
Department of Computer Science and

Artificial Intelligence

University of Granada

Scaling data mining algorithms.
Application to instance and feature

selection

Ph.D. Thesis

Author: Aida de Haro Garćıa

Supervisor: Nicolás Garćıa Pedrajas

Granada, June 2011

Editor: Editorial de la Universidad de Granada
Autor: Aida de Haro García
D.L.: GR 965-2012
ISBN: 978-84-694-9409-7

Ph.D. Thesis

Scaling data mining algorithms.

Application to instance and feature selection

Author: Aida de Haro Garćıa

Supervisor: Nicolás Garćıa Pedrajas

MSc: Soft Computing and Intelligent Systems

Department of Computer Science and Artificial
Intelligence

University of Granada

Prof. Dr. D. Nicolás Garćıa Pedrajas, Titular de Universidad del Departa-
mento de Informática y Análisis Numérico de la Escuela Politécnica Superior
de la Universidad de Córdoba

Certifica

que Dña. Aida de Haro Garćıa, Licenciada en Ingenieŕıa Informática, ha real-
izado en el Departamento de Ciencias de la Computación e Inteligencia Artifi-
cial de la Universidad de Granada bajo su dirección el trabajo de investigación
correspondiente a sus tesis doctoral titulado:

Scaling data mining algorithms.

Application to instance and feature selection

Revisado el mencionado trabajo, estima que puede ser presentado al tribunal
que ha de juzgarlo y autoriza la defensa de esta Tesis Doctoral en la Univer-
sidad de Granada.

Granada, 14 de junio de 2011

Fdo.: Prof. Dr. D. Nicolás Garćıa Pedrajas
Titular de Universidad

Fdo. La doctorando:
Aida de Haro Garćıa

A mis abuelos, mis padres y mi hermana, siempre habéis créıdo en mı́, mis
pequeños logros son en definitiva vuestros.

A mis amigos, por ser apoyo y válvula de escape.

A Andrés, por estar siempre ah́ı, por la paciencia infinita y la ilusión diaria.

Agradecimientos

A Francisco Herrera, Manuel Lozano y las personas de la Universidad de
Granada que tanto me han ayudado en este doctorado, por acortar las

distancias entre Granada y Córdoba.

Merece una mención aparte el grupo IDEAL de Burgos, que me han
demostrado todo este tiempo que sin duda son geniales en todos los ámbitos.

A Colin Fyfe, por su apoyo y por ser en definitiva una fantástica persona y
amigo

También quiero expresar mi gran gratitud a Lucy Kuncheva, que tanto me
enseñó y que me acogió con una calidez capaz de evaporar toda la lluvia de

Bangor.

A los miembros de mi grupo de investigación, compañeros y por encima de
todo amigos. Estoy en deuda con vosotros por todo lo que me habéis

ayudado en este camino.

Estoy especialmente agradecida a mi director de tesis, Nicolás, su ayuda y el
apoyo prestados a lo largo de estos años son innumerables. Por inculcarme la

pasión investigadora y compartir sus conocimientos conmigo.

A todos y tantos otros que no caben en estas breves ĺıneas, muchas gracias.

Acknowledgments

To Francisco Herrera, Manuel Lozano and everyone at the University of
Granada who helped me so much along this Ph.D. They have been able to

narrow the physical gap between Granada and Córdoba.

The IDEAL research group of Burgos deserves a special mention, they have
shown they undoubtedly are great in all scopes.

To Colin Fyfe, thanks for your support and for being such a great person
and friend.

I want to express my gratitude to Lucy Kuncheva, who has taught me so
much during my short visit and that received me with a warmth capable to

evaporate all the rain in Bangor.

To the members of my research group, partners and friends above all. I
definitely owe you for the support you have always offered me.

I am specially grateful to my thesis director, Nicolás, his help and support
over these years are uncountable. He has infused me his research passion and

has always uninterestingly shared his knowledge with me.

To everyone and to so many others I left behind these short lines: thank you
so much.

Contents
1 Introduction 1

1.1 Motivation 1

1.2 Current approaches 4

1.3 Objectives 5

1.4 Proposed methodology: democratization of algorithms 6

1.5 Contribution of the thesis 8

1.6 Thesis organization 9

2 Background 11

3 Scaling methodology:
democratization 19

3.1 The Democratization methodology steps 21

3.2 Democratization applied to different data mining problems 25

3.3 Complexity of the method 29

3.4 Contribution of the method 30

4 Scaling up instance selection
algorithms 33

4.1 Preliminary concepts on Instance Selection Problems 34

4.2 Related Work on Large-Scale Instance Selection Problems 39

4.3 Recursive method 41

4.4 Democratic instance selection method 65

4.5 Summary 112

5 Scaling up feature selection
algorithms 115

5.1 Preliminary concepts on feature selection problems 116

5.2 Related Work on Large-Scale Feature Selection Problems 120

5.3 Pseudoensembles Feature Selection Method 122

I

5.4 Experimental Setup 128

5.5 Experimental Results 132

5.6 Extension of Pseudoensembles to medical problems. The feasibility
pyramid 152

5.7 Summary 157

6 Conclusions 159

II

List of Algorithms

1 Recursive instance selection algorithm 43
2 Algorithm for partitioning the training sets into disjoint

subsets 44
3 DROP3 algorithm 50
4 Iterative Case Filtering (ICF) algorithm. 51
5 Recursive instance selection algorithm with second chance and

random addition of instances 61
6 Democratic instance selection (demoIS.) algorithm. 66
7 Algorithm for partitioning the training set into disjoint subsets 71
8 RNN algorithm 76
9 MSS algorithm 77
10 Majority vote filter algorithm 97
11 Federal instance selection (FedIS) algorithm. 105
12 Algorithm for obtaining the optimum threshold of votes. 106
13 Pseudoensembles using subset selection 125
14 Pseudoensembles using ranking of features 126
15 SVM-RFE Algorithm 131
16 Random splitting for feature ranking 154

III

List of Tables

1 Summary of datasets. The features of each dataset can be
C(continuous), B(binary) or N(nominal). The Inputs column
shows the number of input variables as it depends not only on
the number of features but also on their type. 48

2 Testing error, storage requirements and execution time (in
seconds) for standard Drop3 algorithm and our approach.
Mean and standard deviation values are shown. 53

3 Testing error, storage requirements and execution time (in
seconds) for standard ICF algorithm and our approach. Mean
and standard deviation values are shown. 55

4 Testing error, storage requirements and execution time (in
seconds) for standard CHC algorithm and our approach. Mean
and standard deviation values are shown. 57

5 Testing error, storage requirements and execution time (in
seconds) for the recursive approach using both mechanisms,
random addition of removed instances and second chance, of
improving testing error. 62

6 Standard deviation of testing error and storage requirements
for the recursive approach using both mechanisms, random
addition of removed instances and second chance, of improving
testing error. 63

7 Summary of datasets. The features of each dataset can
be C(continuous), B(binary) or N(nominal). The Variables
column shows the number of variables, as it depends not only
on the number of features but also on their type. 64

8 Testing error, storage requirements and execution time (in
seconds) for our approach for huge problems. 64

9 Testing error, storage requirements and execution time (in
seconds) for standard instance selection algorithms 79

10 Testing error, storage requirements and execution time (in
seconds) for democratic instance selection algorithms 80

V

11 Summary of the performance of instance selection methods in
terms of testing error against a random sample with the same
sampling ratio. The table shows the win/draw/loss record
of each algorithm against the random sampling. The row
labeled ps is the result of a two-tailed sign test on the win/loss
record and the row labeled pw shows the result of a Wilcoxon
test. Significant differences at a confidence level of 95% using
Wilcoxon test are marked with a 3. 88

12 Summary of the performance of our methodology against
standard methods in terms of testing error, storage
requirements and execution time. Significant differences, for
testing error and storage reduction, at a confidence level of
95% using Wilcoxon test are marked with a 3. 89

13 Summary of datasets. The features of each dataset can be
C(continuous), B(binary) or N(nominal). The Inputs column
shows the number of inputs of the network as it depends not
only on the number of input variables but also on their type. 95

14 Testing error, storage requirements and execution time (in
seconds) for our approach for huge problems. 95

15 Testing error, tree size (number of nodes) and execution time
(in seconds) for a standard C.45 algorithm, majority vote
filtering (MVF) and demoIS.MVF 100

16 Testing error, size (number of support vectors) and execution
time (in seconds) for an SVM, majority vote filtering (MVF)
and demoIS.MVF 101

18 Comparison of standard CHC algorithm and its federalized
counterpart. The table shows the win/draw/loss (w/d/l) of
the algorithm in columns against the algorithm in the row and
the p-value of the Wilcoxon test (pw). 105

17 Summary of results for standard CHC algorithm and our
parallel implementation FedIS.chc. 107

19 Comparison of parallel-stratification and FedIS. The table
shows the win/draw/loss (w/d/l) of the algorithm in columns
against the algorithm in the row, and the p-value of the
Wilcoxon test (pw). 109

20 Summary of results for very large datasets using the parallel
version of stratification. 111

VI

21 Summary of datasets. The features of each dataset can be
C(continuous), B(binary) or N(nominal). The Inputs column
shows the number of input variables, as it depends not only on
the number of features but also on their type. 129

22 Summary of the performance of the pseudoensembles
framework in the two possible configurations. The table
shows the win/draw/loss record of each algorithm against
its standard version. The row labeled ps is the p-value of
a two-tailed sign test on the win/loss record, and the row
labeled pw shows the p-value of the Wilcoxon test. Significant
differences at a confidence level of 95% are indicated with a
3. 135

23 Summary of the huge datasets used in our experiments. 150

24 Reduction, testing error and execution time using huge
datasets in standard algorithms and pseudoensembles. 151

25 Reduction, testing error and execution time using huge
datasets in standard algorithms and pseudoensembles. 151

26 Statistical significance of the differences between the AUC of
the splitting and the random arranging (R), SVM (S) and
ANOVA (A). 156

27 Average time (in seconds) for one ranking of the features. 156

VII

List of Figures

1 Computational cost of our method dividing by instances and a
base data mining algorithm of O(n2). 30

2 Instance selection process 35

3 Example of the method for a dataset of 50 instances and
subsets of 10 instances. The instance selection (I.S.) algorithm
can be any one of the many available methods. 42

4 Example of the method for partitioning a dataset with 2000
instances, three classes and two features. 45

5 Testing error, storage requirements and execution time (in
seconds) for standard Drop3 algorithm and our approach. 54

6 Testing error, storage requirements and execution time (in
seconds) for standard ICF algorithm and our approach. 56

7 Testing error, storage requirements and execution time (in
seconds) for standard CHC genetic algorithm algorithm and
our approach. 58

8 Execution time (in seconds) for standard methods and our
approach in function of the number of instances. 59

9 Average testing error, storage requirements and execution time
(in seconds) as a function of subset size. 59

10 Example of democratic instance selection for a dataset of 50
instances and subsets of 10 instances. The instance selection
algorithm can be any one of the many available. 67

11 Example of the method for partitioning the dataset with 1500
instances, three classes, and two features, with five rounds of
votes. Four subsets are created each round. 72

12 Computational cost of our method and a base instance
selection algorithm of O(n2). 74

13 Storage requirements/testing error (top) and execution time
in seconds (bottom – using a logarithmic scale) for standard
DROP3 algorithm and our approach. 82

IX

14 Storage requirements/testing error (top) and execution time in
seconds (bottom – using a logarithmic scale) for standard ICF
algorithm and our approach. 83

15 Storage requirements/testing error (top) and execution time in
seconds (bottom – using a logarithmic scale) for standard MSS
algorithm and our approach. 84

16 Storage requirements/testing error (top) and execution time
in seconds (bottom – using a logarithmic scale) for standard
RNN algorithm and our approach. 85

17 Storage requirements/testing error (top) and execution time
in seconds (bottom – using a logarithmic scale) for standard
CHC algorithm and our approach. 87

19 Average testing error (top), storage requirements (middle)
and execution time (bottom) as a function of subset size for
DROP3 algorithm. The plots show relative values with respect
to the results using a subset of 1000 instances. 91

20 Average testing error (top), storage requirements (middle) and
execution time bottom) as a function of subset size for ICF
algorithm. The plots show relative values with respect to the
results using a subset of 1000 instances. 92

21 Average testing error (top), storage requirements (middle) and
execution time (bottom) as a function of number of rounds for
DROP3 algorithm. The plots show relative values with respect
to the results using 10 rounds. 93

22 Average testing error (top), storage requirements (middle) and
execution time (bottom) as a function of number of rounds for
ICF algorithm. The plots show relative values with respect to
the results using 10 rounds. 94

23 Testing error, relative tree size, measured as the ratio of the
number of nodes with respect to C4.5 applied to the whole
dataset, and execution time in seconds (using a logarithmic
scale) for standard MVF algorithm and our approach,
compared with C4.5 algorithm applied to the whole dataset. 98

X

24 Testing error, relative tree size, measured as the ratio of
the number of support vectors with respect to SVM applied
to the whole dataset, and execution time in seconds (using
a logarithmic scale) for standard MVF algorithm and our
approach, compared with SVM applied to the whole dataset. 99

26 Parallel implementation of federal instance selection. 103

27 Testing error for recursive and democratic instance selection
using DROP3 (top) and ICF (bottom) as base methods. 108

28 Stratification method for CHC and FedIS.chc results. Error
(top, difference between the parallel version of the stratification
method and FedIS) storage requirements (middle, difference
between the stratification method and FedIS) and speed-up of
the stratification method with respect to the parallel algorithm
(bottom). 110

29 Stratification method for CHC and FedIS.chc results for
class-imbalances problems. Error (top, difference between
the stratification method and FedIS) storage requirements
(middle, difference between the stratification method and
FedIS) and speed-up of the stratification method with respect
to the parallel algorithm (bottom). 111

30 Wall clock time spent by stratification and FedIS using CHC
as base algorithm and very large datasets 112

31 Four basic steps of a typical feature selection process. 117

32 Schematic view of filter methods. 118

33 Schematic view of wrapper methods. 119

34 Storage requirements/testing error using pseudoE.GA a)
pseudoE.GA-KNN-1000inst, b)pseudoE.GA-KNN-7feats,
c)pseudoE.GA-C4.5-7feats 134

35 Comparative study of time between Standard.GA and
PseudoE.GA (measured in seconds and using a logarithmic
scale) 136

36 Evolution of the classification accuracy selecting a different
number of features using SVM-RFE: abalone, car and gene
datasets. 138

XI

37 Evolution of the classification accuracy selecting a different
number of features using SVM-RFE: german, hypo and
isoletpca datasets. 139

38 Evolution of the classification accuracy selecting a different
number of features using SVM-RFE: krvskp, letter and
magic04 datasets. 140

39 Evolution of the classification accuracy selecting a different
number of features using SVM-RFE: mfeat-fac, mfeat-fou and
mfeat-kar datasets. 141

40 Evolution of the classification accuracy selecting a different
number of features using SVM-RFE: mfeat-pix, mfeat-zer and
mushroom datasets. 142

41 Evolution of the classification accuracy selecting a different
number of features using SVM-RFE: nursery, optdigits and
ozone1hr datasets. 143

42 Evolution of the classification accuracy selecting a different
number of features using SVM-RFE: page-blocks, pendigits
and phoneme datasets. 144

43 Evolution of the classification accuracy selecting a different
number of features using SVM-RFE: satimage, segment and
shuttle datasets. 145

44 Evolution of the classification accuracy selecting a different
number of features using SVM-RFE: sick, soybean, texture
datasets. 146

45 Evolution of the classification accuracy selecting a different
number of features using SVM-RFE: waveform, yeast and
zippca datasets. 147

46 Comparison of the AUC and the percentage of retained
features to get a 90% of the best accuracy with RFE
configurations. 148

47 Running time comparison between the standard RFE
algorithm and our approach (in datasets over 400 secs of
execution time). 149

48 The “feasibility pyramid” for feature selection. 152

49 Classification accuracy with the selected feature sets. 155

XII

1 Introduction

In this chapter we are going to introduce the reader to the problem of scal-
ing data mining algorithms applied to large datasets. We will also provide a
taxonomy of the existing scaling algorithms so as to better explain the key
features of the scaling methodology proposed in this thesis. Finally we will
summarize the main objectives of this thesis and we will present the structure
of the thesis.

1.1 Motivation

Traditionally, the bottleneck preventing the development of more intelligent
systems via machine learning was the limited data available. However, in the
last few years, the limiting factor is learners’ inability to use all the data in the
available time. This situation is the result of the application of machine learn-
ing techniques and more specifically data mining algorithms to new scientific
problems, together with the ability to gather information on a massive scale,
having the effect of increasing the sizes of the datasets where these methods
are applied to hundreds of thousands or even millions of instances.

Most of the widely used algorithms in machine learning were developed when
the typical dataset sizes were much smaller. Some of those learning algorithms
can work with huge datasets, but many are not able to deal with such large
amounts of information. Their application may be hindered by memory de-
mands, impracticable running times or both. In all the fields of application
of machine learning, with the growing size of the datasets, the need is also
growing to scale up data mining algorithms.

Good examples of these new demanding fields are bioinformatics, text mining
or security among others. The relatively new bioinformatics field has opened
the doors to extremely large datasets such as the Protein Data Bank (Berman
et al., 2000). Text mining problem is of great practical importance given the
massive volume of online text available through the World Wide Web, emails
and digital libraries, all of them needing an automatical assignment of pre-
defined categories to be effectively processed. In a modern society in which
computer systems play an increasingly vital role in modern society it is of
crucial importance to protect them by means of analyzing huge amounts of
audit data to obtain frequent activity patterns that guide the construction of
an intrusion detection model.

Many useful algorithms can be inundated by the flood of data and become
very slow in learning a model or classifier and consequently cannot be used

1

1 INTRODUCTION

to address relevant problems due to scalability issues. Very large datasets
present a challenge for both humans and machine learning algorithms. As
Leavitt (2002) notes:

“The two most significant challenges driving changes in data mining are scal-
ability and performance. Organizations want data mining to become more
powerful so that they can analyze and compare multiple datasets, not just
individual large datasets, as is traditionally the case.”

Along with the large amount of data available, there is also a compelling need
for producing results accurately and fast. Efficiency and scalability are, indeed,
the key issues when designing data mining systems for very large datasets
(Chawla et al., 2004). The ideal learner would effectively learn from infinite
data in finite time.

The main objective of this thesis is the design of a general methodology to
scale up effectively data mining algorithms without severe modifications. We
think it is essential for the scaling methodology to be simple and generic. A
very complex method will not be widely used by the data mining commu-
nity and therefore will be less useful. Not only our method is simple but it
also treats the data mining algorithms as black boxes so the researchers can
use previously implemented versions of these data mining algorithms without
adapting the original data mining algorithms or the scaling methodology to
a specific problem. This feature of our scaling method makes it generalizable
to any data mining problem as the algorithm to be scaled can be swapped to
another data mining algorithm without changes, the input format expected
by the scaling approach will not change from one problem to another and it
will provide the same type of output no matter the problem being dealt with.
The only step that varies from one scaled data mining problem to other is the
last one that combines effectively the results from the different independent
runs.

Due to the fact that we have not unlimited time and storage resources, we con-
sider as a must that our scaling methodology succeeds in reducing execution
time while maintaining good performance levels.

The efficiency of an algorithm can be measured in terms of execution time and
needed resources. It should be clear that scaling up to very large datasets im-
plies, in part, that fast learning algorithms must be developed, so the execution
time is a key measure of the quality of a scaling method. Regarding the needed
resources, almost all existing implementations of learning algorithms operate
with the training set entirely in main memory and many algorithms achieve
reduced runtime complexity with bookkeeping that increases the space used.
However, no matter the runtime computational complexity of the algorithm,
if exceeding the main memory limitation leads to virtual memory thrashing,

2

1.1 Motivation

the algorithm will not scale well (Provost and Hennessy, 1996). We think that
dealing with data progressively, by means of applying data mining algorithms
to subsets of the original dataset, may be a solution to these problems.

Finally, the goal of the learning must be considered. Evaluating the perfor-
mance of a scaling technique becomes complicated if a degradation in the
quality of the learning is permitted. The vast majority of work on learning
algorithms uses classification accuracy as the metric by which different algo-
rithms are compared. In such cases, the most interesting methods are the ones
that scale up without a substantial decrease in accuracy.

If we assumed that “we do not really need all the data”, the first option would
be to avoid scaling up methods and just select a representative subset of the
original dataset. However, that solution has important problems. If the dataset
is huge, subsampling a percentage can itself pose a challenge.

The most common reason for scaling up is that increasing the size of the train-
ing set often increases the accuracy of learned classification models (Provost
and Kolluri, 1999). For example, a lot of business analysts want to identify
interesting customer patterns in the datasets, so taking a subsample might not
help in such a scenario. Moreover, in many cases the degradation in accuracy
when learning from smaller samples stems from overfitting due to the need to
allow the program to learn small disjuncts (Holte et al., 1989), elements of a
class description that cover few data items. In some domains small disjuncts
make up a large portion of the class description. In such domains, high accu-
racy depends on the ability to learn small disjuncts to account for these special
cases. The existence of noise in the data, which is very common in genomic se-
quence because of sequencing errors, further complicates the problem, because
with a small sample it is impossible to tell the difference between a special
case and a spurious data point. Overfitting from small datasets may be also
due to the existence of a large number of features describing the data. Large
feature sets increase the size of the space of models. Searching through and
evaluating more candidate models increases the likelihood that, by chance, the
program will find a model that fits the data well, and thereby increases the
need for larger example set.

Some data mining applications are not concerned with predictive modelling,
but with the discovery of interesting knowledge from large databases. In such
cases, increasing accuracy may not be a primary concern. However, scaling up
may still be an issue. For example, the ability to learn small disjuncts well
often is of interest to scientists, because small disjuncts often capture special
cases that were unknown previously and that, in the case of gene recognition,
may correspond to the less known structures which are very interesting for
the researcher. As with classifier learning, in order not to be swamped with
spurious small disjuncts, it is essential for a dataset to be large enough to

3

1 INTRODUCTION

contain instances of each special case from which to generalize with confidence.

In scaling up learning algorithms, the issue is not as much one of speeding up a
slow algorithm as one of turning an impracticable algorithm into a practicable
one. The crucial issue is seldom “how fast” we can run on a certain problem,
but instead “how large” a problem we can (feasibly) deal with. From the point
of view of complexity analyses, for most scaling problems the limiting factor
of the dataset has been the number of examples. A large number of examples
introduces potential problems with both time and space complexity. For time
complexity, the appropriate algorithmic question is: what is the growth rate of
the algorithm’s run time as the number of examples increases? Also important
are the number of attributes describing each example and the number of values
for each attribute.

1.2 Current approaches

There are several methods for scaling up data mining algorithms, although
none of them is a perfect solution. Provost and Kolluri (1999) identified three
fundamental approaches for scaling up learning methods that are independent
and can be applied simultaneously:

• Designing fast algorithms.
• Partitioning the data.
• Using a relational representation.

The fast algorithm approach includes a wide variety of algorithm design tech-
niques for reducing the asymptotic complexity, for optimizing the search and
representation, for finding approximate solutions instead of exact solutions,
or for taking advantage of the inherent parallelism of the task. The major
drawback of this approach is the need to modify the mining methods, a task
that is often very difficult or even unfeasible.

The data partitioning approach involves breaking the dataset up into sub-
sets, learning from one or more of these subsets, and possibly combining the
results. Data partitioning is useful to avoid the thrashing by memory man-
agement systems that occurs when algorithms try to process huge datasets in
main memory. In addition, if a learning algorithm’s time complexity is worse
than linear in the number of examples, processing small, fixed-size data sub-
sets sequentially can make it linear, with the constant term dependent on
the size of the subsets. In either case, it may be possible to use a system
of distributed processors to mine the subsets concurrently. As an additional
advantage, data-partitioning methods do not need to modify the mining algo-
rithm. An orthogonal approach to the selection of example subsets is to select

4

1.3 Objectives

subsets of relevant features upon which to focus attention.

The relational representation approach addresses data that cannot feasibly be
treated as a flat file, including any large relational database, as well as other
large relational structures such as those used for knowledge representation in
artificial intelligence. In the literature, such techniques have been framed ei-
ther as learning in first-order logic, or as learning from relational databases
(without flattening them out), or as flat-file learning augmented with rela-
tional background knowledge. It requires as input, data with a high level of
abstraction and therefore it cannot be applied to many data mining problems
because many of them do not meet that requirement.

1.3 Objectives

The main aim of this thesis is the design of a methodology to scale up data
mining algorithms and its practical application to instance selection and fea-
ture selection fields. More precisely we can divide this overall objective into
the following specific objectives:

(1) Design a powerful scaling method focusing on the objective of achieving
a good balance between efficiency and performance.
(a) The efficiency of an algorithm can be measured in terms of execution

time and needed resources. It should be clear that scaling up to very
large datasets implies, in part, that fast learning algorithms must be
developed, so the execution time is a key measure of the quality of
a scaling method. Regarding the needed resources, almost all exist-
ing implementations of learning algorithms operate with the training
set entirely in main memory and many algorithms achieve reduced
runtime complexity with bookkeeping that increases the space used.
However, no matter the runtime computational complexity of the al-
gorithm, if exceeding the main memory limitation leads to virtual
memory thrashing, the algorithm will not scale well (Provost and
Hennessy, 1996). We think that dealing with data progressively, by
means of applying data mining algorithms to subsets of the original
dataset, may be a solution to these problems.

(b) The goal of the learning must also be considered. Evaluating the
performance of a scaling technique becomes complicated if a degra-
dation in the quality of learning is permitted. The vast majority of
work on learning algorithms uses classification accuracy as the metric
by which different algorithms are compared. In such cases, the most
interesting methods are the ones that scale up without a substan-
tial decrease in accuracy. As in this thesis we are going to apply our
scaling up methodology specifically to instance and feature selection

5

1 INTRODUCTION

algorithms, another important measure is the storage reduction of
the original dataset achieved by the scaled selection algorithms. Effi-
ciency and performance are closely related in this field, as the storage
reduction is directly linked to the memory requirements evaluated.
This proves the great importance of achieving a good balance be-
tween efficiency and performance.

(2) It is important that our scaling method is generalizable to any data min-
ing algorithm, so as to allow a fast and direct adaptation of the scaling
methodology to any other field that needs to deal with large datasets.
Otherwise a new custom scaling method would have to be designed and
implemented each time we wanted to apply it to a new problem. Over the
years multiple specific methods have been developed (Sonnenburg et al.,
2007; Yang et al., 2008; de Oca et al., 2010).

(3) In order to be valuable, it is a must for a scaling method to be simple.
On the contrary, a very complex algorithm will be neither implemented
nor actively used and improved by the community.

(4) Application of the proposed methodology to scale up relevant data mining
algorithms which have well known scaling problems when managing large
datasets.
(a) Scaling up some popular instance selection algorithms. This is a chal-

lenging problem because this type of algorithms have important scal-
ing issues.

(b) Scaling algorithms in a relevant domain of data mining as it is the
feature selection problem.

1.4 Proposed methodology: democratization of algo-
rithms

The methodology proposed in this thesis to scale up data mining algorithms
fits within the group of data partitioning methods. Data partitioning is more
general than the other two methods because it does not modify the original
algorithm and simply divides the original input set into smaller and more
manageable subsets. Considering the high complexity of many data mining
algorithms, the fact that our method treats the basic method as a black box
is very interesting, as no modification of the original method is needed.

This paradigm is based on a combination of the divide-and-conquer philosophy
with the ensembles of classifiers approach. Following the divide-and-conquer
philosophy, we apply a data mining algorithm to subsets of the whole training
set. A simple approach is to partition the dataset into disjoint subsets and
apply the data mining algorithm to each subset separately. An example of
this methodology is the use of stratified random sampling in instance selection
(Liu et al., 2002; Cano et al., 2005; Derrac et al., 2010). We can consider the

6

1.4 Proposed methodology: democratization of algorithms

execution of each data mining algorithm applied to a subset of the whole
dataset as a “weak data mining algorithm”. Extending classifier ensemble
concepts (Rokach, 2009) we can carry out several rounds of weak data mining
algorithms applied to disjoint subsets of the original dataset, these rounds
would not achieve good results on their own but their results can be improved
using a combination scheme that produces a final result. Furthermore, the
divide-and-conquer methodology has the additional advantage that we can
adapt the size of the subproblems to the available resources.

To sum up, we propose a scaling method that for each step i divides the
dataset S into several small disjoint datasets Si,j. A data mining algorithm is
applied with no modifications to each one of these subsets, and a result Ci,j

is produced from each subset of the data. After all the ns rounds are applied,
(which can be done in parallel, as all of them are independent from each
other), the combination method constructs the final result C as the output of
the data mining process.

The key difference introduced by our approach is modifying the view we have
of data partitioning. In previous methods, the application of the learning al-
gorithm to a subset was considered as a valid result and a concept was learned
from the subset. However, learning from just a subset of the original dataset
suffers from locality and makes the algorithm more vulnerable to noise. Conse-
quently, we consider that new concepts can only be learned from the combina-
tion of the application of the learning algorithm to the whole partition of the
dataset into many subsets. This difference, though subtle, is the cornerstone
of the success achieved by our method. It also differs from other approaches
in repeating the data partitioning step many times, using the basis of the
ensembles of classifiers, which combine several weak classifiers to produce an
efficient result. In our case repeating many times the process assures we have
gathered enough information to produce relevant knowledge.

The main advantage of our method is that it maintains good accuracy val-
ues while the time is reduced significantly, because the selection algorithm is
applied only to small subsets whose results are afterwards strategically com-
bined.

In fact, as the size of the subset is chosen by the researcher, we can apply
the method to any problem regardless of its size. The size of the working
dataset is strongly linked to the memory requirements of the method. On
the one hand, some algorithms need the entire training set to be in memory
during the execution, but keeping all data in memory is not always feasible
and usually leads to the inefficiency of memory swapping. On the other hand,
our method requires each subset to be in memory only while it is processed
but it is not needed during the processing of the remaining subsets. In this
way, our method is scalable both in time and storage requirements.

7

1 INTRODUCTION

It is worth noting that unlike previous scaling methods, we are able to achieve
this time and storage reduction while avoiding an unacceptable performance
decrease. When scaling learning algorithms the decrease in performance is a
very common side effect because we are trying to generalize from partial views
of data. The key to a small decrease in the performance is a good design of
the step that combines the progressively obtained results.

Moreover, our proposal is naturally parallelizable, as the application of the
data mining algorithm to each small subset of instances or features is inde-
pendent of all the remaining subsets and can therefore be processed at the
same time.

Finally it is generalizable, as in the case of ensembles of classifiers where the
base learner is a parameter of the algorithm. In our methodology the data
mining algorithm is also a parameter, and therefore it can be used to scale up
any algorithm without modifications.

1.5 Contribution of the thesis

In this thesis, we present a new method for scaling up data mining algorithms,
which consists of performing several rounds of weak learners on independent
subsets of the original dataset and combine their results into a final result. The
proposed methodology is successfully applied to scale up various data mining
tasks, including instance selection and feature selection. It is worth noting
that our scaling approach is applicable to any data mining method without
any modifications.

Our main objective is to design a method that is able to successfully scale
up data mining algorithms, meaning that the running time as well as the
accuracy will be considerably reduced and that the storage reduction will not
drop to inadmissible values. The experiments will show if our method is able to
shorten the execution time significantly compared to the original algorithms,
while preserving a similar performance. In terms of storage requirements and
testing error, the main aim of our approach is to be able to match or improve
if it is possible the standard results applied to the non-partitioned datasets.
These results will demonstrate if our approach is able to scale up large datasets
successfully, where other methods are inapplicable.

Moreover, we will apply of our democratization methodology to scale up state
of the art instance and feature selection algorithms, testing our methodology
behavior on real-world datasets and huge problems.

The research performed during the development of this thesis had fruitful
results in the form of presentations at international congresses (de Haro-Garćıa

8

1.6 Thesis organization

and Pedrajas, 2010; de Haro-Garćıa et al., 2010) and the publication of several
articles in outstanding journals in the area (de Haro-Garćıa and Pedrajas,
2009; Garćıa-Osorio et al., 2010; Pedrajas et al., 2011).

1.6 Thesis organization

This memory is organized as follows. Chapter 2 provides a detailed insight
into the current situation of the scaling up problem and an analysis of the
advantages and weaknesses found in some of the related works; Chapter 3
presents in depth of the proposed model to scale up data mining methods
and includes a description of how to apply our methodology to different data
mining problems; Chapter 4 and Chapter 5 detail the application of the demo-
cratic approach to scale up instance selection and feature selection algorithms,
respectively. These chapters provide a discussion on the most relevant aspects
in their implementation details as well as the experimental setup and the study
of the results. Finally, Chapter 6 states the final conclusions of our work, the
possible applications of the designed methodology and the future research
lines.

9

2 Background

The scaling up problem appears in any algorithm when the data size increases
beyond the capacity of the traditional data mining algorithms, harming their
performance and efficiency. The scaling problem produces excessive storage
requirements, increases time complexity and affects generalization accuracy,
introducing noise and overfitting. These drawbacks are increased by the size
of the dataset, more specifically:

• Efficiency: Most of data mining algorithms present an efficiency of at least
O(n2). Consequently, when the size grows, the time needed by the algorithm
also increases.

• Resources: Most of the algorithms assessed need to have the complete dataset
stored in memory to carry out their execution. If the size of the dataset is
too big, the computer would need to use the disk as swap memory. This loss
of resources has an adverse effect on efficiency due to the increased access
to the disk.

• Generalization: Algorithms are affected in their generalization capabilities
due to the noise and overfitting effect introduced by larger size datasets.

• Convergence: If a data mining algorithm is applied to a large dataset it will
usually result in a huge search space and subsequent convergence problems.
Furthermore the search space will have many local minima where the data
mining algorithm can be trapped.

Consequently, many data mining algorithms cannot even be applied to large
datasets due to their inefficiency. These algorithms applied directly on full-
sized datasets are low-performing and inefficient. On that account scaling
methods are needed. Provost and Kolluri (1999) identified three fundamental
an independent approaches for scaling up learning methods:

• Designing fast algorithms: includes a wide variety of algorithm design tech-
niques for reducing the asymptotic complexity, for optimizing the search
and representation, for finding approximate solutions instead of exact solu-
tions, or for taking advantage of the inherent parallelism of the task. The
major drawback of this approach is the need to modify the mining methods.

• Partitioning the data: involves breaking the dataset up into subsets, learn-
ing from one or more of these subsets, and possibly combining the results.
Data partitioning is useful to avoid the thrashing by memory management
systems and is able to make a learning algorithm’s time complexity linear
by processing small, fixed-size data subsets sequentially.

• Using a relational representation: addresses data that cannot feasibly be
treated as a flat file, including any large relational database, as well as other
large relational structures such as those used for knowledge representation
in artificial intelligence. This approach requires as input, data with a high

11

2 BACKGROUND

level of abstraction and therefore it cannot be applied to many data mining
problems because many of them do not meet that requirement.

It is worth noting that in this section we are going to describe only those
previous works that proposed a generic methodology to scale up algorithms
and are applicable to any data mining algorithm without severely modifying
the original scaling method. We will not make a survey on the multiple specific
scaling method that have been developed because the main aim of this thesis is
the scaling of data mining algorithms in a generic way. Examples of interesting
scaling algorithms that have been specifically designed for a single problem are
(Lazarevic and Obradovic, 2002; Sonnenburg et al., 2007; Yang et al., 2008;
de Oca et al., 2010).

Classification is a very popular research field and its scalability problems have
been frequently analysed by the data mining community. An interesting pro-
posal is the one by Lazarevic and Obradovic (2002) of a parallel boosting
algorithm, specifically designed for tightly coupled shared memory systems
with a small number of processors. Their parallel boosting algorithm is pro-
posed primarily for learning from several disjoint data sites when the data
cannot be merged together, although it can also be used for parallel learning
where a massive dataset is partitioned into several disjoint subsets for a more
efficient analysis. At each boosting round, the proposed method combines clas-
sifiers from all sites and creates a classifier ensemble on each site. The final
classifier is constructed as an ensemble of all classifiers, that are combined
according to the confidence of their prediction and built on disjoint datasets.
Results from the experiments on one synthetic dataset and four datasets from
the UCI machine learning repository (Hettich et al., 1998) indicate that dis-
tributed boosting has comparable or slightly improved classification accuracy
over standard boosting, while requiring much less memory and computational
time since it uses smaller datasets.

Sonnenburg et al. (2007) presented another specific scaling approach which
enhanced performance of large scale learning with string kernels, specifically
to the string kernels in the context of biological sequence analysis. Their al-
gorithm, the linadd algorithm, iteratively selects a set of Q variables based on
the quality of the current solution and then solves the reduced problem with
respect to the working set of variables. This strategy sped up stand alone SVM
training and it also reduced training times for multiple kernel learning. Their
proposal was favourably evaluated on human splice and web spam datasets,
they compared their linadd algorithm and its parallel version (parallelizing the
most expensive part: evaluating g(x) function, based on multiple threads and
gaining reasonable speed ups) to the original weighted degree kernel algorithm
and spectrum kernel formulation. It is interesting to note that the linadd algo-
rithm requires several transmissions of information on each iteration between
distributed CPU’s and also to the master node.

12

Due to their usually high complexities, evolutionary algorithms have serious
scaling issues when dealing with datasets of large size. Over the years several
specific scaling solutions have been designed to tackle this problem. As an
example we can cite the work developed by Yang et al. (2008) proposing a co-
operative coevolution framework to scale up a differential evolution algorithm
applied to optimize separable and non-separable functions, the key to their co-
operative coevolution method is a grouping and adaptative weighting strategy
that produces good results when tested on classical benchmark functions and
the functions provided by CEC2005 Special Session (Suganthan et al., 2005).
Their experimental setup reports favourably to their cooperative coevolution
method when compared to other cooperative coevolution optimization algo-
rithms as well as to conventional evolutionary and self-adaptative algorithms.

Other interesting approach to scale up specifically evolutionary algorithms is
the work of de Oca et al. (2010) in which they made extensive usage of au-
tomatic algorithm configuration methods to redesign and specialize a generic
particle swarm based optimization algorithm, for tackling large-scale contin-
uous optimization problems. They described the whole redesign process of an
incremental particle swam optimizer with local search algorithm (IPSOLS) in
six stages that among others include adding a conjugate directions method
and a mechanism to deal with bound constraints. They presented a study of
the scalability behavior of their tuned algorithm with datasets of 50, 100, 200,
500 and 1000 dimensions. They compared their tuned and non-tuned IPSOLS
algorithm with the differential evolution algorithm (DE), the CHC algorithm
and the G-CMA-ES algorithm. In particular, DE and G-CMA-ES are consid-
ered state of the art algorithms for continuous optimization problems. The
IPSOLS algorithm was found to clearly outperform CHC and G-CMA-ES in
its default and its tuned version. The time execution scalability of the tuned
IPSOLS algorithm is quite good, probably as a consequence of the fact that
Powell’s conjugate directions method exploits the separability of the functions.
However, there were no significant differences when compared to the differen-
tial evolution algorithm, but the authors claimed that a more refined restart
criterion would solve those convergence problems.

The truth is that not many scaling methods that are truly generalizable to
any data mining problem have been developed over the last few years. In this
Related Work section we are going to provide an analysis of the most relevant
ones that fulfil this generalization requirement.

Breiman (1999) proposed pasting votes to build many classifiers from small
training sets or “bites” of data. He presented two strategies of pasting votes:
Ivote and Rvote. In Ivote, the small training set (bite) of each subsequent
classifier relies on the combined hypothesis of the previous classifiers, and the
sampling is done with replacement. The sampling probabilities rely on the out-
of-bag error, that is, a classifier is only tested on the instances not belonging

13

2 BACKGROUND

to its training set. This out-of-bag estimation gives good estimates of the
generalization error and is used to determine the number of iterations in the
pasting votes procedure. Ivote is, thus, very similar to boosting, but the “bites”
are much smaller in size than the original dataset. Thus, Ivote sequentially
generates training sets (and thus classifiers) by importance sampling. Rvote
creates many random bites, and is a fast and simple approach.

Breiman found that Rvote was not competitive in accuracy to Ivote or Ad-
aboost. Moreover, sampling from the pool of training data can entail multiple
random disk accesses, which could swamp the CPU times. So Breiman pro-
posed an alternate scheme: a sequential pass through the dataset. In this
scheme, an instance is read and checked to see if it will make the training set
for the next classifier in the aggregate. However, the sequential pass through
the dataset approach led to a degradation in accuracy for a majority of the
datasets. Breiman also pointed out that this approach of sequentially reading
instances from the disk will not work for highly skewed datasets.

To deal with these problems, Chawla et al. (2004) distributed Breiman’s al-
gorithms, dividing the original dataset into T disjoint subsets and assigning
each disjoint subset to a different processor. On each of the disjoint partitions
sampled randomly, they followed Breiman’s approach of pasting small votes.
Chawla et al. combined the predictions of all the classifiers by majority vote.
Again, using the above framework of memory requirement, if we break up the
dataset into T disjoint subsets, the memory requirement will decrease by a fac-
tor of 1/T , which is substantial. So, DIvote can be more scalable than Ivote
in memory. One can essentially divide a dataset into subsets easily managed
by the computer’s main memory.

Pasting DRvotes follows a procedure similar to DIvotes. The only difference
is that each bite is a bootstrap replicate of size N. Each instance through all
iterations has the same probability of being selected. DRvote is faster than
DIvote as the intermediate steps: 4 and 5 in the above algorithm are not
required. However, DRvote also provide worse accuracies than DIvote. This
agrees with Breiman’s observations on Rvote and Ivote.

Their proposal is evaluated on six small to moderate sized datasets, just one
of them can be considered large. These are the publicly available datasets
used by Breiman (1999); Lazarevic and Obradovic (2002) to facilitate direct
comparisons. They did not use a fixed subset size but claimed that it can be
dynamically adjusted to fit the available computational resources.

DIvotes and RVotes are compared with the original Ivote and Rvote algo-
rithms, as well as with a single cascade correlation neural network (CC) and
Lazarevic’s distributed boosting. As expected DIvote and IVote are signifi-
cantly better than a single CC and they also outperform DRvote and RVote.

14

DIvote achieved classification accuracies similar to the distributed boosting
approach but required no inter-processor communication. Consequently there
is no time lost in communication among processors, as trees are built inde-
pendently on each processor.

Another interesting proposal is presented by Domingos and Hulten (2001a)
whose approach to scaling up learning algorithms is based on Hoeffding bounds
(Howffding, 1963). The method can be applied either to choose among a set of
discrete models or to estimate a continuous parameter. The method consists
of three steps: first, it must derive an upper bound on the relative loss between
using a subset of the available data and the whole dataset in each step of the
learning algorithm. Then it must derive an upper bound of the time complexity
of the learning algorithm as a function of the number of samples used in each
step. Finally, it must minimize the time bound, via the number of samples
used in each step, subject to the target limits on the loss of performance of
using a subset of the dataset.

Although the method is able to achieve interesting results, the need to derive
these bounds makes its application troublesome for many algorithms. More-
over, the complexity of the method is independent of the process of generating
candidate solutions, but only if in this process the method does not need to
access the data. In that way, it is applicable to randomized search processes.
Finally, the experiments reported by Domingos and Hulten (2001b) showed
that the dataset size must be several million instances for the method to be
worthwhile.

The general framework proposed has been used for scaling up decision trees,
Bayesian network learning, k-means clustering and the EM algorithm for mix-
tures of Gaussians. In a subsequent study Hulten and Domingos (2002) devel-
oped a method for inductive algorithms based on discrete search. To the best
of our knowledge, the approach has not been applied to instance or feature
selection yet.

One of the ways of solving complex problems is decomposing them into several
simpler tasks that can be dealt with separately. An interesting proposal that
follows this philosophy is the stratified strategy, originally applied to prototype
selection methods in the context of data reduction. Stratification divides the
initial dataset into disjoint strata with equal class distribution, as the proto-
types are independent of each other, the distribution of the data into strata
do not degrade their representation capabilities.

The number of strata chosen will determine their size, depending on the size of
the dataset. Using the proper number of strata, we can significantly reduce the
training set and we could avoid the drawbacks mentioned above. Following the
stratified strategy, initial dataset D is divided into t disjoint sets Dj , strata of

15

2 BACKGROUND

equal size, D1, D2, . . . , Dt maintaining class distribution within each subset.
Then, PS algorithms will be applied to each Dj obtaining a selected subset
DSj .

The test set TS will be the TR complementary one in D.

TS = D/TR

PS algorithms (classical or evolutionary ones) are applied to eachDj obtaining
a subset selected DSj. The prototype selected set is obtained using DSj and
it is called Stratified Prototype Subset Selected (SPSS).

SPSS = ∪(j ∈ J)DSj, J ⊂ 1, 2, . . . , t

The last stage, where the DSj are being reunited, is not time-consuming, as
it does not present any kind of additional processing. The time needed for the
stratified execution is the one associated to the instance selection algorithms
execution in each strata.

We can use a preliminary approach of stratification (Cano et al., 2003) divid-
ing the dataset into several disjoint subsets, and then apply an evolutionary
algorithm model in which they have taken into account a specific instance
selection perspectives to each subset. The best results came from the CHC
algorithm but took a considerable amount of processing time. Moreover, in
such a method, the solution obtained by each algorithm is contaminated by
the partial view of the dataset.

In stratified random sampling within evolutionary algorithms a set of n in-
stances is divided into k non-overlapping subsets of sizes n1, n2, . . . , nk, where∑

i ni = n. Each subset is called a stratum. Then a random sample is ex-
tracted from each stratum. The set of instances is stratified and each stratum
is assigned to evolve following a genetic algorithm. In this way, the initial
populations are constructed by stratified random sampling. The evolution of
the individuals in each population optimizes the classification and storage
requirements within the stratum.

An example of this type of stratification is (Garćıa-Pedrajas et al., 2004), shar-
ing some of the ideas underlying stratified random sampling (Liu and Motoda,
2002). This method used cooperative coevolution to promote collaboration
among the strata. In this way, another population is created that keeps track
of the best combination of individuals so far and enforces cooperation among
the individuals that evolve using instances of each stratum. The model allows
interaction among the simpler searches that are carried out in each stratum,
instead of performing a large search in the whole set. This is a way of achiev-
ing at least a partial problem decomposition. Several subpopulations evolve
taking only into account the instances of a certain subset. The use of another

16

population that combines the results of each subpopulation is able to give the
model the necessary global view to accomplish its task.

We consider stratification a general scaling method as it has been successfully
applied to very diverse evolutionary algorithms in different instance selection
problems over the years, without adapting the original scaling methodology
to each problem.

Cano et al. (2005) presented an evolutionary stratified approach to solve the
drawbacks introduced by the evaluation of large size datasets using evolution-
ary prototype selection algorithms. The stratification reduces the dataset size
for algorithm runs, while evolutionary algorithms select the best local training
subset.

This study included a comparison between their proposal (stratified CHC
algorithm with a HUX recombination operator that performs re-seeding of
the population) and other non-evolutionary prototype selection algorithms
(Cnn, Drop1, Drop2, Drop3, Ib2, Ib3) combined with the stratified strategy.

In their experimental setup they selected six datasets from the UCI Reposi-
tory, ranging from medium to huge size datasets. Although non-evolutionary
algorithms were the most efficient than evolutionary ones, their result are
worse. On the other hand, stratified CHC presents the best reduction rates
while offering an accuracy rate similar to the 1-NN algorithm applied over the
whole dataset. Although the algorithm shows very good performance, it is still
too computationally expensive for huge datasets.

When the size of the databases increases, evolutionary algorithms suffer from
the scaling problems previously described as well as its behavior deteriorates
considerably because of a lack of convergence. Due to the fact that memetic
algorithms combine a population-based algorithm with a local search, Garcia
et al. (2008) proposed a model of memetic algorithm that incorporates an ad
hoc local search specifically designed for optimizing the properties of proto-
type selection problem with the aim of tackling the scaling up problem. Their
experimental study was carried out to establish a comparison between their
stratified memetic algorithm version (SSMA) and previous evolutionary algo-
rithms (CHC, GGA, IGA, PBIL, SSGA) as well as several non-evolutionary
approaches (1-NN, Allknn, Cpruner, Drop3, Enn, Explore, Ib3, Pop, Rmhc,
Rng, Rnn) studied in the literature.

SSMA outperforms the classical prototype selection algorithms, irrespectively
of the scale of dataset. Those algorithms that could be competitive with it
in classification accuracy are not so when the reduction rate is considered.
Furthermore, it usually outperforms in test accuracy other methods that ob-
tain good rates of reduction. Only CHC presents the same behaviour in small
datasets, but when the problem scales up, SSMA again outperforms CHC.

17

2 BACKGROUND

Derrac et al. (2010) tested the combination of stratification with their pre-
viously published steady-state memetic algorithm for prototype selection in
various problems, ranging from 50,000 to more than 1 million instances.

Their proposal, the SSMA-PS algorithm, interweaves global and local search
phases that influences each other, choosing good starting points at the same
time as aiming to an accurate representation.

They tested the performance of SSMA-PS on seven large datasets from the
UCI Machine Learning Repository. They employed two well-known prototype
selection methods for comparison: the classical Drop3 and one of the fastest
prototype selection methods “Fast Condensed Nearest Neighbor” (FCNN), all
of them were used by themselves and along with the stratification procedure
in all the problems where the computational cost was not too high, to have a
reference of how the use of stratification modifies their behavior.

They tried three representative sizes of strata: 1,000, 5,000 and 10,000 in-
stances. The strata size of 10,000 instances offered the best results in accu-
racy (i.e. the best possible reduced subsets from the training sets), keeping a
reasonable runtime in the training.

Both modes of SSMA-PS (with and without stratification) were able to con-
verge, but the employment of stratification allowed SSMA-PS to converge
faster, resulting in more stable behavior when compared to the execution
when stratification is not employed. SSMA-PS has offered the best behavior
over the large problems in the experimental study, allowing to reduce the size
of the training sets without severely harming their inherent accuracy. The
main drawback found for SSMA-PS is their large time consumption in the
PS phase. However, authors claimed that this is compensated by its ability to
generate smaller training sets than the rest of proposals, leading it to obtain
lower execution times in classification phases.

To recapitulate, there are different scaling approaches, most of them have been
specifically designed to solve a particular problem. We are mainly interested
in generalizable approaches, as this is main aim of our thesis. Specific ap-
proaches require complex customizations to be applied to a problem different
from the originally intended one. Unfortunately, there are not many truly gen-
eralizable scaling methods. It is noteworthy the stratification approach (Cano
et al., 2003) and the one proposed by Hulten and Domingos (2002). The latter
approach is inconveniently complex, presenting a troublesome application.

18

3 Scaling methodology:
democratization

In the current chapter we are going to describe the key aspects of our method-
ology to scale up data mining methods, its basic steps and the basis of its ap-
plication to some of the most used data mining methods: instance and feature
selection. Finally we will describe the novelty aspects of our approach and the
advantages of using it.

As previously indicated, this thesis proposes a general data scaling method
that specifically can be classified into the data partitioning scaling methods.
Following the divide-and-conquer philosophy, it applies separately the data
mining algorithm to disjoint subsets of the original dataset. A key aspect of
the partition of our method is that the sum of all the disjoint subsets result
in the whole dataset. The reason for using this type of partition is considering
that new concepts can only be learned from the totality of a dataset not just
from a subset, so as to avoid locality and noise vulnerability.

Moreover, our scaling methodology is based on the ensembles of classifiers
approach, which combines several weak classifiers to produce an efficient re-
sult. In our approach we do not have weak classifiers but weak data mining
algorithms, each one applied to an independent and small-sized subset of the
original dataset.

So as to fully understand the similarities between the ensembles of classifiers
and our scaling methodology, in the following lines we provide an overview of
the ensembles of classifiers.

An ensemble of classifiers consists of a combination of different classifiers, ho-
mogeneous or heterogeneous, to jointly perform a classification task. Ensem-
ble construction is one of the fields of Artificial Intelligence that is receiving
most research attention, mainly due to the significant performance improve-
ments over single classifiers that have been reported with ensemble methods
(Breiman, 1996c; Kohavi and Kunz, 1997; Bauer and Kohavi, 1999; Webb,
2000; Garćıa-Pedrajas et al., 2005).

A classification problem of K classes and n training observations consists of a
set of instances whose class membership is known. Let S = {(x1, y1), (x2, y2), . . .
(xn, yn)} be a set of n training samples where each instance xi belongs to a
domain X. Each label is an integer from the set Y = {1, . . . , K}. A multiclass
classifier is a function f : X → Y that maps an instance x ∈ X ⊂ RD onto
an element of Y .

The task is to find a definition for the unknown function, f(x), given the

19

3 SCALING METHODOLOGY:
DEMOCRATIZATION

set of training instances. In a classifier ensemble framework we have a set of
classifiers C = {C1, C2, . . . , Cm}, each classifier performing a mapping of an
instance vector x ∈ RD onto the set of labels Y = {1, . . . , K}. The design
of classifier ensembles must face two main tasks: constructing the individuals
classifiers, Ci, and developing a combination rule that finds a class label for x
based on the outputs of the classifiers {C1(x), C2(x), . . . , Cm(x)}.

For more detailed descriptions of ensembles the reader is referred to other
reviews: Dietterich (2000b), Webb (2000), Dzeroski and Zenko (2004), Merz
(1999), or Fern and Givan (2003).

Techniques using multiple models usually consist of two independent phases:
model generation and model combination (Merz, 1999). Most techniques are
focused on obtaining a group of classifiers which are as accurate as possible
but which disagree as much as possible. These two objectives are somewhat
conflicting, since if the classifiers are more accurate, it is obvious that they
must agree more frequently. Many methods have been developed to enforce di-
versity on the classifiers that form the ensemble (Dietterich, 2000b). Kuncheva
(2001) identifies four fundamental approaches: (i) using different combination
schemes, (ii) using different classifier models, (iii) using different feature sub-
sets, and (iv) using different training sets. Perhaps the last one is the most
commonly used. The algorithms in this last approach can be divided into
two groups: algorithms that adaptively change the distribution of the training
set based on the performance of the previous classifiers, and algorithms that
do not adapt the distribution. Boosting methods are the most representative
methods of the first group. The most widely used boosting methods are Ad-
aBoost (Freund and Schapire, 1996) and its numerous variants, and Arc-x4
(Breiman, 1998). They are based on adaptively increasing the probability of
sampling the instances that are not classified correctly by the previous classi-
fiers.

Bagging (Breiman, 1996a) is the most representative algorithm of the second
group. Bagging (after Bootstrap aggregating) just generates different boot-
strap samples from the training set. Several empirical studies have shown that
AdaBoost is able to reduce both bias and variance components of the er-
ror (Breiman, 1996b; Schapire et al., 1998; Bauer and Kohavi, 1999). On the
other hand, bagging seems to be more efficient in reducing bias than Ad-
aBoost (Bauer and Kohavi, 1999). Although these techniques are focused on
obtaining as diverse classifiers as possible, without deteriorating the accuracy
of each classifier, Kuncheva and Whitaker (2003) failed to establish a clear
relationship between diversity and ensemble performance.

Boosting methods are the most popular techniques for constructing ensem-
bles of classifiers. Its popularity is mainly due to the success of AdaBoost.
However, AdaBoost tends to perform very well for some problems but can

20

3.1 The Democratization methodology steps

also perform very poorly on other problems. One of the sources of the bad
behaviour of AdaBoost is that although it is always able to construct di-
verse ensembles, in some problems the individual classifiers tend to have large
training errors (Dietterich, 2000a). Moreover, AdaBoost usually performs
poorly on noisy problems (Bauer and Kohavi, 1999; Dietterich, 2000a).

In conclusion, ensembles of classifiers perform a learning task by means of
combining weak but fast classifiers into a strong one. One of the key aspects
to produce an efficient result is the combination strategy of the weak classifiers
results. In our approach we do not have weak classifiers but weak data mining
algorithms, each one applied to an independent and small-sized subset of the
original dataset. The weak steps of data mining algorithms in our approach
provide an efficient and accurate final result when their outputs are suitably
combined.

The main difference introduced by our scaling methodology is that it uses
the whole dataset for the data mining algorithms to learn, not restricting the
learning process to a subset of the original dataset. Using just a subset of the
whole dataset, as many scaling algorithms do, leads to less accurate results as
not all the available information is used in the learning stage.

Furthermore, our methodology is able to scale up data mining algorithms
without performing changes in the original scaling approach as it treats the
data mining algorithms as black boxes, making our scaling proposal easier to
apply and expand.

Moreover, not only do we succeed in reducing execution time but we also
keep the decrease of performance under acceptable boundaries. When scaling
algorithms we must not forget the original learning purpose because a scaled
data mining algorithm with poor performance is useless as it does not achieve
its goals

3.1 The Democratization methodology steps

Our scaling methodology can be summarized in the three following stages:

(1) Partition of the datasets.
(2) Application of the data mining algorithm to the subsets.
(3) Combination of the results.

For each of the iterations of our scaling methodology, i, which we call ”rounds”‘
our approach divides the dataset S into several small disjoint datasets Si,j.
The data mining algorithm is applied with no modifications to each one of
these subsets, and a result Ci,j is produced from each subset of the data. After

21

3 SCALING METHODOLOGY:
DEMOCRATIZATION

all the ns rounds are applied, (which can be done in parallel, as all of them are
independent from each other), the combination method constructs the final
result C as the output of the data mining process.

⋃
Sij = TR

Sij ∩ Sik = ∅, j 6= k

TS = S \ TR

Two out of the three steps of our methodology are common when scaling
any data mining algorithm. Partitioning the dataset is a generic process to
any data mining algorithm (being the simplest option to perform a random
partition and leaving the door open to the application of a more suitable
partition method if the problem requires it) and so it is the application as
a black box of a data mining algorithm to the created subsets, taking as
inputs the subsets and providing as output the results in the same format as
the original data mining algorithm provides them. The only stage specifically
designed for the data mining algorithm is the last one: the combination of
results, because each data mining algorithm provides its results in a specific
format (eg. weights associated to instances, ranking of features)

It is worth highlighting that the addition of all the subsets in a round results
in the whole dataset. Consequently our approach not only does not scale using
just a subset of the original dataset but it actually learns from the full dataset
several times, as many times as the value assigned to the number of rounds.

It is noteworthy that our scaling methodology only has two parameters to set:
the subset size M and the number of iterations, which we call “rounds” r.
We analysed the effect of both parameters on the performance of the different
applications of democratization to data mining algorithms and we observed
the following behavior.

The number of rounds should not be set to a very small figure, because there
will be no chance for the data mining algorithm to learn, but after the first
few rounds are added the testing error is not affected. As more rounds are
added, the reduction in storage decreases because the threshold for removing
an instance is higher and more rounds must agree to remove it. What is
more, when many rounds are used, the execution time increases and a high
portion of the votes are redundant so there is no advantage in having so many
rounds, regarding testing error. This behavior is similar to the case of classifier
ensembles, where little gain is obtained after the first few classifiers are added
(Garćıa-Pedrajas et al., 2007)

A similar test was performed with the other parameter of our scaling approach,
the size of the subsets. We have stated that the size of the subset is not relevant

22

3.1 The Democratization methodology steps

provided it is kept small to obtain a significant reduction of execution time
and large enough to allow a meaningful learning process. With a large subset
size the reduction is greater but with no significant differences, being the
processing time of each subset more important than the achieved performance.
Fixing the subset size to a meaningful minimum makes the performance reach
a good value, which is not incremented if we increase the subset size but that
will result in a large increment in execution time. So the goal is to obtain a
good compromise among the sizes that favor performance and execution time.

In the following lines, we are going to generically describe the steps that our
scaling approach is comprised of, to subsequently explain its application to
scale different data mining algorithms.

3.1.1 Partition of the datasets

The partition process consists of dividing the original dataset into several
disjoint subsets of approximately the same size that cover the full dataset.

The first choice among partitioning methods is to use the simplest method
available, i.e. strictly a random partition, where each feature or instance is
randomly assigned to one of the subsets. Moreover, a random partition nat-
urally keeps the class distribution of the original dataset over the different
created subsets. However a more complex partitioning method can be chosen
if the problem requires it. For example, in Section 4.4.1 we describe how to
use the Grand Tour method to partition the original dataset when scaling up
instance selection algorithms. It is remarkable that we need a different parti-
tion of the dataset for each round of the algorithm; otherwise, the results will
be the same because the subsets will be identical.

It is worth noting that we do not consider the application of the data mining
algorithm to a subset as a solution to the problem; in that way, the combi-
nation is not made at the round level. We chose random partition without
replacement to avoid overlapping subsets and assure that every instance or
feature will be evaluated just once per round. Equivalently, a standard sam-
pling approach was also discarded because it may never pick some features or
instances to be in any subset (depending on which factor is the basis of the par-
tition). Our method takes into account all features or instances in each round.
Therefore, we can state that each element of the entire dataset is present the
same number of times in the learning/testing process: once per round.

These rounds will not select the best subset on their own because they only
have partial knowledge of the original dataset. They can be seen as weak
executions of a data mining algorithm that provide a fast approximate solution
which suffers from locality, and moreover, they are more sensitive to noise.

23

3 SCALING METHODOLOGY:
DEMOCRATIZATION

Nevertheless, the key to the success of our method comes from the combination
of all these rounds based on the quality of the subsets. This approach achieves
a good performance globally while keeping the complexity and execution time
manageable. The combination of rounds applied will be detailed further in
this section.

The partition of the datasets can be carried out in two ways: we can choose
to split datasets by instances or by features 1 . This decision should be closely
related to the complexity of the data mining algorithm chosen to be the core
of our method. Depending on the design, the complexity of a certain data
mining algorithm may depend on the number of features, or, on the other
hand, it may come from the number of instances in the dataset. That is the
reason why it would be highly advisable to divide datasets by one or the
other, depending on which factor determines the complexity of the algorithm
involved. It is remarkable that the complexity of many of the most used data
mining algorithms depends on the number of instances.

Preliminary experiments have shown that the size of the subsets has no sig-
nificant impact on the results of the method, provided that it is small enough
to avoid large execution times and large enough to allow a meaningful appli-
cation of the data mining process. The time spent by the algorithm depends
on the size of the largest subset, so it is important that the partition algo-
rithm produces subsets of approximately equal size. The number of rounds
experience a similar behavior, it is recommended to iterate for several rounds
so as to allow the learning process, but not too many because it would lead
to redundant knowledge.

3.1.2 Application of the data mining algorithm to the subsets

The data mining algorithm is applied to all the datasets in several itera-
tions, which we call “rounds”. This repetition ensures that we have gathered
enough information for the combination step to be useful. The advantage of
our method is not needing any modification of the learning algorithm, thus
saving the time spent in adapting known algorithms. Although the same data
mining algorithm will be applied to different subsets, it will produce different
results that can be advantageously combined.

In classification, several weak learners are combined into an ensemble which is
able to improve the performance of any of the weak learners isolated (Garćıa-
Pedrajas et al., 2007). In the same sense as we talk of “weak learners” in
a classifier ensemble construction framework, we can consider a data mining

1 It is also possible to partition the datasets by features and instances together.
In such a case, each subset will be formed by a subset of instances and a subset of
features. This possibility has yet to be explored experimentally.

24

3.2 Democratization applied to different data mining problems

algorithm applied to a subset of the whole dataset as a “weak” data mining
algorithm. Following a similar philosophy to the construction of ensembles of
classifiers (Rokach, 2009) we can carry out several rounds of weak data min-
ing algorithms applied to disjoint subsets of the original dataset, these rounds
would not achieve good results on their own but their results can be improved
using a combination scheme that produces a final result. Therefore, our ap-
proach is called democratization, and can be considered a form of extending
classifier ensemble concepts to data mining algorithms. Moreover, democrati-
zation selection deals with the data mining algorithms as black boxes, so it
is possible to include any learning algorithm with no modifications. Thus, the
output of our method is dynamic, depending on which type of output was
originally provided by the selection algorithm. Our methodology will provide
the output in the same format as the original algorithm.

3.1.3 Combination of the results

The combination of results is a key step in our method. In the same sense as
weak classifiers are combined in an ensemble, we combine simple executions of
“weak” data mining algorithms. Generically, ensembles of classifiers combine
the output of their weak classifiers to get the final result in three ways:

• Summing up the outputs of each classifier and posteriorly setting a threshold
to obtain the final result.

• Each output of each weak classifier receives a vote of equal value and the
instance is classified into the class that receives the majority of votes.

• Each output of each weak classifier receives a vote, but not all the votes have
the same value but they are weighted by the quality of their classification.
Each instance will be classified into the class that receives more votes.

Following the experience of classifier ensembles where complex methods have
not achieved consistently better performance than simple ones (Kuncheva,
2001), we have opted for simple combination methods that would be further
described in the subsequent sections. The first choice to combine “weak” stages
of an ensemble-based methodology is a voting method, but more complex
methods can be used if the problem requires it.

3.2 Democratization applied to different data mining
problems

In this subsection we are going to discuss the peculiarities and possible im-
plementations of the generic steps of our methodology when applied to scale
up particular data mining problems. A detailed description and the results of

25

3 SCALING METHODOLOGY:
DEMOCRATIZATION

the application of the democratization methodology to instance selection and
feature selection are provided in chapters 4 and 5, respectively.

3.2.1 Scaling instance selection algorithms

(1) Partition of the datasets.
The first thing that we must take into account is the fact that we need

several different partitions of the dataset, as each round needs a different
partition. Otherwise, the results will be the same as most instance selec-
tion algorithms are deterministic. Since we use k-NN evaluator, among
other evaluators, its performance is directly related to the locality of
instances within each partition. Moreover, in order to avoid a random
assignation of weights to instances in each round, it is recommended to
vary partitions smoothly between subsequent rounds. These requirements
are achieved by the theory of Grand Tour (Asimov, 1985) that generates
a continuous sequence of low dimensional projections of a high dimen-
sional dataset. When using the Grand Tour method we force the class
distribution of the resulting subsets to be the same as the one of the
original dataset.
As far as the subset size to scale up instance selection algorithms is

concerned, we have stated that the size is not relevant provided it is kept
small, that is, of about a few hundreds or thousands of instances. With a
larger subset size the reduction is somewhat smaller, but the differences
are not significant.

(2) Application of the data mining algorithm to the subsets.
In each round we apply an instance selection algorithm to every sub-

set of instances created in the previous step. To obtain an accurate view
of the usefulness of our scaling method we recommend using successful
state-of-the-art instance selection algorithms, for example DROP3 (Wil-
son and Martinez, 2000), ICF (Brighton and Mellish, 2002) algorithms,
evolutionary algorithms such as CHC (Eshelman, 1990) or RNN (Gates,
1972; Cano et al., 2003).
The chosen instance selection algorithms are applied as blackboxes, so

to begin with, any instance selection algorithm can be used. Any picked
instance selection algorithm receives the same input, i.e. an independent
subset of instances, and provides as a result a subset of the most relevant
instances. Our approach applies the instance selection algorithm to each
subset separately. The instances selected by the algorithm to be removed
receive a vote. Then a new partition is performed and another round of
votes is carried out.

(3) Combination of the results.
As previously stated, the votes for an instance to be removed will be

accumulated over the different rounds. After the predefined number of
rounds is made, we will have a number of votes for each instance and the

26

3.2 Democratization applied to different data mining problems

instances that have received a number of votes above a certain threshold
are removed. On that account, determining the number of votes needed to
remove an instance is an important issue in our method. As this threshold
is closely linked to a specific dataset, it is not feasible to set a general pre-
established value usable in any dataset. Consequently a good alternative
is to automatically estimate the best value for the number of votes from
the effect on a percentage of the training set. Moreover, automatically
setting this parameter over the training set relieves the user from manu-
ally setting a threshold value for each dataset. The best value will be the
one that minimizes the training error and the memory requirements to
the possible extent.

3.2.2 Scaling feature selection algorithms

(1) Partition of the datasets.
To scale feature selection algorithms by our approach we need to par-

tition the original dataset in disjoint subsets of approximately the same
size that cover the full dataset. The partition of the datasets can be done
splitting by instances or by features, depending on the complexity of the
feature selection algorithm being used. We recommend to divide datasets
by instances or by features depending on which factor determines the
complexity of the chosen feature selection algorithm involved.
In this problem a good alternative is to use the simplest partition

method available, ie. strictly a random partition, where each feature or
instance is randomly assigned to one of the subsets. A standard sampling
approach was discarded for the partition because it may never pick some
features or instances (depending on which factor is the basis of the par-
tition). Our method takes into account all features or instances in each
round. Furthermore, we need a different partition of the dataset for each
round of the algorithm; otherwise, the results will be the same because
the subsets will be identical. These rounds can be seen as weak feature
selectors that provide a fast approximate solution that suffer from local-
ity but the key to the success of our method comes from the combination
of all these rounds based on the quality of the selected features.
Previous experiments have proven that the size of the subsets do not

determine the results of the method, as long as it is of moderate size
allowing a fast but meaningful application of the feature selection process.
An appropriate value when partitioning by instances is a few hundreds
or thousands of instances and less than ten features when scaling by
features.

(2) Application of the data mining algorithm to the subsets.
In each round we apply a feature selection algorithm to every subset

of instances or features created in the previous step. To prove the effec-
tiveness of our scaling methodology we must use some of the most used

27

3 SCALING METHODOLOGY:
DEMOCRATIZATION

and successful state-of-the-art feature selection algorithms, such as Focus
(Fountain et al., 1991), Relief (Kira and Rendell, 1992), LVF (Liu and
Setiono, 1996), SVM-RFE (Guyon et al., 2002) or a genetic algorithm
selector (Yang and Honavar, 1998; Li et al., 2001).
Our scaling methodology applies the feature selection algorithm as a

blackbox so we can pick any type of feature selection algorithm, no mat-
ter its output. All feature selection algorithms receive as input an in-
dependent subset of instances or features but may provide their output
in different formats: a subset of relevant features or a ranking weighting
the relevance of each of the features composing the dataset. During the
rounds of this stage we store all the output values assigned to each feature,
no matter the format, in order to compute their final value in the next
step. In the following lines we specify the application of democratization
to both types of feature selection algorithms.
(a) Feature subset selection: several rounds are performed and each of

them creates a new partition and a subset of features are selected to
be removed, receiving a vote. After a round is completed, the votes
of each feature are accumulated and a new round begins.

(b) Ranking of features: if we use a method that outputs a ranking of
variables as the base feature selector, the ranking assigned to each
variable on every subset and round will be recorded in order to use
it to compute the final ranks in the combination step.

(3) Combination of the results. The combination step approximation is dif-
ferent depending on the output format of the feature selection algorithm
previously used. We are going to summarize how to combine the out-
puts of each round for feature subset selection algorithms and ranking of
features.
(a) Feature subset selection: in a similar way to the combination step of

the scaled instance selection, we would have an accumulated number
of votes to each feature after the stipulated number rounds is per-
formed. This number of votes represents the number of times that
particular feature has been selected in a round to be removed. The
features that have received a number of votes above a certain thresh-
old are removed.
Setting that parameter is a determinant issue in our method, it

is not possible to use a general value and apply that threshold in
any situation as it is closely linked to the characteristics of a spe-
cific dataset. We automatically set this parameter to the value in
the training data that minimizes the training error and the mem-
ory requirements to the extent possible, relieving the user from the
complexity of fixing it manually.

(b) Ranking of features: to combine the different rankings of each round
into a final ranking we simply compute the average ranking value for
each feature and then sort them into a new rank. This new averaged
rank is the final ranking achieved by the scaling methodology.

28

3.3 Complexity of the method

3.3 Complexity of the method

As the objective of our methodology is to scale up large to huge problems of
data mining, the complexity of the method is a must. In this section we show
how our algorithm is linear.

We divide the dataset into partitions of disjoint subsets of size s. Thus, the
chosen data mining algorithm is always applied to a subset of fixed size, s,
which is independent from the actual size of the dataset. The complexity of
this application of the algorithm depends on the data mining algorithm we
are using, but will always be small, as the size s is always small. Let K be the
number of operations needed by the data mining algorithm to perform its task
in a dataset of size s. For a dataset of n instances and a data mining algorithm
whose complexity depends on the number of instances, we will perform this
data mining process once for each subset that is n/s times, spending a time
proportional to (n/s)K. It will equally occur if the complexity relies on the
number of features, being this time n the number of features, and we split
the original dataset by features. In either cases, the total time needed by the
algorithm to perform r rounds will be proportional to r(n/s)K, which is linear,
as K is a constant value.

Thus, the gaining in execution time would be greater as the size of the datasets
is larger. If the complexity of the data mining algorithm is greater, the reduc-
tion of the execution will be even better. The method has the additional ad-
vantage of allowing an easy parallel implementation. As the application of the
data mining algorithm to each subset is independent from all the remaining
subsets, all the subsets can be processed at the same time, even for different
rounds. Also, the communication between the nodes of the parallel execution
is small.

As we have stated, two additional processes complete our methodology: the
partition of the dataset and the combination of the results. Applying a random
partition requires a complexity of O(n), thereby keeping the complexity of
the whole process linear. However, in the following sections of application
of our scaling methodology to instance and feature selection we will detail
the complexity of the combination step and also the complexity of any other
partition method used.

Figure 1 shows an example of the computational cost, as a function of the
number of instances, of a quadratic algorithm and our approach when that
algorithm is used with subset sizes of s = 100, 1000, 2500 and 5000 instances
and r = 10 rounds of votes.

29

3 SCALING METHODOLOGY:
DEMOCRATIZATION

Fig. 1. Computational cost of our method dividing by instances and a base data
mining algorithm of O(n2).

3.4 Contribution of the method

The main advantage of our method is that it maintains good accuracy values
while the time is reduced significantly, because the data mining algorithm is
applied only to small subsets whose results are afterwards strategically com-
bined.

The key difference introduced by our approach is modifying the view we have
of data partitioning. In previous methods, the application of the learning algo-
rithm to a subset was considered as a valid result and a concept is learned from
the subset. However, learning from just a subset of the original dataset suffers
from locality and makes the algorithm more vulnerable to noise. Consequently,
we consider that new concepts can only be learned from the combination of the
application of the learning algorithm to the whole partition of the dataset into
many subsets. This difference, though subtle, is the cornerstone of the success
achieved by our method. It also differs from other approaches in repeating the
data partitioning step many times, using the basis of the ensembles of classi-
fiers, which combine several weak classifiers to produce an efficient result. In
our case repeating many times the process assures we have gathered enough
information to produce relevant knowledge.

It is worth noting that unlike previous scaling methods, we are able to achieve
this time an storage reduction while avoiding an unacceptable performance
decrease. When scaling learning algorithms, the decrease in performance is a

30

3.4 Contribution of the method

very common side effect because we are trying to generalize from partial views
of data. The key to a small decrease in the performance is a good design of
the step that combines the progressively obtained results.

In fact, as the size of the subset is chosen by the researcher, we can apply
the method to any problem regardless of its size. The size of the working
dataset is strongly linked to the memory requirements of the method. On
the one hand, some algorithms need the entire training set to be in memory
during the execution, but keeping all data in memory is not always feasible
and usually leads to the inefficiency of memory swapping. On the other hand,
our method requires each subset to be in memory only while it is processed
but it is not needed during the processing of the remaining subsets. In this
way, our method is scalable both in time and storage requirements.

Moreover, our proposal is naturally parallelizable, as the application of the
data mining algorithm to each small subset of instances or features is inde-
pendent of all the remaining subsets and can therefore be processed at the
same time.

Finally it is generalizable, as in the case of ensembles of classifiers where the
base learner is a parameter of the algorithm. In our methodology the data
mining algorithm is also a parameter, and therefore it can be used to scale up
any algorithm without modifications.

31

4 Scaling up instance selection
algorithms

In this section we are going to thoroughly describe the application of the
generic scaling methodology exposed in Section 3 to instance selection algo-
rithms. First of all we will describe a recursive approach which is the precursor
idea of our main methodology to scale up instance selection algorithms and
we will end up giving some brief notes on its parallel version.

Instance selection is becoming more and more relevant due to the huge amount
of data that is being constantly produced. However, although current algo-
rithms are useful for fairly large datasets, scaling problems are found when
the number of instances is of hundreds of thousands or millions, and most al-
gorithms are not applicable. Thus, paradoxically, instance selection algorithms
are for the most part impracticable for the same problems that would benefit
most from their use. In this section we present a way of avoiding this difficulty
applying instance selection algorithms to subsets of the original dataset.

Our first approach to scale up instance selection algorithms was the design
of the recursive method. The recursive divide-and-conquer method (de Haro-
Garćıa and Pedrajas, 2009) obtained worse performance values compared with
the standard algorithms. Based on the obtained results we improved the par-
tition step and the philosophy of our scaling methodology, resulting in the
demoIS. algorithm.

In the following lines we provide a brief description of the recursive method and
its improvement, the demoIS. algorithm. The recursive method divides the
original training set into small subsets where the instance selection algorithm is
applied until a certain criterion is met. Then the selected instances are rejoined
in a new training set and the same procedure, partitioning and application of
an instance selection algorithm, is repeated. The proposed approach is able
to match, and even improve the results concerning storage reduction of well-
known standard algorithms, with a very significant reduction of execution
time of the instance selection process. However, the main drawback of that
method is in the testing error, which is worse than that obtained if we apply the
original method alone. Moreover, its generalization to other mining algorithms
is troublesome.

In order to improve the performance results we designed a new scaling method
to scale up instance selection algorithms called demoIS. (Garćıa-Osorio et al.,
2010) and based on the previous recursive approach.DemoIS. also applies the
chosen instance selection algorithm to disjoint subsets of instances of manage-
able size. However, instead of making just one step of partitioning at the
beginning and progressively reducing the set of selected instances, demoIS.

33

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

makes several independent iterations of instance selection over disjoint sub-
sets. The key difference between the two methods is that each independent
iteration of demoIS. deals with the whole dataset. Consequently at the end
of a demoIS. execution, each instance has been processed by the instance
selection algorithm several times (as many as the number of iterations) in dif-
ferent contexts and partitions. DemoIS. repeats the selection process more
times than the previous recursive approach, having the chance to gather more
information about the quality of each instance to the group. The outputs pro-
duced in the different iterations are suitably weighted by the accuracy quality
and storage reduction to produce a reliable final selection of instances.

Accordingly to our theoretical studies, comparative experiments proved that
demoIS. improves the testing error of our previous recursive approach in al-
most all of the problems. A pairwise comparison of both algorithms will be
detailed in section 4.4.8.1. DemoIS. is particularly efficient when we use in-
stance selection algorithms that are high in computational cost. As previously
stated, the proposed approach shares the philosophy underlying the construc-
tion of ensembles of classifiers, where several weak learners are combined to
form a strong classifier. In a similar way our method uses several weak (in
the sense that they are applied to subsets of the data) instance selection al-
gorithms that are combined to produce a strong and fast instance selection
method.

4.1 Preliminary concepts on Instance Selection Prob-
lems

The overwhelming amount of data that is available nowadays in any field of
research poses new problems for data mining and knowledge discovery meth-
ods.

Selection seems a necessity in the world surrounding us. It stems from the sheer
fact of limited resources. No exception for data mining. Many factors give rise
to data selection. First, data is not purely collected for data mining or for one
particular application. Second, there are missing data, redundant data, and
errors during collecting and recording. Third, data can be too overwhelming
to handle.

Instance selection, as another topic for data reduction, is recently getting
more and more attention from researchers and practitioners. There are many
reasons for this new trend: first, instance selection concerns some aspects of
data reduction that feature selection cannot blanket; second, it is possible
to attempt it now with advanced statistics and accumulated experience; and
third, doing so can result in many advantages in data mining applications.

34

4.1 Preliminary concepts on Instance Selection Problems

Fig. 2. Instance selection process

Instance selection is one avenue to the empire of data selection. Data is stored
in a flat file and described by terms called attributes or features. Each line
in the file consists of attribute-values and forms an instance, also named as
a record, tuple, or a data point in a multi-dimensional space defined by the
attributes.

As it can be seen in Figure 2, instance selection (Liu and Motoda, 2002) con-
sists of choosing a subset of the total available data to achieve the original
purpose of the data mining application as if the whole data were used. Differ-
ent variants of instance selection exist. Many of the approaches are based on
some form of sampling (Cochran, 1977) (Kivinen and Mannila, 1994). There
are other more modern methods that are based on different principles, such
as, Modified Selective Subset (MSS) (Barandela et al., 2005), entropy-based
instance selection (Son and Kim, 2006), Intelligent Multiobjective Evolution-
ary Algorithm (IMOEA) (Chen et al., 2005), and LVQPRU method (Li et al.,
2005).

More often than not, we need to perform instance selection in order to obtain
meaningful results. Instance selection has the following prominent functions
(Liu and Motoda, 2002):

(1) Enabling: Instance selection offers many advantages dealing with large
datasets. As we know, every data mining algorithm is somehow limited
by its capability in handling data in terms of sizes, types, formats. When a
dataset is too huge, it may not be possible to run a data mining algorithm
or the data mining task cannot be effectively carried out without data
reduction. Instance selection reduces data and enables a data mining
algorithm to function and work effectively with huge data.

(2) Focusing: The data includes almost everything in a domain (recall that
data is not solely collected for data mining), but one application is nor-
mally only about one aspect of the domain. It is natural and sensible to
focus on the relevant part of the data for the application so that search
is more focused and the mining is more efficient.

35

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

(3) Cleaning: The GIGO (garbage-in-garbage-out) principle applies to almost
all, if not all, data mining algorithms. It is therefore paramount to clean
data, if possible, before mining. By selecting relevant instances, we can
usually remove irrelevant ones as well as noise and /or redundant data.
The high quality data will lead to high quality results and reduced costs
for data mining.

The above three main functions of instance selection may intertwine. For ex-
ample, cleaning can sometimes be a by-product of the first two. Focusing can
also serve a function of enabling under certain circumstances.

The problem of instance selection for instance based learning can be defined
as (Brighton and Mellish, 2002) “the isolation of the smallest set of instances
that enable us to predict the class of a query instance with the same (or higher)
accuracy than the original set”.

Applying instance selection is useful for reducing the runtime in the training
process, particularly in the classification process for instance-based classifiers
since to classify just one instance, these classifiers use the whole training set.
Like in feature selection, according to the strategy used for selecting instances,
we can divide the instance selection methods in two groups (Olvera-López
et al., 2010):

• Wrapper: The selection criterion is based on the accuracy obtained by a
classifier (commonly, those instances that do not contribute with the clas-
sification accuracy are discarded from the training set).

• Filter: The selection criterion uses a selection function which is not based
on a classifier

4.1.1 Wrapper instance selection algorithms

Most of the wrapper methods have been proposed based on the k-NN classifier
(Cover and Hart, 1967).

• Methods Based on NN Rules: One of the earliest methods is the Condensed
Nearest Neighbor (CNN) (Hart, 1968). It tries to find a consistent subset,
which correctly classifies all of the remaining points in the sample set. How-
ever, this algorithm will not find a minimal consistent subset and also can
retain noisy instances.
Another early instance selection method is the Edited Nearest Neighbor

(Wilson, 1972) which is focused on discarding noisy instances in a training
set. This method discards an instance in T when its class is different from
the majority class of its k nearest neighbors. It leaves smoother decision
boundaries but it also retains all internal points, which keeps it from reduc-

36

4.1 Preliminary concepts on Instance Selection Problems

ing the storage requirements as much as most other reduction algorithms.
An extension of ENN is the RENN (Repeated ENN) (Wilson, 1972)

method which repeatedly applies ENN until all instances in S have the
same class that the majority of their k Nearest Neighbors.
The reduced NN rule (RNN) (Gates, 1972) searches in Cnn’s consistent

set, the minimal subset which correctly classifies all the learning instances.
However, this approach is efficient if and only if Cnn’s consistent set contains
the minimal consistent set of the learning set, which is not always the case.
In Aha et al. (1991) the IB2 and IB3 (Instance Based) methods were

proposed; they are incremental methods, IB2 is similar to Cnn but using
a different selection strategy, it selects the instances misclassified by 1-NN
(as CNN); IB3 is an extension of IB2 where a classification record is used in
order to determine the instances to be retained (instances such that their
deletion does not impact the classification accuracy).
ICF (Brighton and Mellish, 2002) tries to select the instances which clas-

sify more prototypes correctly. Icf uses coverage and reachable concepts to
carry out the selection which are the associate and neighbor sets respec-
tively. ICF discards p if |Reachable(p)|>|Coverage(p)| which means that
some instances in T can classify instances similar to p without considering
it in the training set.

• Other wrapper methods are based on an ordered removal:
Wilson and Martinez (1997) proposed five methods: DROP1, DROP2,

DROP3, DROP4, DROP5 (Decremental Reduction Optimization Proce-
dure); these methods are based on the concept of associate. The associates
of an instance p are those instances such that p is one of their k nearest
neighbors. DROP1 discards an instance p from T if the associates of p in S
are correctly classified without p; through this rule, DROP1 discards noisy
instances since the associates of a noisy instance can be correctly classi-
fied without it but in DROP1, when the neighbors of a noisy instance are
first removed, then the noisy instance will not be discarded. In order to
solve this problem, DROP2 is similar to DROP1 but the associates of an
instance are searched in the whole training set, that is, p is deleted only if
its associates in T are classified correctly without p. DROP3 and DROP4
first discard noisy instances using a filter similar to ENN and then they
apply DROP2. DROP5 is based on DROP2 but it starts discarding the
nearest enemies (nearest instances with different class) in order to smooth
the decision boundaries.
Evolutionary algorithms (EA) have been used to solve the IS problem,

with promising results (Kuncheva, 1995), (Kuncheva and Bezdek, 1998),
(Bezdek and Kuncheva, 2000), (Cano et al., 2003) EA are based on the
natural evolution. Their main idea is as follows: given an initial chromo-
some population (set of solutions commonly represented by a binary-coded
array, in our context, a set of instances) and according to a fitness func-
tion (reflecting the objective function value with respect to a particular
objective function to be optimized,in the instance selection context the fit-

37

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

ness function is based on a classifier) the individuals from the population
are evaluated, the best chromosomes are selected (which maximize the fit-
ness function) in order to be muted and combined (crossover) for generating
new chromosomes. The algorithm is repeated a specific number of iterations
(generations) specified by the user and the best chromosome from the last
generation is selected. The mutation operator introduces innovation into
the population by generating variations of individuals and the recombina-
tion operator typically performs an information exchange between different
individuals from a population. The selection operator imposes a driving
force on the process of evolution by preferring better individuals to survive
and reproduce when the members of the next generation are selected.
Examples of important EA to select instances are SGA and CHC. The

Steady-State Genetic Algorithm (SGA): In SGAs (Whitley and Kauth,
1988), usually only one or two offspring are produced in each generation.
Parents are selected to produce offspring and then a replacement strategy
defines which member of the population will be replaced by the new off-
spring. A widely used combination is to replace the worst individual only if
the new individual is better. CHC is one of the most used EA’s due to its
high performance. Heterogenious recombination and cataclysmic mutation
(CHC), is a classical model that introduces different features to obtain a
tradeoff between exploration and exploitation. CHC Adaptive Search Al-
gorithm: During each generation the CHC (Eshelman, 1990) develops the
following steps: it uses a parent population of size to generate an inter-
mediate population of individuals, which are randomly paired and used to
generate potential offspring and then, a survival competition is held where
the best chromosomes from the parent and offspring populations are selected
to form the next generation.

4.1.2 Filter instance selection algorithms

This section describes filter methods proposed in the literature; unlike wrapper
methods they are not based on a classifier to determine the instances to be
discarded from the training set. In a training set, an instance can be either a
border instance or an interior instance. The border instances of a class provide
useful information for preserving the class discrimination regions (Wilson and
Martinez, 2000), (Brighton and Mellish, 2002) therefore some filter methods
are focused on selecting border instances.

Riquelme et al. (2003) proposed the POP (Pattern by Ordered Projections)
method that discards interior instances and selects some border instances.
This approach is based on the weakness(p) concept which is defined as the
numbers of times that p is not a border in a class (with respect to its attribute
values). The selection rule discards irrelevant instances that according to this
method, are those instances such that weakness(p) = m, where m is the total

38

4.2 Related Work on Large-Scale Instance Selection Problems

number of features describing p. The weakness of an instance is computed
by increasing weakness for each attribute where the instance is not near to
another instance with different class.

A filter method based on kd trees (Friedman et al., 1977) was proposed in
Narayan et al. (2006), where a binary tree is constructed. In the root node
all the instances are included; for constructing each child node, a pivot is
selected which is the feature with the maximum difference (Maxdiff) between
consecutive ordered values; the left child contains those instances whose values
for the corresponding attribute are lower than Maxdiff and the remaining
instances are contained in the right node. The splitting process is repeated
until the nodes cannot be split (the variance of the data along the features is
greater than a threshold given by the user). Finally, instances located in the
leaves are selected.

Some authors (Bezdek and Kuncheva, 2000), (Liu and Motoda, 2002), (Spill-
mann et al., 2006) have stated the idea of using clustering for instance selec-
tion; this idea consists of: after splitting T in n clusters, the selected instances
will be the centers of the clusters.

In the literature, some filter methods consist in assigning a weight to the
instances and selecting those with an acceptable weights range (according
to a threshold). The WP (Weighting Prototypes) (Paredes and Vidal, 2000)
method uses gradient descent for computing weights for each instance in
terms of both nearest neighbors an nearest enemies; then the instances having
weights larger than a certain threshold are removed.

4.2 Related Work on Large-Scale Instance Selection
Problems

The main problem with existing instance selection algorithms is their excessive
computational complexity, presenting in the best case an efficiency of O(n2), n
being the number of instances. For huge problems, with hundreds of thousands
or even millions of instances, these methods are not applicable. Trying to
develop algorithms with a lower efficiency order is likely to be a fruitless search.
Obtaining the nearest neighbor of a given instance is O(n). To test whether
removing an instance affects the accuracy of the nearest neighbor rule, we must
measure the effect on the other instances of the absence of the removed one.
Measuring this effect involves recalculating, directly or indirectly, the nearest
neighbors of the instances. The result is a process of O(n2). In this way, the
attempt to develop algorithms of an efficiency order below O(n2) is not very
promising.

39

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

Thus, the alternative is reducing the size n of the set to which instance se-
lection algorithms are applied. In the construction of ensembles of classifiers
the problem of learning from huge datasets has been approached by means of
learning many classifiers from small disjoint subsets (Chawla et al., 2004). In
that paper, the authors showed that it is also possible to learn an ensemble of
classifiers from random disjoint partitions of a dataset, and combine predic-
tions from all those classifiers to achieve high classification accuracies. They
applied their method to huge datasets with very good results. Furthermore,
the usefulness of applying instance selection to disjoint subsets has also been
shown in Garćıa-Pedrajas et al. (2010). In that work, a cooperative evolu-
tionary algorithm was used. The training set was divided into several disjoint
subsets and an evolutionary algorithm was performed on each subset of in-
stances. The fitness of the individuals was evaluated only taking into account
the instances in the subset. To account for the global view needed by the algo-
rithm a global population was used. This method is scalable to medium/large
problems but cannot be applied to huge problems. Zhu and Wu (Zhu and
Wu, 2006) also used disjoint subsets in a method for ranking representative
instances.

The usefulness of applying instance selection to disjoint subsets has also been
shown in Garćıa-Pedrajas et al. (2010). In this work a cooperative evolutionary
algorithm is used. Several evolutionary algorithms are performed on disjoint
subsets of instances and a global population is used to account for the global
view. This method is scalable to medium/large problems but cannot be applied
to huge problems.

There are not many previous works that have dealt with instance selection
for huge problems. Cano et al. (2003, 2005) and (Garcia et al., 2008; Derrac
et al., 2010) proposed an evolutionary stratified approach for large problems.
Furthermore Kim and Oommen (2004) proposed a method based on a recursive
application of instance selection to smaller datasets.

40

4.3 Recursive method

4.3 Recursive method

In previous sections we have thoroughly explained the scaling problems of most
instance selection algorithms when applied to large to huge datasets due to
their high computational complexities. Therefore the alternative is to reduce
the number of instances n of the set to which instance selection algorithms
are applied. Following that philosophy, we can develop a methodology based
on applying the instance selection algorithm to subsets of the whole training
set. A simple approach consists of using a stratified random sampling (Liu
and Motoda, 2002) (Cano et al., 2005), where the original dataset is divided
into many disjoint subsets, and then apply instance selection over each subset
independently. However, due to the fact that to select the nearest neighbor of
an instance we need to know the whole dataset, this method is not likely to
produce good results. In fact, in practice its performance is poor. However, the
divide-and-conquer principle of this method is an interesting idea for scaling up
instance selection algorithms. Furthermore, divide-and-conquer methodology
has the additional advantage that we can adapt the size of the subproblems
to the available resources.

One way to improve that method is, instead of using a random partition of
the dataset, to construct the subsets considering adjacent regions. In this way,
the locality of nearest neighbor rule may work in our favor. This was our first
choice and although it produces good results in terms of testing error, the
storage reduction is still too small 2 . Consequently we decided to apply the
above idea in a recursive manner so as to improve the storage reduction. After
the first application of the instance selection algorithm the subsets of selected
instances are rejoined and the method is repeated. This is the methodology
we propose.

Our method is applicable to any instance selection algorithm, as the instance
selection algorithm is a parameter of the method. First, our method divides the
whole training set, T , into disjoint subsets, ti, of size s such as T =

⋃
i ti. s is

the only parameter of the algorithm. The way the dataset is divided is relevant,
and it is explained in Section 4.3.2. Then, the instance selection algorithm of
our choice is performed over every subset independently. The selected instances
in each subset are joined again. With this new training constructed with the
selected instances, the process is repeated until a certain stop criterion is
fulfilled. The process of combining the instances selected by the execution
of the instance selection algorithm over each dataset can be performed in
different ways. We can just repeat the partition process as in the original

2 Experiments with this method, not shown in this section, obtained testing error
results better than standard instance selection algorithms but with a very limited
storage reduction.

41

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

Fig. 3. Example of the method for a dataset of 50 instances and subsets of 10 in-
stances. The instance selection (I.S.) algorithm can be any one of the many available
methods.

dataset. However, as the first partition is performed using spatial properties
of the instances (see Section 4.3.2) we can take advantage of this performed
task. In this way, instead of repeating the partitioning process, we join together
the subsets of selected instances until new subsets of approximately size s are
obtained. An example of the whole algorithm is shown in Figure 3, and the
detailed process is shown in Algorithm 1.

4.3.1 Stop criterion.

The stop criterion is of importance for the method. If the recursive process
is repeated too many times, the reduction is too large and the testing er-
ror very poor. Fixing a number of iterations for every dataset is difficult, as
it depends on the specific features of each problem. Thus, we use a cross-
validation approach. We divide the training set into two parts, using one of
them for performing the instance selection algorithm and the other one for
obtaining the validation error. The number of iterations is obtained as the
last iteration before the validation error starts to grow. Then, we perform the
algorithm using the whole training set for the number of iterations obtained
in the cross-validation process.

42

4.3 Recursive method

Algorithm 1: Recursive instance selection algorithm

Data : A training set T = {(x1, y1), . . . , (xn, yn)}, and subset size s.

Result : The reduced selector S ⊂ T .
1 S = T
2 Partitionate instances into disjoint subsets ti :

⋃
i ti = S of size s

repeat
foreach subset ti ⊂ S do

3 Apply instance selection algorithm in ti to obtain selected subset si ⊂ ti
4 Remove from S instances removed from ti

end
5 Fusion subsets si to obtain new subsets tj of size s

until until stop criterion
6 Return S

The most important advantage of our method is the large reduction in the
execution time. The experiments show a large difference when using standard
widely used instance selection algorithms. Additionally, the method is easy to
implement in a parallel environment, as the execution of the instance selection
algorithm over each subset is performed independently. Moreover, due to the
fact that the disjoint subsets are of fixed size and independent from the actual
size of the whole dataset, the complexity of our recursive method remains
linear.

There is a last useful feature of the proposed approach. As the problem size
grows the requirements for memory use also grow. For some problems it is
not feasible to keep all data in memory due to the need to use the disk for
memory swapping. However, existing methods need all the training set in
memory during the execution of the algorithm. Our method requires each
subset to be in memory only while it is processed, but it is not needed during
the processing of the remaining subsets. In this way, our method is scalable
both in time and storage requirements.

4.3.2 Partition of the dataset

The first step of our method is to partition the training set into a number of
disjoint subsets, ti, which comprise the whole training set,

⋃
i ti = T . The size

of the subsets is fixed by the user. The actual size has no relevant influence over
the results, provided it is small to avoid large execution time. Furthermore,
the time spent by the algorithm highly depends on the size of the larger
subset, so it is important that the partition algorithm would produce subsets
of approximately equal size.

The most simple method is just a random partition, where each instance is
randomly assigned to one of the subsets. However, k-NN is a local learning

43

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

algorithm, so a partition that produces, at least partially, subsets of instances
near to each other is likely to produce better results. A simple method is
dividing the input space into regions of equal size, and using the instances
within each region as subsets. However, this method does not produce subsets
of equal size. Another procedure based on the same idea can be constructed
that produces subsets of equal size.

This procedure selects a random input, without replacement, and divides the
set into two halves using the median of the values of the input, thus assuring
that the two subsets are of the same size. The number of subsets must be a
power of two. As obtaining the median is of O(N), the partition can be made
efficiently. The process is repeated using a new selected random variable until
the desired number of subsets is produced.

Algorithm 2:Algorithm for partitioning the training sets into disjoint subsets

Data : A training set T = {(x1, y1), . . . , (xn, yn)}, and subset size s.

Result : The partition into disjoint subsets ti :
⋃

i ti = T .

1 Adjust the number of subsets ns to a power of 2 using size s
foreach Class do

for i = 0 to log2(ns) do
2 Select an input j randomly without replacement

for k = 0 to 2i do
3 Divide every subset into two halves using median of input j within

the subset
end

end
end

4 Return ti :
⋃

i ti = T

The partition performed in a training set of 2000 instances is depicted in Figure
4 (b). The dataset, which is made up of three classes is shown in Figure 4 (a).
The figure shows how the partition is local, in the sense that the instances
in each subset correspond to adjacent instances in the space. This partition
is performed only in the first iteration of the algorithm. In the subsequent
steps (see Algorithm 1 step 5) the subsets are joined into new subsets. The
figure also shows a problem with the proposed method, as the partition is
performed without using class labels, some subsets have only instances of one
class. This fact happens in the real-world datasets of our experiments. When
an instance selection algorithm receives a subset with instances of only one
class its performance is poor, as removing instances has no effect on the error
of the nearest neighbor classifier.

To avoid this effect we perform the partition taking class labels into account.
The training set is divided into subsets that have approximately the same
distribution of classes of the original set. This is accomplished applying the
described algorithm to each class separately. Algorithm 7 shows the complete

44

4.3 Recursive method

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

-5 -4 -3 -2 -1 0 1 2 3 4 5

(a) Original training set with three classes.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

(b) Partition ignoring class labels
into four subsets.

(c) Partition using class labels into
four subsets.

Fig. 4. Example of the method for partitioning a dataset with 2000 instances, three
classes and two features.

procedure for performing the partition. The result of such a partition, which
is used in all the reported experiments, is shown in Figure 4 (c).

Partitioning in a similar way, using just one variable, has been used before in
for learning ensembles of classifiers (Banfield et al., 2005).

4.3.3 Experimental setup

The evaluation of a certain instance selection algorithm is not a trivial task.
We can distinguish two basic approaches: direct and indirect evaluation (Liu
and Motoda, 2002). Direct evaluation evaluates a certain algorithm based ex-
clusively on the data. The objective is to measure at which extent the selected
instances reflect the information present in the original data. Some proposed
measures are entropy (Cover and Thomas, 1991), moments (Smith, 1998), and
histograms (Chaudhuri et al., 1998).

Indirect methods evaluate the effect of the instance selection algorithm on
the task at hand. So, if we are interested in classification we evaluate the
performance of the used classifier when using the reduced set obtained after
instance selection as learning set.

45

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

Therefore, when evaluating instance selection algorithms for instance learning,
the most usual way of evaluation is estimating the performance of the algo-
rithms on a set of benchmark problems. In those problems several criteria can
be considered, such as Wilson and Martinez (2000): storage reduction, gener-
alization accuracy, noise tolerance, and learning speed. Speed considerations
are difficult to measure, as we are evaluating not only an algorithm but also
a certain implementation. However, as the main aim of our work is scaling up
instance selection algorithms, execution time is a basic issue. To allow a fair
comparison, we have performed all the experiments in the same machine, a
bi-processor computer with two Intel Xeon QuadCore at 1.60GHz.

To estimate the storage reduction and generalization error we used a k-fold
cross-validation (cv) method. In this method, the available data are divided
into k approximately equal sized subsets. Then the method is learned k times,
using each of the k subsets in turn as the testing set, and the remaining k− 1
subsets as training set. The estimated error is the average testing error of the
k subsets. A fairly standard value for k is k = 10.

We considered several options for the main statistical test choice: t-tests, sign
tests and the Wilcoxon test. In the following lines we will explore the advan-
tages and disadvantages of each choice and we will explain why the Wilcoxon
test is the best option to fulfil our needs on this subject.

The use of t-tests (Anderson, 1984) for the comparison of several methods
has been criticized in several papers (Dietterich, 1998). This test can provide
an accurate evaluation of the probability of obtaining the observed outcomes
by chance, but it has limited ability to predict relative performance even on
further dataset samples from the same domain, let alone on other domains.
Moreover, as more datasets and algorithms are used, the probability of type I
error, a true null hypothesis incorrectly rejected, increases dramatically. Multi-
ple comparison tests can be used in order to circumvent this last problem, but
these tests are not usually able to establish differences between the algorithms.

To avoid these problems several authors perform a sign test on the win/draw/loss
record of the two algorithms across all datasets. If the probability of obtaining
the observed results by chance, the p-value of the sign test, is below 5%, they
conclude that the observed performance is indicative of a general underlying
advantage to one of the algorithms with respect to the type of learning task
used in the experiments.

Nevertheless, the comparison using sign tests has two problems: Firstly, the
differences between the two algorithms compared must be very marked for the
test to find significant differences (Demšar, 2006); secondly, on some occasions
the p-value of the test can be above or below the critical value due to a single
modification of the outcome of one experiment, making the result of the test

46

4.3 Recursive method

less reliable. So, as the main test we have used the Wilcoxon test for com-
paring pairs of algorithms for several reasons (Demšar, 2006). The Wilcoxon
test assumes limited commensurability. It is safer than parametric tests since
it does not assume normal distributions or homogeneity of variance. Thus, it
can be applied to error ratios, storage requirements and execution time. Fur-
thermore, empirical results (Demšar, 2006) show that it is also stronger than
other tests.

The formulation of the test (Wilcoxon, 1945) is the following: Let di be the
difference between the results of the two methods on i-th dataset. These differ-
ences are ranked according to their absolute values; in case of ties an average
rank is assigned. Let R+ be the sum of ranks for the datasets on which the
second algorithm outperformed the first, and R− the sum of ranks where the
first algorithm outperformed the second. Ranks of di = 0 are split evenly
among the sums:

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di), (1)

and,

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di). (2)

Let T be the smaller of the two sums and N be the number of datasets. For a
small N , there are tables with the exact critical values for T . For a larger N ,
the statistic

z =
T − 1

4
N(N + 1)√

1
24
N(N + 1)(2N + 1)

(3)

is distributed approximately according to N(0, 1).

It is worth to note that we perform a pairwise comparison between each stan-
dard instance selection algorithm and its recursive counterpart. We have cho-
sen this strategy because we think it provides very direct comparative results
between algorithms.

Our approach is based on applying data mining algorithms (specifically a
feature selection algorithm in this situation) to subsets of the training set, so
to perform sound experiments, the algorithm used for the whole training set
and the algorithm used in our method are exactly the same. That is, when we
applied our method using a feature selection algorithm and when we perform
the feature selection algorithm for the whole training set, the implementation
is the same in both cases. The source code, written in C and licensed under

47

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

the GNU General Public License, that is used for all methods as well as the
partitions of the datasets are freely available upon request to the authors.

In order to make a comprehensive comparison between the standard algo-
rithms and our proposal we have selected a set of 30 problems from the
UCI Machine Learning Repository (Hettich et al., 1998). A summary of these
datasets is shown in Table 1. We have selected datasets with, at least, 1000
instances.

Table 1
Summary of datasets. The features of each dataset can be C(continuous), B(binary)
or N(nominal). The Inputs column shows the number of input variables as it depends
not only on the number of features but also on their type.

Data set Cases Features Classes Inputs 1-NN error

C B N

1 abalone 4177 7 - 1 29 10 0.8034

2 adult 48842 6 1 7 2 105 0.2005

3 car 1728 - - 6 4 16 0.1581

4 gene 3175 - - 60 3 120 0.2767

5 german 1000 6 3 11 2 61 0.3120

6 hypothyroid 3772 7 20 2 4 29 0.0692

7 isolet 7797 617 - - 26 617 0.1443

8 krkopt 28056 6 - - 18 6 0.4356

9 kr vs. kp 3196 - 34 2 2 38 0.0828

10 letter 20000 16 - - 26 16 0.0454

11 magic04 19020 10 - - 2 10 0.2084

12 mfeat-fac 2000 216 - - 10 216 0.0350

13 mfeat-fou 2000 76 - - 10 76 0.2080

14 mfeat-kar 2000 64 - - 10 64 0.0435

15 mfeat-mor 2000 6 - - 10 6 0.2925

16 mfeat-pix 2000 240 - - 10 240 0.0270

17 mfeat-zer 2000 47 - - 10 47 0.2140

18 nursery 12960 - 1 7 5 23 0.2502

19 optdigits 5620 64 - - 10 64 0.0256

20 page-blocks 5473 10 - - 5 10 0.0369

21 pendigits 10992 16 - - 10 16 0.0066

22 phoneme 5404 5 - - 2 5 0.0952

23 satimage 6435 36 - - 6 36 0.0939

24 segment 2310 19 - - 7 19 0.0398

25 shuttle 58000 9 - - 7 9 0.0010

26 sick 3772 7 20 2 2 33 0.0430

27 texture 5500 40 - - 11 40 0.0105

28 waveform 5000 40 - - 3 40 0.2860

29 yeast 1484 8 - - 10 8 0.4879

30 zip 9298 256 - - 10 256 0.0292

48

4.3 Recursive method

For estimating the storage reduction and generalization error we used a k-fold
cross-validation method. In this method the available data is divided into k
approximately equal subsets. Then, the method is learned k times, using, in
turn, each one of the k subsets as testing set, and the remaining k−1 subsets as
training set. The estimated error is the average testing error of the k subsets. A
fairly standard value for k is k = 10. The table shows the generalization error
of a 1-NN classifier, which can be considered a baseline measure of the error
of each dataset. These datasets are representative of problems from medium
to large size.

4.3.4 Standard algorithms for the comparison

Our model is tested against three of the most successful state-of-the-art algo-
rithms. We have used the classical algorithms DROP3 (Wilson and Martinez,
2000), and ICF (Brighton and Mellish, 2002). DROP3 (Decremental Reduction
Optimization Procedure 3) is shown in Algorithm 3. This algorithm represents
one of the examples of a new generation of algorithms that were designed tak-
ing into account the effect of the order of removal on the performance of the
algorithm. So, this algorithm is designed to be insensitive to the order of pre-
sentation of the instances. It includes a noise filtering step using a method
similar to Wilson’s Edited Nearest-Neighbor Rule (Wilson, 1972). Then, the
instances are ordered by the distance to their nearest neighbor. The instances
are removed beginning with the instances furthest from its nearest neighbor.
This tends to remove the instances furthest from the boundaries first.

ICF is shown in Algorithm 4. For ICF algorithm coverage and reachability are
defined as follows:

Coverage(c)= {c′ ∈ T : LocalSet(c)} (4)

Reachable(c)= {c′ ∈ T : LocalSet(c′)}. (5)

The Local-set of a case c is defined as “the set of cases contained in the
largest hypersphere centred on c such that only cases in the same class as
c are contained in the hypersphere” (Brighton and Mellish, 2002). In Case
Base Reasoning (CBR) framework (Smyth and Keane, 1995) a case c can be
adapted to a case c′ if c is relevant to the correct prediction of c′. That means
that c is a member of the neighborhood of c′, bounding the neighborhood of
c′ by the first instance of a different class (see (Brighton and Mellish, 2002)
for details). The algorithm is based on repeatedly applying a deleting rule to
the set of retained instances until no more instances fulfill the deleting rule.

The concept of reachable and coverage sets used by ICF are similar to the
neighborhood and associate sets used by RT algorithms (Wilson and Martinez,

49

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

Algorithm 3: DROP3 algorithm

Data : A training set T = {(x1, y1), . . . , (xn, yn)}.
Result : The reduced selector S ⊂ T .

1 S = T
2 Noise filtering: Remove any instance in S missclassified by its k neighbors
3 Sort instances in S by distance to their nearest enemy
foreach Instance P ∈ S do

4 Find P.N1..k+1, the k + 1 nearest neighbors of P in S
5 Add P to each of its neighbors’ list of associates

end
foreach Instance P ∈ S do

6 Let with = # of associates of P classified correctly with P as a neighbor
7 Let without = # of associates of P classified correctly without P

if without ≥ with then
8 Remove P from S

foreach Associate A of P do
9 Remove P from A’s list of nearest neighbors

10 Find a new nearest neighbor for A
11 Add A to its new neighbor’s list of associated

end
end

end

1997). The difference is that the sets defined in ICF are not of fixed size, but
bounded by the first instance belonging to another class. This difference is
considered crucial by the authors of ICF.

We have chosen ICF and Drop3 as representative of the methods we can
consider “classical”, as they have been around for quite a long time and are
widely used. In the experimental section we compare the performance of these
two methods when they are applied to the whole training set, we will call this
application just ICF and Drop3, with the application of both methods using
our recursive approach.

As an alternative to these “classical” methods, evolutionary computation al-
gorithms have been applied for instance selection, considering this task to be
a search problem. Evolutionary computation (EC) (Holland, 1975) (Goldberg,
1989) (Michalewicz, 1994) is a set of global optimization techniques that have
been widely used in the last few years for almost every problem within the
field of Artificial Intelligence. In evolutionary computation a population (set)
of individuals (solutions to the problem faced) are codified following a code
similar to the genetic code of plants and animals. This population of solutions
is evolved (modified) over a certain number of generations (iterations) until
the defined stop criterion is fulfilled. Each individual is assigned a real value
that measures its ability to solve the problem, which is called its fitness.

50

4.3 Recursive method

Algorithm 4: Iterative Case Filtering (ICF) algorithm.

Data : A training set T = {(x1, y1), . . . , (xn, yn)}.
Result : The reduced selector S.

1 S = T
2 Noise filtering: Remove any instance in S missclassified by its k neighbors
repeat

forall x ∈ S do
3 Compute reachable(x)
4 Compute coverage(x)

end
5 progress = false

forall x ∈ S do
if |reachable(x)| > |coverage(x)| then

6 Flag x for removal
7 progress = true

end
end
forall x ∈ S do

if x flagged for removal then
8 S = S − {x}

end
end

until not progress

In each iteration new solutions are obtained combining two or more individuals
(crossover operator) or randomly modifying one individual (mutation opera-
tor). After applying these two operators a subset of individuals is selected
to survive to the next generation, either by sampling the current individu-
als with a probability proportional to their fitness, or by selecting the best
ones (elitism). The repeated processes of crossover, mutation and selection
are able to obtain increasingly better solutions for many problems of Artificial
Intelligence.

The application of evolutionary computation to instance selection is easy and
straightforward. Each individual is a binary vector that codes a certain sam-
ple of the training set. The evaluation is usually made considering both data
reduction and classification accuracy. Examples of applications of genetic al-
gorithms to instance selection can be found in Kuncheva (1995), Ishibuchi and
Nakashima (2000) and Reeves and Bush (2001).

Brighton and Mellish (2002) argued that the structure of the classes formed by
the instances can be very different, thus, an instance selection algorithm can
have a good performance in one problem and be very inefficient in another.
They state that the instance selection algorithm must gain some insight into

51

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

the structure of the classes to perform an efficient instance selection. However,
this insight is not usually available or very difficult to acquire, especially in
real-world problems with many variables and complex boundaries between the
classes. In such a situation, an approach based on EC may be of help. The
approaches based on EC do not assume any special form of the space, the
classes or the boundaries between the classes, they are only guided by the
ability of each solution to solve the task. In this way, the algorithm learns the
relevant instances from the data without imposing any constraint in the form
of classes or boundaries between them.

Thus, one of the most interesting advantages of the application of evolution-
ary computation to instance selection is that evolutionary approaches do not
depend on specific classifiers, and can be used with any instance based classi-
fier. This is in contrast with most standard instance selection algorithms that
are specifically designed for k-NN classifiers. For instance, Reeves and Bush
(2001) used a genetic algorithm to select instances for RBF neural networks.

Cano et al. (2003) performed a comprehensive comparison of the performance
of different evolutionary algorithms for instance selection. They compared a
generational genetic algorithm (Goldberg, 1989), a steady-state genetic al-
gorithm (Whitley, 1989), a CHC genetic algorithm (Eshelman, 1990), and a
population based incremental learning algorithm (Baluja, 1994). They found
that evolutionary based methods were able to outperform classical algorithms
in both classification accuracy and data reduction. Among the evolutionary
algorithms, CHC was able to achieve the best overall performance.

Nevertheless, the major problem that has to be addressed when applying ge-
netic algorithms to instance selection is the scaling of the algorithm. As the
number of instances grows, the time needed for the genetic algorithm to reach
a good solution increases exponentially, making it totally useless for large
datasets. As we are mainly concerned with this problem, we have used as
third instance selection method a genetic algorithm using CHC methodology.
The execution time of CHC is clearly longer than the time spent by ICF
and Drop3, so it gives us a good benchmark to test our methodology on an
algorithm that has an important scalability problem.

4.3.5 Experimental results

The same parameters were used for the standard version of every algorithm
and its application within our methodology. For Drop3 and ICF we used k = 3
neighbors, and for CHC we used k = 1. For our model we used a subset
size of 100 instances. Cross-validation was used for stopping the selection
using a random 10% of the training set as validation set. For CHC we used
a population of 100 individuals that were evolved over 100 generations. The

52

4.3 Recursive method

evaluation of the individuals was made considering two criteria: reduction of
storage, ρ, and classification error, ε. The fitness of individual j, Fj, is given
by:

Fj = w(1− ε) + (1− w)ρ, (6)

where 0 ≤ w ≤ 1. The weight w is needed to avoid a negative effect that
may occur due to the asymmetry of the two values of the fitness function: the
reduction value can be made arbitrarily high, up to the maximum value 1, by
just removing more instances. In our experiments w = 2/3. The fitness value
is the usual one in applying genetic algorithms to instance selection (Cano
et al., 2003).

Table 2
Testing error, storage requirements and execution time (in seconds) for standard
Drop3 algorithm and our approach. Mean and standard deviation values are shown.

Dataset Drop3 Recursive Drop3

Storage Error Time Storage Error Time

Mean SD Mean SD Mean SD Mean SD

abalone 0.3069 0.0027 0.7782 0.0979 1.8 0.0730 0.0326 0.7767 0.0804 0.6

adult 0.1248 0.0011 0.1714 0.0051 22853.9 0.0570 0.0023 0.1977 0.0158 112.3

car 0.2668 0.0135 0.2378 0.0955 1.9 0.1665 0.0232 0.2680 0.0886 0.2

gene 0.3877 0.0067 0.2776 0.0230 35.6 0.0989 0.0231 0.3186 0.0295 1.2

german 0.3073 0.0080 0.2870 0.0743 0.9 0.0500 0.0228 0.3170 0.0508 0.3

hypo 0.0514 0.0041 0.0610 0.0111 11.8 0.0113 0.0033 0.1180 0.0812 0.9

isolet 0.2852 0.0025 0.1770 0.0403 208.9 0.1956 0.0054 0.2233 0.0494 2.3

krkopt 0.4431 0.0032 0.4803 0.0098 1533.0 0.1950 0.0036 0.5178 0.0091 13.1

kr vs. kp 0.2229 0.0069 0.1016 0.0171 10.1 0.1243 0.0076 0.1693 0.0159 0.7

letter 0.1744 0.0008 0.1037 0.0053 1849.8 0.3675 0.0128 0.1161 0.0116 17.4

magic 0.1789 0.0083 0.1978 0.1333 199.8 0.0599 0.0248 0.2533 0.0807 4.8

mfeat-fac 0.1208 0.0052 0.0600 0.0175 39.3 0.1499 0.0229 0.0630 0.0123 2.3

mfeat-fou 0.2473 0.0077 0.2320 0.0423 5.6 0.1347 0.0282 0.2815 0.0250 0.9

mfeat-kar 0.1655 0.0064 0.0835 0.0292 6.5 0.1594 0.0258 0.0930 0.0310 1.0

mfeat-mor 0.2062 0.0043 0.2885 0.0315 1.4 0.1138 0.0368 0.3435 0.0303 0.3

mfeat-pix 0.1095 0.0031 0.0480 0.0155 76.5 0.1442 0.0260 0.0560 0.0171 2.6

mfeat-zer 0.2231 0.0041 0.2375 0.0236 4.0 0.1467 0.0301 0.2390 0.0231 0.8

nursery 0.2934 0.0049 0.3327 0.0454 337.4 0.1274 0.0191 0.2612 0.0660 3.0

optdigits 0.0911 0.0027 0.0420 0.0069 161.0 0.1825 0.2453 0.0453 0.2865 3.0

page-bl 0.0430 0.0020 0.0437 0.0078 15.7 0.0170 0.0035 0.0859 0.0247 1.0

pendigits 0.0451 0.0017 0.0168 0.0028 175.0 0.1737 0.0073 0.0135 0.0044 3.2

phoneme 0.1852 0.0020 0.1383 0.0147 11.5 0.0675 0.0089 0.2645 0.0266 0.8

satimage 0.1366 0.0034 0.1101 0.0130 57.7 0.0828 0.0035 0.1608 0.0162 1.8

segment 0.1219 0.0076 0.0784 0.0204 4.1 0.1261 0.0206 0.1087 0.0314 0.6

shuttle 0.0028 0.0008 0.0016 0.0006 7543.4 0.0197 0.0047 0.0063 0.0017 20.9

sick 0.0625 0.0045 0.0509 0.0127 14.8 0.0216 0.0091 0.1056 0.0657 1.0

texture 0.0878 0.0018 0.0329 0.0062 97.0 0.2411 0.0073 0.0320 0.0075 2.2

waveform 0.2961 0.0043 0.2276 0.0286 28.8 0.0951 0.0287 0.2352 0.0223 1.5

yeast 0.3193 0.0087 0.4500 0.0253 0.6 0.0777 0.0243 0.4642 0.0274 0.3

zip 0.1040 0.0022 0.0497 0.0062 601.7 0.1824 0.0064 0.0532 0.0074 4.9

Table 2 shows the results using Drop3 as base algorithm. These results are
plotted in Figure 5. The testing error of our approach is slightly worse than
the error obtained using the standard algorithm. The results of storage re-

53

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

Testing error

Storage requirements

Execution time (logarithmic scale)

Fig. 5. Testing error, storage requirements and execution time (in seconds) for stan-
dard Drop3 algorithm and our approach.

quirements are favorable to our method which is able to significantly improve
the results of standard Drop3. In fact, for abalone, car, gene, german, iso-
let, krvskp, krkopt, magic, nursery, phoneme, waveform and yeast datasets,
our method is even able to show a clear improvement over standard Drop3.
However, it is in execution time that our algorithm shows its better face. The
reduction in the time spent is very marked, with an extreme case in shuttle
dataset where our algorithm took less than 0.3% of the time needed by stan-
dard Drop3. As a summary, we can say that for Drop3 our procedure is able
to improve the storage reduction of Drop3, with a worse testing error but with
a large reduction of execution time. Wilcoxon test finds significant differences
in terms of testing error (p-value of 0.0001) in favor of standard Drop3, and
in terms of storage (p-value of 0.0104) in favor of our approach. Regarding
standard deviation, our method has higher values, but still within moderate
limits.

54

4.3 Recursive method

Table 3 shows the results using ICF as base algorithm. These results are plot-
ted in Figure 6. Our method is able to improve the testing error of standard
ICF, with a better average error in 18 of the 30 datasets. However, the differ-
ences are not statistically significant (p-value of 0.8774). On the other hand,
storage requirements are clearly better in our approach. In this way, Wilcoxon
test finds significant differences between both algorithms at a confidence level
of 95% (p-value of 0.0148). The differences in execution time are, as in the
previous case, clearly marked as is shown in Figure 6. As a summary, we can
say that for ICF our procedure is able to match the testing error of ICF,
with better average performance in terms of storage reduction, and with a
large reduction of execution time. As was the case for Drop3, there are several
datasets, namely abalone, adult, car, gene, german, krkopt, krvskp, mfeat-mor,
nursery, waveform and yeast, for which the increment in storage reduction is
clearly marked. In terms of standard deviation, for storage reduction our algo-
rithm achieves worse results, although the differences are small, and for testing
error the deviations of both methods are similar.

Table 3
Testing error, storage requirements and execution time (in seconds) for standard
ICF algorithm and our approach. Mean and standard deviation values are shown.

Dataset ICF Recursive ICF

Storage Error Time Storage Error Time

Mean SD Mean SD Mean SD Mean SD

abalone 0.2510 0.0047 0.8082 0.0865 1.7 0.0461 0.0187 0.7990 0.0680 0.8

adult 0.1082 0.0009 0.2194 0.0032 9170.8 0.0275 0.0119 0.2125 0.0420 85.0

car 0.3813 0.0557 0.2709 0.1407 1.1 0.1787 0.0239 0.3180 0.0891 1.0

gene 0.2508 0.0080 0.3527 0.0146 26.1 0.0634 0.0048 0.4641 0.0273 2.0

german 0.1485 0.0093 0.3260 0.0544 0.4 0.0116 0.0044 0.3943 0.0869 1.4

hypo 0.0398 0.0029 0.1156 0.0356 3.7 0.0129 0.0714 0.0696 0.0100 0.9

isolet 0.1713 0.0028 0.2648 0.0541 103.1 0.0949 0.0040 0.2751 0.0578 2.3

krkopt 0.5290 0.0073 0.4032 0.0068 1109.8 0.0786 0.0027 0.6210 0.0096 7.4

kr vs. kp 0.2707 0.0080 0.1267 0.0330 5.3 0.0463 0.0045 0.2132 0.0125 1.0

letter 0.1362 0.0025 0.2018 0.0154 760.3 0.1650 0.0062 0.1947 0.0084 7.3

magic 0.1160 0.0073 0.2395 0.1499 138 0.0214 0.0029 0.2581 0.1290 2.9

mfeat-fac 0.0896 0.0052 0.0905 0.0171 17.5 0.1296 0.0125 0.0828 0.0176 3.2

mfeat-fou 0.1395 0.0055 0.3280 0.0256 2.4 0.0681 0.0078 0.4194 0.0340 1.6

mfeat-kar 0.1035 0.0056 0.1725 0.0334 2.5 0.1154 0.0084 0.1580 0.0328 1.2

mfeat-mor 0.2008 0.0088 0.3685 0.0563 0.6 0.0964 0.0201 0.3229 0.0384 0.7

mfeat-pix 0.0864 0.0047 0.1000 0.0218 27 0.1172 0.0089 0.0669 0.0160 2.9

mfeat-zer 0.1503 0.0062 0.2715 0.0193 1.7 0.0793 0.0074 0.2970 0.0223 1.3

nursery 0.8752 0.0095 0.2414 0.1407 287.2 0.2932 0.0446 0.2291 0.1139 3.7

optdigits 0.0606 0.0023 0.1103 0.0258 82.8 0.1104 0.0061 0.0626 0.0083 3.7

page-bl 0.0307 0.0027 0.2185 0.0128 5.6 0.0557 0.0482 0.0569 0.0133 1.3

pendigits 0.0348 0.0018 0.0651 0.0094 70.6 0.2071 0.0113 0.0251 0.0097 2.7

phoneme 0.1392 0.0031 0.1941 0.0192 4.6 0.0391 0.0102 0.2774 0.0199 0.7

satimage 0.0713 0.0023 0.1677 0.0259 25.4 0.0699 0.0039 0.1622 0.0216 2.2

segment 0.1077 0.0060 0.1394 0.0285 1.6 0.1118 0.0091 0.1361 0.0258 0.7

shuttle 0.0229 0.0026 0.0473 0.0129 2640 0.1902 0.0814 0.0034 0.0007 102.1

sick 0.0452 0.0045 0.0912 0.0190 4.7 0.0103 0.1325 0.1244 0.0101 1.1

texture 0.0725 0.0030 0.0973 0.0149 46.8 0.1695 0.0100 0.0578 0.0124 2.0

waveform 0.1211 0.0050 0.2840 0.0231 15 0.0240 0.0112 0.2818 0.0264 1.6

yeast 0.2137 0.0079 0.5095 0.0358 0.3 0.0259 0.0102 0.5453 0.0771 0.1

zip 0.0497 0.0019 0.2549 0.0182 219.8 0.0923 0.0067 0.1793 0.0224 4.5

55

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

Testing error

Storage requirements

Execution time (logarithmic scale)

Fig. 6. Testing error, storage requirements and execution time (in seconds) for stan-
dard ICF algorithm and our approach.

Table 4 shows the results using CHC genetic algorithm as base method. These
results are plotted in Figure 7. A first interesting result is the problem of scal-
ability of CHC algorithm, which is more accused for this algorithm than for
Drop3 and ICF. In other works (Cano et al., 2003) (Garćıa-Pedrajas et al.,
2010), CHC algorithm is compared with Drop3 and ICF in small to medium
problems. For those problems, the performance of CHC was better than the
performance of Drop3 and ICF. However, as the datasets are larger, the scal-
ability problem of CHC manifests itself. In our set of problems, CHC clearly
performs worse than Drop3 and ICF and takes considerably more execution
time. We must take into account that for CHC we need a bit in the chromo-
some for each instance in the dataset. This means that for large problems,
such as adult, krkopt, letter, magic or shuttle, the chromosome has more than
10000 bits, making the convergence of the algorithm problematic.

56

4.3 Recursive method

Regarding the comparison with our method, the behavior of CHC is similar to
the behavior of Drop3. Our method is able to significantly improve the storage
reduction (p-value of the Wilcoxon test of 0.0000), although the testing error
is worse (p-value of 0.0001). The reduction in execution time is dramatic, with
our method usually running in about 1% of the time needed by the standard
method. As a summary, we can say that for CHC our procedure is able to
improve the storage reduction of CHC, with a worse testing error, but with
a very large reduction in execution time. The storage reduction is specially
marked. Our method performs better, and with marked differences, in all 30
datasets. The table also shows that our method has a slightly worse deviation
than standard CHC.

Table 4
Testing error, storage requirements and execution time (in seconds) for standard
CHC algorithm and our approach. Mean and standard deviation values are shown.
Dataset CHC Recursive CHC

Storage Error Time Storage Error Time

Mean SD Mean SD Mean SD Mean SD

abalone 0.3818 0.0209 0.7998 0.0584 7722.2 0.1718 0.0511 0.8202 0.0387 263.9

adult 0.1988 0.0030 0.2257 0.0060 91096.0 0.1393 0.0025 0.2104 0.0057 1201.0

car 0.4192 0.0181 0.2639 0.0598 5483.6 0.1225 0.0354 0.2663 0.0690 45.1

gene 0.3004 0.0175 0.2968 0.0288 7236.6 0.1364 0.0483 0.3640 0.0324 101.2

german 0.3483 0.0424 0.3290 0.0614 440.1 0.0976 0.2775 0.3430 0.2074 32.2

hypo 0.2613 0.0187 0.0775 0.0100 7183.9 0.0997 0.0485 0.0923 0.0174 84.5

isolet 0.2993 0.0186 0.2026 0.0433 10885.4 0.1824 0.0022 0.2252 0.0401 409.7

krkopt 0.5237 0.0056 0.4711 0.0066 137015.0 0.1701 0.0032 0.5045 0.0053 6258.7

kr vs. kp 0.2712 0.0274 0.1276 0.0195 7107.5 0.1393 0.0085 0.1687 0.0178 79.6

letter 0.2952 0.0243 0.0905 0.0168 51024.0 0.1778 0.0036 0.1106 0.0059 1161.2

magic 0.2952 0.0591 0.1225 0.0275 29327.0 0.1041 0.0556 0.3109 0.1253 644.3

mfeat-fac 0.3933 0.0357 0.0455 0.0136 6518.4 0.1052 0.0443 0.0735 0.0239 57.7

mfeat-fou 0.3384 0.0238 0.2280 0.0361 7026.9 0.1552 0.0294 0.2810 0.0296 80.1

mfeat-kar 0.3838 0.0448 0.0650 0.0170 7010.8 0.1500 0.0092 0.0945 0.0151 66.5

mfeat-mor 0.3573 0.0480 0.3265 0.0364 7054.2 0.1296 0.0339 0.3410 0.0335 66.6

mfeat-pix 0.3759 0.0037 0.0440 0.1058 6441.9 0.1259 0.0347 0.0645 0.0121 62.9

mfeat-zer 0.3439 0.0080 0.2205 0.0045 7076.3 0.1422 0.0276 0.2515 0.0424 73.0

nursery 0.2941 0.0147 0.2427 0.0073 22397.3 0.1183 0.0417 0.2752 0.0815 326.0

optdigits 0.2755 0.0136 0.0404 0.0048 7846.4 0.1395 0.0030 0.0504 0.0090 170.7

page-bl 0.2786 0.0126 0.0408 0.0113 7662.8 0.1344 0.0250 0.0558 0.0116 126.1

pendigits 0.2903 0.0033 0.0121 0.0128 11636.6 0.1357 0.0029 0.0170 0.0073 288.6

phoneme 0.2846 0.0633 0.1457 0.0198 7772.9 0.1395 0.0032 0.1726 0.0095 173.0

satimage 0.2825 0.0102 0.1157 0.0235 8491.8 0.1392 0.0029 0.1263 0.0137 127.3

segment 0.3030 0.0293 0.0649 0.0115 7062.4 0.1400 0.0087 0.1078 0.0264 71.5

shuttle 0.2638 0.0169 0.0055 0.0062 77089.0 0.1428 0.0025 0.0016 0.0006 1137.3

sick 0.2578 0.0187 0.0514 0.0113 7179.8 0.1115 0.0336 0.0597 0.0134 80.1

texture 0.2825 0.0260 0.0249 0.0243 7876.1 0.1425 0.0074 0.0415 0.0097 148.8

waveform 0.2911 0.0035 0.2878 0.0062 7926.8 0.0954 0.0532 0.3118 0.0307 206.6

yeast 0.3711 0.0087 0.5014 0.0253 2981.1 0.1363 0.0584 0.5439 0.0465 50.3

zip 0.2871 0.0022 0.0510 0.0062 9748.2 0.1539 0.0052 0.0574 0.0065 371.7

The behavior of the standard algorithms and our approach in terms of execu-
tion time in function of the number of instances is illustrated in Figure 8. We
plot the time spent by the algorithms as a function of the number of instances.
The figure shows that standard methods have an execution time that is ap-
proximately quadratic with respect to the number of instances, for Drop3 and

57

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

Testing error

Storage requirements

Execution time (logarithmic scale)

Fig. 7. Testing error, storage requirements and execution time (in seconds) for stan-
dard CHC genetic algorithm algorithm and our approach.

ICF, and even higher for CHC. So, for large problems the necessary time is
substantial. On the other hand, our proposal is approximately linear, allowing
the use of the methods even with hundreds of thousands of instances, as will
be shown in Section 4.3.5.3.

4.3.5.1 Study of subset size effect We have stated that the size of the sub-
set is not relevant provided it is kept small, that is, of about a few hundreds
of instances. However, this statement must be corroborated. We have per-
formed experiments using Drop3 and ICF and subsets sizes of 250, 500 and
1000 instances. Figure 9 shows the average values of testing error, storage
requirements and execution time with the four sizes. The trend is similar for
both algorithms. As the size grows, the algorithm is more efficient in removing
instances, achieving larger reductions to the storage. However, that reduction

58

4.3 Recursive method

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Ti
m

e
(s

)

Instances

Drop3
Stepwise Drop3

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Ti
m

e
(s

)

Instances

ICF
Stepwise ICF

Drop3 ICF

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Ti
m

e
(s

)

Instances

CHC
Stepwise CHC

CHC

Fig. 8. Execution time (in seconds) for standard methods and our approach in
function of the number of instances.

 0.05

 0.1

 0.15

 0.2

 0.25

 100 200 300 400 500 600 700 800 900 1000
 5

 10

 15

 20

 25

E
rr

or
/s

to
ra

ge

Ti
m

e
(s

)

Subset size

Storage
Error
Time

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 100 200 300 400 500 600 700 800 900 1000
 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

E
rr

or
/s

to
ra

ge

Ti
m

e
(s

)

Subset size

Storage
Error
Time

Drop3 ICF

Fig. 9. Average testing error, storage requirements and execution time (in seconds)
as a function of subset size.

comes at the cost of deteriorating testing error, which is larger. Nevertheless,
the increment in the reduction is larger than the increment in the error, so if
we are mainly interested in storage reduction we can use a larger subset size,
trading testing error for reduction.

Regarding execution time, the effect is clear. As the subset size grows the
execution time grows. As the size is larger, the O(N2) of the algorithms begins

59

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

to be relevant, and the processing time of each subset is more important than
the reduction of the number of subsets to process. However, even for 1000
instances as subset size the reduction in execution time is still dramatic when
compared to the standard algorithm.

4.3.5.2 Improving testing error In previous sections, we have shown that
our methodology is able to improve the performance of standard instance
selection algorithms in terms of storage requirements with a very significant
reduction in execution time. However, for Drop3 and CHC algorithms, there is
also a worsening in terms of testing error. We have developed two mechanisms
for improving testing error. These mechanisms try to ameliorate the effect
that the execution of the algorithm over disjoint subsets may have.

The first method is very simple. Before each step, we add a certain percentage
of the instances removed in the previous step to the pool of selected instances.
In our method this percentage is of 10%. With this method we try to avoid
the damaging effect of removing too many instances.

The second method is more elaborated. The main source of deteriorated test-
ing error in our method is the limited view that each execution of the algorithm
has, due to the fact that it is applied to a small subset of the whole dataset.
In this way, useful instances may be removed if they are not relevant in the
subset they belongs to in a step of the algorithm. To avoid this effect we use a
“second chance” approach. We maintain for the whole dataset a list of marked
instances. When the instance is selected for removing by the selection algo-
rithm, it is removed only if it is marked in the list. Otherwise, the instance
is marked but not removed. If the instance is marked, and not selected to
be removed in the last step of the algorithm, it is unmarked. In this way, an
instance is removed only if two consecutive steps of the method select it for
removing. The chances of removing useful instances are decreased, as they
must be selected for removal in two consecutive steps of the algorithms. The
process, combining both methods, is shown in Algorithm 5.

In the first step, due to the large number of initial instances, the possibility of
removing useful instances is small, so initially all the instances are marked. It
means that all instances marked for removal in the first step of the algorithm
are actually removed. Table 5 shows the results using both mechanisms, ran-
dom addition of removed instances and second chance. These mechanisms are
specially efficient for Drop3 and ICF. In this set of experiments our method
is as good as Drop3 in terms of testing error and significantly better than
ICF (p-values for the Wilcoxon test of 0.1650 and 0.0387 respectively). How-
ever, the cost is a worse storage reduction. For CHC, the techniques have a
more limited effect. The testing error of our method is improved, but it is still
significantly worse than the standard CHC algorithm.

60

4.3 Recursive method

Algorithm 5: Recursive instance selection algorithm with second chance and
random addition of instances
Data : A training set T = {(x1, y1), . . . , (xn, yn)}, percentage of random

addition p, and subset size s.

Result : The reduced selector S ⊂ T .
1 S = T
2 Partitionate instances into disjoint subsets ti :

⋃
i ti = S of size s

3 Mark all instances
repeat

4 Add random p% of unselected instances to the set of selected instances
foreach subset ti ⊂ S do

5 Apply instance selection algorithm in ti to obtain selected subset si ⊂ ti
forall Instances x selected for removing in ti do

if x is marked then
6 Remove x from ti

else
7 Mark x

end
end
forall Instances x NOT selected for removing in ti do

8 Unmark x
end

9 Remove from S instances removed from ti
end

10 Fusion subsets si to obtain new subsets tj of size s

until until stop criterion
11 Return S

The experiments show that a better testing error can be achieved using second
chance and a percentage of random addition of instances. It is up to the
researcher to decide whether it is better for his/her application to focus either
on testing error or storage reduction. Furthermore, other techniques may be
developed, such as limiting the reduction performed by the application of
the instance selection algorithm to a subset. 3 Table 6 shows the standard
deviation of this method using the three algorithms of instance selection. In
the table we can see that not only the testing error is improved, but also
the deviation of the experiments is smaller. In fact, using second chance and
random addition of instances, the deviation is very close to the results using
the standard algorithms.

3 In fact, this procedure has been used with results similar to the presented second
chance method.

61

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

Table 5
Testing error, storage requirements and execution time (in seconds) for the recursive
approach using both mechanisms, random addition of removed instances and second
chance, of improving testing error.

Dataset Recursive Drop3 Recursive ICF Recursive CHC

Stor. Error t(s) Stor. Error t(s) Stor. Error t(s)

abalone 0.2553 0.7935 1.0 0.1355 0.7868 0.4 0.3196 0.8086 237.4

adult 0.1769 0.1803 335.3 0.0547 0.2020 223.1 0.2553 0.2013 1461.2

car 0.2269 0.2360 0.4 0.1900 0.2936 0.2 0.2501 0.2314 40.6

gene 0.2438 0.2855 2.5 0.1115 0.4205 2.9 0.2770 0.3398 91.1

german 0.2641 0.3060 0.3 0.0277 0.3270 0.3 0.2635 0.3630 31.4

hypo 0.0857 0.0682 0.9 0.0308 0.0743 1.0 0.2499 0.0836 74.7

isolet 0.4329 0.1743 4.4 0.1443 0.2497 5.7 0.3080 0.1982 383.6

krkopt 0.2943 0.4810 30.4 0.1298 0.5737 19.7 0.2906 0.4698 6494.1

krvs.kp 0.2562 0.1282 1.0 0.0794 0.1806 0.8 0.2568 0.1367 83.4

letter 0.4919 0.0925 21.0 0.2429 0.1526 16.0 0.2962 0.0879 1176.2

magic 0.1294 0.2309 7.1 0.0413 0.2338 5.4 0.2529 0.2466 593.1

mfeat-fac 0.2496 0.0465 2.7 0.2025 0.0620 2.9 0.2454 0.0560 52.9

mfeat-fou 0.3137 0.2330 1.1 0.0986 0.3805 0.7 0.2776 0.2420 75.1

mfeat-kar 0.3055 0.0700 1.1 0.1782 0.1220 0.8 0.2628 0.0755 64.4

mfeat-mor 0.2478 0.3025 0.3 0.1821 0.3030 0.1 0.2601 0.3185 61.5

mfeat-pix 0.2754 0.0385 3.1 0.1833 0.0565 3.4 0.2563 0.0445 59.0

mfeat-zer 0.2735 0.2150 0.7 0.1222 0.2500 0.6 0.2637 0.2290 68.1

nursery 0.1684 0.2515 4.0 0.2763 0.2202 5.5 0.2511 0.2394 369.3

optdigits 0.2979 0.0361 3.5 0.1727 0.0571 3.7 0.2414 0.0468 185.3

page-bl 0.0504 0.0634 1.0 0.1257 0.0559 0.4 0.2529 0.0479 132.1

pendigits 0.2137 0.0117 4.3 0.2753 0.0162 4.1 0.2473 0.0133 293.2

phoneme 0.1077 0.2143 0.9 0.0580 0.2361 0.5 0.2507 0.1546 180.4

satimage 0.1304 0.1387 2.4 0.1348 0.1460 2.7 0.2475 0.1162 143.8

segment 0.2037 0.0853 0.5 0.1623 0.1117 0.5 0.2526 0.0732 70.5

shuttle 0.0333 0.0045 81.4 0.3029 0.0016 56.3 0.2613 0.0014 1057.4

sick 0.0828 0.0533 0.6 0.0272 0.0759 1.0 0.2484 0.0520 72.1

texture 0.2373 0.0307 2.6 0.2321 0.0420 3.4 0.2455 0.0295 150.6

wavef 0.2958 0.2458 2.2 0.0578 0.2642 2.1 0.2583 0.2800 200.2

yeast 0.2385 0.4676 0.2 0.0841 0.4899 0.1 0.2949 0.5372 42.5

zip 0.3225 0.0389 8.6 0.1354 0.1191 6.6 0.2620 0.0450 359.1

4.3.5.3 Huge problems In previous experiments we have shown the perfor-
mance of our methodology in problems that can be considered of medium to
large size. In this section, we considered huge problems, from several hundreds
of thousands of instances to more than a million. Table 13 shows the problems
that are considered. These datasets will show whether our methodology allows
scaling up standard algorithms to huge problems. We have tested our method
using the three instance selection algorithms of the previous sections. As in
the previous sections, for estimating the storage reduction and generalization
error we used a 10-fold cross-validation method. The size of the datasets pre-

62

4.3 Recursive method

Table 6
Standard deviation of testing error and storage requirements for the recursive ap-
proach using both mechanisms, random addition of removed instances and second
chance, of improving testing error.

Dataset Recursive Drop3 Recursive ICF Recursive CHC

Storage Error Storage Error Storage Error

abalone 0.0124 0.0811 0.0167 0.0848 0.0075 0.0583

adult 0.0047 0.0057 0.0096 0.0120 0.0030 0.0061

car 0.0296 0.0631 0.0297 0.1041 0.0122 0.0659

gene 0.0109 0.0275 0.0062 0.0331 0.0106 0.0187

german 0.0137 0.0709 0.0084 0.0603 0.0177 0.0585

hypo 0.0042 0.0103 0.0073 0.0152 0.0100 0.0139

isolet 0.0063 0.0442 0.0038 0.0558 0.0055 0.0416

krkopt 0.0079 0.0077 0.0033 0.0076 0.0025 0.0062

krvs.kp 0.0072 0.0181 0.0083 0.0249 0.0085 0.0150

letter 0.0051 0.0045 0.0061 0.0077 0.0035 0.0072

magic 0.0098 0.0631 0.0043 0.1317 0.0031 0.1147

mfeat-fac 0.0050 0.0105 0.0060 0.0119 0.0163 0.0097

mfeat-fou 0.0107 0.0222 0.0102 0.0342 0.0097 0.0309

mfeat-kar 0.0063 0.0206 0.0123 0.0200 0.0103 0.0192

mfeat-mor 0.0180 0.0265 0.0141 0.0260 0.0077 0.0292

mfeat-pix 0.0070 0.0134 0.0141 0.0092 0.0110 0.0165

mfeat-zer 0.0055 0.0253 0.0075 0.0160 0.0105 0.0314

nursery 0.0198 0.0842 0.0383 0.0915 0.0054 0.1097

optdigits 0.0223 0.0065 0.0059 0.0121 0.0042 0.0115

page-bl 0.0020 0.0112 0.0199 0.0091 0.0106 0.0073

pendigits 0.0040 0.0049 0.0129 0.0043 0.0058 0.0038

phoneme 0.0076 0.0302 0.0075 0.0221 0.0094 0.0117

satimage 0.0034 0.0185 0.0065 0.0154 0.0078 0.0161

segment 0.0075 0.0201 0.0150 0.0137 0.0126 0.0140

shuttle 0.0010 0.0014 0.0127 0.0006 0.0019 0.0006

sick 0.0081 0.0069 0.0120 0.0265 0.0069 0.0101

texture 0.0194 0.0066 0.0069 0.0065 0.0091 0.0060

wavef 0.0082 0.0180 0.0034 0.0222 0.0094 0.0157

yeast 0.0118 0.0339 0.0064 0.0421 0.0093 0.0257

zip 0.0052 0.0052 0.0093 0.0117 0.0071 0.0052

vents the execution of the standard algorithms in a reasonable time, so the
validity of our approach will be tested against 10-fold cross-validation 1-NN
testing error, which is shown in the table, together with the time needed to
obtain that error.

In the previous experiments the number of steps of the algorithm was obtained
by means of a cross-validation method which was described in Section 4.4 in
the paragraph devoted to the stop criterion. However, due to the size of the
datasets, and to make the algorithm faster, no cross-validation is used for

63

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

selecting the number of steps. Instead, we always perform two steps of the
algorithm. This number of two steps was chosen as it was the most commonly
chosen by the stop criterion in the previous experiments using medium to large
datasets.

Table 7
Summary of datasets. The features of each dataset can be C(continuous), B(binary)
or N(nominal). The Variables column shows the number of variables, as it depends
not only on the number of features but also on their type.

Data set Cases Features Classes Variables 1-NN

C B N Error Time (s)

census 299285 7 - 30 2 409 0.0743 8723.2

covtype 581012 54 - - 7 54 0.3024 16980.3

kddcup99 494021 33 4 3 23 118 0.0006 12649.4

kddcup991M 1000000 33 4 3 21 119 0.0002 37093.5

poker 1025010 5 - 5 10 25 0.4975 35460.7

Table 8
Testing error, storage requirements and execution time (in seconds) for our approach
for huge problems.

Dataset Storage Error Time

Recursive Drop3

census 0.1205 0.1101 510.7

covtype 0.1381 0.3969 213.6

kddcup99 0.0499 0.0179 534.6

kddcup991M 0.0337 0.0087 1249.0

poker 0.0941 0.4977 305.5

Recursive ICF

census 0.6047 0.0621 188.5

covtype 0.1179 0.4047 134.5

kddcup99 0.2870 0.0181 222.0

kddcup991M 0.2918 0.0010 746.0

poker 0.0474 0.5114 280.0

Recursive CHC

census 0.1410 0.0814 4200.7

covtype 0.1416 0.3323 9682.3

kddcup99 0.1427 0.0009 5308.0

kddcup991M 0.1436 0.0004 9847.0

poker 0.1671 0.5358 26468.0

Results are shown in Table 8. The first noticeable fact is the scalability of
our method. The execution times are very low even for the two datasets that
have more than a million instances. Even for CHC the time spent is within

64

4.4 Democratic instance selection method

moderate limits. If we compare these values with the estimation we can get
from Figure 8 of the time Drop3, ICF or CHC would need, the advantage of
our proposal is clearly stated.

Regarding the performance, Drop3 is specially efficient in reducing storage. It
achieves a large reduction for the five datasets, without damaging the perfor-
mance very significantly. In fact, the increment of the testing error is similar to
the increment experimented by the original Drop3 algorithm when applied to
the 30 datasets of the previous experiments. In terms of testing error, CHC is
the best one, although the reduction it achieves is worse than Drop3. ICF per-
forms worse than CHC and Drop3, both in terms of testing error and storage
reduction. It is, however, the fastest one.

4.4 Democratic instance selection method

In this section we propose a methodology that uses this basic idea of applying
the instance selection algorithm to subsets of the original dataset in a way that
allows a performance close to the application of the algorithm to the whole
dataset, while retaining the advantages of a smaller subset. The underlying
idea is based upon the following premises:

(1) A very promising way of scaling up instance selection algorithms is using
smaller subsets. A simple way of doing that is partitioning the dataset
into disjoint subsets and applying the instance selection algorithm to each
subset separately.

(2) The above partitioning solution was previously applied to the recursive
method (please refer to Section 4.3.2 to a detailed description of the parti-
tioning step performed in the recursive method). As previously explained,
this partition method did not perform well, as each subset is only a par-
tial view of the original dataset. In this way, important instances may be
removed and superfluous instances may be kept. In the same sense as we
talk of “weak learners” in a classifier ensemble construction framework,
we can consider an instance selection algorithm applied to a subset of
the whole dataset as a “weak instance selection algorithm”.Additionally,
our method is straightforwardly paralellizable without significant modi-
fications.

(3) Following the philosophy of classifier ensembles we can carry out several
rounds of weak instance selection algorithms and combine them using
a voting scheme. Therefore, our approach is called democratic instance
selection, and can be considered a form of extending classifier ensemble
philosophy to instance selection.

65

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

The proposed scaling algorithm, called demoIS., consists of dividing the orig-
inal dataset into several disjoint subsets of approximately the same size that
cover all the dataset. Then, the instance selection algorithm is applied to each
subset separately. The instances that are selected by the algorithm to be re-
moved receive a vote. Then, a new partition is performed and another round
of votes is carried out. After the predefined number of rounds is made, the
instances which have received a number of votes above a certain threshold are
removed. An outline of the method is shown in Algorithm 6. Each round can
be considered to be similar to a classifier in an ensemble, and the combination
process by voting is similar to the combination of base learners in bagging or
boosting (Schapire et al., 1998). Figure 10 shows an example of the algorithm
for 10 rounds of votes and a dataset of 50 instances.

Algorithm 6: Democratic instance selection (demoIS.) algorithm.

Data : A training set T = {(x1, y1), . . . , (xn, yn)}, subset size s, and number of
rounds r.

Result : The set of selected instances S ⊂ T .
for i = 1 to r do

1 Divide instances into ns disjoint subsets ti :
⋃

i ti = T of size s
for j = 1 to ns do

2 Apply instance selection algorithm to tj
3 Store votes of removed instances from tj

end
end

4 Obtain threshold of votes, v, to remove an instance
5 S = T
6 Remove from S all instances with a number of votes ≥ v
7 return S

The most important advantage of our method is the large reduction in execu-
tion time. The reported experiments will show a large difference when using
standard widely used instance selection algorithms. Additionally, the method
is easy to implement in a parallel environment, as the execution of the instance
selection algorithm over each subset is performed independently. Furthermore,
as the size of the subsets is a parameter of the algorithm, we can choose the
complexity of the execution in each one of the processors.

However, as stated so far, the method still has two important issues to be ad-
dressed before we can obtain a useful algorithm. Firstly, the partition method
is not trivial, as a strictly random partition would not perform well. Secondly,
the determination of the number of votes is problem-dependent. We made
preliminary experiments using a fixed threshold for different problems with
poor results. Depending on the problem, a certain threshold may be too low
or too high. For instance, using 10 rounds if we set a threshold of 5 votes to
remove an instance, there are datasets for which that means removing almost
all the instances, while there are other datasets for which that threshold re-
sults in keeping almost all instances. Thus a method must be developed for

66

4.4 Democratic instance selection method

the automatic determination of the number of votes needed to remove an in-
stance from the training set. The automatic determination of this threshold
has the additional advantage of relieving the researcher of the duty of set-
ting a difficult parameter of the algorithm. These two issues are discussed in
the following sections. We must also emphasize that our method is applicable
to any instance selection algorithm, as the instance selection algorithm is a
parameter of the method.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Partition

I.S.I.S. I.S. I.S. I.S.

6 12 15 27 31

34 35 38 44 46

1 5 7 9 18 22

23 36 45 49

2 8 19 20 28 30

39 41 48 50

3 13 14 16 24

25 37 40 42 43

4 10 11 17 21

26 29 32 33 47

6 15 34 1 5 22 49 2 8 19 30 3 25 37 40 42 4 17 21 47

1st voter

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Partition

I.S.I.S. I.S. I.S. I.S.

6 15 23 31 34

35 38 39 44

1 5 9 18 22

27 36 45 46

2 7 8 19 20 28

37 41 48 50

3 13 14 16 24

25 30 40 42 43

4 10 11 12 17 21

26 29 32 33 47 49

6 15 34 4618 22 36 49 2 19 20 50 3 25 42 43 10 17 21 47

2nd voter

.

.

.

Voted instances

Voted instances

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

3 5 3 7 4 5 6 1 1 6 2 3 7 6 10 5 6 7 10 1 2 3 0 0 4 3 4 4 5 7 7 6 8 2 1 3 4 5 7 7 6 3 3 4 5 6 7 6 10 2

Votes after 10 rounds (highlighted those above or equal to the threshold, 5)

Selected instances

1 3 5 8 9 11 12 20 21 22 23 24 25 26 27 28 34 35 36 37 42 43 44 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Partition

I.S.I.S. I.S. I.S. I.S.

6 15 18 31 34

35 36 39 46

1 5 9 22 24

27 38 44 45

2 7 8 19 23 28

37 41 43 47

3 13 14 16 20

21 30 40 42 49

4 10 11 12 17 25

26 29 32 33 48 50

6 15 35 469 22 44 2 19 43 47 3 30 42 49 10 17 33

10th voter

Voted instances

Fig. 10. Example of democratic instance selection for a dataset of 50 instances and
subsets of 10 instances. The instance selection algorithm can be any one of the many
available.

67

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

4.4.1 Partition of the dataset

An important step in our method is partitioning the training set into a number
of disjoint subsets, ti, which comprise the whole training set,

⋃
i ti = T . The size

of the subsets is fixed by the user. The actual size has no relevant influence
over the results provided it is small enough to avoid large execution time.
Furthermore, the time spent by the algorithm depends on the size of the
largest subset, so it is important that the partition algorithm produces subsets
of approximately equal size. In the experimental section we will show a study
of the influence of the subset size on the performance of the algorithm.

In the recursive method described in Section 4.4 we applied a simple par-
titioning method whose improvement resulted in the partitioning technique
described in this section.

The first thing that we must take into account is the fact that we need several
different partitions of the dataset, as each round of votes needs a different par-
tition. Otherwise, the votes cast will be the same as most instance selection
algorithms are deterministic. The simplest method would be just a random
partition, where each instance is randomly assigned to one of the subsets. Each
round of votes will receive a different random partition. This was our first at-
tempt at partition method inspired by Garćıa-Osorio and Fyfe (2005) where
bagging was used to get a sparse but not grandmother representation for Ker-
nel Principal Component Analysis. However, this method has two problems:
k-NN is a local learning algorithm, so as this partition does not keep, at least
partially, the locality of the instances the performance of k-NN will be greatly
affected. Thus, the first goal of our partition method is keeping, as much as
possible, a certain locality in the partition. But there is an additional, and
more subtle point, about the partition that is of the utmost importance for
the performance of the method.

Each partition represents a different optimization problem, and so a different
error surface for the instance selection algorithm. If the partitions are very dif-
ferent, these error surfaces will also be very different. In such a case, the votes
cast by the different rounds are almost randomly distributed, and the obtained
performance is poor. Thus, to obtain a good performance the partitions of the
different rounds of the algorithm must vary smoothly. 4

These two previous requirements, partitions that keep certain spatial consis-

4 In fact, we performed experiments with random partitions with poor results. How-
ever, if the different random partitions are varied smoothly, for example, performing
and initial random partition and then exchanging a few instances between subsets
at each round, the performance is clearly improved. This result corroborates the
necessity to have in subsequent rounds of the algorithm partitions that are not very
far apart.

68

4.4 Democratic instance selection method

tency and that vary smoothly are obtained using the theory of Grand Tour
(Asimov, 1985). The idea of the grand tour method, introduced by Asimov
(1985) and Buja and Asimov (1986), is to generate a continuous sequence
of low dimensional projections of a high dimensional dataset, based on the
premise that to fully understand a subject item, one must examine it from all
possible angles. The method rotates a plane in the high dimensional space.
The data is projected onto this plane for each of its orientations, and when the
sequence of projections is visualized in a computer screen, an animation is ob-
tained which is useful for identifying structure in the dataset, such as clusters
an outliers. The grand tour shares a common objective with exploratory pro-
jection pursuit techniques. In both cases the human ability for visual pattern
recognition is exploited.

4.4.1.1 Algorithms When the grand tour is used for visualization the se-
quence of planes in must hold two conditions:

a. It should be dense in the set of all planes in the high dimensional space.
b. It should be smooth to give a visual impression of the data points moving

in a continuous way.

The state of the art algorithms for grand tour are “guided tours” and “manual
tours” (Buja et al., 2005) and are based on the interpolation of a sequence of
randomly generated planes. In the context of our algorithm is enough to use
a one dimensional grand tour, we project the data onto a rotating vector and
then we use this projection to divide the dataset into the subsets that we will
pass to the underlying instance selection algorithm. As well as this, we are
more concerned with the simplicity of the algorithm so, instead of an inter-
polation class algorithm, we have chosen a parametrization class algorithm,
the torus method (Asimov, 1985), based on obtaining a sequence of rotation
matrices, so the problem now is how to obtain these matrices.

We want to obtain a generalized rotation matrix Q that we will use to rotate
the vector onto where we are going to project the data. This is implemented by
choosing Q as an element of the special orthogonal group, denoted by SO(d),
of orthogonal d×d matrices having determinant +1 (a matrix must have these
two properties for being a rotation matrix). So, we need a continuous curve
through SO(d). In the torus method this is achieved by obtaining a continuous
curve in a p-dimensional torus (p = (d − 1)d/2, and d the dimension of the
dataset) whose points give the angles to calculate Q. The idea is to get a
varying vector of angles α(s) = (θ1,2, θ1,3, . . . , θd−1,d) that we use to generate
Q through the mapping β : [0, 2π]p → SO(d) given by:

69

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

β(θ1,2, θ1,3, . . . , θd−1,d) =

R1,2(θ1,2)×R1,3(θ1,3)× · · · ×Rd−1,d(θd−1,d) (7)

The Ri,j(θi,j) are elements of SO(d) which rotate the eiej plane through an
angle of θi,j

Ri,j(θi,j)=

1 · · · 0 · · · 0 · · · 0
...
. . .

...
...

...
0 · · · cos(θi,j) · · · − sin(θi,j) · · · 0
...

...
. . .

...
...

0 · · · sin(θi,j) · · · cos(θi,j) · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

Summing up, the coordinates of a point of the p-torus give the angles of the
rotation matricesRi,j which are combined to obtain the rotation matrixQ used
for rotating the vector. There are different ways of getting the curve through
the p-torus (Wegman and Solka, 2002): the Asimov-Buja winding algorithm,
the random curve algorithm, the fractal curve algorithm. In the experiments
we use the random curve algorithm. First, we just randomly take two points
si, sj in [0, 2π]p and create a linear interpolant between them going from si to
sj, then, if needed, we take a third point sk and join it with sj and so on.

4.4.1.2 Some implementation details Obtaining the curve strictly through
the shortest path in the p-torus adds a burden of complexity that seems not
to give any extra advantage in our algorithm. So, instead we just interpolate
the points through the hypercube [0, 2π]p. If we have a point near by the p-
dimensional point (2π, 2π, . . . , 2π) and a point near by the p-dimensional point
(0, 0, . . . , 0), in an actual p-torus these two points are very close to each other
and the shortest path should be through the walls of the hypercube [0, 2π]p,
but in our current implementation, we just interpolate the point using the

path strictly inside the hypercube (which length is approximately
√
p(2π)2).

Besides, most of the time with the interpolation of the first two points in
[0, 2π]p we already obtain enough orientations to get all the partitions required
by the algorithm.

As the denseness of the projections in the context of instance selection is
not a critical factor (we do not need a long tour to get good results and
usually ten to fifteen steps of grand tour is enough), we can use even simpler

70

4.4 Democratic instance selection method

ways of obtaining the sequence of projections. In the case of uni-dimensional
projections we could have used just the pseudo grand tour obtained by using
Andrews curves (Andrews, 1972). If we want a sequence of bi-dimensional
projections we can use the orthogonal vectors given by the Wegman curves
(Wegman and Shen, 1993).

One concern when the grand tour is used for dynamic data visualization is
that, in general, the mapped curve on SO(d) could not be uniformly dis-
tributed even when the curve on the p-torus is equi-distributed. Here, we are
also interested in uniformly rotating the projection vector, and we simply
solve this by dynamically adapting the interpolation step used to obtain the
curve on the p-hypercube, whenever the angle changes more than 10% of the
previous angle.

We used as projection vectors: arbitrary canonical basis vectors ei, the first
principal component direction of the dataset, random vectors. The results
seems not to depend on this choice, so the simplest one, e1, is the one used in
the experiments.

4.4.2 Partition algorithm

Following this idea we obtain the first partition projecting our dataset into a
random vector and then dividing the projection into equal sized subsets. The
next vector is obtained using the described procedure and a new partition is
made. The procedure is repeated to get the subsequent partitions. Algorithm
7 shows the method for performing the partition based on this methodology.

Algorithm 7: Algorithm for partitioning the training set into disjoint subsets
Data : A training set T = {(x1, y1), . . . , (xn, yn)}, and subset size s

Result : The partition into disjoint subsets ti :
⋃

i ti = T .

1 Get next vector using Grand Tour method
2 Project all instances into vector
3 Divide the projected instances into subsets of size s using the linear ordering induced
by the projection

4 Assign ti to each subset
5 Return ti :

⋃
i ti = T

An example of a partition performed in an artificial training set of 1500 in-
stances, where the data is divided into four subsets, is depicted in Figure 11.
The figure shows the original dataset which contains three classes and the five
partitions performed on five rounds of votes. The figure shows the smooth
variation of the subsets as the different rounds of votes are performed.

This partition is specially designed for k-NN instance selection algorithms. It
we apply our methodology to other classifier a random partition of the dataset

71

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

can be used as it will be shown in Section 4.4.6.11.

Dataset First partition

Second partition Third partition

Fourth partition Fifth partition

Fig. 11. Example of the method for partitioning the dataset with 1500 instances,
three classes, and two features, with five rounds of votes. Four subsets are created
each round.

4.4.3 Determining the number of votes

An important issue in our method is determining the number of votes needed
to remove an instance from the training set. Preliminary experiments showed
that this number highly depends on the specific dataset. Thus, it is not possible
to set a general preestablished value usable in any dataset. On the contrary, we

72

4.4 Democratic instance selection method

need a way of selecting this value directly from the dataset in run time. A first
natural choice would be the use of a cross-validation procedure. However, this
method is very time consuming. A second choice is estimating the best value
for the number of votes from the effect on the training set. This latter method
is the one we have chosen. The election of the number of votes must take
into account two different criteria: training error, εt, and storage, or memory,
requirements m. Both values must be minimized as much as possible. Our
method of choosing the number of votes needed to remove an instance is
based on obtaining the threshold number of votes, v, that minimizes a fitness
criterion, f(v), which is a combination of these two values:

f(v) = αεt(v) + (1− α)m(v), (8)

where α is a value in the interval [0, 1] which measures the relative relevance of
both values. In general, the minimization of the error is more important than
storage reduction, as we prefer a lesser error even if the reduction is smaller.
Thus, we have used a value of α = 0.75. Different values can be used if the
researcher is more interested in reduction than in error. m is measured as the
percentage of instances retained, and εt is the training error.

However, estimating the training error is time consuming if we have large
datasets. To avoid this problem the training error is estimated using only a
small percentage of the whole dataset, which is 10% for medium and large
datasets, and 0.1% for huge datasets.

The process is the following: We perform r rounds of the algorithm and store
the number of votes received by each instance. Then, we must obtain the
threshold number of votes, v, to remove an instance. This value must be
v ∈ [1, r]. We calculate the criterion f(v) (eq. 9) for all the possible threshold
values from 1 to r, and assign v to the value which minimizes the criterion.
After that, we perform the instance selection removing the instances whose
number of votes is above or equal to the obtained threshold v.

It is worth noting that we can also make a democratization of the estimation
of the threshold of votes. In fact, that democratic version has been used in the
parallel implementation of the method (see Section 4.4.7).

A more advanced solution is to parallelize the estimation of the threshold of
votes over the disjoint subsets, as these are independent processes that can
be calculated at the same time with no need of interaction. Moreover this
solution is more accurate as it does not use a percentage of the data available
but the whole dataset to estimate this parameter.

73

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

4.4.4 Complexity of our methodology

The aim of this work is to obtain an instance selection methodology that
is able to scale up to large and even huge problems. Thus, an analysis of the
complexity of the method is a must. In this section we show how our algorithm
is linear in the number of instances, n, of the dataset.

We divide the dataset into partitions of disjoint subsets of size s. Thus, the
chosen instance selection algorithm is always applied to a subset of fixed size,
s, which is independent from the actual size of the dataset. The complexity
of this application of the algorithm depends on the base instance selection
algorithm we are using, but will always be small, as the size s is always small.
Let K be the number of operations needed by the instance selection algorithm
to perform its task in a dataset of size s. For a dataset of n instances we
must perform this instance selection process once for each subset, that is n/s
times, spending a time proportional to (n/s)K. The total time needed by
the algorithm to perform r rounds will be proportional to r(n/s)K, which is
linear in the number of instances, asK is a constant value. Figure 12 shows the
computational cost, as a function of the number of instances, of a quadratic
algorithm and our approach when that algorithm is used with subset sizes of
s = 100, 1000, 2500 and 5000 instances and r = 10 rounds of votes.

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 0 20000 40000 60000 80000 100000

O
pe

ra
tio

ns

Problem size

Algorithm O(n2)
DemoIS. (Subset = 100)
DemoIS. (Subset = 1000)
DemoIS. (Subset = 2500)
DemoIS. (Subset = 5000)

Fig. 12. Computational cost of our method and a base instance selection algorithm
of O(n2).

Thus, the gaining in execution time would be greater as the size of the datasets
is larger. If the complexity of the instance selection algorithm is greater, the
reduction of the execution will be even better. The method has the additional
advantage of allowing an easy parallel implementation. As the application of

74

4.4 Democratic instance selection method

the instance selection algorithm to each subset is independent from all the
remaining subsets, all the subsets can be processed at the same time, even for
different rounds of votes. Also, the communication between the nodes of the
parallel execution is small.

As we have stated, two additional processes complete the method, the partition
of the dataset and the determination of the number of votes. Regarding the
determination of the number of votes, the process can be made in different
ways. If we consider all the training instances, the cost of this step would be
O(n2). However, to keep the complexity linear we use a random subset of the
training set for determining the number of votes, with a limit on the maximum
size of this subset that is fixed for any dataset. In this way, from medium
to large datasets we use the 10% of the training set, for huge problems the
0.1%, and the percentage is further reduced as the size of the dataset grows.
In fact, we have experimentally verified that we can consider any reasonable
bound 5 in the number of instances without damaging the performance of the
algorithm. With this method the complexity of this step is O(1) as the number
of instances used is bounded regardless the size of the dataset.

Finally, we consider the partition of the dataset apart from the algorithm
as many different partition methods can be devised. The partition described
in Section 4.4.2 can be implemented with a complexity O(nlog(n)), using a
quicksort algorithm for sorting the values to make the subsets, or with a com-
plexity O(n) dividing the projection along the vector in equal sized intervals.
Both methods achieve the same performance as the obtained partition is very
similar, and in our experiments we have used the latter to keep the complexity
of the whole procedure linear. However, this partition is specially designed for
k-NN classifier. When the method is used with other classifiers, other methods
can be used, such as a random partition, which is also of complexity O(n).
In fact, in the experiments reported using C4.5 and SVMs, we have used a
random partition of the dataset.

4.4.5 Experimental setup

The experimental setup used in this work is the same as the one previously
detailed in the recursive instance selection Section 4.3.3, except for some minor
details we proceed to discuss in the following lines.

In order to make a fair comparison between the standard algorithms and
our proposal, we have selected the same datasets as in the recursive method.
The features of the 30 selected problems from the UCI Machine Learning

5 This reasonable bound can be from a few hundreds to a few thousands, even for
huge datasets.

75

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

Repository (Hettich et al., 1998) can be consulted on the previous Table 1.

4.4.5.1 Instance selection algorithms In order to obtain an accurate view
of the usefulness of our method, we must select some of the most widely used
instance selection algorithms. We have chosen to test our model using several
of the most successful state-of-the-art algorithms. Initially, we used the algo-
rithms DROP3 (Wilson and Martinez, 2000), and ICF (Brighton and Mellish,
2002). These two methods were previously applied in the recursive method,
their description can be consulted in Section 4.3.4 and their pseudocodes are
detailed in Algorithms 3 and 4, respectively.

In addition to these two methods that can be considered “classical”, as they
have been around for quite a long time and are widely used, it is worth men-
tioning Reduced Nearest Neighbor (RNN) rule (Gates, 1972). This method is
extremely simple, but it also shows an impressive performance in terms of stor-
age reduction. In fact, it is the best of the methods used in reducing storage
requirements, as will be shown in the next section. However, it has a serious
drawback, its computational complexity. Among the standard methods used
this is the one that shows a worst scalability, taking several hundreds hours
in the worst case. Therefore, RNN is the perfect target for our methodology,
an instance selection method highly efficient but with a serious scalability
problem. So we have also tested our approach using RNN, which is shown in
Algorithm 8, as base instance selection method.

Algorithm 8: RNN algorithm
Data : A training set T = {(x1, y1), . . . , (xn, yn)}, a selector S = ∅
Result : The set of selected instances S ⊂ T .

1 S = {x1}
foreach Instance P ∈ T do

if P is misclassified using S then
2 Add P to S
3 Restart

end
end
foreach Instance P ∈ S do

4 Remove P from S
if any instance of T is misclassified using S then

5 Add P to S
end

end
6 return S

We have also used one of the most recent algorithms for instance selection,
the Modified Selective Subset (MSS) method (Barandela et al., 2005). The
procedure is shown in Algorithm 9. We chose this algorithm as an example of
a recent and fast algorithm. With MSS we want to test whether our method

76

4.4 Democratic instance selection method

is also able to improve the execution time of algorithms that are not so time
demanding as the previous ones.

Algorithm 9: MSS algorithm
Data : A training set T = {(x1, y1), . . . , (xn, yn)}, a selector S = ∅
Result : The set of selected instances S ⊂ T .

1 S = ∅
2 Sort instances xi ∈ T by distance, Di, to their nearest enemy
for i = 1 to n do

3 add = false
for j = i to n do

if xj ∈ T ∧ d(xi, xj) < Dj then
4 T = T − {xj}
5 add = true

end
end

6 if add then S = S ∪ {xi}
7 if T = ∅ then return S

end
8 return S

As an alternative to these standard methods, genetic algorithms have been
applied to instance selection, considering this task to be a search problem.
The application is easy and straightforward. Each individual is a binary vector
that codes a certain sample of the training set. The evaluation is usually made
considering both data reduction and classification accuracy. Examples of ap-
plications of genetic algorithms to instance selection can be found in Kuncheva
(1995), Ishibuchi and Nakashima (2000) and Reeves and Bush (2001). Cano
et al. (2003) performed a comprehensive comparison of the performance of
different evolutionary algorithms for instance selection. They compared a gen-
erational genetic algorithm (Goldberg, 1989), a steady-state genetic algorithm
(Whitley, 1989), a CHC genetic algorithm (Eshelman, 1990), and a popula-
tion based incremental learning algorithm (Baluja, 1994). They found that
evolutionary based methods were able to outperform classical algorithms in
both classification accuracy and data reduction. Among the evolutionary al-
gorithms, CHC was able to achieve the best overall performance.

Nevertheless, the major problem addressed when applying genetic algorithms
to instance selection is the scaling of the algorithm. As the number of instances
grows, the time needed for the genetic algorithm to reach a good solution
increases exponentially, making it totally useless for large problems. As we are
concerned with this problem, we have used as fifth instance selection method
a genetic algorithm using CHC methodology. The execution time of CHC is
clearly longer than the time spent by ICF, DROP3 and MSS, so it gives us a
good benchmark to test our methodology on an algorithm that, as RNN, has
a big scalability problem.

77

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

4.4.6 Experimental results

The same parameters were used for the standard version of every algorithm
and its application within our methodology. All the standard methods have
no relevant parameters, the only value we must set is k, the number of nearest
neighbors. For DROP3, ICF, RNN and MSS we used k = 3 neighbors. For
CHC we performed 100 generations of a population with 100 individuals and
k = 1. Mutation was applied with a 10% probability. These are fairly standard
values (Cano et al., 2003). Our method has two parameters: subset size, s, and
number of rounds, r. Regarding subset size we must use a value large enough
to allow for a meaningful application of the instance selection algorithm on
the subset, and small enough to allow a fast execution, as the time used by our
method grows with s. As a compromise value we have chosen s = 1000, and
a minimum of two subsets if the dataset has 1000 or less instances. For the
number of rounds we have chosen a small value to allow for a fast execution,
r = 10. Furthermore, in Section 4.4.6.9 we perform a study of the effect of
these two parameters on the performance of the algorithm. The application
of our method with a certain instance selection algorithm X will be named
demoIS.x. A summary of the results using the five algorithms is shown in
Tables 9 and 10, for standard and demoIS. methods.

78

4.4 Democratic instance selection method

T
ab

le
9.

T
es
ti
n
g
er
ro
r,

st
or
ag
e
re
q
u
ir
em

en
ts

an
d
ex
ec
u
ti
on

ti
m
e
(i
n
se
co
n
d
s)

fo
r
st
a
n
d
a
rd

in
st
a
n
ce

se
le
ct
io
n
a
lg
o
ri
th
m
s

D
a
ta

se
t

D
R
O
P
3

IC
F

M
S
S

R
N
N

C
H
C

S
to

ra
g
e

E
rr
o
r

T
im

e
(s
)

S
to

ra
g
e

E
rr
o
r

T
im

e
(s
)

S
to

ra
g
e

E
rr
o
r

T
im

e
(s
)

S
to

ra
g
e

E
rr
o
r

T
im

e
(s
)

S
to

ra
g
e

E
rr
o
r

T
im

e
(s
)

a
b
a
lo
n
e

0
.3
0
6
9

0
.7
7
8
2

1
.8

0
.2
5
1
0

0
.8
0
8
2

1
.7

0
.6
4
3
5

0
.8
0
5
3

1
.6

0
.0
0
7
9

0
.7
9
3
5

7
1
1
1
.7

0
.3
8
1
8

0
.7
9
9
8

7
7
2
2
.2

a
d
u
lt

0
.1
2
4
8

0
.1
7
1
4

2
2
8
5
3
.9

0
.1
0
8
2

0
.2
1
9
4

9
1
7
0
.8

0
.2
9
5
0

0
.2
2
8
1

2
9
9
0
.8

0
.0
3
3
3

0
.1
9
5
1

1
8
9
6
5
4
0
.3

0
.1
9
8
8

0
.2
2
5
7

9
1
0
9
6
.0

c
a
r

0
.2
6
6
8

0
.2
3
7
8

1
.9

0
.3
8
1
3

0
.2
7
0
9

1
.1

0
.3
4
2
4

0
.2
4
2
4

0
.3

0
.0
9
8
4

0
.2
4
7
1

1
2
.4

0
.4
1
9
2

0
.2
6
3
9

5
4
8
3
.6

g
e
n
e

0
.3
8
7
7

0
.2
7
7
6

3
5
.6

0
.2
5
0
8

0
.3
5
2
7

2
6
.1

0
.4
4
4
2

0
.3
2
7
4

6
.9

0
.0
4
0
2

0
.3
9
9
7

1
6
3
3
.2

0
.3
0
0
4

0
.2
9
6
8

7
2
3
6
.6

g
e
rm

a
n

0
.3
0
7
3

0
.2
8
7
0

0
.9

0
.1
4
8
5

0
.3
2
6
0

0
.4

0
.4
3
0
9

0
.3
5
5
0

0
.2

0
.0
2
9
6

0
.2
9
5
0

2
8
.2

0
.3
4
8
3

0
.3
2
9
0

4
4
0
.1

h
y
p
o
th

y
ro

id
0
.0
5
1
4

0
.0
6
1
0

1
1
.8

0
.0
3
9
8

0
.1
1
5
6

3
.7

0
.1
6
7
5

0
.0
9
9
5

0
.7

0
.0
3
1
3

0
.0
6
5
5

1
6
8
.4

0
.2
6
1
3

0
.0
7
7
5

7
1
8
3
.9

is
o
le
t

0
.2
8
5
2

0
.1
7
7
0

2
0
8
.9

0
.1
7
1
3

0
.2
6
4
8

1
0
3
.1

0
.3
4
1
4

0
.1
8
7
1

3
9
.5

0
.0
4
4
7

0
.2
6
6
5

5
9
5
0
.8

0
.2
9
9
3

0
.2
0
2
6

1
0
8
8
5
.4

k
rk

o
p
t

0
.4
4
3
1

0
.4
8
0
3

1
5
3
3
.0

0
.5
2
9
0

0
.4
0
3
2

1
1
0
9
.8

0
.6
5
6
5

0
.4
3
2
3

3
5
6
.7

0
.0
4
2
5

0
.5
6
7
8

1
0
5
7
7
1
5
.5

0
.5
2
3
7

0
.4
7
1
1

1
3
7
0
1
5
.0

k
r
v
s.

k
p

0
.2
2
2
9

0
.1
0
1
6

1
0
.1

0
.2
7
0
7

0
.1
2
6
7

5
.3

0
.3
1
9
2

0
.0
8
4
3

1
.3

0
.0
5
5
8

0
.1
4
2
3

1
2
8
.9

0
.2
7
1
2

0
.1
2
7
6

7
1
0
7
.5

le
tt
e
r

0
.1
7
4
4

0
.1
0
3
7

1
8
4
9
.8

0
.1
3
6
2

0
.2
0
1
8

7
6
0
.3

0
.2
2
6
5

0
.0
7
4
9

2
6
6
.7

0
.0
5
8
1

0
.1
4
2
0

2
1
3
9
4
.0

0
.2
9
5
2

0
.0
9
0
5

5
1
0
2
4
.0

m
a
g
ic
0
4

0
.1
7
8
9

0
.1
9
7
8

1
9
9
.8

0
.1
1
6
0

0
.2
3
9
5

1
3
8

0
.3
2
0
4

0
.2
4
4
0

2
3
.4

0
.0
2
9
3

0
.1
8
0
5

5
0
8
1
7
.2

0
.2
9
5
2

0
.1
2
2
5

2
9
3
2
7
.0

m
fe
a
t-
fa
c

0
.1
2
0
8

0
.0
6
0
0

3
9
.3

0
.0
8
9
6

0
.0
9
0
5

1
7
.5

0
.1
6
7
2

0
.0
5
5
5

6
.2

0
.0
3
8
7

0
.0
9
2
5

4
7
.7

0
.3
9
3
3

0
.0
4
5
5

6
5
1
8
.4

m
fe
a
t-
fo
u

0
.2
4
7
3

0
.2
3
2
0

5
.6

0
.1
3
9
5

0
.3
2
8
0

2
.4

0
.3
4
5
3

0
.2
5
1
5

1
.0

0
.0
4
4
4

0
.3
1
3
5

1
4
6
.2

0
.3
3
8
4

0
.2
2
8
0

7
0
2
6
.9

m
fe
a
t-
k
a
r

0
.1
6
5
5

0
.0
8
3
5

6
.5

0
.1
0
3
5

0
.1
7
2
5

2
.5

0
.2
1
5
9

0
.0
7
1
5

0
.8

0
.0
5
4
4

0
.1
2
6
5

3
1
.5

0
.3
8
3
8

0
.0
6
5
0

7
0
1
0
.8

m
fe
a
t-
m
o
r

0
.2
0
6
2

0
.2
8
8
5

1
.4

0
.2
0
0
8

0
.3
6
8
5

0
.6

0
.3
2
5
3

0
.3
1
7
0

0
.4

0
.0
2
3
9

0
.3
1
3
5

6
4
.9

0
.3
5
7
3

0
.3
2
6
5

7
0
5
4
.2

m
fe
a
t-
p
ix

0
.1
0
9
5

0
.0
4
8
0

7
6
.5

0
.0
8
6
4

0
.1
0
0
0

2
7

0
.1
6
6
1

0
.0
4
2
0

8
.5

0
.0
4
1
3

0
.0
8
1
0

3
9
.4

0
.3
7
5
9

0
.0
4
4
0

6
4
4
1
.9

m
fe
a
t-
z
e
r

0
.2
2
3
1

0
.2
3
7
5

4
.0

0
.1
5
0
3

0
.2
7
1
5

1
.7

0
.3
4
8
8

0
.2
4
7
5

0
.8

0
.0
3
5
1

0
.3
0
1
0

1
0
2
.7

0
.3
4
3
9

0
.2
2
0
5

7
0
7
6
.3

n
u
rs
e
ry

0
.2
9
3
4

0
.3
3
2
7

3
3
7
.4

0
.8
7
5
2

0
.2
4
1
4

2
8
7
.2

0
.4
1
6
0

0
.2
2
4
9

5
7
.2

0
.0
5
7
9

0
.2
8
0
2

5
9
5
9
.7

0
.2
9
4
1

0
.2
4
2
7

2
2
3
9
7
.3

o
p
td

ig
it
s

0
.0
9
1
1

0
.0
4
2
0

1
6
1
.0

0
.0
6
0
6

0
.1
1
0
3

8
2
.8

0
.1
6
6
3

0
.0
4
2
5

2
1
.0

0
.0
3
0
9

0
.0
8
8
1

2
8
1
.4

0
.2
7
5
5

0
.0
4
0
4

7
8
4
6
.4

p
a
g
e
-b

lo
c
k
s

0
.0
4
3
0

0
.0
4
3
7

1
5
.7

0
.0
3
0
7

0
.2
1
8
5

5
.6

0
.0
9
9
1

0
.0
4
3
2

0
.8

0
.0
1
4
3

0
.0
5
5
9

9
9
.8

0
.2
7
8
6

0
.0
4
0
8

7
6
6
2
.8

p
e
n
d
ig
it
s

0
.0
4
5
1

0
.0
1
6
8

1
7
5
.0

0
.0
3
4
8

0
.0
6
5
1

7
0
.6

0
.0
9
0
0

0
.0
1
3
5

1
7
.8

0
.0
1
8
8

0
.0
2
7
6

2
8
9
.9

0
.2
9
0
3

0
.0
1
2
1

1
1
6
3
6
.6

p
h
o
n
e
m
e

0
.1
8
5
2

0
.1
3
8
3

1
1
.5

0
.1
3
9
2

0
.1
9
4
1

4
.6

0
.2
4
3
3

0
.1
2
9
1

1
.1

0
.0
4
7
2

0
.1
7
7
8

4
8
5
.8

0
.2
8
4
6

0
.1
4
5
7

7
7
7
2
.9

sa
ti
m
a
g
e

0
.1
3
6
6

0
.1
1
0
1

5
7
.7

0
.0
7
1
3

0
.1
6
7
7

2
5
.4

0
.2
0
3
2

0
.1
2
1
2

8
.2

0
.0
2
5
4

0
.1
3
4
5

9
7
6
.3

0
.2
8
2
5

0
.1
1
5
7

8
4
9
1
.8

se
g
m
e
n
t

0
.1
2
1
9

0
.0
7
8
4

4
.1

0
.1
0
7
7

0
.1
3
9
4

1
.6

0
.1
6
2
8

0
.0
5
4
1

0
.3

0
.0
4
2
8

0
.0
8
6
6

1
7
.8

0
.3
0
3
0

0
.0
6
4
9

7
0
6
2
.4

sh
u
tt
le

0
.0
0
2
8

0
.0
0
1
6

7
5
4
3
.4

0
.0
2
2
9

0
.0
4
7
3

2
6
4
0
.0

0
.0
0
7
8

0
.0
0
1
2

5
8
4
.7

0
.0
0
1
4

0
.0
0
1
8

1
3
3
9
.4

0
.2
6
3
8

0
.0
0
5
5

7
7
0
8
9
.0

si
c
k

0
.0
6
2
5

0
.0
5
0
9

1
4
.8

0
.0
4
5
2

0
.0
9
1
2

4
.7

0
.1
2
4
0

0
.0
6
0
8

0
.8

0
.0
2
0
7

0
.0
5
9
4

6
5
.8

0
.2
5
7
8

0
.0
5
1
4

7
1
7
9
.8

te
x
tu

re
0
.0
8
7
8

0
.0
3
2
9

9
7
.0

0
.0
7
2
5

0
.0
9
7
3

4
6
.8

0
.1
3
3
5

0
.0
2
1
3

1
3
.9

0
.0
3
2
9

0
.0
5
1
8

1
3
1
.8

0
.2
8
2
5

0
.0
2
4
9

7
8
7
6
.1

w
a
v
e
fo
rm

0
.2
9
6
1

0
.2
2
7
6

2
8
.8

0
.1
2
1
1

0
.2
8
4
0

1
5

0
.3
4
3
5

0
.3
0
5
2

5
.3

0
.0
1
3
0

0
.3
1
9
8

2
1
3
2
.2

0
.2
9
1
1

0
.2
8
7
8

7
9
2
6
.8

y
e
a
st

0
.3
1
9
3

0
.4
5
0
0

0
.6

0
.2
1
3
7

0
.5
0
9
5

0
.3

0
.5
3
3
9

0
.5
4
1
2

0
.1

0
.0
2
6
6

0
.5
2
3
0

4
9
.1

0
.3
7
1
1

0
.5
0
1
4

2
9
8
1
.1

z
ip

0
.1
0
4
0

0
.0
4
9
7

6
0
1
.7

0
.0
4
9
7

0
.2
5
4
9

2
1
9
.8

0
.2
2
8
3

0
.0
4
4
0

7
1
.7

0
.0
3
4
8

0
.0
8
8
4

1
4
2
0
.2

0
.2
8
7
1

0
.0
5
1
0

9
7
4
8
.2

79

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

T
a
b
le

1
0
.
T
estin

g
erro

r,
sto

ra
g
e
req

u
irem

en
ts

an
d
ex
ecu

tion
tim

e
(in

secon
d
s)

for
d
em

o
cratic

in
stan

ce
selection

algorith
m
s

D
a
ta

se
t

d
e
m
o
Is.d

ro
p
3

d
e
m
o
IS

.ic
f

d
e
m
o
IS

.m
ss

d
e
m
o
IS

.rn
n

d
e
m
o
IS

.c
h
c

S
to

ra
g
e

E
rro

r
T
im

e
(s)

S
to

ra
g
e

E
rro

r
T
im

e
(s)

S
to

ra
g
e

E
rro

r
T
im

e
(s)

S
to

ra
g
e

E
rro

r
T
im

e
(s)

S
to

ra
g
e

E
rro

r
T
im

e
(s)

a
b
a
lo
n
e

0
.0
8
2
2

0
.7
7
8
2

5
.1

0
.0
8
0
2

0
.7
8
3
7

4
.0

0
.5
0
3
0

0
.7
9
4
5

4
.0

0
.0
1
6
7

0
.7
8
7
3

9
6
3
.4

0
.0
4
2
5

0
.8
0
8
4

1
2
3
1
.5

a
d
u
lt

0
.0
8
9
9

0
.1
8
4
8

1
2
0
4
.5

0
.0
8
9
0

0
.1
9
4
2

6
2
1
.6

0
.3
4
4
8

0
.2
0
7
6

1
3
0
9
.0

0
.0
2
3
8

0
.1
7
4
6

1
2
1
4
4
.9

0
.0
2
0
3

0
.2
1
1
4

8
1
5
2
.1

c
a
r

0
.3
2
7
8

0
.2
1
6
3

8
.0

0
.3
7
7
5

0
.2
4
4
8

4
.9

0
.3
6
3
4

0
.2
5
9
3

1
.0

0
.0
8
4
4

0
.2
7
9
7

4
1
.0

0
.2
8
9
3

0
.2
8
2
6

2
7
2
.4

g
e
n
e

0
.1
8
7
2

0
.2
7
3
8

4
3
.7

0
.2
0
1
2

0
.3
6
2
8

2
3
.1

0
.3
5
4
7

0
.3
2
9
0

9
.1

0
.1
1
6
1

0
.3
3
0
9

1
4
3
2
.9

0
.1
0
0
1

0
.3
8
0
4

5
5
8
.3

g
e
rm

a
n

0
.2
0
1
2

0
.2
8
7
0

6
.8

0
.0
8
0
7

0
.3
0
4
0

3
.0

0
.4
3
0
9

0
.3
2
8
0

1
.2

0
.0
2
9
6

0
.2
8
6
0

2
4
9
.1

0
.0
8
0
4

0
.3
3
9
0

1
4
1
.5

h
y
p
o
th

y
ro

id
0
.0
6
3
1

0
.0
6
9
0

2
6
.4

0
.0
2
9
4

0
.0
8
0
4

8
.3

0
.1
7
8
2

0
.0
7
5
1

1
.6

0
.0
2
5
8

0
.0
7
0
5

1
0
2
.6

0
.0
3
0
6

0
.0
8
2
2

4
8
0
.0

iso
le
t

0
.1
6
3
5

0
.1
8
4
0

5
0
.7

0
.1
7
2
2

0
.2
0
6
0

2
4
.6

0
.2
7
8
9

0
.1
9
5
9

1
2
.4

0
.1
3
3
5

0
.2
1
0
9

1
1
2
2
.7

0
.1
1
1
2

0
.2
3
8
1

1
6
0
9
.2

k
rk

o
p
t

0
.2
6
7
9

0
.4
9
1
6

7
0
.4

0
.3
3
7
0

0
.4
7
2
1

5
6
.2

0
.5
4
4
3

0
.4
1
1
4

1
6
2
.1

0
.2
8
8
9

0
.4
6
3
4

5
1
6
8
.2

0
.2
6
7
8

0
.4
6
9
1

7
6
2
7
.5

k
r
v
s.

k
p

0
.2
3
4
7

0
.1
0
3
1

2
8
.3

0
.2
2
2
1

0
.1
2
7
9

1
3
.3

0
.3
1
2
8

0
.0
8
3
7

3
.9

0
.1
4
7
1

0
.1
2
0
1

1
8
2
.6

0
.1
5
3
8

0
.1
6
8
4

4
9
8
.9

le
tte

r
0
.2
2
3
6

0
.1
2
0
3

1
4
0
.1

0
.2
4
0
8

0
.1
2
6
7

8
1
.0

0
.2
8
3
0

0
.0
8
8
5

5
8
.6

0
.1
7
7
5

0
.1
1
5
2

1
8
7
7
.2

0
.2
2
4
4

0
.0
9
5
8

4
5
8
5
.8

m
a
g
ic
0
4

0
.1
1
3
0

0
.2
0
4
8

9
5
.5

0
.0
9
6
7

0
.2
1
5
4

3
7
.1

0
.3
1
6
8

0
.2
2
6
9

1
9
.3

0
.0
6
1
2

0
.2
4
6
9

1
6
4
5
.0

0
.0
6
1
4

0
.2
6
2
0

2
9
6
5
.8

m
fe
a
t-fa

c
0
.1
4
3
6

0
.0
6
8
0

8
8
.8

0
.1
2
1
6

0
.0
7
1
5

3
2
.6

0
.1
8
4
2

0
.0
5
5
0

1
2
.7

0
.0
8
0
4

0
.0
9
5
5

1
4
1
.8

0
.1
2
7
3

0
.0
6
8
0

2
5
8
.6

m
fe
a
t-fo

u
0
.2
2
1
0

0
.2
4
1
5

2
1
.7

0
.1
5
6
9

0
.2
7
8
5

9
.9

0
.3
3
6
3

0
.2
4
4
5

4
.7

0
.1
1
8
4

0
.2
8
6
0

4
0
9
.5

0
.1
9
6
2

0
.2
5
0
0

3
2
2
.7

m
fe
a
t-k

a
r

0
.1
9
6
6

0
.0
8
5
5

2
5
.4

0
.1
4
0
2

0
.1
2
0
0

1
0
.6

0
.2
3
1
4

0
.0
7
2
5

3
.5

0
.1
1
5
7

0
.1
0
2
5

1
0
6
.6

0
.1
9
0
2

0
.0
8
5
5

2
9
1
.9

m
fe
a
t-m

o
r

0
.1
4
9
4

0
.2
8
6
5

6
.0

0
.1
5
8
5

0
.3
3
8
5

2
.8

0
.3
6
1
9

0
.3
3
1
5

1
.3

0
.0
3
9
2

0
.3
7
7
5

1
6
5
.5

0
.1
3
2
3

0
.3
3
3
0

2
6
9
.8

m
fe
a
t-p

ix
0
.1
7
7
6

0
.0
4
1
0

8
7
.3

0
.1
2
0
1

0
.0
6
3
5

4
0
.8

0
.1
6
0
4

0
.0
5
6
0

1
8
.2

0
.1
0
9
3

0
.0
6
0
0

1
3
0
.4

0
.1
2
5
3

0
.0
6
6
0

2
6
7
.1

m
fe
a
t-z

e
r

0
.1
7
1
0

0
.2
2
0
0

1
5
.5

0
.1
3
9
5

0
.2
6
8
0

7
.3

0
.3
5
6
7

0
.2
2
5
5

3
.3

0
.0
9
3
1

0
.2
6
4
0

2
7
9
.9

0
.1
4
9
1

0
.2
5
4
5

3
0
1
.7

n
u
rse

ry
0
.2
2
9
9

0
.2
3
0
0

8
7
.0

0
.2
1
3
7

0
.2
4
4
9

5
9
.0

0
.4
1
0
5

0
.2
3
9
3

2
2
.6

0
.1
4
4
0

0
.2
4
1
7

7
5
0
.6

0
.2
0
1
7

0
.2
4
3
9

2
4
2
5
.0

o
p
td

ig
its

0
.1
0
9
3

0
.0
4
5
9

6
9
.6

0
.1
1
1
0

0
.0
6
1
7

2
8
.3

0
.1
2
4
2

0
.0
5
9
1

1
0
.4

0
.0
8
6
1

0
.0
5
5
0

1
6
4
.2

0
.0
8
1
0

0
.0
6
1
9

8
2
7
.5

p
a
g
e
-b

lo
c
k
s

0
.0
5
3
0

0
.0
4
4
8

3
3
.6

0
.0
3
9
2

0
.0
5
8
3

1
0
.5

0
.0
8
8
4

0
.0
4
2
8

1
.7

0
.0
2
1
5

0
.0
5
9
6

5
3
.3

0
.0
6
0
9

0
.0
5
9
4

6
9
5
.3

p
e
n
d
ig
its

0
.0
8
2
2

0
.0
2
1
8

8
3
.1

0
.0
7
9
0

0
.0
2
9
3

3
1
.7

0
.0
9
0
0

0
.0
2
0
5

1
0
.3

0
.0
4
9
0

0
.0
1
9
7

7
0
.6

0
.0
6
5
6

0
.0
2
4
6

1
5
4
9
.5

p
h
o
n
e
m

e
0
.1
7
9
2

0
.1
4
3
9

2
1
.1

0
.1
7
3
5

0
.1
6
4
6

8
.1

0
.2
9
4
3

0
.1
4
9
1

2
.8

0
.0
8
2
7

0
.1
6
8
1

2
1
3
.8

0
.1
4
6
2

0
.1
6
8
3

7
8
9
.4

sa
tim

a
g
e

0
.1
2
6
0

0
.1
1
7
3

5
7
.4

0
.1
1
1
0

0
.1
3
5
6

2
1
.4

0
.1
9
4
2

0
.1
1
6
3

8
.1

0
.0
6
9
7

0
.1
2
3
6

3
6
0
.4

0
.0
7
8
9

0
.1
3
3
0

9
0
7
.2

se
g
m

e
n
t

0
.1
5
6
1

0
.0
7
3
1

1
2
.1

0
.1
4
6
2

0
.1
1
1
7

4
.8

0
.1
7
8
8

0
.0
8
8
8

1
.6

0
.0
7
9
6

0
.1
1
3
9

2
4
.2

0
.1
6
1
2

0
.0
9
2
6

2
9
7
.0

sh
u
ttle

0
.0
1
6
4

0
.0
0
3
4

3
3
7
.1

0
.0
5
8
8

0
.0
1
2
6

2
2
5
.6

0
.0
2
7
5

0
.0
0
6
3

1
9
.6

0
.0
1
3
8

0
.0
0
5
8

1
9
.6

0
.0
1
3
0

0
.0
0
4
8

7
2
8
6
.7

sic
k

0
.0
8
1
4

0
.0
5
6
5

2
9
.5

0
.0
4
8
0

0
.0
6
8
2

9
.8

0
.1
5
3
0

0
.0
4
8
8

1
.5

0
.0
2
0
4

0
.0
6
1
0

4
7
.8

0
.0
1
0
7

0
.0
6
7
4

4
7
2
.5

te
x
tu

re
0
.1
2
6
0

0
.0
4
0
0

5
9
.6

0
.1
2
9
3

0
.0
4
6
0

2
5
.6

0
.1
5
5
3

0
.0
3
0
2

8
.1

0
.0
9
7
0

0
.0
3
7
1

9
0
.3

0
.1
0
2
3

0
.0
5
8
7

7
8
2
.9

w
a
v
e
fo
rm

0
.1
1
2
0

0
.2
3
5
4

3
1
.4

0
.0
7
4
2

0
.2
7
0
6

1
4
.5

0
.2
3
8
6

0
.2
7
5
8

6
.4

0
.0
3
8
1

0
.2
6
9
0

9
4
3
.9

0
.0
5
9
2

0
.3
0
1
2

8
4
0
.5

y
e
a
st

0
.1
4
6
0

0
.4
5
6
1

2
.5

0
.1
0
9
4

0
.4
8
6
5

1
.4

0
.5
1
3
7

0
.5
0
1
4

1
.0

0
.0
5
6
7

0
.4
8
0
4

1
2
5
.6

0
.1
1
2
4

0
.5
2
8
4

2
4
5
.5

z
ip

0
.1
1
8
0

0
.0
6
4
6

1
0
6
.2

0
.1
6
4
4

0
.0
7
2
3

4
2
.7

0
.1
4
5
6

0
.0
6
5
3

2
2
.0

0
.0
7
7
3

0
.0
6
3
9

4
7
6
.8

0
.0
8
0
2

0
.0
7
1
5

1
6
2
8
.0

80

4.4 Democratic instance selection method

4.4.6.1 DROP3 vs. demoIS.drop3 The results using standard DROP3 al-
gorithm and our method with DROP3 as base algorithm are plotted in Figure
13. The figure shows results for testing error, storage requirements and exe-
cution time. We will use a graphic representation based on the kappa-error
relative movement diagrams (Maudes-Raedo et al., 2008), but here instead of
the kappa difference value we will use the storage difference. The idea of these
diagrams is to represent with an arrow the results of two methods applied to
the same dataset. The arrow starts at the coordinate origin and the coordi-
nates of the tip of the arrow are given by the difference between the errors
and storages of our method and the standard instance selection algorithm.
The numbers indicate the dataset according to Table 1. These graphics are a
very convenient way of summarizing the results. For example, arrows pointing
down-left represent datasets for which our method outperform the standard
algorithm in both error and storage, arrows pointing up-left indicate that our
algorithm improves the storage but with a worse testing error, and so on. Nu-
merical results are shown in Tables 9 and 10. In terms of error, our method
is able to match the results of original DROP3 algorithm, the differences be-
tween them being small. In fact, demoIS.drop3 is even able to improve the
performance of DROP3 in some datasets, such as, car, mfeat-zer and nursery.
In terms of storage reduction, demoIS.drop3 performs better than DROP3.
Although it achieves worse results than DROP3 in a few problems, it is able
to obtain a large reduction over the results of DROP3 in abalone, gene, ger-
man, isolet, krkopt, waveform and yeast datasets. In terms of execution time,
the advantage of demoIS.drop3 is very significant. For small problems there
is a small overload due to the 10 rounds of votes performed, however as the
problem grows in complexity our approach shows a large reduction in the time
needed to perform the instance selection process. In this way, for the most time
consuming problem, adult dataset, demoIS.drop3 needs only 5% of the time
spent by the original DROP3 to achieve a similar error and a better storage
reduction.

81

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

−0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22
23

24

25
26

27

28
29

30

DROP3 vs. demoIS.drop3

∆ error

∆
st

or
ag

e

Fig. 13. Storage requirements/testing error (top) and execution time in seconds (bot-
tom – using a logarithmic scale) for standard DROP3 algorithm and our approach.

4.4.6.2 ICF vs. demoIS.icf Results for ICF and demoIS.icf are plotted
in Figure 14, and the numerical results are shown in Tables 9 and 10. In terms
of testing error, demoIS.icf is able to improve, or at least match, the results
of ICF in all the datasets, with the only exception of gene, krkopt, kr vs. kp
and nursery problems. Furthermore, for some problems, such as isolet, letter,
mfeat-kar, page-blocks and zip, the test error is clearly better than the error
achieved by ICF. In terms of storage reduction the average performance of both
algorithms is similar, with a remarkably good performance of demoIS.icf for
nursery dataset. In terms of execution time the behavior is similar to the case
for DROP3. For complex problems the advantage of demoIS.icf over ICF is

82

4.4 Democratic instance selection method

clear.

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

∆ storage

∆
er

ro
r 1

2 3

4

5

6

7

8

9

10

11

12

13
14

15

16

17
18

19

20

21

22
23

24

25

26

27

28

29

30

ICF vs. demoIS.icf

Fig. 14. Storage requirements/testing error (top) and execution time in seconds
(bottom – using a logarithmic scale) for standard ICF algorithm and our approach.

4.4.6.3 MSS vs. demoIS.mss Results for MSS and demoIS.mss are plot-
ted in Figure 15, and the numerical results are shown in Tables 9 and 10.
In terms of both, testing error and storage reduction, the performance of
demoIS.mss and MSS are very similar. The relevance of this experiment, as
we have stated, was to test whether our approach is still able to reduce the
execution time of a simpler algorithm, as was the case with more complex
ones, such as DROP3 and ICF. The results show that for large datasets, such
as adult, krkopt, letter and shuttle, the improvement on the execution time is
still significant.

83

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

−0.15 −0.1 −0.05 0 0.05 0.1
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

∆ storage

∆
er

ro
r

1

2

3

4

5 6

7

8

9

10

11

12

13

14

1516

17

1819

20

21

22

23

24

25

26

27

28

29

30

MSS vs. demoIS.mss

Fig. 15. Storage requirements/testing error (top) and execution time in seconds
(bottom – using a logarithmic scale) for standard MSS algorithm and our approach.

4.4.6.4 RNN vs. demoIS.rnn The next experiment is conducted using as
base instance selection algorithm RNN. The results are plotted in Figure 16
with numerical values shown in Tables 9 and 10. As we stated in the previous
section, this is a perfect example of the potentialities of our approach. In our
experiments RNN showed the best performance in terms of storage reduction.
However, the algorithm has a very serious problem of scalability. As an extreme
example, for adult problem it took more than 500 hours per experiment. This
scalability problem prevents is application in those problems where it would be
most useful. The figure shows how demoIS.rnn is able to solve the scalability
problem of RNN. In terms of testing error, it is also able to improve the

84

4.4 Democratic instance selection method

performance of RNN, with a better performance in 21 of the 30 datasets. In
terms of storage reduction our algorithm performs worse than RNN. However,
the performance of demoIS.rnn is still very good, in fact, better than any
other of the previous algorithms. So, our approach is able to scale RNN to
complex problems, improving its results in terms of testing error, but with
a small worsening of the storage reduction. In terms of execution time the
results are remarkable, the reduction of the time consumed by the selection
process is large, with the extreme example of the two most time consuming
datasets, adult and krkopt, where the speed-up is more than a hundred times.

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

∆ storage

∆
er

ro
r 1

2

3

4

5

6

7

8

9 10

11

12

1314

15

16

17 18
19

20

2122 23

24

25
26

27

28
29

30

RNN vs. demoIS.rnn

Fig. 16. Storage requirements/testing error (top) and execution time in seconds
(bottom – using a logarithmic scale) for standard RNN algorithm and our approach.

85

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

4.4.6.5 CHC vs. demoIS.chc Figure 17 plots the results of CHC algorithm,
with numerical values shown in Tables 9 and 10. Due to the high computational
cost of CHC we have chosen for this algorithm a smaller subset size of s =
250. A first interesting result is the problem of scalability of CHC algorithm,
which is more marked for this algorithm than for the previous ones. In other
works, (Cano et al., 2003) (Garćıa-Pedrajas et al., 2010), CHC algorithm was
compared with standard methods in small to medium problems. For those
problems, the performance of CHC was better than the performance of other
methods. However, as the datasets are larger, the scalability problem of CHC
manifests itself. In our set of problems, CHC clearly performs worse than
DROP3, ICF, MSS and RNN in terms of storage reduction. We must take
into account that for CHC we need a bit in the chromosome for each instance
in the dataset. This means that for large problems, such as adult, krkopt,
letter, magic or shuttle, the chromosome has more than 10000 bits, making the
convergence of the algorithm problematic. Thus, CHC is, together with RNN,
an excellent example of the applicability of our approach. For this method,
the scaling up of CHC provided by demoIS.chc is evident not only in terms
of running time, with a large reduction in all 30 datasets, but also in terms of
storage reduction. demoIS.chc is able to improve the reduction of CHC in all
30 datasets, with an average improvement of more than 20%, from an average
storage of CHC of 31.83% to an average storage of 11.58%. The bad side effect
is a worse testing error, which is however not very marked and compensated
by the improvement in running time and storage reduction.

86

4.4 Democratic instance selection method

−0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

∆ storage

∆
er

ro
r

1

2

3

4

5
6

7

8

9

10

11

12 1314

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29
30

CHC vs. demoIS.chc

Fig. 17. Storage requirements/testing error (top) and execution time in seconds
(bottom – using a logarithmic scale) for standard CHC algorithm and our approach.

4.4.6.6 Control experiments The previous experiments showed that our
method is able to, at least, match the performance of standard methods with
a very significant reduction in the execution time. However, it may be argued
that this reduction with respect to standard methods is significant only if
the standard methods are useful themselves. In this way, if a simple random
sampling is no worse than standard methods, the usefulness of our approach
would be partly compromised. In any case, we must not forget that since
random sampling does not determine the number of instances to retain in the
subset, it only solves part of the problem (Wilson and Martinez, 2000), even

87

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

in such cases when the random sampling achieves good results.

In this section we show the results of a control experiment designed to test
whether the simple random approach is competitive with respect to standard
instance selection methods. For each problem we performed a random sam-
pling with a sampling rate equal to the storage obtained by each algorithm
and compared the testing error of each standard method and the random
sampling. Table 11 shows the comparison for all methods.

Table 11
Summary of the performance of instance selection methods in terms of testing er-
ror against a random sample with the same sampling ratio. The table shows the
win/draw/loss record of each algorithm against the random sampling. The row la-
beled ps is the result of a two-tailed sign test on the win/loss record and the row
labeled pw shows the result of a Wilcoxon test. Significant differences at a confidence
level of 95% using Wilcoxon test are marked with a 3.

Standard methods

Drop3 ICF MSS CHC RNN

Win/draw/loss 24/0/6 22/0/8 18/0/12 16/0/14 27/0/3

ps 0.0014 0.0161 0.3616 0.8555 0.0000

pw 0.00393 0.00123 0.2289 0.7971 0.00003

Democratic methods

Drop3 ICF MSS CHC RNN

Win/draw/loss 25/0/5 21/0/9 18/1/11 19/0/11 24/1/5

ps 0.0003 0.0428 0.2649 0.2005 0.0005

pw 0.00103 0.1020 0.3820 0.2134 0.00093

The experiment shows interesting results. Firstly, we can see that the most
widely used algorithms, Drop3, ICF and RNN, are able to improve the perfor-
mance of random sampling in a consistent way. All of them are significantly
better than random sampling. The same conclusion is valid for their demo-
cratic counterparts. This control experiment validates the usefulness of these
algorithms. However, the experiment also shows that new algorithms must be
compared with random sampling to assure their viability, as MSS and CHC
do not show a significantly better behavior than random sampling.

Nevertheless, we must not rule out the use of these algorithms, as the com-
parison is made using as random sampling rate the value obtained by the
corresponding instance selection algorithm. If we consider random sampling
alone, we will not be able to know the percentage of instances to sample. Thus,
if instance selection algorithms are not able to improve the results of random
sampling, they are still useful to obtain the sampling rate.

4.4.6.7 Study of execution time In the previous sections we showed that
our method’s computational cost is linear in the number of instances. To

88

4.4 Democratic instance selection method

illustrate this property, we show the behavior of the standard algorithms and
our approach in terms of execution time in function of the number of instances
in Figure 30. We plot the time spent by the algorithms as the number of
instances increases. A Bezier line is drawn using those points to allow a better
plot. The figure shows that MSS, ICF and DROP3 methods have an execution
time that is approximately quadratic with respect to number of instances.
RNN and CHC show a worse behavior, with a far longer execution time. In
general, the standard methods need a long execution time for large problems.
On the other hand, our proposal is approximately linear allowing the use of
the methods even with hundreds of thousands of instances. This corroborates
our theoretical arguments in Section 4.4.4.

4.4.6.8 Summary of results As a summary of the previous experiments,
Table 12 shows the comparison of the behavior of our approach when using the
five tested instance selection algorithms averaged over all the datasets shown
in previous tables. The table shows the advantage of using our approach. In
terms of testing error demoIS is no worse than the standard algorithms in all
of the methods with the exception of CHC. However, although for CHC there
is a small increment in the testing error, it is coupled with a large decrement
in the storage reduction. In terms of storage reduction demoIS is no worse in
all of the cases with the exception of RNN. However, for RNN the reduction
in terms of execution time is remarkable, and the storage reduction achieved
by demoIS.rnn is worse than RNN but still better than all the remaining
algorithms. In terms of execution time, as showed by Figure 30 the behavior
is excellent for the five algorithms.

Table 12
Summary of the performance of our methodology against standard methods in terms
of testing error, storage requirements and execution time. Significant differences, for
testing error and storage reduction, at a confidence level of 95% using Wilcoxon test
are marked with a 3.

Method Democratic Instance Selection

Error Storage Time

DROP3 Equal Better Better

ICF Better 3 Better Better

MSS Equal Equal Better

CHC Worse 3 Better 3 Better

RNN Better 3 Worse Better

4.4.6.9 Study of subset size and number of rounds effect We have stated
that the size of the subset is not relevant provided it is kept small, that is,
of about a few hundreds or thousands of instances. Thus, we chose a subset
size of 1000 instances as a good compromise between a significant enough big
subset of instances and a small enough set. In this section we study the effect

89

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

of subset size in the behavior of our method. We have performed experiments
using DROP3 and ICF and subset sizes of 100, 250, 500, 1000, 2500 and 5000
instances and 10 rounds of votes. Figure 19 and 20 show the results for testing
error, storage requirements and execution time 6 with the six different sizes
using DROP3 and ICF respectively. For DROP3 the reduction is kept very
similar regardless of the subset size. With a larger subset size the reduction is
somewhat smaller, but the differences are not significant. In terms of testing
error, the method needs a subset size large enough to form meaningful subsets.
In this way, subsets smaller than 1000 instances obtain worse results, but
once the minimum size of 1000 instances is achieved, there is no longer a
decrement in testing error. In fact, the results for subset sizes of 1000, 2500
and 5000 instances are almost equal. In terms of execution time we observe a
large increment, as DROP3 is the base method the time grows approximately
quadratically as the subset size grows.

6 To avoid too large figures, in the following plots we show the number of each
dataset, as it listed in Table 1, instead of its name.

90

4.4 Democratic instance selection method

Fig. 19. Average testing error (top), storage requirements (middle) and execution
time (bottom) as a function of subset size for DROP3 algorithm. The plots show
relative values with respect to the results using a subset of 1000 instances.

The behavior for ICF is similar. In this case, there is a more significant reduc-
tion in storage requirements as the subset size is larger. This reduction has
the side effect of worsening the testing error for subset sizes of 2500 and 5000
instances. The behavior of execution time is the same as for DROP3. As the
subset size grows the execution time grows. As the size is larger, the O(n2) of
the algorithm begins to be relevant, and the processing of each subset is more
important than the reduction of the number of subsets to process. The results
corroborate that 1000 instances is a good compromise among the sizes that
favor storage reduction, testing error and execution time.

A similar study was performed to test the effect of the number of rounds
on the performance of the method. We run the method using 5, 10, 25 and
100 rounds. The results for DROP3 and ICF are shown in Figures 21 and 22
respectively. Again, similar behavior is observed in both algorithms. As more
rounds are added the reduction in storage decreases. This effect is due to the

91

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

fact that the threshold for removing an instance is higher and so more rounds
must agree to remove it. The testing error is not affected after the first few
rounds are added. Inspecting the results, we observed that when many rounds
are used, from 25 and on, many of the cast votes are redundant and there is
no advantage in having so many rounds. In this way, a value around 10 rounds
is enough. The effect of adding more voters in the testing error is marginal,
and each new round add more execution time. This behavior is similar to the
case of classifier ensembles, where little gain is obtained after the first few
classifiers are added (Garćıa-Pedrajas et al., 2007).

Fig. 20. Average testing error (top), storage requirements (middle) and execution
time bottom) as a function of subset size for ICF algorithm. The plots show relative
values with respect to the results using a subset of 1000 instances.

92

4.4 Democratic instance selection method

Fig. 21. Average testing error (top), storage requirements (middle) and execution
time (bottom) as a function of number of rounds for DROP3 algorithm. The plots
show relative values with respect to the results using 10 rounds.

93

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

Fig. 22. Average testing error (top), storage requirements (middle) and execution
time (bottom) as a function of number of rounds for ICF algorithm. The plots show
relative values with respect to the results using 10 rounds.

4.4.6.10 Huge problems In the previous experiments we have shown the
performance of our methodology in problems that can be considered medium
to large. In this section we consider huge problems, from a few hundreds of
thousands of instances to more than a million. Table 13 shows the problems
that are used. These datasets will show whether our methodology allows scal-
ing up standard algorithms to huge problems. As in the previous problems, the
testing error and storage reduction is obtained using 10-fold cross-validation.
The size of the datasets prevents the execution of the standard algorithms in a
reasonable time, so the validity of our approach will be tested using the 1-NN
10-fold cv testing error shown in the table. For these problems we have used
demoIS.drop3, demoIS.icf and demoIS.rnn.

94

4.4 Democratic instance selection method

Table 13
Summary of datasets. The features of each dataset can be C(continuous), B(binary)
or N(nominal). The Inputs column shows the number of inputs of the network as it
depends not only on the number of input variables but also on their type.

Data set Cases Features Classes Inputs 1-NN error

C B N

census 299285 7 - 30 2 409 0.0743

covtype 581012 54 - - 7 54 0.3024

kddcup99 494021 33 4 3 23 118 0.0006

kddcup991M 1000000 33 4 3 21 119 0.0002

poker 1025010 5 - 5 10 25 0.4975

Table 14
Testing error, storage requirements and execution time (in seconds) for our approach
for huge problems.

Dataset Storage Error Time

demoIS.drop3

census 0.0289 0.0771 20894.3

covtype 0.1627 0.3333 7352.0

kddcup99 0.0123 0.0066 44198.0

kddcup991M 0.0114 0.0019 89547.0

poker 0.0247 0.5009 6660.0

demoIS.icf

census 0.0296 0.0818 6548.0

covtype 0.2250 0.4003 3891.3

kddcup99 0.0266 0.0112 4924.1

kddcup991M 0.0097 0.0072 15120.0

poker 0.0483 0.5099 5265.3

demoIS.rnn

census 0.0006 0.0623 75181.0

covtype 0.2653 0.2955 190903.0

kddcup99 0.0063 0.0036 112947.0

kddcup991M 0.0026 0.0037 229273.0

poker 0.0001 0.4990 335141.7

Results are shown in Table 14. The first remarkable result is that our method
is able to scale-up even to huge problems. In fact, our algorithm makes it
possible to do instance selection with datasets whose execution time was pro-
hibitive. In the worst case, demoIS.rnn for poker dataset, our approach spent
93 hours. This value is very good if we take into account that standard RNN
took more than 500 hours in adult dataset, a problem with 48,842 instances
whereas poker dataset has 1025,010 instances. Regarding the effectiveness of

95

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

the scalability the results are very good. The achieved testing error is close to
the 1-NN error for all problems and methods, with the only exception of the
covtype problem with demoIS.icf method. This testing error comes together
with a remarkable reduction in storage size, which for demoIS.rnn is less
than 1% of the original dataset for census, kddcup99, kddcup991M and poker.
Similarly, demoIS.drop3 and demoIS.icf achieve large reductions for these
problems. For covtype, the reduction is still large, although not so impressive.

4.4.6.11 Huge problems: Application to other methods of classification We
have stated that our approach can be applied to other classifiers as well. Other
learners can be benefited from the democratization of the instance selection
algorithm, as it provides a way to scale up any instance selection algorithm.
In this way, classifiers whose complexity is related to the size of the training
set, such as decision trees and support vector machines (SVM), can benefit
from instance selection as the constructed classifier would be simpler (Cano
et al., 2007)(Sebban et al., 2000). When the instances selected are used as a
training set for an instance base learner, such as an SVM or a decision tree,
the term prototype selection is more often used than instance selection. We
will use instance selection for k-NN oriented methods, and prototype selection
for methods developed for selecting training instances for an instance based
learner.

Our method can be used without any significant modification with any of
these classifiers. We just need a prototype selection algorithm suitable for the
used classifier, then we can apply the procedure described in Algorithm 6. As
it is the case for the described instance selected methods, prototype selection
algorithms for decision trees, neural networks, or SVMs, suffer a problem of
scalability. Thus, our method can contribute to scale up these algorithms as
it has been shown for k-NN based instance selection.

In this section we present experiments showing the applicability of the demo-
cratic algorithm when using decision trees and SVMs as classifiers. We have
chosen these two classifiers as their complexity depends on the quality of the
training set (Sebban et al., 2000) and also because they are among the most
widely used in any machine learning application. As we have stated, the parti-
tion method described in Section 4.4.2 is specially designed for k-NN method.
Thus, for the experiments with decision trees and SVMs we have used a simple
random partition of the training set into disjoint subsets of approximately the
same size.

As prototype selection algorithm, we can use any of the previously described.
However, as these algorithms are specially designed for k-NN classifiers, their
results on other classifiers are rather poor. Thus, we use a method designed
for any type of classifier. This method (Brodley and Friedl, 1999) is a filter

96

4.4 Democratic instance selection method

approach based on using a set of different classifiers as noise filters. These
classifiers should detect the noisy, mislabeled, etc. instances and then remove
them from the training set. The procedure is shown in algorithm 10. The
authors propose two versions of the method, consensus filter and majority
vote. In consensus filter a set of classifiers D = {d1, d2, . . . , dk} is available.
Each classifier di is trained on the original training set. After that, instances
that are misclassified by all classifiers in D are discarded. Then the classifier
algorithm of our choice is trained on the remaining instances. In majority vote
the procedure is the same, but instances are discarded just if a majority of
the classifiers misclassify them. In our experiments we have used the latter
approach as the former resulted in removing very few instances. We will use
the term Majority Vote Filter (MVF) algorithm to refer to this method.

Algorithm 10: Majority vote filter algorithm
Data : A training set T = {(x1, y1), . . . , (xn, yn)} and a set of learners D

Result : The subset of selected instances S
foreach di ∈ D do

1 Train di on T

end
2 S = T
foreach xi ∈ S do

if xi is misclassified by a majority in D then
3 Remove xi from S

end
end

As classifiers for D we have chosen a 1-NN classifier, a k-NN classifier where
k is obtained by cross-validation, a C4.5 decision tree (Quinlan, 1993), an
SVM with a linear kernel, and an SVM with a Gaussian kernel. Decision
trees and SVMs are sensitive to parameters, so we have performed our ex-
periments using cross-validation for setting the values of the parameters.
For each one of the classifiers used we have obtained the best parameters
from a set of different values. For SVM with a linear kernel we tried C ∈
{0.1, 1, 10}, for an SVM with a Gaussian kernel we tried C ∈ {0.1, 1, 10} and
γ ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10}, testing all the 18 possible combinations.
For C4.5 we tested 1 and 10 trials and softening of thresholds trying all the
4 possible combinations. The parameters chosen by cross-validation are then
used to learn the classifier using all the available training data. This process
is repeated each time a classifier is trained. Although this method does not
assure an optimum set of parameters, at least we can be sure that a good set
of parameters is obtained in a reasonable time. The SVM learning algorithm
was programmed using functions from the LIBSVM library (Chang and Lin,
2001).

The experiments were performed with the same experimental setup of the
previous ones. There is only a change that can be performed in the democratic

97

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

algorithm. The evaluation of the vote threshold (see Section 4.4.3) can be
made using as evaluator a k-NN algorithm, as in the previous results, or we
can use the classifier we are going to learn. The later method is more time
consuming, but it is likely to produce better results. In this section we show
results with the latter method, the former is faster but the results are slightly
worse.

T
es
ti
n
g
E
rr
or

T
re
e
si
ze

T
im

e
(s
)

Fig. 23. Testing error, relative tree size, measured as the ratio of the number of
nodes with respect to C4.5 applied to the whole dataset, and execution time in
seconds (using a logarithmic scale) for standard MVF algorithm and our approach,
compared with C4.5 algorithm applied to the whole dataset.

The experiments were performed using the standard classifiers, both C4.5 and
SVM, on the whole dataset. Then, we applied the MVF algorithm and trained
C4.5 and SVM on the dataset selected by MVF, and finally we performed the
same experiment using the democratic version of MVF, demoIS.MVF. Results
for C4.5 classifier are shown in Table 15 and for SVM are shown in Table 16.
These results are plotted in Figures 23 and 24 respectively.

98

4.4 Democratic instance selection method
T
es
ti
n
g
E
rr
or

S
u
p
p
or
t
ve
ct
or
s

T
im

e
(s
)

Fig. 24. Testing error, relative tree size, measured as the ratio of the number of
support vectors with respect to SVM applied to the whole dataset, and execution
time in seconds (using a logarithmic scale) for standard MVF algorithm and our
approach, compared with SVM applied to the whole dataset.

Both, the tables and the results, show the usefulness of our approach. MVF is
able to obtain classifiers, in both cases, that are simpler than the obtained us-
ing all the instances in the training set, and match their testing error. However,
as in the previous methods, MVF has a scalability problem for large datasets.
This is specially noticeable for adult and shuttle datasets. demoIS.MVF is
able to keep the performance of MVF but with a very significant reduction
in the execution time. As it was the case for the experiments using k-NN the
reduction is more significant as the problem is larger, supporting our claim
that the proposed method is able to scale up prototype selection algorithms
efficiently as well as instance selection methods.

99

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

Table 15
Testing error, tree size (number of nodes) and execution time (in seconds) for a
standard C.45 algorithm, majority vote filtering (MVF) and demoIS.MVF

Dataset C4.5 MVF + C4.5 demoIS.MVF + C4.5

Error Size Error Size Time (s) Error Size Time (s)

abalone 0.7914 2310.2 0.7568 187.2 62.3 0.7391 252.2 30.1

adult 0.1470 1988.56 0.1735 257.6 387406.1 0.1427 223.0 520.8

car 0.1331 130.2 0.1582 102.0 8.3 0.1657 88.0 6.4

gene 0.0946 274.4 0.0729 163.6 188.7 0.0757 183.6 52.8

german 0.3170 288.2 0.2720 127.6 3811.3 0.2770 137.4 7.1

hypothyroid 0.0056 27.2 0.0114 20.4 216.1 0.0202 18.6 15.8

isolet 0.2997 1368.2 0.2988 1259.4 1128.0 0.2987 1253.0 171.0

krkopt 0.1933 7527.4 0.2739 3692.4 3708.7 0.2554 4320.8 169.6

kr vs. kp 0.0063 70.2 0.0081 56.8 40.6 0.0088 53.6 17.9

letter 0.1221 2553 0.1219 2208.6 2089.6 0.1245 2124.0 141.5

magic04 0.1661 719 0.1763 457.6 18577.2 0.1699 449.6 103.7

mfeat-fac 0.1150 148.8 0.1100 138.8 265.7 0.1210 128.8 69.6

mfeat-fou 0.2415 272.2 0.2405 166.8 141.7 0.2365 216.6 57.9

mfeat-kar 0.1825 232.2 0.1645 221.2 147.8 0.1740 213.8 49.7

mfeat-mor 0.2955 219 0.2933 97.0 2029.3 0.2770 77.4 10.1

mfeat-pix 0.1190 174.2 0.1130 164.6 206.8 0.1050 157.2 61.0

mfeat-zer 0.3088 290.5 0.3200 267.8 114.8 0.3095 244.8 36.8

nursery 0.1678 367 0.1683 310.8 660.9 0.1739 292.8 67.3

optdigits 0.1082 439.8 0.0998 383.4 380.3 0.0929 374.6 47.5

page-blocks 0.0331 121 0.0269 58.4 2756.4 0.0285 46.6 20.3

pendigits 0.0348 402.4 0.0359 342.0 1059.5 0.0332 336.0 50.5

phoneme 0.1326 254.8 0.1411 196.6 56.0 0.1326 227.6 22.1

satimage 0.1446 654.4 0.1271 420.2 747.6 0.1299 402.6 44.1

segment 0.0307 89.2 0.0329 77.0 47.5 0.0407 71.2 10.3

shuttle 0.0002 58.6 0.0007 47.8 298567.8 0.0006 43.6 193.1

sick 0.0098 54.2 0.0196 29.6 132.6 0.0167 31.6 16.1

texture 0.0666 308.4 0.0645 258.6 269.2 0.0640 257.2 68.5

waveform 0.2474 599.8 0.2288 460.2 224.2 0.2384 544.2 51.8

yeast 0.4527 453.6 0.4209 99.2 6.5 0.4068 101.4 8.2

zip 0.1340 795.4 0.1324 729.8 916.4 0.1273 721.0 140.5

100

4.4 Democratic instance selection method

Table 16
Testing error, size (number of support vectors) and execution time (in seconds) for
an SVM, majority vote filtering (MVF) and demoIS.MVF

Dataset SVM MVF + SVM demoIS.MVF + SVM

Error Size Error Size Time (s) Error Size Time (s)

abalone 0.7372 3753.2 0.7511 595.2 62.3 0.7413 609.1 31.6

adult 0.1546 15175.3 0.1572 1415.5 387406.1 0.1528 2937.5 2095.0

car 0.1430 539.6 0.1064 343.5 8.3 0.1442 581.3 11.0

gene 0.0735 1720.0 0.0773 1459.4 188.7 0.0729 1741.1 119.4

german 0.2460 549.5 0.2630 297.5 3811.3 0.2640 335 9.7

hypothyroid 0.0239 261.3 0.0316 127.7 216.1 0.0515 214.4 28.4

isolet 0.0568 3362.8 0.0605 3046.1 1128.0 0.0587 3477.8 292.6

krkopt 0.1644 18108.7 0.2598 17658.3 3708.7 0.2404 13472.7 317.5

kr vs. kp 0.0081 513.0 0.0085 547.8 40.6 0.0094 372.2 41.1

letter 0.0160 7370.0 0.0303 10112.7 2089.6 0.0305 6952.7 664.5

magic04 0.3190 4822.7 0.1964 4517.5 18577.2 0.1589 2399.1 259.2

mfeat-fac 0.0195 535.1 0.0250 328.3 265.7 0.0250 612.8 105.1

mfeat-fou 0.1690 1190.0 0.1530 734.6 141.7 0.1690 955.5 61.3

mfeat-kar 0.0305 870.0 0.0250 700.9 147.8 0.0280 901.3 52.5

mfeat-mor 0.2645 993.9 0.3233 334.7 2029.3 0.2675 234.8 8.4

mfeat-pix 0.0195 823.4 0.0195 678.9 206.8 0.0235 805.9 119.4

mfeat-zer 0.1695 972.1 0.1940 402.0 114.8 0.1780 755.3 39.8

nursery 0.1279 2846.6 0.1044 1177.5 660.9 0.1471 2975.2 903.2

optdigits 0.0171 1244.1 0.0107 1281.5 380.3 0.0153 1161.2 197.5

page-blocks 0.0364 532.4 0.0287 157.7 2756.4 0.0380 294.8 28.5

pendigits 0.0046 1125.5 0.0040 1062.1 1059.5 0.0064 1085.9 127.0

phoneme 0.1065 2489.9 0.1189 1714.6 56.0 0.1264 1293.25 27.8

satimage 0.0748 1746.9 0.0877 1927.9 747.6 0.0823 1295.5 124.4

segment 0.0424 450.0 0.0403 593.8 47.5 0.0467 395.1 12.6

shuttle 0.0014 563.6 0.0019 627.1 298567.8 0.0018 767.2 380.4

sick 0.0311 505.9 0.0485 149.6 132.6 0.0361 365.7 24.5

texture 0.0016 664.0 0.0049 817.6 269.2 0.0038 737.8 96.5

waveform 0.1410 2767.6 0.1374 1508.0 224.2 0.1370 1828.1 119.7

yeast 0.4149 1083.6 0.4236 341.0 6.5 0.4000 424 8.4

zip 0.0102 1964.6 0.0120 1146.5 916.4 0.0126 2085.1 547.3

These results show that our methodology can be applied to different kinds
of classifiers provided there is a prototype selection method for them. Other
methods that have reported good results, such as PSRCG (Sebban and Nock,
2000) and SiS (Sane and Ghatol, 2007), can be used as well.

4.4.6.12 Huge problems: Noise tolerance Instance selection algorithms, as
any other learning algorithm (Bauer and Kohavi, 1999), degrade their perfor-
mance in the presence of noise. In the field of ensembles of classifiers, Dietterich

101

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

(2000a) tested the effect of noise on learning algorithms introducing artificial
noise in the class labels of different datasets. Real-world problems do have
noise, thus, it is relevant to study the behavior of any learning algorithm in
presence of noise. In this section we study the sensitivity of our method to
noise and compare it with standard algorithms.

In order to add noise to the class labels, we follow the method of Dietterich
(2000a). In order to add classification noise at a rate ρ, we chose a fraction ρ,
of the instances and changed their class labels to be incorrect choosing uni-
formly from the set of incorrect labels. We chose all the datasets and three
rates of noise, 5%, 10%, and 20%. With these three levels of noise we per-
formed the experiments using the DROP3 and ICF, and their democratic
counterparts demoIS.drop3 and demoIS.icf. Figure ?? shows the results for
the four methods at a noise level of 5%, 10% and 20%, and DROP3 and ICF
algorithms. The figure shows the robustness of our method. The degradation
of performance is smooth as class label noise is added. It is important to note
that our method is able to keep a good performance in presence of noise, as it
uses partial views of the dataset which might be more sensitive to noise. The
figures show how our method is able to keep its relative behavior with respect
to the original algorithms as noise is added.

4.4.7 Parallel implementation of the demoIS. algorithm: the
federal algorithm

In this section we show a parallel algorithm called the federal algorithm (Pe-
drajas et al., 2011) based on the described democratization approach, demoIS.
algorithm. The federal algorithm is able to achieve an enormous reduction
in the execution time of any instance selection algorithm while keeping its
performance.

The parallel implementation is based on a master/slave architecture. The mas-
ter performs the partition of the dataset and sends the subsets to each slave.
Each slave performs the instance selection algorithm using only the instances
of its subset and then returns the selected instances to the master. The mas-
ter stores the votes for each removed instance. The general architecture of the
system is shown in Figure 26. This method has the advantage that it is still
applicable for very large datasets, as only a small part of the dataset must be
kept in memory.

The threshold of votes is obtained using the same parallel federal approach.
Again, we divide the dataset into disjoint subsets and evaluate the application
of each threshold on every subset separately. The value of the goodness of a
threshold is the average value of evaluating (9) in each subset.

102

4.4 Democratic instance selection method

Fig. 26. Parallel implementation of federal instance selection.

On any parallel implementation, the communication between the different
tasks is an important issue as an excess of information exchange harms the
performance of the algorithm. In our method, the communication between the
master and the slaves occurs only twice. It is interesting to note that during
the execution of each instance selection algorithm in each slave no exchange of
information between tasks is needed. The communication between the different

103

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

slaves and the master is needed in the following steps:

(1) Before each slave initiates its instance selection process, it must receive
the subset of data to perform that process. This amount of information
is always small as the basis of the method is that each slave takes care
of only a small part of the whole dataset. Furthermore, if the slaves can
access the disk, they can read the needed data directly from it.

(2) Once the instance selection process is finished, the slaves send the se-
lection performed to the master. This selection consists of a list of the
selected instances, which is a small sequence of integers.

When the process of selection is finished, the step of obtaining the best value
for the votes threshold must be carried out. As shown, this step is also per-
formed in parallel. The exchange of information between the master and the
slaves is similar to the previous one:

(1) Before each slave initiates the evaluation of a certain threshold, it must
receive the subset of data to perform that task. This amount of informa-
tion is always small as the basis of the method is that each slave takes
care of only a small part of the whole dataset. As in the previous case,
if the slaves can access the disk, they can read the needed data directly
from it.

(2) Once the evaluation process is finished, the slaves send the evaluation
performed to the master. The evaluation is the error obtained when the
corresponding threshold is used, which is a real number.

Thus, in both cases the data exchanged between the master and the slaves is
not large, avoiding a bottleneck in the algorithm. The whole parallel proce-
dure is shown in Algorithm 11. First, the algorithm sends a subset to every
slave. Then it waits for the first slave to finish, gets the results and sends the
finished slave a new subset, until all subsets are processed. The same proce-
dure is performed for evaluating the best votes threshold. The final selection
of instances in performed in line 14 of the algorithm.

The usefulness of our federal method is shown by an extensive comparison
using 35 datasets of medium and large sizes from the UCI Machine Learning
Repository, including imbalanced-datasets. Detailed results for the standard
and federalized version are shown in Table 17 for CHC. The comparison be-
tween the standard version and the federalized one is shown in Table 18.

The results show a very good behavior of FedIS.chc. In terms of testing
error, our method is able to match the results of the standard method, and
even improve them for some datasets. In terms of storage reduction, FedIS
is less efficient than standard CHC, but still achieve very good results, and
the differences are not large. In terms of testing time, the improvement is
very significant. In the most extreme case, krkopt dataset, FedIS.chc is more

104

4.4 Democratic instance selection method

Algorithm 11: Federal instance selection (FedIS) algorithm.

Data : A training set T = {(x1, y1), . . . , (xn, yn)}, subset size s, number of
partitions r and number of processors p.

Result : The set of selected instances S ⊂ T .
for i = 1 to r do

1 Divide instances into ns disjoint subsets tij :
⋃

j t
i
j = T of size s

end
/* The total number of subsets to process is r × ns */
/* Send first round of subsets to slaves */2 subset := 1

3 partition := 1
for i = 1 to p do

4 Send subset tpartitionsubset to slave i
if subset = ns then

5 subset := 1
6 partition++;

end
end
/* Record slave selection and send new subsets to task */ for i = 1 to r × ns do

7 Wait for an slave, w, to finish
8 Store votes of removed instances from slave w

if More subsets to process then
9 Send subset tpartitionsubset to slave w

if subset = ns then
10 subset := 1
11 partition++;

end
end

end
12 v = ObtainOptimumThresholdOfVotes (t) (Algorithm 12)
13 S = T
14 Final instance selection: Remove from S all instances with a number of votes ≥ v
15 return S

than 2,400 times faster than standard CHC, from an average execution time
of 128418.3 seconds to an average execution time of 52.8 seconds.

Table 18
Comparison of standard CHC algorithm and its federalized counterpart. The table
shows the win/draw/loss (w/d/l) of the algorithm in columns against the algorithm
in the row and the p-value of the Wilcoxon test (pw).

FedIS.chc

Testing error Storage Time

w/d/l 18/0/17 7/0/28 35/0/0

CHC pw 0.5888 0.0036 0.0000

Additionally, our method is applied to eight very large datasets (the largest set
of 50 million instances and 800 features) with very good results and fast exe-

105

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

Algorithm 12: Algorithm for obtaining the optimum threshold of votes.
Data : A training set T = {(x1, y1), . . . , (xn, yn)}, subset size s, number of

partitions r, partitions t, and number of processors p.

Result : The optimum threshold of votes vbest.

/* Send first round of subsets to slaves */1 subset:= 1
2 partition := 1
for i = 1 to p do

3 Send subset tpartitionsubset to slave i
if subset = ns then

4 subset := 1
5 partition++;

end
end
/* Record slave evaluation of f(v), v ∈ {1, 2, . . . , r} */ for i = 1 to r × ns do

6 Wait for an slave, w, to finish
7 Store fw(v), v ∈ {1, 2, . . . , r} from slave w

if More subsets to process then
8 Send subset tpartitionsubset to slave w

if subset = ns then
9 subset := 1

10 partition++;

end
end

end
11 Set f(v), v ∈ {1, 2, . . . , r} as the average evaluation for all slaves
12 vbest = argmax1,...,rf(v)
13 return vbest

cution time. In most of the cases our method is able to match the performance
of the original algorithm, even sometimes improving it, with a considerable
reduction in execution time. Moreover, comparative results of our parallel im-
plementation with stratification algorithm will be detailed in Section 4.4.8.2.

106

4.4 Democratic instance selection method

Table 17
Summary of results for standard CHC algorithm and our parallel implementation
FedIS.chc.

Dataset CHC FedIS.chc

Storage Error Time (s) Storage Error Time (s)

abalone 0.0499 0.7681 678.3 0.0392 0.7696 39.1

adult 0.2101 0.2356 93567.1 0.0191 0.1820 60.4

car 0.0433 0.1696 97.3 0.0435 0.1806 25.4

euthyroid 0.0104 0.0683 339.4 0.0129 0.0734 21.2

gene 0.0537 0.3259 356.1 0.0547 0.3388 23.5

german 0.0313 0.2920 29.8 0.0295 0.3240 7.9

hypothyroid 0.0023 0.0626 550.7 0.0058 0.0608 32.2

isolet 0.0360 0.1917 2477.2 0.1471 0.1397 46.7

krkopt 0.5337 0.4723 128418.3 0.0720 0.5077 52.8

kr vs. kp 0.0334 0.1226 333.8 0.0333 0.1517 21.3

letter 0.0611 0.1148 64400.0 0.2377 0.0702 25.1

magic04 0.0182 0.1803 48162.2 0.0234 0.1850 22.8

mfeat-fac 0.0395 0.0745 108.8 0.0428 0.0620 30.7

mfeat-fou 0.0565 0.2680 122.5 0.0649 0.2460 32.7

mfeat-kar 0.0607 0.1055 113.7 0.0708 0.1010 28.8

mfeat-mor 0.0247 0.2935 128.1 0.0310 0.3025 32.1

mfeat-pix 0.0442 0.0590 106.7 0.1051 0.0480 31.4

mfeat-zer 0.0528 0.2550 118.8 0.0574 0.2265 30.9

mushroom 0.0028 0.0011 3763.9 0.0508 0.0016 42.9

nursery 0.0463 0.2529 9955.8 0.0502 0.2697 26.4

optdigits 0.0301 0.0603 1211.1 0.1044 0.0461 14.8

ozone1hr 0.0011 0.0297 268.1 0.0044 0.0320 15.2

ozone8hr 0.0031 0.0636 231.8 0.0100 0.0739 15.0

page-blocks 0.0098 0.0459 1577.3 0.0117 0.0517 19.7

pendigits 0.0158 0.0207 8499.8 0.0276 0.0169 16.8

phoneme 0.0274 0.1518 1548.2 0.0330 0.1563 18.1

satimage 0.0241 0.1179 2057.1 0.0306 0.1123 24.2

segment 0.0347 0.0749 175.7 0.0502 0.0844 10.2

shuttle 0.2638 0.0055 76057.0 0.0048 0.0040 90.2

sick 0.0042 0.0411 557.6 0.0095 0.0448 31.3

texture 0.0345 0.0435 1235.1 0.0403 0.0426 15.7

titanic 0.0031 0.2122 271.8 0.0049 0.2117 52.6

waveform 0.0103 0.2426 818.3 0.0480 0.2266 12.3

yeast 0.0398 0.4514 75.6 0.0382 0.4291 17.6

zip 0.0351 0.0700 3940.8 0.0770 0.0566 13.4

average 0.0557 0.1698 12924.4 0.0482 0.1666 28.6

107

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

4.4.8 A comparison of demoIS. algorithm and other approaches
to scale up instance selection algorithms

In this section we are going to compare the results of our best approach to
scale by instances, demoIS., with its precursor the recursive method and
also with the high-performance stratification method (Cano et al., 2005) whose
main features and similarities with our method have been previously explained
in Section 2.

4.4.8.1 A comparison between Recursive and demoIS. approaches At the
beginning of this Section 4 we have discussed how demoIS. algorithm is based
on the recursive divide-and-conquer method (de Haro-Garćıa and Pedrajas,
2009). The original recursive method was able to obtain very good results in
terms of execution time and storage reduction. However, the main drawback of
that method is in the testing error, which was worse than that obtained if we
applied the original method alone. Figure 27 shows a comparison of demoIS.
and this recursive method in terms of testing error for DROP3 and ICF as
base methods. The figure shows how demoIS. improves the testing error of
our previous recursive approach in almost all of the problems. A pairwise com-
parison of both algorithms, for DROP3 and ICF methods separately, shows
significant differences using Wilcoxon test at a confidence level of 99%.

Fig. 27. Testing error for recursive and democratic instance selection using DROP3
(top) and ICF (bottom) as base methods.

108

4.4 Democratic instance selection method

4.4.8.2 A comparison between Stratification and demoIS. approaches In
Section 4.2, we stated that stratification is a closely related method. In con-
sequence we present the comparison of our approach and stratification using
CHC as the base method.

For the comparison we have used a parallel implementation of both algorithms
so as to save execution time in the experiments. The parallel implementation
of DemoIS. is one of our application papers, called FedIS (Pedrajas et al.,
2011)

Table 19
Comparison of parallel-stratification and FedIS. The table shows the win/draw/loss
(w/d/l) of the algorithm in columns against the algorithm in the row, and the p-
value of the Wilcoxon test (pw).

FedIS.chc

Medium/large sized problems

Testing error Storage Time

Stratified w/d/l 23/3/9 20/0/15 18/0/17

CHC pw 0.0017 0.4128 0.0825

Class-imbalanced problems

G-mean Storage Time

Stratified w/d/l 29/0/11 20/0/20 3/0/37

CHC pw 0.0005 0.8088 0.0000

Very large problems

Testing error Storage Time

Stratified w/d/l 8/0/0 7/0/1 0/0/8

CHC pw 0.0100 0.0100 0.0100

We have used the same architecture of FedIS to parallelize the stratifica-
tion algorithm. It is worth to note that times reported show wall clock times
including all the stages of the algorithms. All the parameters of the two meth-
ods, FedIS and parallel-stratification, are the same, including a subset size of
1,000 instances.

The comparison between parallel-stratification and FedIS is shown in Table
19. The table shows results for medium/large sized datasets, class-imbalanced
datasets and very large datasets. The results for medium/large datasets are
plotted in Figure 28. The comparison shows that FedIS is significantly better
than parallel-stratification in terms of accuracy (p-value of 0.0017) and as
good as parallel-stratification in terms of reduction.

The comparison also shows that FedIS is almost as fast as parallel-stratification.
These results need explanation. In medium sized datasets, all the rounds of

109

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

voting can be made at once in the 256 cores, when we have less than 256
subsets. This occurs for datasets with less than 25,000 instances. For these
datasets, FedIS is even faster than parallel-stratification. The difference in
favor of FedIS comes from the stratified partition. Performing a partition that
keeps class distribution is slightly more time consuming that our method. For
large datasets, not all rounds of voting can be made concurrently, and then
parallel-stratification is faster. However, the differences are not large for any
dataset, being the largest difference below 54 seconds.

Fig. 28. Stratification method for CHC and FedIS.chc results. Error (top, differ-
ence between the parallel version of the stratification method and FedIS) storage
requirements (middle, difference between the stratification method and FedIS) and
speed-up of the stratification method with respect to the parallel algorithm (bot-
tom).

The results for class-imbalanced problems are plotted in Figure 29. The com-
parison shows the same behavior of both algorithms.

110

4.4 Democratic instance selection method

Fig. 29. Stratification method for CHC and FedIS.chc results for class-imbalances
problems. Error (top, difference between the stratification method and FedIS) stor-
age requirements (middle, difference between the stratification method and FedIS)
and speed-up of the stratification method with respect to the parallel algorithm
(bottom).

Table 20
Summary of results for very large datasets using the parallel version of stratification.

Dataset Storage Testing error G-mean Time (s)

census 0.0318 — 0.7435 85.8

chrom21 0.2937 — 0.3481 375.0

covtype 0.0678 0.3805 — 55.9

dna 0.1225 — 0.1966 10905.0

kddcup99 0.0312 0.0040 — 50.6

kddcup991M 0.0290 0.0044 — 91.7

kddcup99all 0.0196 0.0084 — 520.0

poker 0.0558 0.5031 — 66.0

The results for very large datasets are shown in Table 20. A first interesting
result is that stratification is faster, as it should be expected, but the differ-
ences are not large. This is because, although FedIS performs 10 rounds of
instance selection in different partitions, all these rounds can be done simul-
taneously. In fact, with a larger cluster, both stratification and FedIS would

111

4 SCALING UP INSTANCE SELECTION
ALGORITHMS

have constant time complexity. In terms of performance, FedIS is better than
stratification in testing error and reduction in all datasets with the only ex-
ception of census, where stratification achieved a better storage reduction.
Wilcoxon test finds significant differences in both cases (see Table 19). In fact,
in very large class-imbalanced datasets, the performance of FedIS is clearly
better than stratification.

In Section 4.4.4, we presented theoretical arguments for the linear time com-
plexity of our approach, or even constant time complexity if we have enough
processors. To illustrate this property, Figure 30 shows the behavior of the
stratification method and our approach in terms of execution time for very
large problems. We plot the time spent by the algorithms as the complexity of
the problem increases. The plot corroborates our theoretical arguments and
shows the linear time complexity of our approach even for very large datasets.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

Ti
m

e
(s

)

Problem size

Stratification
Democratization

Fig. 30. Wall clock time spent by stratification and FedIS using CHC as base
algorithm and very large datasets

4.5 Summary

In this section we have described the application of our generic scaling method-
ology to instance selection algorithms.

Firstly we have presented a recursive approach which is the precursor idea
of our main methodology to scale up instance selection algorithms, called
demoIS.. As explained the recursive procedure partitions the original dataset
into disjoint subsets, an instance selection algorithm is applied to each sub-
set, and then the selected instances are rejoined to repeat the process. The

112

4.5 Summary

recursive method is able to improve the storage requirements of the original
algorithms with a considerable reduction in execution time. However, the ac-
curacy of the recursive method worsens the one of the original method alone.

In a next stage we designed the demoIS. algorithm, based on the previous
method and taking into account the experimental results obtained so as to
improve them. The method is applicable to any instance selection method
without any modification. The demoIS.method consists of performing several
rounds of applying instance selection on disjoint subsets of the original dataset.
In this case, instead of recursively reducing the original set of instances, we
perform independent selection phases and combine their results by means
of a voting method. Using five well known instance selection algorithms, we
showed that our method is able to improve the results of the recursive method
and matches the performance of the original algorithms with a considerable
reduction in execution time. In terms of reduction of storage requirements
and testing error, our approach is even better than the use of the original
instance selection algorithm over the whole dataset for some of the methods.
For a more detailed comparison between demoIS. and the recursive procedure
we refer the reader to Section 4.4.8.1. Moreover, demoIS. is able to scale up
to huge problems with hundreds of thousands of instances, executing fast and
achieving a very significant reduction of storage while keeping the testing error
similar to the 1-NN error using the whole datasets.

Both recursive and demois methods are straightforwardly parallelizable with-
out modifications. Consequently we have finally described how to parallelize
our most efficient approach, demoIS., to benefit from an even more impres-
sive reduction in the execution time of the scaling process. As detailed, the
parallel version of demoIS. is called federal instance selection and it is
able to match the performance of the original algorithm with a considerable
reduction in execution time.

The results show that our parallel approach allows the scaling up of instance
selection algorithms to problems of almost any size. Two features of our
method are able to guarantee that scalability: firstly, the selection of instances
is always performed over small datasets, keeping the time spent by the process
low; secondly, only those small subsets of instances must be kept in memory,
removing any scalability constraint due to memory limits.

A comparison with a parallel implementation of the stratification method,
which shares the philosophy of our approach, showed that our proposal is
better in terms of achieved accuracy whereas keeps the same reduction of
stratification. The cost is a higher running time. In Section 4.4.8.2 the results of
a complete set of comparative experiments are shown. This pattern of behavior
has been shown in medium/large datasets, class-imbalanced problems and
huge problems (up to 50 millions of instances).

113

5 Scaling up feature selection
algorithms

Many recent pattern recognition problems involve highly complex datasets
with large numbers of possible explanatory variables. For many reasons, this
abundance of variables significantly hinders classification and recognition tasks.
There are also efficiency issues, as the speed of many classification algorithms
is significantly improved when the complexity of the data is reduced. One of
the approaches to address the problems linked to having too many features is
feature selection. However, feature selection algorithms have scalability issues
when the number of features or instances is large.

After the successful application of our democratization methodology to scale
up instance selection algorithms, in this section we are going to describe the
application of our scaling approach to state-of-the-art feature selection algo-
rithms. The resulting methodology consists of several rounds of “weak” feature
selection processes whose outputs are combined into a single subset of relevant
features. This method shares the design philosophy of the ensembles of clas-
sifiers, combining weak classifiers to obtain a strong one. We combine feature
selectors instead of classifiers. The methodology can be used with any feature
selection method.

We performed extensive comparative experiments proving that our method is
especially efficient when we use feature selection algorithms that suffer from
high computational cost or when we have to deal with very large datasets.
During the fruitful collaboration with acknowledged Dr. Ludmila Kuncheva,
we designed a simpler algorithm (de Haro-Garćıa et al., 2011) based on the de-
scribed approach in order to benefit from the previously mentioned advantages
when selecting relevant features in real world medical datasets. Specifically we
worked with Functional Magnetic Resonance Imaging (fMRI) datasets, char-
acterized by suffering from serious problems due to their huge amount of
features. Each voxel in the 3-D image is taken to be a feature, and each image
is an instance. The class label of the instance is determined by the type of
stimulus presented at the time of the scan. Different images are shown to a
set of individuals and the classification task is to determine the stimulus type.

This application will be summarized in section 5.6 and confirms the usefulness
and practical applicability of our method.

115

5 SCALING UP FEATURE SELECTION
ALGORITHMS

5.1 Preliminary concepts on feature selection prob-
lems

Data mining (Agrawal et al., 1993), as a multidisciplinary joint effort involv-
ing databases, machine learning, and statistics, has been highly successful at
turning mountains of data into nuggets. To use data mining tools effectively,
data preprocessing is essential. Feature selection is one of the most important
and frequently used techniques in data preprocessing for data mining (Blum
and Langley, 1997) (Liu and Motoda, 2001). In contrast to other dimension-
ality reduction techniques, it preserves the original semantics of the variables,
hence offering the advantage of interpretability by a domain expert (Saeys
et al., 2007).

In real-world situations, the relevant features are often unknown a priori.
Therefore, many candidate features are introduced to better represent the
domain. Unfortunately many of these are either partially or completely irrele-
vant or redundant to the target concept. An irrelevant feature does not affect
the target concept in any way, a redundant feature does not add anything
new to the target concept, and a relevant feature is neither irrelevant nor
redundant to the target concept (John et al., 1994).

Feature selection has been a fertile field of research and development since
the 1970s in statistical pattern recognition (Jain and Zongker, 1997), (Mitra
et al., 2002), machine learning (Blum and Langley, 1997), (Kohavi and John,
1997), and data mining (Dash et al., 2002), (Kim et al., 2000), and it has
been widely applied to many fields, such as text categorization (Leopold and
Kindermann, 2002), (Nigam et al., 1999), image retrieval (Rui and Huang,
1999), (Swets and Weng, 1995) customer relationship management (Ng and
Liu, 1999), intrusion detection (Lee et al., 2000), and genomic analysis (Xing
et al., 2001).

Feature selection can be defined as the selection of a subset of M features from
a set of N features, M < N , such that the chosen subset optimizes the value
of some criterion function over all subsets of size M (Narendra and Fukunaga,
1977). The objectives of feature selection are manifold, the most important
ones being the following (Saeys et al., 2007):

• To avoid overfitting and improve model performance, i.e., better predic-
tion performance in the case of supervised classification and better cluster
detection in the case of clustering.

• To provide faster and more cost-effective models.
• To gain a deeper insight into the underlying processes that generated the
data.

116

5.1 Preliminary concepts on feature selection problems

Fig. 31. Four basic steps of a typical feature selection process.

The advantages of feature selection techniques are well known, but we will
have to deal with a scalability problem if we apply these techniques to large
datasets 7 . The advantages of feature selection come at a certain price, as
the search for a subset of relevant features introduces an additional layer of
complexity to the modeling task. This new layer increases the memory and
running time requirements, making these algorithms very inefficient when ap-
plied to problems that involve very large datasets. Ironically, standard feature
selection becomes impracticable on large datasets, which are the ones that
would benefit most from its application. Therefore, with the increasing size
of datasets in all fields of application, the need to scale up feature selection
algorithms is also growing.

Instead of scaling a certain feature selection algorithm, we might opt to select
a subset of the whole dataset and disregard the remaining data. However,
there are reasons for scaling up learning algorithms. The main reason is that
increasing the size of the training set often increases the accuracy of the learned
models(Provost and Kolluri, 1999). In many cases, the degradation in accuracy
when learning from smaller samples stems from overfitting, due to the need to
allow the program to learn small disjuncts(Holte et al., 1989), elements of a
class description that cover few data items. The existence of noise in the data
further complicates the problem because with a small sample, it is impossible
to tell the difference between a special case and a spurious data point. Thus,
using a small subset of the whole large dataset is not likely to produce usable
results, and scaling up the learning method becomes a must.

A typical feature selection process consists of four basic steps (shown in Fig-
ure 31), namely, subset generation, subset evaluation, stopping criterion, and
result validation (Dash and Liu, 1997).

The generation procedure is a search procedure that produces candidate fea-

7 Datasets can be large in that they have a large number of instances or a large
number of features. A certain feature selection algorithm may have a scalability
problem when there are many features, many instances, or both.

117

5 SCALING UP FEATURE SELECTION
ALGORITHMS

Fig. 32. Schematic view of filter methods.

ture subsets for evaluation based on a certain search strategy (Blum and Lan-
gley, 1997). The generation procedure can start (i) with no features, (ii) with
all features, or (iii) with a random subset of features. In the first two cases,
features are iteratively added or removed, whereas in the last case, features
are either iteratively added or removed or produced randomly thereafter. Fea-
ture selection methods generate candidates randomly or using a deterministic
procedure. An evaluation function measures the goodness of the subset pro-
duced, and this value is compared with the previous best value. If the new
value is found to be better, then the new subset replaces the previous best
subset. The process of subset generation and evaluation is repeated until a
given stopping criterion is satisfied (e.g., a predefined number of features are
selected or a number of iterations reached). The feature selection process ends
by outputting a selected subset of features to a validation procedure (Dash
and Liu, 1997).

In the context of classification, feature selection techniques can be organized
into different categories. The output type divides feature selection algorithms
into two groups (Liu and Yu, 2005): ranked list and minimum subset. The
essential difference between the two concerns the presence of an order on the
selected features. There is no order among the features in a selected subset.
One cannot easily remove any more features from a subset, but one can do so
for a ranked list by removing the least important one.

If we consider how different methods combine the feature selection search with
the construction of the classification model, we can identify three categories
(Saeys et al., 2007): filter methods (Dash et al., 2002), (Liu and Setiono,
1996), (Yu and Liu, 2003), wrapper methods (Caruana and Freitag, 1994), (Dy
and Brodley, 2000), (Kohavi and John, 1997), and hybrid/embedded methods
(Das, 2001), (Xing et al., 2001):

(1) Filter techniques (see Figure 32) rely on the intrinsic properties of the
data to evaluate and select feature subsets without involving a mining
algorithm. The advantages of filter techniques are that they easily scale
to very high-dimensional datasets, they are computationally simple and
fast, and they are independent of the classification algorithm. As a result,
the feature selection must be performed only once, and then different
classifiers can be evaluated.

(2) Wrapper methods (see Figure 33) embed the model hypothesis search
within the feature subset search. In this setup, a search procedure in the
space of possible feature subsets is defined, and various subsets of features

118

5.1 Preliminary concepts on feature selection problems

Fig. 33. Schematic view of wrapper methods.

are generated and evaluated. To search the space of all feature subsets, a
search algorithm is then wrapped around the classification model. How-
ever, as the space of feature subsets grows exponentially with the number
of features, heuristic search methods are used to guide the search for an
optimal subset. The evaluation of a specific subset of features is obtained
by training and testing a specific classification model. The advantages of
these models include the interaction between feature subset search and
model selection and their ability to take into account feature dependen-
cies. A common drawback is that they have a high risk of over-fitting and
are very computationally intensive.

(3) Hybrid/embedded techniques attempt to combine the advantages of the
first two models by building the search for an optimal subset of features
into the classifier construction. Like wrappers, they are specific to a given
learning algorithm. Embedded methods have the advantage that they
include the interaction with the classification model, while at the same
time being far less computationally intensive than wrapper methods.

As previously stated, when the dimensionality of a domain expands, the num-
ber of features f increases. In these cases, finding an optimal feature subset
is usually intractable (Kohavi and John, 1997), and many problems related
to feature selection have been shown to be NP-hard (Blum and Rivest, 1992).
The same scalability problems appear when the number of instances is large,
as most feature selectors evaluate some criterion on the whole dataset. To be
able to work with large datasets that cannot be processed by an ordinary fea-
ture selection process (it would be too computationally intensive), we propose
a new methodology called pseudoensembles of feature selectors, which consists
of performing several rounds of fast feature selectors.

119

5 SCALING UP FEATURE SELECTION
ALGORITHMS

5.2 Related Work on Large-Scale Feature Selection Prob-
lems

Over the last years, some interesting work has been done on large-scale learn-
ing (Sonnenburg et al., 2007) (Breiman, 1999) (Chawla et al., 2004). As we
have previously emphasize, scaling up learning algorithms, the issue is not as
much one of speeding up a slow algorithm as one of turning an impracticable
algorithm into a practicable one. The crucial issue is seldom “how fast” we
can run on a certain problem, but it is rather “how large” a problem we can
(feasibly) deal with.

Not many previous studies have dealt with feature selection for large problems.
It is worth mentioning the work of Sikonja (1998), in which they sped up the
Relief algorithm by means of k-d trees. Although the algorithm shows very
good performance, k-d trees add new memory requirements and are less effi-
cient if the trees are not balanced. Furthermore, this method is not applicable
to other feature selection algorithms.

As a way to overcome scaling up problems, the relevance of the features can
also be evaluated individually. Univariate approaches are simple and fast and
are therefore appealing. However, they do not consider possible correlations
and dependencies between the features. Therefore, multivariate search tech-
niques must be used, which may be computationally too expensive when deal-
ing with a large feature space, as in our case. To solve this problem, Lai et al.
(2006) proposed a data partitioning method that partly shares our philosophy.
They sample T feature subsets randomly and then apply a feature selection
process to each subset by means of SVM-RFE or the Liknon algorithm. Each
feature that happens to be in a subset receives a value (possibly a rank) in
comparison with the rest of the set. Finally, the feature values are tallied,
and a single ranking is produced. Our method has the advantage of having a
more complete view of the problem, as it learns from the whole dataset parti-
tioned into subsets, rather than only from several isolated samples. Randomly
sampled subsets may miss some features that are key to the learning process.

Gadat and Younes (2007) propose an algorithm that attributes a weight to
each feature, proportional to its importance for the classification task. The
entire set of weights is optimized by a learning algorithm based on a training
set. These weights result in an estimated probability distribution over the
features and are optimized by means of a stochastic gradient descent algorithm
using the training set. Their method is successfully tested on face detection,
handwritten digit recognition, spam classification and micro-array analysis.

Bins and Draper (2001) address large feature selection problems applied to
computer vision datasets by proposing a three-step algorithm. The first step

120

5.2 Related Work on Large-Scale Feature Selection Problems

uses a variation of the well-known Relief algorithm to remove irrelevance,
the second step clusters features using K-means to remove redundancy, and
the third step is a standard combinatorial feature selection algorithm: when
possible (less than 110 features), they use the Sequential Floating Backward
Selection (SFBS) algorithm. When the number of features remaining after the
relevance and redundancy filters exceeds 110, they switch to the less effective
Sequential Floating Forward Selection (SFFS) algorithm.

121

5 SCALING UP FEATURE SELECTION
ALGORITHMS

5.3 Pseudoensembles Feature Selection Method

As previously mentioned, when the dimensionality of a domain expands, the
number of features N increases and many problems related to feature selection
have been shown to be NP-hard (Blum and Rivest, 1992). In these cases,
finding an optimal feature subset by an ordinary feature selection process is
usually intractable because it would be too computationally intensive (Kohavi
and John, 1997). We propose an application of our democratization scaling
to feature selection, which consists of performing several rounds of fast feature
selectors.

More specifically, for each step i, we divide the dataset S into several small
disjoint datasets Si,j. The feature selection algorithm is applied with no mod-
ifications to each one of these subsets, and a selection Ci,j is produced from
each subset of the data. After all the ns rounds are applied, (which can be done
in parallel, as all of them are independent from each other), the combination
method constructs the final selection C as the result of the feature selection
process.

As stated, our method can be summarized in three stages:

• Partition of the datasets.
• Application of feature selection to the subsets.
• Combination of the results.

These three stages are detailed in the following sections. There are two differ-
ent versions of the method depending, on whether the basic feature selection
algorithm outputs a subset of instances or a ranking. These two versions are
shown in algorithms 13 and 14, respectively. Due to the fact that one of the
versions of our method does not use a “democratic“ voting process (specifically
the one that outputs a ranking of features) we decided to call our methodology:
pseudoensembles of feature selectors.

As the experiments will show, the most important advantage of our method
is the large reduction in execution time. Moreover, our approach has a very
competitive complexity, as it is linear in the number of instances or in the
number of features (depending on which factor determines the complexity of
the feature selection base algorithm).

As previously stated, the method has the additional advantage of allowing an
easy parallel implementation. The application of the feature selection algo-
rithm to each small subset of instances or features is independent of all the
remaining subsets. All the subsets can be processed at the same time. Even
different rounds can be run at once. Moreover, there is little communication
between the nodes of the parallel execution, only in the combination step to

122

5.3 Pseudoensembles Feature Selection Method

compute the final ranking or subset of features. This allows a complete par-
allelization of the methodology. In fact, if we have a sufficiently large cluster
of machines, all the tasks can be performed at the same time. In such a case,
the proposed methodology is of constant complexity.

Furthermore, we can choose the complexity of the execution in each one of
the processors because the size of the subsets is a parameter of the method-
ology. Another parameter is the feature selection algorithm, so any feature
selection algorithm can be applied in the pseudoensembles framework with no
modifications.

5.3.1 Partition of the datasets

The partition process consists of dividing the original dataset into several
disjoint subsets of approximately the same size that cover the full dataset.

In contrast to the complex partitioning method employed in the previous scal-
ing of instance selection algorithms, we are going to use the simplest method
available, strictly a random partition. In the present partitioning method, each
feature or instance is randomly assigned to one of the subsets. We need a dif-
ferent partition of the dataset for each round of the algorithm; otherwise, the
results will be the same because the subsets will be identical.

It is worth noting that we do not consider the application of the learning algo-
rithm to a subset as a solution to the problem; in that way, the combination
is not made at the round level. A standard sampling approach was discarded
for the partition because it may never pick some features or instances (de-
pending on which factor is the basis of the partition). Our method takes into
account all features or instances in each round. Therefore, we can state that
each element of the entire dataset is present the same number of times in
the learning/testing process, once per round. These rounds will not select the
best features on their own because they only have partial knowledge of the
original dataset. They can be seen as weak feature selectors that provide a
fast approximate solution that suffer from locality, and moreover, they are
more sensitive to noise. Nevertheless, the key to the success of our method
comes from the combination of all these rounds based on the quality of the
selected features. This approach succeeds in selecting good features globally
while keeping the complexity and execution time manageable. The combina-
tion of rounds applied in the pseudoensembles will be detailed at the end of
this section.

The partition of the datasets can be carried out in two ways: we can choose
to split datasets by instances or by features 8 . This decision should be closely

8 It is also possible to partition the datasets by features and instances together.

123

5 SCALING UP FEATURE SELECTION
ALGORITHMS

related to the complexity of the feature selection algorithm selected to be
the core of our method. Depending on the design, the complexity of a certain
feature selection may depend on the number of features, or, on the other hand,
it may come from the number of instances in the dataset. That is the reason
why it would be more highly recommended to divide datasets by one or the
other, depending on which factor specifically relies on the complexity of the
algorithm involved.

Preliminary experiments have shown that the size of the subsets has no signif-
icant impact on the results of the method, provided that it is small enough to
avoid large execution times and large enough to allow a meaningful application
of the selection process. The time spent by the algorithm depends on the size
of the largest subset, so it is important that the partition algorithm produces
subsets of approximately equal size. When partitioning by instances, values
in the interval [100, 1000] are recommended. When partitioning by features
values in the interval [5, 11] are also advisable.

5.3.2 Application of feature selection to the subsets

The feature selection algorithm is applied to all the datasets in several times or
iterations, which we call ’rounds’. This repetition ensures that we have gath-
ered enough information for the combination step to be useful. The advantage
of our method is that it does not need any modification of the learning al-
gorithm, thus saving the time spent in adapting known algorithms. Although
the same feature selection algorithm will be applied to different subsets, it
will produce different results that can be advantageously combined. This is
a similar philosophy to the construction of ensembles of classifiers (Rokach,
2009).

pseudoensembles deal with the feature selection algorithms as black boxes,
so it is possible to include any feature selection in our framework with no
modifications. Thus, the output of our method is dynamic, depending on which
type of output was originally provided by the feature selection algorithm. If
the feature selection method computes a ranking of the features, we will also
return a ranking as the final output and let the user establish her/his own
threshold to select the most relevant features for her/his problem. However, if
the feature selection method returns a subset of the most relevant features, the
pseudoensembles will also produce a final subset of relevant features. In the
following two sections, we explain the application of each of these possibilities.

In such a case, each subset will be formed by a subset of instances and a subset of
features. This possibility has yet to be explored experimentally.

124

5.3 Pseudoensembles Feature Selection Method

5.3.2.1 Pseudoensembles using subset selection The feature selection algo-
rithm is applied to each subset separately. The features that are selected by the
algorithm to be removed receive a vote. Then a new partition is performed and
another round of votes is carried out. After the predefined number of rounds
is made, the features that have received a number of votes above a certain
threshold are removed. An outline of the method is shown in Algorithm 13.

Algorithm 13: Pseudoensembles using subset selection
Data : Z = {X,Y }:A labeled training dataset, with features X = {x1, . . . , xn}

and class labels Y = {y1, . . . , yn}
J(S): Evaluation criterion for subset S ⊆ X
included in the feature selection method applied
ns: Number of subsets of M instances or M features
(depending on whether we are splitting by instances or by
features)
r: Number of rounds/iterations performed r

Result : The set of selected features S ⊆ X.

1 Initialize the array of votes with n zeros: V (x) = 0, x ∈ X
for i = 1 to r do

2 Split Z randomly into ns disjoint subsets of instances or features of size M
for i = 1 to ns do

3 Apply feature selection algorithm to Sj

4 For all features x ∈ Sj , add a vote to the features to be removed in the
subset Sj

end
end

5 Obtain threshold of votes, v, to remove a feature
6 S = T
7 Remove from S all features with a number of votes above or equal to v
8 return S

However, as stated so far, there is still an important issue to be addressed in
the subset selection before we can obtain a useful algorithm: the determination
of threshold of votes required to remove a feature, which is problem-dependent.
Depending on the problem, a certain threshold may be too low or too high.
Thus, a method must be developed for the automatic determination of the
number of votes needed to remove a feature from the training set. The auto-
matic determination of this threshold has the additional advantage of relieving
the researcher of the duty of setting a difficult parameter of the algorithm.

5.3.2.2 Pseudoensembles using ranking of features Ranking the features
based on their individual merit has at least two flaws. First, features that are
not very relevant on their own but become relevant in a group will receive
poor scores and may be dropped off at an early stage of the feature selection

125

5 SCALING UP FEATURE SELECTION
ALGORITHMS

cascade. Second, relevant but possibly redundant features will occupy the top
spots. Consequently, ranking methods usually try to evaluate the merit of
each feature with respect to the remaining features. This evaluation requires
complex algorithms where the scalability problem appears.

In our framework, if we use as the base feature selector a method that outputs
a ranking of the variables, the ranking of each variable on every subset will be
recorded. The resulting ranks will be combined in the combination step. The
whole method when using rankings of variables is outlined in Algorithm 14.

Algorithm 14: Pseudoensembles using ranking of features
Data : Z = {X,Y }:A labeled training dataset, with features X = {x1, . . . , xn}

and class labels Y = {y1, . . . , yn}
J(S): Evaluation criterion for subset S ⊆ X
included in the feature selection method applied
ns: Number of subsets of M instances or M features
(depending on whether we are splitting by instances or by
features)
r: Number of rounds/iterations performed r

Result : Ranking of relevant features

1 Initialize the score array with n zeros: F (x) = 0, x ∈ X
for i = 1 to r do

2 Split Z randomly into ns disjoint subsets of instances or features of size M
for i = 1 to ns do

3 Apply feature selection algorithm to Sj

4 For all features x ∈ Sj , update the scores as F (x) = F (x) + J(Sj)

end
end

5 Compute the mean feature scores F̄ = F/r
6 Sort features by descending F̄x

7 return Ranking of relevant features

5.3.3 Combination of the results

The combination of results is a key step in our method. We are dealing with
simple feature selectors, that we call “weak feature selectors”, in the same
sense that weak classifiers are combined in an ensemble. We have opted for a
simple combination method, following the experience of classifier ensembles,
where complex methods have not achieved consistently better performance
than simple ones (Kuncheva, 2001).

We must not forget that pseudoensembles treat feature selection algorithms
as black boxes, and they produce their final output dealing with the origi-
nal form of the outputs computed after the independent runs of the feature

126

5.3 Pseudoensembles Feature Selection Method

selection algorithms over different subsets. The following sections specify the
combination step for each of the two possible outputs of the pseudoensembles.

5.3.3.1 Combination of rankings of features To combine the different rank-
ings of each round into a final ranking, we simply compute the average ranking
value for each feature and then sort them into a new rank. This new averaged
rank is the final ranking achieved by the pseudoensemble.

It is worth noting that the ranks obtained in each round are related to the
weights provided by the feature selection algorithm for each feature. We con-
sider the option of averaging the weights received by each feature in the rounds.
Nevertheless, we think that averaging ranks is a better option because the
weight provided by the feature selection algorithm for an individual feature
is closely attached to which other features are active in the partition being
evaluated. Taking into account that the partitions are constructed randomly,
the average of the weights would be more sensitive to the noise added by the
subset selection.

5.3.3.2 Combination of subsets of features As previously stated, the votes
for a feature to be removed will be accumulated over the different rounds.
After the rounds take place, we will have a number of votes for each feature.
This number represents how many times the feature has been selected to be
removed by the application of the feature selector. An important issue in our
method is determining the number of votes needed to remove a feature from
the training set. Preliminary experiments showed that this number highly
depends on the specific dataset. Thus, it is not possible to set a general pre-
established value usable in any dataset. On the contrary, we need a way of
selecting this value directly from the dataset in run time. A first natural choice
would be the use of a cross-validation procedure. However, this method is very
time consuming. A second choice is to estimate the best value for the number
of votes from the effect on the training set. This latter method is the one we
have chosen.

Our choice is to estimate the best value for the number of votes from its effect
on the training set, specifically using 10% of the dataset so as to speed up the
process.

The selection of the number of votes must take into account two different
criteria: the training error, εt and the memory requirements (percentage of
features retained), m. Both values must be minimized to the extent possible.
Our method of choosing the number of votes needed to remove a feature is
to calculate the threshold number of votes v that minimizes a fitness criterion
f(v):

127

5 SCALING UP FEATURE SELECTION
ALGORITHMS

f(v) = αεt(v) + (1− α)m(v), (9)

where α is a value in the interval [0, 1] that measures the relative relevance
of both values. In general, the error minimization is more important than
storage reduction; thus, we have used a value of α = 0.75. Different values can
be used if the researcher is more interested in storage reduction than in error
reduction.

We perform r rounds of the algorithm and store the number of votes received
by each feature. Then we must obtain the threshold number of votes v in the
interval constituted by the minimum and maximum number of votes received
by any feature. We calculate the criterion f(v) (see eq. 9) for all the possible
threshold values from 1 to r, and assign to v the value which minimizes the
criterion. After that, we perform the feature selection by removing the features
whose number of votes is above or equal to the obtained threshold v.

5.4 Experimental Setup

The experimental setup used in this work is the same as the one previously
detailed in instance selection Section 4.3.3, except for some minor details we
proceed to discuss in the following lines.

In order to make a fair comparison between the standard algorithms and our
scaling proposal, we have selected 30 problems from the UCI Machine Learning
Repository (Hettich et al., 1998). Most of the datasets selected are the same
as in the recursive method and the demoIS. algorithm. However, due to the
fact that some of the datasets are different, their features can be consulted
on Table 21. These datasets can be considered as representative of problems
from medium to large size.

When evaluating methods that select a subset of features, we will consider
the testing error and the reduction ratio achieved by the methods we are
comparing. The case when using methods that output a ranking of features is
different, as we do not have a value for the testing error or the reduction as
the final result of the algorithm. For these methods, we will use a graphical
comparison using plots of the testing error in function of the number of features
selected. Additionally, to carry out a numerical comparison, we will take into
account two numerical values that summarize the performance of the methods.
From the plot of the testing error against the number of features, we will obtain
an area under the curve (AUC) measure. Higher values of the AUC mean that
the method is selecting better features. However, this value is influenced by
the testing error obtained when only a few features are selected. In most cases,

128

5.4 Experimental Setup

Table 21
Summary of datasets. The features of each dataset can be C(continuous), B(binary)
or N(nominal). The Inputs column shows the number of input variables, as it de-
pends not only on the number of features but also on their type.

Data set Instances Features Classes Inputs

C B N

1 abalone 4177 7 - 1 29 10

2 car 1728 - - 6 4 16

3 gene 3175 - - 60 3 120

4 german 1000 6 3 11 2 61

5 hypothyroid 3772 7 20 2 4 29

6 isolet 7797 617 - - 26 617

7 kr vs. kp 3196 - 34 2 2 38

8 letter 20000 16 - - 26 16

9 magic04 19020 10 - - 2 10

10 mfeat-fac 2000 216 - - 10 216

11 mfeat-fou 2000 76 - - 10 76

12 mfeat-kar 2000 64 - - 10 64

13 mfeat-pix 2000 240 - - 10 240

14 mfeat-zer 2000 47 - - 10 47

15 mushroom 8124 - 6 16 2 117

16 nursery 12960 - 1 7 5 23

17 optdigits 5620 64 - - 10 64

18 ozone 2536 72 - - 2 72

19 page-blocks 5473 10 - - 5 10

20 pendigits 10992 16 - - 10 16

21 phoneme 5404 5 - - 2 5

22 satimage 6435 36 - - 6 36

23 segment 2310 19 - - 7 19

24 shuttle 58000 9 - - 7 9

25 sick 3772 7 20 2 2 33

26 soybean 683 - 16 19 19 82

27 texture 5500 40 - - 11 40

28 waveform 5000 40 - - 3 40

29 yeast 1484 8 - - 10 8

30 zip 9298 256 - - 10 256

that testing error is very poor. We are usually interested in the behavior of
the method when the subset of selected features is achieving performance that
is at least close to the use of all features. To account for that, we have chosen
as a second numerical measure the percentage of features needed to achieve a
testing accuracy of at least 90% of the accuracy of the whole set of features.

129

5 SCALING UP FEATURE SELECTION
ALGORITHMS

5.4.1 Feature Selection Algorithms

To obtain an accurate view of the usefulness of our method, we have tested it
against two of the most successful state-of-the-art feature selection algorithms.
We have chosen to test our model with two high-performance algorithms that
are widely used in the feature selection community with very good results,
proved in numerous algorithm comparisons: a ranking feature selection method
(SVM-RFE) and a subset feature selection method (a genetic algorithm).

5.4.1.1 SVM-RFE The support vector machine recursive feature elimina-
tion approach is well-studied for use in gene expression studies (Guyon et al.,
2002). This algorithm conducts feature selection in a sequential backward elim-
ination manner, which starts with all the features and discards one feature at
a time. Like SVM, SVM-RFE was initially proposed for binary problems. The
squared coefficients: w2

j (j = 1, ...; p) of the weight vector w are employed as
feature ranking criteria. Intuitively, those features with the largest weights are
the most informative. One iteration of SVM-RFE trains the SVM classifier,
computes the ranking criteria w2

j for all features, and discards the feature with
the smallest ranking criterion. One can consider that the variable that is re-
moved is the one with the least influence on the weight vector norm. Hence,
this method is similar to those employed in neural networks in the sense that
the ranking criterion is the sensitivity of w2 with respect to a given variable.

The procedure provides as output a ranking of the features, and by setting an
appropriate threshold we can select a small subset of features. Most studies
have found RFE to select very good feature sets, but when the number of
instances is large, scaling up is needed because SVM has scalability issues with
large training sets. Therefore, the complexity of SVM-RFE relies on its core
algorithm: SVM has very good scaling by features but has efficiency problems
when the number of instances is large. Consequently, our method partitions
by instances when we want to select features by means of the SVM-RFE
algorithm.

5.4.1.2 Genetic algorithm We decided to implement a simple genetic algo-
rithm in our democratic framework because various works (Yang and Honavar,
1998) have successfully compared genetic algorithms (GA) with other feature
selection methods. Among them, it is worth noting the paper of Siedlecki and
Sklansky (1989), which compared a genetic algorithms approach with a se-
quential search (forward and backward) and with a non-optimal variation of
branch and bound (Foroutan-Sklansky BB search), which is able to work with
a nonmonotonic criterion. On a synthetic 24-dimensional dataset as well as on
a real 30-dimensional dataset, the GA outperformed these other feature selec-
tion methods (in terms of both classification performance and computational

130

5.4 Experimental Setup

Algorithm 15: SVM-RFE Algorithm
Data : A training set T = {(x1, y1), . . . , (xn, yn)}.

Subset of surviving features s = [1, 2, ...n].
Ranked list of features r = []

Result : Ranked list of features r
repeat

1 Restrict training examples to good feature indices: X = X0(:, s)
2 Train the classifier: α = SVM − train(X, y)
3 Compute the weight vector of dimension length(s): w = Σαkykxk
4 for alli do
5 Compute the ranking criteria: ci = (wi)

2

end
6 Find the feature with the smallest ranking criterion: f = argmin(c)
7 Update the feature ranked list: r = [s(f), r]
8 Eliminate the feature with the smallest ranking criterion: s = s(1 : f −1, f +1 :

length(s))

until s = []
9 return r

effort).

In our GA approach, a given feature subset is represented as a binary string
(a chromosome) of length n, with a zero or one in position i denoting the
absence or presence of feature i in the set, where n is the total number of
available features. We apply standard genetic operators, such as two-point
crossover and mutation. At the beginning of each generation, we perform an
elitism step, and we evaluate each individual by means of the fitness function:

fitness(ind) = suc rate(i)·α+ (1− α)

· ((1− n sel feat)/n feat),
(10)

where suc rate is the wrapper evaluation of the subspace, α is a value in the
interval [0, 1], which is set to 0.75, n sel feat is the number of selected features
and n feat is the number of all available features.

It is worth noting the scalability problems of a standard application of genetic
algorithms when the number of variables is large. In these cases, the search
space grows exponentially, so their efficiency and the quality of the results
decrease. Nevertheless, these scalability problems can be overcome by parti-
tioning the original dataset into smaller and independent subsets, as proposed
in our method. The key is to combine the results of each independent and
fast run of the genetic algorithm effectively to produce the final selection of
features.

131

5 SCALING UP FEATURE SELECTION
ALGORITHMS

The complexity of our genetic algorithm, because it is a wrapper algorithm,
depends on the complexity of the classification model used to evaluate a spe-
cific chromosome (subset of activated features) in each generation. As further
described in Section 5.5, we tested our genetic algorithm with two different
settings, using a C4.5 and a KNN classification algorithm. On the one hand,
if the C4.5 algorithm is chosen to evaluate the quality of each chromosome,
the complexity of the method mostly depends on the number of features that
determines the size of the search space of the genetic algorithm due to the
ability C4.5 to deal with datasets with many instances. Therefore, in this
setting the set of features is partitioned into smaller subsets to increase its
efficiency. On the other hand, if the KNN algorithm is used as evaluator, we
use both partitioning by features and instances, as the genetic algorithm will
have scalability problems if the number of instances or the number of features
is large.

5.5 Experimental Results

In the genetic algorithm, the number of generations was set to 1000. We sped
up the process by applying an exhaustive search of all possible combinations
of features if the exhaustive search had lesser iterations than the number of
generations set in the genetic algorithm. The number of individuals in the
population was set to 100. At the beginning of each generation, we applied
a 10% of elitism and then obtained the rest of the population by iteratively
applying a two-point-crossover operator (in which we keep the two best indi-
viduals of each crossover step). The standard mutation percentage was fixed
to 10%. These are fairly standard values (Cano et al., 2003).

The SVM-RFE algorithm used a Gaussian kernel, and the parameters of
SVM (regularization, C, and kernel width, γ) were estimated using cross-
validation during the iterations. The best combination of C and γ was chosen
by testing all the possible combinations in the sets: C ∈ {0.1, 1.0, 10.0} and
γ ∈ {0.0001, 0.001, 0.01, 0.1, 1.0, 10.0}. For k-NN, k was also chosen by cross-
validation in the interval [1, 100]. C4.5 was not sensitive to the parameters.
We used pruned trees.

Our method has three parameters: the instance subset size or feature subset
size M , the number of rounds r, and α, if we are using pseudoensembles to
get a subset selection. We used subsets of 7 features and of 100 instances
for SVM-RFE and 1000 instances for the genetic algorithm. These values are
large enough to allow for a meaningful application of the feature selection
algorithm on the subset and yet small enough to allow a fast execution. For
both configurations, subset feature selectors and ranking feature selectors,
we employed the C4.5, k-NN and SVM classifiers to evaluate the subsets of

132

5.5 Experimental Results

features obtained by the methods. For the genetic algorithm, we evolved the
population using as evaluators C4.5 and k-NN. SVM is too computationally
expensive to be used in the genetic algorithm.

For the number of rounds, we chose a small value to have a fast execution,
r = 10. Our experiments showed that, as it is the case for ensembles of classi-
fiers (Garćıa-Pedrajas and Ortiz-Boyer, 2007), increasing the number of rounds
increased the execution time but did not improve the performance. As ex-
plained in Section 5.3.3.2, α was set to 0.75 because a lesser error is more
important than a smaller storage requirement when directly selecting a subset
of features. We will denote as “pseudoE.x“ the application of our method with
a certain feature selection algorithm X.

5.5.1 Results of pseudoensembles using subset selection

As previously stated in Section 5.4, for the genetic algorithm, we studied the
testing error and the reduction ratio as well as the performance in terms of the
running time. To show the testing error and reduction ratio, we use a graph
based on the kappa-error relative movement diagrams (Rodŕıguez et al., 2010),
but here, instead of the kappa difference value, we will use the storage differ-
ence (Garćıa-Osorio et al., 2010). These diagrams represent by an arrow the
results of two methods applied to the same dataset. The arrow starts at the
origin, and the coordinates of the tip of the arrow are given by the difference
between the error and storage of our method and the standard feature selec-
tion algorithm. The numbers indicate the dataset being represented according
to Table 21. These graphics are a very convenient way of summarizing the re-
sults. For example, arrows pointing down-left represent datasets for which our
method outperforms the standard algorithm in both error and storage, arrows
pointing up-left indicate that our algorithm improves the storage but with a
worse testing error, and so on. Figure 34 shows the results for testing error
and storage requirements in the configurations that use the genetic algorithm
as their base algorithm. For GA, we applied our method with 7 features for
C4.5 and k-NN as evaluators and with 1000 instances for k-NN. C4.5 is able
to scale up fairly well with many instances, so there partitioning by instances
is not advisable.

In these storage-error delta diagrams, we can see that our method reduced
the storage as much as the standard counterparts of the feature selection al-
gorithms used and maintained a testing error that was not significantly worse,
while reducing the time dramatically, as will be shown in Figure 35.

We use the Wilcoxon test to evaluate the statistical relevance of the differ-
ences between the standard genetic algorithm and its use in our approach,
pseudoE.GA. The results are shown in Table 22. Regarding the testing error,

133

5 SCALING UP FEATURE SELECTION
ALGORITHMS

a)

b)

c)

Fig. 34. Storage requirements/testing error using pseudoE.GA a) pseu-
doE.GA-KNN-1000inst, b)pseudoE.GA-KNN-7feats, c)pseudoE.GA-C4.5-7feats

134

5.5 Experimental Results

the results are comparable to the ones obtained by the standard version, with
the exception of KNN using 7 features, in which our results are significantly
worse, whereas the reduction is proved to be similar and even significantly
better when partitioning by instances. Furthermore, the tree size values are
clearly better using pseudoensembles, an average size of 389.8 nodes against
426.1 nodes of the standard configuration, which is better in 27 out of the
30 cases. This improvement had a p-value of 0.0052 in the sign test and of
0.0082 in the Wilcoxon test. Consequently, we can state that fewer and better
variables were chosen by our approach.

Table 22
Summary of the performance of the pseudoensembles framework in the two possible
configurations. The table shows the win/draw/loss record of each algorithm against
its standard version. The row labeled ps is the p-value of a two-tailed sign test on
the win/loss record, and the row labeled pw shows the p-value of the Wilcoxon test.
Significant differences at a confidence level of 95% are indicated with a 3.

pseudoE.GA

Test error

C4.5-7f kNN-1000inst kNN-7f

Mean all 0.1890 (Std: 0.1811) 0.1462 (Std: 0.1398) 0.1631 (Std: 0.1398)

win/loss 10/20 9/20 7/21

ps 0.0987 0.0614 0.0125 3

pw 0.1156 0.0612 0.0058 3

pseudoE.GA

Reduction

C4.5-7f kNN-1000inst kNN-7f

Mean all 0.1890 (Std: 0.1966) 0.1763 (Std: 0.2000) 0.1903 (Std: 0.2000)

win/loss 13/17 20/7 13/15

ps 0.5847 0.0192 3 0.8506

pw 0.5716 0.0093 3 0.9672

pseudoE.SVM-RFE (data over all datasets)

AUC

C4.5-100inst kNN-100inst SVM-100inst

Mean all 0.6313 (Std:0.6091) 0.6167 (Std:0.5831) 0.5720 (Std:0.5474)

win/loss 11/5 13/3 12/4

ps 0.2101 0.0213 3 0.0768

pw 0.0703 0.0114 3 0.0359 3

pseudoE.SVM-RFE (data over all datasets)

%Feats for 90% error

C4.5-100inst kNN-100inst SVM-100inst

Mean all 0.1733 (Std:0.1903) 0.1479 (Std:0.1780) 0.2130 (Std:0.2299)

win/loss 6/2 9/5 5/4

ps 0.2891 0.4240 1.0000

pw 0.2623 0.2172 0.6733

135

5 SCALING UP FEATURE SELECTION
ALGORITHMS

pseudoE.GA-c4.5:

pseudoE.GA-KNN:

Fig. 35. Comparative study of time between Standard.GA and PseudoE.GA (mea-
sured in seconds and using a logarithmic scale)

In terms of execution time, the advantage of pseudoensembles over the stan-
dard method is significant. The results are plotted in Figure 35 using a loga-
rithmic scale. When the evaluator is the C4.5 algorithm, the time was reduced
for most of the datasets. In a few datasets, pseudoensembles took slightly more
time than their standard counterparts. Examples of these cases are the magic,
mfeat-kar and texture datasets. However, the differences in such cases are
small, in contrast to the large time advantage obtained using pseudoensembles
in the majority of datasets. It is worth pointing out that, for datasets like the
car dataset, the pseudoensembles approach took only 1% of the time required
by the standard genetic algorithm. Other representative examples are the let-
ter and pendigits datasets (reducing their time to 2% and 3% of the standard
counterparts, respectively).

In the case when the KNN algorithm is chosen as the evaluator, all datasets
benefited from pseudoensembles (both partitioning by instances and by fea-
tures), except a few datasets for which the number of instances or features
of the dataset is similar to the partition size and that resulted in only two
partitions. Thus, the benefits of pseudoensembles were masked in these cases.
This is the case of the phoneme, car and gene datasets. In the rest of the
cases, the advantage of pseudoensembles is remarkable, as we can observe in

136

5.5 Experimental Results

the average results plotted in the last three bars of the graph or in datasets
such as isolet, nursery and zip.

5.5.2 Pseudoensembles using ranking of features

In methods that rank features, it is interesting to study the evolution of the
testing accuracy as the number of retained features increases. In Figures 36
to 45, we plot the testing accuracy of each method for a dataset against the
number of relevant features in descending order of quality (the first point of all
curves is the accuracy corresponding to the method selecting the best feature,
the second point is that corresponding to the method selecting the best feature
and the second best feature, and so on).

The overall behavior that can be observed in Figures 36 to 45 is that all
the methods reached the highest accuracies for all the datasets with a fairly
small subset of all the features. The issue is which of them got the highest
accuracy with the least number of relevant features. We have plotted the re-
sults of six representative datasets that constitute a diverse sample of the
thirty datasets studied. In the mushroom dataset, both of the configurations,
standard and pseudoensembles, got very good accuracy values of above 94%.
However, slightly better results were achieved by pseudoensembles specially
selecting a small number of relevant features. The segment dataset showed
a clear advantage for all the configurations of pseudoensembles, succeeding
in getting better accuracies with less features as they start the curve higher
than the standard counterparts. Similar behavior can be observed in the sick
dataset, where the difference between the starting points of the curves using
KNN is clear. Whereas the soybean graph plots very similar starting accura-
cies values for all configurations, the pseudoensembles increased their accuracy
faster than did standard ones around 10 features, reaching competitive accu-
racies over 90% with fewer features. The pseudoensembles configurations using
the shuttle dataset also started from a very good accuracy, higher than 0.92.
It is worth noting the remarkable difference of 20% between our approach and
the respective standard methods using KNN as the evaluator. For the texture
dataset, all approaches had quite low starting values of accuracy. However,
pseudoensembles began to increase their accuracy right away, reaching a 90%
level of accuracy when the standard counterparts still had low accuracy values.

As previously described in Section 5.4, we have chosen as comparison measures
between feature ranking methods the area under the accuracy curve (AUC)
and the percentage of relevant features needed to achieve a competitive ac-
curacy (in our case, 90% of the best one obtained). The results obtained for
these measures are plotted in Figure 46. In the AUC graph, the pseudoensem-
bles area values are subtracted from the standard ones, and the goal is to
maximize the area under the curve, meaning higher values of accuracy with

137

5 SCALING UP FEATURE SELECTION
ALGORITHMS

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 1 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y

#Features

RFE (100 inst) - abalone

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

abalone

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10 12 14 16

A
cc

ur
ac

y

#Features

RFE (100 inst) - car

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

car

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120

A
cc

ur
ac

y

#Features

RFE (100 inst) - gene

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

gene

Fig. 36. Evolution of the classification accuracy selecting a different number of
features using SVM-RFE: abalone, car and gene datasets.

138

5.5 Experimental Results

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70

A
cc

ur
ac

y

#Features

RFE (100 inst) - german

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

german

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 0 5 10 15 20 25 30

A
cc

ur
ac

y

#Features

RFE (100 inst) - hypo

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

hypo

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35

A
cc

ur
ac

y

#Features

RFE (100 inst) - isoletpca

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

isoletpca

Fig. 37. Evolution of the classification accuracy selecting a different number of
features using SVM-RFE: german, hypo and isoletpca datasets.

139

5 SCALING UP FEATURE SELECTION
ALGORITHMS

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40

A
cc

ur
ac

y

#Features

RFE (100 inst) - krvskp

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

krvskp

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

A
cc

ur
ac

y

#Features

RFE (100 inst) - letter

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

letter

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y

#Features

RFE (100 inst) - magic04

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

magic04

Fig. 38. Evolution of the classification accuracy selecting a different number of
features using SVM-RFE: krvskp, letter and magic04 datasets.

140

5.5 Experimental Results

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

A
cc

ur
ac

y

#Features

RFE (100 inst) - mfeat-fac

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

mfeat-fac

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80

A
cc

ur
ac

y

#Features

RFE (100 inst) - mfeat-fou

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

mfeat-fou

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

A
cc

ur
ac

y

#Features

RFE (100 inst) - mfeat-kar

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

mfeat-kar

Fig. 39. Evolution of the classification accuracy selecting a different number of
features using SVM-RFE: mfeat-fac, mfeat-fou and mfeat-kar datasets.

141

5 SCALING UP FEATURE SELECTION
ALGORITHMS

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

A
cc

ur
ac

y

#Features

RFE (100 inst) - mfeat-pix

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

mfeat-pix

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

A
cc

ur
ac

y

#Features

RFE (100 inst) - mfeat-zer

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

mfeat-zer

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 20 40 60 80 100 120

A
cc

ur
ac

y

#Features

RFE (100 inst) - mushroom

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

mushroom

Fig. 40. Evolution of the classification accuracy selecting a different number of
features using SVM-RFE: mfeat-pix, mfeat-zer and mushroom datasets.

142

5.5 Experimental Results

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25

A
cc

ur
ac

y

#Features

RFE (100 inst) - nursery

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

nursery

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

A
cc

ur
ac

y

#Features

RFE (100 inst) - optdigits

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

optdigits

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 10 20 30 40 50 60 70 80

A
cc

ur
ac

y

#Features

RFE (100 inst) - ozone1hr

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

ozone1hr

Fig. 41. Evolution of the classification accuracy selecting a different number of
features using SVM-RFE: nursery, optdigits and ozone1hr datasets.

143

5 SCALING UP FEATURE SELECTION
ALGORITHMS

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y

#Features

RFE (100 inst) - page-blocks

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

page-blocks

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

A
cc

ur
ac

y

#Features

RFE (100 inst) - pendigits

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

pendigits

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1 1.5 2 2.5 3 3.5 4 4.5 5

A
cc

ur
ac

y

#Features

RFE (100 inst) - phoneme

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

phoneme

Fig. 42. Evolution of the classification accuracy selecting a different number of
features using SVM-RFE: page-blocks, pendigits and phoneme datasets.

144

5.5 Experimental Results

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40

A
cc

ur
ac

y

#Features

RFE (100 inst) - satimage

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

satimage

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

A
cc

ur
ac

y

#Features

RFE (100 inst) - segment

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

segment

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6 7 8 9

A
cc

ur
ac

y

#Features

RFE (100 inst) - shuttle

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

shuttle

Fig. 43. Evolution of the classification accuracy selecting a different number of
features using SVM-RFE: satimage, segment and shuttle datasets.

145

5 SCALING UP FEATURE SELECTION
ALGORITHMS

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 5 10 15 20 25 30 35

A
cc

ur
ac

y

#Features

RFE (100 inst) - sick

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

sick

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90

A
cc

ur
ac

y

#Features

RFE (100 inst) - soybean

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

soybean

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

A
cc

ur
ac

y

#Features

RFE (100 inst) - texture

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

texture

Fig. 44. Evolution of the classification accuracy selecting a different number of
features using SVM-RFE: sick, soybean, texture datasets.

146

5.5 Experimental Results

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40

A
cc

ur
ac

y

#Features

RFE (100 inst) - waveform

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

waveform

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

A
cc

ur
ac

y

#Features

RFE (100 inst) - yeast

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

yeast

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

A
cc

ur
ac

y

#Features

RFE (100 inst) - zippca

Standard.RFE-C4.5
pseudoE.RFE-C4.5
Standard.RFE-KNN
pseudoE.RFE-KNN
Standard.RFE-SVM
pseudoE.RFE-SVM

zippca

Fig. 45. Evolution of the classification accuracy selecting a different number of
features using SVM-RFE: waveform, yeast and zippca datasets.

147

5 SCALING UP FEATURE SELECTION
ALGORITHMS

Difference of the AUC

Difference of percentages of retained features to get a 90 %

of the best accuracy

Fig. 46. Comparison of the AUC and the percentage of retained features to get a
90% of the best accuracy with RFE configurations.

less features on average, so negative values indicate better performance of our
approach. The good average values are particularly remarkable, as well as the
advantage in datasets such as segment, shuttle, texture or yeast. In the per-
centage of needed features graph, the standard values are subtracted from the
pseudoensembles values, as the objective is to minimize the number of selected
features, and we wanted to keep negative values as the desired ones. Again,
the segment, texture and yeast stand out positively along with the average
values.

148

5.5 Experimental Results

Datasets omitted in these two graphics are those that have a very similar AUC
or percentage values for both pseudoensembles and standard configurations
(thus, the difference between them is almost zero). In summary, we can refer
to the Wilcoxon values in Table 22 to state that our approach provided better
or at least equally good results for both measures. The results are especially
positive for AUC using a partition by instances and k-NN as the evaluator.
For that configuration, the sign test and the Wilcoxon test prove that it is
better than the standard approach.

Regarding the execution time, Figure 47 plots the difference of the standard
configuration values from their pseudoensembles counterparts. Bars under the
x-axis imply an advantage of pseudoensembles over the standard methods. We
show datasets that take more than 400 seconds to extract relevant conclusions
from the analysis. For datasets with a significant number of features, our ap-
proach takes more time (mfeat-fac and mfeat-zer) due to the good scaling
properties of SVM-RFE in the number of variables and the fact that these
datasets have a manageable number of instances (2000 instances) and do not
give our method the chance to benefit from the partition by instances. How-
ever, as the number of instances increases, pseudoensembles provided more-
competitive results, as in the case of shuttle, zip or mushroom datasets (58000,
9300 and 8100 instances, respectively). The gain in execution time will be more
clearly visible for huge datasets in Section 5.5.3.

Fig. 47. Running time comparison between the standard RFE algorithm and our
approach (in datasets over 400 secs of execution time).

5.5.3 Results for huge datasets

In the previous experiments, we have shown the performance of our method-
ology in problems that can be considered medium to large. In this section,
we consider huge problems, from a few hundreds of thousands of instances
to almost five millions, with several thousands of features. Table 23 describes
the problems that are used, grouping them into datasets with large numbers
of instances and datasets with large numbers of features. These datasets will

149

5 SCALING UP FEATURE SELECTION
ALGORITHMS

show whether our methodology allows us to scale up standard algorithms to
huge problems. The last column in the table is the 1-NN error using all the
features, as a general measure of the complexity of the problem. Due to the
huge size of the datasets, we have used C4.5 as the only evaluator. Tables 24
presents the results obtained for these huge datasets using a genetic algorithm,
and Table 25 shows the results for SVM-RFE method.

Table 23
Summary of the huge datasets used in our experiments.

Datasets with a large number of instances

Data set Cases Features Classes Inputs 1-NN error

C B N

1 census 299285 7 - 30 2 409 0.0743

2 covtype 581012 54 - - 7 54 0.3024

3 kddcup99 494021 33 4 3 23 118 0.0006

4 kddcup99all 4898431 33 4 3 23 122 0.0002

5 kddcup991M 1000000 33 4 3 21 119 0.0002

6 poker 1025010 5 - 5 10 25 0.4975

Datasets with a large number of features

Data set Cases Features Classes Inputs 1-NN error

C B N

1 arabidopsis 33971 - - 1003 2 4012 0.3997

2 ccds 36497 - - 1003 2 4012 0.0742

3 ustilago 55279 - - 1003 2 4012 0.0559

For the genetic algorithm, we tested the partition by features and by instances.
A first result, shown in Table 24, is that the standard method is not appli-
cable to huge problems. In four of the six datasets with many instances, the
standard method was not able to finish after 300 hours running. Therefore,
our approach allows the application of feature selection methods to those
huge datasets. The genetic algorithm configurations are tested on datasets
with large numbers of instances and also on datasets with large numbers of
features. For the two datasets with many instances for which the standard
approach terminated, our approach reduced their execution time by 33%. kd-
dcup991M has 1,000,000 instances and took 478,350 seconds to finish in the
standard configuration and less than 160,000 seconds with pseudoensembles. It
is remarkable that kddcupp99all, which has almost five million instances, took
984,750 seconds, whereas the standard approach did not finish. The compari-
son with 1-NN error using all features is favorable. Pseudoensembles achieved
very significant reductions, while keeping the testing error very similar to that
obtained using all features. This error is even improved for the census and
poker datasets. We would like to draw attention to the experimental valida-
tion of the linear complexity of our approach, which can be examined in the
execution time of the kddcup99, kddcup991M and kddcup99all datasets. The
kddcup99 dataset is approximately half the size of kddcup991M, and the size

150

5.5 Experimental Results

Table 24
Reduction, testing error and execution time using huge datasets in standard algo-
rithms and pseudoensembles.

Datasets with a large number of instances

Standard.GA-C4.5 pseudoE.GA-C4.5-5feat

Data set Reduction Testing error Time Reduction Testing error Time (s)

1 census - - >300 h 0.0154 0.0488 451845.2

2 covtype - - >300 h 0.2852 0.3352 288311.5

3 kddcup99 0.0449 0.0040 269649.5 0.0534 0.0048 86708.3

4 kddcup99all - - >300 h 0.0295 0.0064 984750.4

5 kddcup991M 0.0546 0.0036 478350.5 0.0487 0.0037 159439.3

6 poker - - >300 h 0.5120 0.2652 32039.9

Average - - - 0.1574 0.1107 333849.1

Datasets with a large number of features

Standard.GA-C4.5 pseudoE.GA-C4.5-7feat

Data set Reduction Testing error Time Reduction Testing error Time (s)

1 arabidopsis 0.0069 0.0092 192497.7 0.0003 0.0080 73735.2

2 ccds 0.0071 0.0667 242004.3 0.0006 0.0381 84379.1

3 ustilago 0.0069 0.0169 502749.9 0.0004 0.0106 158404.4

Average 0.0070 0.0275 238030.9 0.0006 0.0168 80926.4

Table 25
Reduction, testing error and execution time using huge datasets in standard algo-
rithms and pseudoensembles.

Datasets with a large number of instances

Data set % vars to get a 90% of acc Time (s)

1 census 0.0024 212945.2

2 covtype 0.2407 22782.4

3 poker 0.3200 16367.1

4 kddcup99 0.0339 9767.3

5 kddcup99all 0.0328 76986.5

6 kddcup991M 0.0252 16134.9

Average 0.1092 59163.9

of kddcup99all is approximately five times the size of the kddcup991M dataset.
Their execution times grow in proportion to their size (87,000, 160,000 and
985,000 seconds, respectively). For datasets with large numbers of features, we
notice an impressive improvement in the storage requirements and the test-
ing error with pseudoensembles, as well as a reduction of up to 34% in the
execution time taken by the standard approach.

The complexity of SVM-RFE relies on the number of instances (see Section
5.4.1), so it is more interesting to analyze its behavior in dealing with datasets
with large numbers of instances, as it is able to manage datasets with many
features reasonably well. Table 25 shows the results using pseudoensembles

151

5 SCALING UP FEATURE SELECTION
ALGORITHMS

50,000 features
Univariate and pseudo−univariate methods

(Correlation, ANOVA, SVM, Relief)

3000 features
Pairwise methods, GA

200 features
SFS, SBS, Tabu

50 features
Floating

10 features Exhaustive
search

Fig. 48. The “feasibility pyramid” for feature selection.

for SVM-RFE and problems with many features. There are no results for the
standard SVM-RFE configuration with these datasets because they surpassed
the limit of 300 hours of execution time that we set. The pseudoensembles
provide competitive values for both of them, with an average of 11% of the
features required and less than 60,000 seconds on average to end the feature
selection process. These results are particularly impressive if we take into
account that, after 300 hours, which is more than one million seconds, the
standard method was not able to achieve a result.

5.6 Extension of Pseudoensembles to medical prob-
lems. The feasibility pyramid

As previously explained, our scaling methodology has a competitive perfor-
mance with a low complexity even in huge datasets(de Haro-Garćıa and Pe-
drajas, 2010). Due to this fact, our method can be used to model jump from
3000 features to 200 features, where other algorithms will be overloaded for
computational reasons. In de Haro-Garćıa et al. (2011) we propose a concep-
tual structure for the feature selection problem called “feasibility pyramid”,
that suggests the use of simple and feasible feature selection methods, like our
described scaling approach in (de Haro-Garćıa and Pedrajas, 2010), to “jump”
from larger to smaller feature subsets (up the levels of the pyramid). It is worth
highlighting that no other feature selection method offering a demanding per-
formance like in our scaling methodology would be applicable in such a low
level of the pyramid because of its complexity. However, the objective in this
case is to pre-process an original huge dataset instead of producing a final
feature selection, so as to reduce the feature set to a smaller one in which we
can apply a more complex and accurate feature selection algorithm.

152

5.6 Extension of Pseudoensembles to medical problems. The feasibility
pyramid

Note that ranking the features and cutting off the tail is suitable for a jump
at any level of the pyramid. Ranking of the features can be done according
to different criteria. Arguably, the pseudo-multivariate methods should be
preferred to the true univariate methods. These methods are not without
flaws, however. The most popular choice, SVM, is known to penalize correlated
features by decreasing their weights, even though the features may be highly
relevant. This has been noted as a potential problem in fMRI feature selection
(Pereira et al., 2009).

We recommend applying the same methodology as in the pseudoensembles ap-
proach (de Haro-Garćıa and Pedrajas, 2010), specifically the one whose output
is a rank of features sorted by their relevance. Although this methodology is
based on one of the specific types of pseudoensembles, the objective of its
application is completely different. In this case we do not apply pseudoensem-
bles to produce the final feature selection but to pre-reduce an original huge
dataset of features to a smaller one in which we can apply a more accurate
and complex feature selection method.

Therefore we intend to reduce a subset of few thousand features to a subset
of few hundred by means of randomly splitting the original feature set into
disjoint subsets of equal cardinality. Each subset is evaluated and the accuracy
is taken to measure the quality of the features within that set. The features are
ranked based on their individual accuracies, averaged over the T estimates.

The proposed random splitting is formally described in Figure 16. Note that
the evaluation criterion is not specified within; this could be a filter or a
wrapper criterion. We have performed an experimental study using one of the
most popular state-of-the-art wrapper algorithms: SVM-RFE (Guyon et al.,
2002)

We examined the behaviour of the random splitting as a step of the feature
selection cascade and we compared it with two alternative methods for “pre-
selection”: ANOVA and SVM, both widely used in the Functional Magnetic
Resonance Imaging (fMRI) field due to their ability to produce fast, accurate
and reliable ranking of the features. In addition we tested a random permu-
tation as a chance ranking method.

Since we are modelling the jump from the second to the third level up the
feasibility pyramid (Figure 48), to jump from 3000 features to 200 features,
we selected seven datasets with 3000 features and less than 300 instances to
match the scale of a typical fMRI dataset, which is characterized by excessive

9 *Note: If there is an incomplete set with cardinality less than M , either ignore,
and use bn/Mc sets, of complete with random features and use dn/Me sets. In both
cases, care should be taken when averaging the feature scores in F . The score F (x)
should be divided by the number of updates of F (x).

153

5 SCALING UP FEATURE SELECTION
ALGORITHMS

Algorithm 16: Random splitting for feature ranking
Data : A labelled dataset, Z, with features X = {x1, . . . , xn}

An evaluation criterion J(S) for subset S ⊆ X, including the estimation
protocol (cross-validation, hold-out, etc.)
The number of features in the subsets, M
The number of iterations, T

Result : The mean feature scores F̄ = F/T .

1 Initialize the feature score array with n zeros: F (x) = 0, x ∈ X
for i = 1 to T do

2 Split X randomly into disjoint subsets: S1, . . . , Sn/M of size M . 9

for j = 1 to n/M do
3 Evaluate J(Sj)
4 For all features x ∈ Sj , update the scores as: F (x) = F (x) + J(Sj)

end
end

5 Obtain threshold of votes, v, to remove a feature
6 S = T
7 Remove from S all features with a number of votes above or equal to v
8 return F̄ = F/T .

number of features and relatively small number of instances. We chose data
with a small number of fairly balanced classes, numerical features (real-valued
or integer), and no missing values. The chosen datasets are: a toy experiment
named ”‘catface data”’, two datasets that belong to the collection used for
the NIPS 2003 feature selection challenge (Guyon et al., 2004), the ”‘leukemia
dataset”’ which is one of the most famous gene expression cancer datasets
(Golub et al., 1999), containing information on gene-expression in samples
from human acute myeloid (AML) and acute lymphoblastic leukemias (ALL)
and three datasets from the fMRI field (”‘haxby”‘ (Haxby et al., 2001) and
two datasets (Kuncheva et al., 2010) collected at the School of Psychology,
Bangor University, UK).

We have collected some of the most representative results of the experimental
study developed in de Haro-Garćıa et al. (2011).

Figure 49 displays the classification accuracy as a function of the number of
retained features. Each dataset is presented on a separate plot. The curves
show the nearest mean accuracies averaged over the 100 testing sets for the
four competing ranking methods.

Since all methods were run on identical 90/10 splits of the data, paired t-test
was carried out to check for a significant difference in the accuracies of pairs
of methods. Table 26 gives a summarized view of the statistical significance
of the differences.

154

5.6 Extension of Pseudoensembles to medical problems. The feasibility
pyramid

arcene bangor1

bangor2 catface

dexter haxby

leukemia

Fig. 49. Classification accuracy with the selected feature sets.

155

5 SCALING UP FEATURE SELECTION
ALGORITHMS

Table 26
Statistical significance of the differences between the AUC of the splitting and the
random arranging (R), SVM (S) and ANOVA (A).

AUC Last value (170 features)

M = 10 M = 20 M = 30 M = 10 M = 20 M = 30

arcene

bangor1

bangor2

catface

dexter

haxby

leukemia

R S A

• – •
• – •
• • •
– • •
• • –

• ◦ •
– • •

R S A

• ◦ •
• – •
• • •
– • •
• • ◦
• ◦ •
– • –

R S A

• ◦ –

• – •
• • •
– • •
• • ◦
• ◦ •
– • –

R S A

• • •
• – •
• – •
– • •
• • –

• ◦ •
– • •

R S A

• – •
• • •
• – •
– • •
• • ◦
• ◦ •
– • –

R S A

• ◦ –

• – •
• ◦ •
– – •
• • ◦
• ◦ •
– • –

Notes:

• Splitting is significantly better

◦ Splitting is significantly worse

– No significant difference

Table 27
Average time (in seconds) for one ranking of the features.

Splitting R S A

Data set M = 10 M = 20 M = 30

arcene 7.5 5.1 4.4 0.0 16.8 3.8

bangor1 7.8 5.2 4.5 0.0 17.1 3.8

bangor2 13.1 9.9 8.2 0.0 75.6 4.3

catface 4.1 3.0 2.2 0.0 0.5 3.8

dexter 9.8 6.3 5.1 0.0 52.7 3.8

haxby 11.1 9.2 7.5 0.0 39.8 4.5

leukemia 4.3 4.0 3.4 0.0 0.3 4.4

Average 8.2 6.1 5.1 0.0 29.0 4.0

The results indicate that splitting is generally better than the other methods.
It scores the best ranks for AUC with all three values of M (Table 26). The
corresponding curves in Figure 49 are often higher than two of the three com-
peting curves (all three for the leukemia data) and on a par with the third
curve. The results with haxby data are a curious exception. SVM ranking
outperforms all competitors but the accuracies decline with the number of
retained features, which represents an early peak effect, unexpected for the
nearest mean classifier. This may be also an indication that there is genuinely
a very small number of relevant features, and adding “clutter” manages to
spoil the classification accuracy. Regarding the subset size, no single choice
of this parameter was demonstrably better than the other choices, M = 20
has a slight edge over the other two values but the three curves behave very
similarly. This is reassuring as it suggests that the splitting approach (with
the chosen evaluation criterion) is not adversely sensitive to the choice of M .

Finally, to aid computational complexity analyses, Table 27 shows the time in
seconds taken by the selection part of the code. It is worth mentioning how
splitting considerably reduces the amount of time needed by SVM.

156

5.7 Summary

To sum up, splitting ranked better than the other methods the top of the list
of features with highest starting points in the accuracy curves. The results
suggest that repeatedly splitting the feature set and evaluating the subsets
is accurate and computationally inexpensive. It was faster and moreover it
ranked best among the competing methods on the overall accuracy.

5.7 Summary

In this section, we have presented a new method for scaling up feature selec-
tion algorithms, which consists of performing several rounds of weak feature
selection on subsets of the original dataset and combined into a single subset
of relevant features or a ranking. As feature selection algorithms, we used two
of the most well-known and highly recommended feature selection algorithms:
SVM-RFE and a genetic algorithm.

Our main objective was to design a method that would be able to successfully
scale up feature selection algorithms, meaning that the running time as well
as the storage reduction would be considerably reduced and that the accuracy
would not drop to inadmissible values.

The experiments showed that our method is able to shorten the execution time
impressively compared to the standard feature selection algorithms. Further-
more, pseudoensembles achieved a similar performance to the original feature
selection algorithms. In terms of storage requirements and testing error, our
approach is able to match and in some cases even improve the standard re-
sults applied to the non-partitioned datasets. The results demonstrate that
pseudoensembles are able to scale up to millions of instances and thousands
of features, with especially interesting results in one of the most widely used
feature selection algorithms, SVM-RFE.

The proposed approach is applicable to any feature selection method without
any modifications. Moreover, it is naturally parallelizable, as the application of
the feature selection algorithm to each small subset of instances or features is
independent of all the remaining subsets and can therefore be processed at the
same time. In fact, because the size of the subset is chosen by the researcher,
we can apply the method to any problem regardless of its size, whereas most
other methods would be inapplicable in many cases. To prove this fact, in
Section 5.6 we have described the application of our pseudoensembles scaling
methodology, designed in collaboration with Dr. Kuncheva. Due to the good
efficiency of this application, we are able to reduce a set of 3000 features to 200
features in real world medical problems, such as the complex field of fMRI,
where other algorithms are overloaded for computational reasons.

157

6 Conclusions

Advances in digital and computer technology have led to massive amounts of
information and collections of data to be processed, containing many gigabytes
(even terabytes) of data. Knowledge discovery in databases (KDD) and data
mining can help dealing with this problem because they aim to turn raw data
into nuggets and create special edges. KDD practitioners would like to be able
to apply data mining learning algorithms to these large data sets in order to
discover useful knowledge.

However, the increase of the database’s size is a staple problem, which is known
as scaling up problem. The question of scalability asks whether the algorithm
can process large data sets efficiently, while building the best possible models
from them. As raw data are rarely used directly and manual analysis simply
cannot keep up with the fast growth of data, with the growing size of the
datasets the need is also growing to scale up data mining algorithms in all
the fields of application of machine learning. Scientific research, ranging from
astronomy to human natural genome, text mining or security among others,
faces the same problem of how to deal with vast amounts of information.

Moreover, just selecting a representative subset of the original dataset is not an
option, due to several reasons: if the dataset is huge, subsampling a percentage
can itself pose a challenge and, above all, increasing the size of the training
set often increases the accuracy of classifiers, avoiding overfitting.

The scaling problem produces excessive storage requirement, affects general-
ization accuracy and increases time complexity being very slow in learning
a model or classifier and consequently cannot be used to address relevant
problems due to scalability issues. Very large data sets present a challenge for
both humans and machine learning algorithms. As a consequence, many useful
algorithms are inundated by the flood of data and become impracticable.

In this thesis we have proposed a general methodology, called democratiza-
tion, to scale up effectively any data mining algorithm without severe mod-
ifications, it can be specifically classified into the data partitioning scaling
methods (Provost and Kolluri, 1999). Our scaling methodology is based on
the ensembles of classifiers approach, which combines several weak classifiers
to produce an efficient result. In our approach we do not have weak classifiers
but weak data mining algorithms, each one applied to an independent and
small-sized subset of the original dataset.

Regarding other scaling approaches, the main difference introduced by our
scaling methodology is that it uses the whole dataset for the data mining
algorithms to learn, not restricting the learning process to a subset of the

159

6 CONCLUSIONS

original dataset. Using just a subset of the whole dataset, as many scaling
algorithms do, leads to less accurate results as not all the available information
is used in the learning stage. Consequently, the proposed methodology allows
a dramatic decrease of the running time as well as a considerable storage
reduction without dropping the accuracy to inadmissible values.

It is worth noting that the computational complexity of our scaling method-
ology is really competitive. The linear complexity of our method has been
demonstrated both theoretically and experimentally. Moreover our scaling
methodology is not very sensitive to the values of its parameters and has the
additional advantage of allowing the user to adapt the size of the subproblems
to the available resources. Along with the fact that our method only requires
each subset to be in memory while it is processed but not during the process-
ing of the remaining subsets, the democratization approach is applicable to
any problem regardless of its size. This circumstance has been experimentally
proven with the positive results obtained in the application of democratization
to huge problems with millions of instances and thousands of features.

As mentioned, the scaling approach presented in this thesis is a simple 3-step
methodology applicable to any data mining algorithm without modifications.
Throughout this thesis we have proven the generality of the democratization
methodology, applying it to scale up two important data mining problems:
instance selection and feature selection.

As regards instance selection, we have successfully applied our democratiza-
tion methodology to scale up a representative set of relevant instance selection
algorithms, including a genetic algorithm selector whose computational com-
plexity requirements are well-known to be high, giving us a good benchmark
to test our methodology.

The application of our scaling framework to instance selection is called demoIS..
It allows a performance close to the application of the algorithm to the whole
dataset, while retaining the advantages of a smaller subset.

Additionally, our method has been also tested using prototype selection algo-
rithms and two additional classifiers, decision trees and support vector ma-
chines. In both cases it has shown its ability to scale prototype selection algo-
rithms as it is the case of instance selection algorithms for k-nearest neighbors
method.

Our experimental results proved that in terms of reduction of storage re-
quirements and testing error, our approach matches and in some cases is even
better than the use of the original instance selection algorithms over the whole
dataset. In terms of execution time, the behavior is excellent for the tested
instance selection algorithms, being this fact the most important advantage of
our method. The reported experiments showed a large difference when using

160

standard widely used instance selection algorithms.

Additionally, our method is straightforwardly paralellizable without signifi-
cant modifications. To test the parallelization behavior of our methodology
we parallelized demoIS., this approach was named federal instance selec-
tion. This parallel version of demoIS. was tested with huge datasets (the
largest set of 50 million instances and 800 features) and provided an impres-
sive reduction of the execution time when compared with other relevant and
widely used instance selection algorithms.

Regarding the scaling up of feature selection algorithms, we presented an ap-
plication of the democratization methodology to scale up feature selection
methods. This scaling methodology applied to feature selection is called pseu-
doensembles and provides the output in the same format as the original feature
selection algorithm, being possible to produce either a subset of relevant fea-
tures or a ranked set of features ordered by their relevance.

Our extensive experiments included a comparison with well-known and highly
recommended feature selection algorithms. Our results proved that pseudoensem-
bles are especially efficient when we use feature selection algorithms that suffer
from high computational cost or when we have to deal with very large datasets.
Furthermore, pseudoensembles are able to shorten the execution time impres-
sively compared to the standard feature selection algorithms and achieved a
similar performance to the original feature selection algorithms.

Moreover, due to the same reasons as demoIS., pseudoensembles are also
naturally parallelizable. As the size of the subset is chosen by the researcher,
we can apply the method to any problem regardless of its size. In contrast,
the majority of methods are inapplicable when dealing with large datasets. To
prove this fact, we described the application of our pseudoensembles scaling
methodology to the complex field of fMRI, during my collaboration with Dr.
Kuncheva. Due to the good efficiency of pseudoensembles we were able to use
them to reduce a set of 3000 features to 200 features in the designed feasibility
pyramid.

To sum up, the main contribution of this thesis is the novel design of a simple
and generic methodology that scales up any data mining algorithms. Another
relevant contribution of this thesis is the application of our democratization
methodology to scale up state of the art instance and feature selection algo-
rithms. Both applications of the democratization methodology produced very
competitive results when compared with the standard algorithms. Our scaling
methodology has also been successfully applied to real-world problems.

As our main line of continuing research, we are not only working on select-
ing instances but also modifying prototypes. Considering the fact that our
methodology is subtle to be applied to any data mining algorithm, we think

161

6 CONCLUSIONS

it is a challenging task to scale up new algorithms that combine feature and
instance selection at the same time.

Moreover we are working on the development of better methods of partitioning
the original dataset that we believe will have a relevant influence on the per-
formance of the method. Specifically, we expect that partitioning by instances
and by features as well as the development of data–dependent methods to
partition the original datasets will provide very competitive results.

Additionally, we plan to apply this scaling framework to different data mining
fields, such as clustering or ensembles of classifiers. We think that our approach
would be capable of dealing with huge datasets in these areas of research, im-
proving their performance. As an example we plan to scale up TIS recognition
and gene identification algorithms that deal with huge bioinformatic datasets.

162

REFERENCES

References

Agrawal, R., T. Imielinski, and A. Swami: 1993, ‘Database mining: A perfor-
mance perspective’. IEEE Transactions on Knowledge and Data Engineer-
ing 5(6), 914–925.

Aha, D. W., D. Kibler, and M. K. Albert: 1991, ‘Instance-based learning
algorithms’. Machine Learning 6, 37–66.

Anderson, T. W.: 1984, An introduction to multivariate statistical analysis,
Wiley Series in Probability and Mathematical Statistics. New York: John
Wiley & Sons, 2nd edition.

Andrews, D. F.: 1972, ‘Plots of High Dimensional Data’. Biometrics 28, 125–
136.

Asimov, D.: 1985, ‘The Grand Tour: a Tool for Viewing Multidimensional
Data’. SIAM Journal on Scientific and Statistical Computing 6(1), 128–
143.

Baluja, S.: 1994, ‘Population-based incremental learning’. Technical Report
CMU-CS-94-163, Carnegie Mellon University, Pittsburgh.

Banfield, R. E., L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer: 2005,
‘Ensembles of Classifiers from Spatially Disjoint Data’. In: Lecture Notes in
Computer Science, Vol. 3541. pp. 196–205.

Barandela, R., F. J. Ferri, and J. S. Sánchez: 2005, ‘Decision boundary pre-
serving prototype selection for nearest neighbor classification’. International
Journal of Pattern Recognition and Artificial Intelligence 19(6), 787–806.

Bauer, E. and R. Kohavi: 1999, ‘An Empirical Comparison of Voting Classi-
fication Algorithms: Bagging, Boosting, and Variants’. Machine Learning
36(1/2), 105–142.

Berman, H.-M., J. Westbrook, Z. Feng, G. Gilliland, T.-N. Bhat, H. Weissig,
I. Shindyalov, and P.-E. Bourne: 2000, ‘The Protein Data Bank’. Nucleic
Acids Res 28, 235–242.

Bezdek, J. and L.-I. Kuncheva: 2000, ‘Some Notes on Twenty One 21 Nearest
Prototype Classifiers’. In: F. Ferri, J. Iñesta, A. Amin, and P. Pudil (eds.):
Advances in Pattern Recognition, Vol. 1876 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, pp. 1–16.

Bins, J. and B. A. Draper: 2001, ‘Feature selection from huge feature sets’.
In: Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE Inter-
national Conference on, Vol. 2. pp. 159–165.

Blum, A. and P. Langley: 1997, ‘Selection of relevant features and examples
in machine learning’. Artificial Intelligence 97, 245–271.

Blum, A. L. and R. L. Rivest: 1992, ‘Training a 3-node neural network is
NP-complete’. Neural Networks 5, 117–127.

Breiman, L.: 1996a, ‘Bagging predictors’. Machine Learning 24(2), 123–140.
Breiman, L.: 1996b, ‘Bias, variance, and arcing classifiers’. Technical Report
460, Department of Statistics, University of California, Berkeley, CA.

Breiman, L.: 1996c, ‘Stacked regressions’. Machine Learning 24(1), 49–64.

163

REFERENCES

Breiman, L.: 1998, ‘Arcing classifiers’. Annals of Statistics 26, 801–824.
Breiman, L.: 1999, ‘Pasting Small Votes for Classification in Large Databases
and On-Line’. Machine Learning 36, 85–103.

Brighton, H. and C. Mellish: 2002, ‘Advances in Instance Selection for
Instance-Based Learning Algorithms’. Data Mining and Knowledge Dis-
covery 6, 153–172.

Brodley, C. E. and M. A. Friedl: 1999, ‘Identifying mislabeled training data’.
Journal of Artificial Intelligence Research 11, 131–167.

Buja, A. and D. Asimov: 1986, ‘Grand Tour Methods: An Outline’. In: D.
Allen (ed.): Computer Science and Statistics: Proceedings of the Seventeenth
Symposium on the Interface. Amsterdam: North Holland, pp. 63–67.

Buja, A., D. Cook, D. Asimov, and C. Hurley: 2005, Computational Methods
for High-Dimensional Rotations in Data Visualization, Chapt. 14, pp. 391–
414. North-Holland Publishing Co.

Cano, J. R., F. Herrera, and M. Lozano: 2003, ‘Using Evolutionary Algorithms
as Instance Selection for Data Reduction in KDD: An Experimental Study’.
IEEE Transactions on Evolutionary Computation 7(6), 561–575.

Cano, J. R., F. Herrera, and M. Lozano: 2005, ‘Stratification for scaling up
evolutionary prototype selection’. Pattern Recognition Letters 26(7), 953–
963.

Cano, J. R., F. Herrera, and M. Lozano: 2007, ‘Evolutionary Stratified Train-
ing Set Selection for Extracting Classification Rules with trade off Precision-
Interpretability’. Data & Knowledge Engineering 60(1), 90–108.

Caruana, R. and D. Freitag: 1994, ‘Greedy Attribute Selection’. In: The 11th
International Conference on Machine Learning. pp. 28–36.

Chang, C.-C. and C.-J. Lin: 2001, ‘LIBSVM: a library for support vector
machines’. Software available at http://www.csie.ntu.edu.tw/~cjlin/

libsvm.
Chaudhuri, S., R. Motwani, and V. Narasayya: 1998, ‘Random sampling for
histogram construction: How much is enough?’. In: L. Haas and A. Ti-
wary (eds.): Proceedings of ACM SIGMOD, International Conference on
Management of Data. New York, USA, pp. 436–447.

Chawla, N. W., L. O. Hall, K. W. Bowyer, andW. P. Kegelmeyer: 2004, ‘Learn-
ing Ensembles from Bites: A Scalable and Accurate Approach’. Journal of
Machine Learning Research 5, 421–451.

Chen, J. H., H. M. Chen, and S. Y. Ho: 2005, ‘Design of nearest neighbor
classifiers: multi-objective approach’. International Journal of Approximate
Reasoning 40(1-2), 3–22.

Cochran, W.: 1977, Sampling Techniques. New York, USA: John Wiley &
Sons.

Cover, T. M. and P. E. Hart: 1967, ‘Nearest neighbor pattern classification’.
IEEE Transactions on Information Theory IT-13, 21–27.

Cover, T. M. and J. A. Thomas: 1991, Elements of Information Theory, Wiley
series in telecommunication. John Wiley & Sons, Inc.

Das, S.: 2001, ‘Filters, Wrappers and a Boosting-Based Hybrid for Feature Se-

164

REFERENCES

lection’. In: The 18th International Conference on Machine Leaning (ICML-
03). San Francisco, CA, USA, pp. 74–81.

Dash, M., K. Choi, P. Scheuermann, and H. Liu: 2002, ‘Feature Selection for
Clustering - A Filter Solution’. In: Proceedings of the Second International
Conference on Data Mining. pp. 115–122.

Dash, M. and H. Liu: 1997, ‘Feature Selection for Classification’. Intelligent
Data Analysis 1, 131–156.

de Haro-Garćıa, A., J.-A. R. del Castillo, and N. G. Pedrajas: 2010, ‘Large
scale instance selection by means of a parallel algorithm’. In: Proceedings
of the 11th international conference on Intelligent data engineering and au-
tomated learning. Berlin, Heidelberg, pp. 1–12.

de Haro-Garćıa, A., L. I. Kuncheva, and N. Garćıa-Pedrajas: 2011, ‘Random
splitting for cascade feature selection’. Technical report, Computer Sciences
Department, University of Cordoba.

de Haro-Garćıa, A. and N. G. Pedrajas: 2009, ‘A divide-and-conquer recursive
approach for scaling up instance selection algorithms’. Data Mining and
Knowledge Discovery 18(3), 392–418.

de Haro-Garćıa, A. and N. G. Pedrajas: 2010, ‘Scaling up feature selection by
means of democratization’. In: Proceedings of the 23rd international confer-
ence on Industrial engineering and other applications of applied intelligent
systems - Volume Part II. Berlin, Heidelberg, pp. 662–672.

de Oca, M., D. Aydin, and T. Stutzle: 2010, ‘An incremental particle swarm
for large-scale continuous optimization problems: an example of tuning-in-
the-loop (re)design of optimization algorithms’. Soft Computing. A Fusion
of Foundations, Methodologies and Applications pp. 1–23.

Demšar, J.: 2006, ‘Statistical Comparisons of Classifiers over Multiple Data
Sets’. Journal of Machine Learning Research 7, 1–30.

Derrac, J., S. Garćıa, and F. Herrera: 2010, ‘Stratified prototype selection
based on a steady-state memetic algorithm: a study of scalability’. Memetic
Computing 2, 183–189.

Dietterich, T. G.: 1998, ‘Approximate statistical tests for comparing super-
vised classification learning algorithms’. Neural Computation 10(7), 1895–
1923.

Dietterich, T. G.: 2000a, ‘An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, Boosting, and Random-
ization’. Machine Learning 40, 139–157.

Dietterich, T. G.: 2000b, ‘Ensemble Methods in Machine Learning’. In: J.
Kittler and F. Roli (eds.): Proceedings of the First International Workshop
on Multiple Classifier Systems, Vol. 1857 of Lecture Notes in Computer
Science. pp. 1–15.

Domingos, P. and G. Hulten: 2001a, ‘A general method for scaling up machine
learning algorithms and its application to clustering’. In: Proceedings of the
Eighteenth International Conference on Machine Learning. pp. 106–113.

Domingos, P. and G. Hulten: 2001b, ‘Learning from Infinite Data in Finite
Time’. In: Proceedings of Advances in Neural Information Systems 14. Van-

165

REFERENCES

couver, Canada, pp. 673–680.
Dy, J.-G. and C.-E. Brodley: 2000, ‘Feature Subset Selection and Order Identi-
fication for Unsupervised Learning’. In: The 17th International Conference
on Machine Learning. pp. 247–254.

Dzeroski, S. and B. Zenko: 2004, ‘Is combining classifiers with stacking better
than selecting the best one?’. Machine Learning 54, 255–273.

Eshelman, L. J.: 1990, The CHC Adaptive Search Algorithm: How to Have
Safe Search When Engaging in Nontraditional Genetic Recombination. San
Mateo, CA: Morgan Kauffman.

Fern, A. and R. Givan: 2003, ‘Online ensemble learning: An empirical study’.
Machine Learning 53, 71–109.

Fountain, T., H. Almuallim, and T. Dietterich: 1991, ‘Learning With Many
Irrelevant Features’. In: In Proceedings of the Ninth National Conference
on Artificial Intelligence. pp. 547–552.

Freund, Y. and R. Schapire: 1996, ‘Experiments with a new boosting algo-
rithm’. In: Proc. of the Thirteenth International Conference on Machine
Learning. Bari, Italy, pp. 148–156.

Friedman, J. H., J. L. Bentley, and R. A. Finkel: 1977, ‘An Algorithm for
Finding Best Matches in Logarithmic Expected Time’. ACM Trans. Math.
Softw. 3, 209–226.

Gadat, S. and L. Younes: 2007, ‘A Stochastic Algorithm for Feature Selection
in Pattern Recognition’. Journal of Machine Learning Research 8, 509–547.

Garcia, S., J. Cano, and F. Herrera: 2008, ‘A memetic algorithm for evolu-
tionary prototype selection: A scaling up approach’. Pattern Recognition
41, 2693–2709.

Garćıa-Osorio, C., A. de Haro-Garćıa, and N. Garćıa-Pedrajas: 2010, ‘Demo-
cratic Instance Selection: a linear complexity instance selection algorithm
based on classifier ensemble concepts’. Artificial Intelligence 174(5-6), 410–
441.

Garćıa-Osorio, C. and C. Fyfe: 2005, ‘Regaining Sparsity in Kernel Principal
Components’. Neurocomputing 67, 398–402.

Garćıa-Pedrajas, N., J. A. R. del Castillo, and D. Ortiz-Boyer: 2010, ‘A co-
operative coevolutionary algorithm for instance selection for instance-based
learning’. Machine Learning 78, 381–420.

Garćıa-Pedrajas, N., C. Garćıa-Osorio, and C. Fyfe: 2007, ‘Nonlinear Boost-
ing Projections for Ensemble Construction’. Journal of Machine Learning
Research 8, 1–33.

Garćıa-Pedrajas, N., C. Hervás-Mart́ınez, and D. Ortiz-Boyer: 2005, ‘Cooper-
ative Coevolution of Artificial Neural Network Ensembles for Pattern Clas-
sification’. IEEE Transactions on Evolutionary Computation 9(3), 271–302.

Garćıa-Pedrajas, N. and D. Ortiz-Boyer: 2007, ‘A cooperative constructive
method for neural networks for pattern recognition’. Pattern Recognition
40(1), 80–99.

Garćıa-Pedrajas, N., D. Ortiz-Boyer, and C. Hervás-Mart́ınez: 2004, ‘Cooper-
ative coevolution of generalized multi-layer perceptrons’. Neurocomputing

166

REFERENCES

56C, 257–283.
Gates, G. W.: 1972, ‘The reduced nearest neighbor rule’. IEEE Transactions
on Information Theory 18(3), 431–433.

Goldberg, D. E.: 1989, Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Reading, MA: Addison–Wesley.

Golub, T. R., D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P.
Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloom-
field, and E. S. Lander: 1999, ‘Molecular classification of cancer: class dis-
covery and class prediction by gene expression monitoring.’. Science (New
York, N.Y.) 286(5439), 531–537.

Guyon, I., A. B. Hur, S. Gunn, and G. Dror: 2004, ‘Result analysis of the
NIPS 2003 feature selection challenge’. In: Advances in Neural Information
Processing Systems 17. pp. 545–552.

Guyon, I., J. Weston, S. Barnhill, and V. Vapnik: 2002, ‘Gene Selection for
Cancer Classification using Support Vector Machines’. Machine Learning
46, 389–422.

Hart, P. E.: 1968, ‘The condensed nearest neighbor rule’. IEEE Transactions
on Information Theory 14(3), 515–516.

Haxby, J. V., M. I. Gobbini, M. L. Furey, A. Ishai, J. L. Schouten, and P.
Pietrini: 2001, ‘Distributed and overlapping representations of faces and
objects in ventral temporal cortex.’. Science (New York, N.Y.) 293(5539),
2425–2430.

Hettich, S., C. Blake, and C. Merz: 1998, ‘UCI Repository of machine learning
databases’. http://www.ics.uci.edu/~mlearn/MLRepository.html.

Holland, J. H.: 1975, Adaptation in Natural and Artificial Systems. Ann Arbor,
MI: The University of Michigan Press.

Holte, R., L. Acker, and B. Porter: 1989, ‘Concept Learning and the Problem
of Small Disjuncts’. Technical report, Queen’s University, Austin, TX, USA.

Howffding, W.: 1963, ‘Probability inequalities for sums of bounded random
variables’. Journal of the American Statistical Association 58, 13–30.

Hulten, G. and P. Domingos: 2002, ‘Mining Complex Models from Arbitrarily
Large Databases in Constant Time’. In: Proceedings of the International
Conference on Knowledge Discovery and Data Mining. Edmonton, Canada,
pp. 525–531.

Ishibuchi, H. and T. Nakashima: 2000, ‘Pattern and Feature Selection by Ge-
netic Algorithms in Nearest Neighbor Classification’. Journal of Advanced
Computational Intelligence and Intelligent Informatics 4(2), 138–145.

Jain, A. and D. Zongker: 1997, ‘Feature selection: Evaluation, application,
and small sample performance’. IEEE Transactions on Pattern Analysis
and Machine Intelligence 19, 153–158.

John, G.-H., R. Kohavi, and K. Pfleger: 1994, ‘Irrelevant Features and the
Subset Selection Problem’. In: The 11th International Conference on Ma-
chine Learning. pp. 121–129.

Kim, S.-W. and B. J. Oommen: 2004, ‘Enhancing Prototype Reduction
Schemes With Recursion: A Method Applicable for ”Large” Data Sets’.

167

REFERENCES

IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernet-
ics 34(3), 1384–1397.

Kim, Y., W.-N. Street, and F. Menczer: 2000, ‘Feature Selection in Unsu-
pervised Learning via Evolutionary Search’. In: The 6th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. pp.
365–369.

Kira, K. and L.-A. Rendell: 1992, ‘A practical approach to feature selection’.
In: The 9th international workshop on Machine learning. San Francisco, CA,
USA, pp. 249–256.

Kivinen, J. and H. Mannila: 1994, ‘The power of sampling in knowledge dis-
covery’. In: Proceedings of the thirteenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems . Minneapolis, Minnesota,
USA, pp. 77–85.

Kohavi, R. and G.-H. John: 1997, ‘Wrappers for feature subset selection’.
Artificial Intelligence 97(1-2), 273–324.

Kohavi, R. and C. Kunz: 1997, ‘Option decision trees with majority voting’. In:
Proceedings of the Fourteenth International Conference on Machine Learn-
ing. San Francisco, CA, USA, pp. 161–169.

Kuncheva, L.: 1995, ‘Editing for the k-Nearest Neighbors rule by a genetic
algorithm’. Pattern Recognition Letters 16, 809–814.

Kuncheva, L. and C. J. Whitaker: 2003, ‘Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy’. Machine
Learning 51(2), 181–207.

Kuncheva, L. I.: 2001, ‘Combining classifiers: Soft computing solutions’. In:
S. K. Pal and A. Pal (eds.): Pattern Recognition: From Classical to Modern
Approaches. World Scientific, pp. 427–451.

Kuncheva, L.-I. and J.-C. Bezdek: 1998, ‘Nearest prototype classification: clus-
tering, genetic algorithms, or random search?’. IEEE Transactions on Sys-
tems, Man and Cybernetics, Part C 28(1), 160–164.

Kuncheva, L. I., J. J. Rodriguez, C. O. Plumpton, D. E. Linden, and S. J. John-
ston: 2010, ‘Random subspace ensembles for FMRI classification.’. IEEE
transactions on medical imaging 29(2), 531–542.

Lai, C., M. Reinders, J. Marcel, and L. Wessels: 2006, ‘Random subspace
method for multivariate feature selection’. Pattern Recogn. Lett. 27, 1067–
1076.

Lazarevic, A. and Z. Obradovic: 2002, ‘Boosting Algorithms for Parallel and
Distributed Learning’. Distrib. Parallel Databases 11, 203–229.

Leavitt, N.: 2002, ‘Data Mining for the Corporate Masses?’. Computer 35,
22–24.

Lee, W., S.-J. Stolfo, and K.-W. Mok: 2000, ‘Adaptive Intrusion Detection: a
Data Mining Approach’. Artificial Intelligence Review 14, 533–567.

Leopold, E. and J. Kindermann: 2002, ‘Text Categorization with Support Vec-
tor Machines. How to Represent Texts in Input Space?’. Machine Learning
46(1-3), 423–444.

Li, J., M. T. Manry, C. Yu, and D. R. Wilson: 2005, ‘Prototype classifier

168

REFERENCES

design with pruning’. International Journal of Artificial Intelligence Tools
14(1-2), 261–280.

Li, L., C.-R. Weinberg, T.-A. Darden, and L.-G. Pedersen: 2001, ‘Gene selec-
tion for sample classification based on gene expression data: study of sen-
sitivity to choice of parameters of the GA/KNN method’. Bioinformatics
17(12), 1131–1142.

Liu, D., T.-S. Chang, and Y. Zhang: 2002, ‘A constructive algorithm for feed-
forward neural networks with incremental training’. IEEE Transactions on
Circuits and Systems — I: Fundamental Theory and Applications 49(12),
1876–1879.

Liu, H. and H. Motoda: 2001, Feature Extraction, Construction and Selection:
A Mining Perspective. Kluwer Academic Publishers.

Liu, H. and H. Motoda: 2002, ‘On Issues of Instance Selection’. Data Mining
and Knowledge Discovery 6, 115–130.

Liu, H. and R. Setiono: 1996, ‘A Probabilistic Approach to Feature Selection
- A Filter Solution’. In: The 13th International Conference on Machine
Learning (ICML’96). pp. 319–327.

Liu, H. and L. Yu: 2005, ‘Toward Integrating Feature Selection Algorithms for
Classification and Clustering’. IEEE Trans. on Knowl. and Data Eng. 17,
491–502.

Maudes-Raedo, J., J. J. Rodŕıguez-Dı́ez, and C. Garćıa-Osorio: 2008, ‘Dis-
turbing Neighbors Diversity for Decision Forest’. In: G. Valentini and O.
Okun (eds.): Workshop on Supervised and Unsupervised Ensemble Methods
and Their Applications (SUEMA 2008). Patras, Grecia, pp. 67–71.

Merz, C. J.: 1999, ‘Using Correspondence Analysis to Combine Classifiers’.
Machine Learning 36(1), 33–58.

Michalewicz, Z.: 1994, Genetic Algorithms + Data Structures = Evolution
Programs. New York: Springer–Verlag.

Mitra, P., C.-A. Murthy, and S.-K. Pal: 2002, ‘Unsupervised feature selec-
tion using feature similarity’. IEEE Transactions on Pattern Analysis and
Machine Intelligence 24, 301–312.

Narayan, B.-L., C.-A. Murthy, and S.-K. Pal: 2006, ‘Maxdiff kd-trees for data
condensation’. Pattern Recogn. Lett. 27, 187–200.

Narendra, P.-M. and K. Fukunaga: 1977, ‘Branch, and bound algorithm for
feature subset selection’. IEEE Transactions Computer C-26(9), 917–922.

Ng, K. and H. Liu: 1999, ‘Customer Retention via Data Mining’. AI Review
14, 590.

Nigam, K., A.-K. Mccallum, S. Thrun, and T. Mitchell: 1999, ‘Text Classi-
fication from Labeled and Unlabeled Documents using EM’. In: Machine
Learning. pp. 103–134.

Olvera-López, J., J. Carrasco-Ochoa, J. Mart́ınez-Trinidad, and J. Kittler:
2010, ‘A review of instance selection methods’. Artificial Intelligence Review
34, 133–143.

Paredes, R. and E. Vidal: 2000, ‘Weighting Prototypes. A New Editing Ap-
proach.’. In: In XV International Conference on Pattern Recognition. 15th

169

REFERENCES

ICPR. pp. 25–28.
Pedrajas, N. G., A. de Haro-Garćıa, and J. A. R. del Castillo: 2011, ‘Large
scale instance selection by means of federal instance selection’. Data &
Knowledge Engineering”. submitted.

Pereira, F., T. Mitchell, and M. Botvinick: 2009, ‘Machine learning classifiers
and fMRI: A tutorial overview’. NeuroImage 45(1), S199–S209.

Provost, F.-J. and D.-N. Hennessy: 1996, ‘Scaling Up: Distributed Machine
Learning with Cooperation’. In: In Proceedings of the Thirteenth National
Conference on Artificial Intelligence. pp. 74–79.

Provost, F. J. and V. Kolluri: 1999, ‘A survey of methods for scaling up in-
ductive learning algorithms’. Data Mining and Knowledge Discovery 2,
131–169.

Quinlan, J. R.: 1993, C4.5: Programs for Machine Learning. San Mateo:
Morgan Kaufmann.

Reeves, C. R. and D. R. Bush: 2001, ‘Using genetic algorithms for training
data selection in RBF networks’. In: H. Liu and H. Motoda (eds.): Instances
Selection and Construction for Data Mining. Norwell, Massachusetts, USA:
Kluwer, pp. 339–356.

Rodŕıguez, J. J., C. Garćıa-Osorio, and J. Maudes: 2010, ‘Forests of Nested
Dichotomies’. Pattern Recognition Letters 31(2), 125–132.

Rokach, L.: 2009, ‘Taxonomy for characterizing ensemble methods in classi-
fication tasks: A review and annotated bibliography’. In: Computational
Statistics and Data Analysis.

Rui, Y. and T.-S. Huang: 1999, ‘Image retrieval: Current techniques, promising
directions and open issues’. Journal of Visual Communication and Image
Representation 10, 39–62.

Saeys, Y., I. Inza, and P. Larrañaga: 2007, ‘A Review of Feature Selection
Techniques in Bioinformatics’. Bioinformatics 23(19), 2507–2517.

Sane, S. S. and A. A. Ghatol: 2007, ‘A novel Supervised Instance Selection
algorithm’. International Journal on Business Intelligence and Data Mining
2(4), 471–495.

Schapire, R. E., Y. Freund, P. L. Bartlett, and W. S. Lee: 1998, ‘Boosting the
margin: A new explanation for the effectiveness of voting methods’. Annals
of Statistics 26(5), 1651–1686.

Sebban, M. and R. Nock: 2000, ‘Identifying and eliminating irrelevant in-
stances using information theory’. In: H. Hamilton and Q. Yang (eds.):
13th Biennial Conference of the Canadian Society for Computational Stud-
ies of Intelligence, AI 2000 Montreal, Vol. 1822 of Lecture Notes in Artificial
Intelligence. Springer, pp. 90–101.

Sebban, M., R. Nock, J. H. Chauchat, and R. Rakotomalala: 2000, ‘Impact of
learning set quality and size on decision tree performances’. International
Journal of Computers, Systems and Signals 1(1), 85–105.

Siedlecki, W. and J. Sklansky: 1989, ‘A note on genetic algorithms for large-
scale feature selection’. Pattern Recognition Lett. 10, 335–347.

Sikonja, M.-R.: 1998, ‘Speeding up Relief Algorithm with K-d Trees’. In:

170

REFERENCES

Electrotechnical and Computer Science Conference ERK’98. Slovenia, pp.
137–140.

Smith, P.: 1998, Into Statistics. Singapore: Springer-Verlag.
Smyth, B. and M. T. Keane: 1995, ‘Remembering to forget’. In: C. S. Mellish
(ed.): Proceedings of the Fourteenth International Conference on Artificial
Intelligence, Vol. 1. pp. 377–382.

Son, S. H. and J. Y. Kim: 2006, ‘Data reduction for instance-based learning
using entropy-based partitioning’. In: Proceedings of the International Con-
ference on Computational Science and Its Applications - ICCSA 2006, No.
3982 in Lecture Notes in Computer Science. Springer, pp. 590–599.

Sonnenburg, S., K. Rieck, F. F. Ida, and G. Rätsch: 2007, ‘Large scale learning
with string kernels’. In: Large Scale Kernel Machines. pp. 73–103.

Spillmann, B., M. Neuhaus, H. Bunke, E. Pekalska, and R. Duin: 2006,
‘Transforming Strings to Vector Spaces Using Prototype Selection.’. In:
SSPR/SPR’06. pp. 287–296.

Suganthan, P. N., N. Hansen, J.-J. Liang, K. Deb, Y.-P. Chen, A. Auger, and
S. Tiwari: 2005, ‘Problem definitions and evaluation criteria for the CEC
2005 Special Session on Real Parameter Optimization’. Technical report,
Nanyang Technological University.

Swets, D.-L. and J.-J. Weng: 1995, ‘Efficient Content-Based Image Retrieval
using Automatic Feature Selection’. In: In IEEE International Symposium
on Computer Vision. pp. 85–90.

Webb, G. I.: 2000, ‘MultiBoosting: A Technique for Combining Boosting and
Wagging’. Machine Learning 40(2), 159–196.

Wegman, E. J. and J. Shen: 1993, ‘Three-Dimensional Andrews Plots and the
Grand Tour’. Computing Science and Statistics 25, 284–288.

Wegman, E. J. and J. L. Solka: 2002, ‘On Some Mathematics for Visualising
High Dimensional Data’. Indian Journal of Statistics 64(Series A, Pt. 2),
429–452.

Whitley, D.: 1989, ‘The GENITOR Algorithm and Selective Pressure’. In:
M. K. Publishers (ed.): Proc 3rd International Conf. on Genetic Algorithms.
Los Altos, CA, pp. 116–121.

Whitley, D. and J. Kauth: 1988, ‘GENITOR: A Different Genetic Algorithm’.
In: Proceedings of the Rocky Mountain Conference on Artificial Intelligence.
Denver, CO, pp. 118–130.

Wilcoxon, F.: 1945, ‘Individual comparisons by ranking methods’. Biometrics
1, 80–83.

Wilson, D. L.: 1972, ‘Asymptotic properties of nearest neighbor rules using
edited data’. IEEE Transactions on Systems, Man, and Cybernetics 2(3),
408–421.

Wilson, D. R. and A. R. Martinez: 1997, ‘Instance pruning techniques’. In:
D. Fisher (ed.): Proceedings of the Fourteenth International Conference on
Machine Learning. San Francisco, CA, USA, pp. 404–411.

Wilson, D. R. and T. R. Martinez: 2000, ‘Reduction Techniques for Instance-
Based Learning Algorithms’. Machine Learning 38, 257–286.

171

REFERENCES

Xing, E.-P., M.-I. Jordan, and R.-M. Karp: 2001, ‘Feature selection for high-
dimensional genomic microarray data’. In: The 18th International Confer-
ence on Machine Learning. pp. 601–608.

Yang, J. and V. Honavar: 1998, ‘Feature Subset Selection Using a Genetic
Algorithm’. IEEE Intelligent Systems 13, 44–49.

Yang, Z., K. Tang, and X. Yao: 2008, ‘Large scale evolutionary optimization
using cooperative coevolution’. Information Sciences 178, 2985–2999.

Yu, L. and H. Liu: 2003, ‘Feature selection for high-dimensional data: A fast
correlation-based filter solution’. In: The 20th International Conference on
Machine Leaning (ICML-03). pp. 856–863.

Zhu, X. and X. Wu: 2006, ‘Scalable representative instance selection and rank-
ing’. In: Proceedings of the 18th International Conference on Patter Recog-
nition (ICPR’06), Vol. 3. pp. 352 – 355.

172

