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loǵıas de la Información y la Comunicación” dentro de la ĺınea de investigación “Soft Computing”
del Departamento de Ciencias de la Computación e Inteligencia Artificial de la Universidad de
Granada bajo la dirección de los doctores D. Óscar Cordón Garćıa, D. Joaqúın Bautista Valhondo
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Montaje considerando Tiempo y Espacio: . . . . . . . . . . 6

1.1.2. Estado del Arte en Equilibrado de Ĺıneas de Montaje . . . . . . . . 9
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2.4. Algoritmos Meméticos Multi-Objetivo para el Equilibrado de Ĺıneas de Mon-
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el Problema del Equilibrado de Ĺıneas de Montaje Considerando
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Parte I. Memoria

1. Introducción

Uno de los problemas de optimización más importantes que existen en el ámbito industrial es
el del equilibrado de ĺıneas de montaje [Bay86, Sch99, BFS08]. A grandes rasgos, dicho proble-
ma consiste en optimizar la asignación de las distintas tareas en las que se puede descomponer la
fabricación o montaje de una unidad de producto a estaciones de trabajo, respetando las restric-
ciones impuestas. Se han formulado varios modelos para intentar representar las caracteŕısticas del
equilibrado de ĺıneas de montaje, como el Problema Simple del Equilibrado de Ĺıneas de Montaje
(Simple Assembly Line Balancing Problem (SALBP), en inglés) [Bay86, Sch99]. Sin embargo, tanto
el SALBP como otros modelos existentes en la literatura no consiguen reflejar toda la problemática
existente. Es por esta razón por la que Bautista y Pereira propusieron uno de los modelos más realis-
tas de los existentes en la literatura, conocido como Problema de Equilibrado de Ĺıneas de Montaje
considerando Tiempo y Espacio (Time and Space Assembly Line Balancing Problem (TSALBP), en
inglés) [BP07]. Este modelo nació gracias al estudio de la planta industrial de Nissan en Barcelona
y en él conviven hasta tres objetivos contrapuestos y no alcanzables simultáneamente dependiendo
de la variante escogida: el tiempo de ciclo de la ĺınea de producción, el número de estaciones de
trabajo que existirán en ella y el área que ocuparán. El objetivo principal de esta tesis doctoral
es desarrollar un sistema de optimización multi-objetivo para minimizar las variables en conflicto
en el marco de la variante del modelo TSALBP más importante en el sector automoviĺıstico, el
TSALBP-1/3.

Para conseguir nuestro objetivo propondremos diseños basados en distintas metaheuŕısticas
multi-objetivo [CLV07, JMT02], las cuales han demostrado ser capaces de generar conjuntos de solu-
ciones Pareto-optimales de buena calidad para problemas multi-objetivo que poseen un gran espacio
de búsqueda y una elevada complejidad. El TSALBP es un problema de este tipo por el gran número
y diferente tipoloǵıa que presentan las restricciones existentes. Las metaheuŕısticas multi-objetivo
que hemos considerado son los Algoritmos Multi-Objetivo basados en Colonias de Hormigas (Multi-
Objective Ant Colony Optimization (MOACO), en inglés) [GCH07, AW09], los Algoritmos Genéti-
cos Multi-Objetivo (Multi-Objective Genetic Algorithms (MOGAs), en inglés) [DPAM02, CLV07]
y los Algoritmos Meméticos Multi-Objetivo (Multi-Objective Memetic Algorithms (MOMAs), en
inglés) [GOT09, KC05]. Para validar los diferentes métodos implementados no sólo los aplicaremos
a instancias existentes en la literatura, sino que también consideraremos una instancia real obtenida
de la ĺınea de montaje del motor Pathfinder de Nissan, en la fábrica de Barcelona.



2 Parte I. Memoria

Aparte del diseño de diferentes metaheuŕısticas proponemos el uso de preferencias por parte del
decisor durante el proceso de optimización. De esta manera, las diferentes metaheuŕısticas multi-
objetivo desarrolladas serán capaces de dar como resultado no sólo el conjunto de todas las mejores
soluciones al problema, sino las mejores soluciones que realmente interesan al experto. Para ello se
utilizan distintos escenarios reales de Nissan en todo el mundo, en los que los intereses del experto
cambian por motivos socio-económicos.

Para realizar este estudio, la presente memoria se divide en dos partes, la primera de ellas
dedicada al planteamiento del problema y a la discusión de los resultados, y la segunda corresponde
a las publicaciones asociadas al estudio.

Comenzamos la Parte I de la memoria con una sección dedicada al “Planteamiento”del problema,
introduciendo éste con detalle y describiendo las técnicas utilizadas para resolverlo. Asimismo,
definiremos tanto los problemas abiertos en este marco de trabajo que justifican la realización de
esta memoria como los objetivos propuestos. Posteriormente, incluiremos una sección de “Discusión
de Resultados”, que proporcionará una información resumida de las propuestas y los resultados más
interesantes obtenidos en las distintas partes en las que se divide el estudio. La sección “Comentarios
Finales” resumirá los resultados obtenidos y presentará algunas conclusiones sobre los mismos, para
finalmente comentar algunos aspectos sobre los trabajos futuros que quedan abiertos tras realizar
la presente memoria.

Por último, para desarrollar los objetivos planteados, la Parte II de la memoria está constituida
por las siguientes cuatro publicaciones:

Heuŕısticas Multi-Objetivo Constructivas para la Variante 1/3 del Problema de Equilibrado de
Ĺıneas de Montaje Considerado Tiempo y Espacio: ACO y Búsqueda Voraz Aleatoria - Multi-
Objective Constructive Heuristics for the 1/3 Variant of the Time and Space Assembly Line
Balancing Problem: ACO and Random Greedy Search. Information Sciences 180:18 (2010),
páginas 3465-3487.

Incorporación de Distintos Tipos de Preferencias en un Algoritmo de Optimización Multi-
Objetivo basado en Colonias de Hormigas Usando Diferentes Escenarios de Nissan - Incor-
porating Different Kinds of Preferences into a Multi-Objective Ant Algorithm on Different
Nissan Scenarios. Expert Systems with Applications 38:1 (2011), páginas 709-720.

Un Diseño Avanzado de Algoritmo Genético Multi-Objetivo para el Problema del Equilibrado
de Ĺıneas de Montaje Considerando Tiempo y Espacio - An Advanced Multi-Objective Genetic
Algorithm Design for the Time and Space Assembly Line Balancing Problem. Computers and
Industrial Engineering 61:1 (2011), páginas 103-117.

Algoritmos Meméticos Multi-Objetivo para el Equilibrado de Ĺıneas de Montaje Consideran-
do Tiempo y Espacio - Multiobjective Memetic Algorithms for Time and Space Assembly Line
Balancing. Engineering Applications of Artificial Intelligence (2011). Special Issue on Local
Search Algorithms for Real-World Scheduling and Planning. En Prensa.

1.1. Planteamiento

Las ĺıneas de montaje son de vital importancia en la producción masiva de bienes genéricos de
alta calidad. Recientemente, han adquirido una gran importancia incluso en la producción a baja
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escala de productos diferenciados [BFS08]. En general, una ĺınea de montaje industrial está com-
puesta por un conjunto de estaciones de trabajo, dispuestas en serie o en paralelo. A lo largo de
estas estaciones de trabajo se van realizando las distintas tareas productivas de forma sucesiva
hasta conseguir el producto resultante que puede ser de un sólo tipo (modelo único) o de distintos
tipos (modelo mixto).

La configuración de una ĺınea de montaje persigue la asignación óptima de subconjuntos de
las tareas necesarias a cada una de las estaciones. Cualquier estación debe cumplir siempre las
restricciones impuestas, normalmente de tiempo y precedencias. Cualquier criterio de optimalidad
de la configuración de la ĺınea implica la minimización la ineficiencia de la ĺınea, respetando las
restricciones de las tareas y estaciones. Este tipo de problema se denomina Equilibrado de Ĺıneas
de Montaje (Assembly Line Balancing (ALB), en inglés) [Sch99] y está ampliamente extendido
tanto en la primera instalación de la ĺınea como en sus reconfiguraciones posteriores. Constituye
un problema de optimización combinatoria muy complejo (NP-completo) de gran interés para los
managers, jefes de planta y profesionales.

Por todas estas razones, el ALB ha sido un campo de investigación muy activo durante más
de medio siglo del cuál han surgido distintos modelos de optimización que intentan mejorar la
configuración de la ĺınea de montaje. La primera familia de modelos teóricos que se propuso fue
el SALBP [Bay86, Sch99]. Los modelos asociados a esta familia de problemas sólo consideran la
asignación de cada una de las tareas a una única estación de forma que se cumplan las restricciones
de precedencias de las tareas y que la carga temporal de cada estación de trabajo no supere el
tiempo de ciclo global de la ĺınea. En la práctica, esto hace que el modelo no se ajuste a la realidad,
ya que se define de una forma vaga y demasiado general para poder aplicarse a cualquier situación
industrial real. Por ejemplo, no se tienen en cuenta factores como variaciones en los productos
fabricados, cambios sobre la marcha en la fabricación, adopción de filosof́ıas Just In Time (JIT) o
restricciones espaciales [Mil90].

Ésta es la razón por la que surgen modelos extendidos que incluyen restricciones y caracteŕısticas
adicionales al SALBP, encuadrándose dentro de la familia de problemas conocida como Problema de
Equilibrado de Ĺıneas de Montaje Genérico (General Assembly Line Balancing Problem (GALBP),
en inglés) [BS06]. Por ejemplo, se han propuesto modelos del problema que consideran la existencia
de estaciones paralelas [VS02], incompatibilidades entre tareas [ACLP95] o diferentes tiempos es-
tocásticos de tareas [SC86]. Un análisis actualizado de todos los procedimientos utilizados para los
modelos SALBP y GALBP pueden consultarse en [SB06] y [BS06], respectivamente. Además, en
[BFS07] se introduce una clasificación genérica de toda el área de ALB considerando sus diferentes
variantes.

Sin embargo y aunque, como ya hemos visto, existen numerosos modelos de ALB, sigue echándo-
se en falta un modelo lo suficientemente genérico como para satisfacer todas las necesidades indus-
triales reales [BFS08]. Esta ausencia de un buen modelo matemático que se ajuste a la realidad de
las ĺıneas de montaje se debe principalmente a las siguientes razones:

Normalmente, se consideran sólo una o unas pocas extensiones prácticas al SALBP, cuando los
sistemas reales de ĺıneas de montaje requieren que se tengan en cuenta un número significativo
de ellas al mismo tiempo.

Casi todas las formulaciones que existen son mono-objetivo. En la industria, no existe un
único objetivo a alcanzar en el equilibrado de ĺıneas de montaje, sino que se tienen que
optimizar muchos de ellos conjuntamente: la producción, costes operacionales, confort de los
trabajadores, etc. [MK96].



4 Parte I. Memoria

Todav́ıa no se han incluido algunas caracteŕısticas interesantes del equilibrado de ĺıneas de
montaje reales en los modelos de ALB existentes.

Uno de estos aspectos todav́ıa ausentes en los modelos de ALB y que es clave en ciertas industrias
(sobre todo en la automoviĺıstica) es el uso de restricciones espaciales en el momento de diseñar la
planta. Existen muchas razones prácticas para utilizar restricciones espaciales en el equilibrado de
ĺıneas de montaje. Enumeraremos las 3 siguientes como algunas de las más importantes:

(1) El espacio destinado para una estación es limitado. Los trabajadores empiezan a trabajar muy
cerca del inicio de la estación de trabajo y van moviéndose conforme avanza el producto por
la ĺınea. Estos desplazamientos de los trabajadores generan restricciones en el área necesaria
y limitan la longitud de la estación de trabajo y el espacio disponible que tendremos para
ella.

(2) Las herramientas que utilizan los trabajadores para realizar sus tareas y los componentes
que serán ensamblados se encuentran distribuidas a lo largo de la ĺınea de montaje. Además,
en la industria del motor algunas operaciones sólo se pueden realizar en un lado de la ĺınea.
Esto restringe bastante el espacio f́ısico para depositar los materiales y las herramientas.
Si configuramos una estación de trabajo con varias tareas que requieren mucho espacio, la
configuración global de la ĺınea no será factible y no podrá ser puesta en marcha.

(3) La evolución del producto a fabricar es otra fuente de restricciones espaciales importantes.
Volviendo de nuevo al caso automoviĺıstico, cuando la fabricación de un modelo de coche se
sustituye por otro modelo, lo más normal es que se mantenga la producción que teńıa la planta
anteriormente. Sin embargo, esto creará nuevos requisitos que generarán nuevas condiciones
espaciales para la nueva ĺınea de montaje.

Figura 1: Fotograf́ıas de las ĺıneas de montaje de carroceŕıa y vestido del Nissan Pathfinder en la

fábrica de Nissan en Barcelona.

Tras la observación de toda la problemática existente en la industria en relación con las restric-
ciones espaciales y, espećıficamente, como resultado del estudio de la planta industrial de Nissan
en Barcelona (ver imagen de una de sus ĺıneas de montaje en la Figura 1), Bautista y Pereira
propusieron una nueva extensión al SALBP. En ella consideraron una restricción espacial adicio-
nal, obteniendo una versión simplificada pero mucho más cercana a la problemática real existente:
el TSALBP [BP07]. El TSALBP incluye 8 variantes dependiendo de cuáles de los 3 criterios de
optimización se utilicen: el tiempo de ciclo, el número de estaciones de trabajo y el área de dichas
estaciones. Estas 8 variantes están descritas en la Tabla I.1.
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Tabla I.1: Tipoloǵıa del modelo TSALBP: distintas variantes y caracteŕısticas de las mismas.

Nombre Número de Tiempo de Área de las Tipo de

estaciones ciclo estaciones problema

TSALBP-F Dado Dado Dado Factibilidad

TSALBP-1 A minimizar Dado Dado Mono-objetivo

TSALBP-2 Dado A minimizar Dado Mono-objetivo

TSALBP-3 Dado Dado A minimizar Mono-objetivo

TSALBP-1/2 A minimizar A minimizar Dado Multi-objetivo

TSALBP-1/3 A minimizar Dado A minimizar Multi-objetivo

TSALBP-2/3 Dado A minimizar A minimizar Multi-objetivo

TSALBP-1/2/3 A minimizar A minimizar A minimizar Multi-objetivo

Entre las variantes de la Tabla I.1 podemos destacar una que es sumamente útil en la industria
automoviĺıstica. Dicha variante es el TSALBP-1/3, la cuál posee una naturaleza multi-criterio
al minimizar conjuntamente el número de estaciones y su área para un tiempo de ciclo fijo. Su
importancia se debe a que la producción anual de una planta industrial, que depende de la tasa
de producción r (inversa del tiempo de ciclo), se fija normalmente por objetivos del mercado.
Adicionalmente, la búsqueda del número óptimo de estaciones y de su área tiene bastante sentido si
queremos reducir los costes de producción y hacer más llevadera la vida laboral de los trabajadores,
con estaciones menos concurridas. Por estas razones ésta fue la variante multi-objetivo escogida para
el desarrollo de esta tesis doctoral.

En la siguiente sección de esta memoria se repasan las formulaciones matemáticas del SALBP y
TSALBP-1/3. También se hace un análisis del estado del arte actual en la resolución del SALBP y
el TSALBP mono-objetivo. A continuación, presentamos genéricamente las metaheuŕısticas multi-
objetivo que nos permitirán resolver el problema del TSALBP-1/3. Por último, discutiremos sobre
uso de preferencias por parte del decisor en el proceso de optimización multi-objetivo.

1.1.1. Formulaciones

En esta sección describiremos la formulación matemática genérica del SALBP para más tarde
hacerlo espećıficamente de la variante TSALBP-1/3.

1.1.1.1. Equilibrado de Ĺıneas de Montaje: El problema SALBP se puede definir formal-
mente de la siguiente manera. Un producto se divide en un conjunto V de n tareas. Cada tarea j
requiere un tiempo operativo tj > 0, que se determina en función de las tecnoloǵıas de fabricación
y los recursos empleados. A cada estación k se le asigna a un subconjunto de tareas Sk (Sk ⊆ V ),
llamada carga de trabajo de la estación. Cada tarea j es asignada a una única estación k.

Cada tarea j tiene un conjunto directo de tareas predecesoras, Pj , las cuales tienen que estar
terminadas antes de que la tarea en cuestión comience. Estas restricciones se representan normal-
mente mediante un grafo de precedencias aćıclico cuyos vértices son las tareas (ver Figura 2). Cada
arco directo (i, j) indica que la tarea i debe haber finalizado antes de que empiece la tarea j. De
esta forma, si i ∈ Sh y j ∈ Sk, entonces debe cumplirse que h ≤ k, es decir que i se asigna a una
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Figura 2: Grafo de precedencias de una instancia con 8 tareas de una ĺınea de montaje muy sencilla.

Los arcos del grafo representan las relaciones de precedencia entre las tareas. Los valores sobre los

nodos representan el tiempo de operación asociado a cada tarea.

estación que precede a la estación asociada a j en la ĺınea de montaje.

Cada estación k tiene un tiempo de carga de trabajo t(Sk) que es igual a la suma de las
duraciones de las tareas asignadas a la estación k. Cuando se llega a una producción constante, los
productos que se desplazan por la ĺınea de montaje lo hacen a una velocidad constante. En este
momento, cada estación k tendrá un tiempo de ciclo fijo c para que se realicen todas las tareas de
la estación sobre un producto cualquiera. Cuando los productos terminan de ser procesados en una
estación pasan a la siguiente, iniciándose un nuevo tiempo de ciclo.

El tiempo de ciclo c va a determinar la tasa de producción r de la ĺınea (r = 1/c) que no puede ser
menor que el máximo de los tiempos de carga de trabajo de las estaciones: c ≥ máxk=1,2,...,m t(Sk).

Como norma, el SALBP [Bay86, Sch99] busca agrupar las tareas del conjunto global V en
estaciones de trabajo de una manera eficiente y coherente. El objetivo es minimizar la ineficiencia
de la ĺınea o sus tiempos muertos, satisfaciendo todas las restricciones de tareas y estaciones.

El SALBP se considera como una clase general de problemas de secuenciación que puede ser
tratado como un problema de empaquetado con restricciones de precedencia adicionales [DW92].
Estas restricciones generan un orden impĺıcito de paquetes, complicando la resolución del problema.

1.1.1.2. Extensión Multi-Objetivo al Equilibrado de Ĺıneas de Montaje considerando
Tiempo y Espacio: Tal como comentamos anteriormente, Bautista y Pereira propusieron el
TSALBP para extender el modelo clásico y darle un gran valor operativo y realista [BP07]. La idea
principal de la formulación del TSALBP es la siguiente: se consideran restricciones espaciales en
el modelo y para ello se asocian el área requerida a cada tarea del problema. El área de las tareas
nos va a indicar el espacio necesario para almacenar herramientas, contenedores o elementos más
pesados.

Hay que tener en cuenta que el uso de restricciones espaciales en la definición del problema
puede generar un descenso de la eficiencia de la ĺınea con respecto al caso en el que no se utiliza
dicha restricción. Sin embargo, también debemos tener en cuenta que esos valores de eficiencia sólo
son teóricos y que si no se incluyen las restricciones espaciales la ĺınea no podrá ser configurada en
la realidad.

El área requerida por las tareas se puede ver como magnitud bi-dimensional de longitud (aj)
y anchura (bj). La primera dimensión, aj , es la variable realmente útil para la optimización del
TSALBP y a la que nos referiremos como área. Su unidad de representación son los metros lineales.
En la Figura 3 podemos ver un ejemplo de grafo de precedencias con la información de área asociada
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Figura 3: Grafo de precedencias TSALBP con las primeras 8 tareas de una ĺınea de montaje real.

Los arcos entre nodos representan las relaciones de precedencia de las tareas mientras que el tiempo

y área de las tareas se muestran junto a los nodos del grafo.

Figura 4: Diagrama que muestra las caracteŕısticas espaciales de las 4 tareas de la estación k. La

dimensión espacial crucial para la optimización de la ĺınea de montaje es la longitud de las tareas,

ai, llamada genéricamente área.

a las tareas para una instancia TSALBP.

Cada estación k requerirá un área de estación a(Sk), igual a la suma de las áreas de todas las
tareas asignadas a la estación. Este área nunca será mayor que el área disponible para la estación k,
Ak. Se asumirá que todas las áreas de estación Ak son idénticas y dicho valor máximo se notará como
A, donde A = máxk=1,2,...,mAk. El diagrama de la Figura 4 representa el área Ak de la estación k,
obtenido a partir de la suma de las áreas de sus tareas a1, a2, a3 y a4.

Como se vio en la tipoloǵıa TSALBP de la Sección 1.1, la formulación de la variante 1/3 del
problema requiere la minimización conjunta del número de estaciones, m, y del área ocupada por
dichas estaciones, A, a partir de un tiempo de ciclo c fijo para toda la ĺınea de montaje. Este
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problema de minimización multi-objetivo puede definirse matemáticamente del siguiente modo:

Min f0(x) = m =

UBm∑

k=1

máx
j=1,2,...,n

xjk, (I.1)

f1(x) = A = máx
k=1,2,...,UBm

n∑

j=1

ajxjk (I.2)

sujeto a las siguientes restricciones:

Lj∑

k=Ej

xjk = 1, j = 1, 2, ..., n (I.3)

UBm∑

k=1

máx
j=1,2,...,n

xjk ≤ m (I.4)

n∑

j=1

tjxjk ≤ c, k = 1, 2, ..., UBm (I.5)

n∑

j=1

ajxjk ≤ A, k = 1, 2, ..., UBm (I.6)

Li∑

k=Ei

kxik ≤

Lj∑

k=Ej

kxjk, j = 1, 2, ..., n; ∀i ∈ Pj (I.7)

xjk ∈ {0, 1}, j = 1, 2, ..., n; k = 1, 2, ..., UBm (I.8)

donde se introducen por primera vez los siguientes parámetros y variables:

xjk es la variable de decisión que tomará el valor 1 si la tarea j es asignada a la estación k y
0 si no es asignada,

UBm es el ĺımite superior para el número de estaciones m,

Ej es la estación más temprana a la cuál se puede asignar la tarea j de acuerdo a las relaciones
de precedencia entre tareas,

Lj es la estación más tard́ıa a la que se puede asignar la tarea j.

El conjunto de ecuaciones I.3 obliga a asignar cada tarea a una estación de trabajo, la restricción
I.4 permite determinar el número máximo de estaciones necesarias, el conjunto de restricciones I.5
limita el área requerida por cada estación al tiempo de ciclo, las restricciones I.6 limitan el área
requerida por cada estación al área disponible en las mismas, las restricciones I.7 establecen la
coherencia de las precedencias entre tareas y la asignación de éstas a las estaciones, y por último,
las condiciones I.8 definen el carácter binario de las variables de decisión.
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1.1.2. Estado del Arte en Equilibrado de Ĺıneas de Montaje

Es importante destacar que, con anterioridad al desarrollo de esta tesis doctoral no exist́ıa en la
literatura ningún trabajo que abordase el TSALBP-1/3 ni ninguna de las variantes multiobjetivo
del problema. Sin embargo, śı existe un gran número de trabajos destinados a la resolución de las
variantes mono-objetivo del SALBP y el TSALBP. En esta sección detallamos el estado del arte
para ambos problemas.

Trabajos relacionados con el SALBP

Se pueden encontrar en la literatura una gran variedad de procedimientos exactos y heuŕısticos
aśı como metaheuŕısticas aplicadas al SALBP. Muchos investigadores han aplicado diferentes proce-
dimientos para resolver el SALBP de una manera exacta [SB06]. Esto ha dado como resultado más
de una docena de técnicas, sobre todo basadas en procedimientos de Ramificación y Poda (Branch
& Bound, en inglés) y Programación Dinámica. Sin embargo, el uso de procedimientos exactos no
es del todo conveniente para resolver el SALBP por al gran tamaño del espacio de búsqueda, ha-
ciendo menos competitivo el uso de estos métodos en problemas de dimensiones industriales sujetos
a obtener una solución aceptable en un breve periodo de tiempo.

Este inconveniente ha llevado al desarrollo de una gran cantidad de trabajos en los que se
han usado procedimientos constructivos y metaheuŕısticas en lugar de los ya mencionados métodos
exactos para resolver el SALBP (por ejemplo, Algoritmos Genéticos (Genetic Algorithms (GAs), en
inglés) [Gol89], Búsqueda Tabú [GL97] y Enfriamiento Simulado [AK89, KCDGV83]). Los ejemplos
más importantes se describen a continuación:

Procedimientos constructivos:

La mayoŕıa de estos enfoques se basan reglas de prioridad y esquemas enumerativos [TPG86].
Dos de estos esquemas son especialmente relevantes: (a) los orientados a la estación: en
los que se van creando estaciones progresivamente y se seleccionan las mejores tareas para
ser asignadas a la estación actual. Cuando dicha estación está llena, es decir, cuando no es
posible asignarle ninguna de las tareas pendientes, se cierra y se crea una nueva. El proceso de
asignación de tareas se repite hasta que no quedan más tareas que asignar. Y (b) los orientados
a la tarea, en los que se elige la mejor tarea entre todas las disponibles y se asigna a la estación
más temprana en la que se puede colocar según las restricciones existentes. T́ıpicamente, los
algoritmos de reglas de prioridad trabajan unidireccionalmente hacia delante y crean una
única solución factible. Como suele ser habitual, la ventaja de los métodos constructivos
basados en heuŕısticas voraces (greedy, en inglés) es la rapidez y su inconveniente principal,
la baja calidad de las soluciones generadas.

Además de las reglas de prioridad, se han utilizado procedimientos enumerativos exactos
como la heuŕıstica de Hoffmann [Hof63] o la Enumeración Truncada [Sch99], que presentan
los mismos inconvenientes que los métodos exactos comentados anteriormente.

Algoritmos Genéticos:

La dificultad principal a la que se han enfrentado los autores que han intentado resolver
el SALBP mediante GAs ha sido la del diseño del esquema de codificación. Esta dificultad
está relacionada con la forma en la que se representan las soluciones o individuos de la pobla-
ción del algoritmo. La existencia de un gran número de restricciones, como las restricciones
de precedencia (aquellas que modelan la imposibilidad de asignar tareas a estaciones hasta
que no se hayan asignado sus tareas precedentes) o las restricciones de tiempo de ciclo por
estación, hacen que tanto generar individuos factibles como diseñar operadores de cruce y
mutación apropiados a la codificación no sea una tarea fácil.
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La codificación estándar se basa en un vector que contiene las etiquetas de las estaciones a las
cuáles se asignan las tareas [AF94, KKK00]. Sin embargo, el problema fundamental de esta
codificación es la existencia de soluciones no factibles. La codificación de orden también ha
sido usada en la literatura [LMR94, SET00]. Con esta codificación, las soluciones no factibles
no tienen cabida. Sin embargo, hay que tener en cuenta que al usarla, una representación de
la solución (un genotipo) puede estar asociada a varias soluciones (fenotipos), lo que dificulta
el proceso de búsqueda aplicado por el GA. Finalmente, existen codificaciones indirectas para
representar las soluciones de los GAs que hacen uso de secuencias de reglas de prioridad o
valores de prioridad para las tareas [GA02].

Metaheuŕısticas de búsqueda basada en vecindarios:

En general, todos los procedimientos que se basan en búsquedas locales para resolver este
tipo de problemas consideran el uso de movimientos (se desplaza una tarea de una estación
a otra) o intercambios (se intercambian dos tareas entre dos estaciones).

Se han implementado distintas técnicas metaheuŕısticas de resolución del SALBP que hacen
uso de estos operadores de generación de vecinos. Aśı, por ejemplo, en [Chi98] se propone una
Búsqueda Tabú que considera una estrategia del mejor, una lista tabú a corto plazo y una
memoria a largo plazo. También se han propuesto en la literatura algoritmos de Enfriamien-
to Simulado basados en intercambios y movimientos [Hei94]. Además, en [SS94], se intenta
resolver el TSALBP con tiempos de tareas estocásticos utilizando Enfriamiento Simulado.

Trabajos existentes sobre el TSALBP

Hasta este punto se han tratado los trabajos que resolv́ıan el SALBP. El TSALBP, al que se
añad́ıan restricciones de área, también se ha abordado en la literatura especializada con algoritmos
constructivos y particularmente Algoritmos de Optimización basados en Colonias de Hormigas (Ant
Colony Optimization (ACO), en inglés) [DS04], que son muy útiles para este problema debido a su
naturaleza constructiva al tratar las restricciones de precedencia. Bautista y Pereira propusieron un
algoritmo ACO para resolver una variante mono-objetivo del problema, el TSALBP-1, en [BP07].
Esta variante minimizaba el número de estaciones a partir de un tiempo de ciclo y área fijos. La
propuesta se basa en dos trabajos anteriores de los mismos autores en los que utilizaban un ACO
con reglas de prioridad [BP05] y un Beam-ACO [BBP06].

En el algoritmo ACO para el resolver el TSALBP-1 de Bautista y Pereira se utilizaba espećıfica-
mente el Sistema de Colonias de Hormigas (Ant Colony System, en inglés) [DG97]. La información
heuŕıstica se obtiene con una regla mixta basada en el área y la información temporal. También se
usa un ratio que sesga el orden de elección de las tareas en función del número de sucesores direc-
tos que tengan. El proceso constructivo considerado es orientado a la estación. De esta forma, se
empieza abriendo la primera estación y se va rellenando con la mejor tarea no asignada disponible.
Dicha tarea se elige según la información de feromona y heuŕıstica que tenga asociadas. Cuando la
estación actual está llena, bien por tiempo de ciclo o por área, se abre una nueva.

1.1.3. Metaheuŕısticas Multi-Objetivo

En esta sección describiremos las tres metaheuŕısticas multi-objetivo en las que se basarán nues-
tras propuestas de resolución del TSALBP-1/3. Primero introducimos la metaheuŕıstica MOACO
para después presentar sendas descripciones de los MOGA y de la metaheuŕıstica h́ıbrida MOMA.
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1.1.3.1. Algoritmos de Optimización basados en Colonias de Hormigas: Los algo-
ritmos ACO toman como inspiración parte del comportamiento real que poseen las colonias de
hormigas naturales para resolver problemas combinatorios complejos. Los ACO están formados por
una colonia de hormigas artificiales que básicamente son un conjunto de agentes computacionales
que trabajan cooperativamente y se comunican mediante rastros de feromona [DS04]. Son me-
taheuŕısticas constructivas en las que en cada iteración del proceso de generación de una solución,
la hormiga toma una decisión para dar valor a una componente de la solución. El conjunto de todas
las decisiones o pasos que la hormiga debe tomar se modela normalmente como un grafo, en el que
cada arco representa una de estas decisiones y que tiene asociados dos tipos de información que la
hormiga utiliza para hacer su elección:

Información heuŕıstica: mide la preferencia heuŕıstica para moverse de un nodo a otro del
grafo. Esta información es fija durante toda la ejecución del algoritmo ACO.

Información del rastro de feromona: representa la “deseabilidad” aprendida por las hormigas
para elegir un nodo u otro. Se va modificando durante toda la ejecución del algoritmo depen-
diendo de las soluciones y decisiones que las hormigas ya han ido tomando. Es la forma que
tienen las hormigas de poder comunicarse.

Se han propuesto distintos tipos de metaheuŕısticas ACO desde los trabajos iniciales de Dorigo,
Maniezzo y Colorni con su primera propuesta, el Sistema de Hormigas [DMC96]. Ejemplos de
otros algoritmos de esta familia son el Sistema de Colonias de Hormigas [DG97], el Sistema de
Hormigas Max-Min [SH00] o el Sistema de Hormigas Mejor-Peor [CFH02]. Estos algoritmos se
han aplicado a una gran diversidad de problemas como planificación de proyectos, optimización de
rutas, etc. [DS04].

Sin embargo, todos los métodos anteriores están orientados a la resolución de problemas mono-
objetivo. Para suplir esta carencia se empezaron a desarrollar algoritmos ACO espećıficos para
problemas multi-objetivo, los algoritmos MOACO [GCH07, AW09]. Este grupo de algoritmos puede
clasificarse en distintas familias atendiendo a varios criterios, que analizaremos a continuación.

Un primer criterio es si el algoritmo MOACO devuelve una única solución o todo el conjunto
de soluciones no dominadas (soluciones del frente del Pareto) [GCH07]. Atendiendo a este criterio
tendŕıamos los siguientes dos grupos de algoritmos MOACO:

Devuelven una única solución: MACS-VRPTW [GTA99], MOACOM [GPG02],
ACOAMO[McM01] y SACO[TMTL02].

Devuelven un conjunto de soluciones no-dominadas: MOAQ [MM99], BicriterionAnt [IMM01],
UnsortBicriterion [IMM01], BicriterionMC [IMM01], P-ACO [DGH+04], MACS [BS03], MO-
NACO [CJM03], COMPETants [DHT03], m-ACO1, m-ACO2, m-ACO3 y m-ACO4 [ASG07]
y ǫ-DANTE [CJM11].

Otro criterio de clasificación más interesante es si trabajan usando uno o varios rastros de
feromona y, análogamente, si lo hacen con una o más funciones heuŕısticas (normalmente, una para
cada objetivo a optimizar) [GCH07]. De esta forma, podemos clasificar los distintos algoritmos
MOACO existentes de la forma mostrada en la Tabla I.2.

Los algoritmos MOACO se han aplicado a una gran variedad de problemas multi-objetivo,
obteniendo muy buen rendimiento en problemas con muchas restricciones por su forma constructiva
de crear las soluciones al problema [AW09]. Nosotros nos centraremos en aquellos que devuelven
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Tabla I.2: Clasificación de algoritmos MOACO dependiendo del número de rastros de feromona y

funciones heuŕısticas.

Una función Varias funciones

heuŕıstica heuŕısticas

Una única MOACOM MOAQ

matriz feromona ACOAMO MACS

m-ACO3

UnsortBicriterion

BicriterionMC

Varias matrices P-ACO BicriterionAnt

de feromona MONACO COMPETants

m-ACO4 MACS-VRPTW

m-ACO1

m-ACO2

ǫ-DANTE

una aproximación completa al conjunto de soluciones no dominadas, llamados también algoritmos o
procedimientos basados en Pareto, ya que parecen ser los que arrojan resultados más prometedores
[GCH07, AW09]. Dentro de este grupo, hemos seleccionado el algoritmo MACS [BS03] para diseñar
nuestra propuesta para el TSALBP debido a su gran rendimiento en otros problemas combinatorios
multi-objetivo en comparación con el resto de los algoritmos MOACO basados en Pareto [GCH07].

1.1.3.2. Algoritmos Genéticos: En la última década, los GAs se han usado extensivamente
para resolver problemas de búsqueda y de optimización en diversas áreas, tales como ciencia,
entornos empresariales e ingenieŕıa [BA03, LPS06, DAPPD08, LWM08]. Inicialmente propuestos
por Holland [Hol75], sus principios básicos toman inspiración de la Teoŕıa de la Evolución de
Darwin. A partir de una población de individuos aleatoria, los GAs aplican un proceso evolutivo,
intercambiando información genética entre los individuos, mutando o alterando cierta parte de
ellos y seleccionando las mejores individuos (soluciones) de forma probabiĺıstica para componer la
siguiente generación. Aśı, en cada generación van quedando los individuos más aptos que pasan a
formar la siguiente y a completarla con descendientes, repitiéndose el ciclo de vida hasta llegar a
un criterio de parada elegido por el diseñador.

Los MOGA nacen como una extensión de los GAs para poder resolver problemas multi-objetivo.
Su principal meta es alcanzar y abarcar todo el frente óptimo de Pareto. La primera implementación
que fue reconocida como MOGA fue la de Schaffer, llamada VEGA [Sch85]. Este algoritmo en
realidad consist́ıa en un GA simple con un mecanismo de selección modificado, que no produćıa
valores buenos para una sola de las funciones objetivo, pero śı moderadamente óptimos para todas
ellas.
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Después de VEGA, se diseñaron una primera generación de MOGAs caracterizados por su sen-
cillez, donde la principal caracteŕıstica era que combinaban un buen método para seleccionar los
individuos no dominados con un buen mecanismo para mantener la diversidad. Los MOGAs más
importantes de esta generación son: “Nondominated Sorting Genetic Algorithm” (NSGA) [SD94],
“Niched-Pareto Genetic Algorithm” (NPGA) [HNG94] y “Multi-Objective Genetic Algorithm” (MO-
GA) [FF93].

La segunda generación de MOGAs nació con el concepto de elitismo. En el área, este elitismo
se suele referir a una población externa (archivo de Pareto) en dónde se van almacenando a lo
largo de las distintas generaciones las soluciones no dominadas. Los algoritmos más representa-
tivos de esta generación son: “Strength Pareto Evolutionary Algorithm” (SPEA) [ZT99], “Pareto
Archived Evolution Strategy” (PAES) [KC00a], “Pareto Envelope-based Selection Algorithm” (PE-
SA) [CKO00], “Micro Genetic Algorithm” [CT01], el “Strength Pareto Evolutionary Algorithm 2”
(SPEA2) [ZLT01] y “Nondominated Sorting Genetic Algorithm II” (NSGA-II) [DPAM02].

De hecho, hoy en d́ıa el NSGA-II es el paradigma de los MOGA para la comunidad cient́ıfica
debido al potencial del operador de “crowding” que este algoritmo utiliza y que por lo general
permite obtener un conjunto de soluciones Pareto-optimales muy amplio en una gran variedad de
problemas. Por esta razón, será el MOGA elegido para nuestro diseño aplicado al TSALBP.

1.1.3.3. Algoritmos Meméticos: Los Algoritmos Meméticos (Memetic Algorithms (MAs),
en inglés) (también conocidos como Búsqueda Genética Local o Algoritmos Genéticos Hı́bridos)
tienen un origen bastante diverso. El término MA fue introducido por primera vez en 1989 por
Moscato para describir un GA en el cuál la búsqueda local teńıa un papel muy importante [Mos89].
Este esquema evolutivo h́ıbrido fue acuñado por el uso de operadores de cruce y mutación t́ıpicos
de los GAs que generan soluciones que escapan a mı́nimos locales, y por utilizar un optimizador
local que actuaba como “reparador” para las soluciones anteriores. En contra del enfoque utilizado
en la Hibridación Secuencial, la estrategia de búsqueda local en los MAs es parte del propio proceso
evolutivo.

La comunidad investigadora en metaheuŕısticas bio-inspiradas ha mostrado mucho interés en
los MAs [IYM03, OLZW06], habiendo sido aplicados a procesos de ingenieŕıa industrial como el
enrutamiento de flotas de veh́ıculos [Pri09], el diseño de redes loǵısticas [PFD10] o la construcción
de modelos 3D [SCD+09], entre otros muchos campos.

Respecto a los MOMAs, la mayor parte de los trabajos existentes en la literatura corresponden a
tres grupos diferentes de investigadores [KC05]. La primera propuesta MOMA la realizó Ishibuchi y
Murata en [IM96]. Este primer MOMA recibió el nombre de “Multiobjective Genetic Local Search”
(MOGLS). Por su parte, Knowles y Corne propusieron un MOMA, llamado M-PAES, que emplea
la estrategia de búsqueda local usada en el algoritmo evolutivo PAES junto con el uso de una
población y recombinación de sus individuos [KC00b]. Más recientemente, Jaszkiewicz realizó dos
nuevas propuestas MOMA en [Jas02] y [Jas03]. La primera de ellas se basaba en una hibridación
con un algoritmo de Enfriamiento Simulado. La segunda era similar al algoritmo propuesto por
Ishibuchi pero introduciendo una forma restrictiva de cruce y mutación en la que sólo se permite la
reproducción a las mejores soluciones. El autor llamó a este algoritmo “Pareto Memetic Algorithm”
(PMA).

Por último, debemos resaltar que quizás el aspecto más importante en la integración de la
búsqueda local en un MOMA es el equilibrio entre la aplicación de la búsqueda global y la búsque-
da local [IYM03]. En el área de los MAs, la búsqueda local se aplica comúnmente a cada solución
que se genera durante el proceso de búsqueda global. Sin embargo, este es un enfoque que con-
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sume demasiado tiempo y, según se ha demostrado, no necesariamente lleva a conseguir el mejor
rendimiento en un MOMA [KS00]. Una elección alternativa es considerar una aplicación selectiva
de la búsqueda local que actúe sólo sobre ciertas soluciones creadas durante la búsqueda global del
MOMA, como se ha hecho en [IYM03, HLM05, NI05]. El MOMA y el estudio comparativo que
proponemos para resolver el TSALBP en esta memoria, siguen la ĺınea anterior.

1.1.4. Uso de Preferencias del Decisor en el Proceso de Optimización Multi-Objetivo

En los últimos tiempos se ha realizado mucho esfuerzo en incorporar información de preferencias
del decisor en el proceso de búsqueda. Se han utilizado numerosas técnicas para resolver problemas
multi-criterio considerando el conocimiento del experto tales como funciones de utilidad, relaciones
de preferencia o establecimiento de metas deseables [CH83, Ehr00].

Una de las cuestiones más importantes que aparecen cuando se utiliza información del decisor
en el proceso de búsqueda es el momento en el que se introduce dicho conocimiento. Básicamente
existen tres formas de hacerlo [Ehr00]:

Antes de la búsqueda (enfoques a priori): gran parte de los trabajos que existen en Inves-
tigación Operativa utilizan este enfoque de agregación de preferencias. La mayor dificultad
de este enfoque reside en encontrar una información de preferencias útil y global antes de
empezar a buscar las mejores soluciones al problema.

Durante el proceso de búsqueda (enfoques interactivos): este conjunto de técnicas tiene
la gran ventaja de que el decisor tiene una mejor percepción del proceso de búsqueda en cada
momento, facilitando la inclusión de preferencias. Este enfoque es muy adecuado cuando el
decisor es incapaz de expresar sus preferencias anaĺıticamente mediante un conjunto de reglas
o funciones.

Después de la búsqueda (enfoques a posteriori): la mayor ventaja de incluir preferencias
una vez que la búsqueda ha terminado es que no se requiere ninguna función de utilidad. Sin
embargo, muchos problemas reales son demasiado grandes y complejos como para ser resueltos
mediante este enfoque. También suele ocurrir que el número de soluciones Pareto-optimales
obtenidas es tan grande que el decisor es incapaz de realizar un análisis efectivo sobre ellas.

En lo que respecta al uso de preferencias del decisor en el área de metaheuŕısticas y algoritmos
bio-inspirados multi-objetivo, la mayor parte de la literatura se basa en el uso de enfoques a
posteriori en los que la intervención del decisor sólo se requiere cuando el algoritmo de optimización
ha terminado, devolviendo una aproximación al conjunto de soluciones óptimas al problema. Sin
embargo, esto es a veces problemático, ya que esperar a que el experto seleccione sus mejores
opciones a partir de un conjunto grande de posibles soluciones no es una tarea trivial. En la
mayoŕıa de los casos, el decisor es incapaz de elegir entre un conjunto de 100 o más soluciones
posibles [Mie99].

En los últimos años podemos encontrar diferentes enfoques evolutivos multi-objetivo que utilizan
información previa del decisor basados en el uso de metas (enfoques a priori) para solucionar
los problemas de los métodos a posteriori comentados [CP02, DB05]. También se han propuesto
enfoques interactivos con el uso de preferencias durante el proceso de búsqueda, por ejemplo los
de [PK03] y [MSHD+09], cuyo uso se está extendiendo cada vez más en el área [BDMS08]. Un
estudio muy completo sobre el uso de preferencias en MOGAs se puede consultar en [CLV07]. Por
último, algunos investigadores han empezado a definir un marco de trabajo global para el proceso de
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decisión multi-criterio basado en tres componentes: búsqueda, soluciones de compromiso atendiendo
a preferencias y visualización interactiva de los resultados de la búsqueda [Bon08].

En nuestro caso, propondremos el uso de preferencias a priori para el TSALBP tanto en el
espacio de decisión (sobre soluciones que tienen los mismos valores en los objetivos) como en el
espacio objetivo. Em ambos casos consideraremos el algoritmo MOACO diseñado para el problema.

1.2. Justificación

Tras analizar en la sección anterior los principales conceptos y herramientas existentes nos
planteamos un conjunto de problemas abiertos que nos sitúan ante la justificación del trabajo
investigador que se ha realizado en la presente tesis doctoral. Estos problemas se pueden describir
en los siguientes cuatro puntos:

Tal y como hemos visto en la Sección 1.1.1, no existe ninguna aproximación exhaustiva ni
metaheuŕıstica al TSALBP-1/3 ni a ninguna de las variantes multi-objetivo del TSALBP.
Igualmente, son pocos los trabajos en los que se han aplicado metaheuŕısticas constructivas,
tanto mono-objetivo como multi-objetivo, al TSALBP y al SALBP. Los procedimientos exis-
tentes para el equilibrado de ĺıneas de montaje son exhaustivos y no son capaces de abordar
problemas tan grandes, complejos y con tantas restricciones como el TSALBP.

Normalmente, los estudios SALBP, GALBP y TSALBP que existen en la literatura aplican
métodos de resolución a casos de problemas artificiales. No es habitual el uso de instancias
industriales reales. Por tanto, aunque el método funcione correctamente para instancias ar-
tificiales de tamaño reducido, no se puede probar y demostrar su buen comportamiento en
entornos cercanos a la realidad.

Hasta el momento no se ha hecho uso de preferencias por parte del decisor en los algoritmos
existentes para el TSALBP y SALBP. Como vimos en la Sección 1.1.6, incluso para otros
problemas industriales, muchas de las propuestas existentes en la literatura se basan en el
uso de enfoques a posteriori que no son convenientes ni fáciles de manejar para el decisor y
que no obtienen resultados adecuados para problemas grandes y complejos.

En la literatura tampoco existen metaheuŕısticas multi-objetivo no constructivas aplicadas
al TSALBP. Aunque śı se han encontrado referencias en las que se utilizan GAs y otras
metaheuŕısticas no constructivas mono-objetivo para el SALBP, normalmente han fracasado
por no tener un buen diseño y ser capaces de realizar una búsqueda conveniente por la
existencia de muchas soluciones no factibles en el espacio de búsqueda.

1.3. Objetivos

A partir de los problemas descritos en la sección anterior hemos definido unos objetivos generales
que trataremos de alcanzar en esta tesis doctoral y que explicaremos a lo largo de esta memoria.
Estos objetivos involucran el uso de instancias industriales reales del TSALBP-1/3, el diseño e
implementación de métodos espećıficos de resolución de dicho problema basados en metaheuŕısticas
multi-objetivo y la inclusión de preferencias en el proceso. Concretamente, hemos definido los
siguientes 4 objetivos:
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Proponer y diseñar métodos para resolver el TSALBP-1/3 basados en metaheuŕısticas multi-
objetivo constructivas, como son los MOACO. Este tipo de metaheuŕısticas ya han sido
aplicadas al TSALBP, aunque a la versión mono-objetivo del problema, lo que en principio las
hace idóneas para ser consideradas en nuestra primera propuesta por su buen comportamiento
en problemas con muchas restricciones.

Incorporar un modelo de preferencias que utilice el conocimiento experto y know-how del
decisor a los algoritmos basados en metaheuŕısticas multi-objetivo diseñadas con el objetivo
de dirigir la búsqueda conforme los intereses del experto. Básicamente, nos planteamos incluir
preferencias a priori de dos formas distintas:

a) Incorporando información espećıfica del problema suministrada por los expertos de plan-
ta para discriminar entre configuraciones de ĺınea que sean prometedoras y que tengan
los mismos valores de objetivos, es decir, el mismo número de estaciones y área; y

b) Reduciendo el tamaño del conjunto final de soluciones obtenido, enfocando la búsqueda
sólo en la parte del frente de Pareto más interesante para el decisor.

Estas preferencias estarán personalizadas para la ubicación final de la planta industrial, por
lo que se definirán escenarios basados en las localizaciones reales de las plantas de Nissan en
todo el mundo.

Diseñar e implementar métodos de resolución para el TSALBP-1/3 basados en metaheuŕısti-
cas multi-objetivo no constructivas. Una de las metaheuŕısticas de búsqueda global más cono-
cidas y que más se han aplicado a entornos industriales y problemas del área de la Investigación
Operativa y la Ingenieŕıa Industrial son los MOGA. A priori este tipo de metaheuŕısticas son
menos idóneas para el TSALBP que las metaheuŕısticas constructivas por la presencia de
restricciones fuertes en el problema y la dificultad de los MOGA para manejarlos. Sin em-
bargo, realizaremos un amplio estudio sobre cómo diseñar los componentes del MOGA más
apropiados que tengan en cuenta todas las particularidades del TSALBP.

Diseñar e implementar algoritmos basados en metaheuŕısticas multi-objetivo h́ıbridas. En
este caso, implementaremos algoritmos que utilizan la filosof́ıa de la metaheuŕıstica MOMA.
Los metaheuŕısticas multi-objetivo h́ıbridas han demostrado su buen rendimiento y eficacia
en problemas reales de optimización industrial debido a su buen equilibrio entre búsqueda
global y operadores de búsqueda local que llevan a converger al algoritmo más rápidamente.

Validar el comportamiento y aplicabilidad de los distintos métodos basados en metaheuŕısti-
cas multi-objetivo y de los modelos de incorporación de preferencias propuestos en instancias
reales del TSALBP-1/3. Para ello, utilizaremos desde el primer momento instancias indus-
triales reales del problema con objeto de que los resultados obtenidos sean extrapolables no
sólo a instancias artificiales sino a un entorno más realista. En concreto, aplicaremos todos
los enfoques propuestos a una instancia real de la ĺınea de montaje del motor del Nissan
Pathfinder, que se fabrica en la planta industrial de la compañ́ıa en Barcelona.

2. Discusión de Resultados

Esta sección muestra un resumen de las distintas propuestas que se recogen en la presente
memoria y presenta una breve discusión sobre los resultados obtenidos en cada una de ellas.
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2.1. Heuŕısticas Multi-Objetivo Constructivas para la Variante 1/3 del Proble-

ma de Equilibrado de Ĺıneas de Montaje Considerado Tiempo y Espacio:

ACO y Búsqueda Voraz Aleatoria

En este art́ıculo se presentan dos propuestas de métodos de resolución del TSALBP-1/3 basados
en heuŕısticas multi-objetivo constructivas. Es destacable la novedad de las propuestas ya que son
los primeros métodos de la literatura que permiten solucionar este problema. En primer lugar
se ha implementado un algoritmo MOACO llamado MACS [BS03] adaptándolo a las necesidades
de resolución espećıfica del TSALBP. En este sentido se han añadido caracteŕısticas novedosas al
algoritmo, tales como:

Un nuevo procedimiento aleatorizado en el proceso constructivo de la solución. Este procedi-
miento sigue la filosof́ıa orientada a la estación por lo que iremos seleccionando las mejores
tareas para asignarlas a la estación actual hasta que se cierre dicha estación y se tenga que
crear una nueva. Dependiendo de las caracteŕısticas de las tareas ya asignadas a la estación,
ésta tendrá más o menos posibilidades de ser cerrada.

Debido al carácter multi-objetivo del TSALBP-1/3, la decisión de cuándo cerrar la estación
en el proceso de construcción juega un papel crucial, ya que un cierre de estaciones no equi-
librado puede generar un sesgo en la búsqueda hacia una determinada región del frente de
Pareto. Para solucionar este problema utilizaremos un enfoque multi-colony [MRS02] dentro
del algoritmo MACS. Cada colonia de hormigas intentará explotar una zona distinta del es-
pacio de búsqueda. Esto es, habrá colonias que buscarán soluciones con estaciones más llenas
respecto al tiempo de ciclo y, por tanto, que implicarán el uso de un número menor de esta-
ciones, mientras que otras lo harán para estaciones más vaćıas generando configuraciones con
más de estaciones con menor área.

En segundo lugar también se ha diseñado e implementado otro método basado en una heuŕıstica
constructiva más simple, la Búsqueda Voraz Aleatoria Multi-objetivo (en inglés Multi-Objective
Random Greedy Algorithm (MORGA)), que toma cierta inspiración de las nuevas componentes
incorporadas al MACS. Esta heuŕıstica puede ser vista como la primera etapa de una metaheuŕıstica
GRASP [FR95].

Se ha realizado un estudio de los mejores valores de parámetros para ambas metaheuŕısticas y
después se han comparado el rendimiento de ambas con un algoritmo NSGA-II [DPAM02] basado
en el mecanismo de resolución del SALBP existente en la literatura [SET00]. Estas comparativas se
llevan a cabo utilizando 10 instancias TSALBP artificiales y la instancia real del motor del Nissan
Pathfinder, fabricado en la planta de Barcelona.

El art́ıculo asociado a esta parte es:

M. Chica, O. Cordón, S. Damas, J. Bautista, Multi-objective constructive heuristics for the
1/3 variant of the time and space assembly line balancing problem: ACO and random greedy
search. Information Sciences 180:18 (2010) 3465-3487, doi:10.1016/j.ins.2010.05.033. Citado
en dos ocasiones.
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2.2. Incorporación de Distintos Tipos de Preferencias en un Algoritmo de Op-

timización Multi-Objetivo basado en Colonias de Hormigas Usando Dife-

rentes Escenarios de Nissan

En este trabajo estudiamos la influencia de incorporar preferencias basadas en el conocimiento
experto de Nissan para guiar el proceso de búsqueda de metaheuŕısticas multi-objetivo constructivas
para el TSALBP-1/3, en este caso el algoritmo MOACO basado en MACS diseñado en el apartado
anterior.

El art́ıculo presenta dos enfoques de inclusión de preferencias distintos para alcanzar los siguien-
tes dos objetivos:

Reducir el número de soluciones igualmente preferibles para el decisor (mismo valor de fun-
ción objetivo de número de estaciones y área). Para ello, y utilizando el conocimiento experto
disponible en la planta de Nissan, introducimos preferencias en la definición del criterio de
dominancia del método de resolución del TSALBP-1/3 basado en el algoritmo multi-objetivo
MACS para discriminar entre dos soluciones con los mismos valores de objetivos pero con
distintos equilibrios de tiempo y área entre las estaciones. Esto ayudará a obtener configu-
raciones de ĺınea con estaciones más equilibradas, obteniendo mejores condiciones laborales
para los operarios.

Proporcionar al usuario final únicamente el conjunto de soluciones no-dominadas que sean
de su interés. Para este objetivo se utilizan diferentes escenarios reales de plantas industriales
de Nissan en el mundo y se caracterizan con respecto a sus costes económicos, tanto laborales
como industriales. La tabla I.3 muestra los escenarios utilizados y sus costes asociados. Los
costes se han estimado a partir de los datos mundiales de informes reales procedentes de
Cushman & Wakefield Research (http://www.cushwake.com) y de la International Labour
Organisation (http://laborsta.ilo.org). Se han implementado dos maneras distintas de
introducir preferencias dependientes del escenario en el proceso de búsqueda multi-objetivo:
a) por medio de unidades de importancia y b) a través del establecimiento de metas desea-
bles para los dos objetivos del TSALBP-1/3. Ambas técnicas provienen de la comunidad de
MOGAs [CP02, DB05] y su incorporación a un algoritmo MOACO es muy novedosa en el
área.

Tabla I.3: Costes laborales, productividad y coste del suelo industrial en distintos páıses en los que

existen plantas industriales de Nissan.

Páıs Coste laboral Productividad Coste laborado compensado Espacio industrial

por hora ($) por productividad ($/m2 año)

España 28.36 21.67 1.31 15.59

Japón 30.60 25.61 1.19 19.51

Brasil 8.79 7.99 1.10 10.05

Reino Unido 31.61 30.13 1.05 28.91

EE.UU. 30.39 35.29 0.86 11.52

México 6.57 9.24 0.71 5.02

El art́ıculo asociado a esta parte es:

M. Chica, O. Cordón, S. Damas, J. Bautista, Incorporating different kinds of preferences into a



2. Discusión de Resultados 19

multi-objective ant algorithm on different Nissan scenarios. Expert Systems with Applications
38:1 (2011) 709-720, doi:10.1016/j.eswa.2010.07.023.

2.3. Un Diseño Avanzado de Algoritmo Genético Multi-Objetivo para el Pro-

blema del Equilibrado de Ĺıneas de Montaje Considerando Tiempo y Es-

pacio

El objetivo de este trabajo es el de diseñar un MOGA espećıfico para el problema que consiga
sortear los escollos que aparecen debido a la presencia de restricciones fuertes en el TSALBP. Para
ello se utiliza como base el conocido NSGA-II [DPAM02] y se diseña un método con las siguientes
componentes avanzadas construidas espećıficamente para el TSALBP:

Una codificación de orden de los individuos basada en el uso de separadores para distinguir
entre las diferentes estaciones que conforman la ĺınea de montaje.

Un operador de cruce de orden basado en el cruce PMX [PC95] que genera dos descendientes
mediante el uso de dos puntos de corte aleatorios. Es un operador de cruce que previene
la generación de soluciones no factibles resolviendo aśı uno de los mayores inconvenientes
asociados al TSALBP. Aún aśı, y debido a la complejidad de la codificación utilizada, se
diseña un operador reparador para preservar la distribución de tareas entre las estaciones y
para eliminar estaciones vaćıas, mejorando la calidad de los resultados obtenidos.

Dos operadores de mutación distintos. Al primero lo hemos llamado mutación de mezcla y
consiste en reordenar las tareas que representan los genes del individuo entre dos puntos de
corte aleatorios, fijando de nuevo los separadores de cada estación. El segundo operador de
mutación, mutación por división, se introduce para crear más diversidad en las soluciones y
consiste en situar un nuevo separador en el individuo, dividiendo una estación en dos nuevas
estaciones. De esta forma se introduce una mayor explotación en la búsqueda de soluciones
que tienen más estaciones pero menos área requerida.

Por último, se introduce el uso de un mecanismo adicional de diversidad. Espećıficamente se
ha incorporado el operador de inducción de diversidad en la reproducción de los individuos
propuesto por Ishibuchi [INTN08].

Se han diseñado diferentes variantes del nuevo MOGA basadas en las distintas combinaciones
resultantes del empleo o no empleo de los nuevos componentes diseñados, buscando obtener el
mejor equilibrio posible entre intensificación y diversificación. Se han comparado entre śı y contra
las metaheuŕısticas multi-objetivo constructivas propuestas previamente para el TSALBP-1/3. El
estudio experimental realizado ha considerado la instancia real de Nissan, aparte de las instancias
artificiales del TSALBP, ya mencionadas.

El art́ıculo asociado a este parte es:

M. Chica, O. Cordón, S. Damas, An advanced multi-objective genetic algorithm design for
the time and space assembly line balancing problem. Computers and Industrial Engineering
61:1 (2011), 103-117, doi:10.1016/j.cie.2011.03.001.
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2.4. Algoritmos Meméticos Multi-Objetivo para el Equilibrado de Ĺıneas de

Montaje Considerando Tiempo y Espacio

Finalmente, en esta última parte de la memoria se presentan dos propuestas de métodos de
resolución del TSALBP-1/3 basados en algoritmos MOMA multi-objetivo. En la primera de ellas se
ha utilizado como búsqueda global el primer método propuesto, basado en el algoritmo constructivo
MACS (ver Sección 2.1). En el segundo MOMA se ha empleado el MOGA avanzado diseñado
espećıficamente para el TSALBP-1/3 en la sección anterior.

Además, se ha comparado contra un GRASP [FR95] para el TSALBP-1/3 y contra las variantes
no meméticas de los algoritmos multi-objetivo previamente propuestas con objeto de determinar
la influencia del uso de la búsqueda local. Aparte de considerar los indicadores de calidad más
recientes, se ha utilizado el test estad́ıstico Wilcoxon para estudiar cómo de significativas son las
diferencias entre los mejores algoritmos.

Además de implementar distintos algoritmos MOMA considerando diferentes metaheuŕısticas
de búsqueda global, se ha desarrollado una búsqueda local espećıfica para el TSALBP con dos
operadores, uno para reducir el número de estaciones y otro para reducir el área de la configuración
de la ĺınea de montaje.

Para la integración de la búsqueda global y local de los algoritmos MOMA se ha empleado
una aplicación selectiva de la búsqueda local a las soluciones, de acuerdo a una probabilidad dada,
aśı como la aplicación discriminada a todas las soluciones generadas. También se han comparado
distintos valores de equilibrio de intensificación-diversificación en los métodos basados en MOMA
atendiendo al número de iteraciones que realiza la búsqueda local.

El art́ıculo asociado a esta parte es:

M. Chica, O. Cordón, S. Damas, J. Bautista. Multiobjective memetic algorithms for ti-
me and space assembly line balancing. Engineering Applications of Artificial Intelligence
(2011). Special Issue on Local Search Algorithms for Real-World Scheduling and Planning.
doi:10.1016/j.engappai.2011.05.001. En prensa.

3. Comentarios Finales

3.1. Breve Resumen de los Resultados Obtenidos y Conclusiones

Tal y como hemos descrito en la sección anterior se ha desarrollado una metodoloǵıa que se
aplica, en cadena, a la obtención de las mejores y más útiles soluciones a un problema multi-
criterio tan complejo como el TSALBP-1/3. En primer lugar se ha desarrollado un marco de trabajo
multi-objetivo constructivo de resolución del problema, proponiendo un MOACO y un MORGA que
intentaban acercarse lo más posible al frente óptimo de Pareto para las instancias del TSALBP. Más
tarde, y viendo el gran número de soluciones no dominadas que estos algoritmos devolv́ıan, se han
desarrollado métodos para incorporar preferencias del experto a la propia búsqueda, discriminando
primero entre soluciones con los mismos valores en los objetivos y enfocándose además sólo en
la zona del frente de Pareto del interés del decisor. En los siguientes pasos nos centramos en
el desarrollo de otras metaheuŕısticas multi-objetivo no constructivas como un MOGA o varias
metaheuŕısticas h́ıbridas como los MOMA para obtener soluciones más cercanas al frente de Pareto
óptimo.
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Se han realizado comparativas de distintas variantes de todos los algoritmos, utilizándose los
últimos indicadores de calidad y pruebas estad́ısticas que se proponen en la literatura en una
buena bateŕıa de instancias artificiales con caracteŕısticas similares a las de los problemas reales
del TSALBP-1/3. Además, en todos los pasos de la metodoloǵıa desarrollada se ha resuelto una
instancia real de la planta industrial de Nissan de Barcelona e incluso se han modelizado distintos
escenarios de Nissan a nivel mundial para aplicar convenientemente unas u otras preferencias del
experto.

Las siguientes subsecciones resumen las lecciones aprendidas a lo largo del trabajo realizado a
la vez que destacan las conclusiones que aporta esta memoria.

3.1.1. Heuŕısticas Multi-Objetivo Constructivas para la Variante 1/3 del Problema

de Equilibrado de Ĺıneas de Montaje Considerado Tiempo y Espacio: ACO y

Búsqueda Voraz Aleatoria

En este trabajo, la experimentación se ha dividido en tres etapas. Primero se compararon
diferentes variantes del MACS. Después se compararon las mejores variantes del MACS con las
mejores variantes del MORGA, un aleatorio base para el problema y un NSGA-II existente en la
literatura. Por último se aplicaron estos algoritmos a la instancia real de Nissan. Las principales
conclusiones que se obtuvieron fueron las siguientes:

Tras el estudio entre las diferentes variantes del MACS se observó claramente como el hecho
de no usar información heuŕıstica en el algoritmo mejoraba el rendimiento del algoritmo y
obteńıa mejores soluciones. Por tanto, en este tipo de problema, usar información heuŕıstica
relacionada con las tareas (área, tiempo o tareas predecesoras) no sólo no ayuda, sino que no
posibilita una buena exploración de todo el frente de Pareto.

También se observó como los parámetros que controlaban la relación entre intensificación
y diversificación en el MACS y el MORGA influyen bastante en los resultados finales. Aśı,
las variantes de los algoritmos que se centraban en dar mayor diversidad obteńıan mejores
resultados.

La comparativa entre las mejores variantes de los algoritmos proporcionó también claras
conclusiones. El MACS es el algoritmo con mejor rendimiento en todas las instancias, mejo-
rando aśı al MORGA, al aleatorio base y al método basado en NSGA-II. El aleatorio base
obtuvo resultados pobres, mientras que el NSGA-II adaptado de la literatura SALBP sólo
consiguió converger a una región muy estrecha del frente de Pareto, alejándose mucho de la
diversidad conseguida por MACS y MORGA.

Para la instancia real de Nissan ocurrió lo mismo que con las instancias artificiales. El algorit-
mo MACS con una alta diversidad y sin información heuŕıstica consiguió mejores resultados
que el resto de sus competidores.

3.1.2. Incorporación de Distintos Tipos de Preferencias en un Algoritmo de Opti-

mización Multi-Objetivo basado en Colonias de Hormigas Usando Diferentes

Escenarios de Nissan

Hemos realizado un estudio de distintos métodos para incluir preferencias, tanto en el espacio de
decisión como en el espacio objetivo. Las principales conclusiones obtenidas han sido las siguientes:
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La inclusión de preferencias en el MACS para obtener soluciones con estaciones más balan-
ceadas proporcionó buenos resultados. Tanto es aśı que las soluciones no dominadas devueltas
por el algoritmo se redujeron en un gran número, sin perder convergencia al frente de Pareto
optimal. Esta reducción ayudará a la selección de la mejor solución de configuración de la
ĺınea, ya que el experto no tendrá que estudiar ni comparar un número ingente de soluciones.

No sólo se produjo una reducción en el número de soluciones devueltas por el algoritmo sino
que la experimentación realizada también mostró un aumento de la convergencia del algoritmo
MACS al frente óptimo del Pareto al incluir el conocimiento experto anterior.

Se logró enfocar la búsqueda del algoritmo MACS a la región del frente del Pareto de interés
para el experto dependiendo del escenario Nissan en el que nos encontráramos. En concreto,
para el escenario de España se obtuvieron soluciones en la parte izquierda del frente de Pareto,
para el Reino Unido en la parte derecha, y para Japón, en la parte central.

En la comparativa realizada entre los dos métodos de uso de preferencias que se han utilizado
para guiar la búsqueda, la definición de unidades de importancia entre los objetivos (enfoque
de Branke [BKS01]) y el uso de metas (enfoque de Deb [Deb99]), no se ha podido concluir
cuál de los dos métodos ofrece un mejor comportamiento en forma de una mayor convergencia
al frente óptimo del Pareto. La mayor diferencia entre ambos estriba en la representación
de preferencias y es ah́ı donde el uso de unidades de importancia puede ser utilizado más
fácilmente por el decisor, ya que no necesitará conocer a priori las metas a las que debe llegar
en cada contexto industrial.

3.1.3. Un Diseño Avanzado de Algoritmo Genético Multi-Objetivo para el Problema

del Equilibrado de Ĺıneas de Montaje Considerando Tiempo y Espacio

Hemos propuesto un MOGA con un diseño avanzado para evaluar el rendimiento de una me-
taheuŕıstica multi-objetivo no constructiva en la resolución del TSALBP-1/3. Para ello se han
desarrollado componentes espećıficos para el algoritmo y se ha comparado con los mejores algorit-
mos propuestas anteriormente. Las conclusiones que hemos obtenido de este estudio se detallan a
continuación:

Inicialmente se compararon tres variantes del método basado en MOGA desarrollado para
el TSALBP con distintos componentes. Tras esta comparativa se vio como era necesario
mantener todos los componentes diseñados para el algoritmo, esto es, el operador de inducción
de diversidad de Ishibuchi, el operador de mutación por división de estaciones y el uso de un
parámetro α que introdujera diversidad en el operador de mutación de mezcla. Todos estos
componentes ayudaron a que el algoritmo obtuviera frentes de Paretos más diversos y con
una mejor convergencia.

Se comparó el MOGA propuesto con el estado del arte, el MACS, y con un método basado
en NSGA-II que ya hab́ıa sido propuesto para el SALBP. Los resultados fueron bastante
concluyentes al obtener el MOGA con operadores avanzados un rendimiento mucho mayor que
los otros algoritmos, tanto en diversidad como en convergencia. Esta conclusión se cumplió en
nueve de los diez problemas artificiales utilizados aśı como en la instancia real de Nissan.

Se ha demostrado que las metaheuŕısticas no constructivas se pueden aplicar con buenos
resultados al TSALBP-1/3. El NSGA-II que se hab́ıa utilizado anteriormente en la literatura
y que hab́ıa obtenido peores resultados que el MACS no se comportaba de forma incorrecta
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porque su paradigma de búsqueda global no fuese válido para el TSALBP-1/3, sino porque
sus operadores y diseño no eran los adecuados para problemas como este, en el que existen
muchas restricciones fuertes.

3.1.4. Algoritmos Meméticos Multi-Objetivo para el Equilibrado de Ĺıneas de Mon-

taje Considerando Tiempo y Espacio

El último paso realizado en esta cadena metodológica de propuestas de metaheuŕısticas multi-
objetivo aplicadas al TSALBP ha sido el desarrollo de metaheuŕısticas h́ıbridas. En este caso, dos
MOMAs y un algoritmo basado en el paradigma GRASP. Enumeramos de forma resumida cuáles
han sido las principales conclusiones obtenidas en los siguientes puntos:

Tras la experimentación desarrollada con los dos MOMAs propuestos, uno teniendo como
búsqueda global un algoritmo MOACO y otro un MOGA, y con el GRASP multi-objetivo, se
ha observado claramente como el MOMA que usa una búsqueda global basada en GAs es el
que mejores resultados ha obtenido. El comportamiento del MOMA basado en el algoritmo
MOACO depende de la instancia del problema a la que se aplique. Para la instancia real
de Nissan es más conveniente usar el memético basado en el MOGA, que es el que mejores
resultados obtiene.

Se ha realizado un estudio amplio para evaluar el rendimiento de los operadores de búsqueda
local diseñados espećıficamente para el TSALBP-1/3 e incorporados a los enfoques h́ıbridos
propuestos. Se ha concluido que la búsqueda local da mejores resultados si se aplica a todas
las soluciones generadas por los algoritmos de búsqueda global, en vez de aplicarla sólo a un
subconjunto de ellas. También se ha estudiado qué valor de profundidad es el más conveniente
para la búsqueda local. Esta profundidad suele estar relacionada con el número de iteraciones
de la misma. Aunque hemos observado que dicho valor depende de la instancia del problema
usada, normalmente se obtienen mejores resultados con un número bajo de iteraciones. En
general, no se necesita realizar más de 50 iteraciones para obtener un buen equilibrio entre la
búsqueda global y la local.

Hemos comprobado que existe una relación directa entre la calidad de las soluciones devueltas
por el método de búsqueda global de las metaheuŕısticas h́ıbridas y la necesidad de un mayor
número de iteraciones en la búsqueda local. Aśı, por ejemplo, el GRASP necesitará muchas
más iteraciones que el mejor MOMA, el que utiliza un MOGA como búsqueda global (que
ya demostró su buen comportamiento para resolver el TSALBP como algoritmo individual).
De todas maneras, aunque se utilizasen muchas más iteraciones, nunca se llegó a alcanzar al
rendimiento de los mejores MOMA implementados.

3.2. Perspectivas Futuras

A continuación se muestran las ĺıneas de trabajo futuras que han surgido a partir de las pro-
puestas y resultados presentados en esta memoria:

1. A pesar de que los últimos resultados de investigación mostraron el mejor rendimiento de un
MOGA y un enfoque h́ıbrido respecto al MOACO considerado, el algoritmo MACS, preten-
demos desarrollar una comparativa amplia entre los mejores algoritmos MOACO existentes
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en la literatura. De este modo, podremos determinar cuáles son los algoritmos MOACO que
mejor se comportan para resolver este problema espećıfico y si siguen siendo superados en
rendimiento por el método avanzado basado en MOGA o no.

2. En la misma ĺınea, las nuevas corrientes de la comunidad de algoritmos MOACO transcurren
por el camino de disponer de una biblioteca de elementos para cada una de las componentes
del algoritmo. A partir de esta biblioteca se consigue desarrollar un MOACO a medida para
el problema que se quiera resolver. En nuestro caso intentaremos seguir este enfoque para
diseñar un método MOACO espećıfico para el TSALBP-1/3 [LIS10].

3. En esta memoria hemos propuesto un esquema de preferencias a priori en las que el decisor
proporcionaba la información requerida antes de que la metaheuŕıstica multi-objetivo iniciara
su proceso de optimización. Sin embargo, existen otros métodos, conocidos como métodos
interactivos, en los que el experto va alimentado a los algoritmos interactivamente durante
su ejecución. Nos planteamos aplicar esta metodoloǵıa a las metaheuŕısticas diseñadas. En
concreto, optaremos por un enfoque conocido como g-dominancia [MSHD+09], que ya ha
dado buenos resultados en la resolución de otros problemas multi-criterio mediante el uso de
metaheuŕısticas multi-objetivo genéricas.

4. Por último, otra ĺınea de investigación que queda abierta para su desarrollo futuro es el estudio
teórico y la resolución de nuevos modelos del TSALBP. Estos nuevos modelos incluiŕıan nuevas
restricciones que se dan en entornos industriales reales como son la limitación en el área de
las estaciones para prevenir situaciones de estrés y agotamiento en los trabajadores. También
se estudiaŕıa la introducción de nuevas variables en la optimización multi-objetivo, como la
eficiencia de la ĺınea.
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a b s t r a c t

In this work we present two new multiobjective proposals based on ant colony optimisa-
tion and random greedy search algorithms to solve a more realistic extension of a classical
industrial problem: time and space assembly line balancing. Some variants of these algo-
rithms have been compared in order to find out the impact of different design configura-
tions and the use of heuristic information. Good performance is shown after applying
every algorithm to 10 well-known problem instances in comparison to NSGA-II. In addi-
tion, those algorithms which have provided the best results have been employed to tackle
a real-world problem at the Nissan plant, located in Spain.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

An assembly line is made up of a number of workstations, arranged either in series or in parallel. These stations are linked
together by a transport system that aims to supply materials to the main flow and to move the production items from one
station to the next.

Since the manufacturing of a production item is divided into a set of tasks, one common and difficult problem is to deter-
mine how these tasks can be assigned to the stations fulfilling certain restrictions. Consequently, the aim is finding an opti-
mal assignment of subsets of tasks to the stations of the plant. Moreover, each task requires an operation time for its
execution which is determined as a function of the manufacturing technologies and the employed resources.

A family of academic problems – referred as simple assembly line balancing problems (SALBP) – was proposed to model
this situation [6,46]. Taking this family as a base and adding spatial information to enrich it, Bautista and Pereira recently
proposed a more realistic framework: the time and space assembly line balancing problem (TSALBP) [5]. This new frame-
work considers an additional space constraint to become a simplified version of real-world problems. The new space con-
straint emerged due to the study of the specific characteristics of the Nissan automotive plant located in Barcelona, Spain
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(a snapshot of an assembly line of this industry plant is shown in Fig. 1). This extended model will fit better to the latter
location.

TSALBP formulations have a multi-criteria nature [10] as many real-world problems. These formulations involve minimis-
ing three conflicting objectives: the cycle time of the assembly line, the number of stations, and the area covered by these
stations. However, in spite of that multiobjective nature, there is no previous proposal of a multiobjective approach to solve
any of the TSALBP variants. In this paper we have selected the TSALBP-1/3 variant which tries to minimise the number and
the area of stations for a given product cycle time. We have made this decision because it is quite realistic in the automotive
industry where the annual production of a plant (and therefore the cycle time) is usually set by market objectives.

As in classical SALBP formulations, one of the most important aspects in TSALBP-1/3 is the set of constraints (set of prece-
dences or cycle time limit for each station). Hence, the use of non-constructive procedures [32] is less appropriate to solve
the TSALBP-1/3 than constructive metaheuristics such as ant colony optimisation (ACO) [25]. This constructive metaheuristic
was inspired by the shortest path searching behaviour of various ant species. Since the initial works of Dorigo et al. [24],
several researchers have developed different ACO algorithms that performed well when solving combinatorial problems
such as the travelling salesman problem, the quadratic assignment problem, the resource allocation problem, telecommu-
nication routing, production scheduling, vehicle routing, and machine learning [25,22,18,50,27,40,9]. Even the SALBP
[4,8,7] and a single-objective variant of the TSALBP [5] have been solved by means of this kind of metaheuristic.

Due to the multiobjective nature of the problem and the convenience of solving it through constructive algorithms, we
will work with a multiobjective ACO (MOACO) algorithm [31,2]. This family involves different variants of ACO algorithms
which aim to find not only one solution, but a set of the best solutions according to several conflicting objectives. We will
focus on Pareto-based MOACO algorithms which seem to be the most promising, although other MOACO algorithms exist
(see [31,2]). Within the Pareto-based family, we have chosen the multiple ant colony system (MACS) [3] to solve the
TSALBP-1/3 because of its good performance when solving other multiobjective combinatorial optimisation problems in
comparison with the remaining Pareto-based MOACO algorithms [31].

In addition, a multiobjective random greedy search algorithm, based on the first stage of the GRASP method [28] has been
designed. It follows the same constructive scheme and Pareto-based approach used in the MACS algorithm. In this way, we
have been able to compare the influence of the different search behaviours of ACO and the first stage of a GRASP in the prob-
lem solving process. Different configurations and parameter settings have been considered for both algorithms. They have
been compared to each other and to two baseline approaches in 10 well-known instances of the problem. These baseline
approaches were based on a multiobjective random search and the state-of-the-art NSGA-II multiobjective evolutionary
algorithm [20]. Furthermore, the best variants of the designed algorithms have been applied to a real-world problem in-
stance from the Nissan industry plant in Barcelona.

This paper is structured as follows. In Section 2, the original and extended problem formulations (the SALBP and the se-
lected variant of the TSALBP, i.e. TSALBP-1/3) and a summary of existing SALBP solution procedures are explained. In Section
3, a description of the multiobjective constructive proposals is given. The experiments used to test the performance of the
algorithms, their analysis and the application to the real-world Nissan problem are described in Section 4. Finally, in Section
5, some conclusions and proposals for future work are provided.

2. Preliminaries

In this section, some preliminary information about the problem is presented. Firstly, a general view of ALB is given. The
need of new realistic extensions of the simple version of the SALBP is then introduced. Finally, some existing state-of-the-art
approaches to solve the SALBP are reviewed.

Fig. 1. An assembly line located in the industrial plant of Barcelona (Spain).
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2.1. The assembly line balancing problem

Manufacturing of a production item is divided into a set V of n tasks. Each task j requires a positive operation time tj for its
execution. This time is determined as a function of the manufacturing technologies and the resources employed. A subset of
tasks Sk (Sk # V) is assigned to each station k (k = 1,2, . . . ,m), referred to the workload of this station. Each task j can only be
assigned to a single station k.

Every task j has a set of ‘‘preceding tasks” Pj which must be accomplished before starting that task. These constraints are
represented by an acyclic precedence graph, whose vertices correspond to the tasks and where a directed arc hi, ji indicates
that task i must be finished before starting task j on the production line (Fig. 2). Thus, task j cannot be assigned to a station
that is before the one where task i was assigned.

Each station k presents a station workload time t(Sk) that is equal to the sum of the tasks’ lengths assigned to it. Once
permanent manufacturing conditions are achieved, the items under production flow along the line at a constant rate. Then,
each station k has a time c, called the cycle time, to carry out its assigned tasks. Items are then transferred to the next station
in a negligible period of time, initiating a new cycle.

The cycle time c determines the production rate r of the line (r = 1/c) and cannot be less than the maximum station work-
load time: c P maxk=1,2,. . .,mt(Sk).

In general, the SALBP [6,46] focuses on grouping the tasks belonging to the set V into workstations by an efficient and
coherent method. In short, the goal is to achieve a grouping of tasks minimising the inefficiency of the line or its total down-
time. It also has to satisfy all the constraints imposed on the tasks and stations. This classical single-model problem contains
the following features:

� mass-production of a homogeneous product,
� a given production process,
� a paced line with fixed cycle time c,
� deterministic (and integral) operation times tj,
� no assignment restrictions besides the precedence constraints,
� a serial line layout with m stations,
� every station is equally equipped with respect to machines and workers,
� a maximisation of the line efficiency.

The SALBP belongs to a general class of sequencing problems that can be seen as bin packing problems [26] with addi-
tional precedence constraints. These constraints establish an implicit order of bins, resulting in a sequence of operations,
complicating the problem solving process.

2.2. The need of a space constraint: the TSALBP

The classic SALBP model is quite limited and too general for all assembly lines. In some cases, mainly in the automotive
industry, we must consider space constraints before designing the plant. The need of a space constraint design can be jus-
tified as follows:

(1) The length of the workstation is limited. Workers start their work as close as possible to the initial point of the work-
station, and must fulfil their tasks while following the product. They need to carry the tools and materials to be assem-
bled in the unit. In this case, there are constraints for the maximum allowable movement of the workers. These
constraints directly limit the length of the workstation and the available space.

(2) The required tools and components to be assembled should be distributed along the sides of the line. In addition, in
the automotive industry, some operations can only be executed on one side of the line. It restricts the physical space
where tools and materials can be placed. If several tasks requiring large areas are put together the workstation would
be unfeasible.

(3) Another usual source of spatial constraints comes from the products evolution. Focusing again on the automotive
industry, when a car model is replaced with a newer one, it is usual to keep the production plant unchanged. However,
the new space requirements for the assembly line may create more spatial constraints.

Fig. 2. A precedence graph which represents a solution for a toy-problem instance. Time and area information, separated by ‘‘/”, are shown above tasks.
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Based on these realistic features, a new real-like problem comes up. In order to model it, Bautista and Pereira [5] extended
the SALBP into the TSALBP by means of the following formulation: the area constraint must be considered by associating a
required area aj to each task j. Every station k will require a station area a(Sk), equal to the sum of the areas of all the tasks
assigned to that station. The required area must not be larger than the available area Ak of the station k. For the sake of sim-
plicity, we shall assume Ak to be identical for all the stations and denoted by A, where A = maxk=1,2,. . .,mAk.

The TSALBP may be stated as: given a set of n tasks with their temporal and spatial attributes (tj and aj) and a precedence
graph, each task must be assigned to just one station providing that:

1. all the precedence constraints are satisfied,
2. there is not any station with a workload time t(Sk) greater than the cycle time c,
3. there is not any station with a required area a(Sk) greater than the global available area A.

The TSALBP presents different formulations depending on which of the three considered parameters are tackled as objec-
tives to be optimised: c, the cycle time; m, the number of stations; and A, the area of the stations. The rest of the parameters
will be provided as fixed variables. The eight possible combinations result in eight different TSALBP variants. Within them,
there are four multiobjective variants depending on the given fixed variable: c, m, A, or none of them. While the former three
cases involve a bi-objective problem, the latter defines a tri-objective problem.

2.3. A formal description of the TSALBP constraints

As said before, restrictions play an important role in the TSALBP. In order to formally describe the TSALBP model we shall
employ the following additional notation:
Ej the earliest station to which task j may be assigned
Lj the latest station to which task j may be assigned
UBm the upper bound of the number of stations. In this case, it is equal to the number of tasks
xjk a decision variable taking value 1 if task j is assigned to station k, 0 otherwise

Six different constraints can be established:

XLj

k¼Ej

xjk ¼ 1; j ¼ 1;2; . . . ;n; ð1Þ

XUBm

k¼1

max
j¼1;2;...;n

xjk 6 m; ð2Þ

Xn

j¼1

tjxjk 6 c; k ¼ 1;2; . . . ;UBm; ð3Þ

Xn

j¼1

ajxjk 6 A; k ¼ 1;2; . . . ;UBm; ð4Þ

XLi

k¼Ei

kxik 6
XLj

k¼Ej

kxjk; j ¼ 1;2; . . . ; n; 8i 2 Pj; ð5Þ

xjk 2 f0;1g; j ¼ 1;2; . . . ;n; k ¼ 1;2; . . . ;UBm: ð6Þ

Constraint (1) restricts the assignment of every task to just one station, (2) limits decision variables to the total number of
stations, (3) and (4) are concerned with time and area upper bounds, (5) denotes the precedence relationship among tasks,
and (6) expresses the binary nature of variables xjk.

2.4. The TSALBP-1/3 variant

As said, there are eight variants of the problem, four of them, multiobjective. One of these variants is the TSALBP-1/3,
which consists of minimising the number of stations m and the station area A, given a fixed value of the cycle time c. We
decided to work with this variant because of its realism in the automotive industry which is justified as follows:

(1) The annual production of an industry plant is usually set by some market objectives specified by the company. This
fixed production rate and some other aspects such as (a) the annual working days, (b) the daily production shifts,
and (c) the efficiency of the industrial processes, influence the specification of a fixed cycle time c. This means that
when one of the latter conditions changes, the assembly line needs to be balanced again. These changes occur for
instance if: (a) the company’s chair decides to assign much more production to a factory which has lower costs than
others, (b) a production reduction takes place, (c) a new shift is removed or added to the factory, (d) new staff are hired
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or some part of the current staff are fired, a working days reduction arises, or (e) higher process efficiency is attained
thanks to engineering projects.

(2) When we set the cycle time c, we need to search for the best number of stations m because the factory must meet the
demand with the minimum number of workers. Furthermore, searching for the station area is a justified objective
because it can reduce workers’ movements and tool transfers.

(3) Of course, some of the theoretical values for the objective m, the number of stations, are not possible in real conditions.
This is because in automotive factories the number of workers are decided in advance although changes can happen.
Staff increases or decreases can also affect the production rate and its quality, being necessary a new assembly line
configuration.

(4) Not only the number of stations but also some station areas, although valid in theory, may be unreachable in practice.
Undesirable areas are those which are too small or too large. They can respectively generate unpleasant conditions for
workers and unnecessary movements among the stations.

2.5. Heuristic procedures for the SALBP

The specific literature includes a large variety of exact and heuristic procedures as well as metaheuristics applied to the
SALBP. Reviewing these approaches is out of the scope of this work. We present a brief summary and encourage the inter-
ested readers to study a seminal review in [47].

Many researchers have applied different effective solution procedures for exactly solving the SALBP (see [47]). It has re-
sulted in about two dozen techniques mainly based on branch and bound procedures and dynamic programming ap-
proaches. Besides these techniques, several methods for reducing the effort of enumeration have been developed.

However, researchers have used constructive procedures and metaheuristics (e.g. genetic algorithms, tabu search, or sim-
ulated annealing) instead of exact methods when dealing with large SALBP instances. Some examples of these proposals are
summarised as follows:

2.5.1. Constructive procedures
Most of these approaches are based on priority rules and restricted enumerative schemes [49]. Two construction schemes

are relevant: (a) station-oriented, which starts by opening a station and selecting the most suitable task to be assigned. When
the current station is loaded maximally, it is closed and the next one is opened and ready to be filled; and (b) task-oriented,
which selects the most preferable among all available tasks and allocates it to the earliest station to which it can be assigned.
Typically, priority rule-based algorithms work unidirectionally in forward direction and build a single feasible solution.

Apart from priority rules, incomplete enumeration procedures based on exact enumeration schemes are used such as
Hoffmann’s heuristic [35] or the truncated enumeration [46].

2.5.2. Genetic algorithms
When genetic algorithms are applied to the SALBP, there is a difficulty that has to be solved in the encoding scheme de-

sign. This difficulty is related with the feasibility of the solutions, i.e. the cycle time limit restriction and, especially, the pre-
cedence constraints.

The standard coding is based on a vector containing the labels of the stations to which the tasks t1, . . . , tn are assigned
[1,38]. However, the existence of unfeasible solutions is a big problem in this kind of representation. Order encoding has also
been used in the literature [41,44]. With this encoding, unfeasible solutions are avoided. However, we should notice that
there is more than one mapping, since several sequences may lead to the same solution. Lastly, there are indirect encodings
representing the solutions by coding priority values of tasks or a sequence of priority rules [33].

2.5.3. Neighbourhood search metaheuristics
In general, all local search procedures are based on shifts (a task j is moved from station k1 to k2) and swaps (tasks j1 and j2

are exchanged between different stations k1 and k2). The use of tabu search was proposed in [11], considering a best fit strat-
egy (i.e., the most improving or least deteriorating move applied at each iteration), a short-term tabu list, and a frequency-
based (long-term) memory. Moreover, some simulated annealing algorithms based on shifts and swaps have been proposed
in the literature [34]. In [48], the SALBP-1 is tackled with one such approach when considering stochastic task times.

2.6. ACO algorithms to solve the SALBP and the TSALBP

As mentioned in the introduction, constructive algorithms and particularly ACO algorithms, are very suitable to tackle
both the SALBP and the TSALBP. Bautista and Pereira [5] proposed an ACO algorithm to solve a single-objective variant of
the TSALBP, TSALBP-1, which tries to minimise the number of stations m, while fixing both the cycle time c and the station
area A. That proposal is based on two previous papers that are applied to the SALBP [4,8], where the authors used a priority
rules procedure with an ACO and a Beam-ACO algorithm, respectively. The latter proposal was later extended in [7].

In [5], the single-objective TSALBP-1 variant was handled with an ant colony system (ACS) algorithm [23]. The heuristic
information considered was built from a mixed rule of area and time information:
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gj ¼
tj

c
þ aj

A
þ jFjj

maxi2XjFij
; ð7Þ

where tj and aj are the time and area information for each task, normalised with their upper bounds. Fj is the set of tasks that
come after task j. The third term in the formula represents a ratio between the number of successors of the task j (the car-
dinality of the successors set Fj) and the maximum number of successors of any eligible task belonging to the ant’s feasible
neighbourhood X.

The constructive procedure is station-oriented. Consequently, it is started by opening the first station and filling it with the
best task selected. It will be the best task according to the pheromone trail and heuristic information (transition rule). A new
station is opened when the current one is full either due to the cycle time or the area. The construction of the solution fin-
ishes when every task is assigned to a station. Although this kind of algorithm is able to generate unfeasible solutions, mod-
ifying the cycle time and the area space to create new solutions and avoiding being stuck in a local optima. We will not
consider this aspect in the proposal as we will always handle feasible solutions in order to simplify the search algorithm
(see Section 3).

3. Our proposal: multiobjective ACO and random greedy search algorithms for the TSALBP-1/3

In our case, a solution is an assignment of different tasks to different stations. In contrast to simpler assignment problems
like bin packing [26], we have to deal with the important issue of satisfying precedence constraints. We can face the prece-
dence problem in a proper and easy way by using a constructive approach. In the following subsections we review the basis
of MACS and the selected Pareto-based MOACO algorithm. Then, we describe the two approaches based on MOACO and
GRASP, starting with an overview of the common aspects and describing their specific characteristics later.

3.1. Multiple ant colony system

MACS was proposed as a variation of MACS-VRPTW [29], both based on ACS [23]. Nevertheless, MACS uses a single pher-
omone trail matrix s and several heuristic information functions gk (in this work, g0 for the operation time tj of each task j
and g1 for its area aj). From now on, we restrict the description of the algorithm to the case of two objectives. In this way, an
ant moves from node i to node j by applying the following transition rule:

j ¼
arg max

j2X
sij � ½g0

ij�
kb � ½g1

ij�
ð1�kÞb

� �
; if q 6 q0;

î; otherwise;

8<
: ð8Þ

where X represents the current feasible neighbourhood of the ant, b weights the relative importance of the heuristic infor-
mation with respect to the pheromone trail, and k is computed from the ant index h as k = h/M. M is the number of ants in the
colony, q0 2 [0,1] is an exploitation-exploration parameter, q is a random value in [0,1], and î is a node. This node is selected
according to the probability distribution p(j):

pðjÞ ¼
sij �½g0

ij
�kb �½g1

ij
�ð1�kÞbP

u2X
siu �½g0

iu
�kb �½g1

iu
�ð1�kÞb ; if j 2 X;

0; otherwise:

8<
: ð9Þ

The algorithm performs a local pheromone update every time an ant crosses an edge hi, ji. It is done as follows:

sij ¼ ð1� qÞ � sij þ q � s0: ð10Þ

Initially, s0 is calculated by taking the average costs, f̂ 0 and f̂ 1, of each of the two objective functions, f0 and f1, from a set of
heuristic solutions by applying the following expression:

s0 ¼
1

f̂ 0 � f̂ 1
: ð11Þ

However, the value of s0 is not fixed during the algorithm run, as usual in ACS, but it undergoes adaptation. At the
end of each iteration, every complete solution built by the ants is compared with the Pareto archive PA, which was
generated till that moment. This is done in order to check if a new solution is a non-dominated one. If so, it is in-
cluded in the archive and all the dominated solutions are removed. Then, s00 is calculated by applying the Eq. (11).
The average value of each objective function is taken from the current solutions of the Pareto archive. If s00 > s0, being
s0 the initial pheromone value, the pheromone trails are reinitialised to the new value s0 ¼ s00. Otherwise, a global up-
date is performed with each solution S of the Pareto set contained in PA by applying the following rule on its com-
posing edges hi, ji:

sij ¼ ð1� qÞ � sij þ
q

f 0ðSÞ � f 1ðSÞ : ð12Þ
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3.2. Randomised construction procedure

Taking the greedy approaches used in [5,4] to tackle the SALBP and the TSALBP as a base, we introduce the following ran-
dom elements in the construction scheme:

� A random priority rule to select a task among all the candidates. The choice is carried out at each construction step (which
was already presented in [15] for the MACS algorithm).
� A novel mechanism to decide whether a station has to be closed or not.

Since the two approaches are constructive and station-oriented (see Section 2.5), the algorithms will open a station and
select one task among the candidates by means of a random priority rule. Depending on each algorithm scheme, the current
station will be either closed when it becomes full, as is usual in the SALBP and the TSALBP, or closed at some random point
before being full in order to increase the search diversity. Then, a new station is opened to be filled. Considering this proce-
dure and the latter two aspects we have designed two problem solving approaches. The first one is based on the MACS algo-
rithm. The second, is inspired by the first stage of a GRASP method [28], a random greedy search algorithm. From now on,
this algorithm will be called MORGA (multiobjective random greedy search algorithm).

3.3. Objective functions and Pareto-based approach

Apart from the constructive procedure, both algorithms also share some basic aspects, such as the objective definitions
and the Pareto-based approach.

According to the TSALBP formulation, the 1/3 variant deals with the minimisation of the number of stations m and the
area A. We can mathematically formulate the two objectives as follows:

f 0ðxÞ ¼ m ¼
XUBm

k¼1

max
j¼1;2;...;n

xjk; ð13Þ

f 1ðxÞ ¼ A ¼ max
k¼1;2;...;UBm

Xn

j¼1

ajxjk; ð14Þ

where UBm is the upper limit for the number of stations m, aj is the area information for task j, xjk is a decision variable taking
the value 1 if the task j is assigned to the station k, and n is the number of tasks.

In this work, all the multiobjective algorithms use a Pareto archive. This archive stores every non-dominated solution
found during the algorithm execution. When a new solution is built it is compared with the solutions of the archive. If
the new solution is non-dominated, it is included in the Pareto archive and all the solutions dominated by the new one
are removed. Otherwise, the new solution is rejected.

3.4. A MACS algorithm for the TSALBP-1/3

In this section we describe the customisation on the components of the general MACS scheme to build a solution
methodology.

3.4.1. Heuristic information
MACS works with two different heuristic information values, g0

j and g1
j , each of them associated to one criterion. In our

case, g0
j is related with the required operation time for each task and g1

j with the required area:

g0
j ¼

tj

c
� jFjj
maxi2XjFij

; ð15Þ

g1
j ¼

aj

UBA
� jFjj
maxi2XjFij

; ð16Þ

where UBA is the upper limit for the area (the sum of all tasks’ areas) and the remaining variables are explained in Eq. (7).
Both sources of heuristic information range the interval [0,1], being 1 the most preferable.

As usual in the SALBP, tasks having a large value of time (a large duration) and area (occupying a lot of space) are pre-
ferred to be firstly allocated in the stations. Apart from the area and time information, we have added further information
related to the number of successors of the task which was already used in [5]. Tasks with a larger number of successors are
preferred to be allocated first.

Heuristic information is one-dimensional since it is only assigned to tasks. In addition, it can be noticed that heuristic
information has static and dynamic components. Tasks’ time tj and area aj are always fixed while the successors rate is
changing through the constructive procedure. This is because it is calculated by means of the candidate list of feasible
and non-assigned tasks at that moment.
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We have analysed different settings for these heuristic information functions in order to find out the best possible design.
As we will discuss in Section 4.3, we have studied the heuristics g0

j and g1
j with and without successors information. In addi-

tion, experiments with a MACS variant that does not take heuristic information into account have also been run.

3.4.2. Pheromone trail and s0 calculation
The pheromone trail information has to memorise which tasks are the most appropriate to be assigned to a station.

Hence, pheromone has to be associated to a pair (stationk, taskj), being k = 1, . . . ,n and j = 1, . . . ,n. In this way, and con-
trary to the heuristic information, the pheromone trail matrix skj has a bi-dimensional nature since it links tasks with
stations.

In every ACO algorithm, an initial value for the pheromone trails has to be set up. This value is called s0 and it is normally
obtained from an heuristic algorithm. We have used two station-oriented, single-objective greedy algorithms to calculate it,
one per heuristic. These algorithms open the first station and select the best possible task according to their heuristic infor-
mation (related either with the duration time and successors rate g0

j , or the area and successors rate g1
j ). This process is re-

peated until there are no tasks that can be included because of the cycle time limit. Then, a new station must be opened.
When there are no tasks to be assigned, the greedy algorithm finishes. s0 is then computed, using the following MACS equa-
tion, from the costs of the two solutions obtained by the greedy algorithm.

s0 ¼
1

f 0ðStimeÞ � f 1ðSareaÞ
: ð17Þ

3.4.3. Randomised station closing scheme and transition rule
At the beginning, we decided to close the station when it was full in relation to the fixed cycle time c as usual in SALBP and

TSALBP applications. We found that this scheme did not succeed because the obtained Pareto fronts did not have enough
diversity (see the obtained results in [15]). Thus, we introduced a new mechanism in the construction algorithm to close
the station according to a probability, given by the filling rate of the station:

pðclosing SkÞ ¼
P

i2Sk
ti

c
: ð18Þ

This probability distribution is updated at each construction step. A random number is uniformly generated in [0,1] after
each update to decide whether the station is closed or not. If the decision is not to close the station, we choose the next task
among all the candidate tasks using the MACS transition rule and the procedure goes on.

Because of the one-dimensional nature of the heuristic information, the original transition rule (see Eqs. (8) and (9))
which chooses a task among all the candidates at each step has been modified as follows:

j ¼
arg max

j2X
skj � ½g0

j �
kb � ½g1

j �
ð1�kÞb

� �
; if q 6 q0;

î; otherwise;

8<
: ð19Þ

where î is a node selected by means of the following probability distribution:

pðjÞ ¼
skj �½g0

j
�kb �½g1

j
�ð1�kÞbP

u2X
sku �½g0

u �
kb �½g1

u �
ð1�kÞb ; if j 2 X;

0; otherwise:

8<
: ð20Þ

3.4.4. Multi-colony approach
With a pure station-oriented procedure, intensification is too high in a Pareto front region. This region has the solutions

with a small number of stations and large value of area. This is because of the constructive procedure which only closes sta-
tions when they are full. We have introduced a probability distribution according to a filling rate to solve this local conver-
gence. It also induces more diversity in the algorithms and generate better spread Pareto fronts. Despite that, the application
of this random station closing scheme carries the problem of not providing enough intensification in some Pareto front areas,
since there is a low probability of filling stations completely.

Hence, there is a need to find a better intensification-diversification trade-off. This objective can be achieved by
introducing different filling thresholds associated to the ants that build the solution. These thresholds make the differ-
ent ants in the colony have a different search behaviour. Thus, the ACO algorithm becomes multi-colony [42,16]. In
this case, thresholds are set between 0.2 and 0.9 and they are considered as a preliminary step before deciding to
close a station.

Therefore, the constructive procedure is modified. We compute the station closing probability distribution as usual, based
on the station current filling rate (Eq. (18)). However, only when the ant’s filling threshold has been overcome, the random
decision of either closing a station or not according to that probability distribution is considered. Otherwise, the station will
be kept opened. Thus, the higher the ant’s threshold is, the more complete the station is likely to be. This is due to the fact
that there are less possibilities to close it during the construction process.
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In this way, the ant population will show a highly diverse search behaviour, allowing the algorithm to properly explore
the different parts of the optimal Pareto fronts by appropriately spreading the generated solutions.

3.5. MORGA

Apart from the design of the MACS algorithm, we have built a MORGA. Our diversification generation mechanism behaves
similarly to a GRASP construction phase [28]. The most important element in this kind of construction is that the selection of
the task at each step must be guided by a stochastic greedy function that is adapted with the pseudo-random selections
made in the previous steps.

As said in Section 3.2, we introduce randomness in two processes. On the one hand, allowing each decision to be ran-
domly taken among the best candidates, and on the other, closing the station according to a probability distribution.

We use the same constructive approach as in the MACS algorithm, with filling thresholds and closing probabilities at each
constructive step. The probabilistic criterion to select the next task that will be included in the current station is changed to
be only based on heuristic information. This mechanism is explained in the following paragraphs.

3.5.1. Candidate selection and heuristic-based scheme
To make a decision among all the current feasible candidate tasks we use a single heuristic value given by:

gj ¼
tj

c
� aj

UBA
� jFjj
maxi2XjFij

: ð21Þ

The decision is made randomly among the selected tasks in the restricted candidate list (RCL) by means of the following pro-
cedure: we calculate the heuristic value of every feasible candidate task to be assigned to the current open station. Then, we
sort them according to their heuristic values and, finally, we set a quality threshold for the heuristic given by
q ¼maxgj

� c � ðmaxgj
�mingj

Þ.
All the tasks with a heuristic value gj greater or equal than q are selected to be in the RCL. c is the diversification-inten-

sification trade-off control parameter. When c = 1 there is a completely random choice inducing the maximum possible
diversification. In contrast, if c = 0 the choice is close to a pure greedy decision, with a low diversification.

3.5.2. Randomised station closing scheme
As MACS, the MORGA construction algorithm incorporates a mechanism which allows us to close a station according to a

probability distribution, given by the filling rate of the station (see Eq. (18)).
As we have explained in the previous sections, this filling rate was not enough to obtain a diverse Pareto front. Conse-

quently, we use the same MACS filling thresholds technique. The difference is that in the MACS algorithm these filling
thresholds are applied in parallel following the multi-colony approach. In the case of MORGA, different thresholds are only
used in isolation at each iteration.

4. Experiments

In this section we analyse the behaviour of the algorithms using unary and binary Pareto metrics, a statistical test per-
formed over one of the binary metrics, and visual representations of the obtained Pareto fronts.1 The used parameters
and problem instances are also described in this section. Then, the experimental analysis is given.

4.1. Problem instances

We have used a total of 10 SALBP-1 instances (obtained from http://www.assembly-line-balancing.de) to run all the
TSALBP-1/3 experiments. Originally, these instances only had time information but we have created their area information
from the latter by reverting the task graph (aj = tn�j+1) to make them bi-objective (as done in [5]). In addition to these test
instances, we have solved a real-world problem from a Nissan plant in Barcelona (Spain) (see http://www.nissan-
chair.com/TSALBP). This real-world problem instance had specific area information for each task, so the above-mentioned
method was not necessary.

These 10 well-known problem instances and the real-world one present different characteristics. They have been chosen
to be as diverse as possible to test the behaviour of the algorithms and their variants when they deal with different problem
conditions.2 In Table 1 all the problem instances are shown as well as their main features values. OS refers to the order
strength of the precedence graph. The higher its value, the higher the number of precedence restrictions we will find in a
problem instance. TV is the time variability: the difference between the highest and the lowest task operation time. AV is

1 From now on, we will call ‘‘true Pareto set” (‘‘true Pareto front”) the exact solution of a problem instance (which is not known here), and ‘‘Pareto set”
(‘‘Pareto front”) to the set of solutions returned by an algorithm, also referred as ‘‘approximation set” in the literature.

2 Not only the time and area information of each task influence the complexity of the problem instance, but also other factors as the cycle time limit and the
order strength of the precedence graph, which actually are the most conclusive factors.
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the same as TV but refers to the area. It is of interest in the Nissan instance because in the remainder instances the area infor-
mation is obtained from the time information.

4.2. Experimental setup

In this section, a baseline multiobjective random algorithm and a state-of-the-art multiobjective evolutionary algorithm,
NSGA-II [20], are given in order to set a quality threshold to test the proposals. Next, the parameter values and the consid-
ered performance metrics are presented.

4.2.1. Baseline, a basic random search algorithm
As there is no previous contribution to this problem, we are not able to compare the proposed approaches against other

methods. Hence, we have designed a basic multiobjective random search algorithm based on an order encoding with sep-
arators [43].

The algorithm randomly generates a task sequence satisfying all the precedence constraints. Starting with that sequence,
the algorithm needs to divide it into stations fulfilling the cycle time limit for every station it creates. To achieve that station
assignment, the algorithm chooses one position to put a separator at random, but not so as to create an empty station and
not to exceed the cycle time limit. The algorithm finishes when all the stations have a cycle time equal or less than the al-
lowed one. The non-dominated solution archive and all the multiobjective mechanisms have been built as in the MACS and
MORGA algorithms.

We note this is a simple algorithm. However, our aim is only to have a lower quality baseline for the approaches proposed
in this paper.

4.2.2. A NSGA-II approach
As explained in Section 2.5, there are quite a lot of genetic algorithm-based proposals applied to the SALBP. However, all

of them deal with a single-objective problem. The well-known NSGA-II has been considered to extend one of the existing
methods to make it multiobjective since a multiobjective genetic algorithm is needed.

Hence, we have adopted the problem-dependent features of the genetic algorithm for the SALBP introduced in [44]. In
short, its features can be summarised as follows:

� Coding: an order coding scheme is used. The length of the chromosome will be the number of tasks and the procedure to
group tasks to form stations, is guided by fulfilling the available cycle time of each station.
� Initial population: it is randomly generated, assuring the feasibility of the precedence relations.
� Crossover: A kind of order preserving crossover is considered to ensure that feasible offspring are obtained satisfying the

precedence restrictions. This family of order-based crossover operators emphasises the relative order of the genes from
both parents. Two different offspring are generated from the two parents to be mated proceeding as follows. Two cutting-
points are randomly selected for them. The first offspring takes the genes outside the cutting-points (i.e. from the begin-
ning to the first cutting point and from the second cutting point to the end) in the same sequence order as in the first
parent. The remaining genes, those located between the two cutting-points, are filled in by preserving the relative order
they have in the second parent. The second offspring is generated in the complementary way, i.e. taking the second parent
to fill in the two external parts of the offspring and the first one to build the central part. Note that, preserving the other
parent genes order in the central part will guarantee the feasibility of the obtained offspring solution in terms of prece-
dence relations. The central genes also satisfy the precedence constraints with respect to those that are in the two exter-
nal parts. When resampling them in the same order they appear in the second parent, which of course encodes a feasible
solution. We also manage to keep on satisfying the precedence order among them.

Table 1
Used problem instances.

Instance code and name No. of tasks OS TV (AV)

P1 arc111 (c = 5755) 111 40.38 568.90
P2 arc111 (c = 7520) 111 40.38 568.90
P3 barthol2 (c = 85) 148 25.80 83
P4 barthold (c = 805) 148 25.80 127.60
P5 heskia (c = 342) 28 22.49 108
P6 lutz2 (c = 16) 89 77.55 10
P7 lutz3 (c = 75) 89 77.55 74
P8 mukherje (c = 351) 94 44.80 21.38
P9 scholl (c = 1394) 297 58.16 277.20
P10 wee-mag (c = 56) 75 22.67 13.50
RW Nissan (c = 180) 140 90.16 115 (3)

OS: order strength of the precedence graph, TV and AV: time and area variability.
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� Mutation: a random gene is selected, and the genes after it are randomly replaced (scrambled) assuring the precedence
feasibility.

Initially, we considered the original NSGA-II design as proposed in Deb et al.’s seminal paper [20]. However, the approx-
imations to the Pareto fronts obtained in all the developed experiments showed a significant lack of diversity and an exces-
sive convergence to the left-most region of the objective space. Actually, we were aware of this behaviour because it is a
consequence of the specific characteristics of the tackled problem. Hence, it is not the multiobjective genetic algorithm’s
fault (it is well known that NSGA-II has shown a large success when solving many different multiobjective numerical and
combinatorial optimisation problems). As said, the presence of precedence constraints in the TSALBP-1/3 makes the use
of constructive metaheuristics more appropriate to solve it than global search procedures, i.e. genetic algorithms. Moreover,
the use of the order encoding makes the genotype-phenotype application not unique, thus making the search process more
difficult (see Section 2.5).

Even so, we aimed to increase the diversity and spread of the obtained Pareto fronts. A study of appropriate techniques to
inject diversity to the algorithm search was carried out. As a result of that study, we decided to adopt one successful and very
recent NSGA-II diversity induction mechanism: Ishibuchi et al.’s similarity-based mating [37]. This method is based on set-
ting two sets of candidates. These sets will be the couple of parents to be mated, with a pre-specified dimension a and b,
respectively. The chromosomes of each set are randomly drawn from the population by a binary tournament selection. Then,
the average objective vector of the first set is computed and the most distant chromosome to it, among the a candidates in
the set, is chosen as the first parent. For the second parent, the most similar chromosome to the first parent is selected among
the b candidates in the second set.

In [37], the authors showed how the algorithm performed better with adaptive values for the a and b parameters. They
were fixed to 10 at the first stages of the evolution and then to 1 during the last stages in order to achieve a proper diver-
sification-intensification trade-off. We ran the algorithm following the latter approach. We also considered a fixed value of
10 for both parameters, aiming to increase the algorithm’s diversity as much as possible to cope with the specific character-
istics of the problem. Although similar outcomes were achieved, the latter configuration induced a little more diversity in the
obtained Pareto front approximations. It also showed a slightly better performance than the original NSGA-II implementa-
tion. Thus, the similarity-based mating NSGA-II algorithm will be the one considered in the experimental analysis, setting a
and b parameters to 10.

Nevertheless, as shown later, the performance of this technique is unsatisfactory in properly solving the TSALBP-1/3. It
does not provide the decision maker with a number of good quality assembly line design choices with a different trade-
off between the number of stations and their area. We should remember that this is not due to a bad behaviour of the
NSGA-II algorithm itself but to the specific problem characteristics. Thus, the representation and the non-constructive
scheme are not adequate for the problem solving.

4.2.3. Parameter values
The MACS, MORGA, NSGA-II and the basic random search algorithm have been run 10 times with 10 different seeds dur-

ing 900 s for each of the 11 selected problem instances. All the considered parameter values are shown in Table 2.

4.2.4. Metrics of performance
In this paper, we will consider the two usual kinds of multiobjective metrics existing in the specialised literature

[51,52,19,39,17]:

� those which measure the quality of a non-dominated solution set returned by an algorithm, and
� those which compare the performance of two different multiobjective algorithms.

On the one hand, we have selected the generational distance (GD), the hypervolume ratio (HVR), and the number of dif-
ferent non-dominated solutions (in the objective vectors) returned by each algorithm, from the first group of metrics.

GD measures the average distance between the solutions of an approximate Pareto set P and the true Pareto set P* by
means of the following expression:

GDðP�; PÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
p2PdðpÞ2

q
jPj ; ð22Þ

where d(p) = minkW(p*) �W(p)k is a minimal distance between solutions of P* and P (in the objective space).
The HVR can be calculated as follows:

HVR ¼ HVðPÞ
HVðP�Þ ; ð23Þ

where HV(P) and HV(P*) are the volume (S metric value) of the approximate Pareto set and the true Pareto set, respectively.
When HVR equals 1, the approximate Pareto front and the true one are equal. Thus, HVR values lower than 1 indicate a gen-
erated Pareto front that is not as good as the true Pareto front.
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We have to keep in mind some obstacles which make difficult the computation of these metrics because we are working
with real-like problems. First, we should notice that the true Pareto fronts are not known. To overcome this problem we will
consider a pseudo-optimal Pareto set, i.e. an approximation of the true Pareto set. It is obtained by merging all the (approx-
imate) Pareto sets Pj

i generated for each problem instance by any algorithm in any run. Thanks to this pseudo-optimal Pareto
set we can compute GD and HVR metrics, considering them in the analysis of results.

Besides, there is an additional problem with respect to the HVR metric. In minimisation problems, as ours, there is a need
to define a reference point to calculate the volume of a given Pareto set. If it is not correctly fixed, the values of the HVR met-
ric can be unexpected (see Fig. 3) [39]. Thus, we have defined the reference points for the as the ‘‘logical” maximum values
for the two objectives. These reference points depend on each problem instance.

On the other hand, we have also considered the binary set coverage metric C to compare the obtained Pareto sets two by
two based on the following expression:

CðP;QÞ ¼ jfq 2 Q ; 9p 2 P : p � qgj
jQ j ; ð24Þ

Table 2
Used parameter values.

Parameter Value

General
Number of runs 10
Maximum run time 900 s
PC specifications Intel Pentium™ D

2 CPUs at 2.80 GHz
Operating system CentOS Linux 4.0

GCC 3.4.6

MACS
Number of ants 10
b 2
q 0.2
q0 0.2
Ants’ thresholds {0.2,0.4,0.6,0.7,0.9}

(2 ants for each threshold)

MORGA
c {0.1,0.2,0.3}
Diversity thresholds {0.2,0.4,0.6,0.7,0.9}

NSGA-II
Population size 100
Crossover probability 0.8
Mutation probability 0.1
a and b values for the similarity-based mating 10
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z
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z
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Fig. 3. Setting a non-equilibrated reference point can cause an unexpected behaviour in the HVR metric values [39].
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where p � q indicates that the solution p, belonging to the approximate Pareto set P, dominates the solution q of the approx-
imate Pareto set Q in a minimisation problem.

Hence, the value C(P,Q) = 1 means that all the solutions in Q are dominated by or equal to solutions in P. The opposite,
C(P,Q) = 0, represents the situation where none of the solutions in Q are covered by the set P. Note that both C(P,Q) and
C(Q,P) have to be considered, since C(P,Q) is not necessarily equal to 1 � C(Q,P).

We have used boxplots based on the C metric for showing the dominance degree of the Pareto sets of every pair of algo-
rithms (see Figs. 4 and 7). Each rectangle contains 10 boxplots representing the distribution of the C values for a certain or-
dered pair of algorithms in the 10 problem instances (P1 to P10) and the Nissan instance. Each box refers to algorithm A in
the corresponding row and algorithm B in the corresponding column, and gives the fraction of B covered by A (C(A,B)). The 10
considered values to obtain each boxplot correspond to the computation of the C metric on the two Pareto sets generated by
algorithms A and B in each of the 10 runs. In each box, the minimum and maximum values are the lowest and highest lines,
the upper and lower ends of the box are the upper and lower quartiles, and a thick line within the box shows the median.

Let us call Pj
i the non-dominated solution set returned by algorithm i in the jth run for a specific problem instance;

Pi ¼ P1
i

S
P2

i

S
� � �
S

P10
i , the union of the solution sets returned by the 10 runs of algorithm i; and finally Pi the set of all

non-dominated solutions in the Pi set.3 Hence, the corresponding Pareto fronts will be represented graphically in different fig-
ures in order to allow an easy visual comparison of the performance of the algorithms. These graphics offer a visual information,
not measurable, but sometimes more useful than numeric values. That situation becomes very clear in complex problems as
that one, in which some traditional metrics seem to be deceptive.

Finally, the Mann–Whitney U test, also known as Wilcoxon ranksum test, will be used for a deeper statistical study of the
performance of the different algorithms by considering the coverage metric. Unlike the commonly used t-test, the Wilcoxon
test does not assume normality of the samples and it has already demonstrated to be helpful analysing the behaviour of evo-
lutionary algorithms [30]. However, there is not a reference methodology to apply a statistical test to a binary indicator in
multiobjective optimisation. Thus, we have decided to follow the procedure proposed in [45] given by: let A and B be the two
algorithms to be compared. After running both algorithms just once, let pA(B) be 1 if the Pareto set generated by A dominates
that one got by B, and 0 otherwise. It is considered that the Pareto set A dominates B when C(A,B) is greater than a threshold
value thr 2 (0.5,1) (in this paper we consider thr = 0.75). Given 10 repetitions A1, . . . ,A10 of A and B1, . . . ,B10 of B, let

Fig. 4. C metric values represented by means of boxplots comparing different heuristic versions of the MACS algorithm.

3 Note that, the pseudo-optimal Pareto set is the fusion of the Pi sets generated by every algorithm.
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PAðBÞ ¼ 1
10

P10
i¼1pAi

ðBiÞ. Note that, PA(B) corresponds to the probability that the outcomes of algorithm A dominate those of
algorithm B. Hence, it becomes an indicator of the performance of A with respect to B. Following an analogous approach,
let pB(A) be 1 if B dominates A (i.e. when C(B,A) > 0.75), and 0 otherwise. Given 10 repetitions A1, . . . ,A10 of A and
B1, . . . ,B10 of B, let PBðAÞ ¼ 1

10

P10
i¼1pBi

ðAiÞ. To know if there is a significant difference between the performance of the two algo-
rithms, we can use a Wilcoxon test to discard the expectations of probability distributions PA(B) and PB(A) are the same. From
the C metric values, dPAðBÞ and dPBðAÞ are computed for the considered algorithms as the average of the PA(B) and PB(A) values
for the 10 problem instances. The significance level considered in all the tests to be presented is p = 0.05.

4.3. A deep study of heuristic information in MACS variants

A preliminary experimentation in [12] was performed to fix the value of the transition rule parameter q0 of the MACS
algorithm. Three different values were tested: 0.2, 0.5, and 0.8. The former was the one inducing the highest search diver-
sification and it clearly provided the best performance. Here, we would like to analyse the influence of the different compo-
nents of the heuristic information values in the MACS algorithm performance. To do so, we will consider different heuristic
configurations over the best MACS setting: MACS 0.2 (i.e., MACS with q0 = 0.2). Firstly, we have taken different combinations
of the definitions of the heuristic information values g0 and g1 in three distinct variants of the algorithm as follows:

� MACS c-succ (c with successors information):

g0
j ¼

tj

c
�

jF�j j
maxi2XjF�i j

g1
j ¼

aj

UBA
: ð25Þ

� MACS a-succ (a with successors information):

g0
j ¼

tj

c
g1

j ¼
aj

UBA
�

jF�j j
maxi2XjF�i j

: ð26Þ

� MACS no-succ (without successors information):

g0
j ¼

tj

c
g1

j ¼
aj

UBA
: ð27Þ

Besides, we have also tried to remove completely the heuristic information by considering only the pheromone trails to
guide the search in MACS.

The boxplots in Fig. 4 show C metric values comparing MACS 0.2 and the new heuristic variants in the experimentation.
The unary metric results for these algorithms are included in Table 3. In addition, Table 4 shows the results of the statistical
test for the dominance probabilities of the MACS algorithms. Every cell of the table includes the averaged dPAðBÞ value for the
10 problem instances together with a ‘‘+”, ‘‘�”, or ‘‘=” symbol, with a different meaning. Every symbol shows that the algo-
rithm in that row is significantly better (+), worse (�) or equal (=) in behaviour (using the said indicator) than the one that
appears in the column. For example, the pair (0.01,=) included in the first row of results (second column) must be interpreted
as follows: the averaged dominance probability of MACS 0.2 with respect to MACS 0.2 no-heur is 0.01
ð dPMACS0:2ðMACS 0:2 no-heurÞ ¼ 0:01Þ, and there is not any statistical significance (‘‘=”) on the performance of MACS 0.2
and MACS 0.2 no-heur.

To provide more intuitive and visual results, the graphs in Figs. 5 and 6 represent the aggregated Pareto front approxi-
mations for the P5 and P8 problem instances. We merged the outcomes of the 10 different runs performed by the process
explained in Section 4.2.4 to show a visual estimation of an algorithm’s performance at a glance. In addition, the solutions
belonging to the pseudo-optimal Pareto front are showed linked by dashed lines in every case. The objective vectors in that
line are only specifically represented by a symbol when they have been generated by any of the algorithms considered in the
graph. Note that, we do not use symbols to represent the solutions of those algorithms that are not involved in the graph
comparison. However, their solutions also help to compound the Pseudo-optimal Pareto front (dashed line).

We have developed the analysis grouped into three items according to the algorithms involved in the comparison:
MACS vs. Heuristic-based MACS variants. We would like to compare MACS 0.2 with the three MACS 0.2 variants which use

some kind of heuristic information: MACS 0.2 no-succ, MACS 0.2 c-succ, and MACS 0.2 a-succ. In relation to the C metric, they
attain ‘‘better results”4 than MACS 0.2 in six, eight and six problem instances respectively, with the latter not dominating any of
them (see Fig. 4). Similar conclusions can be drawn analysing the unary metrics’ values in Table 3. The values of HVR show that
MACS 0.2 no-succ performs better than MACS 0.2 in five, than MACS 0.2 c-succ in other five and than MACS 0.2 a-succ in seven
of the 10 problem instances (with one, two and two draws, respectively). For GD, the latter three heuristic variants outperform
MACS 0.2 in five, four and five instances, respectively. Thus, the general conclusion is that including successors information in

4 When we refer to the best or better performance comparing the C metric values of two algorithms we mean that the Pareto set derived from one algorithm
significantly dominates that one achieved by the other. Likewise, the latter algorithm does not dominate the former one to a high degree.
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both heuristics, g0 and g1, is not a good option because it causes an excessive intensification. Note that, a new variant of MACS
considering a different heuristic definition attains better results than the original MACS 0.2 in almost all the problem instances.

Heuristic-based MACS variants’ comparison. According to the C, GD, and HVR metrics, we can draw three conclusions: (1) A
MACS variant performs better in some problem instances and another one in some others. We cannot conclude there is a
single ‘‘global best” heuristic-based MACS variant for every instance. This is supported by the results of the statistical test
for the dominance probabilities (Table 4, showing how there is no significant difference in any of the comparisons). (2) Suc-
cessors information is only useful in some problem instances. (3) It is a better decision linking successors information with
the cycle time cj rather than with the area information aj.

MACS with and without heuristic information. MACS 0.2 no-heur attains better C metric results than MACS 0.2 and MACS
0.2 no-succ in eight problem instances, and better than MACS 0.2 c-succ and MACS 0.2 a-succ in nine of them. Globally, heu-

Table 3
Unary metrics for the 10 problem instances comparing the different MACS heuristic variants.

# dif_sols HVR GD # dif_sols HVR GD

P1 P2
A1 9.7 (1.55) 0.83 (0.01) 508.77 (63.3) 10.1 (1.22) 0.85 (0.01) 468.38 (61.8)
A2 11.5 (1.8) 0.85 (0.01) 647.69 (44.14) 12.1 (1.37) 0.89 (0.01) 485.44 (451.3)
A3 9.6 (1.2) 0.83 (0.01) 688.04 (96.01) 11 (1.79) 0.84 (0.02) 745.51 (734.94)
A4 10.2 (1.66) 0.84 (0.01) 619.67 (144.91) 10.2 (2.36) 0.87 (0.01) 456.07 (82.3)
A5 8.7 (1.49) 0.84 (0.01) 534.43 (87.91) 10.3 (0.9) 0.84 (0.01) 727.32 (130.33)

P3 P4
A1 9.9 (1.64) 0.76 (0.02) 11.01 (0.61) 11.1 (1.22) 0.67 (0.02) 37.80 (5.33)
A2 12.8 (2.8) 0.88 (0.01) 6.36 (1.12) 11 (0.89) 0.92 (0.02) 14.15 (1.45)
A3 9 (1.41) 0.89 (0.01) 5.37 (1.12) 11.9 (0.54) 0.83 (0.01) 20.99 (1.66)
A4 7.1 (1.51) 0.80 (0.02) 8.88 (1.35) 10.3 (1.55) 0.75 (0.02) 24.51 (2.35)
A5 8.8 (1.33) 0.79 (0.01) 8.54 (0.58) 10.9 (1.51) 0.77 (0.02) 22.40 (3.41)

P5 P6

A1 6.2 (0.75) 0.86 (0.02) 5.84 (1.19) 6.9 (1.45) 0.82 (0.02) 1.06 (0.30)
A2 7.1 (0.3) 0.94 (0) 3.58 (1.06) 6.7 (0.64) 0.85 (0.02) 1.15 (0.23)
A3 6.1 (0.7) 0.88 (0.01) 6.17 (1.72) 6.6 (1.11) 0.78 (0.02) 1.62 (0.15)
A4 6.2 (0.75) 0.87 (0.01) 6.38 (1.40) 7 (0.89) 0.79 (0.02) 1.40 (0.32)
A5 5.7 (0.46) 0.84 (0.02) 5.53 (1.11) 6.7 (0.46) 0.82 (0.03) 1.35 (0.22)

P7 P8
A1 8.9 (1.45) 0.80 (0.05) 7.30 (1.13) 12.1 (0.94) 0.90 (0.01) 5.54 (1.16)
A2 10.3 (1.8) 0.73 (0.03) 5.30 (0.39) 12.4 (1.36) 0.86 (0.01) 9.60 (1.44)
A3 8.1 (1.45) 0.65 (0.04) 5.96 (1.01) 12.2 (2.44) 0.89 (0.01) 5.91 (0.6)
A4 9.7 (1.1) 0.96 (0.07) 13.78 (3.70) 11.7 (1.27) 0.90 (0.01) 6.07 (1.37)
A5 9 (0.77) 0.78 (0.04) 7.64 (1.46) 12.5 (1.02) 0.91 (0.01) 5.58 (0.68)

P9 P10
A1 13.5 (0.92) 0.84 (0.01) 42.34 (8.65) 7.3 (1.19) 0.71 (0.03) 3.80 (0.41)
A2 14.6 (2.01) 0.89 (0.01) 40.59 (7.53) 8.2 (1.54) 0.87 (0.01) 2.38 (0.4)
A3 13.5 (2.42) 0.87 (0.01) 38.22 (9.66) 8.5 (1.2) 0.85 (0.01) 2.67 (0.45)
A4 12 (2.19) 0.84 (0.01) 36.10 (5.98) 7.4 (1.28) 0.74 (0.03) 3.73 (0.37)
A5 13 (1.73) 0.84 (0.01) 47.60 (12.28) 8.4 (1.02) 0.76 (0.02) 3.48 (0.22)

A1: MACS 0.2, A2: MACS 0.2 (no-heur), A3: MACS 0.2 (no-succ), A4: MACS 0.2 (a-succ), A5: MACS 0.2 (c-succ).

Table 4
Averaged dominance probability and statistical significance for the MACS variants.

MACS 0.2 MACS 0.2 (no-heur) MACS 0.2 (no-succ) MACS 0.2 (c-succ) MACS 0.2 (a-succ)

MACS 0.2 � 0.01 0.02 0.02 0.02
= = = =

MACS 0.2 (no-heur) 0.3 � 0.19 0.2 0.22
= = + +

MACS 0.2 (no-succ) 0.28 0.01 � 0.14 0.16
= = = =

MACS 0.2 (c-succ) 0.08 0 0.04 � 0.05
= � = =

MACS 0.2 (a-succ) 0.05 0 0 0.01 �
= � = =
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ristic information is not a good guide and its use produces worse results. As an example, see the good performance of MACS
0.2 no-heur for the P5 instance in Fig. 5. This behaviour is also observed in the remaining problem instances. The only excep-
tions are P3 and, especially, P8 which need some kind of heuristic information to achieve convergence to the whole true Par-
eto front.

A further analysis can be done by means of the statistical test of Table 5. Differences in the dominance probability are
significant for MACS no-heur with respect to MACS c-succ and MACS a-succ. There is not any significant difference between
MACS no-heur neither with MACS nor MACS no-succ. However, we should also note the large differences existing in the
averaged dominance probability values for the latter two comparisons (0.3 vs. 0.01 and 0.19 vs. 0.01, respectively), even
if the Wilcoxon test does not find them to be significant.

Regarding to the unary metrics (Table 3), MACS no-heur achieves the best values in seven of the 10 problem instances for
HVR and four for GD.

In summary, we can conclude that heuristic information does not help the algorithm to cover all the extension of the Par-
eto front and hence that MACS 0.2 no-heur is the best MACS variant. The use of heuristic information is only helpful in some
problem instances, P8 and, to a lower degree, P3. In these instances, the algorithms without heuristic information are not

Fig. 5. Pareto fronts of the different heuristic MACS variants for the P5 instance.

Fig. 6. Pareto fronts of the different heuristic MACS variants for the P8 instance.
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able to reach some areas of the true Pareto front, as can be seen in Fig. 6. Even so, in that figure we can especially notice that
MACS 0.2 no-heur has a solid behaviour in comparison with the remaining algorithms.

4.4. Comparison of the best MACS variant with MORGA, multiobjective random search, and NSGA-II

After the comparison among the different MACS heuristic variants, we wanted to compare the best MACS variant (MACS
0.2 no-heur) with MORGA, the multiobjective random search, and the NSGA-II approach (the two latter algorithms were de-
scribed in Section 4.2). As done for the MACS algorithm, a preliminary experimentation was performed to fix the value of the
RCL parameter c in MORGA (see Section 3.5). Three different values were tested (0.1, 0.2, and 0.3) with the latter providing
the best performance (from now on, we will refer to this setting as MORGA 0.3). This shows how a larger diversification is
appropriate to solve the TSALBP-1/3 with a MORGA approach.

Again, the boxplots in Fig. 7 show the C metric values, Table 5 comprises the results of the Wilcoxon test, and Table 6 the
unary metric values resulting from the experimentation. As we did in the previous subsection, we have developed the anal-
ysis grouped in five items according to the algorithms involved in the comparison:

MORGA 0.3 vs. MACS 0.2 no-heur. If we compare MORGA with MACS no-heur, the former is clearly dominated in six prob-
lem instances according to the C metric values (Fig. 7). A significant difference in favour of MACS no-heur is also obtained in
the statistical test (Table 5). Besides, MORGA 0.3 attains worse GD values in seven problem instances (Table 6). The same
behaviour is observed according to the HVR values in the same table, MACS no-heur outperforms MORGA in six instances,

Table 5
Averaged dominance probability and statistical significance for the different algorithms.

Random base NSGA-II MORGA 0.3 MACS 0.2 (no-heur)

Random base � 0 0 0
= � �

NSGA-II 0 � 0.14 0.01
= = �

MORGA 0.3 0.16 0.19 � 0.12
+ = �

MACS 0.2 (no-heur) 0.53 0.26 0.59 �
+ + +

Fig. 7. C metric values represented by means of boxplots comparing the best MACS and MORGA variants, the random search, and the NSGA-II approach.
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with an additional draw. Since MACS 0.2 no-heur is the best algorithm, we consider unnecessary to implement a new MOR-
GA variant with different heuristic configurations.

Random search vs. MACS and MORGA best variants. In all the problem instances, MACS is ‘‘much better” than random search
according to the C metric (Fig. 7). As MORGA’s strength is lower than MACS’s one, the performance improvement of this algo-
rithm against random search is not as high as in MACS but it is clear as well. In general, MORGA variants are actually ‘‘better”
than random search in all the problem instances but P5 and P9. The latter assumption is corroborated by the Wilcoxon text
(Table 5), as the differences obtained by MACS and MORGA with respect to the multiobjective random search algorithm are
both significant. The same stands for the unary metrics (Table 6) since the random search is clearly outperformed in the 10
instances by both MACS and MORGA according to the HVR values, and by MACS according to the GD values. In this latter
metric, the random search is a little bit more competitive with MORGA since the former outperforms the latter in four
instances.

NSGA-II vs. MACS 0.2 no-heur. The C metric results (boxplots in Fig. 7) show that NSGA-II ‘‘outperforms” MACS no-heur in
five problem instances while the MACS scheme is ‘‘better” in other four. A similar performance is also noticed with the GD
metric (Table 6). NSGA-II achieves better results in four instances and MACS in the other six. In view of the results of these
two metrics, we could conclude that both algorithms behave in a similar way.

However, we should notice that this NSGA-II behaviour is somehow deceitful. The non-constructive but global search nat-
ure of NSGA-II and the problems derived from the use of an order encoding (see Section 2.5) cause a convergence of the gen-
erated Pareto fronts to a narrow region located in the left-most zone of the objective space (i.e. solutions with small values of
m). Therefore, it lacks of an appropriate diversity to generate an extensive Pareto front in order to provide useful solutions to
the problem being tackled, see the very bad values in HVR (Table 6), as well as the Pareto fronts in Figs. 8 and 9. Considering,
for example, the P9 instance (Fig. 9), it can be seen that NSGA-II only reaches one non-dominated solution, although it be-
longs to the pseudo-optimal Pareto set. Note that, these are not satisfactory outcomes for the TSALBP-1/3 problem since they
do not provide the decision maker with a number of good quality assembly line design choices presenting a different trade-
off between the number of stations and the area of those stations. On the other hand, it generates extreme line configurations
with a very small number of stations and a large area which, although valid as any other Pareto set solution, may be dan-
gerous from an industrial point of view (the same as configurations with a very large number of stations and a small area,
see Section 2.2).

Thus, this undesirable behaviour of the algorithm prompts very bad results in HVR and in the number of solutions of the
Pareto front. However, NSGA-II achieves fairly good C and GD metric values since every solution it generates usually belongs
to the true Pareto front. In addition, MACS no-heur achieves a significant difference in the dominance probability with re-
spect to NSGA-II (see Table 5). This is due to the fact that as a consequence of the special Pareto front shapes generated

Table 6
Unary metrics for the 10 problem instances comparing MACS and MORGA with the random algorithm and NSGA-II.

# dif_sols HVR GD # dif_sols HVR GD

P1 P2
A1 10.9 (1.3) 0.16 (0.01) 383.95 (110.13) 11 (1.95) 0.40 (0.03) 562.4 (415.1)
A2 2.9 (0.94) 0.85 (0.03) 341.1 (277.01) 1.7 (0.64) 0.82 (0.03) 318.2 (240.3)
A3 10.7 (1.55) 0.88 (0.01) 329.9 (51.8) 12.5 (1.5) 0.89 (0.01) 401.5 (38.6)
A4 11.5 (1.8) 0.85 (0.01) 647.69 (44.14) 12.1 (1.37) 0.89 (0.01) 485.44 (451.32)

P3 P4
A1 9.8 (1.72) 0.22 (0.01) 15.07 (3.35) 9.6 (1.11) 0.52 (0.05) 45.84 (17.59)
A2 2.6 (1.11) 0.78 (0.08) 4.77 (1.82) 1 (0) 0.17 (0.08) 40.50 (27.59)
A3 7.1 (0.54) 0.55 (0.01) 24.11 (1.69) 9.3 (1.62) 0.84 (0.01) 135.62 (21.52)
A4 12.8 (2.79) 0.88 (0.01) 6.36 (1.12) 11 (0.89) 0.92 (0.02) 14.15 (1.45)

P5 P6
A1 10.2 (0.98) 0.91 (0.02) 7.57 (5.22) 6.3 (0.78) 0.20 (0.03) 4.71 (0.36)
A2 2 (0) 0.45 (0.01) 8.10 (3.02) 1.4 (0.49) 0.01 (0.01) 3.02 (0.19)
A3 6.7 (0.64) 0.90 (0.05) 21.79 (17.21) 7.4 (0.8) 0.86 (0.04) 1.65 (0.58)
A4 7.1 (0.3) 0.94 (0) 3.58 (1.06) 6.7 (0.64) 0.85 (0.02) 1.15 (0.23)

P7 P8
A1 8.1 (1.51) 0.35 (0.14) 13.78 (5.13) 10 (1.61) 0.42 (0.02) 19.69 (6.62)
A2 2.1 (0.3) 0.68 (0.04) 4.61 (1.82) 1.3 (0.46) 0.51 (0.06) 23.31 (10.84)
A3 7.2 (1.47) 0.62 (0.06) 8.34 (1.32) 13.2 (0.98) 0.90 (0.01) 5.57 (0.59)
A4 10.3 (1.79) 0.73 (0.03) 5.30 (0.39) 12.4 (1.36) 0.86 (0.01) 9.60 (1.44)

P9 P10
A1 9.4 (1.56) 0.53 (0.02) 71.33 (42.59) 8.2 (0.98) 0.62 (0.01) 6.11 (0.53)
A2 1 (0) 0.27 (0) 0.30 (0.48) 1.8 (0.6) 0.46 (0.21) 3.21 (1.61)
A3 3.9 (0.7) 0.81 (0.01) 697.17 (122.7) 6.7 (0.9) 0.82 (0.02) 2.91 (0.65)
A4 14.6 (2.01) 0.89 (0.01) 40.59 (7.53) 8.2 (1.54) 0.87 (0.01) 2.38 (0.4)

A1: Random search, A2: NSGA-II, A3: MORGA 0.3, A4: MACS 0.2 (no-heur).
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by NSGA-II, the C metric always shows intermediate or low values (lower than 0.5 in many cases). On the contrary, the well
spread Pareto fronts of MACS completely dominate the NSGA-II’s ones in several cases. Note that, while the averaged dom-
inance probability of MACS with respect to NSGA-II is 0.26, its counterpart is only 0.01. Thus, the HVR metric and the pro-
vided statistical test correct the a priori analysis from the C and GD metrics.

NSGA-II vs. MORGA 0.3. NSGA-II attains better C and GD and worse HVR metric results than MORGA 0.3. While NSGA-II
outperforms MORGA in six instances concerning GD, the latter clearly outperforms the former in eight instances according
to the HVR values. Conclusions are similar to those presented in the previous NSGA-II vs. MACS 0.2 no-heur analysis. How-
ever, since MORGA shows worse performance than MACS, there is no significant difference in the statistical analysis between
MORGA and NSGA-II (Table 5).

Global conclusions. Overall, the main idea we conclude from these results is the good performance of MACS without heu-
ristic information, which shows significant differences with respect to the multiobjective random search algorithm, MORGA,
and NSGA-II.

Despite these MACS no-heur good results, it is important to remark that every pseudo-optimal Pareto set includes solu-
tions that MACS no-heur was not able to obtain. For example, the NSGA-II approach, which is not able to properly spread the

Fig. 8. Pareto fronts for the P4 instance.

Fig. 9. Pareto fronts for the P9 instance.
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Pareto front, generally obtains a couple of non-dominated left-most solutions belonging to the pseudo-optimal Pareto set
which are sometimes not achieved by MACS 0.2 no-heur (see Figs. 8 and 9).

4.5. A real-world case: Nissan Pathfinder engine

In this section we consider the application of the best algorithms designed to a real-world problem corresponding to the
assembly process of the Nissan Pathfinder engine (shown in Fig. 10) at the plant of Barcelona (Spain). The assembly of these

Fig. 10. The real engine of Nissan Pathfinder. It consists of 747 pieces and 330 parts.

Table 7
Mean and standard deviation �xðrÞ of the C metric values for the Nissan real-world problem.

NSGA-II MORGA 0.3 MACS 0.2 MACS 0.2 (no-heur)

NSGA-II � 0.13 (0.01) 0.13 (0.02) 0.25 (0.05)
MORGA 0.3 0.05 (0.16) � 0.51 (0.12) 0.36 (0.1)
MACS 0.2 0.05 (0.16) 0.92 (0.11) � 0.44 (0.1)
MACS 0.2 (no-heur) 0.1 (0.32) 0.87 (0.1) 0.82 (0.1) �

Fig. 11. C metric values represented by means of boxplots for the real-world problem instance of the Nissan Pathfinder engine.
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engines is divided into 378 operation tasks, although we have grouped these operations into 140 different tasks. For more
details about the Nissan instance the reader is referred to [5], where all the tasks and the time and area information are set.

From all the algorithms implemented, we have selected MORGA 0.3, MACS 0.2, and MACS 0.2 no-heur as well as the
NSGA-II approach to tackle this problem instance. The C metric mean and standard deviation values are collected in Table
7. They are also represented by means of boxplots in Fig. 11. For a better comparison, Table 8 provides the results of the Wil-
coxon statistical test. Besides, those values for the HVR, GD and the number of different solutions generated are shown in
Table 9.

We can observe that MACS 0.2 no-heur is the ‘‘best algorithm” considering almost all the metrics. With respect to the C
metric, the solutions generated by both MACS 0.2 versions dominate almost all MORGA solutions. As expected, MACS 0.2 no-
heur attains better solutions than MACS 0.2 according to that metric (Table 7 and Fig. 11) and to the visualisation of the Par-
eto fronts in Fig. 12. Furthermore, MACS 0.2 no-heur is significantly ‘‘better” than the former two algorithms according to the
dominance probability (Table 8). The analysis of NSGA-II shows the same conclusions than in the previous section. Its Pareto
fronts are quite poor in terms of diversity and extension, although the only two pseudo-optimal Pareto solutions composing

Table 8
Averaged dominance probability and statistical significance for the Nissan real-world problem.

NSGA-II MORGA 0.3 MACS 0.2 MACS 0.2 (no-heur)

NSGA-II � 0 0 0
= = =

MORGA 0.3 0 � 0.1 0
= � �

MACS 0.2 0 0.9 � 0
= + �

MACS 0.2 (no-heur) 0.1 0.9 0.8 �
= + +

Table 9
Mean and standard deviation �xðrÞ of the unary metric values for the Nissan real-world problem
instance.

Method Nissan with cycle time = 180

# dif_sols GD HVR

NSGA-II 1.2 (0.4) 0.05 (0.11) 0.3446 (0.03)
MORGA 0.3 7.6 (0.66) 1.13 (0.22) 0.8758 (0.01)
MACS 0.2 7.6 (0.92) 1.12 (0.23) 0.8999 (0.01)
MACS 0.2 (no-heur) 7.6 (1.02) 0.88 (0.17) 0.9258 (0.01)

Fig. 12. Pareto fronts for the real-world problem instance of Nissan.
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the aggregated Pareto front (see Fig. 12) are not obtained by the rest of algorithms. There is no significant difference among
NSGA-II and the remainder according to the Wilcoxon test.

In Table 9, the values of the HVR metric show a good convergence of MACS no-heur. MORGA 0.3 and MACS 0.2 obtain a
similar behaviour in terms of convergence to the pseudo-optimal Pareto front, with slightly better values for the latter, but at
the cost of having a larger deviation. The bad HVR value of NSGA-II and the low number of found solutions can be also ob-
served, although it shows the best GD value.

To sum up, and happened with the other problem instances, MACS no-heur outperforms NSGA-II, MORGA 0.3, and MACS
0.2 considering globally all the metrics. The statistical test for the dominance probability and the graphical Pareto front rep-
resentation also validate this conclusion. The MACS algorithm is, in general, more suitable for the Nissan problem instance
than NSGA-II and MORGA.

5. Concluding remarks

We have proposed new multiobjective constructive approaches to tackle the TSALBP-1/3. The performance of two solu-
tion procedures based on the MACS and MORGA algorithms with different design configurations have been presented and
analysed. A multiobjective random search algorithm and a NSGA-II implementation were considered as baselines. Bi-objec-
tive variants of 10 assembly line problem instances have been used in the study as well as a real problem from a Nissan
industrial plant.

From the obtained results we have concluded that the best yield to solve the problem globally corresponds to the MACS
algorithm. Moreover, the use of a variant without heuristic information has reached even better results for most of the prob-
lem instances tackled, including the Nissan one. These conclusions were confirmed using a Wilcoxon test to analyse the sta-
tistical significance of the dominance probability of the algorithms. When we compared the results of all the MACS and
MORGA runs, we noticed that both algorithms work better when we use 0.2 as a value for the q0 parameter in the MACS
transition rule, and 0.3 as c control parameter in the MORGA RCL. Therefore, it is proven there is a need for increasing
the diversity to obtain better results.

Several ideas for future developments arise from this work: (i) due to the features of our constructive procedures we can
apply a local search to increase the performance of the algorithms, (ii) the merge of different search behaviours in just one
multi-colony algorithm could be useful because of the impossibility of reaching the whole true Pareto front surface by a sin-
gle algorithm, (iii) the consideration of other MOACO algorithms like P-ACO [21] or BicriterionMC [36] to solve the problem
can be used to check if a different search behaviour allows us to improve the results, and (iv) the inclusion of user prefer-
ences to guide the multiobjective search process in the direction of the expert needs could be used [14,13].
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a b s t r a c t

Most of the decision support systems for balancing industrial assembly lines are designed to report a
huge number of possible line configurations, according to several criteria. In this contribution, we tackle
a more realistic variant of the classical assembly line problem formulation, time and space assembly line
balancing. Our goal is to study the influence of incorporating user preferences based on Nissan automo-
tive domain knowledge to guide the multi-objective search process with two different aims. First, to
reduce the number of equally preferred assembly line configurations (i.e., solutions in the decision space)
according to Nissan plants requirements. Second, to only provide the plant managers with configurations
of their contextual interest in the objective space (i.e., solutions within their preferred Pareto front
region) based on real-world economical variables. We face the said problem with a multi-objective ant
colony optimisation algorithm. Using the real data of the Nissan Pathfinder engine, a solid empirical
study is carried out to obtain the most useful solutions for the decision makers in six different Nissan sce-
narios around the world.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

An assembly line is made up of a number of workstations, ar-
ranged in series and in parallel, through which the work progresses
on a product flows, thus composing a flow-oriented production
system. Production items of a single type (single-model) or of sev-
eral types (mixed-model) visit stations successively, where a sub-
set of tasks of known duration are performed on them. Assembly
lines are of great importance in the industrial production of high
quantity standardised commodities and more recently even gained
importance in low volume production of customised products
(Boysen, Fliedner, & Scholl, 2008).

The assembly line configuration involves determining an opti-
mal assignment of a subset of tasks to each station of the plant ful-
filling certain time and precedence restrictions. In short, the goal is
to achieve a grouping of tasks that minimises the inefficiency of the
line or its total downtime and that respects all the constraints im-
posed on the tasks and on the stations. Such problem is called
assembly line balancing (ALB) (Scholl, 1999) and arises in mass
manufacturing with a significant regularity both for the first-time
installation of the line or when reconfiguring it. It is thus a very

complex combinatorial optimisation problem (known to be NP-
hard) of great relevance for managers and practitioners.

Due to this reason, ALB has been an active field of research over
more than half a century and a large branch of research has been
developed to support practical assembly line configuration plan-
ning by suited optimisation models. The first family of ‘‘academic”
problems modelling this situation was known as Simple Assembly
Line Balancing Problems (SALBP) (Baybars, 1986; Scholl, 1999), and
only considers the assignment of each task to a single station in
such a way that all the precedence constraints are satisfied and
no station workload time is greater than the line cycle time. When
other considerations are added to those of the SALBP family, the
problems are known in the literature by the name of General
Assembly Line Balancing Problems (GALBP). An up-to-date analysis
of the bibliography and available state of the art procedures can be
found in Scholl and Becker (2006) for the SALBP family of prob-
lems, and in Becker and Scholl (2006) for the GALBP ones. More-
over, a generic classification scheme for the field of ALB
considering many different variants is also provided in a recent pa-
per by Boysen, Fliedner, and Scholl (2007).

In spite of the great amount of proposed SALBP extensions,
there remains a gap between requirements of real configuration
problems and the status of research (Boysen et al., 2008). This
gap could be due to different reasons making the mathematical
models far from real-world assembly systems: (i) the consideration
of a single or only a few SALBP practical extensions at a time, when
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real-world assembly systems require a lot of these extensions to be
considered simultaneously; (ii) their formulation as a single-objec-
tive problem, when the overall assembly objectives (such as pro-
duction rate, cost of operation, buffer space, etc.) are of a multi-
dimensional character (Malakooti & Kumar, 1996); and (iii) the
existence of several interesting characteristics present in practical
line balancing problems are still not covered by any of the existing
models.

As a result of the observation of the ALB operation in an auto-
motive Nissan plant from Barcelona, Spain, Bautista and Pereira re-
cently proposed a SALBP extension aiming to take a step ahead on
the latter issue. They considered an additional space constraint to
get a simplified but closer version to real-world problems, defining
the time and space assembly line balancing problem (TSALBP)
(Bautista & Pereira, 2007). TSALBP presents eight variants depend-
ing on three optimisation criteria: m (the number of stations), c
(the cycle time), and A (the area of the stations). In this paper,
we tackle the 1/3 variant of the TSALBP, which tries to jointly min-
imise the number of stations and their area for a given product cy-
cle time, a complex and realistic multi-criteria problem in the
automotive industry.

Multi-criteria optimisation (Chankong & Haimes, 1983; Ehrgott,
2000; Gal, Stewart, & Hanne, 1999; Steuer, 1986) is a major area of
research and applications in operations research (OR) and manage-
ment sciences. Multi-objective optimisation (MOO) problems as
the said TSALBP variant are frequently encountered in practice.
There are often different criteria measuring the ‘‘quality” of a solu-
tion and it is not possible to select a most important criterion or to
combine them into a single-objective function. In the context of
ALB, and in relation with the TSALBP-1/3, consider for example a
plant manager that has to define an assembly line configuration
or to balance again an existing line to satisfy a given annual pro-
duction rate (i.e., fulfilling a specific cycle time) with a clear space
restriction related to the available place in her or his current plant.
Each possible valid line configuration satisfying the cycle time will
require a different number of stations – that the decision maker
(DM) also wants to minimise as much as possible to reduce the
staff costs- and will occupy a concrete area – that must also be
minimised for obvious industrial cost reasons-. In such case, com-
pany managers would like to have an algorithm to compute a set of
good solutions (instead of a single solution) with various trade-offs
between the two different criteria (i.e., the number of stations and
the area of these stations in the assembly line configuration), so
they can select the most desirable solution after inspecting the var-
ious alternatives.

Ant Colony Optimisation (ACO) (Dorigo & Stützle, 2004; Mullen,
Monekosso, Barman, & Remagnino, 2009) is a metaheuristic ap-
proach for solving hard combinatorial optimisation problems. The
inspiring source of ACO is the pheromone trail laying and following
behaviour of real ants which use pheromones as a communication
medium. In analogy to the biological example, ACO is based on the
indirect communication of a colony of simple agents, called (artifi-
cial) ants, mediated by (artificial) pheromone trails. The pheromone
trails in ACO serve as a distributed, numerical information which
the ants use to probabilistically construct solutions to the problem
being solved and which they adapt during the algorithm’s execu-
tion to reflect their search experience. Some examples of applica-
tions of ACO algorithms to production and management science
are assembly line balancing, production, project scheduling, and
flowshop optimisation (Abdallah, Emara, Dorrah, & Bahgat, 2009;
Bautista & Pereira, 2007; Behnamian, Zandieh, & Fatemi Ghomi,
2009; Merkle, Middendorf, & Schmeck, 2002; Sabuncuoglu, Erel, &
Alp, in press). Recently, multi-objective ant colony optimisation
(MOACO) algorithms have been shown as powerful search tech-
niques to solve complex MO NP-hard problems (Angus & Wood-
ward, 2009; García Martínez, Cordón, & Herrera, 2007).

In Chica, Cordón, Damas, and Bautista (2010) Chica, Cordón, Da-
mas, Bautista, and Pereira (2008b), we proposed the use of MOACO
to solve the TSALBP-1/3. In those contributions, our novel procedure
based on the Multiple Ant Colony System (MACS) algorithm (Barán &
Schaerer, 2003) clearly outperformed the well-known NSGA-II (Deb,
Pratap, Agarwal, & Meyarivan, 2002), the state-of-the-art evolution-
ary multi-objective optimisation (EMO) algorithm.

Nevertheless, although with the latter approach we managed to
obtain a successful automatic procedure to solve the problem, pro-
viding very good approximations of the ‘‘efficient frontier”, it still
presents an important drawback. Sometimes, in real-world prob-
lems, the experts do not want to evaluate so many solutions and
they feel much more comfortable on dealing with a smaller num-
ber of the most interesting solutions. This can be done by locating
the search in a specific Pareto front region or just by considering a
smaller Pareto set. In our problem, due to its realistic nature and
the absence of any information on DM preferences, large Pareto
sets with a huge number of different solutions are not suitable.
On the one hand, plant managers can be overwhelmed with the
excessive number of solutions found in the efficient solutions set,
many of them being different ALB configurations sharing the same
objective values. On the other hand, they can be only interested in
a local objective trade-off corresponding to a specific portion of the
efficient frontier collecting those most appealing solutions to their
industrial context. Any other efficient solution, although theoreti-
cally valid for the problem-solving in any context, would not be
interesting for them.

Therefore, the need of using explicit knowledge allowing us to
guide the multi-objective search and to get the more interesting
solutions for the plant DM in charge of the ALB in our problem be-
comes clear. As we are specifically interested on the TSALBP in
automotive industry scenarios, in the current contribution we
aim to extend the latter proposal for the TSALBP-1/3 based on
MACS by incorporating problem-specific information provided by
the Nissan plant experts. To do so, we introduce some novel proce-
dures for incorporating preference information into a MOACO algo-
rithm in order to simplify the DM task. These models will use an a
priori approach to incorporate the Nissan managers’ expertise elic-
ited in the form of preferences both in the decision variable and the
objective space. Notice that, this comprises a novelty since a priori
approaches have been less used in MOACO, EMO and other meta-
heuristics for MOO (Coello, Lamont, & Van Veldhuizen, 2007; Jones,
Mirrazavi, & Tamiz, 2002) than, for instance a posteriori ap-
proaches, which postpone the inclusion of preferences until the
search process is finished. Nevertheless, we should note that the
presented procedures are generic and can be applied without prob-
lems to any other TSALBP domain or even to other kinds of MOO
problems.

Our preferences in the decision variable space will aim to dis-
criminate between those promising line configurations having
the same objective values, i.e., the same trade-off between the
number of stations and their area (some preliminary work was
done in Chica, Cordón, Damas, Bautista, & Pereira (2008a)). In the
same conditions, a Nissan DM would prefer a solution with a more
balanced stations configuration since it provides less human re-
sources’ conflicts. In this way, the efficient solutions set size will
be reduced by providing the plant manager with only a single line
configuration for each objective value trade-off. Additionally, we
will show how the use of this kind of preference information also
increases the quality of the Pareto front approximation by increas-
ing the MACS convergence capability.

Meanwhile, the preferences in the objective space will deal with
an even more important task to ease the Nissan plant manager’s
task. It will aim to reduce the efficient frontier size by focusing only
on the most interesting specific portion to the DM according to the
economic factors of the country where the Nissan plant is located.
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These preferences will change with respect to the final location of
the industrial plant (scenario). Hence, we will use six real scenarios
around the world and two distinct approaches to incorporate pref-
erences in the objective space into the MACS algorithm: (a) by
units of importance, and (b) by setting a set of goals (some preli-
minary work in the latter approach was done in Chica, Cordón, Da-
mas, & Bautista (2009)). They will be based on two preference
incorporation models existing in EMO (Branke, Kaubler, & Sch-
meck, 2001; Deb, 1999).

Our MACS algorithm with preferences will be tested on both
academic real-like TSALBP-1/3 instances and a real-world Nissan
instance which has specific peculiarities with respect to the others.
The latter corresponds to the assembly process of the Nissan Path-
finder engine, developed at the Nissan industrial plant in Barcelona
(Spain). Real scenarios and cost data are used to test the behaviour
of the algorithms.

The paper is structured as follows. In Section 2, the problem for-
mulation, our MOACO proposal, and the experiments configuration
are explained. Then, the preferences in the decision space to filter
equally-preferred solutions and their experimentation are detailed
in Section 3. In Section 4, we introduce the need of incorporating
more advanced preferences in the objective space and we check
out the performance of the resulting algorithms on different Nissan
scenarios. Finally, some concluding remarks are discussed in Sec-
tion 5.

2. Preliminaries

The problem description and our MOACO approach to the
TSALBP-1/3 are presented in the first two sections. In the third sec-
tion, a brief summary on the usual way to incorporate preferences
in MOO is provided. Besides, we present the experimental setup
and the tackled problem instances.

2.1. The time and space assembly line balancing problem

The manufacturing of a production item is divided up into a set
V of n tasks. Each task j requires an operation time for its execution
tj > 0 that is determined as a function of the manufacturing tech-
nologies and the resources employed. Each station k is assigned
to a subset of tasks Sk (Sk # V), called its workload. Each task j
must be assigned to a single station k.

Each task j has a set of direct predecessors, Pj, which must be
accomplished before starting it. These constraints are normally
represented by means of an acyclic precedence graph, whose ver-
tices stand for the tasks and where a directed arc (i, j) indicates that
task i must be finished before starting task j on the production line.
Thus, if i 2 Sh and j 2 Sk, then h 6 k must be fulfilled. Each station k
presents a station workload time t(Sk) that is equal to the sum of
the tasks’ lengths assigned to the station k.

In general, SALBP (Scholl, 1999) focus on grouping together the
tasks belonging to the set V in workstations by an efficient and
coherent way. In short, the goal is to achieve a grouping of tasks
that minimises the inefficiency of the line or its total downtime
satisfying all the constraints imposed on the tasks and on the sta-
tions. The literature includes a large variety of exact and heuristic
problem-solving procedures as well as metaheuristics applied to
the SALBP (Baybars, 1986; Talbot, Patterson, & Gehrlein, 1986).

However, this SALBP does not model the real industry situation
in an accurate way. For example, the need of introducing space
constraints in assembly lines design can be easily justified since:
(i) there are some constraints to the maximum allowable move-
ment of the workers that directly limit the length of the worksta-
tion and the available space, (ii) the required tools and
components to be assembled should be distributed along the sides

of the line so, if several tasks requiring large areas for their supplies
are put together, the workstation would be unfeasible; and (iii) the
change of product which will need to be assembled keeping the
same production plant (line reconfiguration) sometimes causes
additional requirements of space.

A spatial constraint may be considered by associating a required
area aj to each task j and an available area Ak to each station k that,
for the sake of simplicity, we shall assume to be identical for every
station and equal to A:A = maxk2{1. . .n} {Ak}. Thus, each station k re-
quires a station area a(Sk) that is equal to the sum of areas required
by the tasks assigned to station k.

This leads us to a new family of problems called TSALBP in Bau-
tista and Pereira (2007). It may be stated as: given a set of n tasks
with their temporal tj and spatial aj attributes (1 6 j 6 n) and a pre-
cedence graph, each task must be assigned to a single station such
that: (i) every precedence constraint is satisfied, (ii) no station
workload time (t(Sk)) is greater than the cycle time (c), and (iii)
no area required by any station (a(Sk)) is greater than the available
area per station (A).

TSALBP presents eight variants depending on three optimisa-
tion criteria: m (the number of stations), c (the cycle time), and A
(the area of the stations). Within these variants there are four mul-
ti-objective problems and we will tackle one of them, the TSALBP-
1/3. It consists of minimising the number of stations m and the sta-
tion area A, given a fixed value of the cycle time c. We chose this
variant because it is quite realistic in the automotive industry.
The main supporting reasons for our decision were: (i) the annual
production of an industry plant is usually set by some market
objectives specified by the company. This rate and other minor as-
pects influence the specification of a fixed cycle time c, so the
assembly line needs to be balanced again taking into account the
new cycle time. (ii) When we set the cycle time c, we need to
search for the best number of stations m because the factory must
achieve the demand with the minimum number of workers. Fur-
thermore, searching for the station area is a justified objective be-
cause it can reduce the workers’ movements and the components
and system tools transfers. (iii) Some values for the objective m,
the number of stations, are not allowed in real conditions because
in automotive factories the number of workers are decided in ad-
vance and some changes can occur during a project or periods of
time. (iv) Not only the number of stations but also some station
areas may be unreachable. Undesirable areas are those which are
too small or too large because they can generate disturbing condi-
tions for workers or annoying and unnecessary movements among
the stations, respectively.

2.2. A MACS algorithm to solve the TSALBP-1/3 variant

In this section, we review our ACO proposal for solving the
TSALBP-1/3. It is based on the MACS algorithm, which was pro-
posed by Barán and Schaerer (2003) as an extension of Ant Colony
System (Dorigo & Gambardella, 1997) to deal with multi-objective
problems. The complete MACS description can be found in Barán
and Schaerer (2003), and our proposal is detailed in depth in Chica
et al. (2010).

MACS uses one pheromone trail matrix, s, and several heuristic
information functions, gk (in our case, g0 for the duration time of
each task tj, and g1 for their area aj). The transition rule is slightly
modified to attend to both heuristic information functions. Since
MACS is Pareto-based, the pheromone trails are updated using
the current non-dominated set of solutions (Pareto archive).

In our problem, although one solution is an assignment of dif-
ferent tasks to different stations, its construction cannot be per-
formed similarly to other assignment problems because the
number of stations is not fixed. Indeed, this is a variable to be min-
imised and we have to deal with the important issue of satisfying
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precedence constraints. Using a constructive and station-oriented
approach (as usually done for the SALBP, Scholl & Becker, 2006)
we can face the precedence problem. Thus, our algorithm will open
a station and select one task among every candidate till a stopping
criterion is reached. Then, a new station is opened to be filled.

We analysed different settings for the heuristic information but
the experiments showed that the performance of the algorithm is
better if it is not considered (see Chica, Cordón, Damas, Bautista,
& Pereira, in press). Therefore, the new preference incorporation
proposals in this contribution are based on a MACS algorithm only
guided by the pheromone trail information.

This pheromone trail information has to memorise which tasks
are the most appropriate to be assigned to a station. Hence, pher-
omone has to be associated to a pair (stationk, taskj), k = 1, . . .,m,
j = 1, . . .,n, so our pheromone trail matrix has a bi-dimensional nat-
ure. We have used two station-oriented single-objective greedy
algorithms to obtain the initial pheromone value s0.

In addition, we introduced a new mechanism in the construc-
tion algorithm to close a station according to a probability distribu-
tion, given by the filling rate of the station. It helps the algorithm
reach more diverse solutions from closing stations by a probabilis-
tic process:

pðclosingÞ ¼
P
8i2Sk

ti

c

This probability is computed at each construction step so its value is
progressively increased. Once it has been computed, a random
number is generated to decide if the station is closed or not at that
time.

Furthermore, there is a need to look for a better intensification-
diversification trade-off. This objective can be achieved by means of
introducing different filling thresholds associated to the ants that
build the solution, so the solution construction procedure is modi-
fied. In this way, before deciding the closing of the station, the ant’s
filling threshold must be overcome. Thus, the higher the ant’s
threshold, the more filled the station will be because there will be
less possibilities to close the station during its construction process.

In this way, the ants population will show a highly diverse
search behaviour, allowing the algorithm to properly explore the
different parts of the optimal Pareto front by spreading the gener-
ated solutions.

2.3. Handling preferences in MOO

There have been much work on regarding how and when to
incorporate decisions from the DM into the search process. Numer-
ous techniques have been applied to solve multi-criteria problems
considering the DM domain knowledge such as outranking rela-
tions, utility functions, preference relations, or desired goals (Chan-
kong & Haimes, 1983; Ehrgott, 2000).

One of the most important question is the moment when the
DM is required to provide preference information. There are basi-
cally three ways of doing so (Ehrgott, 2000):

� Prior to the search (a priori approaches): There is a considerable
body of work in OR involving approaches performing prior
articulation of preferences. The main difficulty and disadvan-
tage of the approach is finding this preliminary global prefer-
ence information.
� During the search (interactiveapproaches): Interactive approaches

have been normally favoured by researchers because of the DM
can get better perceptions influenced by the total set of ele-
ments in a situation or perhaps, some preferences cannot be
expressed analytically but with a set of beliefs. Thus, the OR
community has been working with this approach for a long
time.

� After the search (a posteriori approaches): The main advantage of
incorporating preferences after the search is that no utility
function is required for the analysis. However, many real-world
problems are too large and complex to be solved using this
technique, or even the number of elements of the Pareto opti-
mal set that tends to be generated is normally too large to allow
an effective analysis from the DM.

Concerning the field of EMO and other metaheuristics for MOO,
most of the existing work is mainly based on a posteriori ap-
proaches where the only intervention of DMs is done once the
algorithm has reached the best possible approximation of the effi-
cient solutions set. However, this is sometimes problematic as the
process of selecting the most convenient set of solutions from a
complete efficient set is not particularly trivial. In most of the
cases, the DM is unable to choose a solution among the hundreds
or thousands computed (Miettinen, 1999).

Nevertheless, in the last few years we can find several EMO ap-
proaches based on eliciting goal information prior to the search (a
priori approaches) (Cvetkovic & Parmee, 2002; Deb & Branke,
2005) as well as handling preferences during the search (interac-
tive approaches, as done for instance in Phelps & Koksalan
(2003), and in Molina, Santana, Hernández-Díaz, Coello, & Cabal-
lero (2009)), which are becoming more and more usual and impor-
tant. A comprehensive survey on the incorporation of preferences
in EMO is studied in Coello et al. (2007). In addition, some EMO
researchers are starting to define a global framework considering
multi-criteria decision making (MCDM) as a conjunction of three
components: search, preference trade-offs, and interactive visual-
isation (Bonissone, 2008).

2.4. Experimental setup and problem instances

The problem instances and the parameter values used in this
contribution are detailed in the next two sections.

2.4.1. Problem instances
Three real-like problem instances with different features have

been selected for the experimentation: barthol2, barthold,
and weemag. Originally, these instances were SALBP-1 instances1

only having time information. However, we have created their area
information by reverting the task graph to make them bi-objective
(as done in Bautista & Pereira (2007)).

In addition, we have considered a real-world problem corre-
sponding to the assembly process of the Nissan Pathfinder engine,
developed at the Nissan industrial plant in Barcelona (Spain).2 The
assembly of these engines is divided in 378 operation tasks

Table 1
Used parameter values.

Parameter Value Parameter Value

Number of runs 10 Number of ants 10
Maximum run

time
900 s b 2

PC specifications Intel
Pentium™ D

q 0.2

2 CPUs at
2.80 GHz

q0 0.2

Operating system CentOS Linux
4.0

Ants’
thresholds

{0.2,0.4,0.6,0.7,0.9}

GCC 3.4.6 (2 ants per
threshold)

1 Available at: http://www.assembly-line-balancing.de.
2 The problem has been simplified by merging the data of the different kinds of

engines that are assembled in the industrial cell.
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(grouped into 140). For more details about the Nissan instance, the
interested reader is referred to Bautista and Pereira (2007), in
which all the tasks and their time and area information are
specified.

2.4.2. Parameter values
The initial MACS algorithm and all its variants with preferences

which will be introduced in the next two sections have been run 10
times with 10 different seeds for each of the three real-like in-
stances and the Nissan instance. Every considered parameter value
is shown in Table 1.

3. Preferences in the decision space to reduce the number of
efficient solutions for the TSALBP

We have included preferences in the decision space to discrim-
inate between those solutions having the same objective values,
i.e., the same values for the number of stations and their area (no-
tice that, some preliminary work on this issue was done in Chica
et al. (2008a)). First, the description of these DM preferences, based
on the Nissan factories observation, is given. Then, some experi-
mentation is done and the behaviour of the MACS variants with
and without preferences is analysed.

3.1. Description of the used preferences for an idle module-phase of
production

Although the most usual application of preferences is aimed to
guide the search to the specific Pareto front regions which are
interesting for the DM (see Section 4), we also considered that
applying them on the decision variable space could be beneficial
for our framework.

Despite it is convenient to have a set of possible useful assembly
line configurations for the plant (see for instance, Dar-El & Rubi-
novitch, 1979), the reduction of the number of solutions presenting
the same objective values is highly justified in the TSALBP. In this
way, it will relieve managers for the tiring task of checking an ex-
tremely large number of possible solutions for the line balancing of
their plant.

Thus, it is important to establish some rules, based on the ex-
pert preferences, to choose among those solutions the most appro-

priate one according to the specific industrial context. This
addition of domain knowledge (using an a priori approach) (Bonis-
sone, Subbu, Eklund, & Kiehl, 2006; Coello et al., 2007) will allow us
to derive a Pareto set composed of a smaller number of more likely
solutions for the final user as well as it induces a better conver-
gence to the actual efficient frontier as a collateral effect.

In view of our observations of real Nissan plants, we can dis-
criminate between two solutions (assembly line configurations)
with the same cycle time, number of stations and area (c, m and
A values) changing the original dominance relation by considering
the following preferences based on Nissan domain knowledge:

(a) The workload of the plant must be well-balanced in every
station. For m stations, all the station workload times t(Sk)
for k = 1, . . .,m are alike. Due to this information, and consid-
ering the same number of employees per station, a well-bal-
anced plant provides less human resources’ conflicts.
Likewise, it eliminates the need of programming shifts
among the workers of the different stations.

(b) The needed space for toolboxes and other worker’s instru-
ments must be as similar as possible. This preference aims
to offer solutions in which every worker has the same work-
ing conditions. If we reduce the extra effort in movements
and the crowding feeling, that will eliminate industrial
disputes.

As can be seen, these industrial concepts have not got the
importance of the m and A objectives. Thus, considering them as
additional criteria and establishing a lexicographic order is not
appropriate for the problem. However, the ‘‘know-how” repre-
sented by (a) and (b) can be formulated by means of preference
measures allowing us to establish a priority between similar
solutions:

PtðrÞ ¼
Xm

k¼1

ðc � tðSkÞÞ2; PaðrÞ ¼
Xm

k¼1

ðA� aðSkÞÞ2

where r represents a solution (assembly line configuration) with
known c, A and m values. Sk is the set of tasks assigned to the k-
th station in r.

Bearing in mind these measures, the following preferences-
based dominance relations can be considered:

Table 2
Unary metrics for barthol2, barthold, Nissan, and weemag instances.

Mean (standard deviation)

barthol2 barthold Nissan weemag

Number of non-dominated solutions
MACS 13.5 (2.84) 12 (1.41) 571.9 (81.08) 15.6 (4.39)
MACS preferences 10.8 (1.47) 12 (1.18) 7.2 (0.75) 7.9 (1.22)

Number of different Pareto front solutions
MACS 12.8 (2.79) 11 (0.89) 7.6 (1.02) 8.2 (1.54)
MACS preferences 10.8 (1.47) 12 (1.18) 7.2 (0.75) 7.8 (1.17)

Metric S
MACS 391719.09 (1204.82) 725348.19 (2127.41) 8889.75 (0.65) 65148.1 (5.66)

MACS preferences 391410.59 (166.44) 726,088 (2202.85) 8864.45 (31.9) 65151.6 (17.49)

Metric M2*

MACS 10.86 (2.07) 9.49 (0.58) 6.88 (0.78) 7.46 (1.26)
MACS preferences 9.38 (1.2) 10.19 (0.97) 6.54 (0.65) 7.15 (1.06)

Metric M3*

MACS 61.99 (12.92) 407.91 (20.95) 21.12 (1.31) 24.61 (1)
MACS preferences 64.82 (6.56) 403.31 (23.33) 19.62 (2.63) 24.39 (1.62)

Number of applications of preferences-based dominance
MACS preferences 8.3 (3.02) 5.6 (2.88) 935.4 (231.36) 39.5 (18.19)
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Definition 1. A solution r1 is said to partially dominate (i.e., to be
more preferable for the plant DM than) another solution r2 with
respect to time – with both having identical c, A, and m values – if
Pt(r1) < Pt(r2).

Definition 2. A solution r1 is said to partially dominate (i.e., to be
more preferable for the plant DM than) another solution r2 with
respect to space – with both having identical c, A, and m values –
if Pa(r1) < Pa(r2).

Definition 3. A solution r1 is said to completely dominate (i.e., to
be totally preferable for the plant DM than) another solution r2

with respect to time and space – with both having identical c, A,
and m values – if: [Pt(r1) 6 Pt(r2)] ^ [Pa(r1) < Pa(r2)] _ [Pt(r1) <
Pt(r2)] ^ [Pa(r1) 6 Pa(r2)]

Of course, the decision between two solutions with different c, A
and m values is made by using the traditional dominance
relationship.

3.2. Experiments and analysis of results

Comparing different optimisation techniques empirically al-
ways involve the notion of performance and it is not an easy task.
Thus, we have used more than a single MOO performance index of
different kinds (as proposed in Zitzler, Thiele, Laumanns, Fonseca,
& Grunert da Fonseca (2003)): the number of total and different
(in the objective space) efficient solutions returned by each algo-
rithm, as well as the S, M2* and M3* metrics. S, the hypervolume
metric, measures the volume enclosed by the generated Pareto
front (it is the most used because it can determine the quality of
the obtained Pareto front in terms of both convergence and exten-
sion), M2* evaluates the distribution of the solutions, and M3* eval-
uates the extent of the obtained Pareto fronts3 (see Coello et al.
(2007) for a more detailed explanation on multi-objective perfor-
mance indices, classically called metrics). In addition, the number
of applications of the preferences-based dominance criterion is also
shown in Table 2.

On the other hand, we have considered the binary metric C
(Coello et al., 2007) to compare the obtained Pareto sets. Fig. 1
shows boxplots based on that metric which compare MACS with
and without preferences by calculating the dominance degree of
their respective generated efficient set approximations. Each rect-
angle contains four boxplots (from left to right, barthol2, bart-
hold, Nissan, and weemag) representing the distribution of the C
values for the ordered pair of algorithms. Each box refers to algo-
rithm A associated with the corresponding row (i.e., either MACS
with or without preferences) and algorithm B associated with the
corresponding column (i.e., the other one) and gives the fraction
of B covered by A (C(A,B)).

In the view of the obtained results, the preferences-based MACS
variant shows the best convergence and reduces the number of
non-dominated solutions with the same objective values as ex-
pected while keeping a similar value of different solutions. In some
cases, this reduction is quite important (see Nissan instance, from
an average of 571.9 solutions to 7.2), thus significantly reducing
the complexity of the desired solution selection for the plant DM.
We should also highlight that the real-world instance of Nissan
is the most appropriate to use preferences based on domain knowl-
edge. Indeed, the number of applications of the preferences-based
dominance is the highest one. Regarding the C metric analysis rep-
resented in Fig. 1, we can notice the similar convergence of MACS

with and without preferences. Nevertheless, the preferences-based
MACS variant seems to outperform MACS in some instances.

The graphical representation of the aggregated Pareto fronts4

for the barthol2 instance is shown in Fig. 2. We can arrive to the
same previous conclusions by observing it. MACS with and without
preferences achieve a very similar convergence, and even in some
cases the former gets slightly better results. We have only included
the obtained Pareto front for this problem instance for the lack of
space but pretty similar behaviours are obtained in the remainder.

Fig. 1. C metric values represented by means of boxplots for every problem
instance (from left to right, barthol2, barthold, Nissan, and weemag).

Fig. 2. The Pareto front for the barthol2 problem instance.

Table 3
Upper and lower bounds for the considered instances.

Problem instance m A

Lower Upper Lower Upper

barthol2 50 90 70 200
barthold 7 30 250 800
weemag 30 60 40 70
Nissan 16 40 16 40

3 M1* has not been applied because we do not know the optimal efficient frontier
for the problem instances.

4 In order to be able to properly show all the algorithm’s runs at one time, we
merged the approximations of the efficient frontiers it obtained in different runs
preserving only the global efficient solutions in an aggregated Pareto front.
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4. Advanced objective space preferences to guide the search to
the interesting TSALBP Pareto front region

In Section 3, we defined a criterion that allowed us to discrim-
inate among line configurations having the same values of c, m, and
A from an industrial point of view. However, this is a useful mech-
anism but unfortunately it is not enough because of the realistic
nature of TSALBP. Therefore, we should provide managers with
only interesting and helpful solutions for their specific industrial
context, instead of providing them with all the possible best solu-
tions for their problems regardless the location of the plant. We
will incorporate this explicit knowledge in the objective space
using the Nissan expertise, considering again an a priori approach.

In the next sections, we describe the Nissan problem-specific
knowledge as well as various EMO preference incorporation mech-
anisms which will be embedded in our MACS algorithm to handle a
priori preferences. Figures with the obtained Pareto fronts are in-
cluded to show and analyse the results of the experimentation in
every case.

4.1. Removing unattainable assembly line configurations from the
obtained Pareto sets

As said in Section 2.3, if explicit domain-knowledge is not con-
sidered, the multi-objective algorithm can provide a vast set of
solutions. Obviously, every efficient solution, although valid to
solve the tackled problem, is not always appropriate in every spe-
cific real industrial design context, as the MOO algorithm does not
take those conditions into account by itself while the DM does.
Hence, providing plant managers with some TSALBP solutions that
are known in advance not to be attainable or interesting for them is
meaningless. In our problem, line configurations with extreme val-
ues of m or A must be directly discarded because of the following
reasons:

1. An assembly line configuration with a very large number of sta-
tions and a small area may be dangerous with respect to the
industrial implantation. This behaviour can be explained since,
for a single assembly line, the management of a high number of
employees can negatively condition the near future. Staff man-
agement is even more complicated in our problem context, the
automotive industry. On the other hand, solutions having a low
number of stations with a large area are prone to be problem-
atic when assembly lines need to be restarted and the absentee-
ism level is appreciable.

2. If we consider the value of the area, the same extreme values
must be avoided. Industrial configurations with an extremely
high area for the stations will result in an inefficient process

since workers’ movements will take a lot of time. In contrast,
the end result of adopting configurations with a low area will
cause the workers’ discomfort and their productivity will
decrease.

Consequently, the obtained efficient set could be restricted to
upper and lower bounds for both objectives, the number of stations
m and their area A, prior to the run of the MOACO algorithm. None
of the solutions being out of these bounds will be considered in the
search process as they will never be useful line configurations for
the DM of the plant. Table 3 shows these bounds, set by plant’s
DMs, for our problem instances as well as for the real case of
Nissan.

4.2. Manufacturing location costs based on Nissan expert knowledge

When a DM has a set of possible solutions (the non-dominated
solutions of the Pareto set) one of the most used criterion to choose
one or a subset of them is taking into account their cost of devel-
opment. In order to define some cost variables in the TSALBP with
the latter aim, we will consider two types of operational costs:

� Labour cost: Associated to the employees (and consequently, to
the number of stations m). It is defined as an average labour cost
per employee in the manufacture of motor vehicles industry
group. Real data are used in this paper (taken from the Interna-
tional Labour Organisation5) and US dollars are considered as
currency. Other indicators related to labour costs might be used
as well (productivity, working hours, etc.).
� Industrial cost: Directly associated to the station maintenance

cost. In order to collect objective data, we consider that cost is
proportional to the station area A. In our case, it was collected
from the 2007 Industrial Space Across the World report.6 The
used units for industrial cost are US dollars per square feet in
one year.

Naturally, both operational costs are not fixed. Their differences
are subject to the location a manager wants to set up the factory.
Thus, one efficient solution (assembly line configuration) is not
well-defined enough if we do not take into account its possible
location, that is, there is not enough information for the MOACO
algorithm to search for the desired efficient solution set (Coello
et al., 2007). Since our real-world problem belongs to a Nissan
industrial plant, the candidate locations for the industrial solution
may perfectly be one of the actual Nissan factory locations (scenar-

Fig. 3. World locations of Nissan Motors factories.

5 http://laborsta.ilo.org.
6 Reported by Cushman & Wakefield Research, http://www.cushwake.com.
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ios). All the different Nissan Motors manufacturing locations all
over the world are red7-coloured in Fig. 3. We have selected six
of these countries to carry out our study, which together with their
real costs8 are shown in Table 4, in a descending order of labour
cost-productivity ratio.

From this data, industrial experts are able to set units of impor-
tance to the achievement of the two objectives, the number of sta-
tions m, and their area A, in order to define some preferences, or
even to set some goals depending on the countries the industrial
plant wants to be established. For example, in those countries
where the industrial cost (respectively, the labour cost) is quite
expensive, the objective m (respectively, the objective A) will be
more important to be minimised and hence its weight will be
higher.

4.3. Setting the plant manager preferences by means of units of
importance for the m and A objectives

Sometimes, it is quite difficult to exactly define the weighting of
different optimisation criteria, although the user has usually some
notions about what range of weightings might be reasonable. In
Branke et al. (2001), the authors present a simple and intuitive
way to integrate user’s preference into an EMO algorithm by defin-
ing linear maximum and minimum trade-off functions.

In the Guided Multi-Objective Evolutionary Algorithm (G-
MOEA) proposed by Branke et al. (2001), user preferences are taken
into account by modifying the definition of dominance. The ap-
proach allows the DM to specify, for each pair of objectives, maxi-
mally acceptable trade-offs. For example, in the case of two
objectives, the DM could define that an improvement by one unit
in objective f2 is worth a degradation of objective f1 by at most
a12 units. Similarly, a gain in objective f1 by one unit is worth at
most a21 units of objective f2.

In our case, an expert can provide our MACS algorithm for the
TSALBP-1/3 variant with the same units of importance for each

country location bearing in mind the costs of Table 4. A possible
definition for these units is shown in Table 5.

This information is then used to modify the traditional domi-
nance scheme as follows:

x � y$ ðf1ðxÞ þ a12f2ðxÞ 6 f1ðyÞ þ a12f2ðyÞÞ ^ ða21f1ðxÞ þ f2ðxÞ
6 a21f1ðyÞ þ f2ðyÞÞ

With this dominance scheme, only a part of the original Pareto front
remains non-dominated. This region is bounded by the solutions
where the trade-off functions are tangent to the optimal efficient
frontier. The original dominance criterion can be considered just
as a special case of the guided dominance criterion by choosing
a12 = a21 =1.

In the case of two objectives, as ours, the guided dominance cri-
terion corresponds to the standard dominance principle together
with a suitably transformed objective space. It is thus sufficient
to replace the original objectives with two auxiliary objectives
X1 and X2 and use them together with the standard dominance
principle (Deb & Branke, 2005):

X1 ¼ f1ðxÞ þ a12f2ðxÞ; X2 ¼ a21f1ðxÞ þ f2ðxÞ

In the case of the MACS algorithm, the transformation of the
dominance relation is as simple as in an evolutionary algorithm.
We have applied directly these modified relations to our scheme
with the units of importance of Table 5.

The obtained aggregated Pareto fronts are shown in Figs. 4 and
5 for every problem instance. The ‘‘MACS no specific location” line

Table 4
Labour cost, productivity, and industrial cost.

Country Labour cost
per hour ($)

Productivity Labour cost
biased by
productivity

Industrial
space ($/
sq.ft.year)

Spain 28.36 21.67 1.31 15.59
Japan 30.60 25.61 1.19 19.51
Brazil 8.79 7.99 1.10 10.05
UK 31.61 30.13 1.05 28.91
USA 30.39 35.29 0.86 11.52
Mexico 6.57 9.24 0.71 5.02

Table 5
Units of importance for both objectives.

Country Labour cost
(objective f1:m)

Industrial space cost
(objective f2:A)

Brazil 2 0.2
Spain 1.5 0.1
Japan 0 0
Mexico 0 0
USA 0.2 1.25
UK 0.2 3

Fig. 4. Pareto fronts for the barthol2 and barthold instances for different
scenarios using Branke’s units of importance alternative.

7 For interpretation of the references to colour in Fig. 3, the reader is referred to the
web version of this paper.

8 Productivity is measured as the Gross Domestic Product (purchasing power parity
(PPP) converted) per hour worked. This is the value of all final goods and services
produced within a nation in a given year, divided by the total annual hours worked
(source: Groningen Growth and Development Centre (University of Groningen)).
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shows the Pareto front achieved by the MACS algorithm without
considering any preference information (i.e., units of importance
in this case). This line also corresponds to the case of Japan and
Mexico, which have no discrimination between objectives (see Ta-
ble 5). The other lines show the MACS outputs with the different
units of importance of Brazil, Spain, UK, and USA.

The main idea we get from the observation of the figures is the
correct focus on a different efficient frontier region depending on
the scenario and its weights of importance. It can be clearly seen
how a plant manager from UK will not obtain the same solutions
than another from Brazil or Spain in every problem instance. How-
ever, depending on the instance, the features of the Pareto fronts
for the same scenario can change. For example, the USA scenario
gets much more solutions and a wider efficient solution set in
the barthol2 instance than in weemag. Thus, to get a more fine-
grained front it is necessary to study the specific instance in depth
and to set different units of importance for each of them.

Generally, Brazil and UK scenarios are more interested in the
extremes of the Pareto fronts since their units of importance are
clearly towards one objective (as stated, that happens because of
the high difference between the costs associated to each of the
two objectives). When the deviation of the units of importance
are high, as in these cases, the obtained approximations of the effi-
cient frontiers are narrower than in Spain and USA scenarios, in
which the area of interest is more vaguely described.

We should notice that, in some instances and locations, the
MACS variants with units of importance cannot achieve an equal
convergence to the efficient frontier than the ‘‘MACS no specific

location”, which is able to get some efficient solutions not provided
by the other MACS variants.

4.4. Setting the plant manager preferences by means of goals for the
objectives m and A

The aim of goal programming is to find a solution which will
minimise the deviation d between the achievement of the goal
and the aspiration target t (Romero, 1991). These goals can be used
as a set of preferences defined by the expert. There can be different
types of goal criteria, from which we have chosen four of the most
important, that is: less-than-equal-to (f(x) 6 t), greater-than-equal-
to (f(x) P t), equal-to (f(x) = t) and within a range (f(x) 2 [tl, tu]). For
example, we can set that the total area of an industry plant I could
be less than a number of specified squared metres or our number
of stations needs to be, if possible, within an interval of 100 and
200. In our specified scenarios, some preference relations can be
established by an expert, as done in Table 6 (Chica et al., 2009).
We have not considered the greater-than-equal-to relation since it
does not make sense in a minimisation problem like the TSALBP.

Deb proposed a technique to transform goal programming into
MOO problems which are then solved using an EMO algorithm
(Deb, 1999; Deb & Branke, 2005). The objective function of the
EMO algorithm attempts to minimise the absolute deviation from
the targets to the objectives. This approach was only used to per-
form the transformation from goals to objectives in Deb (1999).
However, it can be also used to incorporate preferences into any
MOO algorithm, like our MACS algorithm for the TSALBP-1/3
variant.

The goal programming problem can be modified to incorporate
preferences to the objective function by changing the original
objective functions as follows:

Goal Objective function

fi(x) 6 tj Minimise hfj(x) � tji
fi(x) P tj Minimise htj � fj(x)i
fi(x) = tj Minimise jfj(x) � tjj
fiðxÞ 2 tl

j; t
u
j

h i
Minimise

max tl
j � fjðxÞ

D E
; fjðxÞ � tu

j

D E� �

Here, the operator h i returns the value of the operand if it is posi-
tive, otherwise it gives value zero. We have translated our prefer-
ence goals for each country in Table 6 to modified objective
functions following the conversion of Deb’s approach. Since our de-
fined goals are generic, our six initial scenarios have been grouped
into only three, that is, Spain, Japan, and UK. Due to their economic
characteristics, Spain is focused on line configurations that give
more importance to the labour costs (objective m, the number of
stations), UK needs solutions with less industrial cost (i.e., objective

Fig. 5. Pareto fronts for the weemag and Nissan instances for different scenarios
using Branke’s units of importance alternative.

Table 6
Goal criteria for our objectives: number of stations m, and the area A (different
relational operators are used for each instance).

Problem instance Spain Japan UK

barthol2 m = 51 m = 60 m = 68
(=,6) A 6 120 A 6 100 A 6 90

barthold m 6 8 m 6 14 m 6 16
(2,6) A 6 650 A 6 500 A 6 400

weemag m 6 30 m 6 35 m 6 45
(6,2) A 2 [56,61] A 2 [46,51] A 2 [40,45]

Nissan+ m = 16 m = 23 m = 27
(=,=) A = 5.7 A = 3.8 A = 3
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A, the maximum area of the stations), and Japan is more interested
in a trade-off between the two costs. The Pareto fronts generated by
MACS with the goals in Table 6 for the different scenarios are shown
in Figs. 6 and 7.

These approximations of the efficient frontiers show how the
use of goals in the scenarios gets solutions belonging to different
areas. The solutions for the Spanish plant manager will have the
lowest number of stations while those for the British expert will
have the minimum station area of the whole Pareto front. In the
case of the Japan scenario, configurations with a good trade-off be-
tween number of stations and area are achieved. Only in barthol2

instance (Fig. 6), Japanese expert’s solutions overlap those for the
British expert. In the rest of instances, each scenario has its own
Pareto front area, distinct to the others.

Generally, the convergence of the algorithm with goal prefer-
ences is the same than in ‘‘MACS no specific location”, although
the pseudo-optimal solutions sometimes belongs to ‘‘MACS no spe-
cific location” and others to a location-specific MACS.

4.5. A comparison between both approaches

In Fig. 8, boxplots based on the C metric comparing first,
Branke’s approach-based MACS variants with the general MACS
(we remind that Japan-Mexico location used the MACS algorithm
without preferences) and second, MACS variants with Deb’s ap-
proach are shown. In the first boxplot, we can see how MACS for
Japan-Mexico gets a low number of solutions dominated by the
other algorithms. The reason is that MACS for Japan-Mexico

spreads its search along all the Pareto front region, and this is
not done by the other variants. In the second boxplot, the same re-
sults for the comparison among MACS variants using goals appear.
Although the big picture is the same, a slightly better convergence
of MACS without preferences with respect to MACS with prefer-
ences can be observed using Deb’s goals.

Again, bearing in mind Fig. 8, we can compare how the MACS
algorithm for a given location behaves in comparison with MACS
for the other locations. In this case, the result of both approaches
is quite similar in terms of convergence. Since the location-specific
MACS focuses on a different Pareto front region, its solutions will
not be dominated by the others and will dominate the rest of the
variants’ solutions.

Hence, we cannot affirm with no doubt which of both ap-
proaches performs better and they can be considered in principle
as alternative approaches. The introduction of preferences in the
objective space with units of importance, that is, Branke’s ap-
proach, drive the search towards the interesting solutions for the
expert with the same accuracy as Deb’s approach using goals does.
In addition, the number of solutions got by Branke and Deb’s ap-
proaches in the different scenarios depends on the problem
instance.

However, the main difference of both approaches is the repre-
sentation of the preferences, since to be able to define goals we
need to know exactly which values of our objectives we want to
achieve. In contrast, defining our preferences by means of units
of importance can be easily done and there is no need to know

Fig. 6. Pareto fronts for the barthol2 and barthold instances for different
scenarios using Deb’s alternative.

Fig. 7. Pareto fronts for the weemag and Nissan instances for different scenarios
using Deb’s alternative.
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the specific context of each problem instance. In this sense,
Branke’s approach would be easier to be applied for plant manager
DMs in real scenarios.

5. Concluding remarks

In this contribution, we have studied the inclusion of prefer-
ences based on domain knowledge to tackle the TSALBP-1/3, both
in the decision and objective spaces. A previous MOACO proposal
based on the MACS algorithm was extended and improved by
using them. Bi-objective variants of three real-like ALB problem in-
stances as well as a real problem from a Nissan industrial plant in
Spain have been used in an experimental study for six different
Nissan scenarios.

From the obtained results we have found out that the enrich-
ment of MACS with domain knowledge related to the obtaining
of a well-balanced configuration of the station workloads and areas
provides excellent results. The number of solutions in the Pareto
set having the same objective values is reduced, what simplifies
the selection of the best assembly line configuration for plant ex-
perts as they need to check a lower number of alternatives. More-
over, a better convergence is obtained with respect not to
considering the expert knowledge.

Two ways of incorporating preferences in the objective space to
achieve only the Pareto front region which has the desirable trade-
off between the number of stations m and their area A were applied
by means of units of importance and goals. The application of these

advanced preferences to the different Nissan scenarios was actu-
ally successful since they helped the MOACO algorithm to provide
efficient solutions sets only focused on the solutions that plant
managers are more interested on.

Some future works arise from this contribution: (i) more ad-
vanced ways of incorporating a priori expert knowledge in the
algorithm must be studied, and (ii) the use of interactive proce-
dures within the algorithm can also be beneficial (Hanne, 2000;
Molina et al., 2009).
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a b s t r a c t

Time and space assembly line balancing considers realistic multiobjective versions of the classical assem-
bly line balancing industrial problems involving the joint optimization of conflicting criteria such as the
cycle time, the number of stations, and/or the area of these stations. In addition to their multi-criteria
nature, the different problems included in this field inherit the precedence constraints and the cycle time
limitations from assembly line balancing problems, which altogether make them very hard to solve.
Therefore, time and space assembly line balancing problems have been mainly tackled using multiobjec-
tive constructive metaheuristics. Global search algorithms in general – and multiobjective genetic algo-
rithms in particular – have shown to be ineffective to solve them up to now because the existing
approaches lack of a proper design taking into account the specific characteristics of this family of prob-
lems. The aim of this contribution is to demonstrate the latter assumption by proposing an advanced
multiobjective genetic algorithm design for the 1/3 variant of the time and space assembly line balancing
problem which involves the joint minimization of the number and the area of the stations given a fixed
cycle time limit. This novel design takes the well known NSGA-II algorithm as a base and considers the
use of a new coding scheme and sophisticated problem specific operators to properly deal with the said
problematic questions. A detailed experimental study considering 10 different problem instances (includ-
ing a real-world instance from the Nissan plant in Barcelona, Spain) will show the good yield of the new
proposal in comparison with the state-of-the-art methods.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

An assembly line is made up of a number of workstations, ar-
ranged either in series or in parallel. These stations are linked to-
gether by a transport system that aims to supply materials to the
main flow and move the production items from one station to
the next one. Since the manufacturing of a production item is di-
vided into a set of tasks, a usual and difficult problem is to deter-
mine how these tasks can be assigned to the stations fulfilling
certain restrictions. The aim is to get an optimal assignment of sub-
sets of tasks to the stations of the plant. Moreover, each task re-
quires an operation time for its execution which is determined as
a function of the manufacturing technologies and the employed
resources.

A family of academic problems – called simple assembly line
balancing problem (SALBP) – was proposed to model this situation
(Baybars, 1986; Scholl, 1999). Taking this family as a base and add-
ing spatial information to enrich the problem, Bautista and Pereira

recently proposed a more realistic framework: the time and space
assembly line balancing problem (TSALBP) (Bautista & Pereira,
2007). It emerged due to the study of the specific characteristics
of the Nissan automotive plant located in Barcelona, Spain. Hence,
this framework considers an additional space constraint to become
a simplified version of real-world problems. In addition, TSALBP
formulations have a multi-criteria nature as many real-world prob-
lems. These formulations involve minimising three conflicting
objectives: the cycle time of the assembly line, the number of sta-
tions, and their area. One of these formulations is the TSALBP-1/3
variant which tries to minimise the number and the area of the sta-
tions for a given product cycle time. This is a very usual situation in
real-world factories as the said Nissan automotive plant where the
annual production is usually set by market objectives.

One of the most important aspects in TSALBP-1/3 is the set of
constraints, including the set of tasks precedences and the cycle
time limitation for each station. Since constructive metaheuristics
such as ant colony optimization (ACO) (Dorigo & Stützle, 2004)
have a good capability to deal with constrained combinatorial opti-
mization problems, they have demonstrated to be more appropri-
ate than non constructive procedures (Glover & Kochenberger,
2003) to solve the TSALBP-1/3 up to now. Specifically, in Chica,
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Cordón, Damas, Bautista, and Pereira (2008a, 2010) the authors
proposed the use of a multiobjective ACO algorithm based on the
multiple ant colony system (MACS) (Barán & Schaerer, 2003) for
this problem. The MACS algorithm obtained the best results in
comparison with a multiobjective random search, a multiobjective
randomised greedy algorithm, and a multiobjective genetic algo-
rithm (Chica et al., 2010). In particular, the latter method – a mul-
tiobjective extension of an existing genetic algorithm for SALBP
(Sabuncuoglu, Erel, & Tayner, 2000) based on the use of the well-
known NSGA-II (Deb, Pratap, Agarwal, & Meyarivan, 2002), the
state-of-the-art evolutionary multiobjective optimization (EMO)
algorithm – showed a very low performance.

Although single and multiobjective genetic algorithms have
been successfully applied to many different industrial engineering
problems as supply chain optimization, job shop scheduling, plant
design, and packing and distribution (Altiparmak, Gen, Lin, &
Paksoy, 2006; Dietz, Azzaro-Pantel, Pibouleau, & Domenech,
2008; Gao, Gen, Sun, & Zhao, 2007; Leung, Wong, & Mok, 2008) –
and even to assembly and disassembly line balancing (Kim, Kim,
& Kim, 1996; McGovern & Gupta, 2007; Simaria & Vilarinho,
2004) – the fact that genetic algorithms require careful designs
in order to deal with constrained optimization problems is well
known (Michalewicz, Dasgupta, Riche, & Schoenauer, 1996;
Santana-Quintero, Hernández-Díaz, Molina, Coello, & Caballero,
2010). Hence, the weak performance of the latter multiobjective
genetic algorithm when solving the TSALBP-1/3 was due to its
inability to deal with the inherent problem characteristics and
not to any drawback related to the EMO approach followed. In fact,
EMO could be a powerful tool to accurately solve this very complex
problem.

Therefore, in this contribution a new design of a multiobjective
genetic algorithm is developed, also based on NSGA-II but incorpo-
rating specific components to appropriately deal with the TSALBP
constraints. On the one hand, a new individual representation will
be proposed which is more faithful to the solution phenotype and
thus more appropriate for the problem solving. On the other hand,
novel crossover, repair, and mutation operators will be designed to
overcome the non constructive nature of genetic algorithms when
dealing with the TSALBP constraints. Finally, a diversity induction
mechanism will be incorporated to obtain well spread Pareto
fronts.

Different variants of the proposed EMO algorithm design, based
on the use of only some of the latter components, will be consid-
ered to ensure the actual need of the cooperative action of all of
them in order to achieve the best performance. The resulting vari-
ants of the algorithm will be compared among them and the best
performing ones will be benchmarked with the existing multiob-
jective genetic algorithm and the state-of-the-art algorithm to
solve the problem, MACS-TSALBP-1/3. We will consider nine
well-known problem instances from the literature for this experi-
mental study. Furthermore, the algorithms will be applied to a
real-world problem instance from the Nissan industry plant in Bar-
celona. In order to evaluate the performance of the different meth-
ods, a detailed analysis of results will be developed considering the
usual multiobjective performance indicators (metrics).

This paper is structured as follows. In Section 2, the formulation
of the TSALBP-1/3 and the existing methods to solve it, i.e. the
MACS algorithm, a multiobjective randomised greedy algorithm,
and the multiobjective extension of the genetic algorithm for SAL-
BP, are reviewed. Then, our novel multiobjective genetic algorithm
design for the problem is described in Section 3. The used perfor-
mance indicators and problem instances, the developed experi-
ments, and the analysis of the obtained results to test the
performance of the different algorithms are presented in Section
4. Finally, in Section 5, some concluding remarks and proposals
for future work are provided.

2. Preliminaries

This section is devoted to describe some required preliminaries
to properly understand the work developed in this contribution.
First, the formulation of the TSALBP-1/3 is introduced. Then, the
composition of the different metaheuristic methods which have
been proposed in the literature to tackle this complex industrial
engineering problem is briefly reviewed.

2.1. The time and space assembly line balancing problem

The manufacturing of a production item is divided into a set V of
n tasks. Each task j requires a positive operation time tj for its exe-
cution. This time is determined as a function of the manufacturing
technologies and the resources employed. Each task j can be only
assigned to a single station k. A subset of tasks Sk (Sk # V) is thus
assigned to each station k (k = 1,2, . . . ,m). They are referred as its
workload.

Every task j has a set of ‘‘preceding tasks’’ Pj which must be
accomplished before starting that task. These constraints are rep-
resented by an acyclic precedence graph, whose vertices corre-
spond to the tasks and where a directed arc hi, ji indicates that
task i must be finished before starting task j on the production line.
Thus, task j cannot be assigned to a station that is before the one
where task i was assigned.

Each station k presents a station workload time t(Sk) that is
equal to the sum of the tasks’ duration assigned to it. In general,
the SALBP (Baybars, 1986; Scholl, 1999) focuses on grouping these
tasks into workstations by an efficient and coherent method. In
short, the goal is to achieve a grouping of tasks that minimises
the inefficiency of the line or its total downtime satisfying all the
constraints imposed on the tasks and stations.

On the other hand, there is a real need of introducing space con-
straints in the assembly lines’ design because of two main reasons:
(a) the length of the workstation is limited in the majority of the
situations, and (b) the required tools and components to be assem-
bled should be distributed along the sides of the line. Based on
these realistic features, a new real-like problem comes up.

In order to model it, Bautista and Pereira (2007) extended the
SALBP into the TSALBP by means of the following formulation: the
area constraint must be considered by associating a required area
aj to each task j. We can see in Fig. 1 the graph of the first eight tasks
of the real-world instance of Nissan. Each task has a time and area
information. The arcs denote the precedence relations between the
different tasks. For instance, task 4 requires an area of 1 unit, an oper-
ation time of 60, and it cannot start before tasks 1 and 5 finish.

Apart from the area of the tasks, every station k will require a
station area a(Sk), equal to the sum of the areas of all the tasks as-
signed to that station. This needed area must not be larger than the
available area Ak of the station k. For the sake of simplicity, Ak is as-
sumed to be identical for all the stations and denoted by A, where
A = maxk = 1, 2, . . . , mAk.

Overall, the TSALBP may be stated as: given a set of n tasks with
their temporal and spatial attributes, tj and aj, and a precedence
graph, each task must be assigned to just one station such that:

1. all the precedence constraints are satisfied,
2. there is not any station with a workload time t(Sk) greater than

the cycle time c,
3. there is not any station with a required area a(Sk) greater than

the global available area A.

The TSALBP presents different formulations depending on
which of the three considered parameters (c, the cycle time; m,
the number of stations; and A, the area of the stations) are tackled
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as objectives to be optimised and which others are provided as
fixed variables. The eight possible combinations result in eight dif-
ferent TSALBP variants. Within them, there are four multiobjective
variants depending on the given fixed variable: c, m, A, or none of
them. While the former three cases involve a bi-objective problem,
the latter defines a three-objective problem.

We will tackle one of these formulations, the TSALBP-1/3. It
consists of minimising the number of stations m and the station
area A, given a fixed value of the cycle time c. We chose this variant
because it is quite realistic in the automotive industry, our field of
interest, since the annual production of an industrial plant (and
therefore, the cycle time c) is usually set by market objectives. Be-
sides, the search for the best number of stations and area makes
sense if the goal is reducing costs and make workers’ day better
by setting up less crowded stations. More information about the
justification of the choice can be found in Chica et al. (2010).

2.2. Mathematical formulation of the TSALBP-1/3

According to the TSALBP formulation (Bautista & Pereira, 2007),
the 1/3 variant deals with the minimization of the number of sta-
tions, m, and the area occupied by those stations, A, in the assembly
line configuration. We can mathematically formulate this TSALBP
variant as follows:

Minf 0ðxÞ ¼ m ¼
XUBm

k¼1

max
j¼1;2;...;n

xjk; ð1Þ

f 1ðxÞ ¼ A ¼ max
k¼1;2;...;UBm

Xn

j¼1

ajxjk ð2Þ

subject to:

XLj

k¼Ej

xjk ¼ 1; j ¼ 1;2; . . . ;n ð3Þ

XUBm

k¼1

max
j¼1;2;...;n

xjk 6 m ð4Þ

Xn

j¼1

tjxjk 6 c; k ¼ 1;2; . . . ;UBm ð5Þ

Xn

j¼1

ajxjk 6 A; k ¼ 1;2; . . . ;UBm ð6Þ

XLi

k¼Ei

kxik 6
XLj

k¼Ej

kxjk; j ¼ 1;2; . . . ;n; 8i 2 Pj ð7Þ

xjk 2 f0;1g; j ¼ 1;2; . . . ;n; k ¼ 1;2; . . . ;UBm ð8Þ

where:

� n is the number of tasks,
� xjk is a decision variable taking value 1 if task j is assigned to sta-

tion k, and 0 otherwise,
� aj is the area information for task j,
� UBm is the upper bound for the number of stations m,
� Ej is the earliest station to which task j may be assigned,
� Lj is the latest station to which task j may be assigned,
� UBm is the upper bound of the number of stations. In our case, it

is equal to the number of tasks, and

Constraint in Eq. (3) restricts the assignment of every task to
just one station, (4) limits decision variables to the total number
of stations, (5) and (6) are concerned with time and area upper
bounds, (7) denotes the precedence relationship among tasks,
and (8) expresses the binary nature of variables xjk.

2.3. Previous approaches for the TSALBP-1/3

The specialised literature includes a large variety of exact and
heuristic problem-solving procedures as well as metaheuristics
for solving the SALBP (Scholl & Voss, 1996, 2006). Among them,
the use of genetic algorithms (Sabuncuoglu et al., 2000; Anderson
& Ferris, 1994; Kim, Kim, & Kim, 2000, 2009), tabu search (Chiang,
1998), simulating annealing (Heinrici, 1994), and ant colony opti-
mization (Bautista & Pereira, 2007; Blum, 2008) have been consid-
ered. Besides, multicriteria formulations of the SALBP have also
been tackled using genetic algorithms (Leu, Matheson, & Rees,
1994), differential evolution (Nearchou, 2008), and ant colony opti-
mization (McMullen & Tarasewich, 2006).

Fig. 1. A precedence graph which represents the first 8 tasks of the real-world instance of Nissan. Time and area information are shown next to each task. Task 31 is also
shown because of its precedence relation with respect to task 2.
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However, there are not many proposals for solving the multiob-
jective 1/3 variant of the TSALBP (Chica et al., 2010). Among them,
the following can be found: (a) a MACS algorithm, (b) a multiobjec-
tive randomised greedy algorithm, and (c) a multiobjective exten-
sion of the SALBP genetic algorithm proposed in Sabuncuoglu et al.
(2000). We briefly review these algorithms in the next three sub-
sections, as two of them will be considered as baselines for our
new proposal in the experimental study developed in Section 4.

2.3.1. The MACS algorithm for the TSALBP-1/3
MACS (Barán & Schaerer, 2003) was proposed as an extension of

ant colony system (ACS) (Dorigo & Gambardella, 1997) to deal with
multiobjective problems. The original version of MACS uses one
pheromone trail matrix and several heuristic information func-
tions. However, in the case of the TSALBP-1/3, the experimentation
carried out in Chica et al. (2010) showed that the performance was
better when MACS was only guided by the pheromone trail infor-
mation. Therefore, the heuristic information functions were not
used.

Since the number of stations is not fixed, the algorithm uses a
constructive and station-oriented approach (Scholl, 1999) to face
the precedence problem (as usually done for the SALBP, Scholl &
Becker, 2006). Thus, the algorithm will open a station and select
one task till a stopping criterion is reached. Then, a new station
is opened to be filled and the procedure is iterated till all the exist-
ing tasks are allocated.

The pheromone information has to memorise which tasks are
the most appropriate to be assigned to a station. Hence, a phero-
mone trail has to be associated to a pair (stationk, taskj),
k = 1, . . . ,n, j = 1, . . . ,n, with n being the number of tasks, so the
pheromone trail matrix has a bi-dimensional nature. Since MACS
is Pareto-based, the pheromone trails are updated using the cur-
rent non-dominated set of solutions (Pareto archive). Two sta-
tion-oriented single-objective greedy algorithms were used to
obtain the initial pheromone value s0.

In addition, a novel mechanism was introduced in the construc-
tion procedure in order to achieve a better search diversification–
intensification trade-off able to deal with the problem difficulties.
This mechanism randomly decides when to close the current sta-
tion taking as a base both a station closing probability distribution
and an ant filling threshold ai. The probability distribution is de-
fined by the station filling rate (i.e., the overall processing time of
the current set of tasks Sk assigned to that station) as follows:

pðclosing kÞ ¼

P
i2Sk

ti

c
ð9Þ

At each construction step, the current station filling rate is com-
puted. In case it is lower than the ant’s filling percentage threshold
ai (i.e., when it is lower than ai � c), the station is kept opened.
Otherwise, the station closing probability distribution is updated
and a random number is uniformly generated in [0,1] to take the
decision whether the station is closed or not. If the decision is to
close the station, a new station is created to allocate the remaining
tasks. Otherwise, the station will be kept opened. Once the latter
decision has been taken, the next task is chosen among all the can-
didate tasks using the MACS transition rule to be assigned to the
current station as usual. The procedure goes on till there is no more
remaining task to be assigned.

Thus, the higher the ant’s threshold, the higher the probability
of a totally filled station, and vice versa. This is due to the fact that
there are less possibilities to close it during the construction pro-
cess. In this way, the ant population will show a highly diverse
search behaviour, allowing the algorithm to properly explore the
different parts of the optimal Pareto front by appropriately distrib-
uting the generated solutions.

The interested reader is referred to Chica et al. (2010) for a com-
plete description of the MACS proposal for the TSALBP-1/3.

2.3.2. A multiobjective randomised greedy algorithm
A multiobjective randomised greedy algorithm for the TSALBP-

1/3 was also proposed in Chica et al. (2010) based on a diversifica-
tion generation mechanism which behaves similarly to a GRASP
construction phase (Feo & Resende, 1995).

In Chica et al. (2010) randomness is introduced in two pro-
cesses. On the one hand, allowing the selection of the next task
to be assigned to the current station to be randomly taken among
the best candidates. It starts by creating a candidate list of unas-
signed tasks. For each candidate task j, its heuristic value gj is com-
puted by measuring the preference of assigning it to the current
opened station. gj is proportional to the processing time and area
ratio of that task (normalised with the upper bounds given by
the time cycle, c, and the sum of all tasks’ areas, respectively), as
well as the ratio between the number of successors of task j and
the maximum number of successors of any eligible task. Then, all
the candidate tasks are sorted according to their heuristic values
and a quality threshold is set for them, given by
q ¼ maxgj

� c � ðmaxgj
�mingj

Þ. All the candidate tasks with a heu-
ristic value gj greater or equal than q are selected to be in the re-
stricted candidate list (RCL). In the former expression, c is the
diversification–intensification trade-off control parameter. When
c is equal to 1 a completely random choice is obtained, inducing
the maximum possible diversification. In contrast, if c = 0 the
choice is close to a pure greedy decision, with a low diversification.
Proceeding in this way, the RCL size is adaptive and variable, thus
achieving a good diversification–intensification trade-off. In the
last part of the construction step, a task is randomly selected
among those of the RCL. The construction procedure finishes when
all the tasks have been allocated in the needed stations.

On the other hand, randomness is also introduced in the deci-
sion of closing the current station. This is done according to a prob-
ability distribution given by the filling rate of the station (see Eq.
(9)). The filling thresholds approach is also used to achieve a di-
verse enough Pareto front. A different threshold is selected in iso-
lation at each iteration of the multiobjective randomised greedy
algorithm, i.e., the construction procedure of each solution consid-
ers a different threshold. As a consequence, the algorithm uses the
same constructive approach than the MACS algorithm, considering
filling thresholds and closing probabilities at each construction
step. The main difference is the probabilistic criterion to select
the next task that will be included in the current station.

The algorithm is run a number of iterations to generate different
solutions. The final output consists of a Pareto set approximation
composed of the non-dominated solutions among them.

2.3.3. A multiobjective extension of a single-objective genetic
algorithm for the SALBP

An extension of an existing single-objective genetic algorithm
for the SALBP was proposed in Chica et al. (2010) to deal with
the TSALBP-1/3. The authors chose the proposal introduced in Sab-
uncuoglu et al. (2000) and adapted it by means of the state-
of-the-art multiobjective NSGA-II approach. In short, the features
of this TSALBP-NSGA-II designed can be summarised as follows:

� Coding: the original order-based encoding scheme proposed in
Sabuncuoglu et al. (2000) is considered. The length of the chro-
mosome is equal to the number of tasks. The task-station
assignment is implicitly encoded in the genotype and it is
obtained by using a simple station-oriented constructive mech-
anism (Scholl, 1999) guided by fulfilling the available cycle time
of each station. A station is opened and sequentially filled with
the tasks listed in the chromosome order while the overall
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processing time of the set of assigned tasks does not exceed the
assembly line cycle time. Once there is not available time to
place the next task in the current station, this station is closed
and a new empty one is opened to assign the remaining tasks.
The procedure stops when all the tasks are allocated.
� Initial population: it is randomly generated by assuring the fea-

sibility of the precedence relations.
� Crossover: a kind of order preserving crossover (Goldberg,

1989; Bäck, Fogel, & Michalewicz, 1997) is considered to ensure
that feasible offsprings are obtained satisfying the precedence
restrictions. This family of order-based crossover operators
emphasises the relative order of the genes from both parents.
In our case, two different offspring are generated from the
two parents to be mated, proceeding as follows. Two cutting
points are randomly selected for them. The first offspring takes
the genes outside the cutting points in the same sequence order
as in the first parent. That is, from the beginning to the first cut-
ting point and from the second cutting point to the end. The
remaining genes, those located between the two cutting-points,
are filled in by preserving the relative order they have in the
second parent. The second offspring is generated the other
way around, i.e. taking the second parent to fill in the two exter-
nal parts of the offspring and the first one to build the central
part. Notice that, preserving the order of the genes of the other
parent in the central part will guarantee the feasibility of the
obtained offspring solution in terms of precedence relations.
The central genes also satisfy the precedence constraints with
respect to those that are in the two external parts.
� Mutation: the same mutation operator considered in the origi-

nal single-objective genetic algorithm (Sabuncuoglu et al.,
2000), a scramble mutation, is used. A random cut-point is
selected and the genes after the cut-point are randomly
replaced (scrambled), assuring feasibility.
� Diversity: the similarity-based mating scheme for EMO pro-

posed in Ishibuchi, Narukawa, Tsukamoto, and Nojima (2008)
to recombine extreme and similar parents was used in this algo-
rithm to try to improve the diversity and spread of the Pareto
set approximations.

This NSGA-II design for the TSALBP-1/3 showed poor results in
comparison with MACS (Chica et al., 2010). The Pareto front
approximations generated showed a very low cardinality and con-
verged to a narrow region located in the left-most zone of the
objective space (i.e. solutions with small values of the number of
stations, m). The latter fact is justified by the TSALBP-1/3 nature
as a strongly constrained combinatorial optimization problem,
which was not properly tackled by the global search algorithm
considered (a multiobjective genetic algorithm) and by the basic
order encoding used.

Nevertheless, in the next section we will propose an advanced
EMO design able to overcome the problems of the latter basic mul-
tiobjective genetic algorithm and to successfully solve the TSALBP-
1/3.

3. An advanced NSGA-II-based approach for the TSALBP-1/3

As said, the weak performance of the previous EMO algorithm
(Section 2.3.3) when solving the TSALBP-1/3 cannot be explained
because of the chosen multiobjective genetic algorithm. It is well
known that NSGA-II has shown a large success when solving many
different multiobjective numerical and combinatorial optimization
problems (see Chapter 7 in Coello, Lamont, & Van Veldhuizen
(2007) for a detailed review classified in different application
areas). On the contrary, that weak behaviour was due to the inher-
ent characteristics of the combinatorial optimization problem

being solved. In principle, the use of global search procedures as
genetic algorithms could be less appropriate than constructive
metaheuristics to deal with the TSALBP-1/3 because of the hard
constraints (precedence relations and stations’ cycle time limita-
tion). In addition, the representation used does not seem to be ade-
quate because it is not a natural coding for the problem.

Hence, authors propose a novel design, based on the original
NSGA-II search scheme (Deb et al., 2002) as well. However, a more
appropriate representation and more effective operators are used
to solve the TSALBP-1/3. From now on, the new algorithm will be
referred as advanced TSALBP-NSGA-II because of its problem-
specific design and potential application to other TSALBP variants.
The previous method will be referred to as basic TSALBP-NSGA-II in
order to stress the difference between both approaches. The main
features and operators of the advanced TSALBP-NSGA-II are de-
scribed in the next subsections.

3.1. Representation scheme

The most important problem of the basic TSALBP-NSGA-II meth-
od was the representation scheme, based on that usually consid-
ered by the existing genetic algorithm approaches for the SALBP.
We should note that the SALBP is a single-objective problem and
thus it is not strictly necessary to represent a solution as an assign-
ment of tasks to stations to solve it. Instead, an order encoding is
used to define a specific task ordering in a chromosome and the
latter assignment is determined in a constructive fashion, as seen
in Section 2.3.3.

However, the latter representation is not a good choice for the
TSALBP-1/3. It carries the problem of biasing the search to a narrow
area of the Pareto front (as demonstrated by the experimental re-
sults in Chica et al. (2010) and in the current contribution). Here is
where our new proposal, the advanced TSALBP-NSGA-II, takes the
biggest step ahead with respect to the existing basic algorithm.
The new coding scheme introduced will explicitly represent task-
station assignments regardless the cycle time of the assembly line,
thus ensuring a proper search space exploration for the joint opti-
mization of the number and the area of the stations. Furthermore,
the representation will also follow an order encoding to facilitate
the construction of feasible solutions with respect to the prece-
dence relations constraints.

The allocation of tasks among stations is made by employing
separators.1 Separators are thus dummy genes which do not repre-
sent any specific task and they are inserted into the list of genes rep-
resenting tasks. In this way, they define groups of tasks being
assigned to a specific station. The maximum possible number of sep-
arators is n � 1 (with n being the number of tasks), as it would cor-
respond to an assembly line configuration with n stations, each one
composed of a single task. Tasks are encoded using numbers in
{1, . . . ,n}, as in the previous representation, while separators take
values in {n + 1, . . . ,2 � n � 1}. Hence, the genotype is again an or-
der-based representation. Fig. 2 shows an example of the new coding
scheme.

The number of separators included in the genotype is variable
and it depends on the number of existing stations in the current
solution. Therefore, the algorithm works with a variable-length
coding scheme, although its order-based representation nature
avoids the need of any additional mechanism to deal with this is-
sue. The maximum size of the chromosome is 2 � n � 1 to allow the
presence of separators for the maximum number of possible sta-
tions. On the other hand, the representation scheme ensures the
encoded solutions are feasible with respect to the precedence

1 We should notice that, although this representation is not very extended, the use
of separators in an order encoding was previously considered in a document
clustering application (Robertson & Willett, 1994).
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relations constraints. However, the cycle time limitation could be
violated and it will be a task of the genetic operators to ensure fea-
sibility with respect to that constraint.

In summary, the proposed representation shows two advanta-
ges. On the one hand, it is clear and natural and thus it fulfils the
rule of thumb that the genetic coding of a problem should be a nat-
ural expression of it. On the other hand, the genotype keeps on
being a permutation, thus allowing us to consider the extensively
used genetic operators for this representation.

3.2. The crossover operator

The main difficulty arising when using non-standard represen-
tations is the design of a suitable crossover operator able to com-
bine relevant characteristics of the parent solutions into a valid
offspring solution. Nevertheless, as our representation is order-
based, the crossover operator can be designed from a classical or-
der-based one. Crossover operators of the latter kind which have
been suggested in the literature include partially mapped cross-
over (PMX), order crossover, order crossover # 2, position based
crossover, and cycle crossover, among others (Poon & Carter,
1995). We have selected one of the most extended ones, PMX,
which has been already used in other genetic algorithm implemen-
tations for the SALBP (for example in Sabuncuoglu et al. (2000)).

PMX generates two offspring from two parents by means of the
following procedure: (a) two random cut points are selected, (b)
for the first offspring, the genes outside the random points are cop-
ied directly from the first parent, and (c) the genes inside the two
cut points are copied but in the order they appear in the second
parent. The same mechanism is followed up with the second off-
spring but with the opposite parents. See Fig. 3 where an example
of the operator is shown.

Thanks to our advanced coding scheme and to the use of a per-
mutation-based crossover, the feasibility of the offspring with re-
spect to precedence relations is assured. However, since
information about the tasks-stations assignment is encoded inside
the chromosome, it is compulsory to assure that: (a) there is not
any station exceeding the fixed cycle time limit, and (b) there is
not any empty station in the configuration of the assembly line.

Therefore, a repair operator must be applied for each offspring
after crossover. The use of these kinds of operators is very ex-
tended in evolutionary computation when dealing with combina-
torial optimization problems with hard restrictions (Chootinan &
Chen, 2006). They should be carefully developed as a poor design
of the repair operator can bias the convergence of the genetic algo-
rithm or can make the crossover operator lose useful information
from the parents. The goals and methods of our repair operator
are the following:

� Redistribute spare tasks among available stations: changing the
order of the genes in the parents to generate the offspring can
cause the appearance of stations with an excessive cycle time.
The repair operator must reallocate the spare tasks in other sta-
tions. First, the critical stations (those exceeding the cycle time)
and their tasks are localised. Then, the feasible stations avail-
able to reallocate each task of the critical station, fulfilling pre-
cedence and cycle time restrictions, are calculated. If one spare
task can be reallocated in more than one different station,
the algorithm will choose one of them randomly for the

reallocation. This process is repeated till either the critical sta-
tion satisfies the cycle time restriction or there is no feasible
move to be done. In the latter case, the critical station will be
randomly divided in two or more feasible stations by adding
the needed separators to balance the load.
� Removing empty stations: no empty stations are allowed. For

the genotype of the individual, this means that two or more
genes representing separators cannot be placed together. Thus,
the repair operator will find and remove them to only keep the
necessary separators.2

3.3. Mutation operators

Two mutation operators have been specifically designed and
applied uniformly to the selected individuals of the population.
The first one is based on reordering a part of the sequence of tasks
and reassigning them to stations. The second one is introduced to
induce more diversity in order to achieve a well distributed Pareto
front approximation. The need of using the second operator will be
demonstrated in the experimentation carried out in Section 4.3.1.
We respectively call scramble and divider to the two mutation
operators and they are described as follows:

� Scramble mutation: after choosing two points randomly, the
tasks between those points are scrambled forming a new
sequence of tasks in such a way the mutated solution keeps
on being feasible with respect to the precedence relations. The
existing separators among the two mutation points are ignored
and a new reallocation of those tasks is considered by randomly
generating new separator locations within the task sequence.
An illustrative example is in Fig. 4. To do so, a similar mecha-
nism to the filling thresholds of the MACS algorithm have been
followed (see Section 2.3.1). The task sequence is analysed from
left to right and each position has a random choice for the inser-
tion of a separator. The probability distribution associated to
the separator insertion depends on the current station filling
rate according to the cycle time (see Eq. (9)). Besides, it is biased
by a given a threshold defined in [0,1], which represents the
minimum percentage of cycle time filling allowed for the new
defined stations. Only positions making the station filling rate
be higher or equal to alpha are likely to insert a separator and
the random choice is only made in those specific cases. Hence,
a low value of a will promote stations with fewer tasks, thus
favouring the exploration of the left-most region of the Pareto
front (assembly line configurations with a large number of sta-
tions and small area sizes, see Figs. 10 and 14). On the contrary,
high values of the parameter will create stations having more
tasks and being close to the cycle time limit, favouring the
exploration of the right-most region of the Pareto front (config-
urations with a small number of stations and large area sizes).
In this way, the scramble mutation becomes a parameterised
operator with a parameter a defining its search behaviour.
The joint use of different variants of the scramble mutation
operator with different a values will properly explore the differ-
ent parts of the search space in order to converge to the optimal
Pareto front. The experimentation developed in the current con-
tribution shows how better results are achieved when using
two different scramble operators with a equal to 0 and 0.8.
� Divider mutation: this operator was introduced to obtain better

distributed Pareto front approximations generated by the algo-
rithm by looking for those solutions having a larger number of

Fig. 2. Coding scheme example: for the first 8 tasks of the real-world instance of
Nissan, a genotype representing three stations is represented, having 3, 3, and 2
tasks, respectively. Separators are those genes coloured.

2 Notice that, the application of the current operator is not actually needed and it is
more related to aesthetic reasons. The coding scheme, the designed genetic operators
and the multiobjective fitness function would actually allow the algorithm to work
with chromosomes encoding empty stations by directly ignoring them.
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stations with a low area (i.e., the right-most region of the Pareto
front). The operator works as follows (Fig. 5): (a) it randomly
selects one station with more than one task assigned, (b) it
places a separator in the genotype, at a random position, to split
up the current station into two stations.

3.4. Diversity induction mechanism

Finally, in order to additionally increase the diversity of the
search to obtain better distributed Pareto front approximations, a
set of techniques to inject diversity to the algorithm search were
studied. As a result of that study, one successful and very recent
NSGA-II diversity induction mechanism was adopted: Ishibuchi
et al.’s similarity-based mating (Ishibuchi et al., 2008). In this
way, the new design inherits the Ishibuchi et al.’s similarity-based
mating from the existing basic TSALBP-NSGA-II, as this component
helps the algorithm to get a better convergence (see the experi-
mentation developed in Section 4.3.1).

This diversity induction mechanism is based on selecting two
sets of candidates to become the couple of parents to be mated,

with a pre-specified dimension c and d,3 respectively. The chromo-
somes of each set are randomly drawn from the population by a bin-
ary tournament selection. Then, the average objective vector of the
first set is computed. The most distant chromosome to the average
objective vector among the c candidates in this first set is chosen
as the first parent. For the second parent, the most similar chromo-
some to the first parent in the objective space is selected among the
d candidates of the second set.

4. Experiments

This section is devoted to describe the experimental study
developed to test our proposal. We first specify the problem in-
stances, parameter values, and multiobjective performance indica-
tors used for the computational tests. Then, we justify the need of
using all the advanced TSALBP-NSGA-II components in the algo-
rithm design to achieve the best performance. Finally, we bench-
mark our novel technique with respect to the existing basic
TSALBP-NSGA-II and the state-of-the-art algorithm for the
TSALBP-1/3, MACS.

4.1. Problem instances and parameters

Ten problem instances with different features have been se-
lected for the experimentation: arc111 with cycle time limits of
c = 5755 and c = 7520 (P1 and P2), barthol2 (P3), barthold
(P4), lutz2 (P5), lutz3 (P6), mukherje (P7), scholl (P8), wee-
mag (P9), and Nissan (P10). The 10 TSALBP-1/3 instances consid-
ered are publicly available at: http://www.nissanchair.com/
TSALBP. Originally, these instances but Nissan were SALBP-1
instances4 only having time information. However, their area infor-
mation has been created by reverting the task graph to make them
bi-objective (as done in Bautista & Pereira (2007)).

The real-world problem instance (P10) corresponds to the
assembly process of the Nissan Pathfinder engine, assembled at
the Nissan industrial plant in Barcelona (Spain) (Bautista & Pereira,
2007). As this real-world instance has special characteristics be-
cause it shows a lot of tasks having an area of 0, the repair operator
for the crossover of the advanced TSALBP-NSGA-II was imple-
mented by also redistributing the tasks with the highest-area sta-
tion in the developed experiments.

We executed each algorithm 10 times with different random
seeds, setting a fixed run time as stopping criterion (900 s). All
the algorithms were launched in the same computer: Intel Pen-
tium™ D with two CPUs at 2.80 GHz, and CentOS Linux 4.0 as oper-
ating system. Furthermore, the parameters of the developed
algorithms and their operators are shown in Table 1.

Fig. 3. An application example of the crossover operator. The tasks between the two random points are copied following the order of the other parent.

Fig. 4. The scramble mutation is applied to the first 8 tasks of the Nissan instance.
The tasks between the two cut points are scrambled in the offspring.

Fig. 5. The divider mutation is applied to the first 8 tasks of the Nissan instance. A
new separator is chosen at random to split up the second station of the solution in
two new stations.

3 These parameters were originally noted as a and b in the original contribution
(Ishibuchi et al., 2008). However, the notation for c and d have been changed to avoid
misleading the reader with other parameters used in the current paper.

4 Available at http://www.assembly-line-balancing.de.
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4.2. Multiobjective performance indicators

We will consider the two usual kinds of multiobjective perfor-
mance indicators existing in the specialised literature (Zitzler,
Deb, & Thiele, 2000, 2003; Deb, 2001; Knowles & Corne, 2002;
Coello et al., 2007):

� Unary performance indicators: those which measure the quality
of a non-dominated solution set returned by an algorithm.
� Binary performance indicators: those which compare the per-

formance of two different multiobjective algorithms.

The first two subsections review the indicators from each group
which are to be considered in the current contribution. We also
present in the third subsection the use of attainment surface plots
to ease the posterior analysis of results.

4.2.1. Unary performance indicator considered
The hypervolume ratio (HVR) (Coello et al., 2007) has become a

very useful unary performance indicator. Its use is very extended
as it can jointly measure the distribution and convergence of a Par-
eto set approximation. The HVR can be calculated as follows:

HVR ¼ HVðPÞ
HVðP�Þ ; ð10Þ

where HV(P) and HV(P⁄) are the volume (S indicator value) of the
approximate Pareto set and the true Pareto set, respectively. When
HVR equals 1, then the Pareto front approximation and the true Par-
eto front are equal. Thus, HVR values lower than 1 indicate a gener-
ated Pareto front that is not as good as the true Pareto front.

Since we are working with real problems, some obstacles which
make difficult the computation of this performance indicator have
to be kept in mind. First, it should be noticed that the true Pareto
fronts are not known. In our case, a pseudo-optimal Pareto set will
be considered, i.e. an approximation of the true Pareto set, ob-
tained by merging all the Pareto set approximations Pj

i generated
for each problem instance by any algorithm in any run. Thanks
to this pseudo-optimal Pareto set, the HVR performance indicator
values can be computed, considering them in our analysis of
results.

Besides, there is an additional problem with respect to the HVR
performance indicator. In minimization problems, as ours, there is
a need to define a reference point to calculate the volume of a given
Pareto front. If this anti-ideal solution is not correctly chosen, the
HVR values can be unexpected (Knowles & Corne, 2002). Thus,
the anti-ideal solution for each instance is defined as ‘‘logical’’
maximum values for the two objectives in each case. These refer-
ence points are specific for each problem instance.

4.2.2. Binary performance indicators considered
The previous performance indicator allows us to determine the

absolute and individual quality of a Pareto front, but cannot be
used for comparison purposes (Zitzler, Thiele, Laumanns, Fonseca,
& Grunert da Fonseca, 2003). However, binary indicators aim to
compare the performance of two different multiobjective algo-
rithms by comparing the Pareto set approximations generated by
each of them. In this contribution, we will consider two of them:
the � indicator I� and the set coverage indicator C.

The I� indicator (Zitzler et al., 2003) is a quality assessment
method for multiobjective optimization that avoids particular dif-
ficulties of unary and classical methods (Knowles, 2006). Two dif-
ferent definitions are possible: the standard (multiplicative) I� and
the additive indicator I�+. We have opted by the multiplicative indi-
cator. Given two Pareto front approximations, P and Q, the value
I�(P,Q) is calculated as follows:

I�ðP;QÞ ¼ inf �2Rf8z2 2 Q ; 9z1 2 P : z1��z2g ð11Þ

where z1 � �z2 iff z1
i 6 � � z2

i ;8i 2 f1; . . . ; og, with o being the number
of objectives, assuming minimization. I�(P,Q) < I�(Q,P) indicates, in a
weak sense, that the P set is better than the Q set because the min-
imum � value needed so that approximation set P �-dominates Q is
smaller than the � value needed for Q to �-dominate P.

On the other hand, the classical set coverage indicator C (Zitzler
et al., 2000) is computed as follows:

CðP;QÞ ¼ jfq 2 Q ;9p 2 P : p � qgj
jQ j ; ð12Þ

where p � q indicates that the solution p, belonging to the approx-
imate Pareto set P, weakly dominates the solution q of the approx-
imate Pareto set Q in a minimization problem.

Hence, the value C(P,Q) = 1 means that all the solutions in Q are
dominated by or equal to solutions in P. The opposite, C(P,Q) = 0,
represents the situation where none of the solutions in Q are cov-
ered by the set P. Notice that, both C(P,Q) and C(Q,P) have to be
considered, since C(P,Q) is not necessarily equal to 1 � C(Q,P).

The I� and C performance indicator values of the approximation
sets of every pair of algorithms have been represented by boxplots
(see Figs. 7, 9a, 11 and 13a for I�, and Figs. 8, 9b, 12 and 13b for C).
In the figures, each rectangle represents one of the 10 problem in-
stances (ranging from P1 to P10). Inside each rectangle, boxplots
representing the distribution of the I� and C values for a certain pair
of algorithms are drawn. Given Fig. 7 as an example, the top-left
rectangle shows the boxplots comparing three pairs of algorithms:
TN vs. V1, TN vs.V2, and TN vs. V3 (see Section 4.3 for the notations
of these algorithms). As I� and C are binary indicators, two boxplots
have been drawn for each algorithm comparison. The white box-
plots represent the distributions I�(TN,Vx) generated in the 10 runs,
while the coloured boxplots do so for the I�(Vx,TN) values. In each
boxplot, the minimum and maximum values are the lowest and
highest lines, the upper and lower ends of the box are the upper
and lower quartiles, a thick line within the box shows the median,
and the isolated points are the outliers of the distribution.

4.2.3. Attainment surface plots
An attainment surface is the surface uniquely determined by a

set of non-dominated points that divides the objective space into
the region dominated by the set and the region that is not domi-
nated by it (Fonseca & Fleming, 1996). Given r runs of an algorithm,
it would be nice to summarise the r attainment surfaces obtained,
using only one summary surface. Such summary attainment sur-
faces can be defined by imagining a diagonal line in the direction
of increasing objective values cutting through the r attainment sur-
faces generated (see the plot in Fig. 6). The intersection on this line
that weakly dominates at least r � p + 1 of the surfaces and is

Table 1
Used parameter values.

Parameter Value Parameter Value

Basic TSALBP-NSGA-II
Population size 100 Ishibuchi’s c, d values 10
Crossover probability 0.8 Mutation probability 0.1

MACS
Number of ants 10 b 2
q 0.2 q0 0.2
Ants’ thresholds {0.2, 0.4, 0.6,
(2 ants per each) 0.7, 0.9}

Advanced TSALBP-NSGA-II
Population size 100 Ishibuchi’s c, d values 10
Crossover probability 0.8 Mutation probability 0.1
a values for
scramble mutation {0, 0.8}
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weakly dominated by at least p of them, defines one point on the
‘‘pth summary attainment surface’’. In our case, this surface is
the union of all the goals that have been attained in the r = 10 inde-
pendent runs of the algorithm.

Hence, the corresponding attainment surfaces will be repre-
sented in order to allow an easy visual comparison of the perfor-
mance of the different benchmarked algorithms. These graphics
offer a visual and quantitative information (Fonseca & Fleming,
1996), sometimes more useful than numeric values, mainly in
complex problems as ours.

4.3. Experimentation and analysis of results

In this section, we analyse the performance of the advanced
TSALBP-NSGA-II. First, a comparison of three limited variants of
the new proposal is done to ensure the need of using all its fea-
tures. As comparing all the possible algorithm components combi-
nations is excessive, the most significant have been selected. Three
algorithms (V1, V2, and V3) have been selected as variants of the
advanced TSALBP-NSGA-II by removing Ishibuchi’s diversity
operator, the new divider mutation operator, and the scramble

Fig. 6. Five attainment surfaces are shown representing the output of five runs of
an algorithm. The two diagonal lines intersect the five surfaces at various points. In
both cases, the circle indicates the intersection that weakly dominates at least
5 � 3 + 1 = 3 surfaces and is also weakly dominated by at least three surfaces.
Therefore, these two points both lie on the third summary attainment surface
(reprinted from Knowles (2006)).

Fig. 7. Boxplots representing the binary I� indicator values for comparisons between the advanced TSALBP-NSGA-II (TN) and its limited variants (Vx) for instances P1–P9.
White boxplots correspond to I�(TN,Vx) distribution, coloured boxplots to I�(Vx,TN). Lower values indicate better performance.

Fig. 8. Boxplots representing the binary C indicator values for comparisons between the advanced TSALBP-NSGA-II (TN) and its limited variants (Vx) for instances P1–P9.
White boxplots correspond to C(TN,Vx), coloured boxplots to C(Vx,TN). Larger values indicate better performance.
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mutation’s parameters, respectively. Finally, a comparison between
the complete version of the advanced TSALBP-NSGA-II and the state-
of-the-art algorithms for the TSALBP-1/3 is done. The source codes
of all the algorithms considered in the current experimental
study are publicly available at http://www.nissanchair.com/
TSALBP.

4.3.1. Comparison of the advanced TSALBP-NSGA-II variants
We will analyse the performance of the full design of the ad-

vanced TSALBP-NSGA-II algorithm described in Section 3 in compar-
ison with the following three limited variants of it:

� V1. The difference with respect to the complete version is the
lack of use of the Ishibuchi’s operator. As said, this operator is
able to induce more diversity into the search mechanism of
the EMO algorithm in order to generate well distributed Pareto
front approximations.
� V2. It only differs from the complete variant in the absence of

the new divider mutation operator that was explained in Sec-
tion 3.3.
� V3. The components that were suppressed in the V1 and V2

variants, that is Ishibuchi’s diversity induction operator and
the divider mutation operator, are now discarded in conjunc-
tion. In addition, the scramble mutation operator is used with-
out considering the a parameter that controls the filling of the
stations (which is the same that setting a = 0).

We will consider two independent analyses in the current sec-
tion. First, the performance of the advanced TSALBP-NSGA-II algo-
rithm and its three limited variants (V1, V2, and V3) will be
analysed in the first nine problem instances (P1–P9). Later, the
same study is performed in the real-world Nissan instance (P10).

Figs. 7 and 8 show the binary performance indicators compari-
sons for the first nine instances. In the first figure, the I� indicator
values are clearly lower in the case of the former (white boxplots)
than in the latter ones (coloured boxplots) in almost every case.
This means that the performance of the advanced TSALBP-NSGA-II
is significantly better according to this indicator.

With respect to the C indicator (Fig. 8), a similar conclusion is
achieved. The advanced TSALBP-NSGA-II gets better coverage values
than the limited variants in almost all the problem instances: bet-
ter results than V1 in the 9 problem instances, better than V2 in 6
of the 9 instances, and better than V3 in 8 of the 9 instances (all but
P7). V2 gets a better yield than the complete version of the ad-
vanced TSALBP-NSGA-II in P2, P4, and P7.

The quality assessment of the unary performance indicator HVR
for the advanced TSALBP-NSGA-II and its limited variants is shown
in Table 2. Here, the values of the indicator show even clearer re-
sults. The full version of the algorithm gets the best values in all
the problem instances. Therefore, the convergence and distribution
of the Pareto front approximations generated by the advanced
TSALBP-NSGA-II are the highest ones according to this indicator.

The I� and C performance indicators of the Nissan problem in-
stance are shown in Fig. 9 and the HVR values in Table 3. We can
obtain the same conclusions than with the problem instances
P1–P9. There is just a different behaviour in the I� indicator, where
a limited variant, V2, obtains the same performance than the com-
plete version of the algorithm (TN).

The latter global yields can be also observed in the attainment
surfaces of the different problem instances. As an example, we
show those for P3 and P7 in Fig. 10 (two graphics of this kind are
shown in this section due to the lack of space, although similar re-
sults are obtained in every instance). These attainment surfaces
can also help us to find out why the removed components of the
limited variants are needed, as it will be analysed in the following
items:

� First, the Ishibuchi’s diversity induction operator will help the
algorithm to get a better spread Pareto front approximation.
We can draw that conclusion comparing the dashed green line
(corresponding to V1) and the solid blue (that of the advanced
TSALBP-NSGA-II algorithm) line in the attainment surfaces of
Fig. 10.
� On the other hand, the use of a divider mutation operator (sup-

pressed in the V2 variant) and the incorporation of different val-
ues for the a parameter of the scramble mutation operator are
both very important. Consequently, the attainment surfaces of
the V2 and V3 variants are much less spread than the complete
version of the advanced TSALBP-NSGA-II.
� The difference of performance is more important between the

advanced TSALBP-NSGA-II and the V3 variant. In this case, the
V3 variant cannot even achieve the level of convergence of
the complete algorithm as can be seen in the attainment sur-
faces and the HVR performance indicator.

Table 2
Mean and standard deviation �x(r) of the HVR performance indicator values for the
advanced TSALBP-NSGA-II (TN) and its limited variants (Vx) for instances P1–P9.
Higher values indicate better performance.

HVR

P1 P2 P3 P4 P5
TN 0.989 (0) 0.958 (0.02) 0.906 (0.05) 0.955 (0.01) 0.892 (0.06)
V1 0.972 (0.02) 0.914 (0.01) 0.869 (0.03) 0.927 (0.03) 0.835 (0.03)
V2 0.945 (0.04) 0.905 (0.02) 0.855 (0.04) 0.812 (0.06) 0.855 (0.09)
V3 0.915 (0.04) 0.843 (0.03) 0.858 (0.05) 0.778 (0.04) 0.822 (0.02)

P6 P7 P8 P9
TN 0.913 (0.06) 0.916 (0.02) 0.946 (0.04) 0.943 (0.02)
V1 0.885 (0.06) 0.862 (0.04) 0.857 (0.03) 0.915 (0.02)
V2 0.887 (0.06) 0.801 (0.04) 0.856 (0.05) 0.914 (0.03)
V3 0.831 (0.08) 0.801 (0.03) 0.836 (0.04) 0.907 (0.03)

Fig. 9. The corresponding boxplots representing the binary indicators values for
comparisons between the advanced TSALBP-NSGA-II (TN) and its limited variants
(Vx) for the Nissan problem instance (P10).

Table 3
Mean and standard deviation �xðrÞ of the HVR performance
indicator values for the advanced TSALBP-NSGA-II (TN) and its
limited variants (Vx) for the Nissan problem instance. Higher
values indicate better performance.

HVR
P10 (Nissan)

TN 0.884 (0.07)
V1 0.796 (0.06)
V2 0.884 (0.06)
V3 0.815 (0.07)
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Consequently and in view of this experimental study, it can be
concluded that every included component in the advanced TSALBP-
NSGA-II helps to increase the performance of the algorithm, and the
absence of any of them induces a considerable fall both in the con-
vergence and diversity of the Pareto set approximations generated.
It is thus clear that all the designed components are required to
achieve the best diversification–intensification trade-off in the
multiobjective search space.

4.3.2. Comparison of our proposal with the state-of-the-art algorithms
The MACS algorithm, reviewed in Section 2.3.1, achieved the

best results for the solving of the TSALBP-1/3 in comparison with
the multiobjective randomised greedy algorithm and the basic
TSALBP-NSGA-II (Chica et al., 2010). Although the latter one reached
better solutions in a specific small region of the Pareto front than
the MACS algorithm, its behaviour was worse in the rest of the
Pareto front, as already explained. The latter fact motivated us to

design an EMO algorithm able to outperform the MACS algorithm
in all the Pareto front, the goal of the present work.

In this section, these two algorithms are compared, the state-
of-the-art MACS and the basic TSALBP-NSGA-II, with our complete
proposal, the advanced TSALBP-NSGA-II. We use the same multiob-
jective performance indicators considered in the previous section
and proceed in the same way performing two independent analysis
(P1–P9 and P10).

The results corresponding to the two binary indicator values on
the first nine instances are represented by means of boxplots in
Figs. 11 and 12. The respective HVR values are included in Table
4. Besides, attainment surfaces for some instances are plotted in
Fig. 14.

In view of the results corresponding to the I� and the C indica-
tors in Figs. 11 and 12, a clear conclusion can be drawn: the ad-
vanced TSALBP-NSGA-II outperforms both MACS and the basic
TSALBP-NSGA-II without any doubt.
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Fig. 10. Attainment surface plots for the P3 and P7 problem instances.
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The same fact is observed analysing the unary indicator HVR re-
sults. The convergence and diversity of the advanced TSALBP-NSGA-
II is higher than those of the state-of-the-art algorithms in all the
instances. The overall good performance of the advanced TSALBP-
NSGA-II can be clearly observed in the attainment surfaces of

Fig. 14. There is a high distance between the attainment surfaces
obtained by the advanced TSALBP-NSGA-II and those corresponding
to the remaining algorithms in the P2, P3, and P8 instances. Notice
that in the plot of the P3 instance the attainment surfaces of the
limited V1, V2, and V3 variants of the advanced TSALBP-NSGA-II
are also included. It can be observed that not only the complete

Fig. 11. Boxplots representing the binary I� indicator values for comparisons between the advanced TSALBP-NSGA-II (TN) and the state-of-the-art algorithms (MACS and
BasTN) for instances P1 to P9. White boxplots correspond to I�(TN,MACS/BasTN), coloured boxplots to I�(MACS/BasTN,TN). Lower values indicate better performance.

Fig. 12. Boxplots representing the binary C indicator values for comparisons between the advanced TSALBP-NSGA-II (TN) and the state-of-the-art algorithms (MACS and
BasTN) for instances P1–P9. White boxplots correspond to C(TN,MACS/BasTN), coloured boxplots to C(MACS/BasTN,TN). Larger values indicate better performance.

Fig. 13. The corresponding boxplots representing the binary indicators values for
comparisons between the advanced TSALBP-NSGA-II (TN) and the state-of-the-art
algorithms (MACS and BasTN) for the Nissan problem instance.

Table 4
Mean and standard deviation �xðrÞ of the HVR performance indicator values for the
advanced TSALBP-NSGA-II (TN), and the state-of-the-art algorithms, MACS (S1) and the
basic TSALBP-NSGA-II (S2) for instances P1–P9. Higher values indicate better
performance.

HVR

P1 P2 P3 P4 P5
TN 0.989 (0) 0.958 (0.02) 0.906 (0.05) 0.955 (0.01) 0.892 (0.06)
S1 0.763 (0) 0.766 (0.01) 0.722 (0.01) 0.723 (0.02) 0.599 (0.02)
S2 0.762 (0.03) 0.700 (0.03) 0.639 (0.07) 0.134 (0.06) 0.008 (0.01)

P6 P7 P8 P9
TN 0.913 (0.06) 0.916 (0.02) 0.946 (0.04) 0.943 (0.02)
S1 0.585 (0.02) 0.740 (0.01) 0.514 (0.01) 0.820 (0.01)
S2 0.546 (0.03) 0.434 (0.05) 0.157 (0) 0.432 (0.2)
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version of the TSALBP-NSGA-II achieves better results than MACS
and the basic TSALBP-NSGA-II. Its limited variants are also better
optimisers for this TSALBP-1/3 instance.

The case of the real-world instance of Nissan is analysed in view
of the performance indicators of Fig. 13 and the HVR values of Table
5. The behaviour of the algorithms is similar to that reported for
the latter instances. The only exception is the I� indicator, where
the MACS algorithm gets slightly better results than the advanced
TSALBP-NSGA-II. Regarding the attainment surface of the Nissan in-
stance (Fig. 15), although the convergence of the advanced TSALBP-
NSGA-II is clearly higher than the rest of the algorithms, the MACS
algorithm achieves the two most extreme solutions of the
pseudo-optimal Pareto front which are not found by the advanced
TSALBP-NSGA-II. This is the reason why the value of the I� indicator
associated to the MACS algorithm was slightly better than the one
obtained by the advanced TSALBP-NSGA-II, although the latter
method is showing the best overall convergence to the pseudo-
optimal Pareto front.

According to the previous analysis of the performance indica-
tors and attainment surfaces, we can assert that the advanced
TSALBP-NSGA-II outperforms the state-of-the-art algorithms in all
the considered problem instances, Nissan included.

5. Concluding remarks

A novel multiobjective genetic algorithm design has been pro-
posed to tackle the TSALBP-1/3 resulting in a new approach called
the advanced TSALBP-NSGA-II. The need of all the main components
of the proposal has been justified in a experimental study. The per-
formance of this new technique has been compared with the state-
of-the-art algorithms, the MACS multiobjective ACO approach and
a previous multiobjective extension of an existing genetic algo-
rithm for the SALBP, called basic TSALBP-NSGA-II. The comparisons
were carried out using up-to-date multiobjective performance
indicators. The advanced TSALBP-NSGA-II clearly outperformed the
latter two methods when solving nine of the 10 TSALBP-1/3 in-
stances considered as well as it also showed an advantage in the
real-world Nissan problem instance.

It has been demonstrated that the existing basic TSALBP-NSGA-II
showed a poor performance due to the use of non-appropriate rep-
resentation and genetic operators to solve the problem. Since the
TSALBP-1/3 is a very complex combinatorial optimization problem
with strong constraints, a deep study of the best design options for
the specific context was mandatory to get a high performance
problem solving technique. Therefore, it has been demonstrated
that multiobjective genetic algorithms are suitable to solve these
kind of multiobjective assembly line balancing problems if a good
design is used.

Future work will be devoted to: (a) apply a local search proce-
dure to increase the performance of the algorithms, (b) add inter-
active preferences into the advanced TSALBP-NSGA-II to guide the
search to the Pareto front regions preferred by the expert (Chica,
Cordón, Damas, Bautista, & Pereira, 2008b, 2009, 2011), and (c)
perform some further improvements in the advanced TSALBP-
NSGA-II to slightly increase the spread of the Pareto front it gener-
ates in order to get even better results in the Nissan instance.
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Fig. 14. Attainment surface plots for the P2, P3, and P8 problem instances.

Table 5
Mean and standard deviation �xðrÞ of the HVR performance
indicator values for the advanced TSALBP-NSGA-II (TN) and the
state-of-the-art algorithms, MACS (S1) and the basic TSALBP-
NSGA-II (S2) for the Nissan problem instance. Higher values
indicate better performance.

HVR
P10 (Nissan)

TN 0.884 (0.07)
S1 0.849 (0.01)
S2 0.316 (0.03)
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a b s t r a c t

This paper presents three proposals of multiobjective memetic algorithms to solve a more realistic

extension of a classical industrial problem: time and space assembly line balancing. These three

proposals are, respectively, based on evolutionary computation, ant colony optimisation, and greedy

randomised search procedure. Different variants of these memetic algorithms have been developed and

compared in order to determine the most suitable intensification–diversification trade-off for the

memetic search process. Once a preliminary study on nine well-known problem instances is

accomplished with a very good performance, the proposed memetic algorithms are applied considering

real-world data from a Nissan plant in Barcelona (Spain). Outstanding approximations to the pseudo-

optimal non-dominated solution set were achieved for this industrial case study.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, assembly lines are crucial in the industrial produc-
tion of high quantity standardized commodities and more
recently even gained importance in low volume production of
customised products (Boysen et al., 2008). An assembly line is
made up of a number of workstations, arranged either in series or
in parallel. Since the manufacturing of a production item is
divided into a set of tasks, a usual and difficult problem is to
determine how these tasks can be assigned to the stations
fulfilling certain restrictions. Consequently, the aim is to get an
optimal assignment of subsets of tasks to the stations of the plant.
Moreover, each task requires an operation time for its execution.

A family of academic problems – referred to as simple assembly
line balancing problems (SALBP) – was proposed to model this
situation (Baybars, 1986; Scholl, 1999). Taking this family as a base,
Bautista proposed a more realistic framework: the time and space
assembly line balancing problem (TSALBP) (Bautista and Pereira,
2007). The new model considers an additional space constraint to
become a simplified version of real-world problems. As described
in Bautista and Pereira (2007), this space constraint emerged due
to the study of the Nissan plant in Barcelona, Spain (a snapshot of
an assembly line of this industrial plant is shown in Fig. 1). The

new TSALBP framework is of a great importance in industrial
engineering and operations research since it achieves a better
modelling of the real conditions of the balancing of assembly lines.
The proposal of more realistic ALB models, allowing us to properly
cope with real-life scenarios, have become a hot topic in the area in
the last few years (Boysen et al., 2008).

As many real-world problems, TSALBP formulations have a

multi-criteria nature (Chankong and Haimes, 1983) because they

contain three conflicting objectives to be minimised: the cycle time

of the assembly line, the number of the stations, and the area of

these stations. In this paper we deal with the TSALBP-1/3 variant

which tries to jointly minimise two objectives, the number of

stations and their area, for a given value of the remaining objective,

the product cycle time. TSALBP-1/3 has an important set of hard

constraints-like precedences or cycle time limits for each station

that make the problem solving difficult. These characteristics

initially demanded the use of constructive approaches like ant

colony optimisation (ACO) (Dorigo and Stützle, 2004) or greedy

randomised search procedures (GRASP) (Feo and Resende, 1995) as

done in the proposals described in Chica et al. (2010a,b), respec-

tively. Nevertheless, an advanced proposal based on the well-

known NSGA-II multiobjective evolutionary algorithm (Deb et al.,

2002) has been recently introduced in Chica et al. (2011a) using a

specific representation scheme and customised genetic operators

for the TSALBP. The latter advanced TSALBP-NSGA-II proposal has

overcome the problem shortcomings requiring a constructive

technique and has outperformed the existing algorithms, becoming

the state-of-the-art method.
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Memetic algorithms (MAs) (Moscato, 1989; Ong et al., 2006,
2010) have been widely used in industrial and engineering
applications like the fleet vehicle routing problem (Prins, 2009),
the design of spread spectrum radar poly-phase codes (Pérez-
Bellido et al., 2008), the design of logistic networks (Pishvaee
et al., 2010), or the construction of three-dimensional models of
real-world objects (Santamarı́a et al., 2009). However, the use of
local search to improve the solutions obtained by a global search
procedure for the TSALBP has not been extensively explored
(Bautista and Pereira, 2007; Chica et al., 2010b). In this paper,
we aim to make an advance in the solving of this complex and
challenging real-world problem by considering the application of
advanced MA designs to deal with it.

We will design new multiobjective memetic methods for
tackling the real-world TSALBP-1/3 variant. Such methods are
based both on the state-of-the-art multiobjective algorithm, the
advanced TSALBP-NSGA-II, and on the other existing multiobjec-
tive algorithms for the TSALBP. The new memetic proposals will
incorporate a successful multi-criteria local search (LS) scheme
used in a previous GRASP approach.

We aim at comparing different MA variants to show that there
is no general method that is able to achieve the best results for all
the problem instances (as stated in the No Free Lunch theorem
Wolpert and Macready, 1997). Thus, we will develop 15 different
MA designs to be compared to each other and to the basic global
search methods in a complete experimentation with nine well-
known problem instances.

Finally, an industrial case study will be considered to investi-
gate the appropriateness of our MA proposals for solving real-
world problems. This case study includes real-world data from
the Nissan Pathfinder engine manufacturing process obtained
from the assembly line of Barcelona. Up-to-date multiobjective
performance indicators and statistical tests are used to analyse
the behaviour of the algorithms.

The paper is structured as follows. In Section 2, the TSALBP-1/3
formulation is explained. The proposed multiobjective memetic
algorithms to solve the problem are described in Section 3. Then,
the experimental setup, the analysis of results, and the Nissan
case study are presented in Section 4. Finally, some concluding
remarks are discussed in Section 5.

2. Time and space assembly line balancing

The manufacturing of a production item is divided into a set V

of n tasks. Each task j requires a positive operation time tj for its

execution. This time is determined as a function of the manufac-
turing technologies and the resources employed. A subset of tasks
Sk (SkDV) is assigned to each station k (k¼1,2,y,m), referred to
as the workload of this station. Each task j can only be assigned to
a single station k.

Every task j has a set of immediate ‘‘preceding tasks’’ Pj which
must be accomplished before starting that task. These constraints
are represented by an acyclic precedence graph, whose vertices
correspond to the tasks and where a directed arc /i,jS indicates
that task i must be finished before starting task j on the produc-
tion line. Thus, task j cannot be assigned to a station that is
ordered before the one where task i was assigned.

Each station k presents a station workload time tðSkÞ that is
equal to the sum of the tasks’ lengths assigned to it. The workload
time of the station cannot exceed the cycle time c, common to all
the stations of the assembly line. In general, the SALBP (Baybars,
1986; Scholl, 1999) focuses on grouping these tasks into work-
stations by an efficient and coherent method. In short, the goal is
to achieve a grouping of tasks that minimises the inefficiency of
the line or its total downtime satisfying all the constraints
imposed on the tasks and stations.

Nevertheless, this formulation is too simple to deal with real-
life ALB problems. Different extensions to this formulation have
been proposed (Scholl, 1999), showing the great interest of the
scientific community (Boysen et al., 2008). In particular, there is a
significant and real need of introducing space constraints in the
assembly lines’ design. This is because of three main reasons
found in real manufacturing scenarios:

(1) The length of the workstation is limited. Workers start their
work as close as possible to the initial point of the work-
station, and must fulfil their tasks while following the
product. They need to carry the tools and materials to be
assembled in the unit. In this case, there are constraints for
the maximum allowable movement of the workers. These
constraints directly limit the length of the workstation and
the available space.

(2) The required tools and components to be assembled should
be distributed along the sides of the line. In addition, in the
automotive industry, some operations can only be executed
on one side of the line. This fact restricts the physical space
where tools and materials can be placed. If several tasks
requiring large areas are put together the workstation would
be unfeasible.

(3) Another usual source of spatial constraints comes from the
products evolution. Focusing again on the automotive indus-
try, when a car model is replaced with a newer one, it is usual
to keep the production plant unchanged. However, the new
space requirements for the assembly line may create more
spatial constraints.

Based on these new realistic spatial features, a new real-like
problem comes up. In order to model it, Bautista extended the
SALBP into the TSALBP by means of the following formulation
(Bautista and Pereira, 2007): the area constraint must be con-
sidered by associating a required area to each task. The areas of
tasks are devoted to store auxiliary elements for manufacturing
purposes like tools, shelves, containers, or hardware brackets. The
needed area for each task is defined by the logistics and methods
departments based on the characteristics of the involved auxiliary
elements. We should keep in mind that the inclusion of space
constraints in the problem formulation can decrease the effi-
ciency with respect to a formulation which does not consider
spatial constraints. However, these efficiency values only repre-
sent a theoretical nature because if spatial constraints are not
included, the assembly line cannot be arranged.

Fig. 1. An assembly line of the Nissan Pathfinder car, located in the industrial

plant of Barcelona (Spain).
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Mainly, the required areas can be specified by two-dimen-
sional units, i.e. length (aj) and width (bj). The first dimension, aj,
is the truly useful variable for the TSALBP optimisation task.
From now on, the length associated to the tasks and the station’s
length will be referred as area and measured in linear metres.
Every station k will require a station area a(Sk), equal to the sum
of the areas of all the tasks assigned to that station. This needed
area must not be larger than the available area Ak of the station
k. For the sake of simplicity, we shall assume Ak to be identical
for all the stations and denoted by A, where A¼maxk ¼ 1,2,...,mAk.
This fact is not problematic since if there is a continuous
transportation system, as in our case, the areas of the stations
must be equal. Otherwise, the velocity of the conveyor belt
would require to be changed at each station and adapted to the
cycle time. A diagram with an example is given in Fig. 2 where
the area Ak of station k is given by the sum of the areas (lengths)
of its tasks, a1, a2, a3, and a4.

Overall, the TSALBP may be stated as: given a set of n tasks
with their temporal and spatial attributes, tj and aj, and a
precedence graph, each task must be assigned to just one station
such that:

1. all the precedence constraints are satisfied,
2. there is not any station with a workload time tðSkÞ greater than

the cycle time c,
3. there is not any station with a required area aðSkÞ greater than

the global available area A.

The TSALBP presents different formulations depending on
which of the three considered parameters (c, the cycle time; m,
the number of stations; and A, the area of the stations) are tackled
as objectives to be optimised and which will be considered as
fixed variables. The eight possible combinations result in eight
different TSALBP variants (Bautista and Pereira, 2007). Within
them, there are four multiobjective variants depending on the
given fixed variable: c, m, A, or none of them. While the former
three cases involve a bi-objective problem, the latter defines a
three-objective problem.

In this contribution we will tackle one of these formulations,
the TSALBP-1/3. It consists of minimising the number of stations
m and the station area A, given a fixed value of the cycle time c.
We chose this variant because it is quite realistic in the auto-
motive industry, our field of interest, since the annual production
of an industrial plant (and, therefore, the cycle time c) is usually
set by market objectives. Besides, the search for the best number
of stations and areas makes sense if we want to reduce costs and
make workers’ day better by setting up less crowded stations.
More information about the justification of this choice can be
found in Chica et al. (2010a).

We can mathematically formulate the TSALBP-1/3 variant as
follows:

Min f 0ðxÞ ¼m¼
XUBm

k ¼ 1

max
j ¼ 1,2,...,n

xjk, ð1Þ

f 1ðxÞ ¼ A¼ max
k ¼ 1,2,...,UBm

Xn

j ¼ 1

ajxjk: ð2Þ

subject to:

XLj

k ¼ Ej

xjk ¼ 1, j¼ 1,2, . . . ,n, ð3Þ

XUBm

k ¼ 1

max
j ¼ 1,2,...,n

xjkrm, ð4Þ

Xn

j ¼ 1

tjxjkrc, k¼ 1,2, . . . ,UBm, ð5Þ

Xn

j ¼ 1

ajxjkrA, k¼ 1,2, . . . ,UBm, ð6Þ

XLi

k ¼ Ei

kxikr
XLj

k ¼ Ej

kxjk, j¼ 1,2, . . . ,n; 8iAPj, ð7Þ

xjkAf0,1g, j¼ 1,2, . . . ,n; k¼ 1,2, . . . ,UBm, ð8Þ

where:

� n is the number of tasks,
� xjk is a decision variable taking value 1 if task j is assigned to

station k, and 0 otherwise,
� aj is the area information for task j,
� Ej is the earliest station to which task j may be assigned,
� Lj is the latest station to which task j may be assigned,
� UBm is the upper bound of the number of stations. In our case,

it is equal to the number of tasks.

Constraint in Eq. (3) restricts the assignment of every task to
just one station, (4) limits decision variables to the total number
of stations, (5) and (6) are concerned with time and area upper
bounds, (7) denotes the precedence relationship among tasks, and
(8) expresses the binary nature of variables xjk.

The specialised literature includes a large variety of exact and
heuristic problem-solving procedures as well as metaheuristics
for solving the SALBP (Baybars, 1986; Scholl and Voss, 1996;
Scholl and Becker, 2006). Regarding the TSALBP-1/3, a multi-
objective ACO algorithm based on the multiple ant colony system
(MACS) (Barán and Schaerer, 2003) was the first successful
proposal (Chica et al., 2010a). However, a later multiobjective
evolutionary algorithm, the advanced TSALBP-NSGA-II, outper-
formed MACS and became the state-of-the-art method (Chica
et al., 2011a). Procedures based on other metaheuristics as GRASP
have also been proposed (Chica et al., 2010b). Finally, expert
preferences were modelled and included into the metaheuristic
search process (Chica et al., 2011b, 2008).

The said three approaches to tackle TSALBP-1/3 will be
described in Section 3.1 as the global search modules of our
memetic proposals. With respect to the use of MAs, an ACO
algorithm incorporating an LS strategy was proposed in Bautista
and Pereira (2007) to solve a single-objective TSALBP variant.
Nevertheless, no multiobjective MA design has been proposed to
deal with any multiobjective TSALBP variant. The current con-
tribution aims at bridging this gap.

Fig. 2. A diagram showing the area configuration of a station k containing

4 different tasks. The important space dimension for the optimisation problem

is the length of the tasks, ai, that is called area in this paper.
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3. Proposed memetic algorithms

In this section we introduce different advanced MA designs
for tackling our industrial problem. Generally, (multiobjective)
MAs may be regarded as a marriage between a (multiobjective)
global search metaheuristic and local improvement operators.
This general structure has actually proved its efficacy when
solving a large number of real-world problems. Unfortunately, it
is well known that there is not any universal MA design to deal
with any general application. In fact, one drawback of MAs is
that, in order for it to be useful, their general structure must be
adapted to cope with the characteristics of the individual search
components considered and of the problem under solving. These
elements and how they are integrated to obtain the best
performance are the pieces of the MA puzzle. Designers must
use their knowledge, skills and expertise to make decisions on
the composition of each individual procedure and of their
integration in order to reach the best possible MA structure for
the specific application being tackled (Ishibuchi et al., 2003; Ong
et al., 2006, 2010). Some tentative designs based on the analysis
of several combinations with a different intensification–diversi-
fication trade-off must be tested to succeed in this task.

The latter design process is a consequence of the fact that each
(multiobjective) global search metaheuristic has its own peculia-
rities and defines different intensification–diversification degrees
when combined with a LS method. Therefore, it is necessary to
detail each global search method and how all the components are
integrated in the final scheme for each specific MA case. As an
example, in the design of a multiobjective MA for the current
problem we found that the three different multiobjective meta-
heuristics to be considered as global search methods handle the
final set of solutions, i.e. Pareto-optimal solutions, in different
ways. On the one hand, these solutions can be stored in an
external Pareto archive, as in MACS and GRASP. On the other
hand, they can be included in the general population of the
metaheuristic, as in the advanced TSALBP-NSGA-II. These specific
decisions are those not allowing for a universal MA design.

The structure of the current section keeps these ideas in mind
and follows the usual MA design pipeline. To do so, in Section 3.1
the three basic multiobjective global search methods tested are
reviewed. Then, the LS structure and operators are introduced in
Section 3.2. Finally, Section 3.3 describes the different chances
considered for the LS integration within the global search scheme.

3.1. Global search: multiobjective metaheuristics

We describe the three multiobjective metaheuristic designs
which have been applied to the TSALBP-1/3, i.e. the MACS
algorithm, a GRASP method, and the state-of-the-art advanced

TSALBP-NSGA-II.

3.1.1. MACS

MACS (Barán and Schaerer, 2003) was proposed as an exten-
sion of ant colony system (ACS) (Dorigo and Gambardella, 1997)
to deal with multiobjective problems. In Chica et al. (2010a), the
authors modified the original version of MACS to adapt it for
solving the TSALBP-1/3. The algorithm uses one pheromone trail
matrix and several heuristic information functions. In the case of
the TSALBP-1/3, the experimentation carried out in Chica et al.
(2010a) showed that the performance was better when MACS was
only guided by the pheromone trail information. Therefore, the
heuristic information functions have not been considered in this
contribution.

Since the number of stations is not fixed, the method is based
on constructive and station-oriented approach (Scholl, 1999) to

face the precedence problem (as usually done for the SALBP,
Scholl and Becker, 2006). Thus, the algorithm opens a station and
sequentially selects tasks to fill it by means of the MACS transi-
tion rule till a stopping criterion is reached. Then, a new station is
opened to be filled and the procedure is iterated till all the
existing tasks are allocated.

The pheromone information has to memorise which tasks are
the most appropriate to be assigned to a station. Hence, a
pheromone trail has to be associated to a pair ðstationk,taskjÞ,
k¼1yn, j¼1yn, with n being the number of tasks, so the
pheromone trail matrix has a bi-dimensional nature. Since MACS
is Pareto-based, i.e. a set of non-dominated solutions for the
problem is stored in a Pareto archive and updated at each step of
the algorithm, the pheromone trails are updated using the solu-
tions of this archive. Two station-oriented single-objective greedy
algorithms are used to obtain the initial pheromone value t0.

In addition, a novel mechanism was introduced in the con-
struction procedure in order to achieve a better search intensifi-
cation–diversification trade-off. This mechanism randomly
decides when to close the current station taking as a base both
a station closing probability distribution and an ant filling thresh-
old aiA ½0,1�. The probability distribution is defined by the station
filling rate (i.e. the overall processing time of the current set of
tasks Sk assigned to that station) as follows:

pðclosing kÞ ¼

P
iASk

ti

c
: ð9Þ

At each construction step, the current station filling rate is
computed. In case it is lower than the ant’s filling percentage
threshold ai (i.e. when it is lower than ai � c), the station is kept
opened. Otherwise, the station closing probability distribution is
updated and a random number is uniformly generated in [0,1] to
take the decision whether the station is closed or not. If the
decision is to close the station, a new station is created to allocate
the remaining tasks. Otherwise, the station will be kept open.
Once the latter decision has been taken, the next task is chosen
among all the candidate tasks using the MACS transition rule to
be assigned to the current station as usual:

j¼
argmax

jAO
ðtij � ½Z0

ij�
lb � ½Z1

ij�
ð1�lÞbÞ, if qrq0,

î, otherwise:

8<
: ð10Þ

where O represents the current feasible neighbourhood of the ant,
b weights the relative importance of the heuristic information with
respect to the pheromone trail, and l is computed from the ant
index h as l¼ h=M. M is the number of ants in the colony, q0A ½0,1�
is an exploitation–exploration parameter, q is a random value in
[0,1], and î is a node. This node î is selected according to the
probability distribution p(j) of Eq. (11). This probability is applied
to perform a controlled exploration of the neighbourhood O at
each decision node of the ant, as done in the original ACS. Again, b
weights the relative importance of the heuristic information with
respect to the pheromone trails and l depends on each ant index

pðjÞ ¼

tij � ½Z0
ij�
lb � ½Z1

ij�
ð1�lÞb

P
uAOtiu � ½Z0

iu�
lb � ½Z1

iu�
ð1�lÞb, if jAO,

0, otherwise:

8>><
>>: ð11Þ

The procedure goes on till there are no remaining tasks to be
assigned. Thus, the higher the ant’s threshold, the higher the
probability of a totally filled station, and vice versa. This is due to
the fact that there are less possibilities to close it during the
construction process. In this way, the ant population will show a
highly diverse search behaviour, allowing the method to properly
explore the different parts of the optimal Pareto front by appro-
priately distributing the generated solutions.
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The algorithm performs a local pheromone update every time
an ant crosses an edge /i,jS using the average costs of the t0

value. It is done as follows:

tij ¼ ð1�rÞ � tijþr � t0 ð12Þ

The interested reader is referred to Chica et al. (2010a) for a
complete description of the MACS proposal for the TSALBP-1/3.

3.1.2. GRASP

Another successful metaheuristic applied to the TSALBP-1/3
was a multiobjective GRASP method1 (Chica et al., 2010b). With
this approach, a solution is generated at each iteration and its
inclusion in the external Pareto archive is considered: if it is not
dominated, it is included in the archive and the resulting
dominated solutions are removed. The algorithm finishes with a
set of non-dominated solutions generated during all the
iterations.

As in MACS, the construction method is based on a station-
oriented approach. In the construction of the greedy solutions we
introduce randomness in two processes. On the one hand, we
allow the random selection of the next task among the best
candidates to be assigned to the current station. This process
starts by creating a candidate list of unassigned tasks. For each
candidate task j, we compute its heuristic value Zj. It measures
the preference of assigning it to the current opened station. Zj is
proportional to the processing time and area ratio of that task
(normalised with the upper bounds given by the time cycle, c, and
the sum of all tasks’ areas, UBA, respectively). In addition, Zj is also
proportional to the ratio between the number of successors of
task j and the maximum number of immediate successors of any
eligible task:

Zj ¼
tj

c
�

aj

UBA
�

jFjj

maxiAOjFij
ð13Þ

Then, we sort all the candidate tasks according to their
heuristic values and we set a quality threshold for them given
by q¼maxZj

�g � ðmaxZj
�minZj

Þ. All the candidate tasks with a
heuristic value Zj greater or equal to q are selected to be in the
restricted candidate list (RCL). In the former expression, g is the
intensification–diversification trade-off control parameter. We
found that g¼ 0:3 was the value that yield the best performance
(Chica et al., 2010a). Finally at the current construction step, we
randomly select a task among the elements of the RCL. The
construction procedure finishes when all the tasks have been
allocated in the needed stations.

On the other hand, we also introduce randomness in the
decision of closing the current station according to a probability
distribution given by the filling rate of the station (see Eq. (9)). As
stated in MACS, the filling thresholds approach is also used to
achieve a diverse enough Pareto front. A different threshold is
selected in isolation at each iteration of the multiobjective
randomised greedy algorithm, i.e. the construction procedure of
each solution considers a different threshold.

The algorithm is run a number of iterations to generate
different solutions. When a solution is generated a local improve-
ment phase is performed on the solution. This improve-
ment is achieved by means of a multi-criteria LS scheme,
later explained in Section 3.3. The final output consists of a
Pareto set approximation composed of the non-dominated
solutions found.

3.1.3. Advanced TSALBP-NSGA-II

In Chica et al. (2011a) the authors proposed a novel multi-
objective genetic algorithm design, called advanced TSALBP-NSGA-

II, and based on the original NSGA-II search scheme (Deb et al.,
2002). Customised representation and operators were considered
in the algorithm design to properly solve the TSALBP-1/3 by
considering a global search technique.

The most important problem of the previous genetic algo-
rithm-based approaches that tried to solve the SALBP and TSALBP
(see for example Chica et al., 2010a and Sabuncuoglu et al., 2000)
was the representation scheme. The advanced TSALBP-NSGA-II

proposal took the biggest step ahead with respect to existing
algorithms by explicitly representing task-station assignments
regardless the cycle time of the assembly line. Thus, it ensures a
proper search space exploration for the joint optimisation of the
number and the area of the stations. Furthermore, the represen-
tation will also follow an order encoding to facilitate the con-
struction of feasible solutions with respect to the precedence
relations constraints. The allocation of tasks among stations is
made by employing separators, that are dummy genes which do
not represent any specific task and they are inserted into the list
of genes representing tasks. In this way, they define groups of
tasks being assigned to a specific station.

The maximum possible number of separators is n�1 (with n

being the number of tasks), as it would correspond to an assembly
line configuration with n stations. The number of separators
included in the genotype is variable and it depends on the
number of existing stations in the current solution. Therefore,
the algorithm works with a variable-length coding scheme,
although its order-based representation nature avoids the need
of any additional mechanism to deal with this issue.

Due to the latter fact, the crossover operator can be designed
from a classical order-based one. The partially mapped crossover
(PMX) operator was selected because (a) it is one of the most
extended crossover operators, and (b) it has already been used
in other genetic algorithm implementations for the SALBP
(Sabuncuoglu et al., 2000). PMX generates two offspring from two
parents by means of the following procedure: (a) two random cut
points are selected, (b) for the first offspring, the genes outside the
random points are copied directly from the first parent, and (c) the
genes inside the two cut points are copied but in the order they
appear in the second parent. Thanks to the advanced coding scheme
and to the use of a permutation-based crossover, the feasibility of
the offspring with respect to precedence relations is assured.

However, since information about the tasks-stations assign-
ment is encoded inside the chromosome, it is needed to assure
that: (a) there is not any station exceeding the fixed cycle time
limit, and (b) there is not any empty station in the configuration
of the assembly line. Therefore, a repair operator must be applied
for each offspring after crossover. The goals and methods of the
repair operator are: (a) redistribute spare tasks among available
stations by reallocating the spare tasks in other stations, and
(b) removing empty stations.

Two mutation operators have also been specifically designed
and uniformly applied to the selected individuals of the popula-
tion. The first one, the scramble operator, is based on reordering a
part of the sequence of tasks and reassigning them to stations.
The second one, the divider operator, is introduced to induce more
diversity in order to achieve a well-distributed Pareto front
approximation.

In order to additionally increase the diversity of the search to
obtain better distributed Pareto front approximations, a diversity
induction mechanism was adopted: Ishibuchi et al.’s (2008)
similarity-based mating.

The interested reader is referred to Chica et al. (2011a) for a
complete description of the method.

1 Unlike MACS and NSGA-II, a GRASP approach always includes a LS improve-

ment applied to the constructed solutions. Therefore, we will not consider the

constructive step without the local improvement in this work.
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3.2. Multi-criteria LS structure and components

Mainly, there are two stochastic LS approaches for multi-
objective combinatorial optimisation problems (Teghem and
Jaszkiewicz, 2003; Paquete and Stützle, 2006). The first one uses
an acceptance criterion based on the weak component-wise
ordering of the objective value vectors of neighbouring solutions.
In addition, it maintains an unbounded archive of non-dominated
solutions found during the search process (a Pareto archive)
(Knowles and Corne, 2003; Zitzler and Thiele, 1999). The second
family is based on considering different scalarizations of the
objective function vector (Gandibleux and Freville, 2000;
Hansen, 1997; Jaszkiewicz, 2002). The MA designs introduced in
this contribution will be based on this second approach. The
weighted sum scalarization of the two objectives of our problem,
A and m, are calculated by the following formula:

Min ðl1Aþl2 mÞ: ð14Þ

This will be the function to be optimised by the multi-criteria
LS of the MAs. As usually done in the multiobjective MA area (see
for example Jaszkiewicz, 2002), the weight vector l¼ ðl1,l2

Þ is
created at random for each constructed solution.

The existing local improvement procedures for ALB are based
on moves (Rachamadugu and Talbot, 1991). The LS operators are
based on such moves of tasks. In our advanced specific design, two
different neighbour generation operators will be considered and
selected depending on the weight vector l (see Section 3.2). If
l14l2, the neighbour operator for minimising the A objective will
be followed since the LS optimisation will be more biased to the
improvement of the latter objective than the other. Otherwise, the
neighbour operator headed to improve m will be considered first. If
the selected neighbour operator does not succeed minimising the
weighted sum scalarization, the other operator is then applied.

To explain the operation mode of both operators it is necessary
to define, for each task j in the current TSALBP-1/3 solution, the

first, ESj, and last station, LPj, where task j may be re-assigned by
the corresponding LS operator according to the current assign-
ment of its immediate predecessors and successors. In general, a
move ðj,k1,k2Þ describes the assignment change of task j from
station k1 to station k2, where k1ak2 and k2A ½ESj,LPj�. ESj and LPj

are variables of the LS algorithm. They are re-calculated each time
a LS operator is going to be applied by locating where the
immediate precedent task of j, s, and the immediate successor
of j, p, are placed in the existing solution. Note that they should
not be confused with Ej and Lj which are definitions of the TSALBP
model and restrict the set of stations where the corresponding
task j could be never allocated (see Section 2).

The pseudo-code of the LS operator for the first objective, A, is
described in Algorithm 1. In this method, the solution neighbour-
hood is built by means of the explained task moves. The main goal
is to reduce the area occupied by the station with the highest area
by moving tasks to other stations. It works by first sorting the
tasks of a target station and selecting the task with the highest
area. Then, the algorithm tries to move this task to one of its
feasible stations in order to reduce the scalarization value of the
solution. If there is no possible improvement with this task, the
algorithm selects the next task of the sorted list of tasks of
the target station.

In the case of the second LS operator, the goal is reducing the
number of stations m. From the initial solution, a neighbourhood
is created by moving all the tasks from the station with the
lowest number of tasks (called the Target_Station) to other
stations, keeping a feasible solution. The operator works as
described in Algorithm 2. For a sorted list of stations with
respect to the number of tasks, the algorithm tries to move all
the tasks of each station in order to improve the scalarization
function value. This is done for a maximum number of stations.
Given a station to be removed, the algorithm uses a recursive
depth first search function (Algorithm 3) to look for a feasible
solution having the Target_Station’s tasks reallocated in other
stations. In the experiments developed, the maximum number of

Algorithm 1. The pseudo-code of the LS operator for the A objective.

1 while IterationsrMAX_ITERATIONS do
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Target_Station’Find the station with the highest area;

Tasks’Descending_Sortðtasks of Target_StationÞ;

while no scalarization function improvement AND Tasksa| do

Task’First element of Set_Of_Tasks;

Find ESj and LPj of Task j;

while no scalarization function improvement do

Possible_Station’station with the lowest area

A ½ESj,LPj�;

Move Task from Target_Station to Possible_Station;

if scalarization function improvement then

jMake the move permanent;

end

��������������
end

Remove Task from Set_Of_Tasks;

���������������������������
if Target_Station¼ | then

jRemove Target_Station;

end

Iterations’Iterationsþ1;

���������������������������������������������
20 end
21 return true if scalarization function is improved;
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stations (MAX_STATIONS) was set to 20 to limit the computa-
tional time of this LS operator.

3.3. Multiobjective LS integration

The most important issue in the LS integration scheme in a MA
is the balance between the application of the basic global search
method and the LS (Ishibuchi et al., 2003). In memetic computing,
LS is usually applied to each trial solution obtained during the
global search process. However, this is very time-consuming
process and it has been reported that this do not necessarily lead
to the best performing MA (Krasnogor and Smith, 2000).

An alternative choice is considering a selective application of
the LS as done for example in Ishibuchi et al. (2003), Herrera et al.
(2005) and Noman and Iba (2005). That is one of the alternatives
we will use in this work. We have considered a criterion that was
originally proposed in Hart (1994) and later used in contributions
such as Krasnogor and Smith (2000), Lozano et al. (2004) and
Santamarı́a et al. (2009). It is based on a random application with

uniform distribution considering a probability value of 0.0625.
We will compare this criterion with the traditional scheme of

applying the LS improvement to every constructed solution
during the global search process.

Another issue that could significantly affect the MA intensifi-
cation–diversification trade-off is the LS depth measured by
the number of LS iterations we are considering. The higher the
number of LS iterations, the higher the intensification (and the
lower the diversification) the MA is applying. We will consider
three different number of LS iterations, 20, 50, and 100, and study
their influence in the experiments developed.

4. Experimentation

In this section we aim at studying the performance and
behaviour of the different designed multiobjective MAs. First, we
describe the experimental setup (Section 4.1). Then, an analysis of

Algorithm 2. The pseudo-code of the LS operator for the m objective.

1 while IterationsrMAX_ITERATIONS do
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Set_Of_Stations’Ascending Sort ðwith respect to no: of tasksÞ;

i’1;

while irMAX_STATIONS AND no scalarization function improvement do

Target_Station’i� th element of Set_Of_Stations;

Set_Of_Tasks’Descending_Sortðtasks of Target_StationÞ;

for all elements of Set_Of _Tasks do

jFind ESj and LPj;

end

First_Element¼ First Element of Set_Of_Tasks;

DFSðFirst_Element,Set_Of_TasksÞ;

if no scalarization function improvement then

ji’iþ1;

end

������������������������
end

Iterations’Iterationsþ1;

17 end
18 return true if scalarization function is improved;

Algorithm 3. The pseudo-code of the Depth First Search implemented in a recursive fashion, used by the LS operator for objective m.

1 Function DFS (Current_Task, Set_Of_Tasks)
2 if all elements of Set_Of_Tasks allocated then
3 // Base case

Calculate scalarization function of the objective function vector;

�����
4 else
5

6

7

8

9

10

11

12

for all the possible stations of Current_Task do

Move Current_Task to the selected station if feasible;

// Recursive call of the Depth First Search algorithm

Next_Task’Next task of Set_Of_Tasks;

DFSðNext_Task,Set_Of _TasksÞ;

if no scalarization function improvement then

jUndo Current_Task movement;

end

�����������������
end

����������������������
13 end
14 return true if scalarization function is improved;
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the MA variants performance is done (Section 4.2.2). Finally, the
real-world case study of Nissan is tackled in Section 4.3.

4.1. Experimental setup

We run each algorithm 10 times with different random seeds,
setting a fixed run time as stopping criterion (900 s). All the
algorithms were launched in the same computer: Intel PentiumTM

D with two CPUs at 2.80 GHz and CentOS Linux 4.0 as operating
system. Furthermore, the same programming language, Cþþ, and
framework were utilised for the development of all the algo-
rithms here described. The framework with the algorithms of the

experimental study is publicly available at http://www.nissanchair.
com/TSALBP. The specific parameter values considered for the
different algorithms are shown in Table 1.

We will consider the two usual kinds of multiobjective
performance indicators (metrics) existing in the specialised lit-
erature (Zitzler et al., 2000, 2003; Deb, 2001; Knowles and Corne,
2002; Coello et al., 2007): (a) unary performance indicators, those
which measure the quality of a non-dominated solution set
approximation returned by an algorithm; and (b) binary perfor-
mance indicators, those which compare the performance of two
different multiobjective algorithms. In the following paragraphs
we present a brief description of the used performance indicators:

Hypervolume ratio unary indicator: The hypervolume ratio
(HVR) (Coello et al., 2007) has become a very useful unary
performance indicator. Its use is very extended as it can jointly
measure the distribution and convergence of a Pareto set approx-
imation. The HVR can be calculated as follows:

HVR¼
HVðPÞ

HVðPnÞ
, ð15Þ

where HV(P) and HVðPnÞ are the volume (S indicator value) of the
Pareto front approximation and the true Pareto front, respec-
tively. When HVR equals 1, then the Pareto front approximation
and the true Pareto front are equal. Thus, HVR values lower than
1 indicate a generated Pareto front approximation that is not as
good as the true Pareto front.

Since we are working with real-world problems we have to
keep in mind some obstacles which make difficult the computa-
tion of this performance indicator. First, we should notice that the
true Pareto fronts are not known. In our case, we will consider a
pseudo-optimal Pareto set, i.e. an approximation of the true
Pareto set, obtained by merging all the Pareto set approximations
Pj

i generated for each problem instance by any algorithm in any
run. Thanks to this pseudo-optimal Pareto set, we can compute
the HVR performance indicator values, considering them in our
analysis of results.

Besides, there is an additional problem with respect to the HVR

performance indicator. In minimisation problems, as ours, there is
a need to define a reference point to calculate the volume of a
given Pareto front. The HVR values are not proper to be compared
if there is not any upper boundary of the region within which all
feasible points will lie (Knowles and Corne, 2002). Thus, we
defined the reference point for each instance as the ‘‘logical’’
maximum values for the two objectives (anti-ideal solution).
These reference points are specific for each problem instance.

Ie binary performance indicator: The previous performance
indicator allows us to determine the absolute and individual
quality of a Pareto front approximation, but cannot be used for
comparison purposes (Zitzler et al., 2003). On the opposite, binary
indicators aim to compare the performance of two different
multiobjective algorithms by comparing the Pareto set approx-
imations generated by each of them. In this contribution, we will
consider the e binary indicator, Ie.

The Ie indicator (Zitzler et al., 2003) is a quality assessment
method for multiobjective optimisation that avoids particular
difficulties of unary and classical methods (Knowles, 2006). Two
different definitions are possible: the standard (multiplicative) Ie
and the additive indicator Ieþ . In this contribution, we have opted
by the multiplicative indicator. Given two Pareto front approx-
imations, P and Q, the value IeðP,Q Þ is calculated as follows:

IeðP,Q Þ ¼ inf
eAR
f8z2AQ ,(z1AP : z1

$ez
2g, ð16Þ

where z1
$ez2 iff z1

i re � z2
i , 8iAf1, . . . ,og, with o being the number

of objectives, assuming minimisation.
According to Zitzler et al. (2003), the Ie binary indicator can be

properly used to compare the performance of two different
multiobjective algorithms by analysing the crossed values of the
metric as follows. If both IeðP,Q Þr1 and IeðQ ,PÞ41, then it can be
considered that the Pareto set approximation P generated by the
first algorithm dominates Q, the one generated by the second
algorithm, in a weak sense.

The Ie performance indicator values of the approximation sets
of the 10 runs performed for every pair of algorithms have been
represented by two kinds of boxplots (see Figs. 3, 5, and 7; and
Figs. 9, 13, 14, respectively). For all the boxplots, the minimum
and maximum values are the lowest and highest lines, the upper
and lower ends of the box are the upper and lower quartiles, a
thick line within the box shows the median, and the isolated
points are the outliers of the distribution.

In the first kind of boxplots (Figs. 3, 5, and 7), each rectangle
contains nine boxplots representing the distribution of the Ie
values for a certain ordered pair of algorithms in the nine
considered problem instances (see Section 4.2.1). Each box refers
to the algorithm A in the corresponding row and algorithm B in

Table 1
Used parameter values for the multiobjective MAs.

Parameter Value Parameter Value

MACS

Number of ants 10 b 2

r 0.2 q0 0.2

Ants’ thresholds (2 ants per each) {0.2, 0.4, 0.6, 0.7, 0.9}

GRASP

g 0.3 Diversity thresholds {0.2, 0.4, 0.6, 0.7, 0.9}

Advanced TSALBP-NSGA-II

Population size 100 Ishibuchi’s similarity-based mating g, d values 10

Crossover probability 0.8 Mutation probability 0.1

a values for scramble mutation {0, 0.8}

LS

Application criteria {always, selective} No. of iterations {20, 50, 100}

M. Chica et al. / Engineering Applications of Artificial Intelligence ] (]]]]) ]]]–]]]8

Please cite this article as: Chica, M., et al., Multiobjective memetic algorithms for time and space assembly line balancing. Engineering
Applications of Artificial Intelligence (2011), doi:10.1016/j.engappai.2011.05.001



the corresponding column, and gives the IeðA,BÞ values. The 10
considered values to obtain each boxplot correspond to the
computation of the Ie metric on the two Pareto sets generated
by algorithms A and B in each of the 10 runs.

The second kind of boxplots (Figs. 9, 13, 14) facilitates the
analysis when few algorithms are involved in the comparison. In
this case, each rectangle represents one of the nine problem
instances. Inside each rectangle, boxplots representing the dis-
tribution of the Ie values for a certain pair of algorithms are
drawn. Given Fig. 9 as an example, the top-left rectangle shows
the boxplots comparing three pairs of algorithms: M vs. G, M vs.
N, and G vs. N (see the caption of the figure for the notations) for
the first problem instance. As Ie is a binary indicator, two boxplots
have been drawn for each algorithm comparison. The white
boxplots represent the distributions IeðM,GÞ, IeðM,NÞ, and IeðG,NÞ
generated in the 10 runs, while the coloured boxplots do so for
the IeðG,MÞ, IeðN,MÞ, and IeðN,GÞ values.

In order to allow an easy visual comparison of the performance
of the different algorithms, the attainment surfaces (Fonseca and
Fleming, 1996) will be represented. These graphics offer a visual
and quantitative information, sometimes more useful than
numeric values, mainly in complex problems as ours. We can
define an attainment surface as the surface uniquely determined
by a set of non-dominated points that divides the objective space
into the region dominated by the set and the region that is not
dominated by it (Fonseca and Fleming, 1996). Given r runs of an
algorithm, it would be interesting to summarise the r attainment
surfaces obtained, using only one summary surface. Such sum-
mary attainment surfaces can be defined by imagining a diagonal
line in the direction of increasing objective values cutting through
the r attainment surfaces generated. The intersection on this line
that weakly dominates at least r�pþ1 of the surfaces and is
weakly dominated by at least p of them, defines one point on the
‘‘p-th summary attainment surface’’. In our case, this surface is the
union of all the goals that been attained in the r¼10 independent
runs of the algorithm.

Finally, a statistical test will be performed in order to analyse
the significance of the results in the comparison of the quality of
the Pareto front approximations obtained by the different multi-
objective MAs by means of the Ie indicator. This is done in order to
avoid the fact that one exceptionally good result in any of the
repetitions of the compared algorithms could be responsible for
the differences in the overall values and results in a wrong
analysis. The Mann–Whitney U test, also known as Wilcoxon
ranksum test, will be used for this aim. Unlike the commonly used
t-test, the Wilcoxon test does not assume normality of the
samples and it has already demonstrated to be helpful analysing
the behaviour of evolutionary algorithms (Garcı́a et al., 2009).

Nevertheless, we should remark the fact that there is not any
reference methodology to apply a statistical test to a binary
indicator in multiobjective optimisation. Thus, we have decided
to follow the procedure proposed in Sánchez and Villar (2008),
described as follows. Let A and B be the two algorithms to be
compared. After running both algorithms just once, let pA(B) be
1 if the Pareto set approximation P generated by A dominates Q

obtained by B, 0 otherwise. For comparisons with the Ie indicator,
it is considered that the Pareto set approximation P dominates Q

when IeðP,Q Þr1 and IeðQ ,PÞ41, as stated in Zitzler et al. (2003).
Given 10 repetitions B1, . . . ,B10 of the multiobjective algorithm B,
let PAðBÞ ¼ ð1=10Þ

P10
i ¼ 1 pAðBiÞ. Given another 10 repetitions

A1, . . . ,A10 of A, let PAðBÞ ¼ ðPA1
ðBÞ,PA2

ðBÞ, . . . ,PA10
ðBÞÞ. The vector

PA(B) can be seen as a sample of a random variable with an overall
number of 100 different observations representing the fraction of
times that the output of algorithm A dominates that of algorithm
B. If the expectation of PA(B) is greater than the expectation of
PB(A), then we can state that algorithm A is better than algorithm

B for the current experiment, since it is more likely that results of
the former improve those of the latter than the opposite.

Hence, in order to know if there is a significant difference
between the performance of the two compared algorithms, we
can use a Wilcoxon test (null hypothesis EðPAðBÞÞ ¼ EðPBðAÞÞ,
alternate hypothesis EðPAðBÞÞ4EðPBðAÞÞ) to discard the expecta-
tions of the probability distributions PA(B) and PB(A) are the same.
The significance level considered in all the tests to be presented is
p¼0.05. Besides, notice that, in case of including more than one
problem instance in the comparison, as done in Section 4.2.3,dPAðBÞ and dPBðAÞ are computed for the considered algorithms as the
average of the PA(B) and PB(A) values for all the considered
problem instances.

4.2. Preliminary analysis on nine well-known problem instances

In this section we will show the results of the proposed MAs
for nine different real-like problem instances. The analysis devel-
oped will serve us as a first step to apply the algorithms to the
real-world problem instance in Section 4.3.

4.2.1. Problem instances

Nine problem instances with different features have been
selected for this first experimentation: arc111 with cycle time
limits of c¼5755 and 7520 (P1 and P2), barthol2 (P3), bart-
hold (P4), lutz2 (P5), lutz3 (P6), mukherje (P7), scholl (P8),
and weemag (P9). They have been chosen to be as diverse as
possible to test the performance of the algorithms and their
variants when they deal with different problem conditions.2

Originally, these instances were SALBP-1 instances3 only having
time information. However, we have created their area informa-
tion by reverting the task graph to make them bi-objective (as
done in Bautista and Pereira, 2007). The nine TSALBP-1/3
instances considered are publicly available at http://www.nissan
chair.com/TSALBP.

4.2.2. Analysis of the results of the memetic approaches

We have run the different MA variants resulting from the use
of the three different global search methods (i.e. MACS, GRASP,
and TSALBP-NSGA-II), the two different LS application criteria
(always or selective), and the three LS iterations number (20, 50,
and 100). Therefore, we will have six memetic MACS variants,
three memetic GRASP methods,4 and six memetic variants of the
advanced TSALBP-NSGA-II. All of them will also be benchmarked
against the two basic global search approaches not considering
the use of LS (i.e. MACS and TSALBP-NSGA-II).

Memetic MACS algorithm: We have designed three memetic
variants with 20, 50, and 100 iterations applying the LS to all the
solutions (MACS-LS1, MACS-LS2, and MACS-LS3, respectively),
and other three variants with 20, 50, and 100 iterations but only
applying randomly the LS to a 0.0625 percent of the generated
solutions (MACS-LS4, MACS-LS5, and MACS-LS6, respectively).
The HVR values are shown in the first 14 rows of Table 2. The
boxplots of the Ie performance indicator values of the memetic

2 Note that not only the time and area information of each task influence the

complexity of the problem instance, but also other factors as the cycle time limit

and the order strength of the precedence graph, which actually are the most

conclusive factors.
3 Available at http://www.assembly-line-balancing.de
4 As said, a GRASP approach always include a local search improvement

applied to every constructed solution. Hence, we just focus on the number of

allowed iterations for the LS.
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MACS variants are shown in Fig. 3. The analysis of the obtained
results arises that:

� The basic MACS algorithm is clearly outperformed by every
memetic MACS variant. The difference is significant in view of
the HVR values in Table 2 and the Ie boxplots in Fig. 3.
� The memetic MACS variants which applied the LS operator to

all the generated solutions, i.e. MACS-LS1, MACS-LS2, and
MACS-LS3, outperform those variants which selectively
applied the LS operator (MACS-LS4, MACS-LS5, MACS-LS6) in
every problem instance. Again, both performance indicators
show the same conclusion.
� There is no difference in performance between running the LS

operator with 50 and 100 iterations (MACS-LS2 and MACS-LS3,

respectively). Therefore, the appropriate trade-off is obtained
with 50 iterations and running the memetic MACS algorithm
for more iterations is not necessary.
� The latter memetic variants, MACS-LS2 and MACS-LS3, are the

best ones in view of the results obtained in both performance
indicators. They show a better convergence than the memetic
MACS-LS1 and, of course, than the memetic variants that
applied less intensification in the LS operator (MACS-LS4,
MACS-LS5, MACS-LS6). The latter facts are confirmed by the
attainment surface plots of the Pareto front approximations
generated by the memetic MACS variants in Fig. 4.
� However, in some instances, MACS-LS1 obtains solutions of

the Pareto front that are not achieved by the ‘‘best’’ MACS-
based MAs, MACS-LS2 and MACS-LS3. This situation can also

Table 2
Mean and standard deviation xðsÞ of the HVR performance indicator values for the different variants of the MACS (M), GRASP (G), and advanced TSALBP-NSGA-II (TN) MAs.

Higher values indicate better performance. Underlined values are the best results of each algorithm while bold values corresponds to the global best result.

Algorithm abbreviation Memetic MACS algorithm

P1 P2 P3 P4 P5

M 0.7597 (0.004) 0.7581 (0.01) 0.6605 (0.009) 0.7129 (0.015) 0.5052 (0.014)

M-LS1 0.9463 (0.003) 0.9614 (0.003) 0.9154 (0.002) 0.9384 (0.015) 0:7440 ð0:008Þ

M-LS2 0:9479 ð0:003Þ 0:9643 ð0:003Þ 0:9186 ð0:003Þ 0:9535 ð0:018Þ 0:7440 ð0:008Þ

M-LS3 0:9479 ð0:003Þ 0:9643 ð0:003Þ 0:9186 ð0:003Þ 0:9535 ð0:018Þ 0:7440 ð0:008Þ

M-LS4 0.9221 (0.006) 0.9439 (0.008) 0.8924 (0.004) 0.9516 (0.01) 0.6840 (0.013)

M-LS5 0.9267 (0.005) 0.9494 (0.007) 0.8975 (0.003) 0.9462 (0.013) 0.6848 (0.013)

M-LS6 0.9267 (0.005) 0.9494 (0.007) 0.8975 (0.003) 0.9462 (0.013) 0.6848 (0.013)

P6 P7 P8 P9

M 0.5744 (0.023) 0.7181 (0.01) 0.5081 (0.006) 0.7107 (0.008)

M-LS1 0:8921 ð0:015Þ 0.9834 (0.001) 0.8156 (0.002) 0:9053 ð0:004Þ

M-LS2 0:8921 ð0:015Þ 0:9888 ð0:001Þ 0:8316 ð0:003Þ 0:9053 ð0:004Þ

M-LS3 0:8921 ð0:015Þ 0:9888 ð0:001Þ 0:8316 ð0:003Þ 0:9053 ð0:004Þ

M-LS4 0.8216 (0.012) 0.9725 (0.001) 0.7969 (0.005) 0.8671 (0.011)

M-LS5 0.8216 (0.012) 0.9773 (0.002) 0.8113 (0.005) 0.8671 (0.011)

M-LS6 0.8216 (0.012) 0.9773 (0.002) 0.8112 (0.005) 0.8671 (0.011)

GRASP

P1 P2 P3 P4 P5

G-LS1 0.9727 (0.001) 0.9646 (0.001) 0.8427 (0.002) 0.9758 (0.003) 0:7640 ð0:009Þ

G-LS2 0:9750 ð0:002Þ 0:9685 ð0:001Þ 0:8483 ð0:003Þ 0:9859 ð0:002Þ 0:7640 ð0:009Þ

G-LS3 0:9750 ð0:002Þ 0.9683 (0.001) 0:8483 ð0:003Þ 0.9853 (0.002) 0:7640 ð0:009Þ

P6 P7 P8 P9

G-LS1 0:9146 ð0:006Þ 0.9721 (0.002) 0.8065 (0.002) 0:9267 ð0:003Þ

G-LS2 0:9146 ð0:006Þ 0:9773 ð0:002Þ 0:8115 ð0:003Þ 0:9267 ð0:003Þ

G-LS3 0:9146 ð0:006Þ 0.9768 (0.002) 0:8115 ð0:003Þ 0:9267 ð0:003Þ

Memetic advanced TSALBP-NSGA-II

P1 P2 P3 P4 P5

TN 0.9853 (0.004) 0.9474 (0.015) 0.8286 (0.049) 0.9411 (0.012) 0.7528 (0.047)

TN-LS1 0:9953 ð0:003Þ 0:9911 ð0:003Þ 0:9819 ð0:010Þ 0.9908 (0.003) 0:9444 ð0:014Þ

TN-LS2 0.9931 (0.005) 0.9907 (0.004) 0.9788 (0.009) 0.9986 (0.001) 0.9300 (0.023)

TN-LS3 0.9922 (0.005) 0.9904 (0.004) 0.9770 (0.008) 0:9987 ð0:001Þ 0.9300 (0.023)

TN-LS4 0.9775 (0.012) 0.9710 (0.012) 0.9506 (0.009) 0.9906 (0.004) 0.8500 (0.047)

TN-LS5 0.9790 (0.008) 0.9676 (0.015) 0.9509 (0.007) 0.9979 (0.001) 0.8220 (0.04)

TN-LS6 0.9790 (0.008) 0.9676 (0.015) 0.9509 (0.007) 0.9983 (0.001) 0.8220 (0.04)

P6 P7 P8 P9

TN 0.8962 (0.057) 0.8891 (0.022) 0.9346 (0.038) 0.8174 (0.015)

TN-LS1 0:9769 ð0:012Þ 0.9875 (0.003) 0:9874 ð0:007Þ 0.9627 (0.013)

TN-LS2 0.9767 (0.011) 0:9885 ð0:003Þ 0.9490 (0.046) 0:9647 ð0:007Þ

TN-LS3 0.9767 (0.011) 0.9884 (0.003) 0.9486 (0.046) 0:9647 ð0:007Þ

TN-LS4 0.9374 (0.018) 0.9730 (0.003) 0.9314 (0.032) 0.9092 (0.014)

TN-LS5 0.9331 (0.022) 0.9763 (0.004) 0.9340 (0.03) 0.9095 (0.014)

TN-LS6 0.9331 (0.022) 0.9763 (0.004) 0.9341 (0.03) 0.9095 (0.014)
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be observed in the attainment surface plot at the bottom of
Fig. 4. It is due to the fact that MACS-LS1 induces more
diversity in the search process rather than a higher intensifica-
tion by means of more LS iterations as applied by the other
two variants.

GRASP: We analyse the behaviour of the GRASP methods with
different LS intensification degrees. According to the HVR perfor-
mance indicator values (central part of Table 2), the boxplots in
Fig. 5 with Ie values, and the attainment surface plots of Fig. 6, the
most important considerations are:

� Overall, the variants with more LS iterations (GRASP-LS2 and
GRASP-LS3) again outperform the variant with only 20 itera-
tions (GRASP-LS1).
� There is a need of running the LS operators more than 20

iterations in all the problem instances but P5, P6, and P9 (see
HVR values and Ie boxplots).
� The best Pareto front approximations are obtained by the

algorithms that apply the highest number of LS iterations
(see Fig. 6).

Memetic advanced TSALBP-NSGA-II : The HVR values correspond-
ing to these memetic designs are collected at the bottom part of
Table 2 while the corresponding values of the Ie performance
indicator are depicted in Fig. 7. In this case, we can conclude that:

� As in MACS, the MAs show a better performance than the basic
advanced TSALBP-NSGA-II. However, in this case the difference
between the MAs and the basic global search methods is lower
because of the outstanding performance of the basic advanced

TSALBP-NSGA-II.

� Applying the LS to all the solutions found by the advanced

TSALBP-NSGA-II is again better than considering a selective
application. We can observe how TN-LS1, TN-LS2, and TN-LS3
outperform the other three variants in both the HVR values of
Table 2 and the Ie boxplots of Fig. 7.
� Unlike the other two designs, i.e. memetic MACS and GRASP,

the best memetic advanced TSALBP-NSGA-II is the TN-LS1
variant, which runs the LS operator just 20 iterations. Only in
instances P4, P7, and P9, the memetic variants with higher LS
intensification achieve better performance, but with a very low
difference. The attainment surface plot in Fig. 8 corroborates
this conclusion, showing how the use of less iterations (more
diversification rather than intensification) allows obtaining
some solutions that are not reached by the MAs that consider
more LS iterations.

4.2.3. Global analysis

In this section we will summarise the global conclusions of the
performance of the different memetic approaches proposed for
solving the TSALBP-1/3:

� The application of the multi-criteria LS method to every
solution generated by the global search methods is always
better than using a selective criterion based on its application
to the 0.0625% of those solutions.
� Normally, 50 iterations are enough for the LS methods. There-

fore, spending time by running more iterations is not recom-
mended since the obtained intensification–diversification
trade-off performs equal or worst.
� In order to achieve the best solutions, a good exploratory

global search method as the advanced TSALBP-NSGA-II is

M

M−LS1

M−LS2

M−LS3

M−LS4

M−LS5

M−LS6

Fig. 3. Ie values represented by means of boxplots comparing different memetic variants of the MACS algorithm.
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needed. If we apply the LS method to global search procedures
that do not explore conveniently the search space, some
regions of the Pareto front will never be reached. The use of
the advanced TSALBP-NSGA-II allows its associated memetic
design to spend less time in the LS intensification. This
conclusion is drawn in view of the fact that the best MA in
this group is the TN-LS1, then, TN-LS2 and TN-LS3, and finally,
the rest of the memetic variants, TN-LS4, TN-LS5, and TN-LS6,
which behave similarly.
� We can also provide a similar ranking of the memetic MACS

algorithms: MACS-LS2, MACS-LS3, MACS-LS1, MACS-LS4,
MACS-LS5, MACS-LS6. Nevertheless, some similar facts to
those described in the previous item can be recognised in
the MACS algorithm, where some solutions are only achieved
by the MAs considering the lowest number of LS iterations.
� As expected, GRASP is the metaheuristic that performs a worst

global search. It needs more LS iterations than the other MAs,
probably because of the low quality of the solutions generated
in the global search stage. GRASP-LS3, GRASP-LS2, and GRASP-
LS1 are the MAs in order of performance.

By selecting the best variant of each memetic design, MACS-
LS2, GRASP-LS3, and TN-LS1, it can be clearly observed how there
is a strong relation between the quality of the global search and

the number of iterations required by the LS. When we use worse
global search procedures, more iterations in the LS provide better
results. The selected best variants will be compared to each other
but taking in mind that these best variants can change depending
on the instance.

We have used the same performance indicators to reach the
conclusions, i.e. the HVR values of Table 2, the Ie boxplots of Fig. 9
comparing the three MAs, and the attainment surface plots (two
of them are shown in Fig. 11). For a better comparison, a
statistical test is also applied on the dominance probabilities
calculated for the Ie indicator on every pair of algorithms. These
dominance probabilities are shown in the boxplots of Fig. 10. See
Section 4.1 to recall their calculation process.

Table 3 provides the results of the Wilcoxon statistical test on
the dominance probabilities of the best variants of the algorithms.
Every cell of the table includes the p-values for the nine problem
instances together with a ‘‘þ ’’, ‘‘� ’’, or ‘‘¼ ’’ symbol, with a
different meaning. Every symbol shows that the algorithm in that
row is significantly better (þ), worse (�) or equal (¼) in
performance (using the Ie indicator) than the one that appears
in the column.
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Fig. 4. Attainment surface plots of the MACS MAs for instances P3 and P9.
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Fig. 6. Attainment surface plots of the GRASP methods for instance P2.
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The clearest conclusion in view of the indicators is the
memetic advanced TSALBP-NSGA-II is the best MA. It obtains
better HVR and Ie performance indicator values in all the problem
instances but P7. This is the only problem instance where the
advanced TSALBP-NSGA-II is not the best algorithm. In this case,
the memetic MACS algorithm outperforms the remainder.
Although there is not a big difference between the latter two
algorithms, the memetic advanced TSALBP-NSGA-II is worse in P7

because of the performance variability of its runs. The memetic
MACS algorithm is more stable and achieves similar behaviour in
the 10 runs corresponding to the latter problem instance.

The good performance of the advanced TSALBP-NSGA-II is again
clear looking at the dominance probabilities of Fig. 10 and the
results of the statistical test shown in Table 3. In this analysis, the
results obtained by the advanced TSALBP-NSGA-II are significantly
better (represented by means of a ‘‘þ ’’ symbol in the table) than
those by the rest of the algorithms, MACS and GRASP.

A comparison between the memetic MACS and GRASP is more
difficult since their behaviour varies depending on the problem
instance. The memetic MACS algorithm performance is better
than GRASP in P3, P7, and P8, but worse in P1, P4, and P9. In P2,
P5, and P6, they behave similarly and the values of the perfor-
mance indicators are very close. The results of the Wilcoxon
statistical test are in line with this analysis since there is no
significance between them as can be observed from the ‘‘¼ ’’
symbol of Table 3. Therefore, it cannot be stated which of these
two MAs is the best one without focusing on a particular instance.
The attainment surface plots in Fig. 11 corroborate this fact.

4.3. Experimentation on the Nissan case study

In the last section of the experimentation we will apply the
proposed MAs to a real-world case study. First, we will describe
the Nissan case study in Section 4.3.1 and then we will present
and analyse the obtained results in Sections 4.3.2 and 4.3.3.

4.3.1. Nissan case study description

We consider the application of the best MA variants to a real-
world problem corresponding to the assembly process of the

TN
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Fig. 7. Ie values represented by means of boxplots comparing different memetic variants of the advanced TSALBP-NSGA-II.
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Nissan Pathfinder engine (shown in Fig. 12) at the plant of
Barcelona (Spain). The assembly of these engines is divided into
378 operation tasks, although we have grouped these opera-
tions into 140 different tasks. The available cycle time is 180 s.
More information can be found at http://www.nissanchair.com/
TSALBP.

Appendix A reports the details about the tackled Nissan
instance, which is originated in the final assembly phase of the
Nissan Pathfinder engines. It shows the task number (n), internal
identifier from NISSAN (id.), duration of the task (t) in seconds,
required area (a) in metres, and precedence constraints of each
task. Some changes have been made to the original data which are
described as follows:

� The original line corresponds to a mixed-model assembly line.
Following the procedure in use in Nissan, the duration of tasks
has been modified taking into account the expected produc-
tion mix of the variants to assemble. Notice that, the produc-
tion mix does not alter the area required for each task.
� The space requirements originated by tools and machinery

required for the assembly have been omitted. Due to the
similitude of the tasks and the low cost of the used machinery,
each workstation is considered to contain all the tools. Thus,

P1 P2 P3

P4 P5 P6

P7

M−G

P8 P9

G−M M−N N−M G−N N−G M−G G−M M−N N−M G−N N−G M−G G−M M−N N−M G−N N−G

M−G G−M M−N N−M G−N N−G M−G G−M M−N N−M G−N N−G M−G G−M M−N N−M G−N N−G

M−G G−M M−N N−M G−N N−G M−G G−M M−N N−M G−N N−G M−G G−M M−N N−M G−N N−G

1.00

1.05

1.10

1.15

1.20

1.00

1.05

1.10

1.15

1.20

1.00

1.05

1.10

1.15

1.20

1.00

1.05

1.10

1.15

1.20

1.00

1.05

1.10

1.15

1.20

1.00

1.05

1.10

1.15

1.20

1.00

1.05

1.10

1.15

1.20

1.00

1.05

1.10

1.15

1.20

1.00

1.05

1.10

1.15

1.20

Fig. 9. Ie boxplots comparing the best variant of each memetic design in the 9 instances (one rectangle per instance). The memetic MACS-LS2 is noted by M, GRASP-LS3 by

G, and the advanced TSALBP-NSGA-II-LS1 by N.
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Fig. 10. Boxplots represent the following Ie dominance probabilities for P1 to P9:

(M-G) PMACS-LS2ðGRASP-LS3Þ, (G-M) PGRASP-LS3ðMACS-LS2Þ, (M-N) PMACS-LS2

ðNSGA-II-LS1Þ, (N-M) PNSGA-II-LS1ðMACS-LS2Þ, (G-N) PGRASP-LS3ðNSGA-II-LS1Þ, and
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the space required for them can be subtracted from the total
available space for a workstation.
� The duration, required area, and precedence constraints of

tasks have been slightly altered due to confidentiality issues.

4.3.2. Analysis of the results of the proposed memetic approaches

As done with the real-like instances, we have analysed the
performance of the different memetic designs and variants
proposed. We have compared six memetic MACS variants, three

GRASP methods, and six memetic variants of the advanced

TSALBP-NSGA-II. The HVR values of the algorithms can be seen in
Table 4 and the Ie values of the boxplots in Fig. 13. In the next
paragraphs the results obtained by the algorithms are analysed.

Memetic MACS algorithm: We can reach the following
conclusions:

� The memetic variants of the MACS algorithm improve the
performance of the MACS algorithm. The difference is clear
both in the HVR values and in the boxplots.
� As happened with the preliminary experimentation, the

memetic MACS variants that applied the LS methods to all
the solutions (M-LS1, M-LS2, M-LS3) are better than the
remainder (M-LS4, M-LS5, M-LS6).
� Among the first three memetic MACS variants, M-LS2 and

M-LS3 are those achieving the best results according to the
used performance indicators. Therefore, an intermediate value
between 20 iterations (M-LS1) and 100 iterations (M-LS3) is
enough to lead to a proper convergence.

GRASP: Again, variants including LS clearly outperform the
basic algorithm (first stage of the GRASP in this case). The best
convergence is obtained by G-LS1 and G-LS2 with a low difference
with respect to the third option. Then, there is not a need for a
high number of iterations to provide the best results, 20 iterations
are enough. In fact, the highest exploitation value (100 iterations)
slightly decreases the performance of the algorithm.
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Fig. 11. Attainment surface plots of the best variant of each of the three memetic

designs for instances P1 and P8.

Table 3
p-values and statistical significance (represented by a symbol ‘‘þ ’’, ‘‘� ’’, or ‘‘¼ ’’) of

the best three MA approaches for the 9 problem instances. TN is the advanced

TSALBP-NSGA-II.

MACS-LS2 GRASP-LS3 TN-LS1

MACS-LS2 � 0.1659 0.000051

¼ �

GRASP-LS3 0.1659 � 0.000057

¼ �

TN-LS1 0.000051 0.000057 �

þ þ

Fig. 12. The Nissan PathFinder engine. It consists of 747 pieces and 330 parts.

Table 4
Mean and standard deviation xðsÞ of the HVR performance indicator values for the

best variants of MACS, GRASP, and advanced TSALBP-NSGA-II MAs in the Nissan

case study. Higher values indicate better performance. Underlined values are the

best results of each algorithm while bold values correspond to the global best

results.

Memetic MACS algorithm GRASP Memetic advanced
TSALBP-NSGA-II

M 0.7993 (0.007) G 0.7562 (0.01) TN 0.7043 (0.056)

M-LS1 0.9413 (0.007) G-LS1 0:8999 ð0:005Þ TN-LS1 0.9717 (0.006)

M-LS2 0:9428 ð0:006Þ G-LS2 0:8999 ð0:005Þ TN-LS2 0:9773 ð0:006Þ

M-LS3 0:9428 ð0:006Þ G-LS3 0.8993 (0.006) TN-LS3 0:9773 ð0:006Þ

M-LS4 0.9124 (0.007) TN-LS4 0.9071 (0.038)

M-LS5 0.9108 (0.008) TN-LS5 0.9083 (0.038)

M-LS6 0.9108 (0.008) TN-LS6 0.9083 (0.038)
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Memetic advanced TSALBP-NSGA-II : The following items sum-
marise the obtained conclusions:

� The performance of the memetic variants is again much better
than the TSALBP-NSGA-II in all the performance indicators.
� As happened with the memetic MACS algorithms, the variants

that apply the LS to all the solutions outperform those based
on the selective LS application. Consequently, TN-LS1, TN-LS2,

and TN-LS3 are also better than TN-LS4, TN-LS5, and TN-LS6 in
the Nissan case study.
� However, for the advanced TSALBP-NSGA-II, more than 20

iterations are needed to achieve the best performance as
T-LS2 and T-LS3 results improve T-LS1 ones. This situation is
equivalent to the memetic MACS algorithms in the Nissan case
study but differs from what happened for the same MA designs
in the experiments developed in Section 4.2.

M
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G−LS1

G−LS2

G−LS3

TN

TN−LS1
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TN−LS3

TN−LS4

TN−LS5

TN−LS6

Fig. 13. Ie values represented by means of boxplots comparing the memetic variant of each of the three memetic designs for the Nissan case study.
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4.3.3. Global analysis and final benchmarking

The global conclusions for the Nissan case study are basically
that: (a) the memetic variants in all the algorithms are better than
the basic global search with a significant performance difference
(i.e. proper memetic designs have been achieved); (b) the MAs
that apply the LS to all the solutions are always better than the
rest; (c) there is not a great difference between the number of
iterations used in the algorithms, but normally a trade-off value of
50 iterations is the most appropriate.

For the final benchmarking we have selected the best MA for
each global search method as done in the preliminary study.

Table 4 shows the HVR values of the memetic MACS-LS2 algo-
rithm, the GRASP-LS1, and the memetic TN-LS2. The boxplots of
the Ie performance indicator comparing the latter three algo-
rithms as well as their attainment surface plots are represented in
Fig. 14.

Dominance probabilities based on the Ie performance indicator
comparisons between the best algorithms are calculated and
represented using the boxplots in Fig. 15. Wilcoxon statistical
test is also applied for the Nissan case study as done with the real-
like instances in Section 4.2.3. The results of the test are shown in
Table 5.
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M. Chica et al. / Engineering Applications of Artificial Intelligence ] (]]]]) ]]]–]]] 17

Please cite this article as: Chica, M., et al., Multiobjective memetic algorithms for time and space assembly line balancing. Engineering
Applications of Artificial Intelligence (2011), doi:10.1016/j.engappai.2011.05.001



In view of the results provided by all these indicators we can
conclude that the memetic advanced TSALBP-NSGA-II is the best
algorithm to deal with the real-world Nissan instance, reaching
almost all the solutions in the pseudo-optimal Pareto front (see
Fig. 14), and obtaining better Ie values, dominance probabilities
(Fig. 15), and HVR values than the remainder. The advanced TSALBP-

NSGA-II is also significantly better than GRASP-LS1 according to the
statistical test shown in Table 5. Although there is no statistical
significance with respect to MACS-LS2 (see symbol ‘‘¼ ’’ in the
corresponding cells of the table), the obtained p-value is very close
to the considered significance level (0.05). In addition, Fig. 15 clearly
shows how the advanced TSALBP-NSGA-II is outperforming MACS-
LS2 on several comparisons while the latter is never able to do so.

The memetic MACS algorithm is the second algorithm in
performance. It converges better than the GRASP-LS1 and its
difference is statistically significant (see the statistical test results
in Table 5). GRASP-LS1 is finally the worst performing algorithm.

5. Concluding remarks and future works

In this contribution, we have successfully proposed novel
memetic designs to solve the TSALBP-1/3. The new MAs to tackle
this industrial problem are multiobjective and make use of a multi-
criteria LS procedure with two problem-specific neighbourhood
operators, one per objective. The proposals are based on three
different global search methods: a MACS algorithm, a GRASP, and
an advanced NSGA-II-based technique for the TSALBP-1/3.

We have studied different variants to analyse the impact of
the intensification and diversification induced by the multi-
criteria LS on the performance of the MAs when solving nine
realistic and one real-life problem instance. From this study, we
have concluded that the LS is more powerful if it is applied to all
the generated solutions and not just to a reduced number of
them (a 0.0625 percent of the solutions). In addition, the LS
depth, i.e. the number of iterations to be considered for the LS,
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Fig. 15. Boxplots represent the following Ie dominance probabilities for the Nissan

case study: (M-G) PMACS-LS2ðGRASP-LS1Þ, (G-M) PGRASP-LS1ðMACS-LS2Þ, (M-N) PMACS-LS2

ðNSGA-II-LS2Þ, (N-M) PNSGA-II-LS2ðMACS-LS2Þ, (G-N) PGRASP-LS1ðNSGA-II-LS2Þ, and (N-G)

PNSGA-II-LS2ðGRASP-LS1Þ.

Table 5
p-values and statistical significance (represented by a symbol ‘‘þ ’’, ‘‘� ’’, or ‘‘¼ ’’) of

the best three MA approaches for the Nissan case study. TN is the advanced

TSALBP-NSGA-II.

MACS-LS2 GRASP-LS1 TN-LS2

MACS-LS2 � 0.0004 0.0767

þ ¼

GRASP-LS1 0.0004 � 0.000016

� �

TN-LS2 0.0767 0.000016 �

¼ þ

Table 6
Problem instance from Nissan Pathfinder motor engine assembly line balancing. Number (n), internal identifier (id.), operation time (t), required area (a) and set of

immediately predecessor tasks (P) are given for each task.

n Id. t a P n id. t a P

1 50100 60 3 2 50110 75 2 3,31

3 50120 20 0.5 1 4 50500 60 1 3,5

5 50501 20 0.5 1 6 50600 60 1.5 4,5

7 50800 45 1 1 8 50900 10 0.5 1

9 51000 20 0.5 1 10 51200 30 0.5 1

11 51400 15 0.5 1 12 51401 15 0.5 11

13 51600 15 1 1 14 51800 10 0.5 3,13

15 52000 8 1 9,10,11,13,14 16 52010 8 0.5 9,10,11,13,14

17 52200 80 1 9,10,11,13,14 18 52400 40 0.5 9,10,11,13,14

19 52600 5 0.5 9,10,11,13,14 20 52610 5 0.5 9,10,11,13,14

21 52650 5 0.5 9,10,11,13,14 22 52700 7 0.5 26,27

23 52710 7 0.5 26,27 24 52720 30 0.5 26,27

25 52730 30 0.5 26,27 26 52750 5 0.5 15,16,17,18,19,20,21

27 52760 5 0.5 15,16,17,18,19,20,21 28 52800 30 1 22,23,24,25

29 52820 10 0.5 28 30 52900 15 1 29

31 52901 10 0 6,7,8,30 32 53050 15 0.5 31

33 53100 30 1 32 34 53200 10 0.5 32

35 53300 5 0.5 36 36 53301 25 1 32

37 53400 15 0 32,35 38 53600 5 0.5 33,34,36,37

39 53630 5 0.5 33,34,36,37 40 53650 5 0.5 33,34,36,37

41 54000 60 0.5 38,39,40 42 54100 15 1.5 38,39,40

43 54120 15 1.5 38,39,40 44 54200 25 0.5 41,42,43

45 54210 25 0.5 41,42,43 46 54230 5 0.5 44,45

47 54240 35 0.5 46 48 54250 35 0.5 46

49 54260 5 0.5 42,43 50 54270 15 0.5 47,48,49

51 54280 25 0 47,48,49 52 54290 30 0 47,48,49

53 54300 15 0 47,48,49 54 54310 15 0 47,48,49

55 54320 20 0 47,48,49 56 54330 10 0 47,48,49
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was also studied. The behaviour of this parameter depends on
the problem instance and the search capabilities of the global
search method. When the latter method already shows a good
intensification–diversification trade-off, the resulting MA will
perform better with a low number of LS iterations. We can state
that, in this experimentation, there is not a need to perform
more than 50 iterations in any case.

Apart from the LS study, the three memetic designs were
compared to each other. The memetic advanced TSALBP-NSGA-II

showed its excellent performance, obtaining the best solutions.
The second MA in quality was not clear enough since the memetic
MACS and GRASP performed differently depending on the pro-
blem instance. The memetic advanced TSALBP-NSGA-II was again
the best approach to deal with the real instance of the Nissan
industry plant in Barcelona, obtaining outstanding results.

Future work is devoted to: (i) apply preferences in the
algorithms by means of interactive procedures, (ii) deal with the
combined three-objective optimisation of cycle time, area, and
number of stations, and (iii) study the use of other MOACO
algorithms to solve the problem.
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Appendix A. Description of the Nissan Pathfinder instance

The assembly line of the Nissan Pathfinder is distributed
serially where nine types of engines (p1,y,p9) with different
characteristics are assembled. The first three engines are for
4�4 vehicles, the last four for trucks of medium weight, and
the models p4 and p5 are user for vans.

Further information about the tasks of the assembly line is
reported in Table 6.
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Making (IEEE MCDM), páginas 157-162. Nashville (EE.UU.), 2009.

M. Chica, O. Cordón, S. Damas, J. Pereira, J. Bautista. A Multiobjective Ant Colony Op-
timization Algorithm for the 1/3 Variant of the Time and Space Assembly Line Balancing
Problem. International Conference on Information Processing and Management of Uncer-
tainty in Knowledge-Based Systems (IPMU), páginas 1454-1461. Málaga (España), 2008.
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y espacio. Congreso Español sobre Metaheuŕısticas, Algoritmos Evolutivos y Bioinspirados
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páginas 649-656. Málaga (España), 2009.



Bibliograf́ıa

[ACLP95] Agnetis A., Ciancimino A., Lucertini M., y Pizzichella M. (1995) Balancing flexible
lines for car components assembly. International Journal of Production Research
33(2): 333–350.

[AF94] Anderson E. J. y Ferris M. C. (1994) Genetic algorithms for combinatorial optimi-
zation: The assembly line balancing problem. ORSA Journal on Computing 6(2):
161–173.

[AK89] Aarts E. H. L. y Korst J. H. M. (1989) Simulated Annealing and Boltzmann Machines:
A Stochastic Approach to Combinatorial Optimization and Neural Computing. Wiley,
Chichester.
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[GCH07] Garćıa Mart́ınez C., Cordón O., y Herrera F. (2007) A taxonomy and an empirical
analysis of multiple objective ant colony optimization algorithms for the bi-criteria
TSP. European Journal of Operational Research 180(1): 116–148.

[GL97] Glover F. y Laguna M. (1997) Tabu search. Kluwer Academic.

[Gol89] Goldberg D. E. (1989) Genetic Algorithms in Search, Optimization and Machine Lear-
ning. Addison-Wesley Publishing.



[GOT09] Goh C. K., Ong Y. S., y Tan K. C. (2009) Multi-Objective Memetic Algorithms.
Springer.

[GPG02] Gravel M., Price W. L., y Gagné C. (2002) Scheduling continuous casting of aluminium
using a multiple objective ant colony optimization metaheuristic. European Journal
of Operational Research 143(1): 218–229.

[GTA99] Gambardella L., Taillard E., y Agazzi G. (1999) MACS-VRPTW: A multiple ant
colony system for vehicle routing problems with time windows. En News Ideas in
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[SH00] Stützle T. y Hoos H. H. (2000) MAX-MIN ant system. Future Generation Computer
Systems 16(8): 889–914.

[SS94] Suresh G. y Sahu S. (1994) Stochastic assembly line balancing using simulated an-
nealing. International Journal of Production Research 32(8): 1801–1810.
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