] para un desarrollo más profundo del que se hace aqúı).

Definición: decimos que un nodo de una red bayesiana, para dos
arcos concretos incidentes en él, es cabeza-cabeza si dichos arcos
le apuntan. En caso contrario, diremos que es no cabeza-cabeza
(ver figura 3.1 para más detalle).
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Figura 3.1: A la izquierda, nodo cabeza-cabeza. A la derecha, las tres
posibles formas de nodo no cabeza-cabeza.

Definición (separación gráfica): decimos que X es indepen-
diente de Y dado Z1, . . . , Zk si todo camino (utilizando los arcos
en ambas direcciones) entre X e Y está bloqueado en algún nodo
debido a Z1, . . . , Zk. Las formas de bloqueo (d-separación) de un
nodo son dos:

Un nodo no cabeza-cabeza observado en el camino.

Un nodo cabeza-cabeza no observado, ni ninguno de sus des-
cendientes no observados, en el camino.

Estas reglas son demostrables a partir de la definición de independencia,
pero dicha demostración no la veremos aqúı, pudiendo el lector remitirse a
[3] para encontrarla.
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3.2. Modelos canónicos: Modelo aditivo

3.2.1. Introducción

La construcción de modelos gráficos probabiĺısticos, tales como las redes
bayesianas, requiere la especificación de gran cantidad de parámetros. Con-
cretamente, para cada nodo Xi en la red, hay que concretar las distribuciones
de probabilidad Pr(xi|y) donde Y = {Y1, . . . , Y|Pa(Xi)|}, donde Pa(Xi) re-
presenta el conjunto de nodos “padres” de Xi.

Para el caso de variables discretas, en las que cada nodo Xi toma va-
lores del conjunto S = {1, 2, . . . , r} (y denotaremos xi,s), y |Pa(Xi)| = n, el
número de parámetros a estimar es rn − 1, lo cual es bastante elevado. La
solución a este problema es utilizar modelos canónicos [21].

Estos modelos cánonicos permiten, tras una serie de suposiciones, la cons-
trucción de redes bayesianas donde los nodos tienen un gran número de
padres, sin necesitar la estimación de un número de parámetros exponencial
en el número de variables (normalmente, sólo requieren estimar un número
de parámetros lineal).

3.2.2. Modelo aditivo

Dado un nodo Xi debemos definir, para cada configuración pa(Xi), la
distribución de probabilidad condicionada Pr(xi,j|pa(Xi)). Para ello, usamos
el modelo canónico aditivo (estudiado en detalle en [5]):

Definición: Sea Xi un nodo en la red bayesiana, sea Pa(Xi) el
conjunto de padres de Xi y sea Yk el k-ésimo padre de Xi en la red.
Usando el modelo canónico aditivo, el conjunto de distribuciones
de probabilidad condicionada para el nodo Xi pueden calcularse
eficientemente de la forma:

Pr(xi,j|pa(Xi)) =
∑

Yk∈Pa(Xi)

w(yk,l, xi,j) (3.1)

donde yk,l es el valor que la variable Yk toma en la configuración
pa(Xi) y w(yk,l, xi,j) son pesos que miden cómo el l-ésimo valor
de la variable Yk describe el j-ésimo estado del nodo Xi.

La única restricción que imponemos sobre los pesos es que sean un conjunto
de valores positivos que verifiquen que:

r∑

j=1

∑

Yk∈Pa(Xi)

w(yk,l, xi,j) = 1,∀ pa(Xi)

26
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Propagación

Cuando usamos el modelo canónico aditivo para representar la interacción
entre variables, las probabilidades a posteriori se pueden obtener siguiendo
el siguiente teorema (ver [5]) que muestra cómo calcular los valores exactos
de probabilidad:

Teorema: Sea Xa un nodo en la red bayesiana, sea mXa el
número de padres de Xa, Yj un nodo en el conjunto Pa(Xa),
y lYj

el número de estados que toma Yj. Si las distribuciones
de probabilidad condicionada pueden expresarse bajo las condi-
ciones dadas en la Ecuación 3.1 y la evidencia se incluye sólo en
ancestros de Xa, entonces las probabilidades a posteriori exactas
pueden calcularse usando la fórmula siguiente:

Pr(xa,s|ev) =
mXa∑

j=1

lYj∑

k=1

w(yj,k, xa,s) · Pr(yj,k|ev).

Notar que la propagación puede realizarse en tiempo lineal con respecto al
número de padres. Consideramos que este teorema es importante ya que
expresa que la propagación exacta puede realizarse sin imponer restricciones
de independencia entre padres de la variable Xa.
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Caṕıtulo 4

Contribuciones: Resumen,
Discusión de los Resultados y
Trabajo Futuro

A través de las contribuciones que vamos a presentar, creemos que queda
demostrada la idoniedad del uso de las Redes Bayesianas para modelar las
relaciones entre items y usuarios que se presentan en los problemas de la
recomendación. La versatibilidad y potencia de las mismas nos ha permitido
modelizar bajo un mismo formalismo distintos tipos de SR: colaborativos,
basados en contenido, h́ıbridos y grupales. Todos los sistemas desarrollados
han sido evaluados utilizando colecciones de datos estándares en la literatura,
obteniendo resultados competitivos con el estado del arte.

A continuación pasamos a detallar las soluciones propuestas para los dis-
tintos problemas abordados, aśı como las principales conclusiones que se ob-
tienen.

4.1. Managing Uncertainty in Group Recommen-
ding Processes

4.1.1. Introducción al problema

La mayoŕıa de Sistemas de Recomendación se han diseñado para uso
individual, es decir, existe un usuario activo que recibe recomendaciones sobre
productos concretos una vez que se ha identificado en el sistema. El problema
surge en aquellos dominios en los que un grupo de personas participan en
una actividad individual, por ejemplo, ver una peĺıcula o ir de vacaciones, o
incluso, en aquellas ocasiones en las que una persona ha de tomar una decisión
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CAṔITULO 4. CONTRIBUCIONES: RESUMEN, DISCUSIÓN DE LOS
RESULTADOS Y TRABAJO FUTURO

usuario 1* 2* 3* 4* 5*
A 0.2 0.2 0.2 0.19 0.21
B 0 0 0 0.1 0.9
C 0.49 0 0 0 0.51

Cuadro 4.1: Ejemplo: Probabilidad de voto para un determinado item.

en nombre de un grupo. En este trabajo se ha estudiado el problema de la
recomendación a grupos, en el que el objetivo es obtener una recomendación
para un grupo de personas [22]. De una u otra forma, la recomendación
a grupos requiere la mezcla de distintas preferencias individuales. Es por
esto que uno de los principales problemas en estos casos es la búsqueda de
mecanismos de agregación que permitan obtener las recomendaciones para
el grupo [23, 24, 25, 22]. En estos casos, se asume que la información con
la que tratan las funciones de agregación es precisa y que la estrategia para
mezclar esa información produce, por lo tanto, recomendaciones precisas.
Esto no es necesariamente verdadero, especialmente si consideramos que las
preferencias de usuario se determinan normalmente por medio de mecanismos
automáticos. Como ejemplo podemos ver en el Cuadro 4.1 la probabilidad
de voto (de 1 a 5 estrellas) para tres usuarios (A, B, y C) sobre un ı́tem
determinado. En todos los casos podemos afirmar que el voto más probable
es el 5, pero la certeza en cada situación no es la misma.

En este trabajo nos hemos centrado en el manejo de la incertidumbre
en el proceso de decisión para grupos, estableciendo dos fuentes distintas: la
incertidumbre al fijar las preferencias de usuario y la incertidumbre que es
inherente al proceso de mezcla.

4.1.2. Solución propuesta

En este trabajo hemos investigado el valor del uso de las redes bayesianas
para representar la interacción de los diferentes individuos pertenecientes a
un grupo para tomar una decisión o recomendación. El modelo propuesto re-
presenta intuitivamente las relaciones entre usuarios y grupos y conseguimos
representar la incertidumbre sobre la relevancia de un ı́tem para un usuario
y la incertidumbre relacionada con los mecanismos usados por el grupo para
agregar las preferencias individuales, mecanismos que se codifican mediante
las distribuciones de probabilidad condicionada almacenadas en los nodos
grupo. Esas distribuciones de probabilidad pueden ser consideradas como
“funciones de valor social” y consideramos cuatro alternativas:

30



4.2. COMBINING CONTENT-BASED AND COLLABORATIVE
RECOMMENDATIONS: A HYBRID APPROACH BASED ON BAYESIAN

NETWORKS
Puerta Máximo: Modela aquellas situaciones en las que el voto del
grupo es el mismo que aquel de la persona más satisfecha.

Puerta Mı́nimo: El voto del grupo es el mismo que aquel de la persona
más insatisfecha.

Puerta Media: El voto del grupo es la media de los votos individuales
de sus miembros.

Puerta Mayoŕıa: El voto del grupo es el voto mayoritario de los miem-
bros del grupo.

4.1.3. Resultados obtenidos

Los resultados experimentales demuestran que, teniendo en cuenta la in-
certidumbre a la hora de realizar la agregación, obtenemos mejores resultados
para los grupos. Además, los resultados obtenidos determinan otros factores
que afectan al rendimiento del sistema, como la forma en que se crea el grupo,
el número de individuos en el grupo, la función de agregación usada, etc. Por
otra parte, el modelo propuesto es bastante genérico, de tal forma que puede
ser aplicado en diferentes tareas de recomendación (por ejemplo, encontrar
buenos items o predicción de votos) para un único ı́tem o un conjunto de
ellos. Más aún, los resultados presentados pueden extenderse fácilmente a
aquellas disciplinas donde la agregación de información representa un im-
portante componente, y esas disciplinas incluyen estad́ıstica, teoŕıa de la
decisión, economı́a, ciencias poĺıticas, psicoloǵıa, etc.

4.2. Combining Content-based and Collaborative
Recommendations: a Hybrid approach based
on Bayesian networks

4.2.1. Introducción al problema

Los SR permiten a los usuarios encontrar y evaluar productos por medio
de recomendaciones, es decir, enlazan usuarios a art́ıculos que ellos posible-
mente consumiŕıan (comprar, ver, escuchar, leer, etc.), asociando automática-
mente el contenido de esos productos (o las opiniones o acciones de otros
individuos) a los consumidores potenciales. Éstos son capaces de filtrar la
información disponible dependiendo de cada usuario espećıfico para ayudar-
los a tomar sus decisiones. La información necesaria para operar viene en
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forma de ranking de productos (por medio de votos que reflejan cuánto le ha
gustado a alguien un item, o impĺıcitamente mediante la observación de las
acciones del usuario (estudiando los registros de compras, las páginas web
visitadas, hábitos de navegación, etc.). También se puede requerir informa-
ción demográfica (edad, sexo, área geográfica, etc.). Con esta información,
los sistemas deben ofrecer una predicción, normalmente expresada mediante
un valor numérico, que representa la opinión esperada sobre un producto.
Además, pueden proporcionar una lista de productos que al usuario debeŕıan
gustarle más. Una razón por la que la predicción del voto no es una ciencia
exacta es debido a la incertidumbre intŕınseca asociada a las diferentes tareas
que componen este campo de investigación:

La información obtenida del usuario (de forma expĺıcita e impĺıcita)
es una descripción vaga de la información real. Por varias razones, el
usuario no puede obtener una representación exacta de lo que necesi-
ta (por ejemplo, no son capaces de expresar qué necesitan o navegan
sin rumbo por los enlaces web). Las opiniones de los usuarios vaŕıan
enormemente dependiendo de los productos observados.

La construcción de la representación del producto es otro ejemplo, ya
que es el resultado de una caracterización incompleta de su contenido,
generalmente en forma de lista de palabras.

La estimación del voto está también influenciada por la incertidumbre,
derivada tanto de los dos puntos anteriores, como de la causada por los
métodos para realizar la predicción en śı.

La inteligencia artificial ha centrado parte de sus esfuerzos investigadores
en esos problemas en los que la incertidumbre es una caracteŕıstica impor-
tante, representando uno de los pocos campos en donde puede resolverse.

4.2.2. Solución propuesta

Las redes bayesianas, debido a su habilidad para funcionar bien en la
solución de problemas con un alto nivel de incertidumbre, son un campo re-
ferencia en la inteligencia artificial. En este trabajo hemos realizado el diseño
de un nuevo modelo de recomendación basado en redes bayesianas para in-
tentar realizar predicciones más eficientes y correctas. Con este formalismo
nuestro objetivo consiste en modelar la forma en que los diferentes partici-
pantes se relacionan: productos, usuarios, votos de usuario, usuarios simi-
lares, etc. La propuesta presentada es un Recomendador Hı́brido que combi-
na recomendaciones basadas en contenido y recomendaciones colaborativas.
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4.2. COMBINING CONTENT-BASED AND COLLABORATIVE
RECOMMENDATIONS: A HYBRID APPROACH BASED ON BAYESIAN

NETWORKS
Ambos métodos se combinan mediante una red bayesiana que es capaz de
representar las relaciones más importantes entre los elementos involucrados.

4.2.3. Resultados obtenidos

A partir del modelo presentado en este trabajo, se ha realizado una ex-
perimentación mediante la cual se han obtenido las siguientes conclusiones:

El modelo está basado en una topoloǵıa de capas representando todos
los elementos que conforman el problema de la recomendación h́ıbri-
da. El grado de participación de cada mecanismo de recomendación
(colaborativo o basado en contenido) se selecciona automáticamente,
adaptando el modelo a las condiciones espećıficas del problema. Hemos
probado emṕıricamente que la combinación de la información colabo-
rativa y de contenido ayudan a mejorar la precisión del modelo.

Problemas como la dispersión de los datos o el hecho de que la clasi-
ficación debeŕıa calcularse en tiempo real han de tenerse en cuenta
cuando nos centramos en los aspectos computacionales del proceso de
recomendación. En particular, presentamos las directrices para estimar
los valores de probabilidad de un conjunto de datos y hemos diseñado
un algoritmo de propagación eficaz, basado en modelos canónicos.

Siguiendo la clasificación de R. Burke [7], nuestra aproximación h́ıbrida
se encuentra en la clase “Feature Augmentation” ya que en una op-
eración normal, las probabilidades obtenidas en la propagación de las
capas variables envueltas en una recomendación basada en contenido
son usadas para propagar probabilidades en las capas relacionadas en
la recomendación colaborativa. Más aún, como existe un mecanismo
para controlar la contribución de ambos elementos, puede clasificarse
como “mixed”.

El modelo propuesto es versátil: puede trabajar de forma exclusiva
aplicando el filtrado colaborativo o basado en contenido y, además,
puede aplicarse para resolver diferentes problemas de recomendación
(como encontrar buenos items o predecir votos).
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4.3. Using second-hand information in Collabo-
rative Recommender Systems

4.3.1. Introducción al problema

El éxito de los SR Colaborativos depende de la disponibilidad de una
gran cantidad de información. El problema surge cuando, para evaluar un
usuario sobre un ı́tem concreto, las personas con gustos similares no poseen
información sobre el ı́tem. En estos casos el sistema ofrecerá una predicción
que no será lo suficientemente buena.

Existen estudios que tratan de resolver este problema mediante el uso de
técnicas basadas en contenido. Una solución propuesta es el uso de aproxi-
maciones h́ıbridas que combinan el uso de técnicas colaborativas y basadas
en contenido. En estos casos, cuando no existe información colaborativa
disponible, las predicciones se realizan usando los votos dados por el usuario
actual a ı́tems similares al ı́tem actual. Esta similitud entre ı́tems se calcula
mediante la distancia Coseno entre el conjunto de caracteŕısticas [26]. Otra
aproximación [27] usa la similitud entre usuarios dependiendo de los perfiles
basados en contenido en vez de comparar el estilo de votación. En [28] se
propone el uso de una aproximación bayesiana que permite obtener buenas
recomendaciones cuando no existe información colaborativa mediante el uso
del algoritmo EM. Otra aproximación bayesiana la encontramos en [29] donde
se propone una solución en la que, gracias a la topoloǵıa del modelo prop-
uesto, se usan los votos colaborativos dados a ı́tems similares al ı́tem actual.
Otra solución totalmente distinta es el uso de un filtro colaborativo sobreali-
mentado (imputation-boosted) [19, 30], en el que eliminan el problema de la
poca densidad de los conjuntos de datos insertando los votos predichos por
un sistema puro basado en contenido. Esto habilita el conjunto completo de
votos de todos los usuarios para intentar mejorar las predicciones.

4.3.2. Solución propuesta

Las propuestas para solucionar el problema dependen de la disponibilidad
de la descripción del contenido de los ı́tems. Nosotros vamos a proponer una
nueva aproximación que puede ser usada en aquellas situaciones en las que
no existe información de contenido: el uso de lo que hemos llamado “infor-
mación de segunda mano”. Para ilustrar la idea, pensemos en la siguiente
situación: José pregunta a sus amigos cercanos qué opinión tienen sobre una
peĺıcula en particular, pero casi ninguno de ellos la ha visto. En un intento
de proporcionar su opinión sobre la peĺıcula, sus amigos deciden preguntar a
sus propios amigos. Esto es lo que hemos llamado “información de segunda
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mano”. En este art́ıculo hemos estudiado si esas nuevas opiniones originan
una mejora de las recomendaciones obtenidas para José. La implementación
es sencilla: para aquellos usuarios similares que no han votado el ı́tem actual
en el pasado, obtendremos nuevo conocimiento colaborativo usando los vo-
tos que el sistema predice para ellos, haciendo uso de la información de sus
propios usuarios similares. Esta propuesta la vamos a implementar en dos
SR: Uno propuesto por nosotros basado en redes bayesianas y otro basado
en vecindario.

4.3.3. Resultados obtenidos

Gracias a la experimentación realizada se ha probado que obtener nueva
información de segunda mano mejora las predicciones de los sistemas. Un
hecho importante que contribuye al éxito, en términos de precisión, es que la
información (en términos de nuevos votos) debe ser de calidad. Los resultados
experimentales indican que hay dos situaciones en las que el uso de informa-
ción de segunda mano no contribuye a la predicción del voto: primero, cuando
la nueva información no se puede obtener de la base de datos de votos, como
ocurre con ı́tems ’raros’ que apenas han sido votados. En esta situación, el
uso de información de contenido (si está disponible) puede ser una buena
solución para realizar las predicciones, como una aproximación h́ıbrida. Por
otra parte, el uso de información de segunda mano tampoco ayudará si ya
existen suficientes votos de ’primera mano’. Aún aśı, en ambas situaciones, el
funcionamiento del sistema no empeora cuando se incorpora la información
de segunda mano. Las dos situaciones en las que nuestra propuesta puede
ser provechosa son: por un lado, en aquellos casos en los cuales el ı́tem ac-
tual no es raro ni muy frecuente (que debeŕıa ser lo usual en la mayoŕıa de
aplicaciones). En estos casos, debeŕıa ser interesante la búsqueda de nueva
información en la base de datos de votos. Por otra parte, esta propuesta
podŕıa ser útil en tiendas online (como Amazon o una aplicación basada en
peĺıculas) donde, con bastante frecuencia, aparecen productos nuevos. En es-
tas tiendas, los usuarios empiezan a votar después de incluir el nuevo ı́tem.
Por consiguiente, al principio (por ejemplo semanas) es posible que, dado un
usuario, pocos de sus vecinos lo hayan votado. En esta situación particular
la información proveniente de vecinos de ’segunda mano’ es favorecedora.
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4.4. Using past-predictions accuracy in Recom-
mender Systems

4.4.1. Introducción al problema

Como ya hemos comentado en el Caṕıtulo 2, existen dos clases de SR
Colaborativos: basados en memoria y basados en modelos. Los basados en
memoria usan el conjunto completo de votos para realizar las recomenda-
ciones. Sin embargo, los algoritmos basados en modelos, las predicciones se
realizan construyendo (offline) un modelo expĺıcito de las relaciones entre los
items. Este modelo es usado (online) para realizar las predicciones.

Centrándonos en las aproximaciones basadas en memoria, tenemos que
las predicciones se obtienen considerando los usuarios/items más similares
(por esto también se les conoce como modelos de recomendación basados
en vecindario). Un paso cŕıtico en estos modelos es la identificación de los
vecinos, ya que la forma en la que se calcula la similitud tiene un impacto
importante en el comportamiento del sistema. Hasta la fecha, los estudios
e implementaciones utilizados en aplicaciones del mundo real se basan en
medidas tradicionales de vector similitud como la Correlación de Pearson en
sus distintas formulaciones, medida coseno, el Ranking de Spearman, etc.
Este tipo de medidas de similitud miden la cercańıa entre los votos de los
usuarios pero no son capaces de caracterizar completamente sus relaciones.

4.4.2. Solución propuesta

En este trabajo se ha presentado una nueva métrica para medir la calidad
de un vecino. Nuestra hipótesis es que, si un usuario U es bueno para predecir
los votos ya realizados por el usuario activo, también lo será para las predic-
ciones de un ı́tem no votado. La clave de esta aproximación es que vamos a
considerar las predicciones de los votos en vez de los votos ya realizados. Por
lo tanto, formalmente podemos decir que tendremos, por un lado, los votos
dados por el usuario activo RA = {ra,1, . . . , ra,m} a sus m items votados y,
por otra parte, los votos que serán propuestos (predichos) para cada ı́tem por
el usuario U , F̂A(U) = {r̂a,1, . . . , r̂a,m}. Finalmente, una vez predichos todos
los items votados por el usuario actual mediante el resto de usuarios, creamos
una clasificación de dichos usuarios basándonos en la capacidad de predic-
ción: cuanto mejor sea, mejor clasificado. En este momento nos quedamos
con los N mejores para establecer el vecindario del usuario actual.
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4.4.3. Resultados obtenidos

Mediante la experimentación realizada en este art́ıculo, se ha demostrado
que el uso de las probabilidades predictivas, esto es, cómo de probable es que
el usuario activo vote el ı́tem actual con un valor, dado que conocemos los vo-
tos de los vecinos, puede usarse como estrategia para encontrar el vecindario
(obteniendo resultados muy buenos) y para combinar las recomendaciones
individuales (mediante su uso como peso que mide la fuerza de las relaciones
entre un vecino y el usuario actual). Mediante el estudio de los vecindarios
obtenidos usando la aproximación predictiva, hemos encontrado que el con-
junto de usuarios obtenidos difiere con respecto al vecindario obtenido usan-
do un criterio de correlación clásico, siendo tanto o más válidos que éstos.
Más aún, hemos demostrado que los mejores resultados se obtienen mediante
la combinación de las capacidades predictivas y la correlación, usando una
aproximación conjunta.

4.5. Trabajo Futuro

De forma global, como trabajos futuros, nos proponemos dos grandes ĺı-
neas de trabajo: por un lado, avanzar en el uso de los Modelos Gráficos Proba-
biĺısticos para modelar la problemática de los SR y por otro estudiar aquellos
factores que permitan mejorar la calidad de las recomendaciones. Toman-
do como punto de partida los modelos desarrollados (basados en contenido,
colaborativos e h́ıbridos), pretendemos adaptarlos o crear nuevos modelos
capaces de solventar los retos que nos proponemos:

Por un lado, estudiar cómo se puede incluir más y mejor información
en los procesos involucrados en la recomendación. Dos de los aspectos
que pretendemos cubrir en esta ĺınea son:

• Dotar a los SR de mecanismos para manejar las relaciones entre
los distintos componentes estructurales que definan los usuarios,
los productos y las propias valoraciones de los usuarios. Mediante
el análisis de estas relaciones debemos obtener mejores perfiles
de usuario y, por tanto, ser más precisos a la hora de encontrar
aquellos productos que realmente interesan.

• Introducción del contexto a la hora de generar las recomenda-
ciones. Entendemos el contexto en el amplio sentido de la palabra,
pudiendo considerar elementos como criterios demográficos, tiem-
po, localización, clima, si el producto se va a compartir con otros
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usuarios, etc. En este sentido podŕıamos permitir que las recomen-
daciones difieran según el contexto en el que se están realizando.

Criterios temporales. Debemos permitir al sistema capturar las dife-
rencias de gusto de un usuario a lo largo del tiempo y también las
diferencias que existen en los votos para unos determinados ı́tems de-
pendiendo de cuándo se realicen. Por ejemplo, considerando el contexto
“tiempo”, podemos hacer que los productos que se recomienden para
un bebé vaŕıen según la edad del mismo.

Por otro lado, pretendemos mejorar los datos permitiendo que los mis-
mos provengan de distintas fuentes o proveedores, por ejemplo utilizan-
do las descripciones o valoraciones que, sobre un producto, se hagan en
distintas fuentes de información (sitios web). Usaremos datos de inter-
acción usuario-́ıtem, los datos del ı́tem, etiquetas sociales, redes sociales
y estructuras de grafo.

Estudio de mecanismos para mejorar la justificación que se da sobre la
recomendación al usuario. Aún asumiendo que la recomendación es un
proceso estad́ıstico y por tanto, que necesariamente se cometerán erro-
res, un SR no puede ser visto como una caja negra, pues dif́ıcilmente
el usuario creerá en sus propuestas. Nuestro objetivo será el de dotar
a los sistema de la capacidad de dar explicaciones sobre el proceso de
decisión. Pretendemos que el sistema pueda interactuar con el usuario,
y aśı podamos utilizar las opiniones que tiene el usuario sobre las ex-
plicaciones para mejorar su perfil. Pretendemos utilizar herramientas
como abducción en redes bayesianas o técnicas basadas en el apren-
dizaje activo para este objetivo.

Novedad (en entornos de recomendación de noticias). Cuando un usuario
se asoma a la web con la intención de obtener información sobre las
noticias del d́ıa, es fácil que se pierda entre cientos de resultados, mu-
chos de ellos coincidentes. Un SR le puede ayudar a filtrar toda aquella
información que no le es de interés, bien porque no encaje con su perfil,
bien porque es redundante con otra información que ya conoce.

Acceso a la información del grupo. Pretendemos definir modelos con-
siderando la necesidad de información particular del grupo. Para ello
estudiaremos mecanismos que puedan ayudar a los usuarios del grupo
a encontrar información relevante, reduciendo aśı los esfuerzos indivi-
duales. Pretendemos definir modelos para determinar la relevancia de
un producto para el grupo (como conjunto) y estudiar nuevas estrate-
gias de agregación para determinar el perfil del grupo.
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1 Introduction

Recommender systems (RS) provide specific suggestions about items (or actions)
within a given domain which may be considered of interest to the user (Resnick and
Varian 1997). Depending on the information used when recommending, traditional
RS are mainly classified into content and collaborative-based RS, although hybrid
approaches do exist. The first type recommends a product by considering its content
similarity with those products in which the user has previously expressed an interest.
The second alternative attempts to identify groups of people with similar tastes to the
user and to recommend items that they have liked. Most RS are designed for individual
use, i.e. there is an active user who receives recommendations about certain products
once they have logged on to the system.

In this paper, we will focus on the related problem of group recommending (GR),
where the objective is to obtain recommendations for groups of people (Jameson and
Smyth 2007). This kind of RS is appropriate for domains where a group of people
participate in a single activity such as watching a movie or going on vacation and also
in situations where a single person must make a decision on behalf of the group.

In one way or another, GR involves merging different individual preferences. In
these situations, it is natural that one of the most important issues is the search for
an aggregation mechanism to obtain recommendations for the group. According to
Pennock and Wellman (2005) “... there is nothing close to a single well-accepted
normative basis for group beliefs, group preferences or group decision making.”, and
many aggregation strategies can therefore be found in literature for group decisions
(Masthoff 2004; Masthoff and Gatt 2006; Yu et al. 2006; Jameson and Smyth 2007).
It is typically assumed that member preferences are given using a rating domain (let
us say from 5∗, really like, to 1∗, really hate). An aggregation strategy is then used to
determine the group rating. For example, let us consider a group with three individuals,
John, Ann and Mary, where John rates a product 5∗, Ann rates it 2∗, and Mary rates
it 5∗. Following an average aggregation criterion, we could then say that the group
rating for this product is 4∗.

As in the previous example, the methods proposed in GR literature (see Jameson
and Smyth 2007 for a review) do not deal with uncertainty. They assume that the inputs
of the aggregation functions (i.e. user preferences) are precise and use a merging strat-
egy to compute precise outputs. This assumption is not necessarily true, especially if
we consider that the user’s preferences are normally determined by means of auto-
matic mechanisms. In these cases, a probability distribution over the candidate ratings
might be used to express user likelihoods. For example, Table 1 shows the probability
distributions representing the preferences of three users (A, B, and C). In this case,

Table 1 User ratings for a given
item

User 1* 2* 3* 4* 5*

A 0.2 0.2 0.2 0.19 0.21

B 0 0 0 0.1 0.9

C 0.49 0 0 0 0.51
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although 5∗ might be considered the most probable rating, we will not have the same
confidence about every situation.

Surprisingly, little attention has been paid in GR literature to the problem of man-
aging uncertainty although it has been well established in the general group decision
framework (see Clemen and Winkler 1999; Genest and Zidek 1986 for a review). In
this paper, therefore, we will focus on this particular problem. We maintain that two
different sources of uncertainty can be found in group recommending processes: the
uncertainty shown when user preferences are set, i.e. the user’s personal opinion about
an item or feature; and the uncertainty which is inherent to the merging process.

The purpose of this paper is to investigate the value of using Bayesian networks
(BN) to represent how different individuals in a group interact in order to make a final
choice or recommendation. In our approach, the BN formalism is used to represent
both the interactions between group members and the processes leading to the final
choice or recommendation. We will show how common decision rules in literature
could be managed by adequately designing canonical models with the BN language,
thereby shedding new light on the combination processes. Discussion about subjects
such as how the groups are formed, how long they have existed, relationships between
group members, how the group might interact to reach a consensus, etc. are beyond the
scope of this paper. We shall assume that all the individuals use the same set of labels
to express their preferences for an item, and that these preferences are represented by
means of a probability distribution (probably estimated from a data set).

We consider BNs appropriate because they combine a qualitative representation
of the problem through an explicit representation of the dependence relationships
between items, users and groups, with a quantitative representation by means of a set
of probability distributions to measure the strength of these relationships. Throughout
the process, we must consider the computational aspects of the RS, where the sparse-
ness of the data and the fact that the ranking should be computed in real time represent
two challenges.

The second section of this paper briefly examines group recommender systems
and related work. Section 3 presents the proposed BN-based model which enables the
interaction between individuals to be represented. Section 4 examines how to represent
the strength of the individuals’ interactions (i.e. conditional probability distributions)
and Sect. 5 discusses how inference is performed in order to make recommendations
to the group. Section 6 examines the experimental framework. Section 7 discusses
the experimental results obtained when considering uncertainty in individual ratings
and in Sect. 8 we study those situations where the process behind the group rating is
also uncertain. Finally, our conclusions and comments regarding further research are
discussed in Sect. 9.

2 Classification of group recommender systems and related work

Although GR is quite a new research topic, many papers on this problem have already
been published. The specific objectives of recommender systems in the research pub-
lished so far are determined by the characteristics of the domain for which the system
has been developed. These characteristics significantly affect the choice of design and
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Fig. 1 Classification of Group Recommending Systems

each publication therefore focuses on a specific issue (from how to acquire information
about group preferences or how the system generates and explains the recommenda-
tions to studying the mechanism used to reach a consensus (Jameson and Smyth
2007)). As a result, relating the different approaches is a difficult task.

In this section, we will present a new classification taxonomy for group recom-
mending systems. This classification is based on three independent components of
primary importance in the design of a group recommending system and not on the
particular techniques used to solve each problem: the information source, the aggre-
gation criterion used to make the recommendations, and the user’s interaction with
the system. Figure 1 shows a graphical representation of the proposed classification.

– Source of information: This classification criterion, which has been borrowed from
classical RS literature (Adomavicius and Tuzhilin 2005), distinguishes between
content-based (CB) and collaborative filtering (CF). In the first case, the recom-
mended items are those which are similar to the ones that individuals have found
interesting in the past. As a result, it is necessary to analyze the content’s features
for recommending.
The second alternative considers that the recommendations for a target product have
been obtained by considering how people with similar tastes rated a product in the
past. These systems are based on the idea that people will agree in future evalua-
tions if they have also agreed in their past evaluations. The information sources are
therefore the preference ratings given by similar users.
A new category can obviously be obtained if we consider hybrid approaches that
combine both (collaborative and content-based) methods.1

– Recommendation strategies:
Once we have the information to hand, the strategy used for aggregating this infor-
mation is a central point in group recommending, and generally in any group deci-
sion process. In this case, two different approaches can be distinguished. The first

1 Without loss of generality, we have decided not to include this category in our taxonomy since, to the best
of our knowledge, no study has tried to combine both techniques in the group recommending framework.
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approach, aggregating recommendations (AR), is a two-step strategy, where an indi-
vidual recommendation is first obtained for each group member, and then a common
recommendation is obtained by merging these individual recommendations. In the
second approach, aggregating profiles (AP), the objective is to obtain a common
profile by representing group preferences. This can be done explicitly, where the
individuals use a common group account to give their preferences, or implicitly,
by means of an aggregation mechanism for the different individuals’ profiles or
preferences.

– Individual interactions
Finally, a group recommending system can also be categorized by considering the
way in which the users interact with the system. The individuals can be dichoto-
mized into passive members (PM) and active members (AM). Focusing on the active
members, the final purpose is to reach a consensus between the group members and,
like many decision support system approaches, it is necessary for the users to eval-
uate the system recommendations. In contrast, when the members are passive, the
final purpose is only to provide a recommendation to the group, as might be the
case when using an RS in a marketing campaign. In this situation, the individuals
do not interact with the system in order to evaluate the proposed recommendations.

Since we use three non-overlapping criteria for classification purposes, a given GRS
can be classified using three labels, one for each category. For instance, a GRS can
be classified as CB+AP+PM if the group profile is obtained by combining the infor-
mation about the content of the items which have been previously evaluated by each
user. This profile will be used to send the final recommendations to the group.

2.1 Related work

Once the taxonomy has been presented, we will then go on to classify previously
published GR systems.

– CB+AP+PM: most published GRSs might be included in this category. For exam-
ple, let us consider MusicFX (McCarthy and Anagnost 2000). Given a database of
member preferences for musical genres (each user rates each of the 91 genres on a
five-point scale), the group profile is computed by summing the squared individual
preferences. Using a weighted random selection operator, the next music station
to be played is then selected. No interaction with the system is possible except by
changing user preferences.
The inputs in the case of group modeling (Masthoff 2004) are user preferences (rat-
ings) for a series of programs, and in this paper we study the performance of several
aggregation strategies. The article (Yu et al. 2006) presents various TV program
recommendations for multiple viewers by merging individual user preferences on
features (e.g. genre, actor, etc.) to construct a group profile. The aim of the aggrega-
tion strategy is to minimize the total distance in such a way that the merged profile
is close to most user preferences, thereby satisfying most of the group.

– CB+AP+AM: The Travel Decision Forum (Jameson 2004) was developed to help
a group of users agree on the desired attributes of a vacation. This system allows
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group members to collaboratively specify their preferences and to reach an agree-
ment about an overall solution. In this case, a group profile is obtained through the
interaction of the members, taking into account the system’s current recommenda-
tion which is obtained by aggregating individual preferences for each dimension.
In the article (Kudenko et al. 2003), a system is presented to help a group of users
reach a joint decision based on individual user preferences.

– CB+AR+PM: Intrigue (Ardissono et al. 2003) recommends tourist attractions for
heterogeneous groups that include homogeneous subgroups where the members
have similar preferences. In this system, the users record their preferences for a
series of tourist attractions, and recommendations (obtained using a fuzzy AND)
are then merged using a weighted scheme where each weight represents the rele-
vance of the corresponding subgroup (for instance, a subgroup could be particularly
influential since it represents a large portion of the group). Although the system
explains their recommendations, it has no means of interacting with the user.

– CF+AR+PM: Polylens (O’Connor et al. 2001), an extension of MovieLens (Her-
locker et al. 2004), recommends movies to groups of users. This system uses a
nearest neighbor-based algorithm to find the individuals with the most similar tastes
to those of each group member and to obtain recommendations for every user. The
voting preferences of these individuals are then merged according to the principle
of least misery (minimum criterion). Under the same classification, (Chen et al.
2008) uses genetic algorithms to learn the group rating for an item that best fits the
existing ratings for the item given by the individuals and the subgroups. The idea
is that it is possible to learn how the user interacts from the known group ratings.
The proposed algorithm therefore recommends items based on the group’s previous
ratings for similar items.

2.1.1 The role of uncertainty

As far as the authors are aware, the role of uncertainty in group recommending pro-
cesses has not been considered. Nevertheless, many papers have been published which
tackle this problem when recommendations are made to individual users (Zuker-
man and Albrecht 2001; Albrecht and Zukerman 2007). Focusing on probabilistic
approaches, those relating to the one presented in this paper include content-based
RSs (Mooney and Roy 2000; de Campos et al. 2005), collaborative filtering RSs
(Breese et al. 1998; Schiaffino and Amandi 2000; Butz 2002; Lekakos and Giaglis
2007; Miyahara and Pazzani 2000; Heckerman et al. 2001) and hybrid methods (Pope-
scu et al. 2001; de Campos et al. 2006).

In terms of the group’s process, the treatment of uncertainty is, however, a well-
known problem in other disciplines and so in this section we will review those papers
which focus on the combination of probabilistic information from a purely statistical
approach (see Clemen and Winkler 1999; Genest and Zidek 1986). In general, we
might consider these methods as analytical models operating on the individual prob-
ability distributions to produce a single “combined” probability distribution. These
approaches can generally be further distinguished into axiomatic approaches (by con-
sidering a set of assumptions that the combination criteria might satisfy) and Bayesian
approaches:
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– Axiomatic approach: the following common functions deal with belief aggregation:
(i) Linear Opinion Pool where the group probability, Pr(G), is obtained as the

weighted arithmetic average over the individual probabilities, Pr(Vi ), i =
1, . . . , n, i.e. Pr(G) = ∑n

i=1 wi Pr(Vi ), with wi being the weights totaling
one.

(ii) Logarithmic Opinion Pool (weighted geometric average) defined as Pr(G) =
α

∏n
i=1 Pr(Vi )

wi , with α being a normalization constant and the weights wi

(called expert weights) are typically restricted to total one. If the weights are
equal to 1/n, then the combined distribution is proportional to the geometric
average.

– Bayesian Approach (Genest and Zidek 1986; Clemen and Winkler 1999): this has
been used to combine expert information by taking into account the so-called Naive
Bayes assumption. In our context, in order to obtain efficient combinations, indi-
vidual opinions are assumed to be conditionally independent given the group vote.

3 Modeling group decision networks

The purpose of this paper is to develop a general methodology based on the Bayes-
ian network (BN) formalism for modeling those uncertainties that appear in both the
interactions between group members and the processes leading to the final choice
or recommendation. For example, let us imagine that we want to advise a group of
tourists to visit a particular monument or not. In such a situation, we should assume
that the individuals in the group are unfamiliar with the monument (or item to be
recommended). Each group member might speculate about their possible preference
for visiting this monument and this is necessarily uncertain. Nevertheless, the group
recommendations must be obtained by aggregating these preferences.

Individual preferences can be computed by considering two alternatives: the first
considers content information (such as a description of the monument, location, etc.)
and the second considers how people with similar tastes rated this monument in the
past (for instance, dislike or like). This is the approach followed in this paper
where the similarity between users will be computed by considering how common
items have been rated. Following the classification presented in Sect. 2, our GRS can
therefore be categorized as CF+AR+PM.

As a collaborative approach, our model will inherit most of the disadvantages of
classical collaborative filtering approaches. For example, the system cannot draw any
inferences about items for which it has not yet gathered sufficient information, i.e. we
also have the First-Rater problem. Similarly, we also inherit the Cold-Start problem
since it is difficult to recommend items to new users who have not submitted any
ratings. Without any information about the user, the system is unable to guess user
preferences and generate recommendations until a few items have been rated.

For our information sources, we will consider a database of ratings R (which is
usually extremely sparse) to store user ratings for the observed items. For example,
Table 2 shows the ratings given by each user Ui for an item I j using the values 1 =
dislike and 2 = like (the value ′−′ represents the fact that the user has not seen
the item).
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Table 2 Database of user
ratings

U0 U1 U2 U3 U4 U5

I1 1 1 2 2 1 1

I2 1 – 2 – 2 2

I3 1 1 2 1 1 2

I4 2 – 1 – 1 2

I5 2 2 1 1 1 1

I6 2 2 – 2 2 2

I7 2 – – – 1 2

In order to achieve this objective, our aim is to build a BN where two compo-
nents might be considered. The first, described in Sect. 3.1 relates to the collaborative
component of the recommender system. Both the topology of this component and the
probability values will be learned from a set of past user ratings, and this will be used to
compute a probability distribution representing the preferences of each group member
for a given item. The second component will be used to merge these preferences in
order to reach the final group opinion. This component is modeled using a BN with a
fixed structure given the group members, and the weights will be computed based on
the ratings provided by the group members (see Sect. 3.2).

3.1 BN-based collaborative component

In this section, we will briefly describe this component (those readers interested in
further details can consult (de Campos et al. 2008)). Our objective is to model how
each user should rate an item. In order to represent relationships between users, we
shall include a node, Ui , for each user in the system. We use U to denote the set of
user nodes, i.e. U = {U1, . . . , Un}. The user variable Ui will therefore represent the
probability distribution associated to its rating pattern. For instance, using the data in
Table 2, each node will store two probability values representing the probability of Ui

liking (Pr(Ui = 2)) or disliking (Pr(Ui = 1)) an item.
In order to facilitate the presence of dependence relationships between individuals

in the model (to avoid a possibly complex network topology), we propose that a new
set of nodes V be included to denote collaborative ratings. There is one collaborative
node for each user in the system, i.e. V = {V1, V2, . . . , Vn}. These nodes will represent
a probability distribution over ratings, and they will therefore take their values in the
same domain as U .

3.1.1 Learning stage

Given an active user, the parent set of the variable Va in the graph, Pa(Va), will be
learnt from the database of votes, R. This set will contain those user variables, Ub ∈ U ,
where Ua and Ub are most similar in taste, i.e. the best neighbors for the active user.
Given a similarity measure, the set Pa(Va) can therefore be obtained by using a thresh-
old or by only considering the first p variables in the ranking (see Fig. 2). It should be
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Fig. 2 Collaborative
Recommending System
Topology

U2

V0 V1 V2 V3 V4 V5

U5U4U3U1U0

noted that we do not include the links between Ui −→ Vi ,∀i , since we are modeling
a collaborative rating scheme where (assuming that the item being recommended has
not been observed by the active user) the predicted rating will only depend on those
ratings given by its neighbors.

The similarity measure proposed in this paper is a combination of two different,
but complementary, criteria: vote correlation between common items and the overlap
degree, i.e.

sim(Ua, Ub) = abs(PCC(Ua, Ub)) × D(Ua, Ub) (1)

The first criterion, which is normally used as the basis for calculating the weights in
different collaborative systems, attempts to capture those similar users, i.e. those with
the highest absolute value of Pearson’s correlation coefficient defined as

PCC(Ua, Ub) =
∑

j (ra, j − ra)(rb, j − rb)
√∑

j (ra, j − ra)2
∑

j (rb, j − rb)2
(2)

where the summations over j are over those items for which users Ua and Ub have
recorded votes and ra is the mean vote for user Ua . It should be noted that PCC ranges
from +1 to −1: +1 means that there is a perfect positive linear relationship between
users; −1 means that there is a perfect negative linear relationship; a correlation of
0 means that there is no relationship. Therefore, when there are no common items in
Ua and Ub voting records, then PCC(Ua, Ub) = 0 by default. In our approach, by
using the absolute value of PCC, abs(PCC), we consider that both positively (those
with similar ratings) and negatively correlated users (those with opposite tastes) might
help2 to predict an active user’s final rating.

The second criterion tries to penalize those highly correlated neighbors which are
based on very few co-rated items, which have proved to be bad predictors (Herlocker
et al. 1999). We might therefore take into account the number of items that both Ua

and Ub rated simultaneously, i.e. their overlap degree. In particular, we consider that
the quality of Ub as the parent of variable Ua is directly related with the probability
of a user Ua rating an item which has been also rated by Ub. This criterion can be
defined by the following expression:

2 For instance, if whenever Ub rates as like Ua rates with dislike, then knowing that Ub had rated an
item with like provides information about Ua ’s possible rating.
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Fig. 3 Modeling groups

Ga

U0 U1 U2 U3 U4 U5

V5V4V3V2V1

D(Ua, Ub) = |I (Ua) ∩ I (Ub)|
|I (Ub)| .

where I (U ) is the set of items rated by user U in the data set. It should be noted that
we are not considering the particular votes, merely whether the users rated an item or
not.

3.2 Modeling the group component

As mentioned previously, since groups are usually created by their members, we shall
not consider how groups are formed or how they are managed. We shall therefore
assume that we know the composition of the groups, and our problem is to study
how this information can be represented in the BN and also how to predict ratings for
groups.

We propose to identify a group G as a new node in the BN. Since the recommen-
dations are made by considering the preferences of its members, we propose that the
parents (Pa(G)) of the group node (G) will be the set of nodes in V representing its
individuals. In this case, we are modeling that the predictions of the group’s ratings
will depend on the collaborative predictions obtained for each of its members. Figure 3
illustrates a group Ga with three members: V1, V2, and V3. We use dashed lines to
represent user-group relations since we assume that the composition of the group is
known.

In this paper, we will focus on how different aggregation strategies can be repre-
sented in our BN-based model. In order to maintain generality (so that the proposed
aggregation mechanisms can be applied in more general situations3), we will use the
following independence assumption: given that we know the opinion (ratings) of all
the group members, group opinion does not change (it is independent) if the state of
any other variable in system Xi is known, i.e. I (G, Xi |Pa(G)),∀Xi /∈ Pa(Gi ). It is
important to remember that in certain domains this restriction might be very restric-
tive. For example, it might also be possible to consider other factors that would affect
the group rating such as the context. Nevertheless, the study of how to include these
factors in the model is beyond the scope of this paper.

3 For example, it might be used to combine multiple classifiers (Kittler et al. 1998; Abellán and Masegosa
2007) where the new cases will be classified by considering all the results obtained by each classifier.
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Table 3 Stored probability values

P(U0), P(U1), P(U2), P(U3), P(U4), P(U5)

P(V1|U0, U2) P(v1,1|1, 1) P(v1,1|1, 2) P(v1,1|2, 1) P(v1,1|2, 2)

P(V2|U1, U3, U4) P(V2|1, 1, 1) P(V2|1, 1, 2) P(V2|1, 2, 1) P(V2|1, 2, 2)

P(v2,1|2, 1, 1) P(v2,1|2, 1, 2) P(v2,1|2, 2, 1) P(v2,1|2, 2, 2)

P(V3|U2, U4, U5) P(v3,1|1, 1, 1) P(v3,1|1, 1, 2) P(v3,1|1, 2, 1) P(v3,1|1, 2, 2)

P(v3,1|2, 1, 1) P(v3,1|2, 1, 2) P(v3,1|2, 2, 1) P(v3,1|2, 2, 2)

P(Ga |V1, V2, V3) P(ga,1|1, 1, 1) P(ga,1|1, 1, 2) P(ga,1|1, 2, 1) P(ga,1|1, 2, 2)

P(ga,1|2, 1, 1) P(ga,1|2, 1, 2) P(ga,1|2, 2, 1) P(ga,1|2, 2, 2)

In order to complete the BN-based model, it is necessary to estimate the local
probabilities that must be stored in the nodes. In particular, each node Xi has a set of
conditional probability distributions, P(xi |pa(Xi )) (except root nodes that store mar-
ginal probability distributions).4 For each possible configuration pa(Xi ) of the parent
set Pa(Xi ), these distributions quantify the effect that the parents have on the node
Xi . In our case, these probabilities are used to encode both the strength of the user-user
interactions and the processes leading to the final choice or recommendation for the
group. In Table 3, we show those probability distributions stored in the example of
Fig. 3, where for instance P(V2|1, 1, 2) represents P(V2|u1,1, u3,1, u4,2). The method
of assessing the particular values will be discussed in Sect. 4.

3.3 How to predict the group rating: inference

Once the BN is completed, it can be used to perform inference tasks. In our case, we
are interested in the prediction of the group’s rating for an unobserved item, I . As evi-
dence, we will consider how this product was rated in the past.5 The problem therefore
comes down to computing the conditional (posterior) probability distribution for the
target group Ga given the evidence, i.e. Pr(Ga |ev). For instance, let us assume that
we want to predict the rating given by Ga in Fig. 3 to item I7. If we look at Table 2,
the evidences are ev = {U0 = 2, U4 = 1, U5 = 2} and the problem is to compute
Pr(Ga = 1| u0,2, u4,1, u5,2).

Since the BN is a concise representation of a joint distribution, we could propagate
the observed evidence through the network towards group variables. This propaga-
tion implies a marginalization process (summing out over uninstantiated variables).

4 Throughout this paper we will use upper-case letters to denote variables and lower-case letters to denote
the particular instantiation. More specifically, we use vi to denote a general value of variable Vi and vi, j
to indicate that Vi takes the j th-value.
5 It should be noted that we consider that no member of the group has observed the items beforehand and
therefore the evidences are over the values taken by variables in U . In the case of a group member (let us
say Ui ) having also previously rated I , we shall instantiate both node Ui and Vi to the value of the given
ratings. The instantiation of Vi will imply that there is no uncertainty about its rating when the information
is combined at a group level. Nevertheless, the computations are more complex in this situation.
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A general scheme might be:

Pr(Ga = s|ev) =
∑

V
Pr(Ga = s|v1, . . . , vk)Pr(v1, . . . , vk |ev) (3)

where v1, . . . , vk represents a given configuration of the collaborative variables (parent
set) Pa(Ga) and the sum is over the exponential number of possible configurations,
and this requires an exponential time O(r |Pa(Ga)|) with r being the number of candi-
date ratings. Considering that the evidence belongs to U , the joint probability over the
collaborative variables might be computed as

Pr(v1, . . . , vk |ev) =
∑

U−

k∏

i=1

Pr(Vi = vi |u−, ev)Pr(u−) (4)

where the sum is over all the possible configurations, u−, of the set of uninstantiated
user variables, denoted by U−, also requiring an exponential time, O(r |U−|).

These computations should be performed for each group variable when there is an
item to be recommended. As there is usually a large set of groups in the system, this
process becomes computationally expensive and reducing computational complex-
ity becomes a key design parameter, especially if the objective is to obtain scalable
strategies which can be implemented in real-time applications.

In order to tackle this problem, we propose the use of canonical models to repre-
sent conditional probability distributions. By means of these models, we can reduce
the number of probability values stored and develop specific inference algorithms.
In those cases where the computation of Pr(V1, . . . , Vk |ev) is complicated, we also
propose to approximate these values by using extra independence assumptions (see
Sect. 5).

4 Estimating the strength of the users’ interactions

In terms of assessing the probability values, we must distinguish between roots in the
graph, nodes in U , and the remaining nodes. In particular, for every user node Uk , we
need to assess the prior probability distribution over the user’s rating pattern, i.e. the
probability of user Uk rating with a given value s, 1 ≤ s ≤ r . For example, considering
the relative frequency and the data in Table 2, we will obtain Pr(U3 = 1) = 2/4 = 0.5
and Pr(U5 = 1) = 2/7 = 0.286.

For each non-root variable, we must store an exponential number of conditional
probability distributions: one probability distribution for each possible configuration
of its parent set. The assessment, storage, and manipulation of these probability val-
ues can be quite complex, especially if we consider that the number of similar users
(parents of the nodes in V) and the size of the groups might be large when real group
recommending applications are considered. We therefore propose the use of different
canonical models to represent these conditional probabilities. By using this representa-
tion, it might be possible to reduce the problem of data sparsity (it is quite probable that
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many configurations lack data), leading to important savings in storage (we only need
to store a linear number of probability values) and more efficient inference algorithms
(see Sect. 5).

4.1 Probabilities of the collaborative component

The probabilities in the collaborative component (nodes in V) might be estimated from
the data set of past user ratings. For a given node Vi , we must define the conditional
probability distribution Pr(vi, j |pa(Vi )) for each configuration pa(Vi ). We propose
the use of the following canonical model (studied in detail in de Campos et al. 2008)
where an additive behavior of the collaborative nodes is assumed, thereby enabling
the data sparsity problem to be tackled:

Definition 1 (Canonical weighted sum) Let Xi be a node in a BN, let Pa(Xi ) be the
parent set of Xi , and let Yk be the kth parent of Xi in the BN. By using a canonical
weighted sum, the set of conditional probability distributions stored at node Xi are
then represented by means of

Pr(xi, j |pa(Xi )) =
∑

Yk∈Pa(Xi )

w(yk,l , xi, j ) (5)

where yk,l is the value that variable Yk takes in the configuration pa(Xi ), and w(yk,l ,
xi, j ) are weights (effects) measuring how this lth value of variable Yk describes the
j th state of node Xi . The only restriction that we must impose is that the weights are
a set of non-negative values verifying that

r∑

j=1

∑

Yk∈Pa(Xi )

w(yk,l , xi, j ) = 1, ∀ pa(Xi )

It is interesting to note that by defining how to compute the weights w(yk,l , xi, j ), we
can control individual bias6 and the relative quality (importance) of the parents for the
predicting variable, Xi .

The problem now is how to estimate those weights given by similar users, i.e.
Ub ∈ Pa(Va). Following (de Campos et al. 2008), we consider that w(ub,t , va,s) (i.e.
the effect of user Ub rating with value t when it comes to predicting the rating of Va)
can be computed by means of

w(ub,t , va,s) = wb,a
N∗(ub,t , ua,s) + 1/r

N∗(ub,t ) + 1
, 1 ≤ t, s ≤ r. (6)

where the value N∗(ub,t , va,s) is the number of items from the set I (Ua)∩ I (Ub) that
having been voted with value t by user Ub have also been voted with value s by user

6 Bias refers to a user’s preference for a particular vote (some users tend to rate with high values whereas
others prefer to use lower ones) and ability to predict Xi judgments.
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Ua , and N∗(ub,t ) is the number of items in I (Ua) ∩ I (Ub) rated with value t by user
Ub. In this expression, wb,a represents the relative importance of the parent. In this
paper, we assume that all the users are equally important, i.e. wb,a = 1/|Pa(Va)|.

In our example, and focusing on node V2, we must estimate 23 conditional prob-
ability distributions. Using Eq. 5, the probability Pr(v2,2|u1,1, u3,1, u4,2) is equal to
w(u1,1, v2,2) +w(u3,1, v2,2)+w(u4,2, v2,2). Using the data in Table 2, these weights
are w(u1,1, v2,2) = 0.278, w(u3,1, v2,2) = 0.167 and w(u4,2, v2,2) = 0.25 and there-
fore Pr(v2,2|1, 1, 2) = 0.695.

4.2 Modeling social value functions

The objective of this section is to consider how conditional probability distributions
for group nodes can be estimated. These distributions might be considered a “social
value function”, describing how member opinions affect the group’s recommenda-
tion. For instance, let Gi be a group with six individuals rating with 1, 5, 5, 4, 5 and 4,
respectively, using a rating domain from 1 to 5. In this case, the related configuration
is pa(Gi ) = (v1,1, v2,5, v3,5, v4,4, v5,5, v6,4).

Since we must assess the probability of Gi voting with a value k for each possible
configuration pa(Gi ) (i.e. P(Gi |pa(Gi ))) and taking into account that the size of
the group might be large, we again propose the use of canonical models. By means
of these models, the probability values needed will be computed as a deterministic
function of the particular values of the configuration, thereby entailing an important
saving in storage.

Definition 2 (Canonical gate) A group node Gi is said to represent a canonical com-
bination criterion if given a configuration of its parents pa(Gi ) the conditional prob-
ability distributions can be defined as

P(Gi = k|pa(Gi )) = f (k, pa(Gi ))

Following the ideas in (O’Connor et al. 2001; Masthoff 2004), in this paper we will
consider four alternatives:

4.2.1 MAX and MIN gates

In terms of (O’Connor et al. 2001), Maximum (Minimum) gates can be used to model
those situations where the group vote is equal to the vote of the most satisfied (or
least satisfied, respectively) group member. Thus, considering the example configu-
ration, the group rating is equal to 5 and 1 for the MAX and MIN gate, respectively.
Although these gates correspond to extreme situations, it is quite common for small
groups to take into account these criteria when making decisions (Masthoff 2004).
More formally, these gates can be defined as

f (k, pa(Gi )) =
{

1 if k = �(pa(Gi ))

0 otherwise
(7)

123



Uncertainty in group recommending 221

Table 4 Using canonical models to define the conditional probabilities for the node Ga in Fig. 3

pa(G) AVG MAJ MAX MIN

v1,1, v2,1, v3,1 (1,0) (1,0) (1,0) (1,0)

v1,1, v2,1, v3,2 (0.67,0.33) (1,0) (0,1) (1,0)

v1,1, v2,2, v3,1 (0.67,0.33) (1,0) (0,1) (1,0)

v1,1, v2,2, v3,2 (0,33,0.67) (0,1) (0,1) (1,0)

v1,2, v2,1, v3,1 (0.67,0.33) (1,0) (0,1) (1,0)

v1,2, v2,1, v3,2 (0.33,0.67) (0,1) (0,1) (1,0)

v1,2, v2,2, v3,1 (0.33,0.67) (0,1) (0,1) (1,0)

v1,2, v2,2, v3,2 (0,1) (0,1) (0,1) (0,1)

The pairs (x1, x2) represent the probabilities Pr(ga,1|pa(G)) and Pr(ga,2|pa(G)), respectively

where �(pa(Gi )) is the max{pa(Gi )} and min{pa(Gi )} for the MAX and MIN gates,
respectively. For example, Table 4 shows the probability distribution obtained using
these canonical gates for the node Ga in Fig. 3.

4.2.2 MAJority gates

Our objective in this section is to model the Majority criterion where the final decision
depends on a simple counting of the votes received for each rating from the individ-
uals. The rating which receives the largest number of votes is then selected as the
consensus (majority) decision, i.e.

f (k, pa(Gi )) =
{ 1

m if k = arg maxs count (s, pa(Gi ))

0 otherwise
(8)

where count (s, pa(Gi )) is a function returning the number of occurrences of the state
s in the configuration pa(Gi ), and m is the number of states where count (s, pa(Gi ))

reaches the maximum value. It should be noted that we are assuming that all members
have the same power (i.e. one-person-one-vote). In the previous configuration, the
group rating will be 5 because this was the rating given by 3 out of 6 individuals. See
Table 4 for an example.

4.2.3 AVeraGe gates

Our objective with this gate is to model those situations where the group rating can
be considered as the average of individual ratings. This criterion can be modeled in a
similar way to before, i.e.

f (k, pa(Gi )) =
{

1 if k = AV G(pa(Gi ))

0 otherwise.
(9)
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where AV G(pa(Gi )) = round
(

1
|Pa(Gi )|

∑
j v j

)
, and where v j is the rating of

the j th-parent of Gi . Thus, in the above example, the group rating is defined as
AV G(1, 5, 5, 4, 5, 4) = 4.

We should mention that although this might be the formal definition of the aver-
age gate, in this paper we use a canonical weighted sum-based representation which
eventually attempts to recommend the same rating to the group but using much more
efficient inference mechanisms. In particular, the weights w(v j,k, gi,s) are defined as
1/|Pa(Gi )| if k = s and 0 otherwise. An example is shown in the first column in
Table 4.

One important fact is that under this representation, the predicted rating must be the
group’s posterior expected (mean) value which is defined as the sum of the posterior
probability of each rating multiplied by the rating value, i.e.

∑r
s=1 s × Pr(Gi = s|ev)

(see Appendix A for more details). The predicted rating for the example configuration
is therefore computed as 1 × 1/6 + 2 × 0 + 3 × 0 + 4 × 2/6 + 5 × 3/6 = 4. At this
point, we should mention that whenever we talk about the AVG gate in this paper we
are considering this representation.

5 Inference with canonical models

In this section, we will present the specially designed propagation algorithms to ensure
efficient computations. Since we consider past user ratings as evidence, a top-down
propagation mechanism can be designed, starting with those nodes at the user layer
where Pr(Ui |ev) is computed. These probabilities are then used to compute the pos-
terior probabilities at the V layer (see Eq. 4) which are eventually used to compute
the posterior probabilities for the group layer, i.e Pr(Ga |ev) (see Eq. 3). Our GRS
therefore follows the typical performance of a collaborative RS since these probability
values depend on how similar users rated the item.

We will distinguish between the different canonical models used. When using
canonical weighted sums, we can compute exact probability values in polynomial
time (see Sect. 5.1). When aggregating individual preferences by means of any other
canonical model, it is necessary to use the independence assumptions below in order
to reduce the computations needed (see Sects. 5.2 and 5.3).

Independence Assumption: The collaborative ratings are independent given the
evidence, i.e.

Pr(V1, . . . , Vk |ev) =
∏

i

Pr(Vi |ev). (10)

In view of this assumption, and considering that we use a canonical weighted sum
model at the nodes in V , the joint probabilities in Eq. 4 are computed in linear time.
Although this assumption might be very restrictive, in our experimentation (see Sect. 7)
it has proved to be fruitful and has also been used successfully when combining infor-
mation for other practical purposes (Clemen and Winkler 1999; Kittler et al. 1998).
This performance leads us to believe that it does not matter how accurate the esti-
mates of the posterior probabilities are as long as they help to predict the correct
ratings.
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5.1 Propagating with the canonical weighted sum

When the canonical weighted sum is used to represent the interaction between vari-
ables, the posterior probabilities can be obtained simply by applying the following
theorem (see de Campos et al. 2008) which explains how to compute the exact prob-
ability values:

Theorem 1 Let Xa be a node in a BN network, let m Xa be the number of parents of
Xa, Y j be a node in Pa(Xa), and lY j the number of states taken by Y j . If the condi-
tional probability distributions can be expressed under the conditions given by Eq. 5
and the evidence is only on the ancestors of Xa, then the exact posterior probabilities
can be computed using the following formula:

Pr(xa,s |ev) =
m Xa∑

j=1

lY j∑

k=1

w(y j,k, xa,s) · Pr(y j,k |ev).

It should be noted that propagation can be performed in linear time with the number
of parents. We consider this theorem to be important because it expresses the fact that
exact propagation can be performed without imposing any independence restriction
between the parents of variable Xa (see de Campos et al. 2008). Because the evidences
are in nodes in U in our recommender system, we will therefore obtain the exact pos-
terior probabilities in all the nodes where the conditional probabilities are represented
by means of a canonical weighted sum, as will be the case of the nodes in V and also
when modeling the average criterion in the group nodes.

For example, when we want to predict the rating given by Ga in Fig. 3 to item I7, and
considering the past ratings in Table 2, we must compute Pr(Ga = 1| u0,2, u4,1, u5,2 ).
In this situation, the exact posterior probabilities at the V layer are: Pr(v1,1|ev) =
w(u0,2, v1,1)+ Pr(u2,1) · w(u2,1, v1,1)+ Pr(u2,2) · w(u2,2, v1,1) = 0.277; Pr(v2,1|
ev) = 0.341 and Pr(v3,1|ev) = 0.36. Similarly, if the group uses an AVG criterion to
combine information (represented by a weighted sum gate), the exact posterior values
at group nodes are Pr(ga,1|ev) = 0.326 and Pr(ga,2|ev) = 0.674 and the predicted
rating is round (1 × 0.326 + 2 × 0.674) = 2.

5.2 Propagating with majority gates

One key idea behind the majority criterion is that the order in which the individ-
uals are considered does not matter, and therefore there are many different con-
figurations collapsing to the same situation. For example, let us consider that four
individuals vote with 1 and one individual votes with 2. In this case, there are five
different configurations representing the same situation, i.e. pa1(Gi ) = {2, 1, 1, 1, 1},
pa2(Gi ) = {1, 2, 1, 1, 1}, pa3(Gi ) = {1, 1, 2, 1, 1}, pa4(Gi ) = {1, 1, 1, 2, 1} and
pa5(Gi ) = {1, 1, 1, 1, 2}. It should be noted that since order is not a factor, we might
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talk about combinations with repetition,7 denoted by δ. Therefore, the above config-
urations should be represented by δ(Gi ) =< 1, 1, 1, 1, 2 >.

In this situation, all the probabilities Pr(Gi = s|pa j (Gi )), such that pa j can be
matched to the same combination δ, have the same values (in our case, Pr(Gi =
1|pa j (Gi )) = 1,∀1 ≤ j ≤ 5). This can be exploited in order to efficiently perform
the propagation processes in Eq. 3. In particular, the following theorem shows that
we need only take into account those probabilities associated with combinations with
repetition in order to propagate individual rating probabilities:

Theorem 2 Let Gi be a group node in a BN whose conditional probability distribu-
tions are represented using a majority gate, let �(Gi ) be the set of possible combina-
tions repeating the values in its parent set, Pa(Gi ), then

Pr(Gi = s|ev) =
∑

δ(Gi )∈�(Gi )

Pr(Gi = s|δ(Gi ))Pr(δ(Gi )|ev) (11)

The proof of this theorem can be found in Appendix B. Although this theorem reduces
the number of necessary computations in Eq. 3, an exponential number of computa-
tions will be needed in order to obtain the joint probabilities Pr(δ(Gi )|ev).

In order to ensure the scalability of the approach, we will approximate these values
by considering that collaborative ratings are independent given the evidence (Eq. 10).
In Appendix B, we show how to compute the required probabilities in a running time
on the order of O(rnr ). Taking into account that in many situations r << n, this
entails important savings with respect to the O(rn) needed by the classical approach.

Following on with the previous example, we will have four possible combina-
tions for V1, V 2 and V3 where (assuming independence) the posterior probabilities
are Pr(< 1, 1, 1 > |ev) = 0.034, Pr(< 1, 1, 2 > |ev) = 0.215, Pr(< 1, 2, 2 >

|ev) = 0.446 and Pr(< 2, 2, 2 > |ev) = 0.305. Then, following a majority strategy,
Pr(Ga = 1|ev) = 0.034 + 0.215 = 0.249 and Pr(Ga = 2|ev) = 0.751. Once
again, the recommended rating is 2 as this is the most likely posterior probability.

5.3 Propagation with MIN and MAX gates

When propagating with MAX and MIN gates, we will also assume that a posterior
probability for the collaborative nodes is independent given the evidence. Once these
values have been computed, we still need to combine them with Pr(ga,s |pa(Ga))

in order to obtain the final probability distributions. It can be proved that under the
above independence assumption (Eq. 10), the probability distribution Pr(Ga |ev) can
be computed easily and efficiently (in a linear order to the number of group members).

Min-Gate Assume 1 < 2 < · · · < r
– Pr(Ga = r |ev) = ∏m

i=1 Pr(Vi = r |ev) = ∏m
i=1 Pr(vi,r |ev)

7 Since the number of parents in Gi is n and each parent has r different states, we find that the number of
possible combinations with repetition is C Rr

n = (n + r − 1)!/(n!(r − 1)!).
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– Pr(Ga = k|ev), for k = 1, . . . , r − 1, is equal to

(
m∏

i=1

Pr(Vi ≥ k|ev)

)

− Pr(Ga > k|ev).

where Pr(X ≥ k) = ∑r
j=k Pr(X = j).

Max-Gate Assume 1 < 2 < · · · < r
– Pr(Ga = 1|ev) = ∏m

i=1 Pr(Vi = 1|ev) = ∏m
i=1 Pr(vi,1|ev)

– Pr(Ga = k|ev), for k = 2, . . . , r , is equal to

(
m∏

i=1

Pr(Vi ≤ k|ev)

)

− Pr(Ga < k|ev)

where Pr(X ≤ k) = ∑k
j=1 Pr(X = j).

If we consider our example, the posterior probabilities for the MIN gate are
Pr(Ga = 2|ev) = ∏3

i=1 Pr(vi,2|ev) = 0.305; Pr(Ga = 1|ev) = 0.695 and the
recommended rating is 1, whereas if we consider the MAX gate Pr(Ga = 1|ev) =∏3

i=1 Pr(vi,1|ev) = 0.034; Pr(Ga = 2|ev) = 0.966 and the decision is to recom-
mend the rating 2.

6 Experimental framework

There are various reasons why GRSs are difficult to evaluate. The first is that the eval-
uation criterion differs according to the goals for which the RS has been developed.
We can find situations where the criteria used to measure system performance are user
satisfaction or participation (O’Connor et al. 2001; Masthoff 2004; McCarthy and
Anagnost 2000) whereas in other GRSs the objective is to explore the ability of the
system to merge user profiles or reach a consensus (Jameson 2004; Yu et al. 2006).

The second reason why evaluation is difficult is the absence of public data sets
for performing the evaluation. Most work into GRS evaluation has focused on live
user experiments. In this case, we can distinguish between the work using controlled
groups that have been (directly or indirectly) asked about the aggregation strategies
they might use (Masthoff 2004; Masthoff and Gatt 2006) and those systems, such as
Polylens (O’Connor et al. 2001) and MusicFX (McCarthy and Anagnost 2000), which
have made the system available to a community of users. In this case, field studies
were performed to evaluate system performance. The combination of these two factors
makes it extremely difficult to compare the performance between different GRSs.

This situation clearly differs from that of recommending for a single user. In this
context, the evaluation of system accuracy, i.e. the system’s ability to predict indi-
vidual ratings, has become a standard approach (Herlocker et al. 2004). Surprisingly,
little attention has been paid in GRS literature to evaluating system accuracy. We
believe that one of the main reasons for this is that it is difficult to access real group
ratings since in many cases group composition is ephemeral, and, to the best of our
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Fig. 4 Building the group data
sets
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knowledge, no data sets exist with this kind of information. On the other hand, we
can consider that in real scenarios each group might rate using different aggregation
strategies. For instance, some groups might use a least misery strategy whereas others
might use an average strategy. In these situations, a blind algorithm, which does not
take into account how the group rates an item, may be inappropriate for predicting
group ratings.

Our goal in this experimentation is to discover how the use of the different uncertain-
ties emerging in a group recommending process might affect system performance. We
believe the best alternative for measuring system performance is to take into account
accuracy criteria in an automatic evaluation over a semi-simulated data set (see below).
We believe that by means of this evaluation, we can conduct large experiments that
should validate our conclusions.

6.1 The data sets

We decided to use the MovieLens8 data set. With the idea of using 5-fold cross vali-
dation, we have used 5 different data subsets, each obtained by splitting MovieLens
into two disjoint sets, the first for training (with 80% of the data) and the second for
testing (with 20% of the data).

Training data has been used for two different purposes. Firstly, we have used this
data to learn the collaborative component of the system. Following (Herlocker et al.
1999), we have considered a fixed number of 10 parents (similar users) for each node
in V (see Sect. 3.1). Using this component independently, we might compute for each
member of a group, Vk , a probability distribution representing how this individual
might rate an unseen movie, i.e. Pr(Vk = s|ev). Training data has also been used
to determine group composition, i.e. which individuals form a group (see Fig. 4).

8 MovieLens was collected by the GroupLens Research Project at the University of Minnesota. The data
set contains 1682 movies and 943 users, containing 100,000 transactions where a user rates a movie using
a scale from 1 to 5.
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We have used two different criteria in an attempt to capture different processes behind
the creation of a group:

C1 Implementing the idea of the group of my buddies, we set each user as the group
administrator and look for similar users (those who are positively correlated with
the administrator in the training data set). We then select those groups for a fixed
number of individuals (let us say n) with the only restriction being that they have
at least rated (seen) one common movie (considering the experimental data, the
members of the groups have rated a mean of 13.63 common movies). It should be
noted that since similarities are not transitive, this criterion does not necessarily
imply that groups have highly correlated members.

C2 Secondly, we have decided to fix a group (also with n individuals) with the only
restriction being that all group members must rate at least four common movies in
the training sets, independently of the given ratings. This alternative can be used
to represent circumstantial groups such as those obtained by randomly select-
ing people as they leave a cinema. With this criterion, it is plausible that while
individuals might watch a movie together, they might have different preferences.

The group test sets are obtained from each of the original MovieLens test sets, thereby
ensuring that no data in the test sets has been used for learning purposes. Whenever
we find a movie in an original MovieLens test set that has been rated by every group
member, we include the tuple (group ID, movie ID, group-rating) in the respective
group test data set. Since we know the real user ratings for this movie, the “true” group-
rating will be obtained by considering the mechanism used by the group to aggregate
the individuals ratings. This mechanism might be implemented by means of a deter-
ministic function CombineRate(r1, . . . , rn).9 For example, given a group of five
individuals and the ratings r1 = 5, r2 = 5, r3 = 2, r4 = 3, r5 = 4, then depending
on the aggregation function used, the “true” group rating will be: 5 for the majority
function, 2 for the minimum criterion, 4 if we consider an average strategy, etc.

By combining the strategy used by a group to rate a movie, i.e. average (AVG),
majority (MAJ), maximum (MAX) and minimum (MIN), and the criterion used to
form a group (C1 and C2), we therefore obtain 8 different data sets. More specif-
ically, by fixing the group size to 5, we have found a mean of 108 (406) different
groups and 115 (1752) group-movie pairs in the test set for C1 criterion (C2 criterion,
respectively).

7 Experimentation: predicting a group’s rating

The aim of this experimentation is to measure the effect of individual uncertainties
on each different aggregation criterion. In order to focus on this aim, we shall assume
that we know how the group combines individual ratings, i.e. we know whether the
group rating is obtained by means of the AVG, MAJ, MAX or MIN of a set of individual
ratings (what happens when this information is unknown will be discussed in Sect. 8).

9 A similar mechanism for building the group rating has been used in Chen et al. (2008) to measure the
effect of sparsity on the recommendations.
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Table 5 Baseline and BN-based group aggregation mechanisms

Baseline Using group layer

For each Vk ∈ G do Pr(G|ev) = CombineProb(Pr1, . . . , Prn)

rk = RateSelection(Prk ) G_rate = RateSelection(Pr(G|ev))

G_rate = CombineRate(r1, . . . , rn)

The following method is proposed: for each group-item pair in the group test set,
the first step is to instantiate those users who had rated the movie with the given rating
(these ratings will be considered as the evidence, see Sect. 3.3). This evidence will
be then propagated to the collaborative nodes, V , representing the group’s members.
This information must finally be combined in order to obtain the predicted rating. At
this point, it should be remembered that we assume that no member of the group has
seen the movie and it is not possible to know how a node Vi might rate the movie. We
will consider two different alternatives to combine this uncertain information:

– This alternative, which could be considered the Baseline (see left-hand side of
Table 5), is a two-step approach: firstly, each group member makes a decision about
the score that he or she might use to rate the movie (RateSelection process).
These r1, . . . , rn precise ratings are then combined using the particular combination
strategy (AVG, MAJ, MAX or MIN) used by the group when making decisions.

– The second method consists in first using canonical models to combine individual
probability distributions into a single group distribution. This probability distribu-
tion ideally represents the group voting pattern. In the algorithm (see right-hand
side of Table 5) this process is denoted as CombineProb. The group probabil-
ity distribution is then used to select the final group rating (once again using the
RateSelection process).

Finally, we will consider how the predicted rating might be selected, i.e. how
RateSelection works. In this paper, we will explore two different alternatives:

– The first uses the raw probability values at group nodes (or collaborative nodes for
the baseline approach). In particular, the group rating is defined as the posterior aver-
age rate, i.e. rate = ∑r

k=1 k × Pr(G = k|ev), for the AVG canonical model (see
Sect. 4.2.3) and the maximum posterior probability, i.e. rate = arg maxs{Pr(G =
s|ev)}, for MAX, MIN and MAJ canonical models.

– The idea behind the second alternative is to only take into account the new piece
of evidence that each candidate rating receives. This criterion can be computed
by taking into account the difference between the posterior and prior probability
values,10 i.e. P D(Ga) = Pr(Ga |ev) − Pr(Ga). We consider only those ratings
where the difference is positive, i.e. the evidence favors these ratings. We have to
notice that P D is not a probability measure since

∑
s P D(Ga = s) < 1.

10 It is worth remembering that posterior probabilities are obtained by instantiating the ratings previously
given by similar users (the evidence belongs to the nodes in U ) and that prior probabilities are obtained by
propagating in the network without evidence.

123



Uncertainty in group recommending 229

Table 6 Effect of user uncertainty on the combination strategies

Group rate RS C1 C2

Baseline BN-Group Baseline BN-Group

%S MAE %S MAE %S MAE %S MAE

AVG 62.111 0.387 44.945+ 0.596+ 63.730 0.369 59.037+ 0.420+
PD 62.500 0.385 62.060− 0.396− 64.045 0.365 64.355− 0.363−

MAJ 59.127 0.464 59.543+ 0.430− 56.548 0.484 58.621+ 0.441+
PD 59.044 0.464 59.745+ 0.428− 57.447 0.472 58.926+ 0.437+

MAX 77.397 0.226 73.748− 0.285+ 68.740 0.319 75.353+ 0.263+
PD 77.538 0.225 78.991+ 0.211− 69.501 0.311 70.272+ 0.300+

MIN 44.964 0.674 13.739+ 1.648+ 46.987 0.681 29.509+ 1.032+
PD 46.195 0.666 42.876+ 0.662+ 46.539 0.684 49.780+ 0.578+

For example, let us consider that the prior probability values (in a rating domain
from 1 to 3) are P(ga,1) = 0.1, P(ga,2) = 0.2 and P(ga,3) = 0.7 and let us
consider the following posterior values P(ga,1|ev) = 0.30, P(ga,2|ev) = 0.25
and P(ga,3|ev) = 0.45. Thus, if we were to select the maximum posterior rating
we would recommend the rating 3 whereas evidence seems to favor the rating 1.
Therefore, considering P D, the new measure assigns a mass 0.20, 0.05 and 0 to
ratings 1, 2 and 3, respectively. In order to standardize the recommending process,
this new measure might be transformed into a probability by means of a proportional
normalization process.

The effect of using uncertainty will be measured by considering the accuracy of the
recommendations in the two previous situations. We have considered two different
metrics (Herlocker et al. 2004): the percentage of success (%S), which measures the
frequency with which the system makes correct predictions; and the mean absolute
error (MAE), which measures the average absolute deviation between a predicted rate
and the group’s true rate.

Table 6 shows the results obtained for the different experiments. The first column
represents the criterion used by the group to determine the group rate. Each row rep-
resents the results obtained when using this criterion to combine the information with
the baseline model and when using the group layer in the BN, denoted by the BN-
Group. The rows labeled PD in the second column represent the results obtained when
considering the difference between prior and posterior probability distributions. We
have highlighted in bold the best alternatives for each particular situation. We use the
signs + and − throughout this paper to represent the fact that the results are signifi-
cantly relevant or irrelevant, respectively, in relation to the baseline model, by using
the paired Student’s t-test (confidence level 0.05).

From this table, we can conclude that when combining uncertain information using
BN at a group layer the best option is to use PD to correct the prior bias, particularly
in those situations where the minimum and the average gates are used to merge indi-
vidual ratings. The exception is the use of MAX gate (using the C2 data set) where
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Table 7 Using a classical collaborative filtering algorithm

Group rate C1 C2 Group rate C1 C2

%S MAE %S MAE %S MAE %S MAE

AVG 49.080+ 0.538+ 57.986+ 0.422+ MAJ 52.713+ 0.526+ 56.562+ 0.478+
MAX 74.655+ 0.258+ 67.920+ 0.328+ MIN 38.255+ 0.761+ 39.258+ 0.760+

the baseline model performs better. In terms of the use of PD in the baseline model, it
seems that the results have not been affected significantly. We can also conclude that
taking individual uncertainties into account helps to improve the recommendations
(we obtain better MAE (%S) values in 7 out of 8 (6 out of 8) experiments). Addition-
ally, the results in Table 6 show that it is possible to order the different aggregation
strategies in relation to their accuracy: M AX ≺ AV G ≺ M AJ ≺ M I N , where
X ≺ Y means that X obtains better predictions than Y . We believe that this is due
to the bias that MovieLens has towards high rating values (approximately 75% of the
ratings have a value which is greater than or equal to 3) and that, in some respects,
our collaborative model inherits this bias in the parameters’ learning phase. Finally,
we can conclude that the way groups are formed is relevant for prediction purposes.
Therefore, MIN and AVG canonical models obtain better results when considering cir-
cumstantial groups (C2 group set) whereas MAX and MAJ canonical models obtain
better results in the case of groups with related individuals (C1 group set).

Finally, and in order to validate our approach, we will compare our predictions
with those obtained with a classical collaborative filtering algorithm (Herlocker et al.
1999) under the same conditions.11 Following our baseline scheme, we first use the
classical model to predict how individual users will rate specific items. These predic-
tions are then aggregated by using the corresponding functions. Table 7 presents the
obtained results for each execution. From this table, we can conclude that our model
is an improvement on those obtained using a classical approach for recommending.

7.1 Effect of the group’s size

We will now explore the effect of group size on the recommendations. The experi-
ments were repeated but this time with groups comprising 3, 4, 5 and 6 individuals,
except under criterion C1, groups of my buddies, where no groups with 6 members
could be found. Table 8 presents the MAE metrics obtained after evaluating our models
in the same conditions as before using C1 and C2 data sets, respectively. We only show
the MAE values obtained using PD for each pair ‘XXX#s’, where XXX represents
the aggregation strategy and #s the group’s size, respectively.

11 In this classical model, the similarity between users is computed using Pearson’s correlation measure
(Eq. 2). Once similarities are ready, predicting how user Ua will rate an item I j can be calculated as

rate = ra +
∑m′

h=1 sim(Ua ,Uh )(rh, j −rh )
∑m′

h=1 |sim(Ua ,Uh )| where m′ is the number of related users who have also rated

item I j .
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Table 8 MAE results for different sized groups

C1 datasets

AVG3 AVG4 AVG5 AVG6 MAJ3 MAJ4 MAJ5 MAJ6

Base 0.490 0.454 0.385 0.482 0.488 0.464

BNPD 0.481 0.424 0.396 0.412 0.431 0.428

MAX3 MAX4 MAX5 MAX6 MIN3 MIN4 MIN5 MIN6

Base 0.407 0.310 0.225 0.738 0.742 0.666

BNPD 0.389 0.308 0.211 0.663 0.649 0.662

C2 datasets

AVG3 AVG4 AVG5 AVG6 MAJ3 MAJ4 MAJ5 MAJ6

Base 0.469 0.417 0.365 0.327 0.477 0.497 0.472 0.427

BNPD 0.470 0.398 0.363 0.334 0.417 0.450 0.437 0.378

MAX3 MAX4 MAX5 MAX6 MIN3 MIN4 MIN5 MIN6

Base 0.425 0.362 0.311 0.203 0.724 0.693 0.684 0.716

BNPD 0.398 0.341 0.300 0.199 0.644 0.607 0.578 0.604

It is possible to draw certain conclusions from this data. Firstly, we can say that
the relative performance between both the baseline and the proposed BN-based group
aggregation model is stable for almost all the experiments (27 out of 30). We can
therefore say that it is preferable to combine uncertain information using BN, inde-
pendently of the size of the group. Nevertheless, group size has an important impact
on the quality of the model’s predictions. This impact seems to be independent of the
criteria used to create the group, C1 or C2, but not on the aggregation strategy used by
the group to recommend the final rating. Accordingly, AVG and MAX obtain signifi-
cantly better predictions (lower MAEs) as the group size increases (this also seems to
be the case of MAJ when using C2 data sets) whereas the MIN criterion seems to be
more or less stable. For AVG and MAJ combination criteria, this situation might be
explained by the fact that as the number of members increases, there is a reduction in
the impact of each member on the group prediction. In terms of the performance of
extreme rating criteria such as MAX and MIN, this can be explained by considering
the bias for rating with higher values in MovieLens, with it being easier to predict
high rating values.

8 Uncertainties in the group’s rating processes

In the previous section, we assumed that we know how a group combines the informa-
tion and focused on the effect of uncertainty on user preferences when predicting the
group’s rating. In this section, we will consider that the process used by the group to
rate a given product is also uncertain. In order to tackle this problem we will consider
two different situations:

– The first is a situation of total ignorance, i.e. we do not know anything about how
the group should combine the information.
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Table 9 Predicting without information

Group C1 C2
rate

AVG+PD MAJ+PD LinOP AVG+PD MAJ+PD LinOP

Base BN-G Base BN-G – Base BN-G Base BN-G –

AVG 0.385 0.396− 0.486 0.385+ 0.386 0.365 0.363− 0.486 0.389+ 0.388

MAJ 0.472 0.458− 0.464 0.428− 0.439 0.453 0.440+ 0.472 0.437+ 0.439

MAX 0.799 0.727+ 0.740 0.709+ 0.718 0.854 0.808+ 0.793 0.788− 0.796

MIN 1.140 1.162+ 1.192 1.167+ 1.175 1.186 1.220+ 1.283 1.243+ 1.236

Mean 0.699 0.686 0.721 0.672 0.680 0.715 0.708 0.759 0.714 0.715

Dev 0.344 0.348 0.338 0.360 0.361 0.380 0.393 0.380 0.395 0.392

– The second considers that although we do not know exactly how a group combines
the information, we have a database of previous group ratings. In this case, it might
be possible to discover the mechanism used by a group to rate an item from the
database of past ratings.

8.1 Total ignorance

Our objective is to study which of these proposed aggregation models is best if we
do not know how the group combines the information. This situation, which might
be related with the Cold-Start problem, is common when a new group is incorporated
into the system and therefore the decision processes are blind. Nevertheless, we have
tried to study whether the use of the proposed canonical model might be helpful or
not under these circumstances.

Thus, given a new group, it might not be appropriate to determine the group rating by
means of extreme canonical models such as MIN, MAX (as confirmed by preliminary
experimental results). We will therefore attempt to determine the best option between
combining the results using an average or a majority criterion (which in some respects
relates to recommending the mean or mode value, respectively). We will also compare
our results with those obtained using the classical linear opinion pool (LinOP) where
all the users have been considered equivalent for prediction purposes.12 In this case,
the recommended rating is the one that obtains the maximum posterior probability.

In order to study the performance of MAJ and AVG in this situation, we have
decided to measure the accuracy of MAJ+PD and AVG+PD when predicting group
ratings under the four different combination mechanisms. As in Sect. 7, the experi-
mentation has been conducted by considering the two criteria for forming the groups
(groups of buddies and circumstantial users). Table 9 presents the results (we only

12 It should be noted that this model is equivalent to considering a weighted sum canonical model using
an unbiased uniform weighting scheme, i.e. the weights are defined as w(v j,t , gi,s ) = w j if t = s, and 0
otherwise). The linear opinion pool can therefore be considered a particular case of the canonical weighted
sum gate.
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show the MAE metrics13). The last two rows of this table contains the mean values
and standard deviation for the experiments.

From this table, we can conclude that it is safer to use the canonical models to
combine information, and for majority gates, in particular, the MAE values are 6%
better for both C1 and C2. Taking into account the uncertainties at an individual level
therefore helps to improve the prediction. As before, the model performs differently
when consideration is taken of how the groups are formed. On average, all the mod-
els obtain better results when groups of buddies (C1) are used than when groups of
circumstantial members (C2) are considered. When using C1, the use of MAJ+PD
criterion seems preferable to AVG+PD (statistical significance were found) and this
might imply that in the case of groups with similar users it is better to use the mode
value. When using C2, however, although it was better to use AVG+PD, there is no
statistical significance with respect to MAJ+PD. Finally, we would like to mention
that we have also studied the performance of the LinOP model when attempting to
reduce the effect of the prior probabilities, but in this case no significant differences
were obtained (the same mean results were obtained).

8.2 Learning how the groups rate

The aim of this section is to study the use of automatic learning algorithms to repre-
sent the group’s profiles and their effect on the group’s recommendations. There are
two main points which must be considered: the first is that we are not imposing any
restriction on how a group rates an item, and therefore the learning models might be
general; and the second is related to efficiency and scalability since, as we have seen,
these are both important in group recommending.

This paper will therefore explore the following two alternatives:

NB The first method uses a Naive Bayes (NB) classifier (Duda and Hart 1973)
since it performs well on many data sets, and is simple and efficient. This
modeling might be related to the classical Bayesian approach for combining
probability distributions. In our context, predicting the group rating can be
viewed as a classification problem where the group rating is the class variable
and the individual ratings would be the attributes. NB assumes that individual
ratings are independent given the group rating and has the advantage that no
structural learning is required. In this case, the rating prediction comes down
to finding the rate such that

rate = arg max
s

P(G = s)
∏

i

Pr(vi |G = s)

where vi is the rating selected for the i th member of the group, Vi , by means of
a RateSelection(Pr(Vi |ev)) process as in the previous baseline model
(see left-hand side of Table 5).

13 We have decided not to include the percentage of success in order to reduce the size of the tables. It
should be noted that it appears to be correlated with the MAE values, as previously seen in the experiments.
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The only parameters that must be estimated from the data sets of past group
ratings are the group’s prior probability, P(G), and each member’s rating
conditional probability given that the group has rated with a certain value,
Pr(Vi |G = r). These probabilities can easily be estimated from the data sets
using Add-1/r smoothing such that

Pr(Ga = s) = N (ga,s) + 1/r

N (Ga) + 1

where N (ga,s) is the number of times that the group rating is s and N (Ga) is
the number of times that the group has rated.
For the nodes in V , the conditional probabilities are estimated using

Pr(Vi = t |G = s) = N (vi,t , ga,s) + 1/r

N (ga,s) + 1

where N (vi,t , ga,s) is the number of times that the user rate is t when the group
rating is s .

WSG The second alternative consists in using the canonical weighted sum model
presented in this paper (see Definition 1) to represent the combination process.
In this case, we are assuming that the group rating is determined by aggre-
gating the preferences of the group’s members and the only independence
restriction that we impose is that since we know how the group’s members
rate an item, the group rating is independent of the other information sources.
As with NB, no structural learning is required in this model.
We must therefore determine each individual’s effect on the group rating. In
particular, looking at Eq. 5, we must estimate w(vi,k, ga,s), i.e. the effect that
user Vi rating with the value k has on the group Ga rating with the value s.
These weights might be defined as the ratio

w(vi,k, ga,s) = N (vi,k, ga,s) + 1/r

N (vi,k) + 1
.

The main advantages of both models rest on the assumptions used, which reduce the
number of parameters to be estimated in several orders of magnitude and also facilitate
the inference processes. Both assumptions are, however, the main drawbacks of the
models since they are not realistic in this domain.

8.2.1 Experimentation: learning group rating pattern

In this experiment, we will focus on the ability of the proposed models to learn how
the groups rate. We have therefore conducted the same experiments as before, but con-
sidering the learned group profiles. Table 10 presents the results obtained with both
models when considering different combination mechanisms of the group. More spe-
cifically, we only show the results obtained using WSG with PD strategy (WSG+PD).
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Table 10 Learning parameters from the database of cases

Group rate C1 C2

Naive Bayes WSG+PD Naive Bayes WSG+PD

%S MAE %S MAE %S MAE %S MAE

AVG 55.995 0.574 57.456− 0.442+ 57.727 0.471 62.222+ 0.387+
MAJ 52.588 0.637 56.037− 0.488+ 51.477 0.583 56.180+ 0.487+
MAX 72.171 0.449 77.702+ 0.244+ 67.300 0.407 72.689+ 0.284+
MIN 38.738 0.804 42.829+ 0.710+ 39.955 0.781 45.213+ 0.663+
Mean 54.873 0.616 58.506 0.471 54.115 0.561 59.076 0.455

Dev 13.736 0.148 14.393 0.191 11.465 0.164 11.486 0.161

In addition, in terms of rate selection for WSG+PD, the average rating over the group
probabilities is recommended,14 i.e. rate = round

(∑r
k=1 k × Pr(G = k|ev)

)
.

From this table, we can conclude that WSG+PD outperforms the Naive Bayes
model in all the experiments. Finally, we will compare the results with those obtained
in Table 6, which could be considered our goal since in this case we are using the same
aggregation strategy as that used by the group. Although we always obtain better results
as Table 6 shows, we can conclude that by learning the group rating pattern, we might
make predictions which are almost ideal. For instance, the difference between the
best MAE values are 0.046, 0.06, 0.033 and 0.048 (0.024, 0.05, 0.021 and 0.086) for
AVG, MAJ, MAX and MIN for C1 data sets (C2 data sets, respectively). Although
these differences are statistically significant, they give some idea of the ability of the
WSG to map different aggregation criteria. This is important because it implies that
WSG can be applied safely in those situations where the aggregation criterion used
by the group is not known.

9 Conclusions

In this paper, we have proposed a general BN-based model for group recommending
and this is an intuitive representation of the relationships between users and groups. The
topology of the BN represents those dependence and independence relations consid-
ered relevant for modeling the group recommending processes. We should emphasize
that only in situations where the required computation is quite complicated have we
considered assumptions to reduce computational complexity. Although these assump-
tions might not be realistic in a given domain, they are necessary if we want to apply
the proposed methodology in real applications. The experimental results show the
viability of our approach.

With the proposed model we can therefore represent both uncertainty relating
to the user’s personal views about the relevance of an item, and also uncertainty

14 The other alternatives were the combination of WSG without PD and the use of the most probable
criterion to decide the predicted rating, but worse results were obtained.
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relating to the mechanisms used by the group to aggregate individual preferences,
mechanisms which are encoded by means of conditional probability distributions
stored at the group nodes. In terms of efficiency, these distributions have been assessed
by means of canonical models. The use of these models also allows the posterior prob-
abilities to be computed in linear time and this is something which is necessary for
deciding the recommended rate. Guidelines have been given for how to estimate the
probability values from a data set and how the users interact with the RS. Experimen-
tal results demonstrate that by taking uncertainty into account at the individual level
when aggregating, better prediction for the groups can be obtained. In addition, the
results obtained determine other factors which affect system performance such as how
the group is created, the number of individuals in the group, the aggregation function
used, etc. It should be noted that the proposed model is quite general since it can be
applied to different recommendation tasks (such as find good items or predict ratings)
for a single item or for a set of items. Moreover, although this paper is set within
the framework of the group recommending problem, the results presented can easily
be extended to those disciplines where aggregating information represents an impor-
tant component, and these disciplines include statistics, decision theory, economics,
political science, psychology, etc.

By way of future work, we will attempt to incorporate mechanisms to enable con-
sensus to be reached between group members. In this respect, we can say that selecting
the rating ri with probability 0.55 is not the same as selecting the rating ri with proba-
bility 0.95. It seems clear that the use of these uncertainties will be helpful for reaching
consensus in group decisions. We also plan to encode different strategies such as ensur-
ing some degree of fairness (Masthoff 2004; Jameson and Smyth 2007) by means of a
BN, for instance to ensure that at least 75% of users were satisfied. Another problem
worthy of study is to determine in what circumstances it is possible to discover how
a group rates a given item, such as for example how to consider the effect of context
in the group rating pattern.

Acknowledgements This work has been jointly supported by the Spanish Ministerio de Educación y
Ciencia, Junta de Andalucía and the research program Consolider Ingenio 2010, under projects TIN2005-
02516, TIC-276 and CSD2007-00018, respectively.

Appendix

This appendix will include any technical results that are not necessary to understand
the insights of the model but which are necessary to follow the mainstream of the
paper.

A Modeling the average rating with canonical weighted sum gates

The average gate models those situations where the group rating can be considered as
the average rating of its members. Although representing this combination criterion
using this gate implies important savings in storage, a huge number of computations
are required in the inference processes. In this appendix, we will illustrate how the
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Table 11 Probability values for average gate and CWS-based criteria for configurations c1 = (1, 1,

2, 1, 1, 2), c2 = (1, 2, 2, 3, 3, 5) and c3 = (1, 5, 5, 4, 5, 4).

AVG gate: Pr(G = k|ci ) CWS-based: Pr(G = k|ci )

1 2 3 4 5 1 2 3 4 5

c1 1 0 0 0 0 0.666 0.333 0 0 0

c2 0 0 1 0 0 0.166 0.333 0.333 0 0.166

c2 0 0 0 1 0 0.166 0 0 0.333 0.5

same recommended rating might be computed efficiently by considering a canonical
weighted sum-based representation of the average rating in a two-step approach:

– Firstly, for a given configuration pa(Gi ), define the probability of the group rating
with the value k as the ratio of the number of its members which would rate with k,
i.e.

Pr(Gi = k|pa(Gi )) =
∑

Vj ∈Pa(Gi )
R(pa(Gi ), Vj , k)

|Pa(Gi )|
with R(pa(Gi ), Vj , k) equal to 1 if user Vj rates with value k in the configuration
pa(Gi ) and 0 otherwise. This definition is equivalent to aggregating individual
ratings by means of a canonical weighted sum approach (see Definition 1) where
all users are assumed to be equal for prediction purposes15 with no bias in the user
ratings. These weights might therefore be defined as follows

w(v j,t , gi,k) =
{ 1

|Pa(Gi )| if k = t,
0 otherwise.

(12)

In Table 11, we present both the probability values for the AVG gate using Eq. 9 and
those obtained using Eq. 12 (column labeled with CWS-based) for three example
configurations.

– Secondly, determine the group rating as the one obtained by averaging over the
group probabilities as

rate = round

{
r∑

k=1

k × Pr(Gi = k|pa(Gi ))

}

(13)

Thus, continuing with our example, for configuration c1 the group rate is round
{1.333} = 1, for configuration c2 round{2.6666} = 3, and for configuration c3
round{4} = 4, which are the same rating values as those that will be recommended
using the average over individual ratings.

15 It should be noted that in this case we do not consider situations where there are users with high quality
opinions (experts). Nevertheless, these could easily be taken into account by adequately modifying the
weights.
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We should mention that by using a canonical weighted sum representation, we
inherit the computational advantages of the canonical weighted sum models in the
inference processes (see Sect. 3.3). When we refer to the average canonical model in
this paper, denoted by AVG, we are therefore referring to the fact that the group rating
is obtained using the conditional probabilities presented in Eq. 12 and that the selected
rating is the one obtained using Eq. 13.

B Propagating with majority gates

In this section we will present the computations necessary to understand how the new
evidences can be propagated efficiently using majority gates.

Since order is not a factor in the majority criterion, we might speak of combinations
with repetition. We will use �(Gi ) to denote the set of combinations with repetition
from the individual votes in Pa(Gi ), and we use δ(Gi ) or < > to denote a single com-
bination. We will say that a configuration pa belongs to the combination δ, denoted
by pa ∈ δ, if the combination δ can be obtained from configuration pa by removing
the order constraints.

The following theorem shows that in order to combine the different individual rat-
ings we only need to take into account the probability distributions associated to the
set of combinations with repetition:

Theorem 2 Let Gi be a group node in a BN whose conditional probability distribu-
tions are represented using a majority gate, let �(Gi ) be the set of possible combina-
tions with repetition of the values in its parent set, Pa(Gi ), then

Pr(Gi = s|ev) =
∑

δ(Gi )∈�(Gi )

Pr(Gi = s|δ(Gi ))Pr(δ(Gi )|ev)

Proof Considering the independences in the model (see Sect. 3.2) we have that

Pr(gi,s |ev) =
∑

pa(Gi )

Pr(gi,s |pa(Gi ))Pr(pa(Gi )|ev)

If we consider the set of configurations that can be mapped to the combination δ(Gi ),
i.e. pa(Gi ) ∈ δ(Gi ), then

Pr(gi,s |ev) =
∑

δ(Gi )

∑

pa(Gi )∈δ(Gi )

Pr(gi,s |pa(Gi ))Pr(pa(Gi )|ev).

Since for the majority gate all configurations mapping to the combination δ(Gi ) have
the same conditional probability distribution, Pr(gi,s |δ(Gi )), the right-hand side of
the above equality becomes

∑

δ(Gi )

Pr(gi,s |δ(Gi ))
∑

pa(Gi )∈δ(Gi )

Pr(pa(Gi )|ev)
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and finally

∑

δ(Gi )

Pr(gi,s |δ(Gi ))Pr(δ(Gi )|ev). 
�

This theorem shows that if we know Pr(δ(Gi )|ev), the information could be com-
bined with a majority gate in a time which is proportional to the size of C Rr

n , i.e.
O(nr−1). Taking into account that in many situations r << n, this implies important
savings in terms of considering the number of possible configurations, O(rn). For
instance, if n = 20 and r = 2 then C Rr

n = 21 whereas the number of configurations
(permutations) is more than a million.

B.1 Assuming independence to approximate Pr(δ(Gi )|ev):

In order to compute Pr(δ(Gi )|ev), however, we must sum over all the possible con-
figurations in the combination, i.e.

∑
pa(Gi )∈δ(Gi )

Pr(pa(Gi )|ev). We will see how
by assuming that collaborative ratings are independent given the evidence these com-
putations can be considerably reduced.

Firstly, and with the idea of being general, we will introduce some notation: let
X1, . . . Xn be a set of n independent variables and let πn represent any configura-
tion of these variables. As these variables are independent Pr(πn) = ∏n

i=i Pr(xi, j ),

where xi, j is the value that variable Xi takes in the configuration πn .16 Let δk be a
combination with repetition of a subset of k variables and let s ∈ δk represent the
fact that the value s belongs to the combination δk . Additionally, we say that δk−1 is
a s-reduction of δk , denoted by δ

↓s
k , if δk−1 can be obtained by removing a value s

from the combination δk . The following theorem shows how Pr(δn) can be computed
recursively:

Theorem 3 Let δn be any combination with repetition from the set of X1, . . . , Xn. If
Xi is independent of X j ,∀i 
= j , the probability associated with the combination δn

can then be computed as

Pr(δn) =
{

Pr(x1,t ) if n = 1 and t ∈ δ1∑
s∈δn

Pr(δ
↓s
n−1)Pr(xn,s) if n > 1

(14)

Proof We know that Pr(δn) = ∑
πn∈δn

Pr(πn). Assuming independence between the
variables, we have that Pr(πn) = Pr(πn−1)Pr(xn,s) where πn−1 is the configuration
of the first n − 1 variables in πn and xn,s is the value of Xn in πn . Grouping all the
configurations with the same value for variable Xn we have that

Pr(δn) =
∑

s∈δn

Pr(xn,s)
∑

πn−1∈δn−1

Pr(πn−1) =
∑

s∈δn

Pr(δ
↓s
n−1)Pr(xn,s).

16 It should be noted that in the case that all Pr(Xa) = Pr(Xb), ∀a 
= b, we will have a multinomial
distribution of ratings, simplifying the estimation processes. Nevertheless, this situation should imply that
all the collaborative nodes have the same rating probabilities, which is not a valid assumption in this domain.
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Fig. 5 Recursion graph for computing Pr(< 1, 1, 1, 2, 2 >)

Table 12 Algorithm for computing Pr(�)

Computing Pr(�)

Pr(δ1) = Pr(X1)

for (k = 1;k < n;k+ +)

for each δk ∈ CRr
k do // each combination of size k

for (s = 1;s<= r;s+ +) // values of Xk+1
Pr(δk∪s )+ = Pr(δk ) × Pr(xk+1,s )

A first idea would be to apply this result directly in order to compute Pr(δ(Gi )|ev).
For instance, Fig. 5 shows the recursion graph for the computation of Pr(< 1, 1, 1,

2, 2 >), where each different combination obtained after a reduction has been dis-
played only once. The key observation is that the number of (sub)combinations
obtained after applying a reduction process is relatively small. A recursive algorithm
may therefore encounter each one many times in different branches of its recursion
graph. For example, Fig. 5 shows that the (sub)combination Pr(< 1, 1, 2 >) should be
computed twice and the (sub)combination Pr(< 1, 1 >) three times. Moreover, some
of these subproblems might also appear when computing different joint probabilities,
such as Pr(< 1, 1, 2, 2, 2 >). Applying Theorem 3 directly therefore involves more
work than necessary.

We propose that every probability for a given subcombination be computed just
once and its values saved in a table, thereby avoiding the work of recomputing this
probability every time the subcombination is encountered.

The following algorithm (see Table 12) shows how to compute the joint proba-
bility distributions for all the possible combinations with replacement in the set �.
We follow a bottom-up approach where we first compute the probabilities associated
with the smallest (sub)combinations in terms of the number of variables used to form
the combinations with repetition, and these probabilities will be used as the basis for
calculating the largest combinations. Initially, when considering the first variable X1,
we have r different combinations with replacement, one for each possible value of
the variable X1. In a general stage, we then found that the probabilities associated
with each combination δk of the first k variables are used in the computation of the
probabilities of r different combinations with size k +1, one for each possible value of
the variable Xk+1. Each of these combinations will be denoted by δk∪s with 1 ≤ s ≤ r .

An inspection of the algorithm yields a running time of T (n) = ∑n
i=1 rC Rr

i , i.e.
T (n) ∈ O(rnr ), which is much more efficient than applying the recursive algorithm
from Theorem 3 directly. For example, in the case of bivaluated variables (as is usual
in decision problems), we have a quadratic algorithm for combining the output of the
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different individuals. With respect to the memory needed to store the intermediate
results, we find that the values in stage k are only used in stage k − 1, and therefore
the memory used is on the order of O(C Rr

n).
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Índice de Impacto (SJR 2010): 0.069
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a b s t r a c t

Recommender systems enable users to access products or articles that they would other-
wise not be aware of due to the wealth of information to be found on the Internet. The
two traditional recommendation techniques are content-based and collaborative filtering.
While both methods have their advantages, they also have certain disadvantages, some of
which can be solved by combining both techniques to improve the quality of the recom-
mendation. The resulting system is known as a hybrid recommender system.

In the context of artificial intelligence, Bayesian networks have been widely and success-
fully applied to problems with a high level of uncertainty. The field of recommendation
represents a very interesting testing ground to put these probabilistic tools into practice.

This paper therefore presents a new Bayesian network model to deal with the problem of
hybrid recommendation by combining content-based and collaborative features. It has
been tailored to the problem in hand and is equipped with a flexible topology and efficient
mechanisms to estimate the required probability distributions so that probabilistic infer-
ence may be performed. The effectiveness of the model is demonstrated using the Movie-
Lens and IMDB data sets.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Recommender systems (RSs) attempt to discover user preferences, and to learn about them in order to anticipate their
needs. Broadly speaking, a recommender system provides specific suggestions about items (products or actions) within a
given domain, which may be considered of interest to the given active user [1]. Formally, in a hybrid recommending frame-
work, there exists a large number m of items or products I ¼ fI1; I2; . . . ; Img, which are described by a set of l attributes or
features, F ¼ fF1; F2; . . . ; Flg, and each product is specified by one or several. There is also a large set of n users,
U ¼ fU1;U2; . . . ;Ung and for each user, a set of ratings about the quality of certain observed items in I . Under this formula-
tion we distinguish two different problems:

� Given an item not rated, predicting the rating that the user would give.
� Given a user, find the best items and their ratings for being recommended, showing the results ordered by predicted

rating.
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Although both notions are closely related, this paper deals with the first type, i.e. rating prediction. The usual formulation
of the problem is then to predict how an active user might rate an unseen item.

Many different approaches to the recommender system problem have been published [2–4], using methods from ma-
chine learning, approximation theory, and various heuristics. Independently of the technique used and based on how the
recommendations are made, recommender systems are usually classified [3] into the following categories: Collaborative fil-
tering systems that attempt to identify groups of people with similar tastes to those of the user and recommend items that
they have liked and Content-based recommender systems which use content information in order to recommend items similar
to those previously preferred by the user.

Generally, collaborative systems report a better performance than content-based approaches, but their success relies on
the presence of a sufficient number of user ratings [3,5,6,4,7]. Such systems have the drawback that they suffer from the item
cold-start problems which occur when recommendations must be made on the basis of few recorded ratings [8,3]. These
problems arise because the similarity analysis is not accurate enough. In these situations the use of a content-based ap-
proach appears as an alternative. Nevertheless, this approach has its own limitations. For example, the keywords used to
represent the content of the items might not be very representative. Also, content-based approaches suffer the limitation
of making accurate recommendations to users with very few ratings.

A common approach to solve the problems of the above techniques is to combine both content-based and collaborative
information into a hybrid recommender system [9]. Different hybridization methods [3,6,9,10] have been proposed, such as
the use of weighted criterion (the scores of different recommendation components are combined numerically), the use of
a switching mechanism (the system chooses among recommendation components and applies the selected one) or even
the presentation of the two recommendations together, leaving the decision in the user’s hands. Nevertheless, a common
problem with these methods is that the parameters controlling the hybridization have to be tuned.

This is the setting for the proposal presented in this paper, i.e. the design of a hybrid system with the aim of predicting
how an active user should rate a given item. Particularly, we will explore the use of Bayesian network formalism to represent
the relationships among users U , items I and features F , the elements involved in the recommendation processes. By using
Bayesian networks, we can combine a qualitative representation of how users and items are related (explicitly representing
dependence and independence relationships in a graphical structure) as well as a quantitative representation by means of a
set of probability distributions, measuring the strength of these relationships.

In our proposal we shall distinguish two different parts: The first one is used to represent the knowledge that we have
about how the active user rates the items, i.e. the user profile, which includes both content-based and collaborative infor-
mation. The second component represents those relationships related to the target item. We would like to say that con-
tent-based information is not only used to improve the active user knowledge, but also this information has been used to
improve the knowledge at the collaborative level. This is possible because we have a hybrid model where all the components
are represented under the same formalism. By means of this fact we can explore the importance of the different elements in
the quality of the predictions.

In order to present the model, this paper is structured in the following way. The following section introduces recom-
mender systems and reviews the related work. Section 3 describes the model from a topological point of view. How to
use the recommender model and how inference is performed efficiently are explained in Section 4. Section 5 discusses
the probability distribution estimation. In order to determine the performance of the proposed model, it is evaluated in Sec-
tion 6. Finally, Section 7 presents our conclusions and outlines future lines of research.

2. Related work and preliminaries

Based on how the recommendations are made, recommender systems are classified into:

� Content-based recommender systems that [3] store content information about each item to be recommended. This informa-
tion will be used to recommend items similar to those previously preferred by the user, based on how similar certain items
are to each other or the similarity with respect to user preferences (also represented by means of a subset of content fea-
tures). Focusing on probabilistic approaches, learning as a constraint satisfaction problem is considered in [11], where the
user profile is learnt by considering contextual independence. By assuming independence between variables, Bayesian
classifiers have also been used in [12,13] to estimate the probability of an item belonging to a certain class (relevant or
irrelevant) given the item description. Also, Bayesian networks [14,15] have been used to model the item’s description.
� Collaborative filtering systems [3] attempt to identify groups of people with similar tastes to those of the user and recom-

mend items that they have liked. According to [16], collaborative recommender systems can be grouped into memory-
based and model-based approaches.

On the one hand, memory-based algorithms use the entire rating matrix to make recommendations. In order to do so,
they use an aggregation measure by considering the ratings of the other users [17] (those most similar) for the same item.
Different models can be obtained by considering different similarity measures and different aggregation criteria. Also item-
based approaches, which take into account the similarity between items (two items are similar if they have been rated sim-
ilarly) [18,19], appear as good alternatives to the user-based method.
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On the other hand, in model-based algorithms, predictions are made by building (offline) an explicit model of the rela-
tionships between items. This model is then used (online) to finally recommend the product to the users. This kind of model
ranges from the classical Naive–Bayes [16,20,21] to the use of more sophisticated techniques such as those based on aspect
models [22–25]. Aspect-based models have been proposed as an approach to recommendation, for robust handling of the
item cold-start problem. These models do not attempt to directly model pairwise interactions, instead they assume a latent
or hidden variable that represents the different topics.

A good survey of the application of different machine learning approaches to the problem of collaborative filtering is [4].

� Hybrid recommender systems combine collaborative and content information. Depending on the hybridization approach
different types of systems can be found [9]. Firstly we are going to consider those approaches that require building sep-
arate recommender systems using techniques that are specialized to each kind of information used, and then combine the
outputs of these systems. For instance, the resulting scores can be combined using a weighted approach [26] or voting
mechanisms [27], switching between different recommenders [28,29], and filtering or reranking the results of one recom-
mender with another [9]. A different approach consists of combining both content and collaborative features. By means of
this combination a single unified technique might be used regardless of the types of information used [16,7]. In such sys-
tems, a careful selection of the features is needed.

There have been some works on using boosting algorithms for hybrid recommendations [30,31]. These works attempt to
generate new synthetic ratings in order to alleviate the cold-start problem. These new ratings can be obtained using various
heuristics, based on content information (for instance according to who acted in a movie) or demographic information. After
injecting these new ratings into the user-item matrix along with actual user ratings, a collaborative algorithm is used.

The use of aspect models [24] has been also extended to use many types of meta-data (e.g. actors, genres, and directors for
movies) [32]. A similar approach has been also used for music recommendations [33] and online document browsing [34]. Also
related, the hybrid Poisson-aspect model [35] approach combines a user-item aspect model with a content-based user cluster.

2.1. Canonical weighted sum: a gateway to solve complexity problems

Our hybrid proposal can be viewed as an extension of the BN-based collaborative model in [36], which will be discussed
in more detail in this section. In terms of dependence relationships, this model considers that the active user’s ratings are
dependent on the ratings given by similar users in the system. The topology of the BN consists of a variable A, representing
the active user, having as its parents those user variables, Ui 2 U, with most similar tastes. These parents are learned from the
database of votes. As a similarity measure between the active user A and any other user U (sim(A,U)) a combination of two
different but complementary criteria has been used: on the one hand, we use rating correlation (Pearson correlation coeffi-
cient, PC) between common items to measure the similarity between the ratings patterns. The second criterion attempts to
penalize those highly correlated neighbours which are based on very few co-rated items, which have proved to be bad pre-
dictors [17]. In some way, we are measuring how the sets of ratings overlap:

simðA;UÞ ¼ absðPCðA;UÞÞ � jIðAÞ \ IðUÞj
jIðAÞj ; ð1Þ

where I is the set of items rated by the user in the data set.1 In our approach, by using the absolute value of PC, abs(PC), we
consider that both positively (those with similar ratings) and negatively correlated users (those with opposite tastes) might help
to predict the final rating for an active user.

Taking into account the number of users involved in the predictions, in [36] we developed a canonical model to represent
the conditional probability distributions: the canonical weighted sum (CWS) gate. When this model is assumed, we can fac-
torize the conditional probability tables into smaller pieces (the weights describing the mechanisms) and use an additive
criterion to combine these values. This model can be seen as an example of ‘‘independence of causal influence” [37,38],
where causes lead to effect through independent mechanisms. Since the system presented in this paper also has to handle
a large number of variables (users, items and features) we are going to briefly review this model.

Definition 1 (Canonical weighted sum). Let Xi be a node in a BN, let Pa(Xi) be the parent set of Xi, and let Yk be the kth parent
of Xi in the BN. By using a canonical weighted sum, the set of conditional probability distributions stored at node Xi are then
represented by means of

Prðxi;jjpaðXiÞÞ ¼
X

Yk2PaðXiÞ
wðyk;l; xi;jÞ; ð2Þ

where yk,l is the value that variable Yk takes in the configuration pa(Xi), and w(yk,l,xi,j) are weights (effects) measuring how
this lth value of variable Yk describes the jth state of node Xi. The only restriction that we must impose is that the weights are
a set of non-negative values verifying that for each configuration pa(Xi)

1 It should be noted that we are not considering the particular votes, merely whether the users rated an item or not.
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Xr

j¼1

X
Yk2PaðXiÞ

wðyk;l; xi;jÞ ¼ 1:

For example, assume that Xi has four parents, Pa(Xi) = {Y1, . . . ,Y4}, and that each variable takes its values in {a,b,c}. Then,
given the configuration pa(Xi) = (y1,c,y2,a,y3,c,y4,b), we shall compute Pr(xi,bjy1,c,y2,a,y3,c,y4,b) as the sum w(y1,c,xi,b) +
w(y2,a,xi,b) + w(y3,c,xi,b) + w(y4,b,xi,b).

By means of this model we can tackle efficiently those complexity problems related to probability estimation, storage and
inference. Thus, it is possible to estimate large conditional probability distributions since it is only necessary to estimate the
weights involved in computing the conditional probability distributions in Eq. (2). Various additional advantages will also be
obtained: firstly, since these weights can be computed independently (taking only a pair of variables into account), we
reduce the problem of data sparsity; secondly, the parent set of Xi can be easily modified (for instance, including a new
variable Yk+1 as the parent of Xi does not involve recomputing every conditional probability value); and thirdly, the use of
this canonical model allows us to design a very efficient inference procedure (see Section 4).

The CWS gate has its own limitations since a general probability distribution cannot be represented by means of this gate.
It only can represent properly those situation where the joint distribution can be computed by adding the individual’s
weights. Nevertheless, we believe that its use is appropriate in the recommender framework.

3. General description of the hybrid recommender model based on Bayesian networks

In this section we will describe the BN used to represent the hybrid system. This model represents how users, U, items, I ,
and features, F , are related. Focusing on the input data, the content description of the items is usually expressed by means of
a sparse binary matrix, D, of size m � l, where di,j = 1 when item i is described by feature j. When the entry is null, this rela-
tion is not established. An example of such a matrix is presented on the left-hand side of Table 1. Similarly, the ratings are
also represented by means of a matrix, S, of size n �m, where users are represented in the rows and items in the columns.
This matrix is usually sparse as users usually rate a low number of items. The value of the matrix, sa,j represents how user Ua

has rated item Ij. We denote by R the rating’s domain. When a user has not rated a product, the value is 0. The right-hand
side of Table 1 shows an example of such a matrix.

3.1. Elements in a recommender context

Since our BN-based system should include information about users U, items I and features F , we are going to consider
the domain of these variables:

� Features nodes: There will be an attribute node Fk for each feature used to describe a product. Each node has an associated
binary random variable which takes its values from the set {fk,0, fk,1}, which means that the kth feature is not relevant (not
apply), fk,0, or is relevant (apply), fk,1, for the description of the content of a product. 2

Table 1
Example of matrices containing product descriptions, D, and user ratings, S.

I=F F1 F2 F3 F4 F5 F6 F7 F8

I1 1 1 1 0 0 0 0 0
I2 1 1 1 0 0 0 0 0
I3 0 0 1 1 1 0 0 0
I4 0 0 0 1 1 1 0 0
I5 0 0 0 1 1 1 0 0
I6 0 0 0 0 0 1 1 1
I7 0 0 0 0 0 1 1 1
I8 1 0 1 0 0 0 1 1
I9 0 1 0 0 1 0 0 1
I10 0 0 0 0 1 1 0 1

U=I I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

U1 5 5 3 1 3 3 0 0 0 0
U2 5 5 4 1 1 4 0 0 0 0
U3 4 4 3 2 2 4 0 0 0 0
U4 1 0 1 0 0 2 1 3 0 5
U5 1 0 2 0 0 1 1 3 0 3
U6 0 2 1 0 2 2 0 2 0 0
U7 0 0 5 5 0 2 0 0 0 4
U8 5 4 3 3 0 2 1 2 1 0
U9 0 0 1 1 2 2 0 0 0 2
U10 0 0 5 0 4 0 0 0 0 3

2 In our framework the term ‘‘relevant” expresses that it can help to (it is relevant for) predicting the target item’s ratings.
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� Item nodes: Similarly, there is a node Ij, for each item. The random variable associated with Ij will take its values from the
set {ij,0, ij,1} meaning that the item is not relevant (not apply) or is relevant (apply), respectively, when it comes to pre-
dicting the user’s rating.
� User nodes: These Ui nodes will be used to predict the rating for the target item, particularly they should represent how

probable is ‘‘the user rates with s an item”. The domain of this variable is therefore the setR[ f0g. The additional value, 0,
is included to model the lack of knowledge, i.e. the user has no useful information for predicting the target item’s rating.

3.2. Topology of the model

Concerning the topology of our proposal, we shall distinguish two different parts: the first one is used to represent the
knowledge that we have about how the active user would rate an item, i.e. the user profile. Since this component is centred
on the user’s perspective it might be static and could be built in an offline process. On the other hand, the second component
represents those relationships related to the target item. As a consequence this part, which changes from one recommenda-
tion to another, has to be built dynamically. We are going to discuss these components in detail.

3.2.1. Static topology: representing the user profile
The user profile will be used to predict how the active user A would rate an item. In our hybrid approach, we use a BN to

represent both content and collaborative components. Then, these components will be integrated in order to complete our
hybrid system (see Fig. 1). The topology of the content part will be fixed (we only have to estimate the probability values
from the data sets). We use a user variable ACB gathering the information needed to perform content-based predictions. With
respect to the collaborative component, we have to look for users similar to the active user (and therefore, a learning process
becomes necessary). In this case, the collaborative information is also gathered in a user variable ACF. To allow the combina-
tion of both components we use a variable AH to encode the active user’s predictions at the hybrid level. Following Burke’s [9]
ideas, the way in which we model the user profile can be considered as ‘‘mixed” since this variable encodes the mechanism
controlling the contribution of both content and collaborative approaches.

Now, we are going to describe these components (for illustrative purposes, Fig. 1 shows the user profile associated to the
user U4, according with the data in Table 1):

CB Content-based component: We will consider that an item’s relevance will depend on the relevance values of the fea-
tures that define it. Therefore, there will be an arc from each feature node, Fi, to the nodes representing those items,
Ij, which have been described with this feature. By directing the links in this way, we allow two items with a common
subset of features to be dependent (except when we know the relevance values of these common features). For
instance, using the data in Table 1, features F1, F3, F7 and F8 are connected to I8.

In order to conclude this part, we must connect the nodes representing the items with the node representing the active
user’s predictions. The basic rule for performing these connections is simple: for each item Ij rated by the active user, add the
arc Ij ? ACB to the graph.3 Fig. 1 shows these arcs when the user U4 plays the active user role.

CF Collaborative component: The collaborative component will comprise those people with similar tastes or preferences to
the active user, represented by ACF. These relations between users will depend on user ratings and so they must be

1 2 3 4 5 6 7 8

1 3 6 7 8 10

CB 1 2 3 5 6 7 8

CF

H

Fig. 1. The static subgraph of the hybrid Bayesian network.

3 The use of this model will imply that when the active user rates a new item, we must re-learn his or her conditional probability table. Nevertheless, by
using the canonical weighted sum gate this process will be greatly simplified.
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learnt from the database of votes, S. In this paper we use as a similarity measure the criterion previously discussed in
Section 2.1 (see Eq. (1)). Regardless of the mechanism used to find these relationships, whenever a dependence (sim-
ilarity) between the preferences of the active user and a given user Ui is found, an arc connecting both nodes should be
included in the Bayesian network, Ui ? ACF.

Following a common approach in traditional memory-based RS, we use a fixed neighbourhood (selecting the top-N most
similar users). This approach simply selects more users so that the predictions might be based on a sufficient number of rat-
ings. As a consequence, not all users in the selected neighbourhood have given a rating for the item that we want to predict.
An advantage of this approach is that we have a neighbourhood (profile) which is independent of the target item. Therefore,
an offline learning algorithm can be applied in order to update the system after new users or ratings arrive. This update can
be done when the system has a low workload.

H Hybrid component: Given an active user A, we will have his or her own preferences about the relevance of a new item in
node ACB (representing the content-based component), and also the preferences borrowed from similar users in node ACF

(collaborative component). These two preferences must be combined in order to obtain the final prediction for the user.
This can be easily represented in the BN-based model by including a new node, AH, which has both content (ACB) and col-
laborative (ACF) information as its parents.

3.2.2. Dynamic topology: managing target item-dependent relationships
Given the active user profile, the purpose of the model is to predict the rating of an unobserved item. In order to take into

account the information associated with this target item, we can enlarge both, content and collaborative components. The
content-based component is enlarged by inserting a new node which represents the item itself. This node will be linked with
all the features used to describe the item. For example, Fig. 2 illustrates this situation when we are trying to predict how U4

should rate item I5. In this figure we use dashed lines to denote the dynamic relationships.
Focusing on the collaborative component, it is possible to distinguish between those users who rated the target item I in

the past (UþI ) and those who did not (U�I ). In the first case, we know exactly what the given ratings were. In the latter case, a
first alternative might be not to use any information related to the users in U�I when recommending. This is common in a
pure collaborative context since we do not have any more information. In a hybrid context, however, we might think about
the use of content-based information in order to get some knowledge about how these users in U�I should rate an item. This
kind of information can be included easily in our model by connecting each user Ui in U�I with the set of items previously
rated by Ui. Continuing with our example U�I ¼ fU5;U7;U8g because they did not rate I5. For clarity, in Fig. 2 we only show
the links representing this content-based information for the user U5.

With this approach, we allow not only for the active user to receive content information when recommending but also
that those similar users in U�I might be favoured with this type of information in the collaborative component. Using Burke’s
classification [10], our hybrid approach could therefore also be placed in the ‘‘Feature Augmentation” class since we are com-
bining both content and collaborative features when computing the probabilities in ACF.

In the next section we are going to describe how the inference can be performed. Then, in Section 5 we consider how the
particular weights in the CWS are assessed. We expect that this ordering will help the reader to get a better understanding
about the assessment of the conditional probability distributions.

4. Inference mechanism: computing recommendations

In this section we will see how the proposed topology and the use of canonical models to estimate the probability dis-
tributions enable very efficient inference mechanisms. Our goal is to compute how probable it is that the active user rates

1 2 3 4 5 6 7 8

1 3 5 6 7 8 10

CB 1 2 3 5 6 7 8

CF

H

Fig. 2. Extending the static component with the item-dependent relationships.

790 L.M. de Campos et al. / International Journal of Approximate Reasoning 51 (2010) 785–799



with a particular rating, given the evidence ev, i.e. Pr(AH = rjev) for all r 2 R. In general terms, we have to instantiate the evi-
dence in the BN and propagate towards the predictive nodes. Before studying how propagations should be performed, it is
necessary to discuss how users should interact with the system.

4.1. Managing the evidence

In our framework, we will consider two different types of evidence given by content (evcb) and collaborative (evcf) infor-
mation, i.e. ev = evcb [ evcf.

� evcb: Focusing on the content component, we can consider two different approaches. On the one hand we can consider the
item itself, in our example I5, as evidence. So, we can instantiate this node I5 to relevant, i.e. evcb = {i5,1}. This approach will
be denoted as item instantiation. The second alternative is to consider that the evidence comprises the features used to
describe the item: F4, F5 and F6 in the example. In this situation, we will instantiate all the features used to describe
an item to relevant, evcb = {f4,1, f5,1, f6,1}, and this is called feature instantiation.
� evcf: Focusing on the collaborative component, we know those users who rated the target item in the past, UþI . Therefore,

we can use the given rating as evidence. Continuing with our example, we know that I5 was rated 3 by U1, 1 by U2, 2 by U3,
and 2 by U6, i.e. the evidence is evcf = {u1,3,u2,1,u3,2,u6,2}.

Once the evidence is inserted in the model (Fig. 3a shows the instantiation of the evidence when predicting the rating for
the item I5), this information will be propagated through the network towards the predictive nodes.

Fig. 3. Propagating the evidence towards predictive variables.
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4.2. Propagation processes

The aim of the inference process (as mentioned previously) is to estimate the rating of the active user A, given the evi-
dence Pr(A = sjev). This propagation implies a marginalization process (summing out over uninstantiated variables) which
requires an exponential time. Nevertheless, taking into account that:

(1) in a Bayesian network, a node is independent of all its ancestors given that the values taken by its parents are known,
(2) the conditional probabilities are represented using the canonical weighted sum gate (Eq. (2)),

the a posteriori probability distributions can be efficiently computed as a top-down inference mechanism. In abstract terms,
the topology supporting the hybrid recommender model consists of three node layers (feature, item and user’s layers) plus
two more used to encode the active user predictions. Thus, starting from the first existing layer in the Bayesian network, the
distributions of one layer are obtained using the a posteriori probabilities computed in the previous one. Fig. 3 illustrates the
propagation process.

The following theorem (see [36]) explains how to compute the exact probability values. By means of this theorem, we
express that each node collects the evidence from its predecessors and does not need to be distributed again. This is impor-
tant because exact propagation can be performed in linear time with the number of parents (proof of this theorem can be
found in the Appendix in [36]).

Theorem 1. Let Xa be a node in a BN network, let mXa be the number of parents of Xa,Yjbe a node in Pa(Xa), and lYj
the number of

states taken by Yj. If the conditional probability distributions can be expressed under the conditions given by Eq. (2) and the
evidence is only on the ancestors of Xa, then the exact posterior probabilities can be computed using the following formula:

Prðxa;sjevÞ ¼
XmXa

j¼1

XlYj

k¼1

wðyj;k; xa;sÞ � Prðyj;kjevÞ:

Focusing on the content-based component, the evidence would either comprise a set of features for an item (evidence in
the first layer of the Bayesian network) or the item itself (in the second layer). In the first case, propagation is carried out
directly as explained in Theorem 1. In the second case (instantiating items), the probability Pr(Fkjij,1) must be computed
for each feature node Fk linked to the target item Ij. These posterior probabilities can then be incorporated into the propa-
gation process. The following theorem (the proof is straight-forward) shows how to compute these values.

Theorem 2. Let Fk be a parent node of Ij in a Bayesian network, with the former being a root node in the network. The a posteriori
probability of relevance of the feature given the variable Ij playing the role of evidence is then computed as follows:

Prðfk;1jij;1Þ ¼
Prðfk;1Þ if Fk R PaðIjÞ
Prðfk;1Þ þ

wðfk;1 ;ij;1ÞPrðfk;1Þð1�Prðfk;1ÞÞ
Prðij;1Þ

if Fk 2 PaðIjÞ:

(
ð3Þ

where Prðij;1Þ ¼
P

FK2PaðIjÞwðfk;1; ij;1ÞPrðfk;1Þ.

The algorithm in Table 2 explains how the propagation process can be performed. In this algorithm, we consider that if Uk

is a user who previously rated the target item Ij, then rk,j is the given rating.

5. Estimation of probability distributions

In order to complete the model’s specification, the numerical values for the conditional probabilities must be estimated
from the data sets. One important point to be considered is related to the size of the distributions that must be stored in a
Bayesian network, exponential with the number of parents. Therefore, the assessment, storage and use of these large prob-
ability distributions can be quite complex.

Table 2
Algorithm to compute Pr(Hajevcb [ evcf).

1. Content-based propagation:

– If (evcb == Ij)// Item instantiation (see Fig. 3a)
set Pr(ij,1jev) = 1
Compute Pr(Fkjev) using Theorem 2//propagating towards features,

else for each Fk 2 Ij set Pr(Fk = 1jev) = 1.// Features Inst.
– Propagate to items using Theorem 1.
– Propagate to ACB and Ui 2 U�I using Theorem 1.// (see Fig. 3b).

2. Collaborative propagation:
– For each Uk 2 UþI set Pr(Uk = rk,jjevcf) = 1.// Collaborative evidence.
– Propagate to ACF node using Theorem 1.// (see Fig. 3c)

3. Combine content-based and collaborative likelihoods at hybrid node AH

4. Select the predicted rating.
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As we said, we will use the canonical weighted sum model (see Section 2.1) to model item and user variables. When this
model is assumed, we factorize the conditional probability tables into a set of weights and use an additive criterion to com-
bine these values. We will now present various methods for estimating these weights.

(1) F Feature variables: Starting from the feature nodes (as these do not have parents) it is only necessary to compute the a
priori probability distributions of relevance. In this paper, we propose two different alternatives for estimating these
probabilities:
� EP: all features being equally probable, i.e. Prðfk;1Þ ¼ 1

l .
� RF: relative frequency, i.e. Prðfk;1Þ ¼ nkþ0:5

mþ1 .
where l is the size of the set F ; nk the number of times that feature Fk has been used to describe an item, i.e. the column
sum of the left-hand side of Table 1, and m the number of items. The value Pr(fk,0) is obtained as Pr(fk,0) = 1 � Pr(fk,1).

(2) I Item Variables: With respect to the item nodes, Ij 2 I , as these represent a binary variable, the only weights to be
defined are those needed to compute Pr(ij,1jpa(Ij)), since Pr(ij,0jpa(Ij)) = 1 � Pr(ij,1jpa(Ij)).

In order to assess these values we will consider the following idea: Assume that F1 and F2 are two features describing an
item Ij, with F1 being a common feature (in the sense that it has been used to describe many items) and F2 a rare feature (it
appears in few items). It is natural to think that when both features are relevant (F1 = f1,1 and F2 = f2,1) the contribution of F2

on the Ij’s relevance degree will be greater than the contribution of F1. This idea has been widely used in the field of infor-
mation retrieval [39,40] to consider the importance of a term in the entire document collection. Particularly, the concept of
inverted document frequency (idf) is used to measure the term’s importance. Therefore, using an idf-based approach we use
the expression log ((m/nk) + 1) to measure the importance of a feature in the entire database. Obviously, when a feature is not
relevant its weight is set to zero. Therefore, the weights will be computed as

wðfk;1; ij;1Þ ¼
1

MðIjÞ
log

m
nk

� �
þ 1

� �
and wðfk;0; ij;1Þ ¼ 0 ð4Þ

with M(Ij) being a normalizing factor computed as

MðIjÞ ¼
X

Fk2PaðIjÞ
log

m
nk

� �
þ 1

� �
: ð5Þ

For example, considering the item I6 in Table 1 we have that w(f6,1,i6,1) = 0.3, w(f7,1,i6,1) = 0.4 and w(f8,1,i6,1) = 0.3. Thus, using
the CWS (Definition 1) we have that Pr(i6,1jf6,1,f7,1,f8,1) = 1, Pr(i6,1jf6,0,f7,1,f8,1) = 0.7,Pr(i6,1jf6,0,f7,1,f8,0) = 0.4 and so on.

(3) U User variables: In this case we have to distinguish between those variables representing the content-based predic-
tions (having items as their parents, i.e. ACB and Ui 2 U�I ) and the variable that combines collaborative information
(having users as their parents, i.e. ACF). Note that for those users in UþI the given rating is known, and therefore no
probabilities have to be estimated.
� Content-based predictions: In this case, we must consider the influence of an item in the rating pattern of the user.

To assess these weights we will consider two criteria: Firstly, for a given user UCB 2 fACBg [ U�I , whenever he or she
rated an item Ik with the value s, then all the probability mass should be assigned to the same rating s at the user
level. For example, since U4 rates I6 with 2 (see Table 1) we have that when I6 is relevant, i.e. I6 = i6,1, then all the
probability mass must be sent to the state (rating) 2 at the user node, U4 = u4,2. On the other hand, we will assume
that all the items are equally important for predicting the active user’s rating. Thus, taking into account these two
ideas, and depending on whether the item Ik appears as relevant or not in the configuration pa(UCB) (Ik = ik,1 or
Ik = ik,0, respectively), these weights might be defined as follows:

wðik;1;ucb;sÞ ¼
1

jIðUCBÞj
;

wðik;1;ucb;tÞ ¼ 0; if t–s; 0 6 t 6 #r;

wðik;0;ucb;0Þ ¼
1

jIðUCBÞj
;

wðik;0;ucb;tÞ ¼ 0; if 1 6 t 6 #r:

ð6Þ

Note that when an item is not relevant for predicting purposes, Ik = ik,0, all the probability mass is assigned to the
state 0 at the user level, representing the lack of knowledge. Thus, continuing with the example, w(i6,1,u4,2) = 0.166,
w(i7,1,u4,1) = 0.166 and so on. Then, for example, given the configuration pa(U4) = {i1,1, i3,1, i6,1, i7,1, i8,1, i10,1} we have
that Pr(u4,1jpa(U4)) = 0.166 + 0.166 + 0.166 = 0.5, Pr(u4,2jpa(U4)) = 0.166, Pr(u4,3jpa(U4)) = 0.166 and Pr(u4,5jpa(U4)) =
0.166. Note that when all the items are considered to be ‘‘relevant‘‘ (as before) the estimated distribution corre-
sponds with the one that might be obtained using the maximum likelihood estimator from the U4’s ratings. This
is because the assumption of ‘‘independence of the causal influences” holds. Similarly if pa(U4) = {i1,0, i3,0, i6,1,
i7,1, i8,0, i10,0}, we will have that Pr(u4,2jpa(U4)) = 0.166, Pr(u4,1jpa(U4)) = 0.166 and that Pr(u4,0jpa(U4)) = 0.666.
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� ACF Collaborative-based predictions: In this case, we must determine the weights reflecting the contribution of each similar
user Ui in the prediction of the rating for the active user A. We will use similar ideas as in [36], but taking into account also
the probability mass associated with the lack of knowledge at the parent nodes, i.e. the probabilities associated to the
state ui,0. To a certain extent, this mass captures the uncertainty about the rating to recommend. The particular weights
are:

wðui;t; acf ;sÞ ¼ RSimðUi;AÞ � Pr�ðA ¼ sjUi ¼ tÞ if 1 6 t; s 6 #r;

wðui;t; acf ;0Þ ¼ 0 if 1 6 t 6 #r;

wðui;0; acf ;0Þ ¼ RSimðUi;AÞ;
wðui;0; acf ;sÞ ¼ 0 if 1 6 s 6 #r;

ð7Þ

As we can see, these weights have two components: on the one hand, we consider the relative quality (importance or sim-
ilarity) of each parent in relation to the active user, defined as RSimðUi;AÞ ¼ SimðUi;AÞ=

P
j2PaðACF ÞSimðUj;AÞ; and on the other,

we will consider the probability of A rating with a value s when Ui rated with t, Pr*(A = sjUi = t). These probabilities are
obtained from the data set of user ratings. In order to estimate these values we only consider those items which have been

rated by both Ui and the active user A, i.e. the set I(Ui) \ I(A). Thus, Pr�ðA ¼ sjUi ¼ tÞ ¼ Nðui;t ;asÞþ1=#r
Nðui;t Þþ1 where N(ui,t,as) is the num-

ber of times from I(Ui) \ I(A) which have been rated t by Ui and also s by the active user A. In addition, N(ui,t) is the number of
items in I(Ui) \ I(A) rated with t by Ui.

In order to illustrate how these weights work, consider that the active user has three parents, Ux, Uy and Uz with RSim
values equal to 0.6, 0.3 and 0.1, respectively. Also assume that Pr*(A = 4jUx = 5) = 0.9, Pr*(A = 4jUy = 1) = 0.5 and Pr*(A = 4jUz =
4) = 0.9. Then, we have that Pr(acf,4jux,5,uy,1,uz,4) = 0.78 or that Pr(acf,4jux,0,uy,1,uz,4) = 0.24 and Pr(acf,0jux,0,uy,1,uz,4) = 0.6.

(4) AH Hybrid variable: As AH node has two parents, ACB and ACF, representing the content-based and collaborative predic-
tions, we must assess the conditional probability values Pr(AHjACB,ACF). These probabilities represent how to combine
both types of information when predicting the active user’s rating for the item Ij.

It is well known that the performance of the collaborative system improves as the information used for making recom-
mendations increases. Inversely, the prediction for new or rare items (rated by a low number of similar users) becomes more
difficult [26]. Taking this fact into account we propose that a parameter aj, 0 6 aj 6 1, be used to control the contributions of
each component. Note that this parameter can vary from one recommendation to another.

Prðah;sjacb;s; acf ;sÞ ¼ 1
Prðah;sjacb;s; acf ;qÞ ¼ aj; if q–s

Prðah;sjacb;t; acf ;sÞ ¼ 1� aj; if t–s

Prðah;sjacb;t; acf ;qÞ ¼ 0 if t; q–s

ð8Þ

Considering this equation, the higher the value of aj, the greater the weights of the content-based nodes. For example, assign-
ing aj = 0, the hybrid model tends to behave as a collaborative model, since only the information at the collaborative node ACF

is taken into account. With aj = 1, on the other hand, it will behave as a content-based model. With intermediate values, the
recommendation may be performed by taking into account content-based and collaborative information, which gives
expression to the hybrid model.

5.1. Determining the a parameter

In this section we will discuss the particular way in which this parameter is assessed. In the literature, a range of mech-
anisms to hybridize have been considered, from using a fixed value to a more sophisticated method which depends on the
number of items rated by the active user [26,30,29]. Our initial hypothesis is that the parameter aj might depend on our con-
fidence on the results obtained in the collaborative component (which in some way depends on the number of parents of the
active user A who have rated the item Ij in the past).

In order to illustrate our point of view, we will analyze the hybrid model in greater detail. Let Ui be a similar user who did
not rate the target item, Ui 2 U�I . In this case, we use content-based information in order to predict how this user should rate
Ij. This information is represented by Pr(Ui = sjev) = Pr(Ui = sjevcb), with s 2 R [ f0g. The state 0 represents the situation where
we do not have information for recommending. For instance, if none of the items rated by Ui were relevant to the target item,
we will have that Pr(Ui = 0jevcb) = 1. Moreover, looking at Eq. (7), this probability mass will be propagated towards the state 0
at the collaborative node, ACF. In other words, the probability Pr(ACF = 0jev) will reflect in some way how uncertain we are
about the prediction at the collaborative level. For example, if all the similar users (parents) rated the item, we will have that
Pr(ACF = 0jev) = 0 whereas this probability takes its maximum value when none of the similar users rated this item in the
past.

Therefore, Pr(ACF = 0jev) reflects our confidence degree in the collaborative recommendation, it can therefore be used to
determine the extent to which we might consider each model when merging the recommendations. Taking into account that
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the higher the value of aj, the greater the weights of the content-based nodes, in this paper we propose 4 to use aj = Pr(ACF =
0jev)2.

6. Evaluation of the hybrid recommender model

This section establishes the evaluation settings (data set, evaluation measures and experimentation aims) and also pre-
sents the experimental results for the performance of the hybrid model.

6.1. Data sets

In terms of the test data set, we have decided to use MovieLens. It was collected by the GroupLens Research Project at the
University of Minnesota during the seven-month period between 19th September 1997 and 22nd April 1998 with votes
ranging from 1 to 5 stars (1 = Awful, 2 = Fairly bad, 3 = It’s OK, 4 = Will enjoy, 5 = Must see) in a cinematographic
context.

The data set contains 1682 movies rated by 943 users, and contains a total of 100,000 transactions on a scale of 1–5. In
order to perform 5-fold cross validation, we have used the data sets u1.base and u1.test through u5.base and u5.test provided
by MovieLens which split the collection into 80% for training and 20% for testing, respectively.

We decided to use MovieLens mainly for the following reasons: it is publicly available and has been used in many hybrid
recommender systems. For these reasons, we believe that it is a good benchmark for our purposes. Moreover, it is especially
interesting because it offers a content component, as the 1682 movies are classified into 18 genres (action, adventure, ani-
mation, children, comedy, crime, documentary, drama, fantasy, film-noir, horror, musical, mystery, romance, sci-fi, thriller,
war and western). This allows us to perform recommendations by considering the content part of the data set.

In view of the fact that the movies included in the MovieLens database are only described using 18 genres, we have also
extended the content description of the movies by means of the additional information provided by the Internet Movie Data-
base–IMDB–.5 More specifically, new information (e.g. directors, producers, plot keywords and cast) has been considered as part
of the movie description in order to enrich it. With this expansion, the number of features increases from the original 18 to
17024. There are various movies from MovieLens that are not included in IMDB and these are only characterized by their genre.
This extension is common practice when testing recommender systems with a significant amount of content. Some examples
are [30,41,42] with the EachMovie dataset or [43,44,6,29] with MovieLens.

Therefore, in this experimentation we consider two different data sets: the first includes only the genre description using
the original MovieLens dataset (denoted by ML), and the second one uses an extended version which considers more features
from IMDB (denoted by ML + IMDB).

6.2. Evaluation measures

With respect to the second decision, in order to test the performance of our model, we shall measure its capability to pre-
dict a user’s true ratings or preferences, i.e. system accuracy. Following [45], we propose to use the mean absolute error
(MAE) which measures how close system predictions are to the user’s rating for each movie by considering the average abso-
lute deviation between a predicted rating and the user’s true rating.

MAE ¼
PN

i¼1absðpi � riÞ
N

ð9Þ

with N being the number of cases in the test set, pi the vote predicted for a movie, and ri the true rating.

6.3. Selecting the predicted rating

There is a key issue in a system’s performance that has to be considered before presenting the experimental results. This
issue consists of how to select one rating (the predicted rating) from a probability distribution over candidate ratings. There
are several methods for computing this prediction. For instance, we can consider three different alternatives: the most prob-
able rating, the expected rating and the median rating. Following [4], we will use the median prediction with all the models
since it minimizes the mean absolute error.6

If we focus on the predictive variables in our models, ACB, ACF and AH, we find that these variables take their values in
R[ f0g. However, we must select a rating, rate, inR. Before selecting the final rating, therefore, we must distribute the prob-
ability mass associated with the state zero, i.e. Pr(A� = 0jev). It should be remembered that this probability gathers all the
mass associated with the lack of information in the recommending process. In this paper, we propose that a proportional

4 We have also used a different approach with a being a function of the number of similar users who rated the item. This alternative gives worse results.
5 http://www.imdb.com/.
6 If the goal is to minimize the squared error, we should use the expected rating, and if the goal is to minimize the error rate, we should use the most probable

rating.
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criterion be used.7 For a given active user A, we transform the posterior probability into a new one in the domain R using the
following expression

PrðA� ¼ sjevÞ ¼ PrðA� ¼ sjevÞ
1� PrðA� ¼ 0jevÞ ; 8s 2 R:

Once we have the posterior probabilities in R, the predictions (rate) for the active user A is the median rating:

rate ¼ fsjPrðA� 6 sjevÞP 0:5; PrðA� > sjevÞP 0:5:g ð10Þ

6.4. Results for the hybrid model

In this section, we present the results obtained by the hybrid recommender model. The aim of this experimentation is to
determine the validity of our approach and also to study the contribution of each component in the recommendation. In or-
der to achieve this aim we have considered the following experimental conditions (Table 3 shows the obtained results):

Firstly, we have considered both MovieLens (ML) and the extension using IMDB (ML + IMDB) data sets. Secondly, we dis-
tinguish between item instantiation, II, and feature instantiation, IF (see Section 4.1). Thirdly, we have considered the two
different a priori values in the features nodes. The first, where all the features are equally probable, EQ, and the second which
considers how frequently a feature has been used to describe a movie, RF (see Section 5). Finally, we also report the results
obtained using different neighbourhood sizes (NS). To test the sensibility of the model with respect to the neighbourhood
sizes, we have considered the most 10, 20, 30, 50 and 75 similar users.

The last row in Table 3 presents the results obtained by considering only the content-based component, i.e. the results
obtained by predicting the rating using the probabilities in ACB. Similarly, the last column presents the results obtained
by considering pure collaborative information, i.e. the results obtained by first considering for all Ui 2 U�I that
Pr(Ui = 0jevcb) = 1 and then predicting the rating using the probabilities in ACF.

Focusing on content-based predictions, we should highlight the worsening of performance of ML + IMDB in relation to the
experiments using the original MovieLens dataset. The reason for this is clear since the efficiency of a content-based recom-
mender system (which is in fact an information retrieval system) worsens when the number of terms increases, mainly be-
cause of the inclusion of non-significant features, as in the case of cast (i.e. IMDB considers all the actors and actresses with a
role in the movie).

Focusing on collaborative predictions we can also observe that using a small number of neighbours tends to result in
greater prediction accuracy. We should mention that this situation also appears when using a classical neighbour-based ap-
proach [17]. It seems that if there are many parents, some noise is introduced and the performance of the model is damaged.
Nevertheless, a precision/recall tradeoff exists when using a small number of parents because the number of ratings pre-
dicted without collaborative information increases.

Now we will discuss the results obtained by the hybrid model. From the data in Table 3 we can see that the hybrid model
using item instantiation performs much better than feature instantiation.8 Moreover, with this combination the hybrid model
outperforms the results obtained using collaborative or content-based recommendations isolately. Comparing these results
with those obtained with our baselines, we can appreciate that significant improvements of around 6–8% have been achieved.
In relation to the probabilities stored at the feature nodes, we can observe that it is better to consider that all the features are
equally probable a priori. From these results it can be concluded that it is not very important that the recommendation process
considers how relevant is a given feature to describe the target item.

Also, in a similar way to the pure collaborative model, we obtain better results using a small number of parents. The per-
formance of the model worsens, in general, when the size of the parent set increases. This is true when considering item
instantiation, but the performance is stable in the case of feature instantiation.

Table 3
MAE values for hybrid model with MovieLens.

ML (II) ML(IF) ML + IMDB(II) CF

NS EQ RF EQ RF EQ RF

10 0.7293 0.7360 0.7813 0.7878 0.7254 0.7285 0.7579
20 0.7307 0.7393 0.7807 0.7876 0.7198 0.7277 0.7637
30 0.7330 0.7422 0.7808 0.7872 0.7207 0.7292 0.7681
50 0.7364 0.7467 0.7802 0.7879 0.7231 0.7328 0.7735
75 0.7401 0.7505 0.7804 0.7875 0.7252 0.7355 0.7784

CB 0.7837 0.7892 0.7833 0.7857 0.7908 0.7975

7 We have also considered assigning the entire mass to the rating with the greatest posterior probability, but worse results were obtained.
8 This also holds when considering ML + IMDB data set; accuracy using feature instantiation was similar to that obtained using only the genres (ML) with

MAE values of around 0.785.
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To conclude, under the same experimental conditions, the best results were obtained when the content description is
extended with IMDB (ML + IMBD) data set. Taking into account that using IMDB worsens the performance in the content-
based approach, we guess that the use of extra features might improve the recommendations in the collaborative compo-
nent (via the variables in U�I ) and that these improvements are better in those items where the collaborative filtering does
not work well, i.e. those items where the cold-start is an issue. Since usually these are rare items, the use of extra
information seems to be beneficial. In order to corroborate this guess, we have run some experiments using content infor-
mation at the nodes in U�I . For example using II, EQ, NS = 20, and predicting the rating at the collaborative variable ACF we
have obtained a mean MAE of 0.7362. Comparing this result with the one obtained using the pure collaborative model
(0.7637) we have that a significant improvement is obtained by using content-based information. Finally, if we compare
this result with the 0.7198 in Table 3 (obtained at AH variable), we might conclude that this last improvement (from
0.7362 to 0.7198) is mainly due to the way in which both content and collaborative information are mixed at the hybrid
node AH.

To conclude, we talk about the efficiency of the model. In this case, we say that the propagation process is quite efficient
when trying to predict an active user’s rating. In this case, since the model is learnt offline and the necessary a priori prob-
ability distributions can be computed and stored in a pre-processing step (offline), it is only necessary to compute those
probability values affected by the evidence. Therefore, we only have to compute the posterior probabilities for those vari-
ables in the path from evidence nodes to the respective active user nodes. Moreover, since the computations of the necessary
posterior probabilities at each node are linear with the number of parents, they can be computed efficiently. Thus, we con-
clude that the model is appropriate for being used in many real world applications when users are logged onto the system
online, even when there is a large database of ratings.

6.5. Comparison with other models

In terms of the comparison of the performance of our proposal with other systems, it is worth mentioning that it is ex-
tremely difficult to find papers where the experimental setting is the same or at least reproducible in the context of hybrid
systems. While there are changes in the goals of the papers, the sources of content data (differing on the use of product
description, the use of social and/or demographic data about users) and also the way that training and testing, movie selec-
tion, user selection, feature selection, etc. are carried out. Therefore, and in order to compare the results of our model we
have implemented several hybrid, collaborative or content-based recommender systems. Table 4 presents the MAE results
obtained by each system. In this table, the row entitled with % presents the improvement percentage obtained with our
model.

Firstly, we consider the hybrid model in [29] (noted by switch in Table 4) since its experimentation is similar to ours. In
this model, a user-based collaborative filtering approach is used as the primary method and switches to content-based when
collaborative predictions cannot be made (the number of neighbours for the collaborative model is fewer than five users).

We have performed a similar experiment, noted by BN-switch in Table 4, switching between our pure content-based and
collaborative recommendations (ACB and ACF nodes) following the same criteria as [29], i.e. we selected the content-based
recommendation when fewer than five users rated the movie and the collaborative recommendation otherwise. We have
fixed the following experimental conditions: ML + IMDB, EQ, II and 20 parents.

We also show the results obtained using the imputation-boosted collaborative filtering [30] (named IBCF in Table 4).
Firstly, we use the predictions obtained with a content-based recommender system to fill-in the sparse user-item rating ma-
trix. Particularly, following the ideas in [30], we have implemented a bag-of-words (features) naive Bayesian classifier. Then
we run a traditional Pearson correlation-based CF algorithm on this complete matrix to predict a novel rating.

Finally, we have also considered a model-based hybrid approach [33] which is an extension of the three-way aspect mod-
el [34], denoted by ModelH in Table 4. This model explains the generative mechanism for both content and collaborative data
by introducing a latent variable, which conceptually corresponds to user types. Particularly, the probability distribution over
users, items and features is decomposed into three conditional independent ones by introducing the latent variable. The
interpretation is that a user type is selected according to the active user’s preferences and the item features, then the pre-
diction is obtained by conditioning to the user type. We have tuned this model and we report the best result, obtained when
using 6 different states for the latent variable.

In order to quantify the improvement of the hybrid model, we should compare the results with those obtained using dif-
ferent content-based and collaborative models separately. In the first case, we borrow the results obtained by two classical
content-based predictors [29] using ML + IMDB: the first is the pure content-based (PCB) predictor in which the cosine

Table 4
MAE values for other models.

Hybrid Collaborative Content

Switch BN-switch IBCF ModelH Ubased Ibased Triadic PCB NB

MAE 0.7501 0.7498 0.7544 0.7405 0.7654 0.7604 0.7365 0.9253 1.2434
% 4.2 4.1 4.8 2.9 6.3 5.6 2.3 28.5 72.7
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measure is used to calculate the similarity between two items; and the second one is an implementation of the content-
based model using a Naive Bayes (NB) algorithm where the ratings are considered as the class labels.

With respect to collaborative filtering, we have used three different algorithms: firstly, we compare our baseline with the
most classical user-based collaborative filtering model [17]. In this model, the similarity between users is computed using
Pearson’s correlation coefficient. In addition, the contribution of neighbours with fewer than 50 commonly-rated movies
has been devaluated by applying a significance weight of n/50, where n is the number of ratings in common [17].

Also item-based approaches [18,19] appear as good alternatives to the user-based method. Item-based approaches look
into the set of items the active user has rated and computes how similar they are to the target item, selecting the set of k
most similar items. This item-based similarity is computed taking into account the ratings given by those users who have
rated both of these items. Then the prediction is computed by taking a weighted average of the target user’s ratings on these
similar items. Particularly, in our experimentation we have used the adjusted cosine measure [18] and the result reported in
Table 4 has been obtained when considering a neighbourhood size of 75.

Finally, we have considered the Triadic aspect model [23] (see Table 4) for pure collaborative predictions that considers a
latent variable relating the triplet (user, item, rating). The purpose is to automatically look for the potential reasons that
determine which subset of the causes are likely to be relevant for a specific item or a specific person, and in each individual
case assigns a probability to the fact that a cause will be active for a given rating. If we compare this result with the ones
obtained using ModelH we can see that extending the aspel model with content information does not lead to improvements.
This result is similar to the one obtained in [32].

After evaluating these results, we could conclude that our model, reaching a best MAE of 0.7198, is competitive with the
standards in the literature, producing better measures of quality.9 We have also the advantage that these results are obtained
using the same paradigm and that these facts might be exploited in order to give better explanations of the recommendations to
the users.

7. Conclusions and further research

In this paper, we have proposed a hybrid recommender model based on Bayesian networks which uses probabilistic rea-
soning to compute the probability distribution over the expected rating. The model is founded on a layered topology repre-
senting all the elements involved in the hybrid recommendation problem. The participation degree of each recommending
mechanism (content-based and collaborative) is automatically selected, adapting the model to the specific conditions of the
problem. We have proved empirically that the combination of both content and collaborative information helps to improve
the accuracy of the model.

Focusing on the computational aspects of the recommender process, problems such as data sparseness and the fact that
the ranking should be computed in real time have been considered. In particular, guidelines for how to estimate the prob-
ability values from a data set are presented and an efficient propagation algorithm based on canonical models has also been
designed.

Following Burke’s classification [10], our hybrid approach could therefore be placed in the ‘‘Feature Augmentation” class
since in normal operation the probabilities obtained in the propagation of the variable layers involved in a content-based
recommendation are used to propagate probabilities in the layers relating to the collaborative recommendation. Moreover,
as there is a mechanism to control the contribution of both elements, it may also be classified as ‘‘mixed”.

It should be noted that the proposed model is versatile: it could work by exclusively applying content-based or collabo-
rative filtering and it can also be applied to solve different recommendation tasks (such as finding good items or predicting
ratings).

In terms of future research, we believe that there is room for improvement of the hybrid recommender model since there
are several points that must still be researched:

� Design of new methods for estimating the weights stored in the nodes of the Bayesian network.
� Design of new feature selection methods (or the use of existing ones) to select only the best features so that the best per-

formance may be achieved.
� Incorporation of relationships between features – this would involve introducing data mining techniques to find those

features which might be related in terms of the classic co-occurrence measure of any other technique and would improve
the expressiveness of the model.
� Change of the type of canonical model used in probability estimation and subsequently in the propagation-since the

model uses sum gates, we could explore the possibility of applying either And or Or gates.

In the future, we therefore plan to study problems such as how our system can communicate its reasoning to users, the
minimum amount of data (ratings or textual information) required to return accurate recommendations, and a more elab-
orate way of including item information.

9 In order to show the variability in the conclusions we present the MAEs values per fold for the best model of our proposal (0.7304; 0.7206; 0.7069; 0.7201
and 0.7209) and the Triadic aspect model (0.75; 0.7369; 0.7306; 0.7328 and 0.7324).
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Abstract Building recommender systems (RSs) has attr-

acted considerable attention in the recent years. The main

problem with these systems lies in those items for which we

have little information and which cause incorrect predic-

tions. One accredited solution involves using the items’

content information to improve these recommendations, but

this cannot be applied in situations where the content

information is unavailable. In this paper we present a novel

idea to deal with this problem, using only the available users’

ratings. The objective is to use all possible information in the

dataset to improve recommendations made with little

information. For this purpose we will use what we call

second-hand information: in the recommendation process,

when a similar user has not rated the target item, we will

guess his/her preferences using the information available.

This idea is independent from the RS used and, in order to

test it, we will employ two different collaborative RS. The

results obtained confirm the soundness of our proposal.

Keywords Collaborative recommender systems �
Bayesian networks � Neighbourhood �
Second-hand information

1 Introduction

The Internet has become an indispensable tool for our day-

to-day lives. Not many years ago, when seeking information

on any subject, we had to resort to the use of encyclopedias,

printed magazines, public libraries, etc. Since the rise of the

Internet, access to information is much faster and easier.

However, what appeared to be an advantage has become a

big problem, due to the vast amount of information that

exists. In an attempt to solve this problem, automated tools

have been popularized to help users find the items they seek.

Recommender systems (RSs) have emerged to address this

issue. In general, a RS provides specific suggestions

regarding items (or actions) within a given domain and

which may be considered of interest to the user (Resnick

and Varian 1997). There are different types of RSs (Resnick

and Varian 1997; Kangas 2002) depending on the infor-

mation that is used to make the recommendation:

• Content-based RSs: recommend similar items to those

the user has rated positively in the past.

• Collaborative RSs: identify groups of people with

similar tastes to active user and recommend those items

they liked.

In the present paper we will focus on collaborative

options, as they are very efficient and are easy to imple-

ment and to adapt to real systems. Collaborative filtering

techniques match people with similar preferences in order

to make recommendations. Their aim is to predict the

utility of items for a particular user according to the items

previously evaluated by other users. The big advantage of

collaborative approaches in comparison with content-based

ones is their outside the box recommendation ability

(Burke 2002), i.e., the possibility of recommending items

that do not evince content features expressed in the user
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profiles. For example, it may occur that listeners who enjoy

hard rock also enjoy flamenco music, but a content-based

recommender trained on the preferences of a hard rock fan

would not be able to suggest items in the flamenco realm,

since none of the features (performers, instruments, rep-

ertories) associated with items in the different categories

would match. Only by looking outside the preferences of

the individual, such suggestions can be made.

The success of these systems depends on the availability

of a critical mass of information. The problem arises when,

given an active user, the system requires information on a

specific item, and people with similar tastes are not capable

of offering this. Thus, in these situations, the system will

offer a prediction that simply is not good enough.

One possible approach found in the literature with

regard to solving this problem involves the use of content-

based approaches. In this case, when no collaborative

information is available, predictions are computed using

the items’ content description (Popescul et al. 2001; de

Campos et al. 2006; Degemmis et al. 2007; Ali and van

Stam 2004). Another possible solution found is to make use

of the content information to fill the missing ratings in the

dataset and then use it in a collaborative recommendation

(Melville et al. 2001; Su et al. 2008).

These approaches obviously depend on the availability

of content descriptions. In this paper, we explore a new

approach to tackle this problem which can be used in situ-

ations where content description is unavailable: what we

have called second-hand information. In order to illustrate

the idea, let us assume the following situation: John asks

his friends for their opinion about a particular movie but

none, or few of them have seen it. In an attempt to provide

their own opinion of the movie, his friends decide to ask

their friends. This is what we call second-hand information.

In this paper, we will study whether these second-hand

opinions can be used to improve the recommendation given

to John. This idea can be implemented easily: For similar

users who did not rate the target item in the past, we will

use the rating that the system might predict for them,

making use of the information from their own similar users.

In order to test our proposal, we used two RSs. The first

one is a classical neighbour-based and the second one is

Bayesian-based. Through different experiments, we have

shown the beneficial effect that the incorporation of new

quality information has on the behaviour of the systems. To

compare the results, we evaluated an imputation-boosted

(Su et al. 2008) model.

The rest of the paper is organized in the following

manner: some background information on RSs is presented

in Sect. 2. In Sect. 3, we will discuss how to obtain the

second-hand information. In Sect. 4, we will explain the

models we will work with and will subsequently present

the results achieved in some experiments in Sect. 5. In

Sect. 6, we will discuss the accomplishments of our

approach and finally present some conclusions and possible

future work in Sect. 7.

2 Recommender systems

Recommender systems help people to find products they

are interested in and which they would otherwise not be

aware of, due to the vast amount of information on the

Internet. Depending on the information used to make the

recommendation, there are different types of RSs (Resnick

and Varian 1997; Kangas 2002):

• Content-based RSs: recommend similar items to those

the user has rated positively in the past. The content-

based RS are rooted in Information Retrieval (Belkin

and Croft 1992) and use many of its techniques. Their

underlying philosophy can be summed up by ‘‘recom-

mend me items similar to those that I liked in the past’’.

In content-based RS, items of interest are defined by

their associated features, such as actors, directors,

producers, genres, etc, in a movie recommendation

system.

• Collaborative RSs: recommend the items that other

users with similar tastes considered to be good. Broadly

speaking, for each user, we obtain a set of users (his/her

neighbours) with a rating pattern that is highly corre-

lated with him/her. Thus, given an item not rated by the

user, we can predict a rating for it based on a

combination of the known values given to the item by

his/her neighbours. In this paper we will focus upon this

type of RS. Collaborative RS are also known as

collaborative filtering systems.

• Hybrids: the recommendation is made by combining

collaborative and content-based approaches.

As in this paper we will focus on collaborative RSs, we

will extend the explanation of this type of system:

According to Breese et al. (1998), collaborative RSs can be

grouped into memory-based and model-based approaches.

Memory-based algorithms use the entire rating matrix to

make recommendations. In order to do so, they use some

kind of aggregation measure by considering the ratings of

other users (those most similar) for the same item. Dif-

ferent models can be obtained by considering different

similarity measures and different aggregation criteria

(Konstan et al. 1997; Herlocker et al. 1999).

In model-based algorithms, on the other hand, predictions

are made by building (offline) an explicit model of the

relationships between items. This model is then used

(online) to finally recommend the product to the users. In

this approach, the predictions are therefore not based on any

ad hoc heuristic, but rather on a model learnt from the
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underlying data using statistical and machine learning

techniques: Clustering (OConnor and Herlocker 1999;

Han et al. 2001), Naive Bayes (Miyahara and Pazzani 2000;

Robles et al. 2003), and Probabilistic models (Breese et al.

1998; Marlin 2003; Hofmann and Puzicha 1999; Hofmann

2004) among others. A good survey of the application of

machine learning to collaborative filtering is Marlin (2004).

The main purpose of a collaborative RS involves rec-

ommending items to users. Under this formulation, we

distinguish two different problems:

• Given an item not rated, to predict the rating that the

user would give.

• Given a user, to find the best items and their ratings for

recommendation, showing the results ordered by pre-

dicted rating.

Although both situations are closely related, this paper

deals with the first type.

With respect to the data used for recommendation in a

collaborative framework, one can find, on the one hand, a

large set of m items, I ¼ fI1; I2; . . .; Img; whose domain can

be diverse: books, movies, music, restaurants, web pages,

etc. Moreover, there is a large set of n users, U ¼ fU1;U2;

. . .;Ung: A user Ui can give his opinion about each item

using a discrete rating s, s 2 f1; 2; . . .;#rg:We can consider

these ratings as a high sparse matrix R, of size n�m; where

users are represented in the rows and articles in the columns.

This matrix is usually sparse, as users usually rate a low

number of articles. The value of the matrix, sa;j represents

how user Ua has rated item Ij: When a user has not rated a

product, the value is 0. For example, Table 1 (left) shows an

example of such a matrix.

Collaborative RSs present some well-known problems:

• Sparse rating problem: This problem arises because the

number of available ratings previously obtained from

users is usually very small compared to the number of

ratings needed to achieve reliable predictions. The

estimation of new ratings from a small number of

examples is thus one of the critical issues in these

systems.

• New user problem: When a new user enters the system,

no personal ratings are available to him, and no proper

recommendations can be made. As recommendations

follow from a comparison between the target user and

other users, based solely on the accumulation of ratings,

if few ratings are available, it may become very difficult

to categorize the user’s interests.

• New item problem: This is the symmetric counterpart

to the new user problem. When a new item is rated by

an insubstantial number of users, the RS is unable to

recommend it. Hence, a recent item that has not yet

obtained many ratings cannot be easily recommended.

Associated with the new item problem and the sparse

rating problem is the problem we attempt to solve in the

present paper: given an active user, the system requires

information on a specific item and people with similar

tastes are unable to provide it. In this case, the system will

offer an evaluation of the item that will surely be inap-

propriate. In situations in which no collaborative infor-

mation exists, content-based approaches have been used in

the literature as a possible solution. One approach found to

attenuate this problem involves hybrid approaches com-

bining the use of collaborative and content-based techni-

cals. In this case, when no collaborative information is

available, the predictions are computed using the ratings

given by the active user to those items similar to the target

one. The similarity between films is obtained taking into

account the features of these items using, for instance, the

cosine between the set of features (Ali and van Stam 2004).

Another approach is found in Degemmis et al. (2007) in

which these authors use similarities between users which

rely on their content-based profiles rather than comparing

their rating stiles. In Popescul et al. (2001) they use a

hybrid Bayesian approach that allows for good recom-

mendations where no collaborative information is available

using the EM algorithm. Another bayesian approach is

de Campos et al. (2006) in which thanks to the topology of

their model, the problem is solved with the use of the

collaborative rating to items similar to the target one.

Another possible solution found is to use an imputation-

boosted collaborative filter (Melville et al. 2001; Su et al.

2008). The aim of the model is to remove the sparseness of

the data sets inserting the ratings predicted by a pure

content system, i.e., to insert the ratings predicted by the

system for every user and every movie that has not been

rated. This enables the complete datasets of users’ ratings

to be used in order to improve predictions. In Table 1

(right), we can see an example of filling a dataset that

Table 1 Left: Data base of

user’s ratings. Right:

imputation-boosted data

Using second-hand information in collaborative recommender systems 787
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contains four users and four movies. Once they have the

entire ratings dataset, they build a collaborative RS using

the new information available.

3 Using second-hand information

As we have shown, the approaches used to solve the

sparsity and the new item problems depend on the avail-

ability of content descriptions. In this paper, we present a

new possible approach for tackling this problem that can be

used in situations in which content description is not

available: What we have termed second-hand information.

Let us consider the following illustrative example: Imagine

that I am Mike and I want to know if I would like the

Batman movie. I ask my group of friends (John, Lewis, Eli,

Charles and Xavi) if they have seen it (see the modelling of

the example in Fig. 1). I ask them because they are my best

friends, they know my tastes about movies and we have

very similar tastes, and they can therefore tell me whether I

will like it or not. John and Lewis have seen the movie, so

they can give me their opinion about it. But Eli, Charles

and Xavi have not seen it. This is where we apply our idea,

i.e., Eli, Charles and Xavi can ask their friends about the

Batman movie and then, when we know if they will like the

movie, they can give me their opinion about it. For Charles,

all his friends have seen the film, and he will therefore

obtain good information in this respect. The situation for

Eli is the same, so she can obtain a good recommendation

from her friends. But only one of Xavi’s friends (Henry)

has seen the movie. In this case, the information received

by Xavi from his friends might not be very accurate. For

this reason, Xavi might decide not to give me his opinion,

as he considers that is not good enough, i.e., if Xavi thinks

the information that he can give me is not quality infor-

mation, he will not give it to me. Now, once I have all my

friends’ opinions regarding the Batman movie, I can form a

more accurate opinion about whether I will like it or not.

The idea is simple: For those neighbours who did not rate

the target item in the past, we obtain new collaborative

knowledge using the rating that might be predicted by the

system (using the information available from their

neighbours).

In order to test whether this idea works we used mem-

ory-based RSs. These are based on a two-step process:

1. Neighbourhood selection: For every user we obtain a

neighbourhood using a metric that obtains the simi-

larity between users. This metric usually depends on

the cooccurrency of ratings in the training dataset.

Particularly, the top-N users with greater values of

similarity are selected as neighbours. We have to note

that, for each user, the set of neighbours is fixed and

does not depend on the particular item to be

recommended.

2. Computing the predictions: Given a target item, we can

compute the active user’s prediction by aggregating in

some way the set of ratings given by the neighbours in

the past, i.e., ra ¼ Aggregateðr1; . . .; rNÞ: Note that,

since the set of neighbours is fixed, they do not all need to

have rated the item previously.

With this recommending philosophy in mind, we can

design a recursive1 algorithm (see Table 2) that takes into

account qualified second-hand information when it rec-

ommends. In the algorithm, Ui represents a neighbour of

the active user A that has been obtained in the neigh-

bourhood selection step. The rating prediction (line 9) for

an item I by the active user A is made using both the ratings

given by the neighbours if they have rated the item (line 3)

and those ratings predicted by the system when a neighbour

did not rate the item (only if the predicted ratings overcome

a quality criteria) (lines 5–6). The function Qualified

(line 10) returns if a prediction is good enough or not.

Although this approach might help to tackle the sparse

rating problem and, in a certain way, the new item problem,

its feasibility depends on the qualified second-hand pre-

dictions. Thus, even in those cases where we avail of suf-

ficient information, the use of non-qualified information

might lead to a worsening of the predictions. Therefore,

when there are no available ratings for the target item, this

kind of approach might not be helpful. However, since we

are using only qualified information, we can expect the

performance of the system not to worsen in these situations.

Consequently, it might be difficult to recommend an item

that has been rated by few users.

Finally, this approach implies a computational cost, as we

have to compute the rating predictions for all the neighbours

of the active user who have not rated the item. If we assume

Fig. 1 Obtaining second-hand information

1 To clarify, we show a recursive version of the algorithm, but the

implemented version is sequential.
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that the similarity weights calculations are computed offline,

the final recommendations are obtained in OðN2Þ; n being the

maximum number of neighbours used for recommendation

in the system. Nonetheless, and thanks to the offline com-

putations, the approach can be used in online applications,

even with a large number of users.

4 Collaborative RSs used

We have used two memory-based RSs: the first, a Pearson

correlation-based model and the second, a Probabilistic

model based on Bayesian networks (BNs), which we will

introduce in Sect. 4.2.

4.1 Weighted average of deviations

from the neighbour’s mean

Based on the model proposed by Grouplens, weighted

average of deviations from the neighbour’s mean (Konstan

et al. 1997; Herlocker et al. 1999), which hereinafter we

call Average model, which is a collaborative RS that uses

an algorithm based on neighbourhood.

1. Neighbourhood selection: To measure the similarity

between users, used as the basis of weights in different

collaborative systems, this model is based on the

Pearson Correlation Coefficient (PCC), where U is the

set of users and Ua two users from U. The PCC can be

computed by means of the following formula:

PCCðUa;UbÞ ¼
P

jðra;j � raÞ � ðrb;j � rbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jðra;j � raÞ2 �

P
jðrb;j � rbÞ2

q ð1Þ

where sums over j are applied to those items where users

Ua and Ub have ratings, IðUaÞ \ IðUbÞ (where IðUÞ is the

set of items rated by the user U in the dataset). If there are

no common items between Ua and Ub; then

PCCðUa;UbÞ ¼ 0 by default. Furthermore, ra is the

average rating value for the user Ua; i.e.:

ra ¼
1

jIðUaÞj
�
X

Ik2IðUaÞ
ra;k:

The final value of similarity is computed by applying a

correction factor that devalues those PCC values that have

been obtained with fewer than 50 items in common (see

Herlocker et al. 1999), i.e.:

simðUa;UbÞ ¼ PCCðUa;UbÞ � CF;

with

CF ¼ 1 if k [ 50
k

50
otherwise

�

k being the number of items in common.

2. Computing the predictions: Once we obtain the

neighbours for a user, to obtain the predicted rating

for an item, the following formula is applied:

ratea;i ¼ ra þ
Pn

u¼1ðru;i � ruÞ � sima;uPn
u¼1 sima;u

; ð2Þ

where ratea;i is the rate prediction for the active user A of the

item i, n is the number of similar users which have rated the

item, ru;i is the rate given by the neighbour U to item i, ru is

the average rate of the neighbour and sima;u is the similarity

measure between the active user and the similar user u.

To finalise the presentation of this model, in this paper

we have used a threshold on the number of neighbours used

for prediction purposes. As Herlocker et al. (1999) indi-

cates, the use of the best n neighbours performs relatively

well without limiting the prediction coverage.

4.2 Probabilistic model: collaborative RS using

Bayesian networks

In a certain way, our model is similar to the previously

described one, but is based upon a Bayesian formalism in

which we consider that all the users are represented as

nodes in the BN (see Fig. 2). Particularly, we will include a

node A to represent the active user and a subset of nodes in

U to represent those users Ui similar to the active user. On

the one hand, the states of each user node, Ui 2 U; are in

f0; 1; 2; . . .;#rg: Note that state 0 occurs when the user has

not rated the item.2 On the other hand, since A represents

the active user’s predicted rating, it will take its values in

the range of valid ratings, i.e., f1; 2; . . .;#rg: With regard

to the aim of this paper, is unnecessary to fully understand

the model and we will explain it with little detail (for more

details, refer to de Campos et al. 2008).

Table 2 Recommending with second-hand information

2 This is one of the differences from the reference model presented in

de Campos et al. (2008), i.e., the inclusion of rating 0 in the

performance of the system.
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1. Neighbourhood selection: To measure the similarity

between users, we propose a combination of two

different but complementary criteria: On one hand, we

use Pearson’s correlation (see Eq. 1) to capture

similarity between users and on the other, we use the

overlap degree to penalize spurious correlations

simðA;UbÞ ¼ absðPCCðA;UbÞÞ � DðA;UbÞ:

The neighbourhood of the active user A will be obtained

using the first n variables in the ranking. Note that we

consider similar users with the highest absolute value of

PCC. Therefore, both positively (those with similar ratings)

and negatively correlated users (those with opposite tastes)

will be used to predict the final rating for an active user.3

The second criterion attempts to penalize highly corre-

lated neighbours based on very few co-rated items, which

have been shown to be bad predictors (Herlocker et al.

1999). The way in which we compute this value varies

from the Average model. In particular, we consider that the

quality of Ub as the parent of variable A is directly related

to the probability of a user Ub rating an item which has

been also rated by A. This criterion can be defined by the

following expression:

DðA;UbÞ ¼
jIðAÞ \ IðUbÞj
jIðUaÞj

:

where IðUÞ is the set of items rated by user U in the

dataset.

Learning the parameters: One important point to be

considered relates to the size of the distributions to be stored

in the BN. As the node A is related to a large number of

users, we must assess large probability tables. To solve this

problem, we propose the use of an additive canonical model

(studied in detail in de Campos et al. 2008). When this

model is assumed, we can factorize the conditional proba-

bility tables into smaller pieces (the weights describing the

mechanisms) and use an additive criterion to combine these

values.

Definition Using the canonical additive model, the set of

conditional probability distributions for the active user A

can be calculated efficiently in the form:

PrðA ¼ sjPaðAÞÞ ¼
X

Ub2PaðAÞ
wðUb ¼ t;A ¼ sÞ;

where t is the value that the user Ub takes in the configu-

ration PaðAÞ and wðUb ¼ t;A ¼ sÞ are weights that mea-

sure how the tth value of the user Ub describes the rating

sth of the active user A.

The particular way in which the necessary weights are

defined is:

wðUb ¼ t;A ¼ sÞ ¼ RSimðA;UbÞ � PrðA ¼ sjUb ¼ tÞ;

RSim being the relative importance of each parent in

relation to the active user, defined as

RSimðA;UbÞ ¼
simðA;UbÞP

Uk2PaðAÞ simðA;UkÞ
:

The term PrðA ¼ sjUb ¼ tÞ represents how probable the

A rating is with a value s when Ub rated with t. These

probabilities are obtained from the dataset of user ratings.

The particular way in which we estimate these probabilities

will depend on whether Ub rated the target item or not:

• The user rated the target item with t, Ub ¼ t; t 6¼ 0 : In

order to estimate this probability distribution, we only

consider those items which have been rated by both Ub and

the active user A, i.e., the set IðAÞ \ IðUbÞ: Particularly,

PrðA ¼ sjUb ¼ tÞ ¼ NðUb ¼ t;A ¼ sÞ þ 1=#r

NðUb ¼ tÞ þ 1
;

NðUb ¼ t;A ¼ sÞ being the number of times from IðAÞ \
IðUbÞ which have been rated t by Ub and also s by the

active user Ua: In addition, let NðUb ¼ tÞ be the number of

items in IðAÞ \ IðUbÞ rated with t by the user Ub:

• The user did not rate the target item, i.e., Ub ¼ 0 : In

this situation we will explore two different options:

V0E: All the ratings for the active user are equally

probable, i.e.,

PrðA ¼ sjUb ¼ 0Þ ¼ 1

r
; 1� s� r: ð3Þ

V0A: The contribution to each possible rating will be

determined by the a priori probability of the active

user, A, i.e.,

PrðA ¼ sjUb ¼ 0Þ ¼ PrðA ¼ sÞ; 1� s� r: ð4Þ

2. Computing the predictions: This model will be used to

predict how the active user might rate a target item I.

In the BN formalism, this problem is limited to

computing the posterior probability distribution for A

Fig. 2 Probabilistic recommender system topology

3 We have evaluated the system with only positive Pearson

correlation and we have obtained worst results than using absolute

value.
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given the evidence, i.e., PrðA ¼ sjevÞ for all valid

ratings, i.e., f1; 2; . . .;#rg: The problem now consists

of determining what the evidence, ev; is, and how it

should be included in the system. We can distinguish

between users (parent of A in the BN) who rated the

item in the past and those who did not rate it. In the

first case, the evidence is the given rating, whereas in

the second one, we have instantiate the node to the

value 0 (unknown rating). For example, let us assume

that fUc;Ud;Ue;Uf g is the set of neighbours of the

active user A. Then, if Uc and Ue rated the target item I

with 5 and 3, respectively, the evidence set will be

ev ¼ fuc;5; ud;0; ue;3; uf ;0g:

We now have all the necessary information to compute

the posterior probabilities at node A. This means that, using

the advantages of this canonical model, the exact posterior

probabilities for the active user (see de Campos et al. 2008)

can be computed efficiently as

PrðA ¼ sjevÞ ¼
X#r

t¼0

X
Ub2PaðAÞ

wðUb ¼ t;A ¼ sÞ�

PrðUb ¼ tjevÞ:

In our case, as we know whether Ub rated the target item or

not, the term PrðUb ¼ tjevÞ takes only two values. In

particular, PrðUb ¼ tjevÞ ¼ 1 if in the evidence Ub rated

with t the item, and 0 otherwise. Therefore, these

probabilities can be calculated efficiently in the form:

PrðA ¼ sjevÞ ¼
X

Ub2PaðAÞ
wðUb ¼ t;A ¼ sÞ: ð5Þ

t being the value used to describe the rating of the user Ub

to the target item.

Once the a posteriori probabilities have been computed,

i.e., when we know PrðA ¼ sjevÞ 8s 2 f1; . . .;#rg; a key

issue in the system’s performance involves determining

how to select the recommended ratings. In the present

paper, we will consider two different alternatives for

computing a prediction based on the distribution over the

ratings (Marlin 2004):

MP: Select the most probable a posteriori rating:

rate ¼ args maxfPrðA ¼ sjevÞg:

MED: Select the median rating using the a posteriori

probability in the form:

rate ¼ arg min
s

Xs

i¼1

PrðA ¼ ijevÞ� 0:5:

By way of an example, in the case of five possible

ratings (ranging from 1 to 5), we obtain the posterior

probability distribution PrðA ¼ sjevÞ ¼ f0:10; 0:15; 0:30;

0:35; 0:10g; i.e., PrðA ¼ 1jevÞ ¼ 0:10; PrðA ¼ 2jevÞ ¼

0:15; . . .; PrðA ¼ 5jevÞ ¼ 0:10: The ratings obtained using

the different methods are: for MP the rating is 4 as it is the

most probable and, for MED is 3 ð0:10þ 0:15þ 0:30�
0:5Þ:

4.3 Including second-hand information in the models

To include second-hand information in the models studied,

we must change the way in which those models compute

the predictions. There is a need to distinguish between the

set of neighbours that have rated the movie ðRÞ in the

datasets and those for whom we have obtained a rating

using second-hand information (NR):

• For the Average model presented in Sect. 4.1, we

change Eq. 2 as follows:

ratea;i¼raþ
PR

u¼1ðru;i�ruÞ�sima;uþ
PNR

u¼1ðr̂u;i�ruÞ�sima;uPR
u¼1 sima;uþ

PNR
u¼1 sima;u

where r̂u;i is the rate given by the neighbour U to item I

using second-hand information.

• For the probabilistic model presented in Sect. 4.2, we

change Eq. 5 as follows:

PrðA ¼ sjevÞ ¼
X

Ub2PaRðAÞ
wðUb ¼ t;A ¼ sÞ

þ
X

Ub2PaNRðAÞ
wðUb ¼ t̂;A ¼ sÞ:

t̂ being the value used to describe the rating of the user Ub

to the target item using second-hand information.

5 Experimentation

The purpose of this experimentation is to study whether the

use of second-hand information might be useful with

regard to improve the performance of collaborative RSs. In

this section, we will describe the evaluation criteria, the

datasets used in the analysis and the particular experi-

mental conditions. We then present and discuss the results

regarding predictive accuracy, as well as several compu-

tational considerations.

5.1 Evaluation criteria

Our goal is to predict how a given user should rate an item.

In this scenario, an individual item will be presented to the

users, along with a rating indicating its potential interest.

The performance of the model will therefore be evaluated

by measuring prediction accuracy. In our paper, the fol-

lowing error measures will be considered, where N is the
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number of users, pi the predicted rating and ri the true

rating.

• First, we measure the capacity of the system to predict

the correct rating, i.e., the percentage of success of the

systems (%S):

%S ¼ 100
PN

i¼1½pi ¼ ri�
N

:

• Furthermore, we consider the average absolute

deviation between a predicted rating and the user’s

true rating, i.e., the mean absolute error (MAE) defined

as

MAE ¼
PN

i¼1 absðpi � riÞ
N

:

• Also, we consider the coverage measure, i.e., the

percentage of recommendations made by, at least, one

neighbour.

coverage ¼ 100� N0

N
:

Since one of the RS evaluated in this study, the Average

model, obtains the ratings on a continuous scale, the per-

centage of success for this system is inappropriate and will

therefore not be shown. Rather, the MAE criteria is

obtained for the two models in all the experiments.

5.2 Datasets

Three different datasets were used to evaluate our algo-

rithms. These datasets are available to the public for

research purposes:

ML: Database Movielens,4 containing 1,682 movies and

943 users who provide their ratings to films they have

seen, giving rise to 100,000 ratings on a scale of 1–5.

MI-ML: Database Movielens containing 1 million rat-

ings by 6,040 users for 3,900 movies.

JE: Jester Joke dataset.5 This dataset contains 4.1 million

continuous ratings (-10.00 to ?10.00) of 100 jokes

from 73,496 users. However, all the experiment results

from the use of this dataset were scaled down to be

equivalent with the other two datasets for easy

comparison.

The purpose of this experimentation is to test our

approach in conditions in which the predictions are com-

puted, using a small number of ratings, but with available

second-hand information. There are two possible situations

in which this situation does not arise. First, when many

users rated the items (as is the case of the Jester dataset)

and, second, when it is very difficult to find similar users

who rated the items, due to the sparseness of the data

(Movielens datasets). Therefore, and in order to thoroughly

explore the situation in which second-hand information is

available, we simulated these conditions by randomly

removing 50% of the ratings provided by the neighbours of

the active user to the target item, i.e., we use the half of the

first-hand information. It should be noted that each time we

remove one rating, it ceases to be used in all predictions in

which it intervened. Hereinafter, we will refer to these

datasets as reduced:

To understand the impact of the reduction of the data-

sets, Table 3 shows for each model and each dataset (ori-

ginal and reduced) the number of times that each model

predicts a rating, taking into account the past ratings

available. The number of used ratings is split into different

intervals (less than 6, between 6 and 12, …). As expected,

the elimination of ratings increases the number of users in

such a way that recommendations are obtained with a low

number of ratings, i.e., for example, the numbers for the

reduced dataset when neighbours are less than six are

always larger than the original because we have removed

some of first-hand information.

5.3 Experimental protocols and models’ parameters

In the experimentation, we follow a classical protocol in

the literature (Breese et al. 1998), where the available

ratings for each user are split into an observed set and a

held out set. The observed ratings are used for training and

the held out ratings are used for testing the performance of

Table 3 Number of past ratings used in the predictions

Dataset Num. ratings Probabilistic Average

Original Reduced Original Reduced

ML \6 4,296 18,865 5,823 18,427

6…2 5,852 1,131 6,232 1,570

13…18 5,364 4 4,940 3

19…24 3,828 0 2,694 0

[24 660 0 311 0

MI-ML \6 83,355 187,163 83,355 178,607

6…12 53,185 5,532 53,185 13,995

13…18 35,100 15 35,100 108

19…24 19,071 0 19,071 0

[24 1,999 0 1,999 0

JE \6 63 295,029 6,903 288,638

6…12 2,482 52,400 23,621 58,413

13…18 9,393 1,013 21,894 1,389

19…24 179,473 0 156,858 2

[24 157,031 0 139,166 0
4 http://www.movielens.org.
5 http://www.ieor.berkeley.edu/*goldberg/jester-data/.
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the method. Specifically, we divided the collections into

80% for training and 20% for testing. The final results were

obtained by means of cross validation, showing the mean

measures obtained across each multiple randomly selected

set.

With respect to the parameters of the models, we first wish

to discuss the neighbourhood size. On recommending with

these models, the use of a small number of neighbours tends

to result in greater prediction accuracy (Herlocker et al.

1999). It seems that if there are many parents, some noise is

introduced and the performance of the model is damaged.

Nevertheless, a precision/recall tradeoff exists when using a

small number of parents, because the number of ratings

predicted without collaborative information increases. Fol-

lowing the ideas of Herlocker et al. (1999) the neighbour-

hood size was fixed to 30 in both models, i.e., we consider

only the best 30 neighbours for recommendation purposes.

A second parameter can also be discussed. It should be

remembered that our aim in this paper is to study whether the

inclusion of second-hand information improves the perfor-

mance of the model. But, as has been pointed out, it seems

natural that only those predicted ratings obtained with

qualified information will be taken into account. But, what

does ‘‘qualified information’’ mean? Our initial hypothesis is

that the performance of the collaborative system improves

with an increase in the information used for recommending.

We have verified this hypothesis experimentally, as shown in

Figs. 3 and 4. The abscissa represents the number of similar

users who have rated the movie, nr and the ordinate shows the

MAE values obtained by the models for each dataset. As can

be seen, the behaviour of the systems is similar for the dif-

ferent datasets. It therefore seems reasonable to use a

threshold in the number of neighbours who have rated the

item as a quality criterion. Specifically, it can be said that a

qualityprediction exists if it has been obtained using

information from at least Q neighbours.

It should be noted that there is a tradeoff between this

criterion and the amount of second-hand information used

for recommending. Figures 5 and 6 show the percentage of

qualified recommendations (coverage) that will be obtained

using different number of similar users as the threshold Q.

For example for Q = 5, i.e., those recommendations made

with the use of at least five neighbours, the coverage is

about 80% for ML, 90% for MI-ML and 100% for Jester.

Looking at these figures, we can also observe a difference

between the MovieLens and Jester datasets. It can be seen

that the predictions obtained using the Jester dataset are

well informed (this is because almost all users rated most

of the jokes) where the sparseness of the MovieLens

datasets (it is 97.5% sparse) implies that the predictions are

obtained with less information. Availing of these data, in

our paper we consider as quality ratings those obtained by

means of information from at least 40% of neighbours

(corresponding with Q = 12), because with this threshold

we obtain good results in terms of MAE providing a rea-

sonable coverage for both models. Note that the quality

value comes into play only in evaluations used to add

second-hand information, i.e., if a neighbour of the active

user has not rated the movie, the recommended rating for

this neighbour is only used if it is obtained by at least Q

neighbours (second-hand neighbours).

5.4 Experimental results

5.4.1 Baselines

In this experimentation, our baseline results are those

obtained without the use of second-hand information in the

two models. Tables 4 and 5 show the results obtained using

the Probabilistic-based model and the Average model.6 We

show the results considering the two criteria used to obtain

the predicted rating with the Probabilistic model, particu-

larly the most probable (MP) and the median rating (MED).

As expected, MP maximizes the %S and MED minimizes

the MAE values. Furthermore, for our probabilistic model,

we show the results considering the two different alterna-

tives for distributing the probability mass associated with

Fig. 3 MAE of the

probabilistic model depending

on the number of neighbours

used to predict the rating

6 Note that in this mode we do not show the success ratio as error

measure because the predicted value is not an ordinal value.
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situations in which the neighbours did not rate the target

item (state 0): To use the prior probability of the active user

(see Eq. 4), denoted as V0A, and to consider all the ratings

being equiprobable (see Eq. 3), denoted as V0E. The best

results for each dataset are highlighted in bold. Further-

more, Table 6 shows the coverage of the models for each

dataset (original and reduced).

These data provide certain conclusions: First, we can see

that the results obtained with the Average model are worse

than those obtained by means of the Probabilistic model.

Moreover, as might be expected, performance of both

models presented poorer performance when predicting with

less information (reduced datasets). Focussing on the

Probabilistic model, significant differences were observed,

depending on the method used to distribute the probability

mass associated with the lack of information. Thus, with

V0A, the performance of the reduced dataset declines by

around 7%, whereas with V0E, the performance worsens

significantly. Furthermore, the combination of MED ?

V0A provides the best results in terms of MAE for both

datasets. Moreover, the best results in terms of percentage

of success, %S, were obtained when predicting the most

probable rating, but the criterion used to distribute the

probability mass associated with the lack of information

had a great impact on this metric. With respect of coverage

values, we can see how the elimination of ratings cause a

Fig. 4 MAE of the Average

model depending on the number

of neighbours used to predict

the rating

Fig. 5 Accumulated coverage

of the Probabilistic model

Fig. 6 Acumulated coverage of

the Average model
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decrease of coverage for each dataset been more clear for

the MI-ML dataset. Moreover, we can see that the values

obtained for the probabilistic model, in the original data-

sets, are higher than those obtained for the Average model.

This result lead us to say that the neighbourhood obtained

for every test user by the probabilistic model are more

accurate than those obtained using the Average model.

5.4.2 Using second-hand information

Tables 7 and 8 show the results obtained after inserting

qualified second-hand information into both models. In

order to facilitate the comparison, we included a ? or -

symbol to indicate that the results are better or worse than

those obtained in the baselines. If we focus on the results

obtained with the use of the original dataset, we found that

the results are quite similar to the ones obtained without the

use of second-hand information. Thus, considering only the

best results for the experiments (those in bold face), it can

be seen that using Movielens, we obtained slight

improvements in terms of MAE, whereas using Jester,

worse results were provided. Moreover, in terms of per-

centage of success, we obtained slightly worse global

results. On the other hand, the results reported from the

reduced experiment appear to be quite conclusive. Using

second-hand information, we might achieve a performance

similar to the one obtained with all the available ratings for

the active user (original datasets) which may be considered

as the optimum. In a certain sense, it seems that we are

capable of recovering the predictive capacity of the model.

This conclusion is valid for the two collaborative filtering

approaches. In Table 9, we can see a demonstration of both

situations. If we use the original datasets, the coverage is

almost equal to those evaluations without using second-

hand information. In contrast, using the reduced datasets,

we can see how the increase of coverage is clear respect

those evaluations made without using second-hand

information.

An in-depth study of both situations will help us to

explain this difference in performance. In particular, there

are two main situations in which second-hand information

might be of no use: First, when the active user avails of

sufficient information for recommending, i.e., most of his/

her neighbours rated the item. In this case, the second-hand

information does not contribute significantly to the com-

putations of the predicted rating. As we discussed, this is

the case of the Jester dataset. On the other hand, we may

not include sufficient information after consulting our

neighbours. This is the case of the original MovieLens

datasets.

Table 10 presents the mean number of second-hand

ratings added when the number of neighbours who rated

the item (NR) ranges from 0 to 12, i.e., the table shows the

mean number of second-hand ratings obtained for evalua-

tions made with less than 12 neighbours. The second and

third rows show these values when all the available data are

used for prediction purposes. The fourth and fifth rows

show these values when the artificially reduced dataset is

used. We can see how, with the use of all the available

ratings, it was difficult to include second-hand ones. On

observing the MovieLens datasets, we found that this

Table 6 Coverage of the models

Dataset Original Reduced

Prob. Average Prob. Average

ML 97.88 96.41 83.83 87.20

MI-ML 99.20 92.26 64.50 79.41

JE 100 99.98 85.34 87.59

Table 4 Probabilistic models

Dataset Rate sel. Original Reduced

V0A V0E V0A V0E

%S MAE %S MAE %S MAE %S MAE

ML MP 41.62 0.803 42.38 0.792 39.51 0.839 35.06 1.092

MED 40.55 0.755 36.21 0.799 38.64 0.791 26.75 1.010

MI-ML MP 42.86 0.773 44.40 0.737 39.91 0.831 28.83 1.425

MED 41.37 0.728 38.37 0.749 38.69 0.781 26.19 1.017

JE MP 45.56 0.803 46.12 0.850 41.93 0.977 37.77 1.158

MED 41.25 0.768 39.57 0.795 37.66 0.885 24.96 1.078

Table 5 Average model

Dataset Orig. Reduced

MAE MAE

ML 0.762 0.859

MI-ML 0.761 0.838

JE 0.828 0.962

Using second-hand information in collaborative recommender systems 795

123



situation holds for rare items (items rated by few people).

For example, on average, those items with nr = 10 were

rated by 10 and 6% of the users in ML and MI-ML,

respectively, and when nr = 5 these items were rated by 5

and 3% of the users in ML and MI-ML, respectively. To

the contrary, when the reduced datasets are used, the

inclusion of second-hand information becomes more fre-

quent, and as a consequence, the accuracy of the model is

improved considerably.

These data lead us to conclude that the inclusion of

second-hand information can be beneficial in a collabo-

rative recommending process. When extra information

can be included, we might expect better accuracy in the

recommendations, whereas the performance is not dam-

aged when this is not the case. This situation holds for

the two collaborative approaches considered in the

experiment.

5.4.3 Using imputation-based information

We also decided to compare our results with the ones

obtained with the use of an imputation-boosted approach.

We used the collaborative item-based Naive Bayes classi-

fier described in Su et al. (2008) to fill the complete

missing ratings: For each movie Ia; we obtain a classifier in

which the class is the movie and we consider as attributes

the remaining movies rated in the datasets. For each movie

within the attribute set, we learn the weights in respect to

the class, using the ratings within the training dataset given

by users who have rated both films. Once a classifier for

each movie has been created, we obtain the rating

prediction for all users who have not seen this movie, using

as evidence their ratings of the remaining movies.

Once we have the filled datasets, we use them to predict

the ratings in the test sets, by means of our probabilistic

model.

Table 11 shows the results obtained when on filling the

datasets with the Naive Bayes classifier. The results were

obtained using the ML dataset. As can be seen, the results

are worse than when second-hand information is used. The

main reason for these results might be due to the fact that

the datasets are filled a priori, i.e., as we fill all missing

ratings, the similarity between users can become distorted

and the neighbourhood selection process therefore does not

choose the best ones.

6 Discussion

Across the experimentation it has been proven that

obtaining new second-hand information might improve the

predictions of the systems. An important fact that con-

tributes to the performance, in terms of accuracy, is that the

information (in terms of new ratings) must be qualified.7

This extra information is computed using the set of past

ratings available.

The experimental results indicated that there are two

possible situations in which the use of second-hand

Table 7 Inserting second-hand information in the Probabilistic model

Dataset Rate sel. Original Reduced

V0A V0E V0A V0E

%S MAE %S MAE %S MAE %S MAE

ML MP 41.61- 0.801? 42.02- 0.792 41.54? 0.805? 40.73? 0.856?

MED 40.98? 0.749? 38.14? 0.778? 40.46? 0.758? 36.56? 0.805?

MI-ML MP 42.97? 0.765? 43.73- 0.744- 42.62? 0.776? 42.25? 0.812?

MED 41.66? 0.723? 40.29? 0.731? 41.25? 0.732? 38.80? 0.754?

JE MP 45.79? 0.853- 45.88- 0.850 45.55? 0.866? 46.09? 0.849?

MED 41.78? 0.787- 41.74? 0.785? 41.27? 0.794? 39.80? 0.792?

Table 8 Inserting second-hand information in the Average model

Original Reduced

Dataset MAE MAE

ML 0.761? 0.792?

MI-ML 0.748? 0.773?

JE 0.836- 0.826?

Table 9 Coverage of the models inserting second-hand information

Dataset Original Reduced

Prob. Average Prob. Average

ML 97.88 96.43 93.28 91.85

MI-ML 99.21 93.22 94.53 88.37

JE 100 100 100 100

7 In order to test this fact we have also included all the ratings but it

worsen the performance of the systems.
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information does not contribute to the rating prediction:

First, when new information cannot be obtained from the

database of ratings, as occurs with rare items. In this sit-

uation, content information (if available) can be used in

order to make the predictions, as with hybrid approaches.

Furthermore, the use of second-hand information will not

help if sufficient first-hand ratings already exist. Never-

theless, in both situations, the performance of the system

is not worsened when second-hand information is resorted

to. We therefore consider the situations in which our

approach might be useful. The following are two possible

ones: On one hand, we consider the case in which the

target item is neither rare nor highly frequent (this could

be the common one in many applications). It might

therefore be interesting to look in the database of ratings

in search of extra information. Second, the approach can

be useful in an online store (such as Amazon or a movie-

based application) where new products frequently appear.

In these stores, the users start to rate after the new item is

included. Therefore, at the beginning (e.g., a few weeks) it

is possible that, given a user, few of his/her neighbours

have rated it. In this particular situation the information

provided by second-hand neighbours is welcome (our

experiments with the reduced dataset reinforce this idea).

Therefore, as a final conclusion, as our approach is effi-

cient (in time) and effective (it could improve the pre-

dictions), we believe that implementation thereof in real

RSs can be beneficial.

7 Conclusions

We have presented a novel idea for application in collab-

orative RSs in order to improve the predictions of the

system by increasing the available information in the

datasets using the predictions made by the system. To test

it, we used two RSs: A BN-based RS and a neighbourhood-

based rating prediction.

We have proved that if we introduce quality second-hand

information in the systems, their recommendations can also

be improved. This situation is particularly beneficial when

the amount of second-hand ratings included is large. Rather,

when we use the original datasets, in predictions executed

with little information, introducing quality ratings produces

a low or almost null increase in information for such pre-

dictions. We have demonstrated that this is due to the exis-

tence of ‘‘rare’’ items rated by few users.

As future work, we will consider:

• Using additional databases as NetFlix to test our

proposal.

• Performing a more exhaustive study of those evalua-

tions in which few neighbours are used for the

recommendation, in order to achieve better perfor-

mance with the original datasets.

• Finding new methods to predict the rating as a mixing

of the MP and MED criterion.

• Testing different methods to obtain the neighbourhood.

• Finding alternative criteria to define quality, such as

using the final value of probability to assess this.

• Studying new ways to calculate the weights in order to

improve overall system performance.

• Incorporating content information to the models to

improve the new-items situations.
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Abstract

This paper presents a new approach for memory-based Collaborative Filtering algorithms. In general terms,
user-based rating prediction can be seen as a process where each neighbor suggests a rating for the target
item and then these suggestions are combined by weighting the contribution of each neighbor. In this paper
we will present a new alternative to perform these suggestions which is independent of the users’ rating scale.
These predictions will be based on what we call predictive probabilities. Also, in this paper we will explore
how these probabilities can be used to select the nearest neighbors to perform the recommendations, being
also able to integrate different kind of dependences presented in the ratings. The neighborhood-selection
criterion will depend on the predictive capability of a user at predicting past ratings. Our hypothesis is that
if a user was good when predicting the past ratings for an active user, then his/her predictions will be also
helpful to recommend ratings in the future for that user.

Keywords:
Recommending Systems, collaborative filtering, memory-based method, past preferences

1. Introduction

Recommender systems (RSs) attempt to discover user preference, and to learn about them in order
to anticipate their needs. The main task normally associated with a RS is to offer suggestions for items
that may be useful to a user. For example, they can help the user by recommending a book, a movie, a
hotel, a song, etc. From the service provider’s perspective RSs help to increase the user satisfaction, and
as consequence, it is also expected an increase of the sales. The study of RS emerged as an independent
research area in the mid-1990s [9, 23], having its roots in related areas as databases or information retrieval.
In recent years, the interest in recommender systems has dramatically increased, playing an important role
in internet sites as, for example, Amazon.com, YouTube, Netflix, Yahoo, Tripadvisor, Last.fm, or IMDb.

The main tasks normally associated to a RS are, on the one hand, rating prediction, i.e. given an unseen
item, to predict how much a user would like the item. In this case, the output of the RS is a rating, in a
scale from one to five stars, for instance. On the other hand, the second task is to find good items:, to try
to find the best items (and possibly their ratings) for being recommended to a given user. In this case, the
results are ranked taking into account the predicted ratings. Although both notions are closely related, this
paper deals with the first type, i.e. rating prediction.

Depending of the information used to recommend, RSs can be classified [1] into the following categories:
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• Content-based Recommender Systems that store content information about each item. This information
will be used to recommend items similar to those previously preferred by the user. This similarity can
be based on how similar the content of the items is or taking into account the similarity with respect
to user’s preferences (also represented by means of a subset of content features).

• Collaborative filtering [23] attempts to identify groups of people with similar tastes to those of the user
and recommend items that they have liked. The similarity in taste of two users is calculated based on
the similarity in the rating history of the users or items.

Since in this paper we focus on Collaborative filtering, we are going to present this type of RSs in
more detail. According to [5], collaborative Recommender Systems can be grouped into memory-based and
model-based approaches. On the one hand, memory-based algorithms use the entire rating matrix to make
recommendations. On the other hand, in model-based algorithms, predictions are made by building (offline)
an explicit model of the relationships between items. This model is then used (online) to finally recommend
the product to the users.

Because the predictions in memory-based approaches are obtained by considering the most similar
users/items, these methods are also known as neighborhood-based recommendation models. A critical
step in this methods is to identify the nearest-neighbors since the way in which the similarity is computed
has a significant impact on the performance of the system. Studies and real-world implementations so far
have relied on traditional vector similarity measures (say Pearson’s correlation in different formulations,
cosine, Spearman’s Rank, etc. [10, 11, 2, 26, 7]). This type of similarity measures the closeness between
users ratings but, as it is well known, they are not able to completely characterize their relationships. In this
paper we will explore a new approach to perform the recommendation processes which is based on predictive
criteria.

1.1. Motivation of a predictive approach

In order to illustrate our approach we will consider the set of ratings in Table 1 with the objective of
computing Ann’s prediction for the target item It.

Following [11], neighborhood-based methods can be separated into three steps.

1. Weight all users/items with respect to the selected similarity criterion. In our example we will consider
the Pearson’s correlation (PC) coefficient. Last column of Table 1 presents the PC values between
each user’s ratings and those of Ann.

2. Select a subset of users/items to use as a set of predictors. We will assume that only the best three
neighbors, i.e. those three users having the greatest magnitude in the PC values are used.

3. Compute the prediction from a weighted combination of selected neighbors’ ratings. For illustrative
purposes, we will assume that the predicted rating is obtained by considering the average rating given
to the target item by these neighbors1.

Therefore, and in order to compute the prediction of Ann’s rating, those ratings given by Sara, John and
Sue to the target item It will be used (note that the same users will be selected using the cosine measure),
i.e. r̂a,t = (4 + 3 + 2)/3 = 3. The idea behind this expression is that since, for instance, Sara’s ratings are
quite similar to Ann’s, we can use them in the prediction of the rating given by Sara to the target item.

Looking at Table 1, we focus now on Alf and Nick ratings, which have been neglected by means of the
previous selection criteria. Nick seems to be a user with opposite preferences to those of Ann, having a PC
value equals to minus one. Whenever Nick increases his ratings, Ann decreases hers. Similarly, focusing
on Alf’s ratings, although his pattern of rating has no (linear) correlation with Ann’s, there exists a strong
dependence between them. Whenever Alf rates with a value Ann has rated with a different but fixed value,
for example, if Alf rates with 1 Ann rates with 3.

1We would like to note that the use of this expression does not invalidate our subsequent argument, although it does not take
into account facts as the degree of similarity between neighbors or the difference in the scale used to quantify their preferences.

2



I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 It PC
Sara 2 2 2 3 3 3 4 4 4 5 5 5 4 1.00
John 1 2 1 2 3 3 3 3 3 4 4 5 3 0.91
Sue 1 3 1 3 3 3 2 2 4 2 4 4 4 0.51
Bill 1 5 1 5 1 5 1 5 1 5 1 5 1 0.15
Alf 2 2 2 4 4 4 1 1 1 3 3 3 1 0.00
Joe 1 2 3 1 2 3 1 2 3 1 2 3 3 0.00
Nick 4 4 4 3 3 3 2 2 2 1 1 1 2 -1.00
Ann 1 1 1 2 2 2 3 3 3 4 4 4 ?

Table 1: Measuring user similarities. The objective is to provide Ann’s prediction for the target item It.

These type of dependencies are not properly captured by Pearson’s correlation, neither by a vector based
similarity measure. Moreover, in the case that during the selection process (step two of the algorithm) both
users, Nick and Alf, were selected as Ann’s neighbors, the use of their ratings, i.e., r̂a,t = (4+3+2+2 + 1)/5 =
2.4, will probably worsen the predictions. In this case, instead of consider Nick and Alf’s raw ratings to It
(2 and 1, respectively), it could be more favorable to consider which should be the expected rating given by
Ann to It after knowing Alf and Nick’s ratings. Particularly, given that Alf rates with 1 we could expect
that Ann rates with 3. Also, the same rating will be expected when using Nick’s rating, and therefore
r̂a,t = (4 + 3 + 2 + 3 + 3)/5 = 3.

Therefore, what we are proposing is the use of our beliefs about how Ann would rate It (in some sense
a prediction of Ann’s ratings) instead of the particular rating given by each one of her neighbors. When
the users are strongly correlated they might coincide, but as we have shown, there are situations where this
does not happen. In this paper we are going to explore this idea from two different perspectives: Firstly, as
a way to compute the predictions and, secondly, as an alternative to measure the similarities between users
(steps three and one of the previous sketch, respectively).

Focusing on the second objective, the idea will be to measure the capability of each user to predict the
Ann’s ratings. In this case, using the data in Table 1, we can observe that whenever Sara rates with a value,
say x, Anns rates with a fixed value, but this also holds for Alf, and Nick. Nevertheless, by knowing their
ratings for an item we know with ’certainty’ which is Ann’s rating. Therefore, for predictive purposes these
three users are equivalent and they should be the ones selected when looking for the three nearest-neighbors
of Ann. Our hypothesis is that if a user was good predicting the past ratings, then his/her predictions shall
be also helpful to recommend ratings in the future.

By joining the two ideas we will get a new memory-based CF model, which as a whole is the main
contribution of this paper. This model tries to predict the probability of the alternative ratings, being an
example of Predictive modeling [8]. This paper is organized in the following way: Next section presents
related work on memory-based recommender systems. Then Section 3 presents the proposed model, firstly by
introducing how the individual suggestions can be combined (as a mixture of multinomial distributions) and
secondly, by showing how the neighborhood is determined. Section 4 describes the proposed experimentation
and the obtained results. Finally, Section 5 presents the concluding remarks.

2. Related Work: Neighborhood-based Recommender Systems

Previously to present some related work, we will introduce our notation. Formally, in a recommending
framework there exists a large number m of items or products I = {I1, I2, . . . , Im} and also a large set of n
users, U = {U1, U2, . . . , Un} and for each user, a set of ratings about the quality of certain observed items in
I. Among the set of users we want to highlight the active user, Ua or A, which is the one that is interacting
with the system, a general user will be denoted by capital letter U or V . Similarly, we also highlight an item
It, the target item, that will be one for which we are making predictions, we use I to denote a general item.
Finally, will denote R as the set of recorded ratings, ru,i being the rating given by user U to the item I and
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the ratings predicted by the system will be denoted as r̂a,t. Let S be the set of possible ratings (for instance,
S = {1, . . . , 5} or S = {like, dislike}), when the user does not rate the item we consider that ru,i = ∅. To
identify the subset of items rated by the user U , we will use RU .

As we already mentioned, our work is framed into the neighborhood-based Collaborative Filtering ap-
proach, where the predictions rely on the ratings given by similar users in the system. The intuition is that
if two users U and V have a similar pattern of rating then the rating given by U to the target item is likely
to be similar to that of V . In this scenario the set of ratings, R, are directly used to predict the ratings
(in Section 2.5 we highlight the advantages of this approach). The predictions can be done in two different
ways, depending on different views of the rating matrix: user-based methods [10, 25] that use an aggregation
measure which considers the ratings given by similar users for the same item. Also item-based approaches
[24, 6], which take into account the similarity between items (two items are similar if they have been rated
similarly), appear as good alternatives to the user-based method. In this case, the predictions are generated
considering those ratings given by the active user to similar items.

In a user-based recommender system we can distinguish two main steps: The computation of the active
user’s neighborhood and the processes involved in the rating predictions. Also, and in order to select the
best neighbors how to compute the similarity between users is a critical element. In the following sections,
we are going to consider these problems.

2.1. Similarity Measures

The three most common metrics in user-based RS [7] are:

• Pearson Correlation Coefficient (PC): This metric measures the degree of association between the
ratings patterns using a value between -1 and +1. A positive value is an evidence of a general tendency
that large ratings for user U are associated with large ratings of V and small ratings of U tends to be
associated with small ratings of V (a negative value for the correlation implies an inverse association).
The PC can be computed by means of the following formula:

PC(U, V ) =

∑
j(ru,j − ru) · (rv,j − rv)

√∑
j(ru,j − ru)2 ·∑j(rv,j − rv)2

, (1)

where sums over j are applied to those items that users U and V have rated, RU ∩ RV . If there are
no common items between U and V , then PC(U, V ) = 0 by default. Furthermore, ru is the average
rating value for the user U , i.e. ru = 1

|RU | ·
∑

Ik∈RU
ru,k.

A related metric is the Spearman Rank Correlation, which tries to measure the similarity between
users considering a ranking over the rated items instead of items ratings.

• Cosine Measure: This metric defines the similarity between two users as the cosine of the angle between
the rating vectors, with values between 0 and 1. A larger value means that the similarity of the ratings
increases (the two vectors are getting closer). The Cosine similarity of user U and user V is defined as

COS(U, V ) =

∑
i∈RU∩RV

ru,irv,i√∑
i∈RU

r2u,i
∑

i∈RV
r2v,i

(2)

Cosine similarity ignores the differences in rating scales between users. This fact can be taken into
account using the adjusted cosine similarity, which has been found to perform even better than Pearson
correlation within item-based collaborative filtering [19].

• Mean Square Difference: This is a distance measure (but the inverse can be considered as a similarity
metric) which evaluate the distance between two users as the average squared difference between the
rating given by the user to the same items, compute as:

MSD(U, V ) =

∑
i∈RU∩RV

(ru,i − rv,i)2
|RU ∩RV |

. (3)
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Different empirical analysis have been performed trying to determine the best similarity measure for
computing the similarity weights [5, 10, 11, 14] with Pearson’s correlation, PC, being found to perform
better.

2.2. Selecting the neighbors

In order to perform recommendations for the target item It, only the users who have rated this item
can be used. Among them, we have to select the best ones. Following [11], it has been demonstrated
that it is better to set a fixed number of neighbors (potentially in a range from 20 to 60) than using a
threshold on the similarity weights. Moreover, a significant gain in prediction accuracy is obtained by
incorporating a significance weighting by devaluing correlations that are based on small numbers of co-rated
items. Particularly, the best-n neighbors having larger values of the following similarity measure, denoted
as Nt(a), are used:

sim(U, V ) = PC(U, V ) · CF, (4)

with

CF =

{
1 if k > 50
k
50 otherwise

k being the number of items in common.

2.3. Computing the Predictions

In this section we will present those methods used in the literature (see [7] for a good review) to compute
the predicted rating, r̂a,t. As we said in Section 1.1, these methods use the ratings given to It by the best-n
neighbors. Particularly, it can be considered two different approaches that mainly differ on whether the
given ratings are normalized or not.

1. Raw ratings. In this case, it is considered that users might have a different similarity values, and a
weight that reflects this similarity is added.

r̂a,t =

∑
V ∈Nt(a)

sim(A, V )rv,t∑
V ∈Nt(a)

sim(A, V )
. (5)

2. Normalized ratings. By means of the normalization we are considering that users may use different
rating scale to quantify the same level of preferences for an item. Different normalization strategies
can be followed, but the most popular schemes are mean-centering and Z-score.
The first one tries to consider that users may use different rating scale to quantify the same level of
preferences, and the normalization is obtained by comparing the rating to the mean rating. In this
case, the predicted rate is obtained as

r̂a,t = ra +

∑
V ∈Nt(a)

(rv,t − rv) · sim(A, V )
∑

V ∈Nt(a)
sim(A, V )

. (6)

The second ones, also consider the variance in the individual rating scales and the predicted rate is
computed dividing the mean-centered rating by the standard deviation, σ:

r̂a,t = ra + σa

∑
V ∈Nt(a)

(rv,t − rv)/σv · sim(A, V )
∑

V ∈Nt(a)
sim(A, V )

. (7)
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The use of some kind of rating normalization has been found to improve the predictions [11, 14] although
choosing one of them, mean-centering or Z-score, highly depends on the features of the rating matrix, R.

In general terms, a user-based rating prediction can be seen as a process where each neighbor, V ∈ Nt(a),
suggests a rating for the target item, denoted by fA(V, t), and then the different proposals are combined by
weighting the contribution of each neighbor by its similarity with respect to the active user, i.e.,

r̂a,t =

∑
V ∈Nt(a)

sim(A, V )fA(V, t)
∑

V ∈Nt(a)
sim(A, V )

. (8)

Thus, in the case of eq. 5 the suggestions are the neighbors’ raw ratings fA(V, t) = rv,t, whereas in eqs. 6
and 7 these suggestions are normalized by taking into account how both users rated the observed items, by
considering the mean-centering and Z-score, fA(V, t) = ra + (rv,t− rv) and fA(V, t) = ra + σa(rv,t− rv)/σv,
respectively.

2.4. Performance evaluation measures

In order to test the performance of the model one widely used metric is the system predictive accuracy,
i.e. how well the system predicts the user’s true ratings or preferences. Following [12], MAE is the metric
typically used for this purpose, defined as the mean absolute error between the true test ratings, R, and
on the predicted ratings, R̂. Another accuracy metric is the root mean squared error (RMSE), which gives
more strength to higher error, which computes the root of the expected squared loss in order to obtain the
error in the same magnitude than ratings. This metric has been proved to be correlated with MAE metrics.
In the literature it can be found classification accuracy metrics such as the percentage of success, %S, which
measures the number of correct predictions given by the system.

Obviously, depending on the recommending problem considered different metrics can be used. Thus,
in the case of looking for an ranking over the set of recommended items, there are several ranking quality
metrics which are commonly used to judge how good is the ranking proposed with respect to those items
which has been really ranked by the user. For example, it can be found correlation-based metrics measuring
the linear relationship between the rankings, those metrics which considers the precision on the top k
predictions (P@k) or those metrics taking into account the position in the ranking of those items accessed
by user, such as the normalized Discounted Cumulative Gain (nDCG).

2.5. Why memory-based approaches are worth of pursuit?

In this section we will present the advantages of using a neighborhood-based method. These methods
have reached a great popularity because they are simple and intuitive on a conceptual level being also
sufficient for many real-world problems [10, 24, 19, 26]. The other alternative is the use of a model-based
approach [13, 4, 17, 18] where a model is built offline trying to reflect the relationships between users and
items. In order to build this model several data mining techniques might be used, learning the model from
the rating’s matrix, R. Then, the model is used (online) to finally recommend the product to the users.

Focusing on the task of predicting ratings, model-based approaches seems to outperform memory-based
approaches [17], but there is an strong support about the fact that best accuracy can be obtained when
combining different models that complement the shortcomings of each other, as Netflix Prize competition
has shown [3]. For instance, good results have been obtained by using model-based methods to learn
interpolation weights in neighborhood-based approaches.

Moreover, there are other factors beyond prediction accuracy which are important from the users per-
spective, where neighborhood-based approaches takes advantage [7] as serendipity (novelty) or justifiability.
Related to serendipity, model-based predictions always tends to recommend items closer to the user’s (latent)
tastes, being difficult to recommend an item very different from his/her usual preferences. This problem is
alleviated in neighborhood-based approaches because they capture local associations in the data. Also, the
recommendations can be better explained (justified), helping the users to understand the recommendations.
In commercial applications this understanding are finally related to customer’s loyalty. These models have
also some advantages from the perspective of the implementation in real system: they are simple (easy
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to implement, with fewer number of parameters to be tuned), efficient (no training is required and rec-
ommendations can be computed instantaneously using pre-computed nearest-neighbors) and scalable (little
affected by the constant addition of users, items or ratings). Besides, there are others recommendation
tasks, as group recommending, where memory-based approaches represents a good alternative [16, 21]. This
is because, in this task, the groups are usually built from the scratch, being difficult to (previously) learn a
model able to represent the unknown groups’ preferences.

3. Predictive-based Model

As we said in Section 1.1, our objective in this paper is to study the capability of a user to predict a
rating from two different perspectives: On the one hand, as a new alternative for computing the prediction of
the rating for an unobserved item and, on the other hand, as the criterion used to select the best neighbors.

3.1. Selecting the predicted rating

As we said, predicting is a process where each neighbor, V ∈ Nt(a), suggests a rating for the target
item, fA(V, t), and these ratings have to be aggregated using a weighted function (Eq. 8). In this section
we are going to present a different approach to perform these suggestions: Instead of considering the raw
rating or a deviation from the mean rating we will consider how probably is that the active user rate with
a value s, ra,t = s, given that we know the value of the rating given by V to the target item, say rv,t = k,
i.e. Pr(ra,t = s|rv,t = k). Our hypothesis is that these distributions can be used to characterize the user’s
rating pattern and could be estimated from the rating matrix R by relative counts over the set of items
rated by either A and V , i.e. RA ∩ RV . Following the example in Table 1, we can see that Sara rates the
target item with 4, and that Pr(Ann = 3|Sara = 4) = 1.

It is interesting to note that this kind of suggestions do not depend on whether the ratings are positive
or negatively correlated neither the rating scale of the users. For example, suppose that each one of Sara’s
ratings were decreased by one. In this case, Sara would rate the target item with 3 and the probability
distribution Pr(Ann = s|Sara = 3) does not change. Similarly, there is no difference in the predictive
probabilities if Bill alternates between 2 and 4, instead of 1 and 5 in Table 1. This represents an advantage
over the methods in Section 2.3 since no normalization is required.

The main drawback of this approach is that the estimations are not reliable when ratings do not co-occur
or they are obtained from a few number of common observations, i.e. the size of RA ∩RV is small. In order
to avoid this situation we consider that, a priori, all the ratings are equally probable. Particularly, we will
use Laplace estimation which essentially starts by saying that every possible rating has occurred at least
once. Therefore the predictive probabilities will be estimated by means of

Pr(ra,t = s|rv,t = k) =
n(ra,. = s, rv,. = k) + 1

n(rv,. = k) + |S| , (9)

where n(ra,. = s, rv,. = k) represents the number of items in RA ∩ RV with user A rating with s and user
V rating with k and n(rv,. = k) represents the number of times that user V rated with value k. Following
the example in Table 1, we can see that Sara rates the target item with 4, and that Pr(Ann = s|Sara = 4),
with s ∈ {1, . . . , 5} are 0.125, 0.125, 0.5, 0.125, 0.125, respectively.

Once each one of the neighbors’ predictive probabilities have been estimated they must be combined.
This combination represents also a difference with the classical methods, where an aggregation of a set of
fixed valued is used. In our case we have to aggregate a set of probability distributions over the rating
values. This aggregation can be seen as a mixture of different multinomial distributions [22]. As a result we
will obtain a probability distribution characterizing our belief about the value of estimated rating, i.e.

Pr(ra,t = s) =

∑
V ∈Nt(a)

sim(A, V )Pr(ra,t = s|rv,t)∑
V ∈Nt(a)

sim(A, V )
,∀s. (10)

Since the objective is the prediction of the rating that the active user should give to It, r̂a,t, a final
decision becomes necessary. There are several methods for computing this prediction from a probability
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distribution over ratings. In this paper we will use three different alternatives: the most probable, the
average and the median rating using the a posteriori probability in the form:

MP :
r̂a,t = {r|max{Pr(ra,t = r)}. (11)

MED :
r̂a,t = {r|Pr(ra,t < r) ≤ 0.5, P r(ra,t > r) > 0.5}. (12)

AVG :
r̂a,t =

∑

s

Pr(ra,t) · s. (13)

Following with the example, we assume that Pr(ra,t = s) with s ∈ {1, . . . , 5} is equal to 0.10, 0.15, 0.30, 0.35, 0.10,
respectively. The ratings obtained using the different methods are: for MP the rating is 4 as it is the most
probable, for MED is 3 (0.10 + 0.15 + 0.30 ≥ 0.5) and for AV G is 3 ((0.10 · 1) + (0.15 · 2) + (0.30 · 3) + (0.35 ·
4) + (0.10 · 5) = 3.2).

3.2. Selecting the neighborhood using a predictive-based criterion

In neighborhood-based Collaborative Filtering the predictions rely on the ratings given by similar users
in the system since it is assumed that users with similar tastes tends to rate similarly. Different measures
has been used (see Section 2.1) trying to capture the similarities between those ratings given by both users
to the set of observed items. As we said in Section 1.1, these measures perform well when the ratings are
highly correlated, but they are not able to capture other dependencies between the ratings.

In this paper a new metric to measure the quality of a neighbor will be proposed. Our hypothesis
is that if a user U was good at predicting the active user’s past ratings, then his/her prediction for an
unobserved item will be also good. 2 Note that the key aspect in this approach is that we will consider
rating’s predictions instead of raw ratings. Therefore, we will have, on the one hand, the ratings given by
the active user, RA = {ra,1, . . . , ra,m}, to his/her m rated items and, on the other hand, the ratings that

will be suggested (predicted) for each item by the user U , denoted as F̂A(U) = {r̂a,1, . . . , r̂a,m}.
In order to determine the quality of the predictions, which measures in some sense the predictive capa-

bility of a user, we have to consider if the predicted ratings, F̂A(U), and the original ones, RA, are similar
in absolute terms. Note that we are not interested in measuring whether the ratings vary in the same way
or not. For example, a strong correlation does not necessarily implies good predictions, as it is the case
where the predictions are equal to the original rating plus a constant value k. Then, the ratings are highly
correlated (PC is equal to one) but the predictions worsen with k. Also, cosine measure is not appropriate
for this purpose. It does provide an accurate measure of similarity but with no regard to magnitude, since
the rating vectors are treated as unit vectors by normalizing them. But magnitude is a very important factor
at determining the quality of the prediction. For example, suppose RA = {2, 2, 3, 3} and the suggestions
F̂A(U) = {1, 2, 3, 4} and F̂A(V ) = {6, 6, 7, 7}, with cosine values 0.967 and 0.993, respectively. In this case,
the cosine criterion will say that V has better predictions than U , which is clearly erroneous.

In this paper, we propose the use of a loss function to measure the magnitude of difference between the
two rating, L(ra,i, r̂a,i), representing the cost incurred when the true rating ra,i and user U predicts the
rating r̂a,i. Then, we will explore two different loss functions:

LH : This function measures the number of correct prediction only, i.e. only considering whether we have
a success or failure in the predictions:

LH(ra,i, r̂a,i) =

{
0 if ra,i = r̂a,i
1 otherwise.

(14)

2We would like to note that we have explored [15] the idea of considering the quality of a user as a neighbor by measuring
how likely were those ratings given by the active user when using the predictive probabilities. This probability were measured
by considering the likelihood over the rating in RA.
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I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12
F̂A(U) 1 1 2 2 2 3 4 3 3 5 5 5

F̂A(V ) 1 4 1 2 5 5 3 3 3 4 4 1
RA 1 1 1 2 2 2 3 3 3 4 4 4

Table 2: Candidate Ratings.

LM : This loss functions measures how close the predictions are to the true ratings by considering the average
absolute deviation between a predicted rating, r̂a,i, and the user’s true rating, ra,i:

LM (ra,i, r̂a,i) = abs(ra,i − r̂a,i). (15)

Therefore, the predictive capability of a user can be measured by considering the expected loss over the
active user’s past ratings, i.e.

EL(A,U) =

∑
i∈RA

L(ra,i, r̂a,i(u))

|RA|
. (16)

This expected loss can be considered as a distance metric between the two vectors of ratings. Partic-
ularly, the use of LH and LM in the expected loss is related to the use of Hamming and Manhattan
distances, respectively. For example, considering the data in Table 2 we have that ELH(A,U) = 6/12 = 0.5,
ELH(A, V ) = 4/12 = 0.33, ELM (A,U) = 6/12 = 0.5 and ELM (A, V ) = 12/12 = 1.

Since we are considering a memory-based approach for recommending a rating for the target item It, we
have to compute the EL(A,U) for those users, U , who rated the target item It, i.e. U such that ru,t ∈ RU .
Then these users will be ranked in increasing order of their expected loss and the top N shall be selected as
active user’s neighbors.

3.2.1. Estimating the pasts rating

So, the problem is reduced to determine how a given user, say U , might predict the active user’s rat-
ings, i.e. how to compute F̂A(U). In order to capture different dependence criteria among ratings, these
predictions will be based on the predictive probabilities discussed in Section 3.1, i.e. Pr(ra,i|ru,i). Then,
the recommended rating will be obtained as the most probable (eq. 11), the median (eq. 12) or the average
(eq 13) rating from Pr(ra,i|ru,i).

Let’s suppose that U was asked about the rating that A would give an item Ii ∈ RA, i.e. we want
to know r̂a,i. Obviously, it is assumed that when U have to suggest this rating he/she does not know the
real rating give by A to the item Ii. Therefore, the information available for making his/her prediction is
RA \ {ra,i} ∪ RU . Two different situations can be considered:

i) User U rated Ii, i.e. ru,i ∈ RU : This is the same situation that we have when doing recommendations
for an unobserved item. Thus, the predictive probabilities can be computed using Equation 9.

ii) User U does not rate Ii, i.e. ru,i 6∈ RU : In this case, since U does not rate Ii, a naive approach might
be to consider that all the ratings in S are equally probable. A second alternative might be to use
the active user’s average rating, ra, computed over RA \ ra,i. In both cases, the prediction does not
depend on U .
In this paper we will consider a third alternative which considers that knowing that U does not rate Ii
might be helpful for predicting the A’s rating, i.e. we are assuming a situation where a missing rating
might be informative. For example, consider that A and U only rated 20 items in common (with 5
and 4 stars, respectively) and that the rest of the 20 ratings given by A got 1 star. In this case, if
we ask U for a suggestion for an item Ii, knowing that Ii was rated by A and was not rated by U ,
fA(U, i), the value 1 will be selected probably, which differs of the A’s average rating, 3.
Although this is a simplistic example, it can give as an idea that there exists situations where the
mechanism for obtaining missing ratings cannot be ignored in general. Recent work by Marlin et al.
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Inputs: A active user, Ik target item
Output: r̂ka predicted rating.
1. Neighbors Selection

1.1 For each U who rated the target item It
1.1.1 Compute the conditional probabilities

Pr(ra = x|ru = y), ∀x ∈ S,∀y ∈ S ∪ {∅}
1.1.2 Perform the prediction F̂A(U) = {r̂a,1, . . . , r̂a,m}
1.1.3 Compute the EL(A,U).

1.2 Rank the users and select the best-N neighbors
2. Predictive Process

2.1 Aggregate the predictive probabilities of each
neighbor V
Pr(ra = x) =

∑
V w(A, V )Pr(ra = x|rv,t),∀x ∈ S

2.2 Select a rating r̂a,t from Pr(ra).

Table 3: Predictive Model

[20] provided evidence that the data typically used for training and testing recommender systems are
Missing Not At Random. This may be a consequence of the fact that users are free to choose which
items to rate, as for example a user having an strong preference for horror movies, which would not
to be shared by most users.
Therefore, in order to compute the necessary predictive probabilities, Pr(ra,i = s|ru,i = ∅), to perform
the suggestion we will use again Laplace estimation, but in this case prior information will be taken
into account,

Pr(ra,i = s|ru,i = ∅) =
n∗(ra,. = s) + |S| × αs

|RA \ RU |+ |S|
, (17)

where n∗ = (ra,. = s) represents the number of items in RA \ RU with user A rating with s and
αs represents the A’s prior probabilities over the candidate ratings computed as the probability of A
rating with value s from the set RA and |S| will be used as the strength of the prior. Note that in the
case the ratings were missing at random Pr(ra,i = s|ru,i = ∅) must be quite similar to Pr(ra,i = s)
and therefore the situation is equivalent to consider only the ratings of the active user to perform the
predictions.
Finally, the suggested rating, r̂a,i will be obtained as the most probable (eq. 11), the median (eq. 12)
or the average (eq 13) rating.

3.3. Differences with vector-similarity based approaches

To conclude, the algorithm in Table 3 summarizes our recommendation model, where w(A, V ) represents
the (normalized) weighted contribution of each neighbor. Now we are going to highlight the main differences
with respect to classical user-based similarity approaches. The first one is that by means of our approach
different types of relationships/dependencies between ratings beyond linear correlations or scale invariances
can be considered. Also related, in order to determine the strength of the relationships we use ratings’
predictions instead of raw ratings. Moreover, in order to perform these predictions our approach considers
that missing ratings might be informative. Also, there exists some differences in the predictive step. For
example, on the one hand we combine predictive probabilities instead of fixed suggestions and, on the other
hand, by using these probabilities we are avoiding the problem of rating normalization.

From the efficiency perspective, we have to say that our approach is more expensive than vector-based
measures since the predictions for the past ratings must be determined in order to compute the similarity.
Nevertheless, it can be computed in a time linear with the number of items rated by the active user (it is
necessary to iterate 2 times over the rated items, the first one to compute the conditional probabilities (step
1.1.1 in Table 3) and the second to compute the predictions and the EL (steps 1.1.2 and 1.1.3 in Table 3)).
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4. Evaluation of the Recommender Model

This section establishes the evaluation settings and also presents the experimental results for the perfor-
mance of the model. We want to express that in this work our purpose is to evaluate our approach as an
alternative to memory-based recommended system, which complement and improves the existing state-of-art
memory-based approaches.

4.1. Data set and experimental methodology

The objective of our experimentation is to measure the capability of the system at predicting the interest
of the user for an unobserved item, i.e. we will consider the task of rating prediction. In order to measure the
quality of our predictions we will use the MAE metric, typically used for this purpose, and the percentage
of success in the predictions %S (see Section 2.4). In terms of the test data sets, we have decided to use
three different datasets:

• 1M MovieLens (ML): It was collected by the GroupLens Research Project at the University of Min-
nesota and contains 1,000,209 anonymous ratings (on a scale of 1 to 5) of approximately 3,900 movies
made by 6,040 MovieLens users who joined MovieLens in 2000. We have created randomly the test
set using about 20% of ratings for every movie and using the rest of ratings for the training set.

• Yahoo! Movies (YMv): This data set contains ratings of 11,915 movies rated by 7,642 users also
divided randomly into training and test sets with 211,231 and 10,136 ratings, respectively. In this case
we have used the Yahoo! movies converted ratings (also, on a 1 to 5 scale).

• Yahoo Music (YMs): This dataset contains ratings for songs supplied by users during normal in-
teraction with Yahoo! Music services collected between 2002 and 2006. The rating data includes
approximately 300,000 user-supplied ratings (on a 1 to 5 scale) given by 15,400 users to 1000 songs,
with at least ten ratings for each user. We have created randomly the test set using about 20% of
ratings for every song (59.2502) and using the rest of ratings for the training set (52.454 ratings).

In order to validate our model, and similarly to most machine learning evaluation methodologies, we
shall randomly divide our data sets into training ( containing 80% of the ratings) and test set (containing
20%). To reduce variability on the results, we run 5-fold cross-validation over different partitions. The
results presented in this experimentation are the average values obtained over the five rounds.

Finally, as baseline, we will considered the results obtained with a state-of-art user-based approach where
the neighbors have been selected using Pearson’s correlation (with significant weight correction, eq. 4) and
the individual suggestions were combined using a mean-centering (eq. 6), which works well with different
datasets.

4.2. Experimental Results

Previously to discuss the results, some considerations have to be done. Firstly, our model computes a
probability distribution over candidate ratings, and this probability have to be converted in a rating, r̂,
in the range 1 to 5. The criterion used to obtain r̂ will be related with the accuracy metric we want to
optimize: if we predict the most probable rating we minimize the %S and if we predict the median rating
we minimize the MAE . Secondly, and also related with the accuracy criterion, the loss function used to
learn the neighborhood depends of the criterion we want to evaluate: when considering MAE or %S we
will learn using the loss function ELM and ELH , respectively3. Finally, when aggregating the neighbors’
probabilities (step 2.1 of the algorithm in Table 3) we will considered a normalized expected loss over the
past predictions, denoted as wM and wH in Table 4,

From the results in Table 4 some conclusions can be obtained. The first one is that our proposals are
competitive (our best results outperforms (5/6) with those obtained with the baseline). This fact indicates

3In our experimentation it has been proved that worse results are obtained with other combinations.
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Table 4: Accuracy metrics

Neighbors 5 10 20 30 50
MAE metric MovieLens DataSet

Baseline 0.7464 0.7191 0.7077 0.7057 0.7047
ELM + wM 0.7164 0.7081 0.7036 0.7014 0.6967

MAE metric Yahoo! Movies
Baseline 0,7530 0.7453 0.7477 0.7502 0.7543
ELM + wM 0.7476 0.7439 0.7555 0.7606 0.7687

MAE metric Yahoo! Music
Baseline 0,9701 0,9377 0,9212 0,9181 1,1235
ELM + wM 1,0600 1,0491 1,0385 1,0289 1,0109

%S metric MovieLens DataSet
Baseline 42.731 43.903 44.380 44.559 44.570
ELH + wH 43.409 44.108 44.240 44.550 44.581

%S metric Yahoo! Movies
Baseline 45,9747 46,9021 47,0501 47,4152 47,4053
ELH + wH 52,3086 53,3248 53,7194 53,6997 53,6504

%S metric Yahoo! Music
Baseline 35,04 35,29 35,39 35,42 35,14
ELH + wH 39,5781 40,7105 41,1409 41,3215 40,8017

Table 5: Number of common neighbors: Baseline vs. Expected Loss

5 10 20 30 50

MovieLens 29.59 34.77 39.81 41.31 38.41
Yahoo! Movie 75.37 65.49 55.86 50.15 42.60
Yahoo! Music 64.47 61.35 54.48 48.33 39.98

that there exists many users which are not captured by correlation criteria that might be good for predictive
purposes. In order to illustrate this fact, we show in Table 5 the percentage of common neighbors between
both approaches when considering the mean average error as the loss function, i.e. PB ∩ PL. From this
table we can conclude that Yahoo! databases and MovieLens behaves differently for this purpose. Thus, it
seems that both criteria to select the neighborhood have greater agreement with Yahoo! movies than with
MovieLens.

We want to note that our method for selecting the neighborhood considers how well a user predicts all
the past ratings. Moreover, in our preliminary experimentation, we have found that by using any criteria
to give more strength to those neighbors which a large number of co-rated items does not improve the
neighborhood’s quality. We consider this fact important since it indicates that our approach represents a
robust selection criterion.

We have also try to study the effect of considering the strength of the number of co-rated items when
combining the predictive probabilities (step 2 of the algorithm in Table 3). In this sense, the results obtained
by considering the number of co-rated items in combination with the normalized expected loss were not
conclusive, but good results have been obtained when combining this factor with how the ratings given to
these common items correlate, in absolute terms. Particularly we use

w(A,U) =
1

K
abs(PC(A,U))× |RA ∩RU |

|RA|
(18)
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Table 6: Combining using correlations and predictive capabilities.

Neighbors 5 10 20 30 50
MAE metric ELM + wPr

MovieLens 0.6843 0.6798 0.6799 0.6805 0.6842
Yahoo Movies 0.6849 0.6804 0.6808 0.6879 0.6934
Yahoo Music 0,9297 0,9278 0,9465 0,9660 0,9795

%S metric ELH + wPr
MovieLens 44.480 44.794 44.824 44.676 44.378
Yahoo Movies 53,4530 54,0549 54,0746 54,2423 54,0943
Yahoo Music 47,5190 47,6844 46,8658 45,7165 44,6970

being K a normalization factor. In our experiments this correction-factor gives better results than the
one used in eq. 4. Table 6 shows the obtained results. Some conclusions can be also obtained from this
table. Firstly, that better results have been obtained by using together predictive capability and ratings’
correlations, which indicates that both metrics reinforce each other. Also, the number of neighbors necessary
to obtain the best predictions (the neighborhood’s size) has been reduced considerably (surprisingly, with
only 10 neighbors we obtain good predictions with all the metrics), showing the ability of the combination
at finding the very-best neighbors.

4.2.1. Combining the approaches

In a user-based recommendation system there are two components which might be considered orthogonal:
neighborhood selection (N Sel) and rating prediction (Pred). Thus, on the one hand, there exists two
alternatives for neighborhood selection, i.e. considering weighted Pearson’s correlations between users ratings
(eq. 4), denoted as PC, and the other which tries to minimize the expected loss in the predictions, particularly
in this section we only consider the mean average error (eq. 15) and will be denoted as EL. On the other
hand, with respect to the combination of the neighbors suggestions in the prediction step, we shall consider
the case where the neighbor’s suggestions are obtained by using the raw differences with respect to the
average rating (eq. 6), denoted as AvD, and the case where the user suggestions are weighted predictive
probabilities (step 2.1 of the algorithm in Table 3, with the weights in eq. 18), denoted as wPr. Figure
1 shows the MAE values obtained when combining different strategies for doing these tasks4 and Table 7
summarizes the best results, being NN the optimum number of neighbors.

From these figures some conclusions can be obtained: Firstly, combining both approaches (correlations
and predictive probabilities) seems to be an alternative worth of pursuit, significant improvements can be
achieved. Thus, these results represent improvements of 3.53%, 8,71% and 2.70% with respect to baseline,
for MovieLens, Yahoo! Movies and Yahoo! Music, respectively (these results are statistically significant
using the adjusted t-test). Also, this experimentation shows that the best results were obtained combining
predictive probabilities in the prediction processes. This fact implies that combining predictive probabilities
is a robust strategy, independently of the criterion used to select the neighborhood. In this sense, it is
remarkable the bad performance of EL+AvD combination (particularly, compared with EL+wPr). Our
hypothesis is that this situation can be explained because there must be some selected neighbors whose
ratings do not correlates with the active user’s ratings, and therefore the use of AvD does not have to
be a good approach. With respect to the size of the neighborhood, an important conclusion is that using
wPr as combination strategy the optimal number of neighbors is around 10, whereas AvD requires large
values. Finally, and as global conclusion, this paper shows that there exists neighbors with a good predictive
capability which are neglected by correlation-based approaches.

4We only show MAE values because it is the metric typically used to measure the performance of this systems, but the
performance obtained when considering %S is similar.
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Figure 1: Comparing different models
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Table 7: Best Experimental Results.

DataSet MAE NN N Sel Pred.
MovieLens 0.6798 10 EL wPr

Yahoo Movies 0.6653 10 PC wPr
Yahoo Music 0.8933 10 PC wPr

5. Conclusions

In this paper, we shown that the use of predictive probabilities (how probable is that the active user rates
the target item with a value given that we know its neighbors ratings) is a valid strategy to both, finding the
neighborhood and combining their individuals suggestions. By using a predictive-based approach we have
found that there exists many users which, being good for predictive purposes, are not captured by classical
correlation criteria. Moreover, we have also shown that the best neighbors can be obtained by combining
correlations and predictive capabilities, as in an ensemble-based approach.

In this sense, and as future work, we will explore how the proposed technique can be integrated with
model-based approaches, for instance the learned model can be used to learn interpolation weights while
using neighborhood, independently of the criteria used to select this neighborhood. Also, we are working on
studying different mechanisms to incorporate additional knowledge in order to give a context-based strength
to the individual suggestions. By means of this knowledge a user might be consider a good candidate for
predicting the rating for some items, for instance sports news or horror movies, whereas the same user can
be discarded when suggesting the rating for economy news or family movies. Similarly, by means of this
context we can represent that new ratings might be considered more important than the old ones.
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ACM Conference on Recommender Systems (3) (No 3. 2009), Proceed-
ings of the third ACM Conference on Recommender Systems, ISBN:978-
1-60558-435-5, Nueva York, EE.UU., 2009.

Hierarchical Naive Bayes Models for Representing User Profiles Juan
Francisco Huete Guadix; Luis Miguel de Campos Ibañez; Juan Manuel
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