
Escuela Técnica Superior de Ingeniería Informática
Departamento Ciencias de la Computación e I. A.

Knowledge Mobilization:
Architectures, Models and

Applications

TESIS DOCTORAL

Juan Gómez Romero

Editor: Editorial de la Universidad de Granada
Autor: Juan Gómez Romero
D.L.: GR.1795-2008
ISBN: 978-84-691-5643-8

Knowledge Mobilization:
Architectures, Models and

Applications

Juan Gómez Romero

DIRECTOR

Miguel Delgado Calvo-Flores

Granada, Junio 2008

La memoria Knowledge Mobilization: Architectures, Models and Appli-
cations, que presenta D. Juan Gómez Romero para optar al grado de Doctor en
Informática, ha sido realizada en el departamento de Ciencias de la Computación
e Inteligencia Artificial de la Universidad de Granada bajo la dirección del Profe-
sor Dr. D. Miguel Delgado Calvo-Flores, Catedrático de Universidad.

Granada, Junio de 2008.

Miguel Delgado Calvo-Flores Juan Gómez Romero

A mis padres.

. . . The endless cycle of idea and action,

Endless invention, endless experiment,

Brings knowledge of motion, but not of

stillness;

Knowledge of speech, but not of silence;

Knowledge of words, and ignorance of the

Word.

All our knowledge brings us nearer to our

ignorance,

All our ignorance brings us nearer to

death,

But nearness to death no nearer to GOD.

Where is the Life we have lost in living?

Where is the wisdom we have lost in

knowledge?

Where is the knowledge we have lost in

information?

T.S. Eliot, The Rock

Abstract

Mobile network technologies are representative of a paradigm shift from

classical desktop applications to highly-distributed nomadic systems. Mobile

technologies make it possible to deliver information anywhere at anytime,

and provide nomadic users with up-to-date information ready for decision-

making processes. Nevertheless, the management of structured information

(i.e. knowledge) for delivery to mobile users poses several challenges. Be-

sides the limited computational capabilities of mobile devices, mobile sys-

tems face specific problems that cannot be solved by traditional knowledge

management methodologies and tools, and thus require creative new solu-

tions.

Knowledge Mobilization is an innovative approach that integrates contri-

butions from several areas such as Knowledge Engineering, Distributed Artifi-

cial Intelligence, Soft Computing, and the Semantic Web, to develop effective

knowledge-intensive mobile applications. In this doctoral thesis we explore

possible computational solutions for problems of knowledge distribution and

information overload in Knowledge Mobilization systems. More precisely,

we describe a new architecture for Knowledge Mobilization systems (based

on the multi-agent paradigm) and an innovative context-aware knowledge

representation model (which relies on Description Logics ontologies). Both

elements provide support for effectively delivering knowledge obtained from

large, heterogeneous information sources to nomadic users. The architecture

and knowledge representation model were used to design and implement a

Knowledge Mobilization system in the domain of Healthcare. The system

creates and distributes to nomadic doctors summaries of the clinical histo-

iii

iv

ries of their patients. The prototype thus implemented achieves the level of

adequacy necessary to meet Knowledge Mobilization requirements.

Agradecimientos

Suele decirse que la investigación científica es una tarea que requiere vo-

cación y dedicación. No poseo ninguna de estas dos cualidades, por lo que

quiero agradecer el apoyo de las muchas personas que me han descubierto

esta profesión y me han prestado su ayuda para la consecución de esta tesis.

En primer lugar, quiero expresar mi gratitud al profesor Miguel Delgado,

mi director de tesis, que ha sido el principal impulsor de este trabajo. En el

desarrollo de una tesis es habitual que el doctorando aporte el entusiasmo

y el tutor los conocimientos para guiarlo. Me siento afortunado porque, en

mi caso, Miguel ha sido quien ha puesto tanto la ilusión como la experiencia

desde el primer día.

También me gustaría mencionar a mis compañeros del departamento de

Ciencias de la Computación e Inteligencia Artificial y a los becarios de la sala

XX. Un recuerdo especial es para Pedro Magaña, Fernando Bobillo y Mariló

Ruiz; con ellos he compartido cafés, tertulias y viajes, y en ninguno de esos

momentos han dejado de enseñarme cómo ser mejor investigador y, sobre

todo, mejor persona.

Asimismo, quiero agradecer las revisiones de la profesora Pamela Faber,

que han tenido un valor mucho más allá de lo puramente lingüístico. Si el

lenguaje de esta tesis es correcto, es gracias su trabajo incansable y a su

enorme capacidad de comprensión, en todos los sentidos. Igualmente, doy

las gracias a Pilar León por ponerme en contacto con ella.

Por otra parte, me gustaría destacar la ayuda de los investigadores Enrico

Motta y Bernardo Cuenca-Grau, quienes, a pesar de mis urgencias, han acce-

v

vi

dido a preparar los informes necesarios para que esta tesis opte a la mención

de Doctorado Europeo.

También agradezco el apoyo económico prestado por Consejería de In-

novación, Ciencia y Empresa de la Junta de Andalucía, que ha financiado la

realización de esta tesis dentro de su programa de Formación de Doctores

(2004).

Una fase de este trabajo de investigación ha sido desarrollada en el Insti-

tute for Advanced Management Systems Research (Åbo Akademi, Finlandia).

Quiero expresar mi gratitud hacia el profesor Christer Carlsson por su aten-

ción durante mi estancia en Turku y sus consejos científicos, que me sirvieron

para deshacer mi maraña de ideas y palabras. Este agradecimiento es exten-

sivo a todos los miembros del instituto, que me acogieron amablemente, y

particularmente a Dan, Franck, Kristian y Alessandro. Tack!, compañeros.

Allí en Turku conocí a otros muchos nómadas, tantos que no cabrían en

esta sección, que me ayudaron a sentir que uno no pertenece al lugar en el

que ha nacido, sino a donde están las personas a las que quiere. Una parte

de esta tesis se la debo a ellos.

Durante el período de trabajo más intenso de esta tesis, han sido muchos

los amigos que me han demostrado su aprecio y su paciencia infinita. Ni

siquiera las incontables veces en que he roto mis compromisos con ellos han

hecho que dejen de darme ánimos. Gracias a mi gente de Granada y a mis

jarotes por comprenderme, soportarme y disculparme.

Para terminar, quiero mencionar a mi familia, que ha sido mi principal

apoyo durante toda la investigación. A mis hermanos, Ángel e Isabel, que

me han acompañado en dos etapas diferentes, pero igualmente difíciles, de

mis estudios, y me han dado todo su cariño. Nunca me acostumbraré a estar

lejos de ellos. Y, por supuesto, a mis padres, Pedro e Isabel, de los que he

aprendido las lecciones más valiosas de mi vida. Entre ellas, a no olvidar de

dónde vengo, y a saber que con tesón puedo llegar a cualquier sitio que me

proponga. A ellos va dedicada esta tesis.

Resumen

Motivación

La Ingeniería del Conocimiento es el área de la Inteligencia Artificial que

investiga cómo representar las entidades (concretas o abstractas) de un do-

minio de aplicación mediante un modelo de conocimiento de modo que éste

pueda ser usado por un procedimiento automático para resolver un problema

complejo. La Ingeniería del Conocimiento se basa en otros campos clásicos

como la Ontología, que estudia cómo se clasifican las entidades del dominio,

y la Lógica, que se ocupa de los lenguajes formales y las reglas de inferencia

aplicables a los modelos de representación. Estos modelos de conocimiento

proporcionan el soporte elemental para la implementación de Sistemas Inte-

ligentes; cuanto más conocimiento maneje un agente, más inteligente será, y

por lo tanto podrá resolver más problemas mejor.

Un Sistema Basado en Conocimiento (SBC) es un sistema software que

gestiona y aplica conocimiento representado explícitamente para resolver

problemas de decisión complejos. El objetivo de los SBC es asistir a los usua-

rios en los procesos de toma de decisiones, proporcionando la información

apropiada, a la persona adecuada y en el momento justo.

Esta definición de SBC sigue siendo válida hoy en día, pero debe tenerse

en cuenta que los SBC actuales se enfrentan a nuevos problemas. La tecno-

logías de telecomunicaciones han hecho que la “persona adecuada” pueda

estar situada en cualquier lugar, y que el “momento justo” sea cualquier ins-

tante. Asimismo, Internet ha hecho que sea posible acceder a grandes colec-

vii

Motivación viii

ciones de información útil que antes no estaban disponibles, lo que significa

que la “información apropiada” es el resultado de integrar datos obtenidos

de diferentes fuentes, posiblemente distribuidas y con diferente semántica y

formato.

En el caso más extremo, los SBC deben proporcionar soporte a usuarios

móviles (o nómadas). Un sistema móvil es una aplicación a la que puede ac-

cederse remotamente utilizando un dispositivo de bolsillo (como un teléfono

móvil o una PDA) y una red de comunicaciones inalámbrica. Las tecnologías

móviles, que abarcan desde el estudio de las propiedades físicas de los ca-

nales de comunicación (menor nivel de abstracción) hasta el desarrollo de

aplicaciones para dispositivos de bolsillo (mayor nivel de abstracción), per-

miten dotar de nuevas funcionalidades a los SBC.

En consecuencia, un SBC moderno debe incorporar las fuentes disponi-

bles que contengan información útil y facilitar el acceso a los usuarios mó-

viles. Esto supone todo un reto para el desarrollo de Sistemas Inteligentes,

debido a las limitaciones computacionales de los dispositivos móviles: tama-

ño de pantalla reducido, poca fiabilidad y limitado ancho de banda de las

redes de comunicación móviles, duración de la batería, heterogeneidad de

plataformas de desarrollo y dispositivos, etc.

Algunas de estas dificultades pueden superarse con la eventual mejora de

las tecnologías móviles. Por ejemplo, las nuevas redes móviles ofrecen velo-

cidades de transferencia del orden de Mb/s. No obstante, otros problemas

son intrínsecos a los SBC móviles y, aunque podrán disminuirse conforme las

tecnologías evolucionen, requieren soluciones desde el punto de vista de las

Ciencias de la Computación. El conocimiento en estos sistemas debe obtener-

se de fuentes de información de gran tamaño, distribuidas y heterogéneas,

y debe ser transmitdo a los dispositivos móviles de los usuarios. Además,

estos sistemas deben ser conscientes de contexto, en el sentido de que su

funcionamiento debe adaptarse al entorno del usuario, y evitar la sobrecarga

de información, esto es, no es admisible que los usuarios reciban más infor-

mación de la que pueden asimilar. Todo esto requiere el uso de modelos de

representación y arquitecturas software que permitan extraer, representar,

Motivación ix

integrar, filtrar y presentar este conocimiento adecuadamente.

En las últimas décadas, la Inteligencia Artificial Distribuida ha profun-

dizado en el desarrollo de sistemas inteligentes distribuidos. La Inteligencia

Artificial Distribuida propone tecnologías y paradigmas de computación para

diseñar e implementar aplicaciones inteligentes distribuidas. El paradigma

multiagente o, más recientemente, las tecnologías basadas en Web, han sido

utilizadas por la Inteligencia Artificial Distribuida para implementar este tipo

de sistemas.

El problema de la integración de fuentes de información ha dado lugar

a la aparición de nuevos modelos de representación y metodologías de ad-

quisición del conocimiento en el ámbito de la Ingeniería del Conocimiento,

dado que las técnicas clásicas no facilitan esta tarea. Así, las ontologías, que

se definen como un formalismo de representación que promueve la integra-

ción y la reutilización de conocimiento previo, han tenido bastante éxito en

los últimos años.

Una fuente de información muy extensa, al tiempo que heterogénea, que

contiene recursos que forman parte de los SBC actuales es la Web. La Web Se-

mántica es una iniciativa reciente que propone describir la semántica de los

contenidos de la Web actual mediante metadatos, de manera que sea posible

buscar, recuperar e integrar información automáticamente. La Web Semán-

tica recoge numerosas contribuciones de la Ingeniería del Conocimiento (y

viceversa), como por ejemplo las ontologías, que son utilizadas para repre-

sentar formalmente los metadatos.

A pesar de las contribuciones de la Inteligencia Artificial Distribuida y la

Web Semántica, entre otras, los problemas computacionales de los SBC con

soporte móvil no han sido satisfactoriamente resueltos hasta la fecha. El dise-

ño de una aplicación móvil que necesite gestionar una cantidad considerable

de conocimiento es más un arte que una ciencia, ya que las metodologías

de Ingeniería del Software que se utilizan en los sistemas de escritorio no

son directamente aplicables a los sistemas móviles. Por este motivo, se ne-

cesitan nuevos patrones de diseño específicamente orientados a este tipo de

Propuesta x

sistemas. Por otra parte, la continua evolución de las tecnologías de comu-

nicación móvil favorece la implementación de características innovadoras,

pero al mismo tiempo dificulta el establecimiento de un marco de desarrollo

duradero. En lo que respecta a los modelos de representación, existen muy

pocos formalismos que solucionen los problemas que plantea la distribución

de conocimiento en sistemas móviles inteligentes. Aunque las ontologías son

una aproximación prometedora, y pueden usarse en combinación con las

tecnologías de Web Semántica, esta línea de trabajo todavía no ha sido sufi-

cientemente explorada.

Propuesta

La Movilización del Conocimiento es una nueva perspectiva descrita por au-

tores como Keen y Carlsson que propone combinar contribuciones de dife-

rentes áreas, como la Inteligencia Artificial Distribuida, las ontologías, la Web

Semántica y el Soft Computing (principalmente la Lógica Difusa), para ofre-

cer soluciones integrales a los problemas que presenta la construcción de

SBC móviles. La Movilización del Conocimiento tiene como objectivo pro-

porcionar un marco conceptual y de desarrollo común para el desarrollo de

sistemas móviles inteligentes.

Esta tesis doctoral presenta un trabajo de investigación en Movilización

del Conocimiento y, por extensión, en Ingeniería del Conocimiento e Inteli-

gencia Artificial Distribuida. De acuerdo a los problemas anteriormente men-

cionados que dificultan la movilización del conocimiento (limitaciones de los

dispositivos móviles, integración de fuentes de información heterogéneas,

consciencia de contexto, sobrecarga de información, etc.), en esta tesis se es-

tudian arquitecturas software y modelos de representación para gestionar y

distribuir conocimiento obtenido de fuentes de información de gran tamaño

y heterogéneas a usuarios nómadas.

De acuerdo a este planteamiento, el documento de tesis expone las dos

aportaciones principales de este trabajo: una arquitectura organizativa y un

Propuesta xi

modelo de representación de conocimiento contextual para sistemas de Mo-

vilización del Conocimiento. Las contribuciones de estas dos propuestas se

muestran con el diseño y la implementación de la aplicación IASO, un siste-

ma de Movilización del Conocimiento en el área de la salud.

La arquitectura presentada describe los componentes de un sistema de

Movilización del Conocimiento y las relaciones entre los mismos. Esta arqui-

tectura puede adaptarse para diseñar distintos tipos de aplicaciones móviles

que requieran diferentes esquemas de comunicación. Junto a la arquitectura,

también se estudian varias tecnologías que puede utilizarse para implemen-

tar sistemas de Movilización del Conocimiento basados en ella. En conse-

cuencia, la nueva arquitectura y las tecnologías de implementación asocia-

das sirven como soporte a la implementación de Sistemas de Movilización

del Conocimiento.

El modelo de representación del conocimiento ha sido planteado como

un patrón de diseño de ontologías. Este patrón de diseño establece un con-

junto de reglas para construir ontologías que representan qué información

del dominio es interesante o significativa en cada contexto. A partir de una

ontología de significancia y utilizando el algoritmo de inferencia propues-

to, puede inferirse qué información es relevante en una situación dada. En

consecuencia, este modelo permite la activación selectiva del conocimiento

según el contexto, lo cual puede utilizarse para resolver el problema de la

sobrecarga de información.

La aplicación IASO es un sistema de Movilización del Conocimiento en

el ámbito del cuidado de la salud diseñado e implementado en esta tesis. El

desarrollo de IASO ha estado guidado por los principios de la Movilización

del Conocimiento, y está basado en la nueva arquitectura abstracta y el mo-

delo de representación. IASO permite a los profesionales médicos acceder a

las historias clínicas almacenadas en el Sistema de Información de un Hospi-

tal utilizando dispositivos móviles. La característica más importante de IASO

es que proporciona a los usuarios del sistema únicamente los registros que

son significativos dada la situación clínica en la que se encuentran. De esta

forma, los usuarios reciben un resumen de toda la información disponible

Contenidos xii

creado automáticamente a partir de conocimiento sobre el contexto de la

consulta. El prototipo de aplicación presentado en esta tesis incorpora una

adaptación de la base de datos del Hospital Clínico San Cecilio de Granada.

El documento de tesis presenta con detalle estas propuestas y discute la

motivación de cada una de ellas, así como las ventajas que aportan respecto

a los trabajos relacionados existentes en la literatura.

Contenidos

La memoria de tesis resume el trabajo de investigación que ha sido llevado a

cabo para desarrollar las contribuciones mencionadas en la sección anterior.

En el documento se ha distinguido claramente entre las aportaciones origi-

nales (nuevas propuestas formuladas en esta tesis) y los trabajos de otros

autores (propuestas creadas en disciplinas relacionadas que son aplicadas en

la tesis).

Los capítulos 2-5 presentan las aportaciones originales de la tesis, respec-

tivamente: (i) una revisión del concepto de Movilización del Conocimien-

to; (ii) una arquitectura abstracta para sistemas de Movilización del Conoci-

miento; (iii) un modelo de representación del conocimiento contextual; (iv)

el diseño y la implementación de una aplicación de Movilización del Cono-

cimiento. Los apéndices A y B repasan, respectivamente, la representación

de conocimiento mediante Lógica de Descripciones y la Web Semántica, dos

disciplinas que componen la base de este trabajo.

A continuación, se detallan los contenidos de cada una de estas secciones.

Capítulo 1. Preliminares

En este capítulo introductorio se explica la motivación global de esta tesis

doctoral y los objetivos que se persiguen en este trabajo. Además, se describe

la metodología constructivista, que ha sido aplicada para llevar a cabo esta

investigación.

Contenidos xiii

Capítulo 2. Movilización del Conocimiento

El capítulo 2 describe qué es la Movilización del Conocimiento y qué tipo

de problemas pretende resolver. A partir de varias aproximaciones previas,

se propone una definición pragmática de Movilización del Conocimiento, es-

tableciendo que esta disciplina investiga los Sistemas de Movilización del

Conocimiento, que son sistemas ubicuos, proactivos, declarativos, conscien-

tes de contexto, integradores y concisos. En cierto modo, la Movilización

del Conocimiento puede verse como un paradigma particular dentro de la

Computación Ubicua, circunstancia que también se discute en este capítulo.

Para ilustrar el tipo de aplicaciones de las que se ocupa la Movilización

del Conocimiento, se presentan tres ejemplos de casos de uso: el Médico

Nómada, la Guía de Turismo de Bolsillo y el Guarda de Seguridad Ubicuo. El

primero de estos escenarios es utilizado a lo largo de la tesis para crear los

ejemplos que ilustran nuestras propuestas.

Adicionalmente, en este capítulo se estudian las áreas de investigación

que están relacionadas con la Movilización del Conocimiento. Las disciplinas

relacionadas se clasifican en cuatro niveles (datos, información, conocimien-

to y aplicaciones), que se corresponden a distintos grados de elaboración del

conocimiento gestionado. Asimismo, además de estas tecnologías y herra-

mientas de soporte, se analizan algunas investigaciones recientes que propo-

nen soluciones integrales al desarrollo de sistemas móviles inteligentes, en la

misma línea de la Movilización del Conocimiento.

Capítulo 3. Una Arquitectura para Movilización del

Conocimiento

En el capítulo 3 se presenta nuestra propuesta de arquitectura para sistemas

de Movilización del Conocimiento. El objetivo de esta arquitectura es ofrecer

un esquema general que facilite el diseño durante el ciclo de desarrollo del

software para Movilización del Conocimiento.

Contenidos xiv

En primer lugar, en este capítulo se estudia cómo se organizan los ele-

mentos que participan en un sistema de Movilización para conseguir dis-

tribuir efectivamente el conocimiento recuperado de grandes volúmenes de

información. A partir de estas ideas iniciales, se introduce la arquitectura pa-

ra Movilización del Conocimiento, que describe las entidades, dependencias

y esquemas de comunicación entre los componentes distribuidos. La descrip-

ción de la arquitectura ha sido creada con AML, un lenguaje semiformal de

modelado de software para especificación de sistemas basados en agentes.

La arquitectura propuesta es general y puede adaptarse a diferentes do-

minios de aplicación. En la última sección del capítulo se estudian tres mate-

rializaciones de la arquitectura, concretamente, las adaptaciones multiagen-

te, de espacio de tuplas y cliente-servidor del esquema abstracto. Además, se

recomiendan varias tecnologías (la mayoría de ellas, surgidas en el ámbito

de la Web Semántica) que pueden aplicarse para implementar las distintas

instanciaciones de la arquitectura.

Capítulo 4. Un Modelo de Representación dependiente de

Contexto para Movilización del Conocimiento

El capítulo 4 detalla nuestra propuesta de modelo de representación depen-

diente de contexto para Movilización del Conocimiento. Este modelo resuel-

ve el problema de la sobrecarga de información mediante la creación de una

base de conocimiento que relaciona explícitamente descripciones de contex-

to con el conocimiento del dominio que es significativo en dicho contexto.

El modelo de representación ha sido formulado como un patrón de dise-

ño que permite crear ontologías de significancia en OWL, es decir, ontologías

que caracterizan qué información del dominio debe ser considerada en cada

escenario. En este capítulo se presenta la descripción formal del patrón de

diseño (expresada en Lógica de Descripciones), así como un procedimien-

to para determinar el conocimiento relevante según contexto. Además, se

demuestra que este algoritmo de inferencia es decidible y completo, y se

estudian algunas propiedades adicionales del modelo (complejidad compu-

Contenidos xv

tacional, modularidad, etc.). Como contribución adicional, también se ofre-

cen una herramienta visual y una interfaz de programación en Java que han

sido implementadas para crear y utilizar el modelo de representación.

En la última parte de este capítulo, se describe una extensión del patrón

de diseño para la creación de ontologías de significancia difusas. Las onto-

logías de significancia difusas extienden la versión no difusa, permitiendo la

representación de contextos y dominios imprecisos, así como la cuantifica-

ción de la importancia de las relaciones de relevancia. De la misma forma

que en el caso no difuso, se propone un algoritmo de inferencia y se estudia

la completitud, decidibilidad y complejidad del razonamiento con las onto-

logías resultantes de aplicar el patrón.

Capítulo 5. Una Aplicación de Movilización del

Conocimiento: el Sistema IASO

El capítulo 5 presenta el diseño y la implementación de IASO, un sistema de

Movilización del Conocimiento que resuelve el caso de uso del Médico Nóma-

da descrito en el Capítulo 2. IASO distribuye resúmenes de historias clínicas

a los dispositivos móviles de los usuarios del sistema; los contenidos de estos

resúmenes se seleccionan automáticamente dependiendo de la situación del

paciente que se está atendiendo.

IASO está basado en la arquitectura del capítulo 3, mientras que la base

de conocimiento que soporta al sistema ha sido creadad con el patrón de

diseño explicado en el capítulo 4. El sistema ha sido diseñado sobre el sistema

de información del Hospital Clínico San Cecilio de Granada, una aplicación

real que es utilizada para gestionar las historias clínicas en este hospital, y

que en nuestra aplicación actúa como un repositorio que almacena los datos

de los pacientes.

El diseño de IASO sigue las especificaciones de la adaptación cliente-

servidor de la arquitectura general. Los dos principales actores del sistema

son el cliente IASO y el servidor IASO. El cliente se corresponde con el dispo-

Contenidos xvi

sitivo móvil del usuario, que puede utilizar un navegador web para consultar

información (significativa) del sistema de información del hospital. La con-

sulta incluye la descripción de la situación del paciente, que se construye con

un vocabulario formal prestablecido. El servidor es responsable de procesar

las consultas de los usuarios, inferir qué información es relevante y trans-

mitirla al cliente en un formato apropiado. Para ello, utiliza la ontología de

significancia que sirve de soporte al sistema IASO, que ha sido construida a

partir de un vocabulario de contexto (basado en la ontología médica Galen)

y un modelo de dominio (que representa de forma abstracta los registros que

están almacenados en la base de datos del hospital).

Este diseño ha sido implementado en el prototipo IASO, que también se

presenta en este capítulo. Este prototipo utiliza una versión reducida de las

ontologías y las bases de datos necesarias para el sistema. No obstante, sirve

para demostrar que las contribuciones de la tesis son apropiadas de cara

al desarrollo de sistemas de Movilización del Conocimiento efectivos, y que

pueden extenderse para implementar aplicaciones en otros dominios.

Capítulo 6. Conclusiones y Trabajo Futuro

El último capítulo de esta tesis doctoral resume las propuestas presentadas

y concluye que las mismas alcanzan los objetivos planteados en el capítulo

preliminar. La tesis finaliza planteando algunas direcciones interesantes de

trabajo futuro.

Apéndice A. Ontologías y Lógica de Descripciones

En este primer apéndice se estudian las ontologías como formalismo de re-

presentación y su relación con la Lógica de Descripciones, una familia de

lógicas orientadas a la codificación de conocimiento estructurado. En primer

lugar, se presentan los aspectos básicos de la ontologías, seguidos de una

introducción a la representación de conocimiento y al razonamiento con Ló-

gicas de Descripciones. Este apéndice se centra enALC, la Lógica de Descrip-

Contribuciones xvii

ciones principalmente usada en la tesis. El apéndice termina con una breve

descripción de las Lógicas de Descripciones Difusas.

Apéndice B. La Web Semántica

El apéndice B ofrece una introducción a la Web Semántica. En él se describen

los objetivos principales de la iniciativa de la Web Semántica, así como la es-

tructura general de la Web Semántica en relación a la Web actual. También

se estudian los lenguajes RDF y OWL, los estándares para representación de

conocimiento en Web Semántica, y se presentan varias tecnologías de Web

Semántica utilizadas en la tesis, como son los editores de ontologías, los mo-

tores de inferencia, las interfaces de programación y las herramientas para

publicación de bases de datos relacionales. Además, se incluye una revisión

de los estándares para Servicios Web Semánticos, la extensión de los Servi-

cios Web en el ámbito de la Web Semántica. El apéndice termina apuntando

algunas líneas de trabajo actuales y futuras de la Web Semántica.

Contribuciones

El objetivo general de esta tesis doctoral es la investigación de teorías, técni-

cas y herramientas que proporcionen soluciones a los problemas que plantea

la gestión y utilización de conocimiento extraído de fuentes de información

de gran tamaño, distribuidas y heterogéneas en sistemas móviles. En con-

creto, se han estudiado dos problemas que plantea la Movilización del Co-

nocimiento: (i) el acceso y transmisión del conocimiento disponible; (ii) la

sobrecarga de información.

La principal conclusión de la tesis es que las contribuciones originales

presentadas (la arquitectura para Sistemas de Movilización del Conocimien-

to y el modelo de representación contextual) satisfacen los subobjetivos del

trabajo, y por extensión, este objetivo general. Así ha quedado patente en el

diseño y la implementación del sistema IASO, una aplicación de Movilización

Contribuciones xviii

del Conocimiento en el ámbito de la salud que ha sido desarrollada a partir

de estas dos aportaciones.

Además de estas contribuciones concretas, debemos destacar el carácter

innovador de esta tesis doctoral, que explora un área de investigación rela-

tivamente nueva. Esto ha hecho que se que se hayan descubierto diferentes

campos de aplicación y se planteen numerosas direcciones de trabajo futuro,

lo cual es otra de las aportaciones más importantes de esta investigación.

Entre otras líneas de trabajo futuro, destacamos la utilización de la arqui-

tectura y el modelo de representación en otras áreas de aplicación para la

implementación de sistemas de Movilización del Conocimiento prácticos y

funcionales.

Contents

Resumen vii

Motivación . vii

Propuesta . x

Contenidos . xii

Contribuciones . xvii

1 Introduction 24

1.1 Antecedents . 24

1.2 Objectives . 27

1.3 Methodology . 29

1.4 Thesis structure . 31

2 Knowledge Mobilization 33

2.1 Definition . 33

2.2 KMob and Ubiquitous Computing 37

2.3 Use cases . 38

2.4 Methods, technologies and tools 43

2.5 Related work . 56

2.6 Towards Knowledge Mobilization 59

xix

Contents xx

3 An Architecture for Knowledge Mobilization 61

3.1 Rationale . 61

3.2 Agent-based architectures . 64

3.3 Architecture description . 72

3.4 Frameworks and technologies . 80

4 A Context-Dependent Model for Knowledge Mobilization 88

4.1 Rationale . 89

4.2 Related work . 92

4.3 Definition . 96

4.4 Context-aware reasoning . 107

4.5 CDS Plug-in for Protégé . 112

4.6 A fuzzy extension of the CDS pattern 115

5 A Knowledge Mobilization Application 126

5.1 Problem description . 126

5.2 Related work . 130

5.3 Design . 132

5.4 Implementation . 137

5.5 Execution . 140

6 Conclusions and Future Work 145

Appendices 149

A Ontologies and Description Logics 150

A.1 Background . 150

Contents xxi

A.2 Definition . 152

A.3 Description Logics . 154

A.4 Reasoning in Description Logics 162

A.5 Fuzzy Description Logics . 166

B The Semantic Web 172

B.1 Basics . 172

B.2 The Resource Description Framework (RDF) 176

B.3 The Web Ontology Language (OWL) 177

B.4 Semantic Web technologies . 180

B.5 Semantic Web Services . 187

B.6 The future of the Semantic Web 192

Bibliography 194

List of Figures

2.1 Knowledge Mobilization related research areas 46

3.1 Components of a mobile Knowledge-Based Systems 73

3.2 Society Diagram of the KMob architecture 76

3.3 Society Diagram of the agent roles 78

3.4 Protocol Sequence Diagram of the roles Consumer and Provider . 79

4.1 Schema of a CDS ontology . 101

4.2 CDS Tab plug-in in Protégé IDE . 113

5.1 Structure of the database of the Hospital Clínico San Cecilio 128

5.2 Schema of the IASO context, domain, and significance ontologies 133

5.3 Architecture of the IASO system . 136

5.4 Implementation of the IASO prototype 139

5.5 Input form of the IASO prototype . 142

5.6 Output form of the IASO prototype 143

B.1 Semantic Web layers . 174

B.2 Web Services protocols . 188

xxii

List of Tables

3.1 AML primitives . 69

4.6 Complexity of reasoning with TBoxes in basic DLs 112

A.1 Syntax and semantics of concepts and roles in ALC 156

A.2 Constructors for some extensions of ALC 159

A.3 Axioms for some extensions of ALC 160

A.4 Complexity of reasoning different DLs w.r.t. general TBoxes 166

A.5 Syntax and semantics of concepts and roles in fALC 169

B.1 OWL class descriptions and axioms 179

B.2 OWL property axioms . 181

xxiii

CHAPTER 1
Introduction

1.1 Antecedents

Knowledge Engineering is the subarea of Artificial Intelligence that studies

how to represent both the concrete and abstract aspects of an application

domain in a model that can be used by an automatic procedure to solve a

complex problem. Knowledge Engineering is based on classical fields such

as Ontology, which studies how the entities of a domain are classified, and

Logic, which studies formal languages and inference rules for representation

models [238].

The formal models studied by Knowledge Engineering are the core sup-

port of Intelligent Systems. An agent that handles more knowledge is more

intelligent, and consequently, able to better resolve problems. A Knowledge

Based System (KBS) is a software system that manages and applies repre-

sented knowledge to solve complex decision problems [89]. KBSs provide

support for decision-making processes, and supply the right person with the

right information at the right time [151].

Although this definition is still valid, current KBSs face new challenges.

Nowadays, it is assumed that the “right person” may be located just about

24

1.1. Antecedents 25

anywhere, and that the “right time” is any moment at all. In the most extreme

case, this means that KBSs must provide support for mobility. This signifies

that they must be remotely accessible by means of a mobile device and a

wireless communication network. Likewise, thanks to the Internet, users are

now able to access to large quantities of useful information that was previ-

ously unavailable. Hence, the “right information” is obtained by integrating

data retrieved from several sources, which may be large and distributed, as

well as having different formats and semantics.

Modern KBSs are expected to provide nomadic with support through the

use of mobile technologies and the incorporation of all available informa-

tion sources. This allows the implementation of new functionalities, but

also poses significant challenges to developers. Most of these difficulties

stem from the computational limitations of mobile devices, e.g. reduced

screen size, unreliability and limited bandwidth of mobile communication

networks, battery duration, and the heterogeneity of development platforms

and devices.

Some of these difficulties can be solved by improving mobile technol-

ogy. For instance, recent mobile networks guarantee Mb/s transfer speeds.

Nevertheless, other problems are intrinsic to mobile KBSs, and though they

may gradually lessen as technology evolves, they still require computational

solutions. Knowledge must be retrieved from large, distributed and hetero-

geneous information sources, and must be delivered to the mobile devices of

decision makers. Mobile systems must be context-aware. That means that

they must adapt their behavior to the user’s environment, and must avoid

information overload (i.e. overwhelming users with more data than they can

digest). This requires representation models and software architectures that

can extract, represent, integrate, and present this knowledge properly.

One of the focuses of Distributed Artificial Intelligence has always been

the development of intelligent distributed systems. Distributed Artificial In-

telligence proposes computational paradigms and technologies for the de-

sign and implementation of distributed KBSs. For instance, the multi-agent

paradigm, or more recently, Web-based technologies, have defined organi-

1.1. Antecedents 26

zational patterns, communication protocols, and technologies to implement

these systems. Furthermore, Distributed Artificial Intelligence has incorpo-

rated contributions from Mobile Computing (and vice versa), thus giving rise

to Ambient Intelligence.

New knowledge representation and acquisition models are necessary to

integrate distributed, heterogeneous information sources since more tradi-

tional techniques have shown themselves to be incapable of accomplishing

this task. In this sense, one of the goals of Knowledge Engineering is to cre-

ate knowledge models and methods that support the integration of informa-

tion. For this reason, ontologies (a knowledge representation formalism that

promotes the integration and re-use of previous knowledge) have become

increasingly popular in recent years.

As often stated, the most complete (as well as heterogeneous) informa-

tion source is the Web. Therefore, Web resources must be incorporated into

KBSs. The Semantic Web is a recent initiative that aims at automatically

searching, retrieving, and integrating Web information by endowing Web

contents with semantics. The Semantic Web uses premises from Knowledge

Engineering, since document metadata is represented by means of formal

ontologies.

Despite such contributions, mobility and information integration prob-

lems in KBSs have not as yet been satisfactorily resolved. At the present

time, mobile communication technologies are in a state of constant evolu-

tion. Although this is an exciting and dynamic situation, it also means that it

is extremely difficult to establish a lasting implementation framework. The

design of a knowledge-intensive mobile application is currently more of an

art than a science, since well-established software engineering methodolo-

gies for desktop systems are not directly applicable to mobile ones. What

is urgently needed are new software design guidelines such as architectural

patterns. Regarding knowledge models, there are very few formalisms that

solve knowledge delivery requirements in intelligent mobile systems. On-

tologies are a promising approach, and Semantic Web proposals can be used

to handle representation issues. However, this is a new research field that

1.2. Objectives 27

needs to be further developed.

Knowledge Mobilization is a proposal that combines some of the ap-

proaches mentioned above (Distributed Artificial Intelligence, Ontologies,

Semantic Web) with Soft Computing contributions (mainly Fuzzy Logic) in

order to offer integral solutions for the difficulties that arise in mobile KBSs.

Knowledge Mobilization provides a common framework, both from a con-

ceptual as well as a practical perspective, for the development of mobile

intelligent systems.

This research is on Knowledge Mobilization, and also pertains to Knowl-

edge Engineering and Distributed Artificial Intelligence. With a view to deal-

ing with the problems inherent in Knowledge Mobilization (limitations of

mobile devices, integration of heterogeneous sources, context-awareness, in-

formation overload, etc.), we studied the architectures and models required

to manage and distribute the knowledge obtained from large, heterogeneous

information sources to nomadic users. The remainder of this thesis gives a

detailed description of our research and the results obtained. We discuss the

rationale underlying our proposals, as well as their advantages over previous

work.

1.2 Objectives

The general objective of this research work was to find computational solu-

tions for the problems of knowledge distribution and information overload in

Knowledge Mobilization systems. More precisely, we focus on the study and

creation of software architectures and formal representation models capable

of overcoming these difficulties. Such architectures and models must be able

to support the effective delivery of the knowledge obtained from large and

heterogeneous information sources to nomadic users.

Accordingly, the objectives of the thesis are the following:

1.2. Objectives 28

1. To review and analyze the state of the art in Knowledge Mobilization

and related research areas.

a) To examine the problems inherent in Knowledge Mobilization and

related research areas;

b) To analyze the benefits provided by Knowledge Mobilization sys-

tems in different application domains;

c) To review relevant contributions from areas such as Mobile Com-

puting, Distributed Artificial Intelligence, Ubiquitous Computing,

the Semantic Web, and Soft Computing.

2. To propose an abstract architecture to support the design of Knowledge

Mobilization systems.

a) To provide an overview of the structure of a general Knowledge

Mobilization system;

b) To facilitate the development process of Knowledge Mobilization

Systems by providing the developer with a global and customiz-

able schema that can be specialized to meet the requirements of

each concrete application;

c) To discover which technologies are most suitable for the imple-

mentation of a Knowledge Mobilization system in each specific

scenario, and how they should be integrated to achieve optimal

results.

3. To create a context-aware knowledge representation model for Knowl-

edge Mobilization.

4. To develop a proof-of-concept Knowledge Mobilization system that dem-

onstrates the validity of our research.

1.3. Methodology 29

1.3 Methodology

Constructivism is a methodology that solves problems by creating models,

methods, diagrams, plans, organizations, etc. [135]. It is mostly used in De-

sign Sciences. Design Sciences are applied sciences that have both a descrip-

tive component (i.e. they can describe reality) and a prospective compo-

nent (i.e. they can change reality) [188]. For example, if target B must be

achieved and the current situation is A, Design Sciences study which artifact

X needs to be designed and built in order to evolve from A to B. In the same

regard, [125] explains the differences between constructive, nomothetic, and

idiographic methods. The objective of constructive methods is the creation

of new artifacts, in contrast to idiographic and nomothetic methods, which

study real phenomena, and social relations and behaviors, respectively.

Information Systems (and by extension, Knowledge-Based Systems) are

Design Sciences [126, 169]. Therefore, research in Information Systems con-

sists of creating meta-artifacts that are useful for the development of concrete

artifacts [127]: languages, models, methods, frameworks, software pack-

ages, environments, etc. This aspect is highlighted in [114], which distin-

guishes between routine design and research. Research must inevitably try

to solve new problems (‘wicked problems’) and/or apply innovative proce-

dures, whereas routine design uses well-established practices and techniques

to solve known problems.

This author describes seven features that are present in most Design Sci-

ence research work, namely, artifact design, relevance of the problem, eval-

uation of the design, contributions of the research, rigor of the research,

design as a search process, and communication of the results. In [193], an

schema to achieve rigor in the research process is proposed. This procedure

consists of the following steps: (i) elaboration of a conceptual framework;

(ii) description of the architecture of the system; (iii) analysis and design of

the system; (iv) implementation of a prototype; (v) observation and evalu-

ation of the solution. This approach is known as Development as a Research

Method because it reproduces the steps of a development process.

1.3. Methodology 30

Information Systems is a Design Science, but it is also a Behavioral Sci-

ence since it studies the behavior and utility of existing systems [114]. Gen-

erally speaking, because of its multidisciplinary nature, Information Systems

research also presupposes studying the state of the art in related fields.

Our research follows the principles of constructive methodology. We tar-

geted a general problem, in this case, Knowledge Mobilization, and we cre-

ated meta-artifacts, namely, an architecture and representation model capa-

ble of facilitating the development of Knowledge Mobilization systems. The

validity of the meta-artifacts was shown by implementing a software proto-

type that provides a solution for a specific Knowledge Mobilization problem

(Nomadic Healthcare). We also provided other supporting tools, such as the

API and the visual tool to manage and create ontologies within the frame-

work of our knowledge representation model.

The structure of our research study follows the iterative process proposed

in [193]. First, we describe the conceptual framework of Knowledge Mobi-

lization, i.e. the nature of Knowledge Mobilization and the properties of

Knowledge Mobilization systems. Then, we present a general architecture

of Knowledge Mobilization systems. The architecture is described in terms

of a semi-formal language, which facilitates its interpretation and reutiliza-

tion by different developers. Additionally, we created a second meta-artifact,

namely, a model to represent knowledge in Knowledge Mobilization systems.

Interestingly enough, reasoning with this model proved to be complete. This

was possible since it is expressed in a formal language. The design of the

resulting software prototype is based on the architecture, and relies on the

knowledge model. This prototype satisfactorily solves a crucial Knowledge

Mobilization problem. Consequently, it validates both the architecture and

the model created, and shows that the results obtained in this research can

be extended to other application domains.

1.4. Thesis structure 31

1.4 Thesis structure

Throughout the description of our research, we clearly distinguish between

original contributions, i.e. new proposals formulated in this thesis, and the

contributions of others in related disciplines.

Chapters 2 to 5 present the original contributions of this thesis, namely,

a review of Knowledge Mobilization, an abstract architecture for Knowledge

Mobilization Systems, a context-aware knowledge representation model, and

the implementation of a Knowledge Mobilization application. Appendices A

and B presents an overview, respectively, of related topics such as knowledge

representation with Description Logics ontologies and the Semantic Web.

Chapter 2 offers a panorama of Knowledge Mobilization and the prob-

lems that it targets. We give a pragmatic definition of Knowledge Mobi-

lization and study the features that Knowledge Mobilization systems should

offer. In order to illustrate the benefits of Knowledge Mobilization, we pro-

vide three examples of Knowledge Mobilization use cases. Additionally, we

review other research areas and related contributions that offer integral so-

lutions for intelligent mobile systems development.

Chapter 3 presents our proposal for a new architecture for Knowledge

Mobilization systems. The chapter studies how the entities participating in

Knowledge Mobilization systems should be organized in order to achieve the

effective delivery of knowledge retrieved from large information sources. Ac-

cordingly, we introduce an abstract architecture for Knowledge Mobilization

systems, consisting of entities, dependencies, and communication schemas

between distributed components. This architecture is general and can be

adapted to different application domains. It is expressed in the semi-formal

language AML, a language for the specification of agent-based systems. More-

over, in this chapter we recommend various technologies that can be applied

to implement different adaptations of this architecture.

Chapter 4 describes our proposal of a context-aware knowledge repre-

sentation model for Knowledge Mobilization. This model is a design pattern

1.4. Thesis structure 32

for the creation of OWL significance ontologies, i.e. ontologies that specify

which information from the domain ought to be considered in each use sce-

nario. The model solves the problem of information overload by creating a

knowledge base that explicitly connects context descriptions with the domain

expressions significant in each context. The formal description of the pattern

is presented in this chapter as well as a reasoning algorithm to infer rele-

vant knowledge. We demonstrate that the reasoning algorithm is complete,

and we also study other features of the model (complexity, modularity, etc.).

Furthermore, in order to facilitate the creation and use of significance-aware

ontologies, a visual tool and a Java API were implemented. In the last part

of this chapter, we describe an extension of the design pattern, which con-

templates the creation of fuzzy significance ontologies. Fuzzy significance

ontologies improve the crisp approach by allowing the representation of im-

precise contexts and domains, and the quantification of the importance of

relevance relations.

Chapter 5 presents the design and implementation of IASO, a Knowledge

Mobilization system that solves the Nomadic Healthcare use case studied in

Chapter 2. Thus, IASO provides mobile doctors with summaries of clinical

histories, whose contents depend on the situation of the patient who is be-

ing attended. The design of IASO is based on the architecture described in

Chapter 3, whereas the knowledge base that supports the system was cre-

ated with the design pattern explained in Chapter 4. IASO shows that the

results of our research led to the development of a successful Knowledge

Mobilization system.

The last chapter summarizes the new proposals presented and highlights

their contributions to Knowledge Mobilization. We analyze the results of

this work in accordance with the objectives established in this introductory

chapter. Finally, the thesis concludes with plans for future research work.

CHAPTER 2
Knowledge Mobilization

In this chapter, Knowledge Mobilization is defined in detail on the basis of

earlier contributions in the literature. This chapter also provides a pragmatic

description of the problems faced by Knowledge Mobilization as well as the

characteristic features of Knowledge Mobilization systems. Given the close

relation between Knowledge Mobilization and other areas of Information

Systems and Artificial Intelligence, relevant technologies, methodologies and

paradigms that are used to support Knowledge Mobilization are overviewed.

Finally, some integral approaches to the development of Intelligent Mobile

and Ubiquitous Knowledge-Based Systems are studied.

2.1 Definition

Knowledge Mobilization (KMob1) comprises all the efforts aimed to take ad-

vantage of the features provided by new mobile networks and devices in

order to improve Knowledge Management (KM) procedures. KMob research

faces certain problems which tend to arise when classical Knowledge-Based
1From this point on we will note Knowledge Mobilization as KMob, in contrast with

Knowledge Management, which is usually shortened as KM. This abbreviation if firstly pro-
posed in this work.

33

2.1. Definition 34

Systems (KBSs) are applied in current organizations, and proposes mobile

technologies to overcome them. As a result, KMob is closely related to

other topics such as Knowledge Engineering, Artificial Intelligence and Mo-

bile Computing.

This notion of KMob appeared for the first time in [138]. In this work,

Keen and Mackintosh present KMob as one of the three dimensions of mod-

ern companies (besides logistics and customer relationship) which can be

improved by using mobile technologies. The mobilization of knowledge con-

sists of making “knowledge available for real-time use in a form which is

adapted to the context of use and to the needs and cognitive profile of the

user”. In other words, KMob should furnish managers with suitable knowl-

edge in order to support them in decision-making processes, wherever they

are located. Accordingly, KMob would provide the means to accomplish re-

quirements of current organizations resulting from information immediacy

and user mobility needs.

The authors make the following distinction between: (i) conveniences,

namely, new features which are truly useful for the companies; (ii) freedoms,

or new services which “change the structure of everyday life”. In this sense,

KMob is regarded as being a paradigm shift from traditional supply-center

KM conveniences to KMob demand-driven freedoms. By providing (better)

support to (better) KM practices and systems, KMob would help to diminish

KM failure, which is a frequent issue caused by both people (employees do

not share or update knowledge) and software (systems do not represent or

distribute knowledge accurately).

Carlsson follows this approach and stresses that KMob systems must be

intended to identify, delimit, and provide solutions to fulfill current KBS re-

quirements [61]. The author defines four main tasks to be solved by KMob:

creation of knowledge, activation of latent knowledge, retrieval of hidden

knowledge, and delivery of knowledge. Paraphrasing F. Braudel2, this will
2Fernand Braudel is one of the most important historians in 20th century. He is the

author of Civilization and Capitalism: 15th-18th Century, a broad study of the economy
in the pre-industrial era which analyzes the impact of economic events on everyday social
behavior.

2.1. Definition 35

result in mobile value services and applications that will “expand the limits

of the possible in the structures of everyday life”.

Recalling the definition of KBS in the introductory chapter –“to provide

the right information to the right people in the right time, in such a way that

it is useful in the decision-making process” [151]–, it should be noted that

KMob shares with traditional KBSs time, place, and person requirements.

The main contribution of KMob is that it is particularly concerned about the

complex environments where decisions are made in current organizations,

and proposes mobile technologies as a valuable tool to cope with them. Be-

sides, as mentioned, real time, context, and a priori information are impor-

tant to discriminate which information is significant to the user.

In addition, Carlsson points out a plethora of theories and technologies,

most of them from Intelligent Systems and Soft Computing areas, which

could be used to carry out each one of these KMob tasks: Semantic Web,

Ontologies and Fuzzy Logic for building knowledge; Multicriteria Optimiza-

tion, Evolutionary Computing and Simulation for activating latent knowl-

edge; Data and Text Mining and Text Summarization for finding hidden

knowledge; and Multi-Agent Systems for effective delivery of knowledge to

ubiquitous users.

Our approximation is based on the proposal by Carlsson, concentrating

on further studies on the computational difficulties that the implementation

of KMob poses. From a pragmatic point of view, we believe that KMob ad-

dresses the challenge of building Knowledge Mobilization Systems, which

are:

• Ubiquitous. KMob systems offer services that can be accessed from

anywhere, at anytime, and using any device, particularly mobile ones,

which have limited computing capabilities.

• Proactive. KMob systems are expected to discover what information is

needed by the users and to act consequently.

2.1. Definition 36

• Declarative. KMob systems transform users’ questions, which may be

expressed in natural language, to queries that the resolving subsystem

can understand.

• Context-aware. KMob systems take into account information about

users’ context and incorporate it to the decision process. Context knowl-

edge may be used to adapt system behavior automatically depending

on the current scenario and the ongoing activity.

• Integrative. Several and heterogeneous information sources, technolo-

gies and devices are meant to participate in KMob systems.

• Concise. KMob systems must summarize gathered data and tailor it to

user needs and device capabilities.

• Finally, since KMob systems are intended to be a key tool to manage

knowledge inside organizations, they must comply with common re-

quirements of corporative software, such as reliability, extensibility, se-

curity, easy maintenance, etc.

We must point out that though these three definitions state KMob applica-

tions as targeted to assist expert decision, its contributions are suitable to be

extended to less specialized areas. KMob also provides a proper support for

developing services which offer advices or suggestions to mobile users facing

non-critical tasks. For instance, let us imagine a shopping guide software

which schedules in the customer’s mobile phone a shopping spree to the lo-

cal boutiques according to his location and preferences. Accuracy of results

is (probably) not as vital as it would be in a corporate KBS, but needs of

interoperation, integration of information sources, summarization of results,

or use of context data may be even harder to resolve.

2.2. KMob and Ubiquitous Computing 37

2.2 KMob and Ubiquitous Computing

KMob is inevitably related to Ubiquitous Computing (UC) and, to some ex-

tent, KMob can be regarded as a particular paradigm in this area. UC, often

named alternatively Pervasive Computing (PC), was introduced in 1991 by

Weiser, who envisioned a world where a multitude of computational ob-

jects (software and hardware: sensors, actuators, communication networks,

portable devices, etc.), which are part of the ambience, communicate and

interact with each other in order to carry out different jobs to help humans

in daily activities [258]. Nowadays, UC systems obtain data from remote tiny

sensors, transmit information using wireless communications, retrieve infor-

mation from the Web, use Internet protocols, etc., aimed at automating tasks

in different everyday life situations.

UC is regarded as the result of the evolution of Distributed Comput-

ing [226]. From early personal networks to current high-scale massive in-

ternets, problems have arisen (e.g. reliability, interoperability, or security)

and solutions have been developed (e.g. routing algorithms, standard pro-

tocols, or encryption techniques) with a view to making remote communi-

cation a freedom, using the terminology of Keen and Mackintosh. A major

step in this progress was the advent of mobile systems, which allowed voice

and data networks to be accessed from anywhere at anytime. Mobile Com-

puting poses new challenges to Distributed Computing, both hardware and

software, while it also offers new opportunities: ubiquitous access to data,

wireless communication, use of portable devices, etc.

Relying on Distributed and Mobile Computing, several UC subareas and

related topics have been developed, each with its own particular focus. For

instance, Smart Rooms [204], a combination of Domotics and Image Recog-

nition to support an inhabitant’s activities with computational facilities, are

defined similarly to UC. Computationally-enhanced environments are also

studied in Ambient Intelligence, which claims that Artificial Intelligence tech-

niques are the key to building effective pervasive applications [214]. UC

overlaps considerably with Embedded Computing [260]. Embedded devices

2.3. Use cases 38

are simple specific-purpose controllers, which are encapsulated inside the

larger machinery that they manage. When devices are expected to be carried

by the users, ideally indistinguishable from their clothes, systems are usually

included in Wearable Computing [220].

KMob, in turn, can be regarded as the UC subarea interested in delivering

refined information (i.e., knowledge) to specialized nomadic users. It shares

with the aforementioned ones several issues to be resolved, e.g. mobile

networking, information delivery to nomadic users, integration of devices,

context-awareness, adaptive behavior, transparency, and scalability. Artificial

Intelligence theories and techniques are expected to play a key role, a prin-

ciple which is shared with Ambient Intelligence. On the other hand, KMob

has specific challenges that require particular solutions, namely, knowledge

acquisition, representation, and presentation. KMob involves providing users

with more elaborated information than general pervasive applications, which

usually manage lower-level data collected from environmental sensors. As a

result, an expressive formalism must be used. In addition, since devices with

limited computational capabilities are used, representation formalisms must

generate tractable knowledge bases. Likewise, person to machine interaction

is more frequent in KMob, since more critical decisions must be made based

on the available information. Thus, interfacing with the user is a priority.

2.3 Use cases

In this section, we present three scenarios that exemplify the kinds of ap-

plications that can best take advantage of KMob proposals. We follow the

schema of the W3C Semantic Web Activity3, which describes use cases for

Semantic Web technologies. In this context, a use case is an example of a

prototype system which, event though it is not currently being used by an

organization, demonstrates the benefits of applying Semantic Web tools. In

this section, our use cases show the possibilities of KMob technologies. The
3http://www.w3.org/2001/sw/sweo/public/UseCases/

http://www.w3.org/2001/sw/sweo/public/UseCases/

2.3. Use cases 39

first is the Nomadic Healthcare use case, which is exemplified in Chapter 4,

and implemented in the application described in Chapter 5.

Nomadic Healthcare use case

The problem. Dr. Greg is a physician who needs to consult the clinical data

of a patient in order to prescribe the best treatment. If the healthcare service

occurs inside the hospital, Dr. Greg will be allowed to access the Hospital

Information System (HIS) and to retrieve all of the patient’s Electronic Health

Records (EHRs). Since he has enough time and knowledge, he will be able

to rule out all the useless pieces of information and will only obtain those

that he is interested in.

In the event that Dr. Greg is in an emergency-assistance ambulance unit,

and he is caring for a patient injured in a car accident, it will be helpful to

be able to access some data about the patient’s clinical history. For instance,

data concerning the patient’s adverse drug events (ADEs) may have been

recorded. Nevertheless it is improbable that the doctor will be able to access

HIS data from outside the hospital (much less by using a portable device such

as that available in emergency healthcare units). Even if it were possible,

the doctor would not have enough time to review all the stored electronic

records.

The solution. In such a situation, a brief report including those pieces of

the patient’s clinical data which ought to be considered would be very valu-

able. The clinical procedure to be carried out would determine which data

should be part of this summary. For example, if the patient is unconscious

and has a hemorrhagic laceration, information regarding whether he has an

allergy to procaine (an anesthetic drug which reduces bleeding but is also

often badly metabolized and triggers allergic reactions) should be taken into

account, among other things. Thus, some kind of rule asserting that ‘data

about previous anesthetic drug reactions’ ought to be considered when ‘the

patient has a penetrating wound’ should be created in the knowledge base

of the system. Following recommendations for clinical and ADE guidelines,

2.3. Use cases 40

other similar rules can be included in the knowledge base in order to support

the creation of context-dependant EHR summaries.

Assigning a priority to these links among patient states and registers of

the HIS would also be desirable. For example, allergic reactions to anesthetic

drugs are more important than blood-borne diseases and should be presented

firstly to the doctor since avoiding an anaphylactic shock is a major priority,

and medical protocols prevent the doctor from being in contact with patient’s

blood. Ranking the relevance relations would allow system responses to be

sorted by precedence and a threshold to be fixed to filter information.

Benefits of using KMob contributions. This example present various of the

characteristic features of KMob systems (as they have been defined in this

chapter). For instance, the system must be context-aware, i.e. it needs to

detect which is the situation of the patient and behave accordingly. Likewise,

the eventual Nomadic Healthcare system must be concise, since doctors are

provided with summaries only including significant information about the

patient. Necessarily, the system will integrate different technologies (mobile

platforms, communication protocols, etc.) and information sources (the HIS,

the vocabulary to describe patient situations, etc.). All these tasks can be

faced by applying KMob technologies and tools.

Portable Tourism Guide

The problem. Travelling to a strange city is often an unnerving experience,

whether the trip is for business or pleasure. If the traveller wants to know

how to get from the airport to his hotel, he has to check the timetables and

prices of the airport buses, trains and taxis, calculate the estimated time and

cost of the trip, and decide which means of transportation is best for him.

A similar situation occurs when the traveler decides to go sightseeing and

visit one of the tourist spots in the city. He must retrieve information from

different providers, and then make his choice accordingly.

Moreover, the traveler may be interested in checking out the opinions

2.3. Use cases 41

of other people who have visited the city. Webs offering reviews of movies,

restaurants, cinemas, hotels, companies, etc. have proliferated over the past

years. Providing the user with this information in addition to the official data

is very advantageous, especially if he is visiting a city that he is unfamiliar

with.

None of these tasks is easily carried out by a mobile device operating with

current technologies. All this information is probably available on the Web

and can be accessed, but it is difficult to integrate the different information

sources. Furthermore, it does not make sense to present a huge volume of

data to the user because he will not have the energy or the time to read pages

and pages of results on his mobile device.

The solution. A possible solution to this problem is the publication of all the

data in a format that can be automatically processed. This enables a software

agent to collect and integrate information, which is subsequently delivered

to users in a proper format. The information received is then filtered accord-

ing to the user profile, which includes previous actions, preferences, location,

etc. It would be also interesting to implement the means to automatically up-

date this profile. For example, if the user changes location, the profile should

be changed without the user having to explicitly specify his new geographic

position. Moreover, the profile could be learnt as the user utilizes the system.

For instance, if the user frequently consults sports results, the profile should

be adapted so that it takes this preference into account.

Currently, there are various research initiatives aimed at describing pub-

lished information with well-defined metadata. Actually, this is the objective

of the Semantic Web, which can be applied to building advanced mobile

systems. In our example, the information pertaining to public transporta-

tion, places, and users reviews should be published in the RDF language

so that an automatic agent can automatically extract, integrate and consult

the semantically-enriched data. Additionally, the user profile should be ex-

pressed in a logic-based language such as OWL. Thus, user preferences and

available information could be matched, and only relevant information re-

trieved.

2.3. Use cases 42

Benefits of using KMob contributions. The Semantic Web, which is one of

enabling technologies of KMob, offers a framework for the formal descrip-

tion of information published in the Web. Resources with a well-defined

meaning can be better located, integrated, and delivered. Soft Computing

and Machine Learning techniques can be applied to adapt the behavior of

applications without user intervention. KMob, as an integral approach, es-

tablishes how these technologies can be combined to develop an effective

mobile application.

Ubiquitous Security Guard

The problem. Security in large installations is controlled by teams of guards

that patrol the surveillance area. Guards can either be walking the beat or

watching the cameras installed in the secured area. The guards can com-

municate by using radio transmitters. Usually, when a security alarm is trig-

gered, guards follow a predefined protocol for each possible risk situation.

Mobile technology allow security systems to be improved by implement-

ing software that provides guards with data, which may include any kind

of multimedia content, independently of the location of the user. Moreover,

mobile communications and devices can be used to better coordinate the re-

sponse against a security alarm. Another benefit of mobile technologies is

that they can be combined with intelligent procedures in such a way that

the signals captured by ubiquitous devices (sensors, cameras, or other de-

vices carried by the guards) can be interpreted, and a suitable plan can be

automatically scheduled in real time.

Such an Ubiquitous Security Guard application must integrate different

communication technologies, but even more important, it must rely on a

sound knowledge model to detect security threats and generate reaction

plans, as well as a suitable mechanism to coordinate the distributed com-

ponents of the system. These components are both computational (sensors,

cameras, etc.) and human (guards).

2.4. Methods, technologies and tools 43

The solution. The software entities participating in the Ubiquitous Security

Guard application must have a high degree of autonomy. At the same time,

they must cooperate and coordinate their actions in order to react to and

effectively deal with security threats. The design of such system can be based

on the multi-agent paradigm, which establishes a framework for the design

and implementation of distributed intelligent systems.

Additionally, the knowledge of the system can be represented if the form

of ontologies. Maps of the secured area can be tagged with semantic meta-

data, which allow agents to precisely state the location of an object or an

event. Likewise, ontologies that describe possible risk situations could be

created. These knowledge models would be used by the reasoning proce-

dures to deduce the protocol to be activated in a given situation, and to

create a plan to deal with the incident.

Benefits of using KMob contributions. KMob proposes multi-agent systems

to achieve effective intercommunication and interoperation between entities

in a distributed system. In the same regard, ontologies are applied in KMob

as a suitable formalism to create a language, understandable by a wide range

of different agents. Moreover, KMob provides a framework that decouples

the design and the implementation of an intelligent mobile system. Thus,

the structure and behavior of the entities of the system can be abstractly

described as participants of a KMob application, and then implemented using

a suitable technology.

2.4 Methods, technologies and tools

In the previous section we have described three use cases that illustrate some

of the benefits which KMob afford to nomadic knowledge workers. Now we

shall point out some recent technologies which are crucial to the develop-

ment of KMob systems.

As is well known, there are currently development platforms that allow ad

hoc mobile solutions for concrete applications to be implemented, covering:

2.4. Methods, technologies and tools 44

(i) software running on mobile devices (e.g. J2ME, .NET Compact Frame-

work, Symbian OS programming toolkits); (ii) server logic (J2EE, .NET);

(iii) communications (WAP, HTTP, SOAP/Web Services, etc). These technolo-

gies are the framework supporting development of mobile services. Building

a KMob application from scratch with these technologies can be rewarding,

but also frustrating and (even more important) costly, especially when main-

tenance is required or when there are new demands to fulfill. Participation of

new devices, update of technologies, change of user roles, or need of incor-

porating new interaction patterns pose a great challenge to people in charge

of the system because some parts of the system (if not all of it) will have to

be redesigned and redeveloped from the basis.

Therefore we consider that a unified, extensible, and adaptable compu-

tational architecture for KMob applications must be defined. This architec-

ture must identify the components of a KMob system, the relations between

them, and the actions they can perform. Such an architecture would allow

KMob systems to be described in terms of abstract modules and operations.

This avoids the specification of the low-level aspects of mobilization, both

hardware (which devices will be used) and software (which technologies

will be applied to implement the system). The architecture will be conve-

niently implemented using different technologies depending on the system

size, purpose and restrictions. Our proposal of an architecture and an as-

sociated supporting framework is extensively discussed in Chapter 3. The

following sections review some of the existing methods, technologies and

tools in different areas which KMob applications will rely on.

Figure 2.1 shows our vision of KMob and related topics. It depicts the

research areas and technologies that we consider to be appropriate to make

data develop into knowledge ready for mobilization in different application

domains. Interestingly enough, we propose relying on Intelligent Systems

(IS) solutions to meet the challenges of KMob challenges, in line with Carls-

son’s (as well as other UC researchers’ [253, 257]) view. We focus on three

main (non-disjoint) contributions of IS: Knowledge Representation (see Ap-

pendix A), Intelligent agents, and Soft Computing. Besides IS, other tech-

2.4. Methods, technologies and tools 45

nologies can be used: mobile devices and networks, database and data ware-

house systems, middlewares, etc.

In this figure, four main layers are distinguished: data, information,

knowledge and applications. This organization reflects a distinction usu-

ally stated in Information Systems theory which mirrors the process of rough

data becoming useful knowledge [1]:

• data are syntactic patterns with no associated meaning, which are used

in the initial step of a decision-making process;

• information is the result of interpreting data and providing it with

meaning;

• knowledge is learned information which is conducive to inferring new

knowledge to be used in decision-making.

In the case of the doctor in the emergency ambulance service consulting

the HIS (Section 2.3), the patients’ EHRs can be considered data, since they

have little meaning; EHRs merely store figures, strings and perhaps images

with the values of different healthcare parameters. If semantics are added

to these parameters, they can be considered information; an ontology can be

used to state that blood pressure is a clinical sign, or that anemia is a blood

disorder. This ontology can be further enriched to have relate profiles, dis-

eases and EHRs; it thus becomes knowledge useful for decision-making. For

example, the ontology can tell us that anemia occurs when the hemoglobin

level is below 13.0 g/dl, and that it is commonplace to have anemia after

radio and chemotherapy treatments have been carried out.

Next we discuss relevant research related to topics mentioned in Fig-

ure 2.1.

2.4. Methods, technologies and tools 46

Figure 2.1: Knowledge Mobilization related research areas

Context and domain knowledge

S
oft C

om
puting

Environmental dataSensor
Technologies

Mobile Devices

RFID GPSUltraLaptops Cell phones

Information integration & retrieval

Knowledge
Discovery

Multi-agent
systems

Knowledge Engineering

Knowledge Mobilization

Healthcare m-
government

Mobile
business m-commerce SecurityMobile

assistance

A
pplications

K
now

ledge
Inform

ation
D

ata

PDAs

Logic-based
inference
systems

...

Mobile Web

Geo-spatial
data

User profiling
models

General
knowledge

Multimedia
representation

Fuzzy Logic

Semantic Web

User interfaces

O
nt

ol
og

ie
s

Wireless Communication technologies

Middleware SystemsWeb Services

S
O

A
s

CORBAJini

Fu
zz

y
O

nt
ol

og
ie

s

2.4. Methods, technologies and tools 47

Data

Wireless broadband communication technologies and portable computational

devices have emerged to become the enabling technology of new mobile ser-

vices, such as those provided by KMob.

On the one hand, third-generation cell technologies (3G) are being cur-

rently deployed in the market, still dominated by GSM (2G), and new ser-

vices, such as videoconference or MBMS (Multimedia Broadcast Multicast

Services), are now being offered thanks to higher transfer speeds (up to

2Mbits/s versus 144Kbits/s) and more reliable connections. Regardless of

these advantages, dissemination of 3G technologies has not been as fast and

rewarding as expected. However new extensions to them are being intro-

duced, namely, the 3.5G and 4G. Poole provides a comprehensive introduc-

tion to cellular communications, describing issues, solutions, and standards

in [207].

Wireless network technologies are seen to complement or to build on

current third-generation mobile technologies. In recent years, Bluetooth (for

short-range ad hoc connections, i.e. WPANs) and Wi-Fi (for local IP-based

networks, i.e. WLANs) have become the means to communicate small and

mid-sized systems [153]. In fact, voice-over-IP (VoIP) services, which allow

voice communications to be performed throughout IP networks, are regarded

as a considerable threat to carrier operators, since they eliminate subscribers’

dependence on cell infrastructure (at least within the last mile of the loop).

Possibilities will be extended with the advent of WiMax, a successor of Wi-

Fi which promises wider covertures and higher transfer speeds (up to 70

Mbits/s and 110 km, in the best of cases and not simultaneously). Both cell

and WLAN/WPAN technologies will be fully interoperable in the near future

(Mobile IP and IPv6 share this aim). The result will be that all significant

data communication will work on IP protocols, which is usually known as an

all-IP development.

On the other hand, as a result of technology convergence – mainly hand-

held devices (PDAs), cell phones, and laptop computers –, mobile devices

2.4. Methods, technologies and tools 48

have evolved from simple voice-transmission terminals to smart computa-

tion gadgets equipped with 3G, Wi-Fi, GPS, video recorder, etc. which are

able to fulfill complex tasks, such as browsing the Internet, e-mailing, run-

ning business software, etc. This trend will predictably continue in the near

future [194], in consonance with the impressive penetration rates of these

technologies. As a matter of fact, consultant firm Strategy Analytics estimates

in its report for the last three months of 2007 that 332 million cellphones

were shipped worldwide [174], an increment of 13% year-over-year, with

strong demand in emerging markets like Africa, India and China, whereas

Informa Telecoms & Media forecasts that 121 million converged devices will

be sold by 2012 [128].

Software programmers can make the most of mobile technologies by us-

ing development platforms and APIs adapted to the flavor of the target device

operating system. Currently, there are two main branches of mobile devices,

differentiated by the operating system used: Symbian-based (mostly owned

by Nokia, and the most widespread) and Windows Mobile-based (developed

by Microsoft, and included since 2006 in Palm Treo Series). Each has its own

programming platforms. An alternative is to use J2ME (Java2 Mobile Edi-

tion), which can be run on different OS. J2ME defines a set of profiles and

configurations to adapt software to device capabilities, as well as additional

pluggable interfaces for new specifications (JSRs).

Other minority development frameworks worth mentioning are those in-

tended for Linux-based mobile devices: Maemo, for Nokia N770 and above;

Android SDK, for Google’s Android OS (not included in any device to this

date); or Qtopia, provided by Trolltech (recently bought by Nokia) and used

in some Motorola and Panasonic cell phones. It is also possible to develop

software for (more) closed platforms like iPhone OS (non-web applications

are officially supported only since February 2008) and RIM Blackberry (which

provides a Java Development Kit). Finally, web development is an alternative

to ensure portability: mobile phones can access the Web and invoke appli-

cations running on remote servers using HTTP. These applications can be

enriched with recent web programming technologies such as AJAX or Flash,

2.4. Methods, technologies and tools 49

which can be interpreted by most of current mobile browsers. Recently, plat-

forms which split the execution of web applications between the client and

the server have been proposed, namely, the Rich Internet Applications (RIAs)

(e.g. Microsoft Silverlight and Adobe AIR).

Additional sensor systems may be involved in KMob applications. In

this sense, there are two that have become increasingly popular in the last

decade: GPS (Global Positioning System) and RFID (RadioFrecuency IDen-

tification). GPS technology allows users to calculate the absolute position

on Earth (latitude, longitude) of a GPS receiver by the interpolation of the

signals transmitted from four (or more) satellites. RFID, in turn, is based on

remote read and writing of tags storing identification data, a simple mecha-

nism which may be used to track tagged objects during their lifetime. These

can be used beside other environmental sensor in context-aware systems, i.e.

systems that acquire, deliver, and process environment data in order to apply

it to subsequently customize system behavior to the users’ ambience.

In order to deal with this wide range of technologies and facilitate mo-

bile application development, middlewares have been developed. In general,

middlewares are programs which enable interoperation between application

and system software. In our case, a KMob middleware is a set of (software)

high-level primitives which cope with low-level aspects of mobilization (soft-

ware and hardware) and embodies a reference framework for developers,

whose objective is to hide device and communication details as much as pos-

sible, especially from users.

There are middleware platforms at different abstraction levels, ranging

from standards aimed at interconnecting distributed components of a system

(syntactic interoperability) to complex software able to automatically locate,

invoke and coordinate system nodes (semantic interoperability). Some of

the more interesting technologies currently used are: (i) RPC protocols, for

remote procedure calling over TCP/IP; (ii) CORBA and its sucessor ICE, two

specifications for remote procedure calling in object-oriented architectures;

(iii) Jini, a Java technology for federated systems; (iv) SOAP, which together

with WSDL and UDDI is the standard to implement Web Services, allowing

2.4. Methods, technologies and tools 50

remote procedures to be requested through elaborated HTTP calls; (v) REST

paradigm, which promotes the access to remote resources using ad hoc sim-

ple XML and HTTP messages. More abstract middlewares usually rely on

these technologies, and these are described in Section 2.5.

Mobile Web is a related initiative: since it strives to make possible surfing

the whole web using mobile devices, it is also suitable to allow interchange

of information (via Web protocols) and the remote running of applications

(via Web Services) in mobile systems without having to be concerned about

all the details of the underlying technologies.

Information

Since applications (and, consequently, supporting middlewares) are expected

to manage different and heterogeneous data sources, different data models

must be used to endorse semantics to data. Among others, the information

layer ought to consider multimedia (images, sounds, video streams), context

data and user profiles, apart from general domain information.

Therefore, formal theories to represent sparse and heterogeneous infor-

mation are required in KMob. This has been a long-established issue in

Knowledge Engineering that nowadays is being tackled by using ontologies.

Ontologies are a knowledge representation formalism which offer interest-

ing features such as the standardization, sharing and reutilization of knowl-

edge [64]. They are thus suitable for representing knowledge in KMob appli-

cations. Appendix A includes a detailed study of ontologies and the ontology

language OWL.

The role of context knowledge in intelligent mobile systems is worth men-

tioning, since it may be used to automatically customize responses according

to user circumstances and preferences [158], leading to the UC aspiration of

a semi-invisible computer [258]. Summarization, as a form of personaliza-

tion, is an especially desirable feature in KMob applications, where presenta-

tion of large volumes of data on mobile devices is critical and may result in

information overload.

2.4. Methods, technologies and tools 51

Accordingly, knowledge models can be roughly classified as application-

specific or context-related, depending on the role that they play in a KMob

application. The application-specific knowledge base contains expert infor-

mation about the specific problem to be dealt with by KMob systems, whereas

context knowledge is used to specify under which conditions subsets of the

latter ought to be considered. Chapter 4 describes how context and specific-

domain knowledge can be represented by using ontologies, and proposes a

design pattern to create and reason with context-aware ontologies.

By information integration and retrieval, we mean that information could

be automatically integrated and conveniently stored in a data warehouse to

perform further knowledge discovery processes. Information may be tagged

with terms of an ontology, which is known as ontological annotation, or al-

ternatively, it may be used to build a new ontology, which is known as on-

tology learning. Both processes can be performed automatically with proper

machine learning techniques (maybe based on Soft Computing and Fuzzy

Logic).

It should be highlighted that the representation primitives of ontologies

are crisp, that is, they are logic-based constructors which evaluate either to

true or false. For instance, regarding concept inclusion – the basic inference

procedure in DLs –, it can only be stated that a concept is or is not sub-

sumed by another one. This can be a serious shortcoming when imprecise

information must be represented in a knowledge base, something far from

unusual in several domains. For that reason, extending ontologies (and con-

sequently ontology languages) to handle imprecise and vague knowledge in

KMob applications is a very promising research line. Fuzzy ontologies are

an extension of classical ontologies that allow such knowledge to be repre-

sented [225].

Fuzzy extensions of DL also support enhanced information retrieval pro-

cesses, for instance (partial) matching of user preferences against service

capabilities or result rating based on different criterions. Such tasks would

be difficult to implement using a crisp representation formalism. In this work

(see Chapter 4), we propose a fuzzy extension to rank significance relations

2.4. Methods, technologies and tools 52

in context-aware ontologies. This approach is based on previous studies on

reducing reasoning within Fuzzy DLs to reasoning within Crisp DLs in order

to make possible the use of currently available inference engines [39, 41]
(see Appendix A.

Knowledge

Built upon the information management layer, IS technologies dig into in-

formation stores to extract valuable knowledge from less elaborated data.

Furthermore, intelligent appliances can be used to deliver useful knowledge

to ubiquitous users, providing them wherever they are with information gen-

erated at any point of the system using any device to make effective KMob.

Agents are one of the abstractions that have been most frequently used to

describe and implement proactive intercommunication among modules in in-

telligent distributed systems. The Multi-Agent Systems (MAS) paradigm pro-

poses a scenario where independent, goal-directed, and environment-aware

units (the agents) become coordinated (by collaborating or competing) to

accomplish complex tasks [259]. Adaptive learning may be applied to dy-

namically adjust agent behavior. In KMob, agents collect and distribute in-

formation across the distributed modules of the system. Some advantages

of MAS are a solid conceptual grounding (they can be depicted using well-

defined abstract entities and operations), encapsulation of their components

(which hides agent policies and promotes scalability), communication fa-

cilities (high-level protocols are used), and parallel execution (resulting in

better performance and robustness) [244].

From a practical perspective, the MAS paradigm eases system develop-

ment as standards and frameworks to build them have been proposed. For

instance, FIPA describes an extensive standard ranging from system archi-

tecture (FIPA Abstract Architecture) to agent communication (ACL, Agent

Communication Language) [208]. Related approaches are KQML (Knowl-

edge Query Manipulation Language) [93], a communication language, and

MASIF [179], a collection of standards for agent interoperability. There are

2.4. Methods, technologies and tools 53

also development platforms which implements these standard, e.g. JADE [23]
(FIPA-compliant), JatLITE [129] (KQML- and FIPA-compliant) or Grasshop-

per [19] (MASIF- and FIPA-compliant). Extreme decoupling of processing

modules is driving MAS towards peer-to-peer systems (P2P), i.e. highly dis-

tributed systems where central coordinators are reduced to the minimum.

Our vision of a KMob middleware is not very far away from these MAS

platforms, although it should be located on a high abstraction level. In our

opinion, developers should concentrate on knowledge management rather

than on data communication details. Nevertheless, these platforms can pro-

vide a sound framework from which richer tools can be built, above all if we

bear in mind that MAS research has faced mobility problems in preceding

years. In the literature, MAS mobility has usually referred to the capacity of

running agents to be transferred from one computer to other [68, 6], but the

explosion of mobile computing has led to an increased focus on agents exe-

cuting on mobile devices. As a result, some platforms as JADE-LEAP allow

the deployment of agent software in J2ME-enabled mobile phones [25].

MAS are strongly related to Service Oriented Architectures (SOAs). SOAs,

implemented with Web Services [75], have been used respectively as an al-

ternative or a complement to other paradigms like MAS, and to other trans-

port protocols like CORBA/ICE or RPC. Recently, the OSGi platform has been

presented as a complement or a replacement for Web Services. OSGi is

a Java-based framework which provides support to create communicative

services that can be executed in different computational environments, in-

cluding mobile devices [5]. However, understanding between pure agents

platforms and services (whatever they are implemented) must be explicitly

achieved, since different communication technologies are used. Ontologies,

employed as intermediate terminologies, are expected to play a key role in

solving this issue [112].

The Semantic Web is proposed, in addition to MAS, as the key technology

for knowledge building in KMob. The Semantic Web (SW) is defined as “an

extension of the current web where resources are described using logic-based

languages in order to allow automatic processing” [27]. The aim of SW is

2.4. Methods, technologies and tools 54

to overcome certain drawbacks of the current Web by providing mechanisms

for the automation of document processing and the simplification of effective

information recovery processes. Relying on metadata annotating resources,

software agents are expected to search, locate, discover, or link documents

better than today’s lexical-search engines. Accordingly, SW researchers are

very interested in formalisms for creating metadata to be associated to Web

resources. Hence, ontologies play a fundamental role, since they are the

main representation formalism in the core of the layered architecture of the

SW.

The SW has contributed to Knowledge Engineering with languages (such

as the standard Ontology Web Language OWL [176]); methodologies (for in-

stance, METHONTOLOGY [71]); tools (parsers, editors, reasoners, APIs) [76];
or domain-specific large-scale ontologies (e.g. UMLS ontology [45]) (see Ap-

pendix A). These make up a suitable framework for building not only SW

applications, but distributed KBS of any kind. Semantic Web Activity4 within

the World Wide Consortium (W3C) congregates several groups that are mak-

ing a great effort to develop standards for the SW.

Fully-fledged semantic web pages are still far away from being common

in the world outside research labs, but some of their contributions are valu-

able and stable enough to be incorporated in KMob systems. For our purpose,

resources in KMob systems can be given semantics by using ontologies, and

can be managed with Semantic Web technologies. A survey of work which

shares this objective is presented in Ranganathan et al. [217]. This also

presents some challenges which can be addressed using SW technologies,

like the automatic coordination of actors in mobile interaction. Masuoka et

al. tackle this problem, and suggests attaching descriptions to services in or-

der to discover, communicate, and integrate customers and providers in per-

vasive environments [173]. More recently, Lassila also has underlined this

difficulty, and has proposed the use of OWL ontologies to represent policies

(roughly, contexts) and Semantic Web Services (an in-progress specification

from the W3C) to achieve serendipitous device coalitions [157] (Semantic
4http://www.w3.org/2001/sw/

http://www.w3.org/2001/sw/

2.4. Methods, technologies and tools 55

Web Services are studied in [43]). Examples of implementations that use

Semantic Web technologies and agents to ensure interoperability in context-

aware pervasive environments are given in Chen, Finin, and Joshi [66], who

define an ontology (SOUPA, Standard Ontology for Ubiquitous and Pervasive

Applications) for representing agent BDIs (beliefs, desires and intentions),

user profiles, time, etc. and Soldatos et al. [236], who create a semantic

directory of entities.

Applications

Applications are implemented on top of the enabling technologies of KMob,

and will be supported by a KMob framework. As far as possible, these ap-

plications must keep the user unaware of the underlying complexity. In-

tuitive and user-friendly interfaces must be provided (the more adapted to

user context, the better). There are various methodologies for improving

multimodal/mobile user interface design [164], and more are expected to

be investigated [187], given the fact that new input and output procedures

(e.g. auditory, tactile, or motion-based) are being offered by mobile devices.

Thus, best practices and proper techniques should be considered in order to

make the use of KMob systems easier and to reduce the number of interac-

tion problems and the length of the learning period. Usability methodologies

allow the evaluation of user experiences, and anticipate the conditions of the

interaction in future scenarios.

Regarding application domains, as presented in Section 2.3, health care

applications are one of the most interesting domains where KMob can be

applied since both the technical challenges and the social implications are

relevant. KMob can be applied to decentralized and personalized health ser-

vices, care of the disabled, hazardous drug control, food traceability, logistics,

etc. Chapter 5 presents a system that provides nomadic physicians with sum-

maries of a patient’s previous diseases that directly affect diagnosis. It also

provides advice regarding further clinical tests to be carried out.

2.5. Related work 56

2.5 Related work

In the previous section we discussed various contributions pertaining to dif-

ferent areas of Information Technology that will participate in KMob appli-

cations, remarking some useful references about each subject. In this section

we describe integral approaches to the problem of knowledge management

and delivery in mobile systems, that is, we review architectures, frameworks,

platforms, APIs, etc. that are intended to support ubiquitous intelligent sys-

tems by integrating some of the aforementioned technologies. These range

from pure UC applications to others closer to our vision of KMob, according

to the differences remarked in Section 2.2.

Most works in the literature on pervasive systems tackle the problem

of representing context information, which is one of the main objectives

of UC and KMob. A fundamental contribution in that area is the Context

Toolkit [80], a framework for rapid prototyping of context-aware applica-

tions. Apart from the framework (both conceptual and practical), a general

definition of context and categories of context are examined in that paper.

Tradeoffs of this approach are examined by Hong and Landay [115], who

propose a higher-level infrastructure is suggested.

Similar ideas are explained in [111], which gives a description of a hard-

ware implementation of a context-aware system for smart rooms based on

CORBA communication. Several projects tackling the problem of context-

awareness in smart rooms were unveiled in the early 2000s: Interactive

Workspaces (at Stanford University) [132, 206], EasyLiving (Microsoft) [55],
Aura (Carnegie Mellon) [98], Cooltown (HP) [145], BlueSpace (IBM) [156],
and Oxygen (MIT) [78] are some examples. All these seminal works concen-

trate essentially on providing software platforms and on developing physical

implementations of enhanced environments where a considerable amount of

different and heterogeneous devices must be coordinated. In addition, Yau

et al. propose RCMS (Reconfigurable Context-Sensitive Middleware) [261],
a middleware which provides development and runtime support for appli-

cations that require context-awareness and spontaneous ad hoc communica-

2.5. Related work 57

tion.

As mentioned in Section 2.4, ontologies are being intensively used for

specific-domain and context knowledge representation. They can be encoded

in OWL or in other languages. Gaia, a middleware for mobile applications

promoting the use of ontologies in the description of context predicates, is

presented in [216]. In this platform, components are modeled as agents;

the are communicated with CORBA; and their context is represented with

DAML+OIL (a predecessor of OWL). Gaia has been extended to incorporate

fuzzy, probabilistic and Bayesian formalisms to process uncertain facts about

general context data [215]. In the same way, the Context Mediated Frame-

work defines a platform based on a fuzzy model to pre-process inputs from

crisp environmental sensors [149, 168]. These works are more oriented to

classical UC than KMob. In spite of the fact that they provide rich mecha-

nisms to represent context knowledge (mostly acquired from sensors), do-

main information is not expected to be as complex as in knowledge-intensive

KMob applications.

Gu, Pung, and Zhang follow a similar approach to Gaia in SOCAM (Service-

Oriented Context-Aware Middleware), although they use OWL and consider

that a SOA is more suitable to communicate modules in that kind of sys-

tems [106]. Other works which use SOAs are [163], [212] and [144]. The

first defines a middleware for Ambient Intelligence implemented with Web

Services called WSAMI; the second establishes a similar architecture relying

on MAS paradigm and OSGi; and the third proposes another middleware for

UC applications based on SOA and Web Services with OWL ontologies being

the means to manage context knowledge. In contrast to these contributions,

the OWL Services Framework (OWL-SF) proposes a REST architecture and

a supporting framework based on OWL for context representation and rea-

soning, and OMG Super Distributed Objects for sensor management, which

provide support for UC intelligent applications [182].

CoBrA (Context Broker Architecture) is another infrastructure which also

represents context using a RDF/OWL ontology [67], based on SOUPA [66].
A more specific proposal using ontologies is described in [154], where a rec-

2.5. Related work 58

ommender system for mobile users is developed on a multi-agent platform.

Some of these platforms (Context Toolkit, Context Mediated Framework, Co-

BrA, and SOCAM) are reviewed in [233], where the STU21 framework, a

proposal by the authors, is also described. It is interesting to mention the

work in [7], which presents a fuzzy methodology to measure partial equiv-

alences between situations (expressed using OWL ontologies) and to deter-

mine suitable action rules to be fired in pervasive applications.

Regarding multi-agent platforms, we have cited JADE (Java Agent DEvel-

opment), a framework for implementing FIPA-compliant multi-agent systems

based on a peer to peer communication architecture [23]. JADE platform

was adapted to mobile devices with the LEAP (Light Extensible Agent Plat-

form) extension [25]. JADE/LEAP provides a functional but overly general

infrastructure for working with high-level semantics and context informa-

tion. Thus, it is not generally used directly when implementing such dis-

tributed KBSs.

Instead, new middlewares have been built over JADE/LEAP primitives.

For example, that is the underlying technology of the approaches by Khedr

and Karmouch [139] and Soldatos et al. [235]. The first proposes an in-

frastructure for developing context-aware applications (ACAI, Agent-based

Context Aware Infrastructure) based on OWL ontologies for representing

context and agents (implemented in JADE) for coordination and commu-

nication within the system. The second also defines a new middleware for

pervasive and context-aware which relies on JADE, but concentrates more

on system implementation and evaluation rather than establishing a model

of the infrastructure. Nevertheless, a formal description of these authors’

middleware has been recently sketched in the CHIL Reference Model Archi-

tecture for Multi-modal Perceptual Systems [251]. Agents are also used to

communicate components in the ECORA (Extensible Context Oriented Rea-

soning Architecture) framework [198], which uses the ELVIN4 framework

instead of JADE. This work claims to resolve issues resulting from the use

of logic and sensor-based formalisms in context representation by providing

the so called Context Spaces model, based on state-space models. Addition-

2.6. Towards Knowledge Mobilization 59

ally, this approach includes ad hoc mechanisms to facilitate reasoning with

uncertain contexts.

The rise of both SW and MAS technologies has favored the appearance on

the horizon of recent infrastructures built from a combination of them, which

is very close to our view of KMob. For instance, the proposal by Lassila and

Khushraj, which will be implemented in the SwapMe (Semantic Web Ap-

plication Platform for the Mobile Ecosystem) project at Nokia Research and

MIT, also aims to combine the best elements from a wide range of different

fields (MAS, SW, mobile computing, etc.) to implement effective smart mo-

bile systems [9, 158]. Also interesting is that fact that CoBrA, though more

oriented to Ambient Intelligence, heavily relies on MAS and SW as well as

underlying data communication technologies [67]. Finally, we should like to

mention the PLIMM (Product Line enabled Intelligent Mobile Middleware)

middleware [263], which uses ontologies to represent knowledge in the sys-

tem and, more specifically, context. This middleware deploys BDI (belief,

desire, intention) agents able to reason with OWL on a supporting platform,

which can either be a SOA (compliant to OSGi standard [5]) or Jadex [205].

2.6 Towards Knowledge Mobilization

The numerous approaches to the development of intelligent mobile systems

seem to indicate that the implementation of a KMob system is not an easy

task, and can be carried out from many different perspectives. Various new

and often immature technologies need to be integrated in order to achieve

communication between mobile entities. Nevertheless, this is not the great-

est problem that developers have to face. As explained in Chapter 1, success-

ful KMob systems require new methodologies, architectures and knowledge

models.

The research work reviewed in the previous section is largely aimed

at satisfying these requirements, either partially or completely. Although

these contributions are valuable, most of them are excessively focused on

2.6. Towards Knowledge Mobilization 60

the integration of technologies. Instead of coming to grips with the most

crucial problem of a knowledge-intensive system, which is the representa-

tion of knowledge, this work limits itself to establishing communication, be-

tween mobile peers, and has nothing to say about achieving understanding.

Such work targets less specialized applications that do not require elaborated

knowledge to be managed.

For this reason, our research makes a detailed study of the problems that

arise when refined knowledge, retrieved from large and heterogeneous infor-

mation sources, has to be provided to decision-makers. Obviously, we take

into account related research, but at the same time explore new ways to offer

support for Kmob systems that must deal with complex problems. Thus, we

propose a software architecture and a context-dependent knowledge repre-

sentation model that solve information distribution and overload problems

in KMob systems. The representation formalism is explained in Chapter 4,

whereas the software architecture is described in the next section.

CHAPTER 3
An Architecture for Knowledge

Mobilization

This chapter presents a proposal for a new abstract architecture for KMob

systems. The chapter begins by exploring the rationale behind this proposal

and the features that a KMob architecture should have. It then goes on to

provide an introduction to software agent-based architectures. The main

content of the chapter is the description of our architecture, which uses the

semi-formal language AML. Since the architecture can be implemented by

using different technologies, we also offer a description of alternative devel-

opment frameworks.

3.1 Rationale

In the previous chapter, we presented various frameworks, standards, specifi-

cations, etc. for building KMob systems. These technologies were classified in

terms of three abstraction levels, namely, data, information, and knowledge,

according to the degree of refinement of the managed values (Figure 2.1).

The implementation of a KMob system might be started from scratch,

and rely on (a selection of) these tools. Although such a straightforward

61

3.1. Rationale 62

approach to the problem could be time-saving in the short term, it would

probably turn out to be expensive in the long run. The reason for this is

that software maintenance, support, and extension costs often soar if the

system is very complex, and if incompatible, immature, or undocumented

technologies are used.

Since this is a likely scenario in KMob, it is crucial to rigorously follow the

recommendations of Software Engineering. The software life cycle1 selected

should pay special attention to the design stage, when the developers identify

the global structure of the future system. The schema describing the system

organization is called its architecture, and its design is one important factor

that affects the success of the system.

In this chapter, we propose a general architecture for KMob systems that

can be adapted to different application domains. This reference architecture

semi-formally defines a set of abstractions that are the building blocks of a

KMob system. These abstractions are not very specific, and must be adapted

to particular applications. Therefore, this proposal may be regarded as more

of a meta-architecture, i.e., a description of the possible architectures, rather

than an architecture, as the term is commonly used. Lower-level solutions

regarding system implementation (programming languages and APIs, com-

munication protocols, etc.) are not dealt with in the architecture, and the

specific details must be decided by the designer.

The utility of such an architecture is inversely proportional to the experi-

ence of the system designer. Since KMob is a new perspective on corporate

systems, this issue is especially relevant. Actually, mobile systems develop-

ment as a whole poses several challenges to IT professionals, mainly due to

the fact that long-established software engineering methodologies for desk-

top applications are no longer valid [224]. Therefore, a design artifact for

mobile systems like this one is a very valuable contribution to the field, since
1The software development cycle consists of a sequence of stages that go from the infor-

mal specification of requirements to the deployment and maintenance of the final product.
Each stage has associated techniques, procedures, and tools. Software life cycle processes
in Software Engineering (e.g. iterative, waterfall, agile, or extreme programming) define
alternative methodologies for each of these stages.

3.1. Rationale 63

it saves time and money during the development process.

The following objectives must be achieved by the architecture. Most of

them correspond to non-functional requirements of KMob systems, which

are requirements that are not related to what the system has to, but rather

to how it is done. Unfortunately, these features are not orthogonal and are

often in conflict with each other.

First, the architecture must be adaptable to a variety of situations, namely,

different domains, interaction patterns between elements, and technologies.

The communication schema may range from untethered asynchronous mes-

sage queues to highly-demanding real-time synchronous processing, and the

architecture must be able to reflect these situations. Managing different con-

figurations can be achieved by decoupling actors, actions, resources, and

communication channels as much as possible.

Two other features that a KMob architecture must provide are extensi-

bility and robustness. Extensibility may be required in diverse dimensions,

for instance, in the number and type of system users or in the amount of re-

sources available. A robust system guarantees that it will be operative most

of the time. The more critical the task to be resolved, the greater the ef-

fort that must be made to build a reliable system. Given that system failure

may be triggered by many uncontrollable facts, obtaining a robust system is

usually expensive.

Security is a very important property that deserves a special comment.

Security entails user authentication, integrity of the data, and encryption

of the communications among other tasks. KMob systems must be secure,

but our architecture does not tackle this matter in depth because a com-

plete study of it is outside the scope of this work. As widely pointed out in

the literature [123, 166], security in mobile systems and applications is an

extremely complex issue that transversely affects the layers of a mobile in-

frastructure. Nevertheless, security mechanisms can be easily incorporated

in our architecture.

Given these requirements, we propose an architecture based on the multi-

3.2. Agent-based architectures 64

agent paradigm. The reason is that the multi-agent paradigm has proved

to be capable of supporting the development of distributed systems in sev-

eral domains with different communication schemas [244]. Moreover, multi-

agent systems are scalable, adaptable to different requirements, and robust.

The multi-agent paradigm provides the theoretical foundations for both

describing and implementing distributed systems. We will use the agent

paradigm for describing the architecture of KMob systems. The components

of the architecture will be modelled as agents. However, the developers will

be free to choose any implementation framework for the architecture, not

only multi-agent platforms. For instance, Web Services can be used to imple-

ment the architecture when the communication schema of the application is

of the client-server type.

In the next section, we study multi-agents architectures as a metaphor

for designing KMob systems (Section 3.2). Before presenting our KMob ar-

chitecture in greater detail (which is done in Section 3.3), we provide a brief

introduction to agent-based architectures as well as the modeling language

AML (Section 3.2). Finally, we describe three combinations of technologies

that can be applied to implement the architecture in three applications do-

mains (Section 3.4).

3.2 Agent-based architectures

Architectural patterns

Software architectures have been studied in Software Engineering for some

time now, but only recently they have been acknowledged as important ar-

tifacts in the development process. This is mainly due to the evolution of

monolithic software systems as distributed networks of computational re-

sources. The recently adopted ISO standard IEC/DIS 25961 (formerly IEEE

Std 1471-2000) states than an “architecture is defined by the recommended

practice as the fundamental organization of a system, embodied in its com-

3.2. Agent-based architectures 65

ponents, their relationships to each other and the environment, and the prin-

ciples governing its design and evolution” [124].

Basically, a software architecture abstractly specifies (i.e. unnecessary de-

tails are not presented) the structure of a system (i.e. the distribution and

the responsibilities of the elements), the communication between the compo-

nents (i.e. the flow of information), and other additional requirements (i.e.

technical, quality, or business oriented) [104]. The architecture of a software

product can be described from various perspectives, which produce different

views of the system. Commonly used views are the functional/logical view

(focus on structure), the concurrency/process view (focus on communica-

tion), the development view (focus on software modules), and the physi-

cal/deployment view (focus on implementation).

Documenting a software architecture has always been something of a

headache for IT managers. Revising or sharing a specification is often rather

difficult. For this reason, semi-formal methods for modeling software systems

have been proposed, such as UML (Unified Modeling Language) [69, 86].

An architecture is said to comply with an architectural pattern when it

has the typical features of the pattern. There are several predefined architec-

tural patterns that have obtained considerable success in specific application

domains. These best patterns have been verified and studied in great de-

tail. Thus, if a problem fits a certain pattern, design and development can

be guided by the pattern specification. Three widely used patterns for dis-

tributed systems are client-server, service-oriented, and agent-based archi-

tectures.

The client-server pattern is one the most frequently used architectures

in distributed computing. In its basic form, it suggests a simple intercom-

munication schema between two clearly-distinguished entities: clients and

servers. Clients are programs that perform minimal processing and require

few computational resources. Clients delegate most of the tasks to servers,

which run on more powerful platforms, and are responsible for satisfying

client requests. Workload can be balanced between clients and servers in

3.2. Agent-based architectures 66

such a way that clients may need servers only to carry out certain complex

tasks such as database management.

The evolution from simple (thin) to complex (fat) clients has given raise

to Service Oriented architectures (SOAs), which, to some extent, may be

considered an enhancement of the client-server paradigm. Functionalities

in a SOA are provided by services, which are stateless facilities that can be

accessed remotely. Services are usually implemented with Web Services, a

standard from the World Wide Web Consortium (see Section B.5).

Web Services also separate clients and servers, which have very differ-

ent roles in the architecture. Nevertheless, in some situations a client may

become a server (and vice versa), in such a way that each component of

the architecture can alternatively request and provide information. This pat-

tern is known as Peer-to-peer (P2P), and depicts a scenario where groups of

loosely-coupled equally responsible entities communicate directly to accom-

plish an objective.

Peers showing a certain degree of autonomy and awareness can be re-

garded as agents, in the classical sense of the term [203]. The multi-agent

paradigm depicts a scenario where the agents, which are autonomous, proac-

tive, and context-aware computational entities, communicate to achieve a

goal [259]. A multi-agent architecture is a description of a system in terms

of agents’ capabilities, organization, and interactions [91]. Multi-agent the-

ory proposes different kind of agents, system structures and collaboration

policies, which should be adapted to the problem to be faced [172]. Multi-

agent software engineering techniques [28, 29] can be used to develop a

multi-agent system.

Very few general architectures tackling the specific problems of mobile

applications have been created, and most are adaptations of the client-server

pattern. Not surprisingly, this is a natural way of structuring mobile systems,

given the computational limitations of mobile devices. Thus, several research

studies focusing on the adaptation of the client-server architecture to mobile

environments have been published [131, 159].

3.2. Agent-based architectures 67

Though these approaches consider participation of both thin and fat cli-

ents, intelligent applications require more diverse interaction patterns. As a

result, other architectures have been proposed in the context of Intelligent

Systems. Most of them have an associated implementation framework, such

as those mentioned in Section 2.5. These ad hoc architectures are usually

inspired on existing paradigms – from pure client-server to multi-agent –,

and are tailored to meet specific needs.

Our contribution in [77] provides an abstract architecture for intelligent

mobile systems that overcomes some of the issues of related approaches. This

architecture relies on the service-oriented and the multi-agent paradigms.

Services are modelled as agents, and a convenient multi-agent architecture

is proposed. With this architecture, the choice of implementation technolo-

gies is left to the developer, who can use agent and non-agent platforms. As

a matter of fact, the paper showcases the PDA2 (Psychological Disorders As-

sistant for PDA), a mobile knowledge-based system to retrieve information

about psychological disorders. PDA2 is designed as a multi-agent system, but

is implemented as a Web application. The client, equipped with a portable

device, consults the server by using a Web browser.

In Section 3.3, an improvement on the architecture in [77] is presented

in detail. The new architecture, also based on the multi-agent paradigm,

is described using AML, a software specification language for agent-based

systems. An overview of AML is provided in the next section.

The Agent Modeling Language

The Agent Modeling Language (AML) is a semi-formal visual language for

specifying, modeling, and documenting systems in terms of concepts from

MAS theory [256]. AML defines a set of elements and restrictions that the

software designer can combine to graphically depict the structure, relations,

and procedures in an agent-based system.

Similar approaches to AML have been proposed. The survey in [63] com-

pares AML with other agent-modeling languages, such as Gaia, AUML, Mes-

3.2. Agent-based architectures 68

sage, Tropos, MAS-ML, and AOR. AML is less academical and more practical

than the other languages. As a result, it is more applicable to real problems.

We have decided to use it because it is more flexible, and is better supported

by existing visual design tools. It also has the advantage of having more

available documentation than other proposals.

Furthermore, AML has solid underpinnings, since it is based on the Uni-

fied Modeling Language (UML) [69, 86]. UML defines entities (with an asso-

ciated graphical notation) that represent elements of the application domain,

such as actors, resources, procedures, etc. These entities are included in UML

diagrams corresponding to different views of the system architecture. UML

representations are simple enough to be understood by both developers and

clients so that feedback can be directly provided. Nevertheless, in order to

interpret all the details of a software design, more knowledge regarding lan-

guage particularities is required.

The formal semantics of UML entities and diagrams are stated in the UML

metamodel. AML is defined as a layer on top of the UML metamodel, ex-

tending it with new primitives consistent with UML entities. The most im-

portant AML primitives are the following: (i) entities, which are social and

autonomous elements with a behavior and a structure; (ii) relationships or as-

sociations between entities; (iii) behaviors, defined as procedures performed

by entities; (iv) execution environments or platforms where entity implemen-

tations are deployed; (v) ontological elements or components of a knowledge

model.

Table 3.1 summarizes the AML constructors employed to specify our ar-

chitecture, and shows their graphical representation. Next, a brief descrip-

tion of each is provided2.

AgentType. This is the type assigned to AML agents. In AML, an agent is

any autonomous entity that passively or proactively interacts with the envi-

ronment, independently of its implementation.
2Since it is out of the scope of this dissertation to provide a complete overview of AML,

we refer the reader to the AML specification for further details on the language [63].

3.2. Agent-based architectures 69

Table 3.1: AML primitives

Primitive Iconic display

AgentType
Agent

ResourceType
Resource

EnvironmentType
Environment

EntityRoleType
EntityRole

ServiceSpeci�cation
Service

BehaviorFragment
BehaviorFragment

SocialAssociation
Agent Resource

SocialAssociation

PlayAssociation
Agent

EntityRole

PlayAssociation

ServiceProvision
Agent

ServiceSpecification

ServiceProvision

ServiceUsage
Agent

ServiceSpecification
ServiceUsage

ExecutionEnvironment
AgentExecutionEnvironment

Ontology
Ontology

OntologyClass

Context

3.2. Agent-based architectures 70

ResourceType. Resources are passive entities with associated properties

that are accessible inside the system. External resources in AML are defined

as UML Actors.

EnvironmentType. Environments are the logical or physical surroundings

where entities exist. The environment type defines a set of properties for

defining which entities live in the environment (agents, resources, etc.) and

some of their features (rules, laws, policies, etc.). In the same way as re-

sources, external environments in AML are defined as UML Actors.

EntityRoleType. Generally speaking, a role denotes a set of features and

capabilities that an entity may decide to acquire.

ServiceSpeci�cation. This class is used to describe accessible services in

the system. Such services are defined by their protocols (entry points that a

service offers) and behaviors (activities that the service performs).

BehaviorFragment. Behavior fragments (partially) describe the dynamics

of an activity performed by an entity to achieve a goal.

SocialAssociation. A social association is a bidirectional property denoting

a relationship between two socialized entities.

PlayAssociation. A play association is a bidirectional property denoting

that a behaviored entity can acquire a role.

ServiceProvision. Service provision stands for a dependence relation be-

tween the provider entity and the provided service.

ServiceUsage. Service usage stands for a dependence relation between the

user entity and the service used.

ExecutionEnvironment. An execution environment models the physical

platform where entity implementations run. It is interesting to note that

new execution environments can be defined by specialization of the basic

3.2. Agent-based architectures 71

ExecutionEnvironment. Thus, implementations with different frameworks

(including non-agent technologies) can be described with AML.

Ontology. Ontology is the basic primitive to specify a knowledge base in

AML. Ontologies are used in agent systems in several scenarios: to define a

common language for agent understanding, to describe the features of a ser-

vice, to build the knowledge models supporting a knowledge-based system,

etc. Other ontological constructors are OntologyClass and OntologyUtility.

Context. Context is a primitive to describe the properties of the section

of an AML model that is to be considered in a particular situation. These

situations can be specified with UML constraints or states.

AML specifications are organized in diagrams, which are extensions of

the standard UML diagrams. In our specification, the following diagrams are

used:

Society Diagram. A society diagram presents a general view of the archi-

tecture of the multi-agent system. Entities (agents, resources, environments,

and organization units) and relationships (social associations, play associa-

tions) are depicted in these diagrams. This diagram is a specialization of

UML Class Diagram.

Entity Diagram. Entity diagrams are used to present in detail the struc-

ture of an entity: features, behaviors, ports, roles played, services provided

and requested, etc. This diagram is a specialization of the UML Composite

Structure Diagram.

Protocol Sequence and Protocol Communication Diagrams. These

are two different kinds of diagram that are used to specify communication

acts between entities. They are specializations of the UML Sequence and

Communication Diagrams, respectively.

MAS Deployment Diagram. These diagrams specify how the multi-agent

system is deployed on the execution platform. This diagram is a specializa-

tion of the UML Deployment Diagram.

3.3. Architecture description 72

3.3 Architecture description

In this section, our abstract architecture for KMob systems is presented.

The full specification can be downloaded from http://decsai.ugr.es/

~jgomez/thesis/. This architecture is based on the proposal in [77],
which is extended to be adaptable to different KMob application domains.

The new architecture is described using the AML language.

Foundations

The architecture for mobile Knowledge-Based Systems in [77] has three

main components, namely, clients, service servers, and ontology servers (Fig-

ure 3.1). This naive architecture reflects the following idea. Clients request

services, which are provided by servers. Servers solve client requests, some-

times by consulting other services, and returns an answer to the clients. Com-

munication between clients and servers is performed throughout the network

infrastructure by using a suitable communication protocol.

The servers of the architecture implement the services provided by the

system, i.e. they offer an access point to the functionalities of the application.

These functionalities can be large database querying, real-time data supply,

reasoning with a knowledge base, or any kind of expert decision support.

Given that knowledge management is crucial in Knowledge-Based Sys-

tems, we distinguish a special service provider, namely the ontology server.

This ontology server is responsible for the management of the global knowl-

edge base of the system, as well as the incorporation of other information

sources, which may be external data repositories.

The clients are expected to run on mobile devices, such as cell phones and

PDAs. If the mobile device has very limited computational capabilities, it will

be forced to delegate most of the processing to the servers. Alternatively, it

may happen that a client runs on a more powerful device (which, in the best

case, may be a desktop device), and is able to perform heavier processing.

http://decsai.ugr.es/~jgomez/thesis/
http://decsai.ugr.es/~jgomez/thesis/

3.3. Architecture description 73

Figure 3.1: Components of a mobile Knowledge-Based Systems

Service Logic

External
Information

Sources

Internal
Knowledge Base

Service LogicService Service

Internal
Knowledge Base

Service Service

Mobile Client

Agent

Agent

Agent

Agent

Agent
Desktop

Client

Service
Server

Ontology
server

Inter / Intranet

3.3. Architecture description 74

In this case, the client can carry out more tasks, and even handle a local

knowledge base. Therefore, depending on the features of the device, there

will be clients with different degrees of intelligence: intelligence alludes to

the ability of the client to solve queries with its own knowledge.

We have extended this architecture to better represent this variety of

client abilities, which occurs in KMob systems. The extended architecture

for KMob is described in the remainder of this section.

As explained below, we have completely decoupled agents and roles. En-

tities of the previous architecture are modelled as agents in the new architec-

ture description. Thus, clients and servers are now agents (KMob Agents).

The actions that an agent can perform have been separated from the agent

description, and are represented now as roles. Thus, a role is a set of methods

that an agent can execute (KMob Roles).

The difference between agents running on mobile and desktop devices

is represented by defining two subtypes of agentsm namely, Desktop Agents

and Nomadic Agents. The execution environment determines the features

and requirements of an agent because data processing and transmission are

limited in mobile devices, and they are used in dynamic situations.

Nomadic and Desktop Agents can acquire different roles. We consider

that both agents running on mobile and desktop devices can eventually per-

form as knowledge requesters and providers. Obviously, in a P2P application,

every agent will be both requester and provider, whereas in a pure client-

server system, mobile clients will only be requesters and desktop servers will

be mainly providers. The advantage of the architecture is that it can be

adapted to these different scenarios.

Starting from these primitive elements, other entities and roles have been

defined. For instance, the former ontology server would be a Desktop Agent

with connections to Local and External Knowledge Models that acquires the

Provider role. Next, the new agents and roles are described.

3.3. Architecture description 75

General structure

An overview of the architecture for KMob systems, in AML notation, is shown

in Figure 3.2.

KMob Agents are the basic elements of the architecture. They encap-

sulate all the processing associated with nomadic and static entities. Two

kinds of agents are distinguished: (i) Nomadic Agents, which run on mo-

bile devices; (ii) Desktop Agents, which run on application servers. Agents

may be deployed in a public, private, or mixed network, which should sup-

port communication between them. Basic KMob Agents can be specialized

in concrete applications by organizing them into subclasses with additional

properties.

Each agent, nomadic or desktop, manages a Local Knowledge Model.

The richer the local model, the more intelligent the agent, since it will be

capable of better resolving a greater number of problems. When an agent is

not able to answer a question with its own knowledge, it requires the services

of other agents or the contents of External Knowledge Sources. Services are

offered by both Nomadic and Desktop Agents, although Desktop Agents

usually provide more complex services. Integration of internal and external

knowledge can either be performed on the fly, i.e. as necessary for satisfying

a service request, or off-line, i.e. by creating a warehouse with a permanent

mapping between internal and external knowledge.

When agents interact directly as a result of a service request, or indi-

rectly, because they share their resources or their objectives, Social Relations

are established among them. Social Relations may range from implicit asso-

ciations resulting from the functioning of the system to explicit connections

with a well-defined structure.

3.3. Architecture description 76
Fi

gu
re

3.
2:

S
o
ci
et
y
D
ia
g
ra
m

of
th

e
K

M
ob

ar
ch

it
ec

tu
re

N
o

m
a

d
ic

 A
g

e
n

t
 1

N
o

m
a

d
ic

 A
g

e
n

t
 3

N
o

m
a

d
ic

 A
g

e
n

t
 2

D
e

s
k

t
o

p
 A

g
e

n
t
 1

*
*

L
o

c
a

l
K

n
o

w
le

d
g

e
 M

o
d

e
l

L
o

c
a

l
K

n
o

w
le

d
g

e
 M

o
d

e
l
3

E
x

t
e

r
n

a
l
K

n
o

w
le

d
g

e
 M

o
d

e
l

L
o

c
a

l
K

n
o

w
le

d
g

e
 M

o
d

e
l
2

S
e
rv

ic
e
 1

S
e
rv

ic
e
 2

L
o

c
a

l
K

n
o

w
le

d
g

e
 M

o
d

e
l
1

D
e

s
k

t
o

p
 A

g
e

n
t
 2

*
*

M
o

b
il
e

 D
e

v
ic

e
 1

M
o

b
il
e

 D
e

v
ic

e
 2

A
p

p
li
c
a

t
io

n
 S

e
r
v

e
r
 1

M
o

b
il
e

 D
e

v
ic

e
 3

A
p

p
li
c
a

t
io

n
 S

e
r
v

e
r
2

3.3. Architecture description 77

Architecture components

Agent roles

The basic roles that can be adopted in the KMob architecture are Consumer,

Provider, Directory, Facilitator, Integrator, and Broker (Figure 3.3). Some

or all of these roles can participate in a KMob application. More interaction

patterns that might be considered are those specific of the application to be

implemented.

Consumer and Provider roles are self-explanatory. An agent becomes a

consumer when it requests a Service. The petition is processed and eventu-

ally resolved by the Provider. In order to supply a suitable answer to the Con-

sumer, the Provider may turn to a second Provider (for instance, an External

Knowledge Model) and play the role of a Consumer (Figure 3.4). In the ba-

sic situation, a Consumer’s requests are processed on-demand synchronously,

although in some cases asynchronous communication may be preferred. A

different situation occurs when a Provider decides to proactively supply in-

formation to a Consumer. In other words, the communication act is not

started by the Consumer entity. It is the Provider who sends an information

package to a Consumer, who can accept or reject it.

A Directory is a special kind of Provider that resolves queries asking about

the features of the services in the system. An agent playing the Directory role

can be consulted, for instance, if there is a service with a given name avail-

able (in the simplest case), or if there is a service that can fulfill a specific

task. To have an effective directory, services must be registered before being

offered to consumers. Service-oriented and multi-agent platforms usually

provide mechanisms for elemental directories; e.g., the UDDI Web Services

protocol is intended to create and consult a service directory. More recently,

formal languages such as OWL-S have been proposed to attach semantics to

service descriptions in order to automate location, integration, and invoca-

tion. These approaches, which are commented in Section B, can be used in

the directories of the architecture. In simple applications, agents offering di-

3.3. Architecture description 78

Figure 3.3: Society Diagram of the agent roles

Nomadic Agent

Consumer Provider

Facilitator Directory

Integrator

Desktop Agent

11

Broker

Local Knowledge Model

External Knowledge Model

KMob Role KMob Agent

Service

MediationService

3.3. Architecture description 79

Figure 3.4: Protocol Sequence Diagram of the roles Consumer and Provider

/ : Consumer / : Provider

/ : Provider/ : Consumer

1 : request()

2 : reject()

3 : accept()

4 : request()

5 : supply()

6 : supply()

The Provider becomes

a Consumer

3.4. Frameworks and technologies 80

rectory services will not be necessary since every agent can have a predefined

list of services.

Facilitator is the role acquired by the agents that provide Mediation Ser-

vices between entities that cannot communicate directly. This issue may

arise in several circumstances; e.g., incompatibility between agents (differ-

ent communication protocols or languages/ontologies are used), or security

(the Facilitator is a gateway between the secured and the private network).

Implementing a Facilitator role may be a difficult task, since mediation can

be extraordinarily complex in some applications.

Integrators are the specialized Facilitators responsible for combining local

and external knowledge sources, i.e. mediating between local and external

knowledge providers. Ideally, integrators should allow owned and external

knowledge to be accessed together transparently in such a way that con-

sumers are unaware of the origin of the information.

A Broker is a role that offers both facilitation and directory services. Bro-

kers are expected to perform several complex tasks to satisfy a request: loca-

tion of services, matching of consumer preferences and provider capabilities,

mediation, etc. This kind of role is frequent in applications with several

providers and thin clients, who delegate most of the processing to the bro-

ker entity. Brokers are also responsible for guaranteeing quality of service in

highly-demanding systems.

3.4 Frameworks and technologies

The architecture in Figure 3.2 depicts the basic components in a KMob sys-

tem, but it does not state how they should be implemented. In this section,

we describe three combinations of technologies (i.e., frameworks) that can

be used to implement KMob systems3. These technologies are multi-agent
3Since processing in the nodes may be disparate, and will probably include knowledge

management tasks, ontology tools, such as management APIs or inference engines, are gen-
erally used. These technologies are described in Appendix B.

3.4. Frameworks and technologies 81

platforms, tuplespaces, and Web-based protocols. Each framework is suit-

able for a particular instantiation of the architecture.

The architecture can be directly implemented using multi-agent platform,

such as JADE. The multi-agent technology is especially recommended in ap-

plications with independent components that require complex coordination

policies. Nevertheless, it is known that multi-agent platforms require a con-

siderable amount of computational resources to run properly. Therefore, the

multi-agent framework should be used only when the application requires

all the features of a multi-agent platform.

In other cases, communication is the main issue of the KMob system.

Accordingly, developers should use technologies that promote effective com-

munication between distributed components. This is a feature provided by

tuplespaces, which are the second framework suggested in this section.

On the other hand, in some applications communication is not the main

problem, but rather the processing that must be carried out in certain com-

ponents of the system. In these situations, a good choice is to implement a

client-server application using Web technologies, such as HTTP-based inter-

action or Web Services.

Multi-agent technologies

The client-server and the tuplespace frameworks, described below, are sim-

plifications of the more general communication schema supported by the

architecture. Nevertheless, in some scenarios it is not possible to be abso-

lutely certain of the structure of the conversations between consumers and

providers. Moreover, entities act as a consumer or a provider depending on

their needs and capabilities. Ultimately, in these situations communication

may take place among equally gifted entities, corresponding to a peer-to-peer

schema.

This is the case of the Ubiquitous Security Guarding application (Sec-

tion 2.3). The guards are provided with mobile devices which continuously

3.4. Frameworks and technologies 82

send and receive information about the state of the areas under surveillance,

both on demand and proactively. For instance, a guard can request the video

signal currently captured by a camera. He can also receive a notification stat-

ing that an alert has been triggered in a sector, and automatically, the proper

signal is displayed automatically on his device screen. Other links could be

established between the guards in such a way that they are able to trans-

parently communicate among themselves as well as with other nodes of the

system.

An agent platform is a natural approximation to implement such a sys-

tem. Entities exhibit a high degree of autonomy and, at the same time, there

are social dependencies between them, which are one of the most notable

features of multi-agent systems. Our architecture can be almost directly im-

plemented using one of the MAS platforms presented in Section 2.4. In fact,

certain contributions aim to automatically generate a programming code

from AML specifications automatically [150]. Among these platforms, we

propose the JADE/LEAP middleware as a suitable framework to implement

the KMob architecture in that kind of application.

JADE (Java Agent DEvelopment Framework) is an open-source middle-

ware oriented to the development of distributed multi-agent applications

based on peer-to-peer communication [23, 22]. JADE offers three utilities to

developers: (i) an API for agent programming; (ii) a runtime where agents

are executed; (iii) a graphical tool to administer running agents.

JADE agents are implemented with the JADE API, which includes Java

classes to manage agents, behaviors and messages, and Jave methods to send

and receive messages. JADE agents are loaded into the runtime, which man-

ages agent lifecycle and message passing. Agent state can be modified with

the graphical tool, which provides an interface to check the runtime status.

JADE avoids dealing with low-level localization and communication mecha-

nisms, and different transport protocol may be used (e.g. SOAP).

JADE is compliant with the specification of the IEEE standards committee

3.4. Frameworks and technologies 83

FIPA4 (Foundation for Intelligent Physical Agents) [94]. The FIPA standard,

intended to “promote the interoperation of heterogeneous agents and the

services that they can represent”, is divided into five categories: agent com-

munication, agent transport, agent management, abstract architecture, and

applications. The agent communication category is the most important of the

five since it defines the Agent Communication Language (ACL), a language

designed to achieve understanding between diverse agents.

JADE is extended with the LEAP add-on [25], a set of additional libraries

that allow JADE agent containers to run on mobile devices, such as PDAs

(implementing the CDC profile of J2ME) and cell phones (CLDC profile of

J2ME). A LEAP container can be executed in a stand-alone or split mode.

This split mode is targeted to devices with limited computational capabil-

ities, and thus it is the most suitable to be used in the KMob Multi-agent

framework. The main drawback of LEAP, and consequently, of JADE, is that

their formality makes them rather inefficient. Therefore, they are used only

when all their features are required.

Tuplespace technologies

Another scenario is one with several clients, also with computational limi-

tations, but who need to share part of their knowledge. This is the case of

the KMob scenario Portable Tourism Guide (Section 2.3): information about

sightseeing spots is still accessible to all of the numerous tourist community

as a whole, but each tourist is able to introduce new data (tags, reviews,

plans, etc.) in the system. Since little processing can be carried out by the

clients, they must delegate heavy knowledge management tasks to a server.

However, the knowledge base should be, at least to a certain extent, shared

among the clients.

A suitable solution to these issues is that of tuplespaces. A tuplespace is

a knowledge repository composed of n-tuples that can be accessed remotely

and concurrently (a n-tuple is an ordered sequence of n items). Tuplespaces
4http://www.fipa.org/

3.4. Frameworks and technologies 84

were firstly proposed by Gelernter in the context of generative communi-

cation, a paradigm for asynchronous exchange of information in distributed

systems [99]. Tuplespaces act as mediators in generative communication sys-

tems. In order to communicate an entity A and an entity B, A stores a tuple

in the tuplespace and B reads it. Generative communication was supported

by the programming language Linda, which defines three basic operations to

access a tuplespace: out(tuple pattern), to write in the tuplespace; in(tuple

pattern), to read and erase a tuple from the tuplespace; and read(tuple

pattern), analogous to in but without deleting the tuple. When a query

operation fails, the calling procedure is blocked until a suitable tuple is avail-

able. In this manner, asynchronous communication is implemented from

synchronous read-and-write operations.

Tuplespaces and Linda are similar to blackboard architectures defined

by the multi-agent paradigm. The objective of both is to provide a central

knowledge repository that can be accessed by thin clients using simple op-

erations. More recently, other initiatives have taken a similar approach to

Linda. For example, JavaSpaces are a Java technology included in Jini for

implementing tuplespaces that can be distributed over the nodes of a net-

work [31]. Tuplespaces also have received attention from researchers seek-

ing a simple mechanism to implement interoperable mobile systems [184].

On the other hand, tuplespaces can be easily adapted to support Seman-

tic Web applications, given the fact that the basic primitive of RDF language

is the triple, i.e. the 3-tuples. In that regard, RDF-based Semantic Web

Spaces [189, 255], OWL-based sTuples [140], and WSMF-based Triple Space

Computing (TSC) [152], have been proposed to accomplish Semantic Web

coordination by using tuplespaces.

Incorporation of a tuplespace in our KMob architecture is quite straight-

forward. A Tuplespace role can be defined by the specialization of Facilitator.

An entity acquiring the Tuplespace role provides a Tuplespace Service, which

is a specific Mediation Service offering Linda-like operations. Read and write

messages will be sent to the tuplespace entity using, for example, SOAP or

RESTful messages. The tuplespace can be implemented by adapting one of

3.4. Frameworks and technologies 85

the previously mentioned contributions, or by creating a specific solution –

e.g., a Linda API wrapping a Sesame RDF repository [54].

Client-server technologies

The simplest scenario is that involving a pure client-server interaction pat-

tern. Clients are not able to execute complicated procedures. As a result,

queries are totally pre-programmed and processed almost completely in the

server. Adding a new functionality implies implementing a new service.

Communications are one-to-one, with a client asking for a service, and a

service replying to a client. In this case, the Consumer and Provider agents

are clearly identifiable, and the communication schema is totally predefined.

The Nomadic Healthcare use case (Section 2.3) is a good match for the

client-server schema. Doctor Greg, equipped with a mobile device requires

information from a centralized server where the bulk data is stored. The

client application, running on the doctor’s mobile device, carries out very

little processing. It is only used to acquire the clinical description of the pa-

tient, and to display the results retrieved from the HIS. The server application

accepts client requests and translates them to the HIS, acting as a gateway

between them. The client may additionally include some knowledge in his

local model to work out simple or previously solved queries. The greater or

lesser complexity of the reasoning will naturally depend on the mobile device

capabilities.

Client-server communication between a mobile device and an application

server can be implemented by using various technologies. The lowest-level

communication issues are handled by means of a wireless or cellular com-

munication technology, e.g. Wi-Fi or UMTS (Section 2.4). Nevertheless, the

developer can remain relatively unconcerned about the data communication

layer, since middleware systems or, alternatively, Web technologies are avail-

able. We consider that a Web-based implementation is appropriate for the

Nomadic Healthcare system, and in general, for client-server KMob systems.

3.4. Frameworks and technologies 86

Web applications are systems accessible throughout the Internet using

the HTTP protocol. Server logic can be implemented with J2EE [133] or

.NET [65], two current development platforms for corporative systems. Web

applications are usually structured in two or three tiers, decoupling the back-

end storage (e.g. databases) and the presentation layer. The interface of a

web application can be oriented to human users or automatic procedures. For

human users, HTML pages with a suitable format are created in the server

and sent to the client; for automatic procedures, there is an entry point man-

aged by a callback procedure, i.e. a Web Service, enabled to accept XML

requests. Since both J2EE and .NET platforms supports HTML generation

and Web Services, either can be selected. We focus on J2EE because it is

multi-platform and its specifications are open. However, all considerations

can be easily extended to .NET.

Human-readable web interfaces with J2EE can be created by using differ-

ent technologies. For instance, servlets and JSPs (Java Server Pages) are

server components that dynamically generate HTML content [183, 262].
These components are deployed in a special web server, such as Tomcat5.

Servlets and JSPs have been recently complemented with JSF (Java Server

Faces), which simplifies the creation of HTML interfaces in Java Server ap-

plications. Interaction between clients and servers with these technologies is

described as “click and wait”. In other words, the contents are downloaded

from the server and presented to the client after a link in the document is

clicked. This behavior is problematic in certain scenarios since user experi-

ence is downgraded when communication latency is high. The user is idle

while he is waiting for the document to be transmitted, whereas the network

is idle while the user is reading the document.

Ajax is a recent technology aimed at overcoming these problems [72].
Ajax defines a set of recommendations for the implementation of web ap-

plications in order to accomplish: (i) partial execution on the web browser

(with Javascript); (ii) asynchronous message sending (with the XMLHttp-

Request object); (iii) presentation of new contents by modifying only the
5http://tomcat.apache.org/

http://tomcat.apache.org/

3.4. Frameworks and technologies 87

sections of the document that have changed (with the Document Object

Model). These properties are very interesting in KMob applications because

richer clients could be implemented in Ajax-enabled mobile web browsers

(e.g. Opera Mobile6). New steps towards a better balance of the processing

load are RIAs (Rich Internet Applications). RIAs are a set of competing plat-

forms that split execution between web servers and clients. To date, these

platforms are in an embryonic state though they will be incorporated in com-

mercial mobile phones in the near future, e.g. Silverlight in Windows Mobile

6 and Nokia S60 Series.

Alternatively, Web Services can be used. Web Services are used in machine-

to-machine communications, i.e. communication acts where human partic-

ipation is reduced. Web Services have succeeded as means to implement

corporative distributed systems. J2EE and .NET platforms offers extensive

support for them. An alternative approach is the REST model (REpresenta-

tional State Transfer), which proposes a simpler architecture based on ad hoc

XML request-response messages and APIs. This model is preferred when the

power and the formality of the Web Services protocol stack are not required.

The client-server framework was used to develop the prototype of the

IASO system, which is one of the contributions of this thesis. IASO clients,

equipped with mobile devices able to browse the web, can access IASO HTTP

servers, which provide the query-resolving services. The IASO system is de-

scribed in Chapter 5.

6http://www.opera.com/products/mobile/

http://www.opera.com/products/mobile/

CHAPTER 4
A Context-Dependent Knowledge

Representation Model for

Knowledge Mobilization

This chapter proposes a solution for the problem of information overload in

KMob systems based on using knowledge about the context of the user: a

novel design pattern aimed to develop OWL ontologies explicitly represent-

ing which information from the application domain is significant in a given

situation. We begin the chapter by introducing the incidence of informa-

tion overload in KMob and some work related to our proposal. Then, we

present the formal specification of the ontology design pattern, and describe

the knowledge base that results from its application. The following section

examines the properties of the pattern, including modularity of the result-

ing ontology. A complete algorithm to infer significant knowledge from the

description of a context is also presented and discussed. Next, a software

application which supports the creation of ontologies using this pattern is

described. Finally, as an improvement to this pattern, we propose extending

it by using fuzzy Description Logics, which allow the management of impre-

cise context and domain knowledge as well as the ranking of significance

relations.

88

4.1. Rationale 89

4.1 Rationale

Two main features of current enterprise information systems are connectivity

and massiveness. Storages populated with Gbytes or even Tbytes of data are

available across corporate networks, and allow users to access to complete,

precise, and up-to-date information. The situation becomes more compli-

cated when the Internet is considered because of the huge amount of valu-

able data that can be harvested from it. Corporative KBSs are expected to

incorporate these several and probably heterogeneous information sources

to provide valuable advice to decision makers.

As a result, functional KBSs usually manage so many resources when

it comes to solving most requests that it is common for users, who access

large-scale systems, to receive “excessive” information. Excessive means that

either the time to filter it manually is extremely long or that simply it cannot

be processed. In the literature this state is designated by the term information

overload. It has also been called data smog [231], analysis paralysis [240],
or information fatigue syndrome [196]. Information overload is described as

a situation in which a user is provided with more data than he can digest,

either because sifting through the information received would take too much

time or simply because interesting facts cannot be separated from irrelevant

data with the knowledge available [83, 85]. This results in unproductive

decision processes and knowledge management failure. Solving informa-

tion overload poses a great challenge for KBS, who must find the means

to support the summarizing and customizing of information collected from

massive, heterogeneous, and distributed sources depending on user needs.

This objective can be achieved by adding metadata to information sources in

order to delegate filtering tasks to automatic procedures [87].

Though few scientific studies have specifically addressed information over-

load issues in mobile systems (as argued in [4]), such issues are crucially

important, and have been identified as a key factor for the acceptance of

(knowledge-intensive) mobile services (as pointed out in [24]). Any KBS is

expected to carry out tasks in consonance with user needs, and consequently,

4.1. Rationale 90

to present only significant data. However, this requirement clearly becomes

even more critical in KMob.

On the one hand, the scenario where a nomadic user requests system an-

swers is completely different from the scenario where the user is stationary.

KMob has to be able to handle dynamical decision processes. Such processes

must often take place in real time and at the actual work site, where cir-

cumstances are extremely changeable, whereas classical support systems are

usually exploited in more controlled situations. Therefore, the user cannot

be completely focused on the device, and must not be required to search

at length for the desired information. On the other hand, despite the fact

that the computational power of mobile devices has continued to increase

and the fact that wireless technologies provide Mb/s transfer speeds, device

dimensions remain small. This is mandatory because of weight and battery

life constraints. Reduced screens and adapted input interfaces make it dif-

ficult to cope with large datasets, but make it very easy to downgrade user

experience. This means that succinctness is essential.

Thus, it naturally follows that mobile users cannot be overwhelmed with

all the available data of the system nor can they be expected to manually re-

view these results. On the contrary, it is crucial to provide nomadic users with

data summaries that include only the most relevant fraction of the informa-

tion generated. Consequently, the KMob architecture described in Chapter 3

must offer reasoning services able to compute summaries automatically.

These services must rely on suitable knowledge bases that represent what

is significant. We strongly believe that what is significant (or relevant) de-

pends on certain factors other than the query to be resolved. Such factors

include user environment, preferences, previous actions, etc. All of these

variables, referring to various circumstances of the query1, embody what can

be regarded as the context of the query. According to Dey and Abowd, context

is any information (either implicit or explicit) that can be used to character-
1Although he was certainly not considering mobile knowledge-based systems, Spanish

philosopher Ortega y Gasset (1883-1955) summarized this idea in his maxim “I am myself
and my circumstances” (Meditaciones del Quijote, 1914).

4.1. Rationale 91

ize the situation of an entity [79]. More details on context representation in

UC are included in Section 4.2.

Consequently, a context-aware system must include two kinds of knowl-

edge in its supporting knowledge bases, which are ontologies in KMob: (i)

knowledge specific of the domain of the application; (ii) knowledge describ-

ing contextual situations. The significance of a piece of domain-specific in-

formation in a given context is represented by a relation between an ontolog-

ical description of the situation and an ontological definition of the domain

knowledge. Having a scenario description and a domain-specific expression

connected with this type of significance relation means that this domain in-

formation must be considered because it is important in that situation.

In this chapter, we describe an innovative proposal of a design pattern

aimed at representing in OWL ontologies this notion of context-dependent

significance. The Context-Domain Significance (CDS, read as Kodos) pattern

defines a set of rules to build a new ontology where context descriptions and

domain expressions are connected through constrained relations. The main

reasoning task within a CDS ontology is to retrieve the pieces of domain-

specific knowledge that are significant in a given context. This task can be

carried out with a corresponding algorithm.

A CDS ontology permits the description of which domain information is

interesting in a scenario, but it does not measure how important the informa-

tion is. This is very convenient in certain applications. Accordingly, we have

developed an extension of the CDS design pattern which, relying on Fuzzy

Description Logics, allows significance relations to be ranked. The extended

pattern creates a fuzzy ontology where contexts descriptions, domain-specific

knowledge expressions, and significance relations may be imprecise. This

also makes it possible to rank the importance of a significance relation.

4.2. Related work 92

4.2 Related work

Ontology design patterns are simple recipes which help ontologists to cap-

ture and represent aspects of the application domain. In this section, we re-

view some contributions on ontology design patterns that are related to our

proposal. Since our design pattern is aimed at creating context-aware on-

tologies, two additional topics are addressed as well: context representation

and contextualization of ontologies. In general, contextualization of ontolo-

gies consists in determining how additional knowledge influences the inter-

pretation of an ontology (consistency, validity, partitioning, etc.). From this

perspective, contextualization is related to context representation: context

representation deals with environmental data management, whereas contex-

tualization studies deal with how these context models affect the satisfiability

of domain models. In this section, we discuss the literature on representation

of context by means of ontologies in UC.

Ontology design patterns

Design patterns are concise guidelines which identify common design prob-

lems, and suggest how to resolve them. Patterns have been recognized as

a valuable tool since the very beginning of design sciences from architec-

ture [3] to software developmente [96]. Analysis and design patterns are

important meta-artifacts that support the design process of software systems,

as stressed in [126].

Acquiring, reusing, representing and eliciting knowledge to build an on-

tology is frequently an exhausting, time-consuming and frustrating experi-

ence even when collaborative experts, proper tools, and sound methodolo-

gies are used. Consequently, simple recipes which enable ontologists to better

capture aspects of their application domain are greatly appreciated. Ontol-

ogy design patterns are the extension of software design patterns. Their

objective is to describe, more or less formally, recurrent modeling scenarios

as well as to provide guidelines for correctly incorporating this knowledge

4.2. Related work 93

into ontologies. By correctly, we mean obtaining accurate, transparent, and

reasonable representations [252].

Since the earliest work on the Semantic Web, ontology design patterns

have been acknowledged as important contributions, which permit devel-

opers to save time when coping with the knowledge acquisition bottleneck.

Templates to build knowledge bases have been proposed in several papers,

some of which are specific for a concrete application domain (e.g. [219]),

some of which are more general and (even) language-independent (e.g. [239]).

The task force Ontology Engineering and Patterns [195] was created inside

the W3C Semantic Web Best Practices and Deployment Working Group in

order to elaborate best practices and patterns for OWL. The work of this task

force was partially inspired by [191], a classical ontology-development guide

which includes tips on how to build ontologies properly.

Research studies [252, 97, 38] provide a useful introduction to the use

of design patterns during the ontology lifecycle. In the first study, Svátek

analyzes several ontologies publicly available at Semantic Web repositories,

and briefly presents some examples of patterns targeted at solving common

representation mistakes. In the second paper, Gangemi describes the differ-

ences between software and ontology design patterns from a Semantic Web

perspective, remarking that greater formality is required in the presentation

of the CODePs (Conceptual Ontology Design Patterns), and provides some

examples. In the third study, Blomqvist and Sandkuhl set out a classification

of the patterns used in ontology development, and establish that ontology de-

sign patterns are those applied to create certain sections of the models. More

recent contributions from these authors have proposed techniques for the au-

tomatic selection of suitable patterns to support ontology development [36,

37].

Context representation in UC

Broadly speaking, context is any information (implicit or explicit) that can be

used to characterize the situation of an entity [79]. More specifically, context

4.2. Related work 94

is usually considered a mix of geo-spatial data, ambient sensor inputs, user

profiles (preferences, intentions, etc.), and service descriptions [229].

Accordingly, context awareness is commonly defined as the ability to ac-

quire, represent, and process environmental information in order to automat-

ically adapt the behaviour of an application to user activity. Context-Aware

Computing entails two activities: (i) interpreting the current user situation;

(ii) using contextual knowledge to improve the performance of the system,

for instance, helping to filter and tailor system responses. Context represen-

tation has been considered to play a key role in UC [258, 226], as explained

in Section 2.4. The previously mentioned Context Toolkit is one of the first

systematic approaches towards a generic framework for context-aware sys-

tems [80].

We use ontologies as the conceptual model to represent context knowl-

edge in KMob. Not surprisingly, ontologies have been proposed as a design

tool for modeling context in current pervasive systems since they offer sev-

eral advantages over other formalisms: reusability, sharing, reasoning, stan-

dardization, supporting tools, etc. [57, 248]. In fact, significant progress was

initially made in representing situational knowledge by means of formal the-

ories, thanks to Levesque (inter alia) [162], one of the fathers of Description

Logics. In the same regard, Situational Computing is claimed to be an exten-

sion of Context-Aware Computing which considers series of situations and

past actions in the adjustment of system responses.

Recent proposals on UC which use ontologies, written in OWL or in one

of its predecessors, are cited in Section 2.5 [7, 149, 66, 106, 139, 154, 158,

182, 263].

Contextualization of ontologies

Most of the work on contextualization concerns non-monotonicity in knowl-

edge bases, in other words, reasoning with models which are satisfiable or

not depending on the available knowledge [180]. Some early approaches

4.2. Related work 95

to the use of contexts in real Expert and Knowledge-Based Systems are de-

scribed in [53]. For our purposes, contextualization is important because it

determines how a knowledge base is interpreted depending on a concrete

model, namely, the context knowledge model.

Interestingly enough, Description Logics and, extensively, ontologies, in-

clude a feature that makes them pretty much a monotonic formalism [49].
This feature is the open world assumption (see Section A.4). Some of the ex-

tensions proposed to allow non-monotonicity in ontology languages are the

following: epistemic queries [136], default reasoning [148], circumscrip-

tion [46], belief revision [95], and integration with logic Programming [181].

Other research works are focused on contextualization in the Semantic

Web, and extending OWL with new operators to explicitly allow contextu-

alization. For instance, Guha, McCool, and Fikes [107] examine seminal

contributions on contexts and microtheories in Artificial Intelligence, and

use some of these ideas to solve context-dependent aggregation problems in

the Semantic Web. These authors use an ontology to define contexts which

model implicit knowledge with a view to interpreting the right semantics of

data sources. Essentially, a context associated to a source means that these

data are true in that context.

Similarly, Bouquet et al. propose C-OWL [50], an extension of OWL to

define mappings (via bridge rules) between locally-interpreted and globally-

valid ontologies. Multi-viewpoint reasoning in [249] is a related approach

which resembles to a certain extent our idea of significance. However, it

concentrates on the conditional interpretation of a model (i.e. how to classify

an ontology depending on the viewpoint submodel), whereas we focus on the

relevance of the model (i.e. in which circumstances a submodel should be

considered).

In the same regard, a review of different perspectives on the implemen-

tation of context-sensitivity is presented in [109]: C-OWL, ε-connections,

Bayesian networks, probabilistic and possibilistic logics, etc. This work also

cites context-based selection functions, which are very similar to our pro-

4.3. Definition 96

posal. These functions retrieve the submodel K ′ ⊂ K that ought to be con-

sidered when performing some task. This report is a deliverable of the NeOn

project, an on-going initiative that targets, among other problems, the han-

dling of contexts with certain degree of uncertainty [211].

4.3 Definition

The Context-Domain Significance (CDS) design pattern is our proposal to

represent relevance depending on context in KMob applications. The CDS

pattern constructively states a set of rules to develop a new OWL ontology,

the significance or CDS ontology. This ontology explicitly relates context

descriptions, created by using a context vocabulary, with domain-specific

expressions, which represent knowledge specific of the application domain.

Given a CDS ontology, it is possible to infer which domain knowledge ought

to be considered in a given situation by performing various subsumption

tests.

The CDS ontology is the instantiation of the rules stated in the CDS pat-

tern. Following [38], the formulation of the pattern in Description Logics no-

tation can be interpreted as the semantic definition of the pattern, whereas

the final OWL encoding is the syntactic expression of the pattern. We refer

the reader to Appendix A for a review of ontology-related topics and Descrip-

tion Logics (DLs), upon which the remainder of this chapter is based.

To illustrate the definition of the CDS pattern, in this section we use the

case study of Nomadic Healthcare presented in Section 2.3. We partially de-

scribe the ontology that supports a KMob system which delivers summaries

of patients’ electronic health records to a mobile doctor. The content of

these summaries depends on the clinical situation of the patient who is being

treated and is selected automatically.

4.3. Definition 97

Formulation

A CDS ontology is built from two basic subontologies, one representing do-

main-specific knowledge and another defining a vocabulary to describe con-

text situations. These two subontologies may be related or even included in

a more general ontology, but for the sake simplicity, we will operate on the

assumption that they are disjoint. Both context and domain ontology should

exist before applying the CDS pattern.

The domain-specific ontology contains the knowledge required to solve

the concrete problem that the system is facing. In the KMob system for No-

madic Healthcare, this would be an ontology that abstractly represents which

records are managed by the Hospital Information System, and which values

have been stored for a patient. This ontology can be built by adapting some

of the current proposals for a standard to represent the semantics of the con-

tents of an HIS [84]. For instance, an OWL translation of openEHR could be

adapted to our requirements (see Section 5.2).

Example 4.1 A domain-specific ontology in Nomadic Healthcare..

Concepts of the domain ontology may be Patient, EHR (Electronic Health

Record2), HDR (Health Data Register), and HDRDrugIntolerance (Health

Data Register of Drug Intolerance). Roles of this ontology can be related-

ToPatient, from Patient to EHR, and composedOf, from EHR to HDR.

Instances of this ontology are the actual values of patients’ electronic health

records.

This is an excerpt of the (simplified) ontology in DL syntax. It reflects

that patient juan has related an EHR with a HDR stating that he has been di-

agnosed as having allergic reactions to Procaine. Moreover, other additional

concepts describing different pieces of data stored in the HIS are defined.

InformationUnit v >
2An Electronic Health Record (EHR) is defined by the Health Information Management

Systems Society’s (HIMSS) as “a longitudinal electronic record of patient health information
generated by one or more encounters in any care delivery setting. Included in this infor-
mation are patient demographics, progress notes, problems, medications, vital signs, past
medical history, immunizations, laboratory data, and radiology reports” [185].

4.3. Definition 98

Specialty v >
Patient v >
HDR v InformationUnit

EHR v ∀ composedOf.HDR

EHR v ∃ relatedToPatient.Patient
HDRDrugIntolerance v HDR

HDRProcaineIntolerance v HDRDrugIntollerance

HDRPenicillinIntolerance v HDRDrugIntollerance

HDRCoagulationDisorder v HDR

HDRBloodPressureDisorder v HDR

(jgomez : Patient)

(jgomezEHR1 : EHR)

((jgomezEHR1, juan) : relatedToPatient)

(positiveProcaine : HDRProcaineIntollerance)

((jgomezEHR1, positiveProcaine) : composedOf)

New concept definitions built from elements of the domain-specific on-

tology are called complex domains.

Definition 1. LetKD = 〈T D,RD,AD〉 be a domain-specific ontology. A complex

domain D j is a concept such as S(D j)⊆ S(KD).

The context ontology contains knowledge suitable for the representation

of circumstances or surroundings in which the domain knowledge is used.

The context ontology can be regarded as a formal vocabulary or terminology

to depict these situations. In the example, the context ontology contains

terms describing the clinical situation of a patient (e.g. if he is unconscious;

if he has a wound and where it is located; if his situation is serious; etc.).

Thus, this is a medical ontology which can be built by specializing a general

medical ontology, e.g. Galen [221].

4.3. Definition 99

Example 4.2 Context ontology in Nomadic Healthcare.

Concepts of the domain ontology for Nomadic Healthcare are Unconscious-

ness, Laceration, or IntensityQualifier. An important role is has-

Intensity, which is used to express the degree of severity of a pathological

process.

The following is an excerpt of the domain ontology. As can be observed,

the knowledge base states some equivalences with the base ontology Galen.

Unconsciousness v galen:DisorderOfConsciousness

Hemorrhage ≡ galen:HaemorrhagingProcess

IrregularPenetrationWound ≡ galen:laceration

High v IntensityQualifier

New concept definitions built from elements of the context ontology are

called complex contexts.

Definition 2. Let KC = 〈T C ,RC ,AC〉 be a context ontology. A complex context

Ci is a concept such as S(Ci)⊆ S(KC).

It is important to notice that D j and Ci are not part of the domain and the

context ontology.

Actually, they are defined in the CDS ontology (KS), which is a new ontol-

ogy where Ci, D j, and links between them are defined. These links, called σ-

connections (connections representing significance), state that the domain-

specific knowledge D j should be considered in situation Ci. A σ-connection

concept is a new concept representing a σ-connection, and is defined with

existential restrictions on the complex context and the complex domain that

it links (via properties Rc and Rd). When there is no possibility of confusion,

we use the term σ-connection instead of σ-connection concept.

Definition 3. Let KD and KC be, respectively, the domain and context ontolo-

gies, Ci a complex context, and D j a complex domain. The significance or CDS

4.3. Definition 100

ontology that relates the set of pairs (Ci, D j) (i.e., states that D j is interesting

when Ci occurs) is a consistent ontology KS = 〈T S,RS,AS〉 such that T S (non-

exclusively) includes definitions for the concepts P>, C>, D>, Ci, D j, Pi, j, which

satisfy:

1. P>, C>, D> are the superclasses “σ-connection concePt’, “complex Con-

text” and “complex Domain”:

• Pi, j v P>, Ci v C>, D j v D>

2. Rc is the bridge property linking σ-connections and complex contexts:

• P> v ∀Rc.C>

3. Rd is the bridge property linking σ-connections and complex domains:

• P> v ∀Rd .D>

4. Pi, j is the σ-connection linking the complex context Ci and the complex

domain D j:

• Pi, j ≡ ∃Rc.Ci u ∃Rd .D j

Figure 4.1 depicts the structure of a simple CDS ontology.

It can be observed that KC and KD are imported by KS. Since Ci and

D j are built from concepts defined in KC and KD, respectively, these two

ontologies must be incorporated into KS to preserve their semantics. The

consequences of this fact are discussed in Section 4.3.

Next, we present an example of a CDS ontology.

Example 4.3 A significance ontology for Nomadic Healthcare.

The CDS ontology KS in this example must reflect which information from

the HIS ought to be considered when treating a patient in a specific clinical

situation. Let us suppose that hasClinicalFact and hasElectronic-

Register are the bridge properties Rc and Rd . Then, complex contexts Ci,

complex domains D j, and σ-connections between them can be defined as

follows.

4.3. Definition 101

Figure 4.1: Schema of a CDS ontology

Context Ontology


C

... ...

P


D


c

1C

2C

3C

1,1P

2,2P

3,3P

1D

2D

3D

d

R .C
c i

R .C
d j

()C


Domain Ontology
()D


Context-Domain Significance Ontology
()S


Top normative concepts

P> v >
C> v >
D> v >

σ-connections

When the patient is “unconscious” and “hemorrhagic”, it is nec-

essary to check registers for “blood pressure disorders”:

C1 ≡ Unconsciousness u Hemorrhage

D1 ≡ HDRBloodPressureDisorder

P1,1 ≡ ∃ hasClinicalFact.C1 u ∃ hasElectronicRegister.D1

When the patient is “unconscious”, “hemorrhagic”, and has a

“penetrating wound”, it is necessary to check registers for “drug

intolerances”:

C2 ≡ Unconsciousness u Hemorrhage u
IrregularPenetrationWound

D2 ≡ HDRDrugIntollerance

P2,2 ≡ ∃ hasClinicalFact.C2 u ∃ hasElectronicRegister.D2

4.3. Definition 102

When the patient is “unconscious”, with an “extremely serious”

“hemorrhage”, and has a “penetrating wound”, it is necessary to

check registers for “blood pressure disorders”, “drug intolerances”

, and “coagulation disorders”.

C3 ≡ Unconsciousness u
(Hemorrhage u ∃ hasIntensity.High) u
PenetrationWound

D3 ≡ HDRBloodPressureDisorder u
HDRDrugIntollerance u
HDRCoagulationDisorder

P3,3 ≡ ∃ hasClinicalFact.C3 u ∃ hasElectronicRegister.D3

It can be observed that C3 v C2 v C1 and D1 v D3, D2 v D3.

Properties

Inclusion of σ-connections

Proposition 1. Let KS be a CDS ontology, where Ci and Ci′ complex contexts

defined in T S, and D j are D j′ complex domains defined in T S. The ontology KS

satisfies the following property:

Ci v Ci′ ∧ D j v D j′ ⇒ Pi, j v Pi′, j′

This proposition reflects the intuition that if a context and a domain are

connected through a σ-connection, more general (i.e. subsuming) contexts

and domains will be connected through a more general σ-connection.

Proof. The proof is practically immediate from the fourth condition in Defi-

nition 3. Let us examine it in greater with more detail.

4.3. Definition 103

From the semantics of the full existential quantifier3, given any model I
ofK, x ∈ (∃R.C1)

I↔ (∃y ∈∆I | (x , y) ∈ RI∧ y ∈ CI
1). Using this expression

and the definition of the interpretation of a GCI (C v D ↔ CI ⊆ DI), we

obtain: y ∈ CI ⇒ y ∈ DI ⇒ (∃y ∈ ∆I | (x , y) ∈ RI ∧ y ∈ CI) ⇒ x ∈
(∃R.D)I . Therefore, given an ontology K |= C v D and any model I of K,

(∃R.C)I ⊆ (∃R.D)I is true, or in other words, C v D⇒∃R.C v ∃R.D.

This result is also valid for the significance ontology KS, and can be

expressed in terms of Rc and Rd: Ci v Ci′ ⇒ (∃Rc.Ci)
I ⊆ (∃Rc.Ci′)

I and

D j v D j′ ⇒ (∃Rd .D j)
I ⊆ (∃Rd .D j′)

I . The application of the property of

common sets A1 ⊆ A2 ∧ B1 ⊆ B2 ⇒ A1 ∩ B1 ⊆ A2 ∩ B2 and the definition

of the interpretation of a GCI give the following: (∃Rc.Ci)
I ∩ (∃Rd .D j)

I ⊆
(∃Rc.Ci′)

I ∩ (∃Rd .D j′)
I ↔ (∃Rc.Ci) u (∃Rd .D j) v (∃Rc.Ci′) u (∃Rd .D j′). This

finally gives: (∃Rc.Ci)u (∃Rd .D j)≡ Pi, j v Pi′, j′ ≡ (∃Rc.Ci′)u (∃Rd .D j′).

In general, the reciprocal is not true. This formulation of the pattern

allows a consistent significance ontology to be created with Pi, j v Pi′, j′ , but

Ci 6v Ci′ and/or D j 6v D j′ . As this can be useful in some applications, further

requirements in the pattern can be stated to ensure this property.

Definition 4. A hierarchical significance ontology is a CDS ontology KS which

additionally satisfies: Pi, j v Pi′, j′ ⇒ Ci v Ci′ ∧ D j v D j′

This property means that in a hierarchical relevance ontology, if we define

a σ-connection subsumed by another σ-connection (Pi, j v Pi′, j′), the context

and the domain thus linked (Ci, D j) are subclasses of the context and domain

(Ci′ , D j′) related by the super σ-connection.

The procedure used to prove if a CDS ontology is hierarchical is straight-

forward: for each pair of σ-connections, subsumption between the linked

context and domain must be checked. When developing a new CDS ontol-

ogy, this test can be performed for every new profile with a view to: (i)
3See Section A.3 for a detailed explanation on the semantics of DL constructs and axioms

4.3. Definition 104

detecting possible contradictions with Definition 4; (ii) displaying advice for

the ontologist; (iii) adding suitable axioms. Alternatively, it is also possible

to add further restrictions to our definition of significance ontology which

force the resulting CDS ontology to be hierarchical.

Proposition 2. The following additional restrictions are sufficient to ensure

that a significance ontology is hierarchical:

1. Rc and Rd are functional

2. R−c and R−d are functional

3. A complex context is involved in a σ-connection: Ci v ∃R
−
c .Pi, j

4. A complex domain is involved in a σ-connection: D j v ∃R
−
d .Pi, j

Proof. The conditions can be proved to be sufficient by contradiction. Let us

assume a significance ontology KS satisfying Proposition 2, a model I of KS

and an instance c such as c ∈ CI
i and c /∈ CI

i′ .

Because to restriction 3 (and 2), there is (only) one p ∈ PI
i, j such as

(c, p) ∈ R−c
I ⇒ (p, c) ∈ RI

c .

By hypothesis, Pi, j v Pi′, j′ , so p ∈ PI
i′, j′ . By definition, Pi′, j′ ≡ ∃Rc.Ci′ u

∃Rd .D j′ , which implies that (p, c′) ∈ RI
c , where c′ ∈ CI

i′ .

Therefore, we have (p, c) ∈ RI
c and (p, c′) ∈ RI

c . Due to restriction 1,

Rc is functional, so necessarily c = c′. Consequently, c ∈ CI
i′ , which is a

contradiction of the initial assumption. No individual satisfying c ∈ Ci and

c /∈ Ci′ can exist and, as a result, Ci v Ci′ .

The counterpart for D j v D j′ is immediate.

Modularity

The CDS pattern promotes ontology modularization since it clearly separates

the context, domain, and significance models. Nevertheless, the significance

4.3. Definition 105

ontology KS must completely import KC and KD. This is necessary because

KS contains the definitions of complex contexts Ci and domains D j, which

are built by relying on the concepts of KC and KD, respectively. Moreover,

partial inclusion is not allowed by the import directive of OWL.

Arbitrary definitions of Ci and D j in KS may lead to undesired inferences

in KC and KD. For instance, for two concepts A and B defined in KC , the

following situation is possible:

C1 ≡ A

C2 ≡ B

C2 v C1

|= B v A

The axiom B v A, which may not be asserted inKC , is obtained as a result

of the definitions of C1 and C2. This is not a desirable inference because the

significance ontology is not expected to change the meaning of the context

and domain ontologies, which are external models, and possibly managed by

other organizations. In the remainder of this section, we focus on the context

ontology KC . The following considerations can be directly extended to KD.

Undesired inferences frequently appear in ontology reutilization. This

must be avoided, and ontologies should be safe to reuse. The basic idea

underlying the safe reuse of ontologies is that the importing ontology must

not add new knowledge that changes the meaning of the concepts defined in

the imported ontology. In our case, the definitions of the complex contexts

Ci must not imply new axioms that modify the semantics of the concepts in

KC .

This property is formalized in [73, 74] by applying the notion of conser-

vative extension of a TBox, which is defined in [101]. Given two TBoxes T
and T ′, T ∪ T ′ is a conservative extension of T ′ if, for every axiom α with

S(α)⊆ S(T ′) we have T ∪T ′ |= α iff T ′ |= α. In our case, for the significance

ontology to be safe, KS ∪KC must be a conservative extension of KC .

The authors improve this approach and study safety without taking into

4.3. Definition 106

account the whole imported ontology, but rather only the imported symbols

(i.e. the external signature). Thus, an ontology K is safe for a signature S

(w.r.t. the DL in which K is expressed) if for every ontology K′ with S(K)∩
S(K′)⊆ S, K∪K′ is a conservative extension of K′.

In [74], it is proved that detecting if an ontology K is a safe extension of

a submodelK′ (withK′ ⊆K) is 2NEXPTIME forALCIQ, and undecidable for

ALCIQO. Consequently, this task is also undecidable for OWL DL. However,

sufficient conditions are stated to guarantee that the union of the importing

ontology and the imported ontology is a safe extension of the imported on-

tology. These conditions, which guarantee syntactic locality, are syntactic

restrictions on the possible axioms involving imported symbols. As proved

in the paper, syntactic locality implies locality, and locality implies safety. In

our case, we must assure the syntactic locality of Ci and D j definitions, which

will result in the significance ontology KS being safe.

Recently, an methodology for ontology reuse based on these results has

been proposed [130]. To avoid undesired collateral effects on the imported

ontologies, the design of a CDS ontology can follow this procedure. Addition-

ally, this methodology applies the idea of module (also described in [74]).

A module is the minimum subset of axioms of the imported ontology that

must be incorporated into the importing ontology to be able to infer the

same knowledge that could have been inferred if the whole ontology had

been added. In this way, the CDS ontology would only contain the minimal

number of axioms from the context and the domain ontologies. This would

improve the performance of the reasoning procedure as well.

Other features

• Reusability. By definition, design patterns must be applicable to dif-

ferent problems and domain areas. Our pattern effectively fulfills this

objective since it provides a general guideline for representing signifi-

cance without imposing application-dependent restrictions on the do-

main and the context ontologies.

4.4. Context-aware reasoning 107

• Standardization. One of the main prerequisites for the CDS pattern was

OWL-DL compliance. In other words, the resulting ontology should not

include new constructors nor be in OWL-Full. As explained, the pattern

generates a new OWL-DL ontology, whose complexity is bounded by

context and domain models. Thus, though the reasoning process may

seem somewhat less than straightforward, current tools (i.e. DL infer-

ence engines) can be directly used, without having to extend, modify,

or re-implement them.

• Expressivity. The pattern allows significance to be represented, and

makes the most of OWL expressivity. For instance, σ-connection hi-

erarchies can be defined to assert inclusion relations between them.

Actually, the resulting model is an OWL ontology, and can be modi-

fied as needed. Further improvements may be easily incorporated, e.g.

definition of several bridge properties with different semantics to qual-

ify the connections between contexts and domain, or the addition of

properties to profile classes.

4.4 Context-aware reasoning

The main reasoning task involving a significance ontology consists in finding

all the concepts in the domain ontology which ought to be considered in a

given context. In this section, we describe a complete and decidable algo-

rithm that performs this operation by carrying out basic DL inference tasks.

Formulation

Definition 5. Let KD be a domain-specific ontology, KC a context ontology, and

KS a CDS ontology, with their respective signatures S(KD), S(KC), and S(KS).
Let scenario E be a concept E ∈ S(KC). The domain knowledge in KD that

is significant in the scenario E w.r.t. KS, denoted as D(E,KS), is a set which

includes the concepts I such that:

4.4. Context-aware reasoning 108

D(E,KS) = {I | I ∈ Con(KD)∧KS |= {E v Cn, Pn,m v P>, I v Dm}}

Essentially, we are interested in the concepts of the domain ontology that:

• are similar to the complex domains

• asserted to be significant to the complex contexts

• which are similar to our query.

In this case, similarity is computed as concept inclusion4. Thus, I stands

for the concepts I defined in the domain ontology that are more specific

than the complex domains D j which are σ-connected to the contexts Ci more

general than E.

The domain significant in a scenario can be retrieved by performing sev-

eral subsumption tasks:

Algorithm 1. D(E,KS) can be computed in practice as follows:

1. {Cn}= {Cn v C> | E v Cn}

2. {Pk,l}= {Pk,l v P> | (Pk,l v ∃Rc.Ck)∧ (Ck ≡ Cn)}

3. {Dm}= {Dm v D> | (Pk,l v ∃Rd .Dl)∧ (Dm ≡ Dl)}

4. D(E,KS) = {I ∈ Con(KD) | I v Dm}

The output of the algorithm is the set {I} of simple domain concepts of

KD which ought to be considered in the query context E.

The reason to retrieve the I ∈ Con(KD) and not simply Dm is the follow-

ing. We assume that the knowledge about the domain is only in KD, and Dm

are constructions built for the sake of convenience. Thus, it may occur that a
4Interestingly enough, other similarity measures could be implemented. Measurement

of similarities between ontologies is a topic that has been widely studied in the literature,
particularly in the biomedical domain [166].

4.4. Context-aware reasoning 109

Dm has no direct correspondence with a concept in the domain. Hence, the

algorithm obtain the concepts of the domain that are similar (i.e. included)

in Dm.

Since the definition of the significance ontology does not allow σ-connec-

tions involving anonymous contexts or domains to be created, steps 2 and 3

of the algorithm could be simplified as follows:

• {Pk,l}= {Pk,l v P> | (Pk,l v ∃R1.Ck)∧ (Cn ∈ {Ck})}

• {Dm}= {Dm v D> | (Pk,l v ∃R2.Dl)∧ (Dm ∈ {Dl})}

Next, we present an example of the algorithm.

Example 4.4 Domain significant to a context in Nomadic Healthcare.

Given the σ-connections in Example 4.3, the question arises regarding which

information of the HIS should be checked if the doctor is treating a “hem-

orrhagic and unconscious patient with a penetration wound”. This is ac-

complished by using Algorithm 1 to calculate the restricted domain of this

complex context concept.

E ≡ Hemorrhage u Unconsciousness u PenetrationWound

1. Cn = {C1,C2}

2. Pk,l = {P1,1, P2,2}

3. Dm = { D1, D2}

4. I= { HDRBloodPressureDisorder,

HDRDrugIntollerance,

HDRProcaineIntolerance,

HDRPenicillinIntolerance}

Once it is known which HDRs from the HIS are interesting, the con-

crete values for the patient may be retrieved. In this case, only records for

4.4. Context-aware reasoning 110

HDRProcaineIntollerance are available for the patient jgomez. So, the

doctor will be reminded that patient jgomez is positiveProcaine.

The example shows that descendants of E are not considered during the

reasoning process. These concepts correspond to more specific context sit-

uations, which will probably lead to more specialized domain information.

However, it may be interesting to calculate the σ-connections involving these

subcontexts, and to provide them as feedback information to the user, who

may be recommended to describe further details of the current scenario.

Example 4.5 Additional results in Nomadic Healthcare.

In this example, C3 in P3,3 is subsumed by E:

C3 ≡ Unconsciousness u (Hemorrhage u ∃ hasIntensity.High) u
IrregularPenetrationWound

v
Unconsciousness u Hemorrhage u
IrregularPenetrationWound

≡ E

Consequently, the doctor could be advised to carry out other clinical trials

to see if the specific part of this restriction (∃ hasIntensity.High quali-

fier of Hemorrhage) is present, but has not been diagnosed as yet. If this

knowledge is subsequently supplied, more information about the patient

(HDRCoagulationDisorder) will be considered significant.

4.4. Context-aware reasoning 111

Properties

Decidability and completeness

Proposition 3. Algorithm 1 is decidable and complete, i.e. it finds all the

concepts I related to the query concept E through σ-connections.

Proof. From the expressions in steps 1-4 of Algorithm 1, trivially every Pk,l

subsuming the (hypothetical) σ-connection PE,I linking E and I is retrieved.

By definition, E v Cn v Ck ∀n, k and I v Dm v Dl ∀m, l. According to

Proposition 1, we directly obtain that PE,I v Pn,m v Pk,l .

Computational complexity

The definition of the CDS ontology entails that Pi, j definitions are (at most)

in the DL ALC (in fact, they are in ALE)5. Therefore, the computational

complexity of the CDS model is mainly conditioned by the complexity of Ci

and D j expressions, the other concepts defined in the CDS ontology. The

complexity of these concepts subsequently depends on the complexity of the

ontologies KC and KD, which contains the definitions of the terms used to

build Ci and D j, and must be imported by KS.

In the simplest case (i.e. KC , KD and KS ontologies are in ALC), reason-

ing within the CDS ontology is asymptotically bounded by concept subsump-

tion complexity, which is EXPTIME-complete for ALC with GCIs, according to

Table A.4.

If we suppose that KC andKD do not add further complexity, it is possible

to reduce the complexity of KD by restricting the allowed expressions for Ci

and D j, moving consequently to a less expressive logic (Table 4.6 [58]). Re-

stricting negation to atomic concepts and disallowing union concepts would

enclose the CDS ontology to ALE , which has PSPACE complexity for general
5Notice that if the conditions for hierarchical CDS ontologies are assumed (Proposi-

tion 2), the complexity increases to ALCIF

4.5. CDS Plug-in for Protégé 112

reasoning. Another alternative consists on using only acyclic TBoxes, which

would give complexities of PSPACE for ALC and CONP for ALE .

Other choices are not appropriate, however. Moving from ALC to ALU
does not reduce the complexity, either in the general case or with acyclic

TBoxes. Moving to AL is not possible, because existential quantification

cannot be restricted. Similarly, expressivity of FL− is too limited.

Table 4.6: Complexity of reasoning with TBoxes in basic DLs

DL \ TBox Acyclic General
FL− PTIME PTIME

AL CONP PSPACE

ALE CONP PSPACE

ALU PSPACE EXPTIME

ALC PSPACE EXPTIME

According to this formulation of the CDS pattern, role hierarchies are

not necessary. Nevertheless, they may be considered for the sake of conve-

nience, in such a way that subroles of Rc and Rd can be defined with partic-

ular semantics and handled in consequence. This increases the complexity

to ALCH, but with the advantage that reasoning for the general case still

remains EXPTIME.

In any case, sinceALCH andALCIF are less expressive than SHIF(D)
(equivalent to OWL-Lite), reasoning in practice with available DL engines

(e.g. Pellet) will be quite efficient as they are highly optimized and worst-

case inferences are infrequent. Hence, more complex logics with extended

semantics could be considered as well to extend the basic formulation with-

out significant performance impact.

4.5 CDS Plug-in for Protégé

We have developed a plug-in for the Protégé platform, which allows users to

create, edit, test and reason with a CDS ontology. Our plug-in adds a new tab

4.5. CDS Plug-in for Protégé 113

Figure 4.2: CDS Tab plug-in in Protégé IDE

to the Protégé-OWL environment (Protégé enhanced with the OWL plug-in)

where a simplified view of the CDS ontology is displayed and queries can be

introduced. A preliminary version can be found in http://decsai.ugr.

es/~jgomez/thesis/cdsplugin. The plug-in is based on the CDS-API, a

library to programmatically manage models created with the pattern, which

can also be downloaded.

We can distinguish four sections in the tab, depicted in Figure 4.2:

1. Context section. The left side of the tab shows the context ontology

(KC) and the complex contexts (Ci) in the CDS ontology. The con-

http://decsai.ugr.es/~jgomez/thesis/cdsplugin
http://decsai.ugr.es/~jgomez/thesis/cdsplugin

4.5. CDS Plug-in for Protégé 114

text ontology can be optionally hidden. New complex contexts can be

created by using the context vocabulary; existential restrictions for the

new Ci are automatically added. It is also possible to edit or delete

existing contexts.

2. Domain section. The right side mirrors the context side, but instead

of the context ontology, the domain ontology (KD) is presented. New

complex domains Di can also be easily created, and editing and delet-

ing are allowed as well .

3. σ-connections. The central section of the tab shows the σ-connections

in the ontology KS. This is probably the most interesting part, since

it simplifies the task of creating new σ-connections. To build a σ-

connection, the user has only to select a complex context in the left box

(Ci) and a complex domain in the right box (D j), and then push the

‘new connection’ button. A new σ-connection (Pi, j) will be created as a

subclass of the currently selected σ-connection, and the corresponding

existential restrictions will be automatically generated.

4. Reasoning. The bottom section allows the retrieval of domain knowl-

edge significant to a given context, i.e. it implements Algorithm 1.

When a new complex concept for querying is created, its restrictions

are shown and the ‘run query’ button is activated. Results are displayed

in the ‘Results’ tab of this reasoning section and additional information

about the obtained classes can be consulted.

From the formal description of the pattern, it can be deduced that some

additional configuration is needed to make the CDS plug-in work correctly:

it is necessary to state the URIs of the external ontologies (KC , KD); the

top concepts for the σ-connections, the complex contexts, and the complex

domains (P>, C>, D>); and the URL of the DIG reasoner to be used. To

assist this procedure, a wizard-like window is presented to the user when

the ‘properties’ button on the top toolbar is clicked.

4.6. A fuzzy extension of the CDS pattern 115

The plug-in has been developed with the CDS-API and the APIs for Pro-

tégé and Protégé-OWl version 3.2.1. Installation is very simple. As any other

Protégé add-on, it just has to be copied to the plug-in directory of the Protégé

installation.

4.6 A fuzzy extension of the CDS pattern

Rationale

The significance ontology resulting from applying the CDS pattern has two

main deficiencies.

Firstly, definitions of complex context concepts Ci (respectively for defini-

tions of complex domain concepts Di) are crisp. As a result, it is not possible

to directly represent vague contexts, e.g. “the patient is slightly unconscious”,

and partial similarity between contexts, e.g. “anaphylaxis is quite similar to

sepsis”.

The second problem is that although the significance ontology allows

the developer to assert which domain-specific knowledge is interesting in

a scenario, it does not measure how important this connection is, which is

desirable in some applications. For instance, in our example on Nomadic

Healthcare, electronic registers about previous adverse drug events are more

important than others, and should be presented firstly to the doctor because

avoiding an anaphylactic shock is a major priority in healthcare. Ranking the

relevance relations would allow system responses to be sorted by precedence

and a threshold to be fixed in order to retrieve only the top k most relevant

concepts of the domain ontology.

In this section, we propose an extension of the CDS design pattern to: (i)

deal with vague complex contexts and domains; (ii) quantify the importance

of σ-connections. Our approach relies on Fuzzy Description Logics (fuzzy

DLs), a logical formalism which combines Fuzzy Logic theory and Descrip-

tion Logics, and defines a sound framework to represent and reason with

4.6. A fuzzy extension of the CDS pattern 116

imprecise and vague knowledge in ontologies. A brief introduction to fuzzy

DLs and further references are provided in Section A.5.

The extension of the CDS pattern results in a fuzzy ontology. This ex-

tension allows fuzzy context and domain descriptions to be represented, and

significance relations to hold to a degree. A suitable reasoning algorithm to

retrieve the domain knowledge relevant in a given context is also proposed.

Interestingly enough, though the fuzzy CDS ontology is not OWL compliant,

previous results can be applied to reduce it to a crisp representation in order

to use existing inference engines [39, 41, 40].

Definition

The fuzzy CDS ontology extends the original proposal by allowing contexts,

domains, and σ-connections to be defined by means of fuzzy GCIs. Thus,

complex contexts (respectively complex domains) can be stated to be par-

tially similar. Moreover, the degree of subsumption in a σ-connection defini-

tion represents the importance value of the link between the context and the

domain.

Definition 6. Let KD and KC be, respectively, the domain and the context on-

tologies; Ci a fuzzy complex context; and D j a fuzzy complex domain. The

fuzzy significance or fCDS ontology which relates the set of pairs (Ci, D j) with

degree αi, j (i.e. states that D j is interesting with rank αi, j when Ci happens) is

a consistent fuzzy ontology fKS = 〈T S,RS,AS〉 such that T S (non-exclusively)

includes definitions for the fuzzy concepts P>, C>, D>, Ci, D j, Pi, j, which satisfy:

1. P>, C>, D> are the superclasses ‘top σ-connection concePt’, ‘top complex

Context’, and ‘top complex domain’:

• 〈Pi, jv≥1 P>〉, 〈Civ≥1 C>〉, 〈D jv≥1 D>〉

2. Rc is the (fuzzy) bridge property linking σ-connections and complex con-

texts:

4.6. A fuzzy extension of the CDS pattern 117

• 〈P>v≥1∀Rc.C>〉

3. Rd is the (fuzzy) bridge property linking σ-connections and complex do-

mains:

• 〈P>v≥1∀Rd .D>〉

4. Pi, j is the (fuzzy) σ-connection concept linking the complex context Ci and

the complex domain D j:

• 〈Pi, jv≥αi, j
∃Rc.Ci u ∃Rd .D j〉

It is interesting to note that the context ontology KC and the domain

ontologyKD may be fuzzy or not. However, both Ci and D j are fuzzy concepts

because they are defined with fuzzy GCIs. Next, we show a fuzzy relevance

ontology built from two crisp ontologies KC and KD.

Example 4.6.

Continuing our example, we can use the same crisp domain and context

ontologies described in Examples 4.1 and 4.2. Some axioms which were not

included in these examples are presented below.

Crisp axioms which extend the domain ontology KD:

HDRCurrentPrescription v HDR

HDRAntidepressives v HDRCurrentPrescription

(jgomezEHR2 : EHR)

((jgomezEHR2, jgomez) : relatedToPatient)

(prozac: HDRAntidepressives)

((jgomezEHR2, prozac) : composedOf)

Crisp axioms which extend the context ontology KC :

Anaphylaxis ≡ galen:Anaphylaxis

Shock ≡ galen:Shock

Elderly ≡ ∃hasAge.trap{60, 75, 120, 120}

EpinephrineAdmin v galen:Treatment

4.6. A fuzzy extension of the CDS pattern 118

The CDS ontology fKS contains definitions for Ci, D j, and σ-connections

that were created with fuzzy GCIs. In this case, fuzzy Ci denote vague de-

scriptions of patient situations. D j are also fuzzy concepts, but they are as-

signed a crisp semantics, since they correspond to the pieces of information

represented in the HIS.

Additionally, some new fuzzy axioms are introduced to state similarities

between context concepts. These axioms could be introduced in KC to make

it into a fuzzy ontology, but we have preferred to maintain the context and

the domain base ontologies unaltered.

An excerpt of the (simplified) fKS is shown below.

Axioms which extend the context ontology

〈Anaphylaxis v≥0.7 Shock〉
〈SepticShock v≥0.5 Anaphylaxis〉
〈Shocku ≥ 1hasComplicationv≥0.8EpinephrineAdmin〉

Definition of complex contexts

〈C1 v≥1 ∃ hasComplication.Elderly〉
〈C2 v≥1 Anaphylaxis〉
〈C3 v≥1 EpinephrineAdmin〉

Definition of complex domains

〈D1 v≥1 EHRCurrentPrescription〉
〈D2 v≥1 EHRCurrentPrescription t EHRDrugIntollerance〉
〈D3 v≥1 EHRAntidepressives〉
〈D3 v≥1 D1〉

Definition of relations (for the sake of convenience)

〈Ra ≡ relSymptom〉
〈Rb ≡ relRegister〉

Definition of σ-connections

〈P1,1 v≥0.6 ∃ Rc.C1 u ∃Rd .D1〉

4.6. A fuzzy extension of the CDS pattern 119

〈P2,2 v≥0.5 ∃ Rc.C2 u ∃Rd .D2〉
〈P3,3 v≥0.9 ∃ Rc.C3 u ∃Rd .D3〉

Mandatory axioms

〈C1 v≥1 C>〉, 〈C2 v≥1 C>〉,
〈D1 v≥1 D>〉, 〈D2 v≥1 D>〉,
〈P1,1 v≥1 P>〉, 〈P2,2 v≥1 P>〉,
〈P> v≥1 ∀Rc. C>〉, 〈P> v≥1 ∀Rd . D>〉

Fuzzy context-aware reasoning

Formulation

As an extension of the crisp case, the domain knowledge significant in a

context w.r.t. a fuzzy relevance ontology contains all the (fuzzy or crisp)

concepts of the domain sub-ontology which are relevant in a given (fuzzy)

context, and the degree of interest. It is formally defined as a set of pairs

(concept of the domain ontology, degree), where “domain concepts” are the

concepts of the domain ontology which are significant to the context descrip-

tion introduced as input of the query, and “degree” is a number computed on

αi, j values.

Definition 7. Let KD be a domain-specific ontology, KC a context ontology, and

fKS a fuzzy CDS ontology, with their respective signatures S(KD), S(KC), and

S(fKS). Let scenario E be a concept E ∈ S(KC). The domain knowledge in KD

α-significant in the scenario E w.r.t. fKS, denoted as Dα(E, fKS), is a set of

pairs (I ,αi, j) such that:

• I ∈ Con(KD)

• fKS |= {〈E v>0 Cn〉, 〈Pn,m v>0 ∃Rc.Cn u ∃Rd .Dm〉, 〈I v>0 Dm〉}

4.6. A fuzzy extension of the CDS pattern 120

• αi, j = glb(E v Cn)⊗ glb(Pn,m v ∃R1.Cn u ∃R2.Dm)⊗ glb(I v Dm)

The algorithm to calculate the α-significant domain of a scenario is a

fuzzy extension of Algorithm 1.

Algorithm 2. Dα(E, fKS) can be computed in practice as follows:

1. Retrieve the complex contexts subsuming the query context (and their de-

gree):

Z1 = {(Cn,βn) | (E v>0 Cn)∧ (βn = glb(E v Cn))}

2. Retrieve the σ-connections which involve the retrieved complex contexts

(and their degree):

Z2 = {(Ck, Pk,l ,βk) |
(Pk,l v>0 ∃Rc.Ck)∧ (βk = glb(Pk,l v ∃Rc.Ck))∧ (Ck ≡ Cn)}

3. Retrieve the complex domains involved by the retrieved σ-connections

(and their degree):

Z3 = {(Pk,l , Dl ,βl) | (Pk,l v>0 ∃Rd .Dl)∧ (βl = glb(Pk,l v ∃Rd .Dl))}

4. Combine the partial degrees of the retrieved profiles using a ⊗:

Z4 = {(Ck, Dl ,βk,l) |
((Ck, Pk,l ,βk) ∈ Z2)∧ ((Pk,l , Dl ,βl) ∈ Z3)∧ (βk,l = βk ⊗ βl)}

5. Aggregate, by means of a⊕, all the degrees with which a domain has been

retrieved :

Z5 = {(Dm,βm) | (βm =
⊕

(Ck ,Dm,βk,l)∈Z4
(βk,l ⊗ βn))}

6. Retrieve the I ∈ Con(fKD) more specific than the retrieved complex do-

mains (and their degree):

Dα(E, fKS) = {(I ,αi, j) | (I v Dm)∧ (αi, j = βm⊗ glb(I v Dm))}

(for simplicity’s sake, we assume that Cn, Ck v C>, Pk,l v P>, Dm, Dl v D>)

The output of Step 6 is a set of pairs containing all the I v Dm and

their degree of importance. Since a concept I can be retrieved with more

4.6. A fuzzy extension of the CDS pattern 121

than a degree through different profiles, these values should be conveniently

aggregated again using a t-conorm ⊕, in order to provide the user with a

single final relevance value. Therefore, the final output of the procedure

to the user will be a set of pairs (simple domain concept, degree) with no

repeated simple domain concepts.

Next, we present an example of the algorithm.

Example 4.7 Domain α-significant in a context in Nomadic Healthcare.

Let us suppose the query context Anaphylaxis u∃ hasComplication.Elderly.

Using Algorithm 2, we can retrieve the domains asserted to be interesting

in this context, that is, Dα(Anaphylaxisu∃ hasComplication.Elderly,

fKS). In this example, the Gödel implication is used to interpret the seman-

tics of GCIs.

• Step 1

Anaphylaxisu∃hasComplication.Elderly
v≥1Anaphylaxisv≥0.7Shock,

Anaphylaxisu∃hasComplication.Elderly
v≥1≥ 1hasComplication

⇒Anaphylaxisu∃hasComplication.Elderly
v≥0.7Shocku ≥ 1hasComplication

Anaphylaxisu∃hasComplication.Elderly
v≥0.7Shocku ≥ 1hasComplication,

Shocku ≥ 1hasComplication v≥0.8EpinephrineAdmin

⇒Anaphylaxisu∃hasComplication.Elderlyv≥0.7 EpinephrineAdmin

Z1 = {(C1, 1), (C2, 1), (C3, 0.7)}

• Step 2

P1,1 v≥0.6 ∃Rc.C1 u ∃Rd .D1⇒P1,1 v≥0.6 ∃Rc.C1

P2,2 v≥0.5 ∃Rc.C2 u ∃Rd .D2⇒P2,2 v≥0.5 ∃Rc.C2

P3,3 v≥0.9 ∃Rc.C3 u ∃Rd .D3⇒P3,3 v≥0.9 ∃Rc.C3

4.6. A fuzzy extension of the CDS pattern 122

Z2 = {(C1,P1,1, 0.6), (C2,P2,2, 0.5), (C3,P3,3, 0.9)}

• Step 3

P1,1 v≥0.6 ∃Rc.C1 u ∃Rd .D1⇒P1,1 v≥0.6 ∃Rd .D1

P1,1 v≥0.6 ∃Rd .D1 v≥1 ∃Rd .D2⇒P1,1 v≥0.6 ∃Rd .D2

P2,2 v≥0.5 ∃Rc.C2 u ∃Rd .D2⇒P2,2 v≥0.5 ∃Rd .D2

P3,3 v≥0.9 ∃Rc.C3 u ∃Rd .D3⇒P3,3 v≥0.9 ∃Rd .D3

P3,3 v≥0.9 ∃Rd .D3 v≥1 ∃Rd .D1⇒P1,1 v≥0.9 ∃Rd .D1

P3,3 v≥0.9 ∃Rd .D1 v≥1 ∃Rd .D2⇒P3,3 v≥0.9 ∃Rd .D2

Z3 = {(P1,1,D1, 0.6), (P1,1,D2, 0.6), (P2,2,D2, 0.5),
(P3,3,D3, 0.9), (P3,3,D1, 0.9), (P3,3,D2, 0.9)}

• Step 4

Z4 = {(C1,D1, min(0.6, 0.6) = 0.6), (C1,D2, min(0.6,0.6) = 0.6),
(C2,D2, min(0.5, 0.5) = 0.5), (C3,D1, min(0.9,0.9) = 0.9),
(C3,D2, min(0.9, 0.9) = 0.9), (C3,D3, min(0.9,0.9) = 0.9)}

• Step 5

Z5 = {(D1, max(min(0.6, 1), min(0.9, 0.7)) = 0.7),
(D2, max(min(0.6, 1), min(0.5,1), min(0.9,0.7)) = 0.7),
(D3, min(0.9, 0.7) = 0.7)}

• Step 6

Dα(E, fKS) = { (EHRCurrentPrescription, min(0.7, 1) = 0.7),
(EHRCurrentPrescription, min(0.7,1) = 0.7),
(EHRAntidepressives, min(0.7,1) = 0.7),
(EHRDrugIntolerance, min(0.7,1) = 0.7),
(EHRAntidepressives, min(0.7,1) = 0.7),
(EHRAntidepressives, min(0.7,1) = 0.7)}

4.6. A fuzzy extension of the CDS pattern 123

If the outputs of the algorithm are aggregated, the final results provided

to the user are:

(EHRCurrentPrescription, max(0.7, 0.7) = 0.7),
(EHRDrugIntollerance, 0.7),

(EHRAntidepressives, max(0.7, 0.7,0.7) = 0.7).

These results mean that the system alerts the doctor, and tells him to

check the patient information about current prescriptions, especially those

concerning antidepressive drugs, and past diagnoses of drug intolerance. All

the recommendations are equally important with degree 0.7.

Once the patient is identified, the concrete instances of these classes of

the ontology can be obtained from the ABox AD. In this case, for the patient

jgomez, the doctor is advised that the patient has a prescription of prozac

and an intolerance to procaine.

Properties

Proposition 4. Algorithm 2 is complete, i.e. it finds all the concepts I related

with E through σ-connections and the degree of this connection.

Proof. The expressions of Algorithm 2 show that the retrieved Pk,l , Cn, Dm are

the same as in the crisp case. The only difference in respect to the previous

algorithm is the computation of β values. We assume in this proof that the

Gödel implication is used to define the semantics of GCIs and the t-norm ⊗
is min, though it can be easily extended to other families of fuzzy operators.

Therefore, based on proof of Algorithm 1 and Definition 7, we have

merely to prove that βk,l = βk ⊗ βl is equal to glb(Pk,l v ∃Rc.Ck u ∃Rd .Dl),
the degree of the relevance relation between Ck (a superclass of E) and Dl (a

superclass of I).

Using the properties of fuzzy sets, we know that (A⇒ B⊗ C)≥ α implies

(A⇒ B) ≥ α and (A⇒ C) ≥ α, for some t-norm and its residuum-based im-

4.6. A fuzzy extension of the CDS pattern 124

plication (for example, for min t-norm and the Gödel implication). Applying

this expression to our GCI, Pk,lv≥βk,l
∃Rc.Ck u ∃Rd .Dl ⇒ Pk,lv≥γ1

∃Rc.Ck(γ1 ≥
βk,l) and Pk,lv≥γ2

∃Rd .Dl(γ2 ≥ βk,l). From Algorithm 2, we have the glbs

βk and βl . Since they are the greatest lower bounds, βk ≥ γ1 ≥ βk,l and

βl ≥ γ2 ≥ βk,l . Consequently, βk ≥ βk,l ⇒ βk,l ≤ βk ⊗ β ′, for any β ′, and

βl ≥ βk,l ⇒ αk,l ≤ βl ⊗ β ′′, for any β ′′.

On the other hand, for min t-norm and the Gödel implication, (A⇒ B)≥
α1 and (A⇒ C) ≥ α2 imply (A⇒ B⊗ C) ≥ α1 ⊗ α2. Applying this expres-

sion to the GCIs of Algorithm 2, Pk,lv≥βk
∃R1.Ck and Pk,lv≥βl

∃R2.Dl , we have

Pk,lv≥βk⊗βl
∃R1.Ck u ∃R2.Dl . By definition, βk,l≥ β k ⊗ βl .

Consequently, βk,l≤ β k⊗βl and βk,l≥ β k⊗βl , so necessarily βk,l= β k⊗βl .

Computational complexity. An upper bound for the computational com-

plexity of the reasoning procedure can be deduced from the research stud-

ies [39, 41, 40], where fuzzy ontologies in f SHOIN and f SROIQ have

been proved to be reducible to crisp ontologies. Therefore, the overall com-

plexity of retrieving the α-significant domain concepts w.r.t. a fuzzy signifi-

cance ontology is asymptotically bounded by the complexity of the reduction

plus the complexity of the reasoning within the crisp ontology.

The mentioned contributions show that the complexity of this reduction

for a f SROIQ ontology with Zadeh operators and the Gödel implication

for GCIs (the top complexity level considered in this work) is quadratic (in

space) with regard to the number of degrees used in the ontology6.

Algorithm 2 calculates a considerable number of glbs (at least, one for

each retrieved concept in Steps 1-4). The computation of each glb needs at

most log(N) subsumption tests, where N is the number of degrees of the
6This complexity can be cut down to linear if a fixed number of degrees is assumed.

Moreover, under certain conditions (i.e. new axioms do not introduce new atomic concepts,
new atomic roles, or new degrees of truth), this reduction can be performed only once, and
this overhead can be avoided.

4.6. A fuzzy extension of the CDS pattern 125

fuzzy ontology [246]. In the simplest case, the CDS ontology is in fALC,

which implies that the complex context and the domain expressions are (at

most) in ALC; the number of degrees is fixed; and the fuzzy CDS ontology

does not need to be reduced. If we assume this situation, the complexity of

Steps 1-4 is upper-bounded by |Con(fKS)| × log(N) times the subsumption

test complexity (EXPTIME for ALC).

According to this result, despite the optimizations applied, reasoning with

the fuzzy relevance ontology has a high computational complexity. Neverthe-

less, it is generally assumed that the worst cases are very infrequent in DL

reasoning. Thus, as practical experiences show, the overhead produced by

the fuzzy extension of the CDS pattern is assumable, and the use of fuzzy

significance relations is recommended in applications that require higher de-

scriptive power. This is the case of the Nomadic Healthcare use case, imple-

mented in the IASO system described in the next chapter. However, in its

current version the knowledge bases of IASO were built by applying the crisp

CDS pattern. The use of the fuzzy approach remains to be explored in future

work.

CHAPTER 5
A Knowledge Mobilization

Application: the IASO System

This section describes the IASO system, a mobile application based on the

principles of Knowledge Mobilization. IASO solves the Nomadic Healthcare

KMob use case presented in Chapter 2. It also shows the usefulness of the

architecture and the knowledge representation model created as part of our

doctoral thesis.

5.1 Problem description

In the first chapter of this dissertation, we presented the Nomadic Healthcare

KMob use case (Section 2.3). In this section, we give a detailed description

of the design and the implementation of IASO, a prototype of a KMob system

that solves the Nomadic Healthcare problem. IASO is a proof-of-concept

system since it demonstrates the validity and usefulness of the contributions

of Chapter 3 (the KMob architecture) and Chapter 4 (the CDS model).

The example of the Nomadic Healthcare use case is the following. Dr.

Greg is caring for a patient outside the hospital. He is equipped with a

126

5.1. Problem description 127

portable device, and wishes to consult the Hospital Information System (HIS),

where the patient’s clinical history is stored, with a view to prescribing a

treatment for him. For instance, Dr. Greg should know whether the patient

has been previously diagnosed as having an allergy to anesthetic drugs. By

no means does he wish to receive the patient’s complete history because he

would be unable to review all the records available in the system. In fact,

most of this data would be irrelevant, given the current situation of the pa-

tient and the type of treatment needed.

The IASO system that we designed is capable of accomplishing this task

and providing the doctor with precisely the information required. Thus, IASO

delivers customized summaries of the most relevant clinical data in the pa-

tient’s medical history to the doctor so that he can decide on the best treat-

ment. The contents of these summaries depend on the current state and

situation of the patient, which is introduced by the doctor as the input of

the application. The new application provides answers to questions such

as “what should I know about this patient?” and “should I perform further

clinical tests?”.

In this case, we use the data stored in the HIS of the Hospital Clínico San

Cecilio of Granada. This system stores the clinical histories of the patients

of the hospital. A clinical history is the sum total of all the electronic health

records generated as a result of the healthcare services received by a patient.

In other words, a patient’s history includes all the information concerning his

previous and current clinical treatments, diagnoses, and prescriptions.

The system relies on a database which links one clinical history to each

patient. Information is stored in ‘registers’, and the registers are organized in

‘electronic documents’. Documents are classified depending on the medical

specialization that they are related to. The structure and contents of docu-

ments are defined with in terms of templates, which specify which data fields

must be filled to generate a document. Figure 5.1 shows the logical structure

of the database of the hospital.

It should be pointed out that the system implemented by the Hospital is

5.1. Problem description 128

only used in this institution. Nevertheless, our approach could be extended

to other systems, and, especially, Diraya, the clinical history system used

in Primary Healthcare Centers that are part of the Andalusian Healthcare

Service SAS [35].

Figure 5.1: Structure of the database of the Hospital Clínico San Cecilio

Clinical

History

Procedure

1

Document

xx

xxxx

xx

Document

oxx

x

xxxxx

xxx

Document

ox

xxxx

xx

x x

x

Procedure

2

Procedure

3

Procedure

4

...

...

...

...

...

Specialty B

Specialty C

Specialty A

Template A Template B

...

Templates
Patient

1

1

5.1. Problem description 129

The San Cecilio HIS is a client-server application specifically developed

for this hospital. Physicians can use the software to retrieve patients’ histories

by using the PCs in their offices. The HIS implements a security policy that

prevents doctors from accessing information generated by procedures carried

out in medical specializations other than their own. In order to guarantee

data integrity and security, the system has a password-based identification

mechanism.

The current system behaves reasonably well in situations in which the

doctor has sufficient time to manually consult, filter, and extract useful infor-

mation from the stored electronic documents. Nevertheless, problems arise

in two situations: (i) when the system must be accessed from outside the

hospital; (ii) when the doctor does not have enough time to review the in-

formation provided, or when the information cannot be processed.

The first problem can be solved by implementing a gateway to access the

HIS from outside the hospital. This is relatively easy to do if security issues

are not considered. For instance, a Web interface that replicates query forms

would allow remote access with different tools, including mobile devices.

However, the second issue is more difficult to resolve since more knowledge

must be added to the system to avoid information overload (see Section 4.1).

A knowledge base stating which clinical data is relevant in a given patient

situation must also be created. Data summaries would be composed when

the user consults this knowledge base.

IASO elegantly solves both of these problems. The IASO application has

the characteristic features of KMob systems. It is a ubiquitous system, since

application services can be accessed from anywhere, at anytime, and with

any device. The system must behave in consonance with the context of use,

and discover which information is needed by the doctors in each case. Doc-

tors do not need to tell the system how this information can be retrieved

since the system is capable of automatically inferring it. As already men-

tioned, in this application, it is particularly important to be concise and to

summarize the available data in order to avoid information overload. Last

but not least, the system has to integrate heterogeneous information sources

5.2. Related work 130

as well as different communication technologies.

Consequently, we applied the KMob principles, methodologies, and tools

analyzed in this thesis. The system was designed by specializing of the ar-

chitecture presented in Chapter 3. The implementation was carried out by

using the technologies described in that chapter. The knowledge base that

supports the creation of the context-dependent summaries was created by

relying on the design pattern proposed in Chapter 4.

5.2 Related work

The management of the clinical data of patients has always been a princi-

pal focus of interest in Medical Informatics. However, two problems which

arise in this area are data storage and data retrieval. Effectively solving both

problems is crucial for providing better healthcare services.

The acquisition and storage of clinical data has been extensively studied

since the appearance of the first information systems. Currently, there are

various interesting proposals that target the creation of standards for elec-

tronic health records (EHRs) [84].

One of the most recent of these initiatives is OpenEHR1, which claims to

improve the previous specifications for EHR management systems. OpenEHR

defines ADL (Archetype Description Language), a language for describing

the medical concepts that can be represented in an HIS [10]. These concepts

are called archetypes. For example, the archetype “blood pressure’, which

includes the values of the systolic and the diastolic blood pressure, the place

where the measurements have been obtained, and the device which has been

used, can be defined with OpenEHR. A list of possible ADL archetypes can be

found at the OpenEHR website 2.

The retrieval of clinical data is the other problem that HIS research work

is currently trying to solve. Retrieval does not only involve querying HIS
1http://www.openehr.org
2http://svn.openehr.org/knowledge/archetypes/dev/index.html

http://www.openehr.org
http://svn.openehr.org/knowledge/archetypes/dev/index.html

5.2. Related work 131

databases, which is performed with suitable consultation languages (e.g.

EQL for OpenEHR). It is also necessary to understand the data obtained. A

standard for EHRs does not completely solve this issue because the requester

may not know what the values mean. If the requester is a human user, he

will probably be able to decipher this data, but if the procedure is automatic,

interpreting such data is almost impossible. This is especially problematic

when systems using different representation models are obliged to under-

stand each other. In order to support interoperability and exchange of data,

the meaning of the terms used by each organization must be well-defined

and published.

As a result, there is much research now in progress, whose objective is

to endow HIS data with semantics. Adding formal metadata to describe

HIS registers allows the patients’ data to be automatically processed. These

metadata must be incorporated at two levels: (i) the level describing EHR

meaning; (ii) the level describing EHR contents.

The first of these objectives is achieved by using an EHR metamodel. For

instance, OpenEHR primitives are formally characterized in the OpenEHR

UML model. The OpenEHR metamodel has been translated to OWL in such

a way that archetypes can be specified by using an OWL ontology [30, 143,

222].

The second objective is part of the more general problem stemming from

the formal description of terms used in Medicine. As it is well-known, this

is one of the most frequently studied application domains of ontologies. It

is beyond of the scope of this work to provide a review of medical ontolo-

gies. Important medical ontologies such as UMLS [45], Galen [221], and

SNOMED-CT [70], which were originally coded in other representation lan-

guages, have now all been translated to OWL.

There is a considerable number of contributions that offer solutions for

HIS remote access. Some of them even use portable devices [82, 110]. With

the rise of Web technologies, this problem has been successfully solved. The

main challenge for the developers of these systems is to guarantee security

5.3. Design 132

and integrity of the data, which is especially important given the high degree

of privacy required for medical records.

To the best of our knowledge, there is little or no significant research on

the automatic summarization of patients’ clinical histories for on-line consul-

tation. Nevertheless, this facility has been stressed by some authors as a very

interesting feature for HISs to have [102]. We strongly believe that context-

dependent summarization will not only be desirable, but essential in order

to make the most of the large medical data warehouses that will be available

in the very near future.

5.3 Design

The KMob system developed to meet the requirements explained in Sec-

tion 5.1 is called IASO3 (Intelligent ASsistant for Outdoors healthcare). IASO

allows nomadic users to access the HIS of the Hospital Clíinico San Cecilio.

Users, equipped with mobile devices, provide a description of the clinical

situation of the patient and his identifier, and the system infers which in-

formation of the HIS ought to be made accessible. Thus, in order to avoid

information overload, the resulting information is a summary of the available

data for the patient.

To create this system, we had to successfully accomplish the following

tasks:

1. The construction of a knowledge model capable of describing which

subset of the data stored should be considered in a given scenario.

2. The implementation of the software that delivers this information to

the (doctors’) mobile devices.

3Iaso (also “Iaso Tholus” or “Jaso”; in Ionic Greek, “Ieso”) was the Greek goddess of
recovery from illness. Iaso was the daughter of Asclepius and had three sisters and a stepsis-
ter: Panacea, Aceso, Aglæa-Ægle and Hygeia. Iaso helped sick people together with Panacea,
Aglæa and Hygeia.

5.3. Design 133

IASO knowledge base

The IASO knowledge base was created by applying the crisp version of the

CDS design pattern. We developed three OWL ontologies that abstractly rep-

resent: (i) the data registers of the clinical histories managed by the HIS

(the domain); (ii) a vocabulary to describe the patients’ clinical situations

(the context); (iii) links stating that certain data registers are significant in

a given situation (the σ-connections). Figure 5.2 illustrates the relations

between these three ontologies. The contents and the structure of the on-

tologies are extensions of the (OWL translation of the) examples included in

Chapter 4.

Figure 5.2: Schema of the IASO context, domain, and significance ontologies

HIS Abstract Model Patient Situation Description
Model

Context-Domain Significance Model

Pn,m Cn

E

Dm

I

I

Clinical SituationsHospital Information System

D
o

m
a

in
C

o
n

te
x

t

As mentioned in Chapter 4, it is possible to reuse existing ontologies to

build the context, domain, and significance models. We used the OWL trans-

lation of the Galen ontology [218], available in the Web4, to create the Pa-
4http://www.co-ode.org/galen/full-galen.owl

http://www.co-ode.org/galen/full-galen.owl

5.3. Design 134

tient Situation Description Model. A local copy of Galen was imported from

this ontology.

Likewise, a standard EHR representation model could have been used to

develop the domain ontology. Nevertheless, since the HIS database has a

very idiosyncratic structure, we decided to build the domain ontology from

scratch. The HIS Abstract Model includes concepts that model patients, clin-

ical histories, medical specializations, electronic documents, etc. The instances

of these concepts are the concrete values stored in the HIS. This signifies that

it would then be necessary to import instance data from the HIS to the HIS

Abstract Model. We solved this problem by implementing a bridge between

this ontology and the HIS in such a way that HIS data is retrieved on demand

as ontology instances. This solution is explained in Section 5.4.

In this version of the IASO CDS ontology, σ-connections have been cre-

ated by relying on the advice of experts in the field and specialized bibliog-

raphy. In the future, we plan to study if it is possible to semi-automatically

build the CDS ontology by relying on formal medical guidelines.

The resolution of a query with the IASO CDS ontology consists of the

three stages explained in Example 4.4. Firstly, a description of a patient sit-

uation (created in terms of the Patient Situation Description Model) and the

identifier of the patient are provided by the user. Secondly, using this descrip-

tion as the input, the algorithm capable of inferring the domain significant

to a context (Section 4.4) is executed. The result of the algorithm is a set

that includes the concepts of the HIS Abstract Model which are regarded as

significant. Thirdly, the instances of these concepts that correspond to the pa-

tient are retrieved. These values are the final output of the query resolution

process.

IASO architecture

The IASO architecture instantiates the abstract architecture proposed in Chap-

ter 3. We chose a client-server communication schema to organize the appli-

5.3. Design 135

cation. Accordingly, client-server technologies were used to implement IASO,

as explained in the next section.

We believe that the client-server pattern is the most suitable for this sys-

tem. The most important reason for this is that the query resolution process

is too complex to be executed with a mobile device. The mobile agent should

manage a DL reasoning engine and a full version of the CDS ontology, includ-

ing instances, to completely resolve any query. This is not currently viable.

Therefore, the mobile agent only knows the Patient Situation Description

vocabulary, and is the desktop agent who carries out the query-resolving

process. Since client and server roles are clearly identified, the client-server

paradigm is a natural way of structuring the system.

Figure 5.3 shows the Society Diagram of the IASO application. It depicts

the Nomadic Agents, Desktop Agents, Services, and Knowledge Models of

the system.

The IASO Client Agent is a Nomadic Agent that runs on the users’ mobile

devices. It manages a copy of the Patient Description Model, which is used

to create the descriptions of the clinical situations that are sent as part of the

queries to the IASO Server Agent. This client agent offers a friendly interface

to introduce these descriptions. Once a query has been introduced, the client

agent acquires the IASO Client role. This role encompasses all the functions

aimed at: (i) requesting the IASO Query Service; (ii) processing the results

of the query to present them to the user in a suitable format.

The IASO Query Service is the service that processes user queries. The

input of this service is a description of a concept built with the Patient De-

scription Model vocabulary and a patient ID. The output of the service is a

set of concept descriptions corresponding to the significant registers retrieved

and the instances of these concepts5.

The IASO Server Agent is a Desktop Agent that runs on an application
5This ontological data is expressed with the HIS Abstract Model. Therefore, it might

also be useful to manage a copy of the HIS Abstract Model in the IASO Client in order
to interpret the results. However, we consider that the results should be interpreted by the
user, who is an expert in the area.

5.3. Design 136
Fi

gu
re

5.
3:

A
rc

hi
te

ct
ur

e
of

th
e

IA
SO

sy
st

em

A
b

s
tr

a
c

t
K

m
o

b
 A

rc
h

it
e

c
tu

re

IA
S

O
 A

rc
h

it
e

c
tu

re

N
o

m
a

d
ic

 A
g

e
n

t

C
o

n
s
u

m
e

r
P

ro
v
id

e
r

D
e

s
k

to
p

 A
g

e
n

t

1
1

E
x

te
rn

a
l

K
n

o
w

le
d

g
e

 M
o

d
e

l

S
e
rv

ic
e

IA
S

O
 C

li
e

n
t

A
g

e
n

t

IA
S

O
 S

e
rv

e
r

A
g

e
n

t

IA
S
O

 Q
u
e
ry

 S
e
rv

ic
e

IA
S

O
 C

li
e

n
t

IA
S

O
 S

e
rv

e
r

IA
S
O

 C
D

S
 O

n
to

lo
g
y

S
a

n
 C

e
c
il

io
 H

IS

L
o

c
a

l
K

n
o

w
le

d
g

e
 M

o
d

e
l

P
a
ti
e
n
t
D

e
sc

ri
p
ti
o
n
 M

o
d
e
l

H
IS

 A
b
st

ra
ct

 M
o
d
e
l

5.4. Implementation 137

server. When this agent acquires the IASO Server role, it provides the IASO

Query Service. In order to solve IASO Clients queries, the IASO Server Agent

manages the IASO CDS Ontology, which relates the descriptions created by

means of the Patient Description Model ontology with sets of HIS registers

modeled by using the HIS Abstract Model.

Worthy of mention is the participation of the San Cecilio HIS in the sys-

tem. This is an External Knowledge Model, and consequently, it is modeled

as an external agent. As commented in the previous sections, the instances

of the HIS Abstract Model must reflect the contents of the HIS. Therefore,

there is a dependence relation between the ontology and the HIS itself.

5.4 Implementation

We developed a proof-of-concept prototype of the IASO system described in

the previous section [42]. This prototype is available at http://arai.ugr.

es/8084/IasoTest/EntryPoint.

The prototype simplifies the design of IASO by assuming that the ontolo-

gies and databases that participate in the system are reduced versions of the

complete ones that would be used in a practical implementation. Thus, the

architecture of the IASO prototype is the one depicted in Figure 5.3, but the

size of the context, domain, and CDS ontologies, as well as the HIS database,

has been reduced.

More precisely, the simplifications in the prototype are the following.

First, the CDS ontology contains only a few σ-connections. Secondly, the

simplified version of the HIS database only reflects the clinical histories with

one medical specialization, which is implicitly represented. This database

only contains certain test values, which allowed us to sidestep security and

privacy issues. Thirdly, the HIS Abstract ontology only models the informa-

tion stored in this simplification of the HIS. Apart from these considerations,

the prototype offers all the features that the complete IASO system would

http://arai.ugr.es/8084/IasoTest/EntryPoint
http://arai.ugr.es/8084/IasoTest/EntryPoint

5.4. Implementation 138

provide. The prototype can be easily extended, and the analysis of its prop-

erties can be inductively generalized to the eventual complete system.

The IASO architecture was implemented by using the client-server tech-

nology framework proposed in Section 3.4. More specifically, we developed

the IASO prototype as a Web-based application. The clients and the server

communicate with HTML forms that are transmitted with the HTTP protocol.

Figure 5.4 shows the technologies applied to implement the IASO prototype.

The IASO Client Agent is a Web browser that can access to the Web pages

created by the IASO Server Agent. Thanks to this simplicity, this implemen-

tation of the client guarantees that most mobile devices can participate in

the system, despite their computational limitations, as long as they are able

to access the Web.

The IASO Server Agent provides an access point to the query-resolving

service throughout an HTML form. This form allows the client to introduce

a query and send it to the server. The query format in this implementation is

an ad hoc ontology expression though it could be serialized to one of the pos-

sible OWL syntaxes. The IASO Server Agent receives and solves queries with

the knowledge available in the IASO CDS Ontology and the HIS Database.

In order to manage the CDS ontology, the server uses the CDS API, which im-

plements Algorithm 1, and a DL inference engine (Pellet). The IASO Server

Agent application runs on an Apache Tomcat Web server.

In order to minimize the drawbacks of the HTTP interaction, the IASO

Server Agent was implemented with JSF and AJAX technologies. The JSF dis-

tribution used in the prototype is the open source library Apache MyFaces6.

Since MyFaces supports AJAX, the IASO Client Agent can execute complex

Javascript code. The use of JSF and AJAX in our prototype facilitates the cre-

ation of an attractive interface that clearly presents the input and the output

information in the user’s mobile device.

The Local Knowledge Model of the IASO Server Agent is composed of

the three previously mentioned ontologies: HIS Abstract Model, Patient De-
6http://myfaces.apache.org/

http://myfaces.apache.org/

5.4. Implementation 139

Figure 5.4: Implementation of the IASO prototype

San Cecilio HIS
database (MySQL)

D2RQ
Bridge

IASO

Server Agent

HTTP

OWL

Local Knowledge Model

IA
S

O

C
lie

nt
 A

ge
nt

Patient
Description
Model

CDS
Ontology

Web Browser

Pellet

CDS API

Query resolution

Web Interface
JSP

AJAX

HIS Abstract
Model

E
xternal K

now
ledge

M
odel

5.5. Execution 140

scription Model, and IASO CDS Ontology. These ontologies can be pub-

lished in the same application server where the IASO Server Agent runs or

in another Web server, since the CDS API transparently manages either lo-

cal or remote ontologies. In this implementation, they were deployed in a

second Apache web server7.

An outstanding feature of the knowledge base in the prototype is the

presence of the SQL Bridge. This bridge is responsible for transparently re-

trieving data from the HIS database as if they were instances of the ontology,

but without actually importing them. In this way, the register contents of the

HIS do not need to explicitly be part of the HIS Abstract Model. The SQL

Bridge was implemented by using D2RQ, a toolkit to describe mappings be-

tween relational databases and OWL/RDF(S) ontologies and to manage the

resulting models. D2RQ is described in Section B.4.

The SQL Bridge avoids two important problems. On the one hand, syn-

chronization between ontology instances and database values is not required,

which is a costly process. On the other hand, ontology inference procedures

are more efficient, since the time and memory needed to reason with such a

large ontology would be excessive.

5.5 Execution

The IASO prototype execution process is the following:

1. A user, equipped with a portable device that can access the Web through-

out a wireless or cellular network, launches the Web browser (IASO

Client Agent) and downloads the HTML query form from the server

(IASO Server Agent).

2. On the form, the user describes the situation of the patient by using

terms of the Patient Description Model. Before sending back the query

form, the user also introduces the patient ID.
7http://httpd.apache.org/

http://httpd.apache.org/

5.5. Execution 141

3. On receiving the query, the server transforms the description of the

clinical situation of the patient. The transformed description is used as

the input of the implementation of Algorithm 1 provided by the CDS

ontology. The result of this procedure is the set of concepts from the

HIS Abstract Model that are relevant.

4. The server uses the SQL Bridge to retrieve the instances of the relevant

concepts from the HIS database.

5. The resulting information is conveniently formatted and sent back as

an HTML form to the user.

Figures 5.5 and 5.6 show two screens corresponding to the input and

the output forms of the IASO prototype, respectively. These pictures were

obtained by solving Example 4.4 with the IASO prototype at http://arai.

ugr.es/8084/IasoTest/EntryPoint. The Windows Mobile 5 emulator

and the Opera Mobile navigator were used to access the system.

Figure 5.5 presents the input form. On the left (A), the available terms

are listed, whereas on the right (B), the introduced query is shown. The

description of the clinical situation depicts a patient, named “Juan Gomez”,

who is unconscious, hemorrhagic, and has a penetrating wound (the terms

are interpreted conjunctively).

Figure 5.6 shows the results obtained for this query. The ‘clip’ icons (A)

represent the concepts of the HIS abstract model that are relevant. In this

case, the significant registers are those related to blood pressure disorders,

drug intolerance, procaine intolerance, and penicillin intolerance. The ‘ok’

bullets (B) represent instances of these concepts retrieved throughout the

SQL Bridge, i.e. the values of the HIS database corresponding to the relevant

registers associated with “Juan Gomez”. For instance, the value of the register

“ProcaineIntollerance” is “Procaine allergic”.

The ‘warning’ bullets (C) provide further information about this query.

More precisely, this is a list of clinical situations that are more specific than

the one described in the query. These more specific clinical situations might

http://arai.ugr.es/8084/IasoTest/EntryPoint
http://arai.ugr.es/8084/IasoTest/EntryPoint

5.5. Execution 142

Figure 5.5: Input form of the IASO prototype

5.5. Execution 143

Figure 5.6: Output form of the IASO prototype

5.5. Execution 144

be considered in subsequent consultations. In the example, in the query the

doctor may consider adding the qualifier ‘High’ to the hemorrhage symptom,

because patient data is available that is relevant to this situation.

As expected, the architecture and the context-dependent knowledge rep-

resentation model proposed in this thesis provide excellent support for the

development of an application that solves the Nomadic Healthcare KMob use

case. The IASO application and the prototype implemented show that both

of them are valuable contributions to KMob.

CHAPTER 6
Conclusions and Future Work

As part of our research, we studied Knowledge Mobilization, a research area

aimed at providing integral solutions for the challenges that arise when de-

veloping mobile systems for the delivery of knowledge retrieved from large

information sources to nomadic users. The general objective of this research

is the investigation of theories, techniques, and tools that facilitate this pro-

cess. More specifically, we found potential solutions for two computational

Knowledge Mobilization problems: (i) the access and distribution of hetero-

geneous knowledge in mobile systems; (ii) the overload of information that

users experience if all the available knowledge is delivered to their mobile

devices.

We have seen that contributions from areas such as Distributed Artifi-

cial Intelligence, Ubiquitous Computing, Semantic Web, Soft Computing, or

Mobile Computing, can help to achieve successful Knowledge Mobilization.

Chapter 2 fulfills the first of our objectives, which was to further develop the

concept of Knowledge Mobilization (or KMob). In this chapter, we examined

previous definitions of Knowledge Mobilization, and specified the features

of KMob systems. Despite the many approaches for the development of in-

telligent mobile systems, none really provides a satisfactory solution for the

problems mentioned above. Moreover, the plethora of existing technologies

145

Conclusions and Future Work 146

and the heterogeneity of mobile platforms and devices make the develop-

ment of such systems even more difficult.

On the basis of our findings, we proposed a new architecture that de-

scribes the structure, relations, and entities of a KMob system. We provided

a general definition of a KMob architecture, which can support different con-

figurations, communication schemas, etc. It goes without saying that the

requirements of mobile systems can vary considerably, and strongly depend

on the applicacion domain. The architecture described in Chapter 3 fulfills

the second objective of this thesis, which is directly related to the problem

of distribution of knowledge in mobile systems. The use of the AML lan-

guage in the specification of the architecture makes it both comprehensible

and reusable.

Along with the architecture, we studied various current technologies that

can be applied to implement KMob systems. We classified these technologies

in three frameworks, which correspond to three different system archetypes.

The frameworks target the coordination of system entities (multi-agent ap-

proach), interchange of knowledge (tuplespace approach), and delegation of

tasks (client-server approach), respectively.

We also dealt with the problem of information overload in knowledge-

intensive systems, and especially in KMob systems. We determined that in-

formation overload can be overcome by using contextual knowledge to cus-

tomize system answers to user environment. Consequently, we proposed a

design pattern (the CDS model) to create significance ontologies, which are

knowledge bases that state which information is relevant in a given con-

text. Significance ontologies can be used to create summaries containing

only context-relevant knowledge. This is accomplished by reasoning with

an associated inference algorithm. Thus, the third objective of the thesis is

attained with the CDS pattern presented in Chapter 4.

Furthermore, we implemented two tools to create and manage signifi-

cance ontologies, namely the CDS Java API and the CDS plug-in for Protégé.

These tools offer additional support to KMob system developers. As an im-

Conclusions and Future Work 147

provement of the CDS pattern, we proposed an extension that allows fuzzy

significance ontologies to be created. This extension permits the representa-

tion of fuzzy contexts and domains, which is very useful in several application

domains. The fuzzy CDS pattern allows imprecise context and domains to be

represented, and ranking of significance relations.

The KMob architecture and the significance ontologies are an integral ap-

proach to KMob systems development. This assertion was demonstrated in

Chapter 5, where the design and the implementation of a KMob system is de-

scribed. The IASO application is a system that solves the Nomadic Healthcare

KMob use case. IASO is based on the abstract architecture that was specified,

and relies on a knowledge base that follows the CDS design pattern. Addi-

tionally, a prototype of IASO was implemented by using the client-server

technology framework. Thus, IASO is evidence that these two results are

valid, which is the last (but certainly not the least) of our objectives.

Since the sub-objectives of this thesis were fulfilled we can affirm that the

general objective was also achieved. We studied two important problems that

arise in knowledge-intensive mobile systems, namely knowledge distribution

and information overload, and we proposed valid solutions for them.

The solutions presented in this thesis have certain limitations though in

our future research we already envision ways to improve and significant en-

hance them. Likewise, new research lines have come to light as the result of

this work. Actually, another important contribution of this research is that it

opens the door to an extremely promising field of study.

From a general point of view, our proposals do not target a specific do-

main though they have been tested in the Nomadic Healthcare use case.

Without any loss of generality, the abstract architecture, the examples of the

CDS model, and the knowledge base were specifically implemented in the

IASO system. However, these results could just as usefully been applied to

other application areas.

The KMob architecture could be improved by specifying in greater de-

tail the orchestration and choreography of agents and services, which at the

Conclusions and Future Work 148

moment is mainly left to the application designer. Orchestration defines the

external services that are required by services to fulfill a task, whereas chore-

ography establishes how messages are created and exchanged to request a

service. These two features could be specified by using AML Protocol Se-

quence and Protocol Communication Diagrams.

In addition, the description of service features with a semantic language

should be considered. Semantic Web Services are a recent technology that

proposes adding formal metadata to Web Services in such a way that services

can be automatically located, invoked, and integrated (see Section B.5). Se-

mantic Web Services can be incorporated into our architecture with relative

ease, and this would be another interesting direction for future work. Nowa-

days Semantic Web Services is a very active topic of Semantic Web research

since the W3C has not as yet published a specification.

Further studies concerning the knowledge representation model are also

needed, and would be a very enriching research goal. For instance, as al-

ready mentioned, the context-dependent reasoning performed with signifi-

cance ontologies is similar to the inference procedures of certain variants of

classic Logic. Thus, the relation of context representation models and other

formalisms, such as temporal and non-monotonic logics, should be explored

with a focus on whether they can be mutually reduced. Independently of

the CDS pattern approach, the creation, publication and promotion of best

practices for Semantic Web ontologies is essential for the advancement of

Semantic applications. In this regard, it is worth mentioning that ontology

patterns could be described with a formal ontology language and published

in a publicly available repository.

Further research on the fuzzy extension of the CDS design pattern should

also be carried out. We strongly believe that the ability to reason with fuzzy

context descriptions is an important contribution of this model, and it could

be exploited in different scenarios. Other minor aspects to be developed

are: (i) the extension of the CDS Protégé plug-in to facilitate the creation

of fuzzy significance ontologies, which are currently not supported; (ii) the

refinement of the reasoning process with fuzzy significance ontologies, which

Conclusions and Future Work 149

is computationally complex.

In the near future, we expect to continue working on the IASO system

and to continue improving the current prototype. It will thus be necessary

to extend the domain, context, and significance ontologies in order to better

represent the data of the San Cecilio HIS, the eventual patient situations,

and the medical protocols that determine which procedures should be used

in each situation. A major challenge will be to guarantee the security and

integrity of communications between components of the system, given that

medical information should be private.

In conclusion, there has been very little research on intelligent mobile sys-

tems. Mobile technologies have obviously changed the way that information

is delivered in the same way that network technologies did in the previous

decades. Nevertheless, mobility is much more than a set of new technolo-

gies for the transmission of information. Mobility entails a paradigm shift

that is closely related to today’s necessities of nowadays (it both increases

them and resolves them). Immediacy, massiveness, location-independence,

or context-awareness are problems that Computer Science can solve, or at

least mitigate, with intelligent software. Thus, in order for system users and

developers not to be overwhelmed in the mobile age, suitable knowledge

models, methodologies, architectures, supporting tools, etc. for intelligent

mobile systems need to be developed. This is precisely what we promised to

do in our doctoral thesis, and it is what we have accomplished as shown by

our proposals and the results obtained in our research.

APPENDIX A
Ontologies and Description Logics

This appendix focuses on ontologies, a widely-used knowledge representa-

tion formalism, and its close relation with Description Logics, a family of log-

ics for representing structured knowledge. First, ontology fundamentals are

presented, followed by a brief introduction to the representation of knowl-

edge and reasoning with Description Logics. We then describe ALC, the

Description Logic used in our research. The appendix concludes with a short

note on fuzzy Descriptions Logics.

A.1 Background

Artificial Intelligence investigates Intelligent Systems (IS), defined as com-

putational systems aimed at solving complex problems by using algorithms

inspired in intelligent human problem-solving methods when classical tech-

niques fail [223]. Knowledge Engineering is a subtopic of Artificial Intelli-

gence that is concerned with Knowledge Representation (KR), the study of

how the agents of an IS manage what they know before deciding what to

do [51]. In this context, intelligence is achieved reasoning, namely, the abil-

ity to automatically infer implicit conclusions from explicit knowledge.

150

A.1. Background 151

Representing knowledge basically consists of writing descriptions of the

entities of a domain using the symbols of a language. Since computational KR

requires these descriptions to be interpretable by a computer, representation

languages must be formal, i.e., they must have a well-defined specification.

First Order Logic (or Predicate Logic) was the language initially used in

KR. Unfortunately, representation of knowledge using First Order Logic poses

certain problems. For example, its verboseness makes it tedious and unintu-

itive. Considerably more important is the fact that according to Church and

Turing theorems, reasoning about general First Order Logic formulas is a

semi-decidable process: it cannot be known if the algorithm which finds if a

predicate is true will finish for one that cannot be satisfied.

Verbosity has been overcome by creating other representation languages.

Generally speaking, even though these languages are not more expressive

than First Order Logic and may not even have a logical substratum, they al-

low knowledge to be acquired and managed more easily. This group includes

cognitive models, and more specifically, network-based models [160].

The second limitation, undecidability, was handled by only considering

decidable and complete subsets of First Order Logic. Decidable means that

all inferences will finish in a finite time period, and complete means that all

entailments are guaranteed to be computed. The primary motivation of De-

scription Logics is to characterize different families of logics which, depend-

ing on their expressivity (i.e., the primitive constructors allowed), encompass

certain computational properties.

Two additional difficulties in current IS are the following: (i) the neces-

sity of having a huge amount of distributed and heterogeneous information

sources that must be incorporated to the knowledge model of the system

in order to have the most complete, up-to-date information; (ii) the conve-

nience of reusing previous knowledge bases in order to minimize the effort

of developing a new application.

Ontologies are a knowledge representation formalism aimed at dealing

with all these problems, since, as shall be explained, they possess the intu-

A.2. Definition 152

itiveness of cognitive models; provide a formal semantics based on Descrip-

tion Logics; and promote information integration and knowledge reuse.

A.2 Definition

The term Ontology comes from Philosophy, which defines it as the study of

part-of relationships and entity dependencies [56]. Ontology as a science

analyzes the features of possible things, and the categories in which they can

be included.

In Knowledge Engineering, the concept of Ontology has evolved over the

past decades. There is now a consensus of opinion that an ontology is a

rigorous and exhaustive conceptual schema, focused on a certain domain and

designed to facilitate information communication and reuse among different

computational systems. Ontologies are considered to be a proper formalism

for the representation of knowledge in modern IS [64], and are one of the

most frequently used models nowadays. Actually, they have been proposed

for the support of metadata management in the Semantic Web [27], and not

surprisingly, we use ontologies in this work for representing knowledge in

KMob applications.

One of the most widely cited definitions of ontology comes from Studer,

Benjamins, and Fensel: “an ontology is a formal, explicit specification of a

shared conceptualization” (in [250], based on [105] and [48]). The authors

state that an ontology is a knowledge model which describes from a common

perspective the objects in a common domain using a language that can be

processed automatically. This language is usually1 a Description Logic-based

representation. Since Description Logics have proved to be suitable ontology

languages [14, 120], for all practical purposes, the term ontology can be

regarded as a Description Logic knowledge base. Hence, we concentrate on

Description Logics in the remaining sections of this Appendix.
1KIF (Knowledge Interchange Format) [100] or F-Logic [142, 141] are other formalisms

to represent ontologies which are not based on Description Logics.

A.2. Definition 153

An ontology is developed from the following primitive elements:

• Concepts. Concepts or classes represent the basic ideas of the domain

which must be understood, and they determine sets which classify do-

main objects. Concepts are arranged in a hierarchy. Accordingly, a

concept of an upper level is more general than a concept of a lower

level.

• Instances. Instances or individuals are concrete occurrences of a con-

cept.

• Relations. Relations or roles represent binary connections between in-

dividuals or individuals and typed values (integers, strings, etc.).

• Axioms. Axioms establish restrictions over concepts, instances, and re-

lations, describing their attributes by delimiting their possible interpre-

tation.

Ontology features have several advantages over other formalisms. These

advantages are the following: information sharing among different people

or software agents, knowledge reuse, separation between declarative and

procedural knowledge, and acquisition and analysis of knowledge.

Sharing knowledge representations is one of the main objectives of on-

tologies. For instance, let us examine the case of two web sites, one supplying

information about symptoms and medical diseases, and another displaying a

catalogue of pharmaceutical products. If a common ontology defining the se-

mantics of the clinical terms is used, a software agent will be able to integrate

information from both sites, thus providing value-added services. For exam-

ple, drug prescriptions in the diagnosis site could be automatically linked to

drug contraindications in the pharmaceutical site. In this way, sharing knowl-

edge allows information to be more automatically located and integrated.

Knowledge reuse is another fundamental ontology benefit. Ontologies

are especially designed to save time and effort in the knowledge acquisi-

tion process by promoting the combination of previous models that describe

A.3. Description Logics 154

specific parts of the domain, and refining more general models to represent

particular details of the domain.

Moreover, ontologies clearly distinguish between declarative and proce-

dural knowledge: ontologies are composed of explicit definitions of domain

entities, which guarantees that if the available information changes, the as-

sertions in the model can be modified without having to re-implement the

software which uses it.

Once an ontology is developed, a formal specification of the domain will

be available. This makes it possible to both manually and automatically val-

idate and verify the knowledge represented, and to incorporate it into a reli-

able repository.

A.3 Description Logics

Basics

Baader, Horrocks, and Sattler define Description Logics (DLs) as “a family of

knowledge representation languages that can be used to represent the knowl-

edge of an application domain in a structured and formally well-understood

way” [15].

DLs have features of cognitive models, such as Minsky’s frames [92],
Sowa’s conceptual graphs [237], or Quillian semantic networks [213], but

they have the advantage of providing a formal substratum that these for-

malisms lack. It was Brachman and Levesque who showed that most cog-

nitive models can be endowed with formal semantics, expressed with frag-

ments of First Order Logic, and furthermore, that the fragment considered

determines the complexity of reasoning procedures with the models [52,

161]. In this way, DLs were born.

Research on DLs is focused on: (i) studying the theoretical foundations of

DLs (e.g. semantics, reasoning, and complexity of the various DLs); (ii) de-

veloping knowledge representation frameworks to support DL management

A.3. Description Logics 155

(e.g. representation languages and inference procedures); (iii) implement-

ing practical applications that rely on them (e.g. Semantic Web). An exten-

sive introduction to these three areas is provided in [17].

DLs are ontology languages that represent domain knowledge by assert-

ing axioms built from concept, role, and instance expressions. Complex con-

cept and role expressions are defined by using the logic-based constructors

provided by the concrete DL. The expressivity of a DL, i.e. the semantics that

can be represented with valid expressions, determines the complexity of the

resulting model, more precisely, the complexity of the reasoning procedures

within the model. Hence, DLs are structured in levels, each named with a

string of capital letters that denote the allowed expressions. Having more

constructors in a logic means that it is more expressive, and consequently,

the computational complexity is greater.

The minimal DL usually considered is AL, which stands for attributive

concept description language. AL allows complex concepts to be: the top

(>) or the bottom (⊥) concept, a negation of an atomic concept (¬A), a con-

cept intersection (C1uC2), a value restriction (∀R.C), or an existential quan-

tification (∃R.>). Complex roles cannot be defined in AL. These complex

concepts and atomic roles can be used in concept inclusion axioms (C1 v C2),

instance membership axioms (a :C), and role membership axioms ((a, b):R).

In the following section, we describe AL, an immediate extension of AL,

whereas other interesting DLs are introduced in Section A.3.

The Description Logic ALC

In this section, we summarize the formal features of ALC [228], the DL

mainly considered in this dissertation. We presentALC syntax and semantics

as a particular case of general DLs in such a way that its definition can be

easily extended to more expressive logics.

Signature. The symbols used in a DL are its signature or vocabulary.

Formally, the signature is the disjoint union S = C] R] I, where C = {A} is

A.3. Description Logics 156

the set of atomic concepts (or classes); R =
�

RA
	

the set of atomic roles (or

properties); and I= {a, b, . . .} the set of individuals (or instances). From the

atomic elements in S, new complex concepts Con(S) = {C(i), D(i), . . .}, roles

Rol(S) = {R(i)}, and axioms Ax(S) = {O(i)} can be composed (subscripts are

not used when disambiguation is not needed). By extension, the signature

S(O) of an axiom (respectively for roles and concepts) is the set of atomic

elements of S which are included in O (respectively R and C).

Concept and role constructors. ALC extends AL with the complete

concept negation constructor. Complex concepts and roles in ALC are built

according to the syntax rule in Table A.1. It can be observed that only atomic

roles are allowed in ALC. Given that De Morgan’s laws hold, C t D is a

shorthand for ¬(¬C u ¬D) and ∃R.C for ¬(∀(¬R.C)). Therefore, concept

union and complete existential restrictions can be represented inALC, which

is at least as expressive as AL plus UE .

Table A.1: Syntax and semantics of concepts and roles in ALC

Constructor Syntax Semantics
Concept constructors

Top concept > ∆I

Bottom concept ⊥ ;
Atomic concept A AI ⊆∆I

Concept negation (C) ¬C ∆I \ CI

Concept intersection C u D CI ∩ CI

Concept union (U) C t D CI ∪ DI

Universal quantification ∀R.C {x :∀x , (x , y) /∈ RI or y ∈ CI}
Existential quantification (E) ∃R.C {x :∃y, (x , y) ∈ RI and y ∈ CI}
Role constructors

Atomic role RA RI
A ⊆∆

I ×∆I

Axioms. A DL ontology is a triple K = 〈T ,R,A〉, where T (the TBox)

and R (the RBox) contain, respectively, axioms about concepts and roles

(terminological axioms), and A (the ABox) contains axioms about individ-

uals (asserts). The signature of an ontology S(K) is the union of all the

signatures S(O) of the axioms in K. Accordingly, an ALC ontology is a DL

A.3. Description Logics 157

ontology where A is an ALC-valid TBox; R is an ALC-valid RBox; and A is

an ALC-valid ABox.

A DL TBox and in particular, an ALC TBox T consists of a finite set of

general concept inclusion (GCI) axioms of the form C v D, which means

that concept C is more specific than D, or that D subsumes C . A concept

definition C ≡ D (C and D are equivalent) is an abbreviation of the pair

of axioms C v D and D v C . Concept expressions for C and D can be

derived inductively from atomic primitives using the previously mentioned

ALC concept constructors.

In general, a DL RBox R consists of a finite set of role axioms stating

role properties such as inclusion, transitivity, functionality, etc. (Table A.3).

However, in ALC the RBox is assumed to be empty.

A DL ABox A consists of a finite set of axioms about individuals. In ALC,

these axioms can describe an individual with respect to a concept (a : C ,

which means that a is an instance of C) or a pair of individuals with respect

to a role ((a, b):R, which means that (a, b) is an instance of R).

The set of concepts defined in an ontology is denoted as Con(K). The set

of roles defined in an ontology is denoted as Rol(K).

Interpretation. An interpretation I of a DL ontology K is a pair I =
(∆I , ·I) where ∆I , the domain of the interpretation, is a non-empty set, and

·I is a function which maps:

1. each individual a in K with an element aI ,

2. each concept C in K with a subset CI ⊆∆I ,

3. each role R in K with a subset RI ⊆∆I ×∆I .

This interpretation is conveniently extended for complex concepts and

roles. In ALC, this extension is given by the inductive definitions in Ta-

ble A.1.

An interpretation I is a model of (i.e. satisfies) the axiom:

A.3. Description Logics 158

• a :C iff aI ∈ CI ,

• (a, b):R iff (aI , bI) ∈ RI ,

• C v D iff CI ⊆ DI ,

• an ALC KB K = 〈T ,R,A〉 iff it is a model for each element in T , R
and A.

Other Description Logics

There are a handful of logics with different levels of expressivity in the liter-

ature about DLs. This section offers an overview of the syntax and semantics

of some selected extensions. Different combinations of the extensions may

lead to the same language since some of them can be mutually reducible.

The formal description of the DLs already mentioned can be consulted in the

corresponding references.

Concept and role constructors. Table A.2 shows the syntax and seman-

tics of some additional role and concept constructors. In the table, S denotes

a simple role. A simple role is an atomic role, the inverse of a simple role, or

a role that only subsumes simple roles. The operator ◦ denotes the composi-

tion of binary relations.

Axioms. Table A.3 presents further role and instance axioms that can

be used in expressive DLs. Observe that a DL TBox, irrespectively of the

expressivity of the logic, usually only contains GCIs. ∆D denotes a predefined

datatype such as integer, real, etc.

Interpretation. Table A.2 shows the interpretation of the additional con-

structors presented in this section.

Extending the ALC case, an interpretation I of an expressive DL is a

model of (i.e. satisfies) the axiom:

• (a, b):¬R iff (aI , bI) 6∈ RI ,

A.3. Description Logics 159

Ta
bl

e
A

.2
:

C
on

st
ru

ct
or

s
fo

r
so

m
e

ex
te

ns
io

ns
of
A
L
C

C
on

st
ru

ct
or

Sy
n

ta
x

Se
m

an
ti

cs
Co

nc
ep

t
co

ns
tr

uc
to

rs
N

om
in

al
s

(O
)
{a

,b
,.

..
}
{a

I
,b

I
,.

..
}

U
nq

ua
lifi

ed
nu

m
be

r
re

st
ri

ct
io

n
(N

)
≥

n
R

{x
:|
{y

:(
x,

y)
∈

RI
}|
≥

n}
≤

m
R

{x
:|
{y

:(
x,

y)
∈

RI
}|
≤

m
}

Q
ua

lifi
ed

nu
m

be
r

re
st

ri
ct

io
n

(Q
)
≥

n
S.

C
{x

:|
{y

:(
x,

y)
∈

RI
an

d
y
∈

C
I
}|
≥

n}
≤

m
S.

C
{x

:|
{y

:(
x,

y)
∈

RI
an

d
y
∈

C
I
}|
≤

m
}

R
efl

ex
iv

it
y

re
st

ri
ct

io
n

(s
)
∃S

.S
el

f
{x

:
(x

,x
)
∈

SI
}

Ro
le

co
ns

tr
uc

to
rs

In
ve

rs
e

ro
le

(I
)

R−
{(

y,
x)
∈
∆

I
×
∆

I
|(

x,
y)
∈

RI
}

R
ol

e
ch

ai
n

((
◦)

)
R

1
R

2
..

.R
n

RI
1
◦

RI
2
◦

..
.R

I n
C

on
cr

et
e

ro
le

((
D
))

T
T
I
⊆
∆

I
×
∆

D

U
ni

ve
rs

al
ro

le
U

∆
I
×
∆

I

A.3. Description Logics 160

Table A.3: Axioms for some extensions of ALC
Axiom Syntax

Role axioms
Functional roles (F) Func(R)
Transitive roles (S) Trans(R)

Disjoint roles (s) Dis(S, S′)
Reflexive roles (s) Ref(R)

Irreflexive roles (s) Irr(S)
Symmetric roles Sym(R)

Asymmetric roles Asy(S)
Role hierarchies (H) R1 ⊆ R2

Complex role inclusion (R)
RS ⊆ R
RS ⊆ S

Instance axioms
Negated role assertions (a, b):¬R

Inequality assertions a 6= b
Equality assertions a = b

• a 6= b iff aI 6= bI ,

• a = b iff aI = bI ,

• R1 v R2 iff RI
1 ⊆ RI

2 ,

• Func(R) iff (aI , bI) ∈ RI and (aI , cI) ∈ RI imply bI = cI ,

• R1 . . . Rn v R iff RI
1 ◦ . . . ◦ RI

n ⊆ RI ,

• Trans(R) iff RI is transitive,

• Dis(S, S′) iff SI ∩ S
′I = ;,

• Ref(R) iff (x , x) ∈ RI ,∀x ∈∆I ,

• Irr(S) iff (x , x) 6∈ SI ,∀x ∈∆I ,

• Sym(R) iff (x , y) ∈ RI implies (y, x) ∈ RI ,

• Asy(S) iff (x , y) ∈ SI implies (y, x) 6∈ SI ,

• a KB K = 〈T ,R,A〉 iff it is a model for each element in T , R and A.

A.3. Description Logics 161

Relevant Description Logics

Some commonly used DL families are:

• FL−, which stands for AL without concept negation, top, and bot-

tom concept. Its immediate extension FL corresponds to FL− plus a

domain restriction constructor for roles [52].

• EL, which takes a different perspective and disallows value restric-

tions. Thus, it provides as concept constructors only the top con-

cept, conjunction, and (complete) existential restriction, besides con-

cept equivalences as the only axiom [12]. EL + +, an extension of

EL which adds the bottom concept, nominals, concrete domains, and

GCIs [13], is the logic underlying the ‘EL++’ profile of OWL 2 (see

Appendix Semantic Web).

• SH, which extendsALC with transitive roles and role hierarchies [122].

• SHIF , which extends SH with inverse and functional roles [121].
This logic is almost equivalent to the ‘Lite’ level of the standard ontol-

ogy language OWL (see Appendix Semantic Web).

• SHOIN (D), which extends SH with nominals, inverse roles, cardi-

nality restrictions, and datatypes [121]. This logic is almost equivalent

to the ‘DL’ level of the standard ontology language OWL (see Appendix

Semantic Web).

• SROIQ(D), which extends SHOIN (D) with qualified number re-

strictions, disjoint roles, reflexive and irreflexive roles, role chains,

complex role inclusions, universal role, local reflexivity of concepts,

negated role assertions, and (in)equality assertions [119]. This logic is

almost equivalent to the most-expressive and decidable level of OWL

1.1.

A.4. Reasoning in Description Logics 162

A.4 Reasoning in Description Logics

Basics

Reasoning within a knowledge base is the automatic procedure aimed at in-

ferring new axioms which have not been represented and are logical conse-

quences of the axioms represented. Usually, reasoning in DLs can be carried

out with concepts in the TBox, individuals in the ABox, or TBox concepts and

ABox individuals together.

In DLs, the basic reasoning task regarding concepts is concept satisfia-

bility. Intuitively, a concept is satisfiable if it is not contradictory of the rest

of the knowledge in the ontology. Another important task is concept sub-

sumption, which infers if a concept is more general than another concept.

The concept equivalence test, which determines whether two concepts are

the same, and concept disjointness, which determines whether two concepts

include any common individuals, are immediate extensions of the concept

subsumption check.

Formally, these concept inference tasks are defined as follows:

• A concept C is satisfiable or consistent w.r.t. a knowledge base K if

there exists some model I of K such that CI is not empty. Extensively,

a TBox T is satisfiable if every axiom in T is satisfiable.

• A concept C is subsumed by a concept D w.r.t. a knowledge base K if

every model I of K is a model of C v D. This is denoted as K |= C v D

(K entails C v D).

• Two concepts C and D are equivalent w.r.t. a knowledge base K if C

is subsumed by D w.r.t. K, and D is subsumed by C w.r.t. K. This is

denoted as K |= C1 ≡ C2 (K entails C is equivalent to D).

• Two concepts C and D are disjoint w.r.t. a knowledge base K if CI ∩
DI = ; holds for every model I of K.

A.4. Reasoning in Description Logics 163

Trivially, satisfiability, equivalence, and disjointness of concepts can be

reduced to concept subsumption. For instance, C is unsatisfiable iff C is

subsumed by ⊥. On the other hand, if a DL allows complete negation and

intersection of concepts, subsumption, equivalence, and disjointness of con-

cepts can be reduced to the satisfiability problem [227]. For instance, C is

subsumed by D iff C u¬D is unsatisfiable.

Insofar as reasoning with individuals is concerned, inferences in the ABox

can be performed with respect to the whole knowledge base or by only con-

sidering the axioms in the ABox (the TBox and RBox are assumed to be

empty). The basic inference task is to test if an assert of the ABox is not con-

tradictory with the other axioms in the ontology, or particularly in the ABox.

Other possible queries are to check if certain relationships between concepts,

roles, and individuals hold.

Formally, the basic inference tasks with instances are defined as follows:

• An instance axiom O is satisfiable or consistent w.r.t. a knowledge base

K if there exists at least one interpretation I that is a model of both O

and K. The ABox A is said to be consistent w.r.t. K if every axiom in

A is consistent w.r.t. K. An assert is simply consistent if the TBox and

the RBox are supposed to be empty.

• An instance axiom O is said to be entailed by the ABoxA if every model

I of A is also a model of O. This is denoted as A |= O (A entails O).

This test can be extended to be performed w.r.t. to a knowledge baseK.

If O is a membership axiom (a :C), this test is called instance checking.

Similarly to concept inferences, instance checking can be reduced to ABox

consistency checking, given that A |= (a : C) iff A ∪ {¬(a : C)} is inconsis-

tent. It has been proved that ABox consistency can be reduced to concept

consistency in languages with the nominal constructor (O) and the fills con-

structor (a concept is defined as the set of individuals which are related to

an instance) [227].

A.4. Reasoning in Description Logics 164

It should be underlined that, when reasoning with DL ABoxes, the open

world assumption stands. The open world assumption supposes that the

set of axioms in a knowledge base is not complete, and consequently, new

knowledge cannot be inferred inductively. In contrast, the closed world as-

sumption supposes that the set of axioms is complete, and inductions can be

safely made. For example, let us suppose an ABox containing two axioms,

hasPrescript ion(juan, diazepam) and hasPrescript ion(juan, omeprazole)
with no other knowledge about them in the TBox. With the open world

assumption, the response to the query ‘how many prescriptions does Juan

have’ would be ‘unknown’, whereas with the closed world assumption, the

response would be ‘two’.

Based on these basic inference tasks, more complex reasoning services

can be offered. Usually, DL reasoners implement a classification procedure,

which finds the place of a concept in the hierarchy, i.e., its direct subclasses

and superclasses. Other non-standard inferences in DLs are described in [16]:
the least common subsumer(s) of a collection of concepts, the most specific

concept(s) that include(s) an instance, the rewriting of concept descriptions,

and the matching of concept expressions using concept variables.

The most common algorithms for reasoning with DLs are the so-called

tableau-based algorithms. The first tableau-based algorithm, proposed by

Schmidt-Schauss and Smolka [228], solved the satisfiability problem forALC
concepts. This proposal has been adapted to more expressive extensions of

ALC, and extended to deal with ABox consistency queries, as widely ex-

plained in [17]. The complexity of the reasoning procedures using tableau

algorithms depends on the complexity of the language considered, which is

high even for the basic DLs (see next section). Fortunately, worst-case infer-

ences are infrequent, and the procedures have been highly optimized to offer

good execution times in the typical cases.

A.4. Reasoning in Description Logics 165

Complexity of reasoning

To be concise, the computational complexity of an algorithm measures the

number of computational resources required to solve a certain problem. A

problem P is in complexity class C if there exists an algorithm in C that

solves P (then C is the upper boundary for P). A problem P is C-hard if

all the problems in class C can be reduced to P polynomially (then C is a

lower boundary for P). P is C-complete if it is C-hard and in C. A formal

definition of complexity and an introduction to complexity classes can be

found in [199].

As explained in the previous sections, DLs research focuses on the rela-

tion between the computational complexity of reasoning procedures and the

expressivity of the DL used in the representation.

Reasoning in DLs has a high computational complexity. As a matter of

fact, concept satisfiability with general TBoxes in the (not very expressive)

DLALC is an EXPTIME-complete problem. Fortunately, the worst-case scenar-

ios do not occur very often in practical applications, and thus, the reasoning

algorithms behave fairly well. Basic fragments of DLs, such as DL-Lite fam-

ily [60], are being studied to guarantee the tractability of the reasoning (i.e.

that it can be performed in polynomial time).

The seminal work of Brachman and Levesque for FL [52], which for-

mally proved the intuition that the more expressive the logic, the more com-

plex the reasoning, has given rise to further research on complexity. An

extensive review of the work dealing with complexity analysis of ALC-based

DLs can be found in Donini et al., who study the complexity of the concept

satisfiability and instance check problems in AL[E][U][C][R][N] as well

as the source of this complexity [81]. Calvanese focuses on non-expressive

DLs with restricted TBoxes [58], a contribution that has been completed with

additional results for ALCQI in [59].

More expressive logics, such as SHOIN and SROIQ, have been re-

cently studied in [254] and [119]. The Description Logic Complexity Naviga-

A.5. Fuzzy Description Logics 166

tor is a useful and well documented utility capable of exploring the complex-

ity of reasoning with TBoxes and ABoxes in several extensions ofALC [264].

Table A.4 summarizes the complexity of reasoning tasks for some of the

DLs presented in Section A.3.

Table A.4: Complexity of reasoning different DLs w.r.t. general TBoxes

Concept satisfiability / ABox consistency
DL Acyclic TBoxes General TBoxes

EL++ PTIME PTIME

ALC PSPACE-complete EXPTIME-complete
SHIF EXPTIME-complete EXPTIME-complete

SHOIN NEXPTIME-complete NEXPTIME-complete
SROIQa NEXPTIME-hard NEXPTIME-hard

aAcyclic RBoxes are required to keep the logic decidable.

A.5 Fuzzy Description Logics

Basics

Although DLs have proved to be a very powerful formalism for knowledge

representation, it is also true that ontologies cannot deal with imprecise and

vague information, which is inherent to most real world domains2. Conse-

quently, further extensions of DLs have been proposed in order to represent

this kind of knowledge. Since Fuzzy sets and Fuzzy logic are suitable for-

malisms for imprecise knowledge, a promising direction is to enhance DLs

with fuzzy representation mechanisms, which generate fuzzy ontologies.

A fuzzy set is a generalization of the classical notion of set. With classical

(or crisp) sets, an element can either belong to a set or not, whereas with

fuzzy sets, membership in a set is a question of degree. More formally, let
2Interestingly enough, one of them is the Web. The W3C Incubator Group on Un-

certainty Reasoning for the World Wide Web (http://www.w3.org/2005/Incubator/
urw3/) studies how uncertainty can be managed in the context of the Semantic Web.

http://www.w3.org/2005/Incubator/urw3/
http://www.w3.org/2005/Incubator/urw3/

A.5. Fuzzy Description Logics 167

X be a set of elements called the reference set. A fuzzy subset A of X is

defined by a membership function µA(x), or simply A(x), which assigns any

x ∈ X to a value in the interval of real numbers between 0 and 1. 0 means

no-membership and 1 full membership (as in classic logics), but now a value

between 0 and 1 represents the extent to which x can be considered to be an

element of X .

Likewise, all crisp set operations are extended to fuzzy sets. The inter-

section, union, complement, and implication set operations are performed

by a t-norm function ⊗, a t-conorm function ⊕, a negation function 	, and

an implication function ⇒, respectively. Analogously, fuzzy relations define

a partial association between two or more elements. In this work, we use

Zadeh’s family of functions and Gödel’s implication, which are defined as

follows:

Zadeh t-norm α⊗ β = min{α,β}
Zadeh t-conorm α⊕ β = max{α,β}

Łukasiewicz negation 	α = 1−α
Kleene-Dienes implication α⇒ β = max{1−α,β}

Gödel implication α⇒ β =

(

1, if α≤ β
β , if α > β

A comprehensive introduction to Fuzzy Logic, including a detailed expla-

nation of these operations, can be found in [146].

Several fuzzy extensions to DLs are described in [165]. They can be dif-

ferentiated by the fuzzy semantics added to the DL constructors, the expres-

sivity of the base logic, and the family of fuzzy set operators considered. For

instance, FuzzyOWL [243] is a proposal for extending the OWL language

(i.e., SHOIN (D)) so that it has fuzzy capabilities. Since it is beyond of the

scope of this appendix to provide a full introduction to Fuzzy DLs, we refer

the reader to [225] for further studies on the topic.

Briefly, fuzzy DLs (fDLs) extend DLs by allowing concepts to denote fuzzy

sets of individuals and roles to denote fuzzy binary relations. The notion

of interpretation is extended to the fuzzy case in such a way that: (i) an

A.5. Fuzzy Description Logics 168

individual of the domain may belong to a concept to a certain degree in

[0, 1]; (ii) a pair of individuals of the domain may belong to a role to a

certain degree in [0, 1]. The semantics of the constructors used to build non-

atomic concepts and roles are conveniently adapted; e.g. the semantics of

the concept intersection are given by a t-norm function. Axioms are also

extended to the fuzzy case, holding to a degree. For example, given two

fuzzy concepts, a terminological axiom may be asserted to define a fuzzy

inclusion relation between them.

In a fuzzy DL we can define, for instance, BloodBorneDiseases as the set

of diseases that can be spread by contamination of blood. hepati t isC is a full

member of this set (degree equals to 1), whereas nephropathiaEpidemica

also belongs to the set, but to a somewhat lesser degree (equal to 0.7). Sim-

ilarly, two individuals can be partially related through a role: causes(hepati-

tisC, liverCancer) with degree 0.6. Other axioms may also be fuzzified, e.g.

GCIs: BloodBorneDiseases is a subset of InfectiousDiseases with degree 0.7

because some bloodborne diseases are infectious, whereas others are not.

The fuzzy DL fALC

In this section, we shall consider the fuzzy DL fALC, used in Chapter 4 of

this dissertation. This logic was firstly described in [246]. We shall follow

the formulation in [39, 41, 40], which is based on the former, restricting

to fALC the more expressive fDLs f SHOIN and f SROIQ proposed in

them.

Complex concept and role expressions in fALC have the same generation

grammar as in ALC (Table A.5). Axioms in fALC are the fuzzy extension of

the crisp asserts in ALC. Let Â= {≥,>}, Ã= {≤,<}, and α ∈ [0,1]. Thus:

• A fALC TBox consists of fuzzy GCIs, which constrain the truth value

of a GCI. Fuzzy GCIs are expressions of the form 〈C vÂα D〉, denoting

that C is included in D with degree α.

• A fALC RBox is empty.

A.5. Fuzzy Description Logics 169

• A fALC ABox consists of a finite set of fuzzy assertions, which constrain

the truth value of an assert. A fuzzy assertion can be an expression of

the form 〈a :C Â α〉 (a is a member of C with degree Â α), 〈a :C Ã α〉
(a is a member of C with degree Ã α), or 〈(a, b) : R Â α〉 ((a, b) are

related through R with degree α).

It can be observed that negative GCIs or negative role membership axioms

are not allowed.

Obviously, concept and role interpretations have fuzzy semantics. Con-

cepts are fuzzy sets of individuals and roles are fuzzy relations between pairs

of individuals. A fALC interpretation maps every individual a onto an ele-

ment aI ∈∆I; every concept C onto a function CI :∆I → [0, 1]; and every

role R onto a function RI :∆I ×∆I → [0,1]. For a t-norm ⊗, a t-conorm ⊕,

a negation function 	 and an implication function ⇒, Table A.5 depicts the

semantics of the interpretation of concept and roles in fALC.

Table A.5: Syntax and semantics of concepts and roles in fALC

Constructor Syntax Semantics
Concept constructors

Top concept > 1
Bottom concept ⊥ 0
Atomic concept A AI(x)

Concept negation ¬C 	CI(x)
Concept intersection C u D CI(x)⊗ DI(x)

Concept union C t D CI(x)⊕ DI(x)
Universal quantification ∀R.C infy∈∆I{RI(x , y)⇒ CI(y)}

Existential quantification ∃R.C supy∈∆I{RI(x , y)⊗ CI(y)}
Role constructors

Atomic role RA RI
A(x , y)

A fuzzy interpretation I is a model of (satisfies):

• 〈a :C Â α〉 iff CI(aI)Â α,

• 〈a :C Ã α〉 iff CI(aI)Ã α,

A.5. Fuzzy Description Logics 170

• 〈(a, b):RÂ α〉 iff RI(aI , bI)Â α,

• 〈C vÂα D〉 iff infx∈∆I{CI(x)⇒ DI(x)}Â α,

• a fKB fK = 〈T ,R,A〉 iff it satisfies each element in T , R and A.

We assume that there are no fuzzy axioms of the form τ ≥ 0, τ ≤ 1

(which are tautologies) or τ > 1, τ < 0 (which are obvious inconsistencies).

An axiom τ is a logical consequence of a knowledge base K, denoted K |=
τ iff every model of K satisfies τ. The greatest lower bound (glb) of a fuzzy

axiom τ is defined as the sup{α :K |= 〈τ≥ α〉}.

Due to the standard properties of the fuzzy operators, the following con-

cept equivalences hold [246]: ¬> ≡ ⊥, ¬⊥ ≡ >, C u > ≡ C , C t ⊥ ≡ C ,

C u⊥ ≡ ⊥, C t> ≡ >, ∃R.⊥ = ⊥, ∀R.> = >. Moreover, fALC allow some

sort of modus ponens and chaining of GCIs:

Proposition 5. For α,β ∈ [0,1] and Â = {≥,>}, the following properties are

verified:

(i) 〈a :C Â α〉 and 〈C v D Â β〉 imply 〈a : D Â α⊗ β〉.

(ii) 〈C vÂα D〉 and 〈D vÂβ E〉 imply 〈C vÂα⊗β E〉.

Reasoning in fuzzy Description Logics

Fuzzy DLs cause crisp reasoning procedures (like tableau-based algorithms,

Section A.4) to no longer be valid. Consequently, in order to perform rea-

soning tasks with them, new inference algorithms must be developed. This

is the approach taken is most research in the area. The first contribution in

this sense was fuzzyDL [44], a reasoner for f SHOIN which additionally

supports GCIs, Zadeh and Łukasiewicz semantics, and explicit definition of

fuzzy concepts with triangular and trapezoidal membership functions. A re-

lated approach is presented in [242], where a reasoning algorithm for the

A.5. Fuzzy Description Logics 171

expressive fuzzy DLs f SI and f SHIN (with Kleene-Dienes semantics) is

described.

Nevertheless, an alternative, which has been explored by fewer authors,

is to define reduction procedures with a view to transforming fuzzy rep-

resentations to equivalent crisp ones. This would be done in such a way

that existing algorithms and inference engines can be used to carry out

reasoning tasks. The first research in this direction was done by Strac-

cia, who developed a reasoning preserving procedure for fuzzy ALC [247,

245]. This approach was extended by Bobillo, Delgado, and Gómez-Romero,

who successively consider the more expressive fuzzy DLs f SHOIN [39],
f SROIQ [41] and f SROIQ(D) [40].

APPENDIX B
The Semantic Web

This appendix is an introduction to the Semantic Web. The first section de-

scribes the main objectives of the Semantic Web initiative, as well as the

overall structure of the Semantic Web in relation to the current Web. The sec-

ond and third sections offer an overview of RDF and OWL languages, with

a special focus on OWL. The fourth section describes other Semantic Web

technologies such as ontology editors, inference engines, APIs, and database

publishing tools. After an explanation of Semantic Web Services, the seman-

tic extension of Web Services, the appendix concludes with a reflection on

the future of the Semantic Web.

B.1 Basics

The Semantic Web is an extension of the current Web, whose aim is the

automation of document processing and information retrieval. The Semantic

Web appears to solve certain problems of the current web stemming from the

large quantity of available resources and the limitations of search engines.

The overabundance of documents on the Web makes it difficult to locate the

most relevant ones for a specific user query. Web languages are only able

172

B.1. Basics 173

to describe the syntax of the documents. This results in manual information

integration processes.

In their seminal paper on the Semantic Web, Berners-Lee, Hendler, and

Lassila propose improving the Web by giving information a “well-defined

meaning, better enabling computers and people to work in cooperation” [27].
The meaning of web resources is represented by means of formal metadata

describing their semantics. Consequently, the Semantic Web requires new

standards and technologies to create and publish such metadata, which are

managed by software agents to find, discover, locate, and integrate informa-

tion better than today’s lexical search engines.

Semantic Web research is coordinated by the World Wide Web Consor-

tium (W3C)1, an international organization devoted to the creation of stan-

dards and guidelines for the Web. Under the direction of T. Berners-Lee,

various academic institutions and corporations participate in the elaboration

of these standards. Semantic Web Activity2 embodies the W3C groups work-

ing on the Semantic Web: languages for metadata (RDF, OWL), rule-based

representations, applications, etc. Recommendations (i.e. the final specifica-

tions endorsed by W3C members), are the final deliverables produced by the

groups as the result of their discussions.

The Semantic Web is implemented as a successive set of layers of vari-

ous levels of abstraction, which have been developed by relying on the Web

standards. Figure B.1 shows the most recent “layercake” diagram3, which is

explained in [230].

1. The URI/IRI layer offers the most basic support for the Semantic Web,

and pertains to the identification of resources. URIs (Universal Re-

source Identifiers) and IRIs (Internationalized Resource Identifiers) are

used to name entities in the Semantic Web, which can be documents,

people, places, or anything else worth representing.
1http://www.w3.org/
2http://www.w3.org/2001/sw/
3(http://www.w3.org/2007/03/layerCake.png)

http://www.w3.org/
http://www.w3.org/2001/sw/
(http://www.w3.org/2007/03/layerCake.png)

B.1. Basics 174

Figure B.1: Semantic Web layers

2. The XML layer provides a metalanguage to define the syntax of Seman-

tic Web languages. The XML grounding facilitates the interoperability

of languages.

3. The RDF layer provides the basic means to associate semantics to Web

entities. RDF is a simple language to state assertions regarding entities

in the form of ‘object-attribute-value’ triples (see Section B.2).

4. The next layer contains languages that improve RDF expressivity. The

query language SPARQL allows complex consultations of RDF reposi-

tories. RDFS adds certain constructs to RDF in order to represent basic

ontological semantics, for example, class-subclass relations. OWL is the

W3C language used for ontological knowledge representation. RIF is

a specification (still under elaboration) of a rule interchange language

that will ultimately provide a common framework for rule management

in the Semantic Web.

B.1. Basics 175

The development of the uppers layers of the Semantic Web layercake has

not progressed very far for the moment. In the future, the Unifying Logic

layer will be responsible for creating a unified view of the Web, described

in terms of the lower-level languages. The Trust layer, relying on the Proof

and the Crypto layers, will evaluate the reliability of the results obtained for

specific knowledge sources.

Semantic Web applications are gaining momentum as standards are be-

ing published and proof-of-concept systems are showcasing their benefits.

Understandably, the most interested parties in Semantic Web technologies

are application domains in which the integration of very different informa-

tion is extremely difficult. This is the case of Health and Life Sciences, which

are considered as one of the early adopters of the Semantic Web [90]. They

even have their own special interest group4 within the W3C Semantic Web

Activity.

The Semantic Web has solid Artificial Intelligence underpinnings, mainly

based on Knowledge Representation and Description Logics. This has been a

source of both agreement and dissension. Certain authors have argued that

it is simply not feasible to build generals ontologies to support the Semantic

Web, because people cannot be forced to use these ontologies and logical syl-

logisms are not sufficient in themselves to capture and represent knowledge

(see for instance [232]). These arguments have been refuted by Semantic

Web supporters, who claim that this is a misunderstanding of the Semantic

Web proposal [113].

We believe that both claims have pros and cons, but independently of

the philosophical differences between supporters and detractors, the Seman-

tic Web is a source of valuable technologies for Knowledge Mobilization.

Representation formalisms, especially RDF and OWL language (Sections B.2

and B.3), as well as methodologies and tools (Section B.4), can be used to

deal with KMob issues.
4http://www.w3.org/2001/sw/hcls/

http://www.w3.org/2001/sw/hcls/

B.2. The Resource Description Framework (RDF) 176

B.2 The Resource Description Framework (RDF)

RDF (Resource Description Framework) is the W3C standard language to

describe resources in the Semantic Web [167]. RDF allows metadata to be

asserted in the form of triples, i.e. statements relating an object, a prop-

erty, and a value. For instance, it can be stated that [Juan] (subject) [has

email address] (predicate) [jgomez@decsai.ugr.es] (object). Sub-

jects, predicates and objects are identified by their URI.

A set of triples describing the same subject or subjects connected with

predicates takes the form of an RDF graph. RDF statements can be reified,

which means that an assertion can be assigned a URI and participate as the

subject or object of another assertion. Likewise, a complete RDF graph can

be reified and assigned a URI.

RDF graphs can be serialized (i.e., represented as plain text) in several

formats. One of them is the standard XML-based syntax, which is often crit-

icized for its verbosity. Other RDF serialization formats are N3, proposed by

the W3C itself; Turtle, a subset of N3; and N-Triples, a simplification of N3.

Most Semantic Web APIs support the reading and writing of RDF documents

in these formats.

RDF data are stored in RDF repositories, which can be persistent or

volatile. A persistent repository is an RDF storage that, instead of being

maintained only in volatile memory, is saved on the hard disk, or more pre-

cisely, in a database. The contents of the in-memory model and the persistent

model are linked in such a way that changes in one of them are automatically

reflected in the other. This feature notably improves the performance of an

application when large models are involved.

RDF repositories can be consulted with SPARQL, the standard query lan-

guage and protocol for RDF [210]. SPARQL is similar to the database query

language SQL, although its syntax is more logic-oriented since free variables

can be included in the queries. SPARQL does not make inferences on the RDF

repository. This means that only explicit knowledge is retrieved in SPARQL

B.3. The Web Ontology Language (OWL) 177

queries.

RDF has been used to define vocabularies that can be used as metadata

templates. One example is the FOAF (Friend of a Friend) terminology, which

includes terms such as person or knows, and can describe social networks

with RDF. The Dublin Core, a vocabulary for the description of documents

with terms like author or title, also has an RDF version.

Notwithstanding, the extreme simplicity of RDF representation primitives

makes them insufficient in certain scenarios. RDF Schema (RDFS) is an ex-

tension of RDF with additional constructs: range, domain, subproperty, sub-

class, etc. [175]. RDFS lies halfway between RDF, which is too simple for

representing complex knowledge, and OWL, whose logical complexity makes

it too difficult for non-specialized users.

B.3 The Web Ontology Language (OWL)

Definition

Ontologies are formal specifications. This means that ontological knowledge

must be encoded with a well-defined representation language. Since the

ontologies first appeared in Knowledge Engineering, various languages have

been proposed [103].

Currently, the most widely used ontology language is the Web Ontology

Language (OWL), a standard created by the W3C Semantic Web Activity.

OWL provides the syntax and semantics needed to represent the informa-

tion in Web documents, and to process it automatically. OWL is a W3C

recommendation since 2004 [176]. OWL has been influenced by other for-

malisms [120], including Description Logics (DLs). Thus, an OWL knowl-

edge base contains descriptions of classes, roles and individuals.

The OWL specification has three species or dialects. Each is equivalent to

a different type of DL, and has a different level of computational complexity.

B.3. The Web Ontology Language (OWL) 178

OWL Lite is the least expressive level of OWL. It corresponds to the DL

SHIF(D). OWL Lite is used for the creation of thesauri and simple tax-

onomies. Reasoning with OWL Lite has EXPTIME complexity, which makes it

the most efficient of the three levels.

OWL DL is more expressive than OWL Lite yet complete (all the infer-

ences are computable) and decidable (all the inferences end). OWL DL in-

cludes all the constructors of OWL, but they have certain restrictions. For

instance, a class cannot be an instance of another class, and new datatypes

cannot be created. Since OWL DL is almost equivalent to SHOIN (D), its

complexity is NEXPTIME.

OWL Full is the most expressive dialect, but it is not decidable. OWL Full

embodies the Lite and DL levels, and allows the free mixing of OWL and RDF.

Therefore, any RDF document is a valid OWL Full document.

Syntax

OWL normative syntax is based on the XML syntax of RDFS. An OWL doc-

ument is a set of XML tags with the structure and semantics stated by the

specification. Usually, an OWL file has three parts: a heading, classes and

properties definitions, and asserts about individuals. OWL syntax is detailed

in [21].

An OWL heading includes previous statements about the ontology, for in-

stance, definitions of the namespaces used in the document or the additional

models that are imported.

An OWL class definition specifies which individuals are members of the

class. In other words, class definitions are axioms about the classes. These

axioms are constructed using class descriptions, which is the name that the

OWL specification uses for complex class expressions built with the OWL con-

structors. The syntax of class descriptions and axioms is shown in Table B.1,

which also includes the level at which the expression is allowed.

B.3. The Web Ontology Language (OWL) 179

Ta
bl

e
B

.1
:

O
W

L
cl

as
s

de
sc

ri
pt

io
ns

an
d

ax
io

m
s

Sy
n

ta
x

Le
ve

l
Cl

as
s

de
sc

ri
pt

io
ns

C
la

ss
id

en
ti

fie
r

r
d
f
:
I
D

Li
te

Ex
ha

us
ti

ve
en

um
er

at
io

n
o
w
l
:
o
n
e
O
f

D
L

R
es

tr
ic

ti
on

s
on

pr
op

er
ti

es
(o
w
l
:
R
e
s
t
r
i
c
t
i
o
n
)

o
w
l
:
s
o
m
e
V
a
l
u
e
s
F
r
o
m

Li
te

,w
it

h
re

st
ri

ct
io

ns
(w

.r.
)

o
w
l
:
a
l
l
V
a
l
u
e
s
F
r
o
m

Li
te

,w
.r.

o
w
l
:
h
a
s
V
a
l
u
e

D
L

o
w
l
:
c
a
r
d
i
n
a
l
i
t
y

Li
te

,w
.r.

o
w
l
:
m
i
n
C
a
r
d
i
n
a
l
i
t
y

Li
te

,w
.r.

o
w
l
:
m
a
x
C
a
r
d
i
n
a
l
i
t
y

Li
te

,w
.r.

In
te

rs
ec

ti
on

o
w
l
:
i
n
t
e
r
s
e
c
t
i
o
n
O
f

Li
te

,w
.r.

U
ni

on
o
w
l
:
u
n
i
o
n
O
f

D
L

C
om

pl
em

en
t

o
w
l
:
c
o
m
p
l
e
m
e
n
t
O
f

D
L

Cl
as

s
ax

io
m

s
In

he
ri

ta
nc

e
r
d
f
s
:
s
u
b
C
l
a
s
s
O
f

Li
te

Eq
ui

va
le

nc
e

o
w
l
:
e
q
u
i
v
a
l
e
n
t
C
l
a
s
s

Li
te

D
is

jo
in

tn
es

s
o
w
l
:
d
i
s
j
o
i
n
t
W
i
t
h

D
L

B.4. Semantic Web technologies 180

OWL properties define relations between individuals of the ontology (ob-

ject properties: owl:ObjectProperty) or between individuals and values

of an XML datatype (datatype properties: owl:DatatypeProperty). There

are two additional types of properties, annotation properties (owl:Annota-

tionProperty) and ontology properties (owl:OntologyProperty), which

are used to specify certain metaproperties of the knowledge base.

OWL does not allow complex property descriptions to be created, and

property axioms are built using only simple property names. The syntax of

property axioms is shown in Table B.2.

Axioms about individuals are called facts. Facts include a name assign-

ment (if the individual is not anonymous), class membership information,

and role values. OWL does not assume that two individuals with different

names are different. This assumption is known as UNA (Unique Name As-

sumption). Therefore, facts can also state information about the identity of

an individual: owl:sameAs, owl:differentFrom, owl:AllDifferent.

XML-based syntax is the standard OWL syntax, but other codifications

have been proposed. Of these codifications, the Manchester syntax is one of

the most widely used. It has the advantage of not being as verbose of XML,

and its notation is simpler than that of Description Logics [117]. It is based

on the OWL abstract syntax, described in the OWL recommendation [201],
and the Description Logics syntax, but without the mathematical symbols.

B.4 Semantic Web technologies

In this section, selected Semantic Web technologies are studied. These tech-

nologies are very helpful to manage ontologies in KMob systems. Extensive

reviews of Semantic Web technologies can be found in [76, 103]. A list of

links on Semantic Web technologies is maintained at the SemanticWeb.org

wiki page5.
5http://www.semanticweb.org/wiki/Tools

http://www.semanticweb.org/wiki/Tools

B.4. Semantic Web technologies 181

Ta
bl

e
B

.2
:

O
W

L
pr

op
er

ty
ax

io
m

s

Sy
n

ta
x

Le
ve

l
Pr

op
er

ty
ax

io
m

s
In

he
ri

ta
nc

e
r
d
f
s
:
s
u
b
P
r
o
p
e
r
t
y
O
f

Li
te
/D

L,
w

.r.
D

om
ai

n
an

d
ra

ng
e

r
d
f
s
:
d
o
m
a
i
n

Li
te

,w
.r.

r
d
f
s
:
r
a
n
g
e

Li
te

,w
.r.

R
el

at
io

ns
to

ot
he

r
pr

op
er

ti
es

o
w
l
:
i
n
v
e
r
s
e
O
f

Li
te

o
w
l
:
e
q
u
i
v
a
l
e
n
t
P
r
o
p
e
r
t
y

Li
te

G
lo

ba
lc

ar
di

na
lit

y
co

ns
tr

ai
nt

s
o
w
l
:
F
u
n
c
t
i
o
n
a
l
P
r
o
p
e
r
t
y

Li
te

o
w
l
:
I
n
v
e
r
s
e
F
u
n
c
t
i
o
n
a
l
P
r
o
p
e
r
t
y

Li
te

Lo
gi

ca
lp

ro
pe

rt
y

ch
ar

ac
te

ri
st

ic
s

o
w
l
:
S
y
m
m
e
t
r
i
c
P
r
o
p
e
r
t
y

Li
te

o
w
l
:
T
r
a
n
s
i
t
i
v
e
P
r
o
p
e
r
t
y

Li
te
/D

L
w

.r.

B.4. Semantic Web technologies 182

Ontology editors

Ontology editors facilitate the creation of Semantic Web ontologies. Ontol-

ogy editors provide a friendly interface that saves ontology developers from

being forced to edit the raw RDF or OWL code of the knowledge base.

One of the most extended environments is Protégé [192], an open-source

platform for knowledge management created at the University of Stand-

ford6. Protégé is an integrated development environment with an associ-

ated methodology that supports the implementation of ontology-based ap-

plications. Protégé plug-ins widen the scope of editor capabilities, allowing

ontology visualization or exporting.

Originally, Protégé had its own knowledge metamodel, which was a frame-

based representation formalism compliant with the OKBC (Open Knowledge-

Base Connectivity) protocol [190]. This metamodel could be adapted to

other ontology languages such as RDF or OWL. Thus, Protégé did not natively

support OWL an additional complement, namely the OWL plug-in [147], was

required.

As of version 4, Protégé has been completely reimplemented, and OWL

is natively supported by means of the OWLAPI [116] (formerly WonderWeb

OWL API). Reasoning in Protégé 4 is performed with the bundled Pellet rea-

soner, though the DIG interface [20], which was used in the previous versions

to communicate the IDE with external reasoners, is also supported.

Protégé can be used as a stand-alone application or as a package inside

another application. In the stand-alone mode, Protégé is an ontology edi-

tor capable of creating, editing, or reasoning with ontologies. On the other

hand, Protégé Java libraries can be included in any application, and the func-

tionalities of core Protégé and Protégé plug-ins can be accessed from the

application.

Protégé is a very valuable tool, because it can be used by non-expert users

to create ontologies without obliging them to deal with OWL syntax. Never-
6http://protege.stanford.edu

http://protege.stanford.edu

B.4. Semantic Web technologies 183

theless, it has been often criticized because it can be unstable and resource-

consuming, despite the fact that version 4 solves some of these problems.

Other OWL editors have been created to overcome the problems in Pro-

tégé. Of these editors, TopBraid Composer is one of the most complete. Top-

Braid Composer is a visual modeling tool for developing ontologies commer-

cially distributed by TopQuadrant Inc7. TopBraid Composer provides support

for W3C’s Semantic Web standards (RDFS, OWL) and different data back-

ends (Oracle 11g, Sesame). One of its main features is that it simplifies

the integration of information sources external to the models created with

the editor. This is the case of DBPedia [11], an RDF repository based on

Wikipedia, or Google Maps data, which can be easily imported from the ed-

itor to enrich an ontology. These combinations of data sources are called

mash-ups.

Inference engines

Reasoning with ontologies is performed by reasoning engines, which are soft-

ware programs that implement optimized versions of tableau-based algo-

rithms. Currently, there are several engines able to deal with SHOIN (D),
the DL underlying OWL. Some of these engines are listed on in U. Sattler’s

web page8. This section presents three widely used tools capable of manag-

ing the OWL language, namely RacerPro, FaCT and Pellet.

RacerPro. RACER (Renamed ABox and Concept Expression Reasoner) [108]
was originally developed at the University of Hamburg, and is now commer-

cially available from Racer Systems GmbH & Co with the name of Racer-

Pro9. In its version 1.9.2, RacerPro implements the DL ALCQHIR+ with

datatypes, equivalent to SHIN (D), and consequently, to OWL without the

one-of constructor.
7http://www.topquadrant.com/topbraid/composer/index.html
8http://www.cs.man.ac.uk/~sattler/reasoners.html
9http://www.racer-systems.com/products/racerpro/index.phtml

http://www.topquadrant.com/topbraid/composer/index.html
http://www.cs.man.ac.uk/~sattler/reasoners.html
http://www.racer-systems.com/products/racerpro/index.phtml

B.4. Semantic Web technologies 184

RacerPro allows several kinds of TBox and ABox queries to be executed.

Such queries can be both standard and non-standard DL queries. Addition-

ally, Racer provides a consulting language called nRQL, which supports alge-

braic (in)equations, string expressions, numerical constraints, or negation as

failure (i.e. a limited version of the closed world assumption) among other

features. Rules can also be managed in RacerPro. The engine can be re-

motely invoked through a DIG interface, a standard for communicating with

DL reasoners through HTTP message-passing [20].

FaCT. FaCT (Fast Classification of Terminologies) [118] is an inference engine

developed by Ian Horrocks at the University of Manchester, and is available

online10. FaCT implements two reasoners, one for the logic SHF and an-

other for the logic SHIQ.

FaCT offers features similar to those in RACER: (i) an expressive language

for the formulation queries; (ii) reasoning with multiple knowledge bases;

(iii) optimizations that improve the tableau-based algorithms implemented.

FaCT also provides a client-server architecture based on CORBA to access the

ontologies. A new version of FaCT is now available, i.e. FaCT++11, which

incorporates further improvements and full support for SHOIQ(D).

Pellet. Pellet [234] is an open-source OWL reasoner, originally implemented

by the research group Mindswap at the University of Maryland and currently

distributed by Clark & Parsia LLC12.

Pellet was the first wide-scale reasoner to implement complete reasoning

procedures for SHOIN (D), and consequently, for OWL DL. The current

version 1.4 includes all the features of SROIQ(D), the logic underlying

OWL 1.1. Furthermore, it supports DIG communication, partial management

of SWRL rules, and SPARQL queries. The authors have recently included an

extension to Pellet called Pronto13, capable of reasoning with probabilistic

ontologies.
10http://www.cs.man.ac.uk/~horrocks/FaCT/
11http://owl.man.ac.uk/factplusplus/
12http://pellet.owldl.com/
13http://clarkparsia.com/weblog/2007/09/27/introducing-pronto/

http://www.cs.man.ac.uk/~horrocks/FaCT/
http://owl.man.ac.uk/factplusplus/
http://pellet.owldl.com/
http://clarkparsia.com/weblog/2007/09/27/introducing-pronto/

B.4. Semantic Web technologies 185

APIs

Semantic Web programs need to manage ontologies. Applications have to

read, write, update, and query ontologies, as well as be able to carry out

different tasks depending on concepts, relations, axioms, etc. Semantic Web

APIs are programming libraries that implement these functions with a view

to dealing with Web ontologies.

As previously mentioned, Protégé provides a graphical editor plus a Java

library to manage ontologies that can be used in stand-alone applications.

The most recent versions of Protégé are based on the open-source library

OWLAPI, which can be included in our own software as well.

The OWLAPI offers different functionalities to Semantic Web application

developers. It allows efficient reading and parsing of OWL ontologies ex-

pressed in any of the possible OWL syntaxes: XML-based, Manchester, Func-

tional, etc. It works properly with large in-memory models, which can be

edited and exported conveniently. Moreover, the OWLAPI includes inter-

faces for accessing reasoning services provided by the DL reasoners Pellet

and FaCT++, as well as other engines compliant with the DIG specification.

The OWLAPI is a relatively recent initiative, but it is not the only API

that can be used to build Semantic Web applications. Actually, up until now

the most widely-used Semantic Web API has been Jena [62], which is an

open-source library developed at the HP Laboratories14 that focuses on RDF

management.

Jena supports reading, parsing, and writing RDF models. It also allows

the consultation of RDF ontologies using the SPARQL language with its query

engine ARQ. Jena provides a mechanism to add ‘if-then’ rules to RDF models,

which makes possible certain kind of logical inferences. Another notable

feature of Jena is that persistent RDF repositories can be used transparently.

Besides RDF management features, Jena also offers support for OWL on-

tologies. Although it is more complex to use than the OWLAPI, OWL mod-
14http://jena.sourceforge.net/

http://jena.sourceforge.net/

B.4. Semantic Web technologies 186

els can be managed with Jena. Jena interfaces for OWL ontologies permit

logic inference with the models via the built-in reasoners or external DIG-

compliant inference engines.

Database publishing

The Semantic Web promises better integration of information sources thanks

to the use of semantic metadata. A scenario which would greatly benefit

from Semantic Web integration features is corporative database manage-

ment. Frequently, corporative databases that store large volumes of data

have to be combined with other internal or external information sources,

which is a hard task. In fact, publishing relational data in the Semantic Web

was considered a design issue in the early research in this area [26].

The RDB2RDF Incubator Group 15 was created within the W3C Semantic

Web Activity to study the synergies between databases and the Semantic

Web. The objectives of this group are: (i) to review existing approaches

for mapping relational data onto RDF; (ii) to review existing approaches for

mapping OWL classes onto relational data.

D2RQ [32, 33] and Virtuoso RDF views [34] are two proposals for map-

ping relational data onto RDF. They resemble each other in that both provide

the means to define a declarative mapping between a database and an ontol-

ogy. They allow the database to be accessed transparently as though it were

an RDF/OWL ontology. This has several advantages: (i) data can be stored

in a relational database, which is more efficient; (ii) new features are imple-

mented as a layer on top of the existing applications, which do not need to

be modified; (iii) data is not duplicated, which spares the user the necessity

of implementing procedures to guarantee data integrity and consistence.

The main difficulty of D2RQ and Virtuoso RDF Views is that mappings

must be created manually, which is often costly in certain cases. Hence,

other authors have proposed unsupervised methods to establish these kinds
15http://www.w3.org/2005/Incubator/rdb2rdf/

http://www.w3.org/2005/Incubator/rdb2rdf/

B.5. Semantic Web Services 187

of mapping. Worth mentioning are RDQuery [155], SquirrelRDF [241] and

SPASQL [209], which automatically translate SPARQL queries to SQL using

simple heuristics. A complete list of related works is presented in the ESW

Wiki16, maintained by the W3C staff.

B.5 Semantic Web Services

Semantic Web Services are the extension of Web Services in the context of the

Semantic Web [177]. This section provides a brief overview on Web Services

standards and Semantic Web Services proposals is provided.

Web Services

According to the definition of the W3C, a Web Service is an abstraction

that allows access to remote applications using XML and HTTP-based stan-

dards [47]. Some benefits of using Web Services are availability (because

web protocols are omnipresent) and extensibility (because implementation

details are kept separate from the external interface, and the incorporation

of new functionalities is thus easier).

Web Services are implemented with a combination of three standard pro-

tocols [75, 186]: SOAP (Simple Object Access Protocol), WSDL (Web Ser-

vices Description Language), and UDDI (Universal Description, Discovery,

and Integration).

Communication between Web Services is performed throughout XML mes-

sages. Actually, processing in a service may be regarded as the transforma-

tion of an input XML document into an output XML document. SOAP is the

most widely used protocol for Web Services message-passing. Clients and

servers create SOAP messages that wrap the data to be sent, and then trans-

mit them using a web protocol (usually HTTP). The receiver of the message

is responsible for interpreting the SOAP message and answering it.
16http://esw.w3.org/topic/RdfAndSql

http://esw.w3.org/topic/RdfAndSql

B.5. Semantic Web Services 188

Figure B.2: Web Services protocols

Service

Provider

WSDL

UDDI

Register

Links to Service

Description

Web

Service

Describe

Service

Service

Client
SOAP

Finds

Service

XML messaging

Links to

Service

The description of Web Services is performed with the XML-based lan-

guage WSDL. A Web Service description is a set of annotations that explain

the features of the service with a well-defined language. WSDL abstractly

describes the operations that a service can carry out and how they should

be invoked. It also specifies the meaning of these descriptions in terms of

concrete message formats and communication protocols.

Web Service descriptions may include additional information about ser-

vice cooperation, for instance, choreography (which messages are created

when the service is requested) or orchestration (which external services are

required to complete the task). Some languages have been proposed to

describe the interaction between services such as WSBPEL [134] (formerly

BPEL4WS) and WS-CDL [137].

The location of Web Services is achieved with Services Registries, which

are repositories where providers publish the descriptions of their services to

make them accessible to clients. UDDI is a standard created by OASIS17, and

which specifically targets this objective. UDDI defines the structure of a well-

formed service description and a set of programming interfaces to access the

registry. The main disadvantage of UDDI is its poor search mechanism since
17http://www.oasis-open.org/

http://www.oasis-open.org/

B.5. Semantic Web Services 189

service matching is done by lexical matching of textual service descriptions

and client preferences.

Semantic Web Services proposals

Semantic Web Services propose the enhancement of syntactic Web Service

descriptions in WSDL with additional metadata. These metadata can be an

explanation of the service capabilities, a detailed view of its processing flow,

quality parameters, information about its creator, etc.

The objective of Semantic Web Services is to automate location, execution

and composition of Web Services [177]:

• Automatic service discovery. A service satisfying a description of desir-

able features can be located by a search agent.

• Automatic service execution. Formal annotations describe the interface

to access a service, and therefore a broker agent can invoke it.

• Automatic composition of services. Preconditions and effects of a ser-

vice can be described semantically and then used by a planning agent

to integrate different services.

Metadata in Semantic Web Services must be encoded with a formal lan-

guage, which should be sufficiently expressive to represent assorted knowl-

edge domains. Several approaches have been proposed for Semantic Web

Services [43]. The most outstanding are OWL-S, WSMO, SWSF and WSDL-

S, which have been submitted to W3C to be considered in the development

of a standard for Semantic Web Services [43].

These approaches are conceptually similar. They propose the use of an

ontology to semantically describe the features of a service. Semantic Web

Services ontologies contain concepts such as service, interface, precondition,

effect, communication protocol, etc. The ontological description of a service is

B.5. Semantic Web Services 190

published in a registry where matching between client requirements and ser-

vice capabilities is carried out. Interoperability between services is achieved

by transforming service outputs in inputs interpretable by another service.

This translation can be performed automatically, since mediation services

understand the meaning of the parameters.

OWL-S (OWL for Services) is defined as an OWL ontology for annotating

Web Services [171]. It has been designed to be compliant with Web Services

standards. OWL-S vocabulary represents three aspects of Web Services: (i)

the profile, which is a basic description of the capabilities of the service; (ii)

the process model, which explains in more detail how the service works; (iii)

the grounding, which determines how the service is implemented.

WSMO (Web Service Modeling Ontology) is another model to semanti-

cally describe Web Services [88]. It is based on the WSMF (Web Services

Modeling Framework), a previous work which defines a conceptual frame-

work for the creation Semantic Web Services. WSMO is especially interested

in solving the integration issues that appear in Web Service applications. The

WSMO initiative includes two working groups, WSML (Web Service Mod-

eling Language) and WSMX (Web Service Execution Environment), whose

objective is the creation of a formal language and an execution environment

for WSMO. The WSMO model provides four primitives to describe services:

(i) Ontologies, which are the vocabulary used in the descriptions; (ii) Web

Services, with associated interfaces, capabilities, ontologies, etc.; (iii) Goals,

which are compared with user requirements during the matching process;

(iv) Mediators, which connect heterogeneous components of the system.

SWSF (Semantic Web Services Framework) is a proposal for the develop-

ment of enhanced Web Services, which combines features from OWL-S and

WSMO [18]. The SWSF model has two components: the Semantic Web Ser-

vices Language (SWSL) and the Semantic Web Services Ontology (SWSO).

SWSL is composed of two sublanguages: SWSL-FOL, for ontology creation,

and SWSL-Rules, for First Order Logic reasoning with SWSL ontologies. The

SWSO expressed in SWSL-FOL is called FLOWS (First Order Logic Ontology

for Web Services). FLOWS has a structure similar to OWL-S, and also in-

B.5. Semantic Web Services 191

cludes three main sub-ontologies: Service Descriptors, Process Model, and

Grounding.

WSDL-S [2] is a language for describing Semantic Web Services that

claims to overcome some drawbacks of OWL-S and related proposals. WSDL-

S extends WSDL with semantic descriptors that reflect OWL-S concepts, but it

does not impose an ontology representation language. WSDL-S has been de-

signed to be compatible with existing Web Services standards, mainly WSDL.

Therefore, though it does not have the formal underpinnings of other ap-

proaches, experienced Web Service developers find it easier to use, and sup-

porting tools can be upgraded effortlessly.

Differences between these proposals are mainly due to the fact that each

Semantic Web Service language focuses on a certain problem. OWL-S is

especially concerned with simplicity, whereas WSMO targets integration is-

sues. As a result, OWL-S is easier to use, and WSMO offers more expressive

primitives to describe service workflow. SWSF also tackles this problem and

defines a formalism based on PSL (Process Specification Language) to model

service workflow. WSDL-S looks for compatibility with current standards,

which makes it suitable for previous service-oriented applications that need

to be enhanced with semantic features.

Regarding the ontology language used, OWL-S is an OWL DL ontology,

with its corresponding computational properties. WSML is based on F-Logic,

which is similar but not equivalent to Description Logics. For that reason,

WSML is structured in levels in order to be interoperable with OWL and

other formalisms, as First Order Logic. The characteristic feature of SWSL

is its new rule-based language, SWSL-Rules, which allows reasoning with

service descriptions. WSDL-S is independent of the representation language,

and its specification states that any annotation language, such as OWL or

UML, may be used.

The degree of maturity of these proposals is different and, despite the

fact that none of them has been acknowledged as a standard, OWL-S is the

most widely used and the one that has the most supporting tools [170].

B.6. The future of the Semantic Web 192

B.6 The future of the Semantic Web

The Semantic Web, as envisioned by Berners-Lee, Hendler, and Lassila, is still

a long ways from reality. Agents setting medical appointments and schedul-

ing daily tasks are still not available, and will not be in the coming years.

There are many reasons for this, and of course, one of them is the overly

high expectations raised by initial research in the area.

Nevertheless, that does not mean that Semantic Web is losing popular-

ity. On the contrary, several current initiatives are showing the potential of

Semantic Web technologies and proving their usefulness. Probably, the best

explanation is that besides the great Semantic Web (i.e. the Semantic Web of

logical languages and autonomous agents), a Semantic Web with a smaller

scope seems to be blooming.

The maxim of this alternative Semantic Web, often called lowercase se-

mantic web, is “metadata for everything and everybody”. In other words, this

approach provides the means to attach metadata to Web resources that do

not require users to be experts in logic-based languages. This is the objective

of microformats, and, extensively, of Web 2.0.

Microformats are ad hoc vocabularies for entering metadata in XHTML

documents. For example, the hCard microformat defines simple terms that

describe contact information. Other microformats are hCalendar (for calen-

dars and events), XFN (social networks), Rel-License (content licenses), and

hReview (opinions and ratings).

Web 2.0 is a label that identifies a set of Web technologies and procedures

aimed at supporting collaborative content creation [197]. Web 2.0 promotes

tagging of Web resources with simple labels, the addition of metadata to

documents, blogging, etc., which drives eventually to the creation of social

connections between authors.

Ideally, Semantic Web users should be able to describe and link resources

without making a great effort, as occurs on the Web 2.0 [8, 178]. Actually,

some of the creators of the Semantic Web have remarked that this approach

B.6. The future of the Semantic Web 193

combining the Web 2.0 and Semantic Web (i.e. Web 3.0) reflects their initial

idea [113] quite well.

The W3C is aware of these advances and several working groups have

been created to study this kind of applications. As a result, specifications

such as GRDDL and RDFa, are currently being developed.

On the other hand, languages for the uppercase Semantic Web continue to

be developed. One of the most relevant new proposals is OWL 1.1, an exten-

sion of OWL that has been submitted for the consideration of the W3C [202].
OWL 1.1 is based on the Description Logic SROIQ, which adds new class

and property constructors to SHOIN , the logic underlying OWL.

The OWL Working Group18 has taken OWL 1.1 as a starting point for

OWL 2, which will be the successor of the current OWL specification [200].
Apart from a set of new constructors, a notable feature of the preliminary

OWL 2 specification is the definition of three profiles. The objective of OWL

2 profiles is to specify segments of the language with certain computational

properties in addition to the Lite, DL and Full dialects of OWL.

Thus, the EL++ profile is a subset of OWL 2 that produces representa-

tions that are less complex, in terms of interpretation by users and reasoning

with inference engines. The EL++ profile is called a tractable fragment of

OWL 2. DL Lite is a profile created to achieve interoperability between on-

tologies and databases. OWL-R, in turn, is intended to manage rules in OWL

2 representations.

Knowledge Mobilization can remain, to some extent, agnostic in respect

to the progress of the Semantic Web. However, the Semantic Web is prob-

ably the most important current initiative aimed at providing universal and

effective access to information, an objective which is shared by Knowledge

Mobilization. Therefore, as has been suggested throughout this dissertation,

suitable Semantic Web technologies can and must be incorporated into KMob

applications.

18http://www.w3.org/2007/OWL/wiki/OWL_Working_Group

http://www.w3.org/2007/OWL/wiki/OWL_Working_Group

Bibliography

[1] Agnar Aamodt and Mads Nygard. “Different roles and mutual de-

pendencies of data, information, and knowledge – An AI perspective

on their integration”. In: Data & Knowledge Engineering 16 (1995).

Pp. 191–222.

[2] Rama Akkiraju, Joel Farrel, John Miller, Meenakshi Nagarajan, Marc-

Thomas Schmidt, Amit Sheth, and Kunal Verma. Web Service Seman-

tics - WSDL-S. Online. W3C Member Submission. Nov. 2005. URL:

http://www.w3.org/Submission/WSDL-S/.

[3] Christopher Alexander. The timeless way of building. Oxford Univer-

sity Press, 1979.

[4] David K. Allen. “Spreading the load: mobile information and com-

munications technologies and their effect on information overload ”.

In: Information Research 10.2 (2005).

[5] OSGi Alliance, ed. OSGi Service Platform: The OSGi Alliance. IOS

Press, 2003.

[6] Josef Altmann, Franz Gruber, Ludwig Klug, Wolfgang Stockner, and

Edgar Weippl. “Using mobile agents in real world: A survey and eval-

uation of agent platforms”. In: Proceedings of the 2nd Workshop on In-

frastructure for Agents, MAS, and Scalable MAS at Autonomous Agents.

Montreal, Canada 2001. Pp. 33–39.

194

http://www.w3.org/Submission/WSDL-S/

BIBLIOGRAPHY 195

[7] Christos B. Anagnostopoulos, Yiorgos Ntarladimas, and Stathes Had-

jiefthymiades. “Situational Computing: An innovative architecture

with imprecise reasoning”. In: Journal of Systems and Software 80.12

(2007). Pp. 1993–2014.

[8] Anupriya Ankolekar, Markus Krötzsch, Thanh Tran, and Denny Vran-

decic. “The two cultures: mashing up Web 2.0 and the Semantic

Web”. In: Proceedings of the 16th International World Wide Web Con-

ference (WWW 2007). Banff, Alberta, Canada 2007. Pp. 825–834.

[9] Arvind and Jamey Hicks. “A mobile phone ecosystem: MIT and

Nokia’s joint research venture”. In: IEEE Intelligent Systems 21

(2006). Pp. 78–79.

[10] Koray Atalağ. “Archetype based domain modelling for Health In-

formation Systems”. PhD thesis. Middle East Technical University

(METU), 2007.

[11] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann,

Richard Cyganiak, and Zachary Ives. “DBpedia: A Nucleus for a

Web of open data”. In: LNCS 4825. Proceedings of the 6th Interna-

tional Semantic Web Conference (ISWC 07). Busan, South Korea 2007.

Pp. 722–735.

[12] Franz Baader. “Terminological cycles in a description logic with exis-

tential restrictions”. In: Proceedings of the 18th International Joint

Conference on Artificial Intelligence (IJCAI-03). Acapulco, Mexico

2003. Pp. 325–330.

[13] Franz Baader, Sebastian Brandt, and Carsten Lutz. “Pushing the EL
envelope”. In: Proceedings of the 19th International Joint Conference

on Artificial Intelligence (IJCAI-05). Vol. 5. Edinburgh, Scotland 2005.

Pp. 364–370.

[14] Franz Baader, Ian Horrocks, and Ulrike Sattler. “Description Logics

as Ontology Languages for the Semantic Web”. In: LNCS 2605. Mech-

anizing Mathematical Reasoning. 2005. Pp. 228–248.

BIBLIOGRAPHY 196

[15] Franz Baader, Ian Horrocks, and Ulrike Sattler. “Handbook of Knowl-

edge Representation”. In: ed. by Frank van Harmelen, Vladimir Lif-

schitz, and Bruce Porter. Elsevier, 2008. Chap. Description Logics,

pp. 135–180.

[16] Franz Baader and Ralf Küsters. “Mathematical Problems from Ap-

plied Logic I”. In: vol. 4. International Mathematical Series. Springer

New York, 2006. Chap. Nonstandard Inferences in Description Log-

ics: The Story So Far, pp. 1–75.

[17] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele

Nardi, and Peter F. Patel -Schneider. The Description Logic Hand-

book: Theory, Implementation, and Applications. Cambridge Univer-

sity Press, 2003.

[18] Steve Battle et al. Semantic Web Services Framework (SWSF)

Overview. Online. W3C Member Submission. Sept. 2005. URL:

http://www.w3.org/Submission/SWSF/.

[19] Christoph Baumer, Markus Breugst, Sang Choy, and Thomas

Magedanz. “Grasshopper: a universal agent platform based on OMG

MASIF and FIPA standards”. In: Proceedings of the First Interna-

tional Workshop on Mobile Agents for Telecommunication Applications

(MATA’99). Ottawa, Canada 1999. Pp. 1–8.

[20] Sean Bechhofer, Ralf Moller, and Peter Crowther. “The DIG Descrip-

tion Logic Interface”. In: CEUR-WS 81. Proceedings of the 2003 De-

scription Logic Workshop (DL 2003). Rome, Italy 2003.

[21] Sean Bechhofer, Frank van Harmelen, James Hendler, Ian Horrocks,

Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea

Stein. OWL Web Ontology Language Reference. Online. W3C Recom-

mendation. Feb. 2004. URL: http://www.w3.org/TR/owl-ref/.

[22] Fabio Bellifemine, Giovanni Caire, and Dominic Greenwood. Devel-

oping Multi-Agent Systems with JADE. Wiley Publishing, 2007.

http://www.w3.org/Submission/SWSF/
http://www.w3.org/TR/owl-ref/

BIBLIOGRAPHY 197

[23] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. “JADE: a

FIPA2000 compliant agent development environment”. In: AGENTS

’01: Proceedings of the 5th International Conference on Autonomous

Agents. Montreal, Quebec, Canada 2001. Pp. 216–217.

[24] Chihab BenMoussa. “Supporting the sales force through mobile

Information and Communication Technologies”. PhD thesis. Abo

Akademi (Turku, Finland), 2007. Pp. 74–78.

[25] Federico Bergenti and Agostino Poggi. “LEAP: A FIPA platform for

handheld and mobile devices”. In: LNCS 2333. Proceedings of the

8th International Workshop on Agent Theories, Architectures, and Lan-

guages (ATAL 2001). Seattle,Washington, USA 2002. Pp. 436–446.

[26] Tim Berners-Lee. Relational Databases and the Semantic Web. Online.

Sept. 1998. URL: http://www.w3.org/DesignIssues/RDB-

RDF.html.

[27] Tim Berners-Lee, James Hendler, and Ora Lassila. “The Semantic

Web”. In: Scientific American 284.5 (2001). Pp. 28–37.

[28] Carole Bernon, Massimo Cossentino, and Juan Pavón. “Agent-

oriented software engineering”. In: The Knowledge Engineering Re-

view 20 (2005). Pp. 99–116.

[29] Carole Bernon, Massimo Cossentino, and Juan Pavón. “An overview

of current trends in European AOSE research”. In: Informatica 29.4

(2005). Pp. 379–390.

[30] Veli Bicer, Ozgur Kilic, Asuman Dogac, and Gokce B. Laleci.

“Archetype-based semantic interoperability of Web Service messages

in the Healthcare Domain”. In: International Journal on Semantic

Web and Information Systems 1.4 (2005). Pp. 1–22.

[31] Phillip Bishop and Nigel Warren. JavaSpaces in Practice. Pearson Ed-

ucation, 2002.

http://www.w3.org/DesignIssues/RDB-RDF.html
http://www.w3.org/DesignIssues/RDB-RDF.html

BIBLIOGRAPHY 198

[32] Christian Bizer and Richard Cyganiak. “D2R Server - Publishing Re-

lational Databases on the Semantic Web”. In: Proceedings of the 5th

International Semantic Web Conference (ISWC 06). Poster. Athens,

Georgia, USA 2006.

[33] Christian Bizer and Andy Seaborne. “D2RQ-Treating non-RDF

databases as virtual RDF graphs”. In: Proceedings of the 3rd Interna-

tional Semantic Web Conference (ISWC 04). Poster. Hiroshima, Japan

2004.

[34] Carl Blakeley. “Mapping relational data to RDF with Virtuoso’s RDF

Views”. In: OpenLink Software (2007). Online. URL: http://www.

openlinksw.com/virtuoso/Whitepapers/html/rdf_views/

virtuoso_rdf_views_example.html.

[35] Luciano Barrios Blasco, José Nicolás García Rodríguez, and Francisco

Pérez Torres. “La Historia Clínica Electrónica en Andalucía”. In: Pro-

ceedings of the Seminar Innovaciones en Tecnologías de la Información

en Salud. Segovia, Spain 2002. URL: http://www.conganat.org/

seis/segovia2002/barrios.htm.

[36] Eva Blomqvist. “OntoCase - A pattern-based ontology construction

approach”. In: LNCS 4803. On the Move to Meaningful Internet Sys-

tems 2007: CoopIS, DOA, ODBASE, GADA, and IS. Vilamoura, Portu-

gal 2007. Pp. 971–988.

[37] Eva Blomqvist. “Semi-automatic ontology engineering using pat-

terns”. In: LNCS 4825. Proceedings of the 6th International Semantic

Web Conference (ISWC 07). Busan, South Korea 2007. Pp. 911–915.

[38] Eva Blomqvist and Kurt Sandkuhl. “Patterns in ontology engineering

– Classification of ontology patterns”. In: Proceedings of the 7th Inter-

national Conference on Enterprise Information Systems (ICEIS 2005).

Miami, USA 2005.

[39] Fernando Bobillo, Miguel Delgado, and Juan Gómez-Romero. “A

Crisp Representation for Fuzzy SHOIN with Fuzzy Nominals and

General Concept Inclusions”. In: CEUR-WS 218. Proceedings of the

http://www.openlinksw.com/virtuoso/Whitepapers/html/rdf_views/virtuoso_rdf_views_example.html
http://www.openlinksw.com/virtuoso/Whitepapers/html/rdf_views/virtuoso_rdf_views_example.html
http://www.openlinksw.com/virtuoso/Whitepapers/html/rdf_views/virtuoso_rdf_views_example.html
http://www.conganat.org/seis/segovia2002/barrios.htm
http://www.conganat.org/seis/segovia2002/barrios.htm

BIBLIOGRAPHY 199

2nd International Workshop on Uncertainty Reasoning for the Seman-

tic Web in the 5th International Semantic Web Conference. Athens,

Georgia, USA 2006.

[40] Fernando Bobillo, Miguel Delgado, and Juan Gómez-Romero. “Crisp

representations and reasoning for fuzzy Description Logics”. In: In-

ternational Journal of Uncertainty, Fuzziness and Knowledge-Based

Systems (To Appear).

[41] Fernando Bobillo, Miguel Delgado, and Juan Gómez-Romero. “Op-

timizing the Crisp Representation of the Fuzzy Description Logic

SROIQ”. In: CEUR-WS 327. Proceedings of the 3rd International

Workshop on Uncertainty Reasoning for the Semantic Web (URSW 07)

in the 6th International Semantic Web Conference. Busan, South Korea

2007.

[42] Fernando Bobillo, Miguel Delgado, and Juan Gómez-Romero. “Rep-

resentation of context-dependant knowledge in ontologies: A model

and an application”. In: Expert Systems with Applications (In Press).

[43] Fernando Bobillo, Juan Gómez-Romero, and Ramon Pérez-Pérez.

“Towards Semantic Web Services: A brief overview”. In: Proceedings

of the IADIS International Conference WWW/Internet 2005. Lisbon,

Portugal 2005. Pp. 19–26.

[44] Fernando Bobillo and Umberto Straccia. “fuzzyDL: An Expressive

Fuzzy Description Logic Reasoner”. In: Proceedings of the 2008 Inter-

national Conference on Fuzzy Systems (FUZZ-IEEE 2008). Hong Kong,

China (Accepted).

[45] Olivier Bodenreider. “The Unified Medical Language System

(UMLS): integrating biomedical terminology”. In: Nucleic Acids Re-

search 32 (2004). Pp. 267–270.

[46] Piero Bonatti, Carsten Lutz, and Frank Wolter. “Expressive non-

monotonic description logics based on circumscription”. In: Prin-

ciples of Knowledge Representation and Reasoning: Proceedings of

BIBLIOGRAPHY 200

the Tenth International Conference (KR-06). Lake District, UK 2006.

Pp. 400–410.

[47] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael

Champion, Chris Ferris, and David Orchard. Web Services Architec-

ture. Online. W3C Working Group Note. Feb. 2004. URL: http:

//www.w3.org/TR/ws-arch/.

[48] Pim Borst, Hans Akkermans, and Jan Top. “Engineering ontologies”.

In: International Journal of Human-Computer Studies 46.2-3 (1997).

Pp. 365–406.

[49] Genevieve Bossu and Pierre Siegel. “Saturation, nonmonotonic rea-

soning and the closed-world assumption”. In: Artificial Intelligence

25 (1985). Pp. 13–63.

[50] Paolo Bouquet, Fausto Giunchiglia, Frank van Harmelen, Luciano

Serafini, and Heiner Stuckenschmidt. “Contextualizing ontologies”.

In: LNCS 2870. Proceedings of the 3rd International Semantic Web

Conference (ISWC 04). Hiroshima, Japan 2004. Pp. 164–179.

[51] Ronald Brachman and Hector Levesque. Knowledge Representation

and Reasoning. The Morgan Kaufmann Series in Artificial Intelli-

gence. Morgan Kaufmann, 2004.

[52] Ronald Brachman and Hector Levesque. “The tractability of sub-

sumption in frame-based description languages”. In: Proceedings

of the 4th National Conference on Artificial Intelligence (AAAI-84).

Austin, Texas, USA 1984. Pp. 34–37.

[53] P. Brézillon. “Context in problem solving: a survey”. In: The Knowl-

edge Engineering Review 14 (1999). Pp. 47–48.

[54] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen.

“Sesame: A generic architecture for storing and querying RDF and

RDF Schema”. In: Proceedings of the 1st International Semantic Web

Conference. 2002. Pp. 54–68.

http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/

BIBLIOGRAPHY 201

[55] Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern, and

Steven Shafer. “EasyLiving: Technologies for Intelligent Environ-

ments”. In: Proceedings of Handheld and Ubiquitous Computing:

Second International Symposium (HUC 2000). Bristol, UK 2000.

Pp. 12–29.

[56] Mario Bunge. Treatise on Basic Philosophy, vol. 3. Ontology I: The

Furniture of the World. Springer, 1977.

[57] Luca Buriano, Marco Marchetti, Francesca Carmagnola, Federica

Cena, Cristina Gena, and Ilaria Torre. “The role of ontologies in

context-aware recommender systems”. In: Proceedings of the 7th In-

ternational Conference on Mobile Data Management (MDM 2006).

Nara, Japan 2006. Pp. 80–81.

[58] Diego Calvanese. “Reasoning with Inclusion Axioms in Description

Logics: Algorithms and Complexity”. In: Proceedings of the 12 Euro-

pean Conference on Artificial Intelligence (ECAI’96). Budapest, Hun-

gary 1996. Pp. 303–307.

[59] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and

Daniele Nardi. “Handbook of Automated Reasoning”. In: ed. by Alan

Robinson and Andrei Voronkov. Elsevier Science Publishers, 2001.

Chap. Reasoning in Expressive Description Logics, pp. 1581–1634.

[60] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maur-

izio Lenzerini, and Riccardo Rosati. “Tractable Reasoning and Effi-

cient Query Answering in Description Logics: The DL-Lite Family”.

In: Journal of Automated Reasoning 39.3 (2007). Pp. 385–429.

[61] Christer Carlsson. Knowledge Mobilisation: Executive Summary. Tech.

rep. Institute for Advanced Management Systems Research, 2007.

[62] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy

Seaborne, and Kevin Wilkinson. “Jena: Implementing the Seman-

tic Web recommendations”. In: Proceedings of the 13th International

World Wide Web Conference (WWW 2004) on Alternate track papers

& posters. New York, USA 2004. Pp. 74–83.

BIBLIOGRAPHY 202

[63] Radovan Cervenka and Ivan Trencansky. The Agent Modeling Lan-

guage - AML. Ed. by Birkhäuser Basel. Whitestein Series in Software

Agent Technologies and Autonomic Computing. 2007.

[64] B. Chandrasekaran, John R. Josephson, and V. Richard Benjamins.

“What are ontologies, and why do we need them?”. In: IEEE Intelli-

gent Systems 14.1 (1999). Pp. 20–26.

[65] David Chappell. Understanding .NET (2nd Edition). Addison-Wesley

Professional, 2006.

[66] Harry Chen, Tim Finin, and Anupam Joshi. “Ontologies for Agents:

Theory and Experiences”. In: Whitestein Series in Software Agent

Technologies and Autonomic Computing. Birkhäuser Basel, 2005.

Chap. The SOUPA Ontology for Pervasive Computing, pp. 233–258.

[67] Harry Chen, Tim Finin, Joshi Anupam, Lalana Kagal, Filip Perich, and

Dipanjan Chakraborty. “Intelligent agents meet the Semantic Web in

smart spaces”. In: IEEE Internet Computing 8 (2004). Pp. 69–79.

[68] David M. Chess, Colin G. Harrison, and Aaron Kershenbaum. “Mo-

bile agents: are they a good idea?”. In: MOS ’96: Selected Presenta-

tions and Invited Papers Second International Workshop on Mobile Ob-

ject Systems - Towards the Programmable Internet. Linz, Austria 1997.

Pp. 25–45.

[69] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers,

Reed Little, Robert Nord, and Judith Stafford. Documenting software

architectures: Views and beyond. Addison-Wesley Professional, 2002.

[70] College of American Pathologists. SNOMED Clinical Terms User

Guide. Online. IHTSDO standard. Jan. 2007. URL: http://www.

ihtsdo.org/fileadmin/user_upload/Docs_01/Technical_

Docs/snomed_ct_user_guide.pdf.

[71] Oscar Corcho, Mariano Fernández-López, and Asuncion Gómez-

Pérez. “Methodologies, tools and languages for building ontologies.

Where is their meeting point?”. In: Data & Knowledge Engineering 46

(2003). Pp. 41–64.

http://www.ihtsdo.org/fileadmin/user_upload/Docs_01/Technical_Docs/snomed_ct_user_guide.pdf
http://www.ihtsdo.org/fileadmin/user_upload/Docs_01/Technical_Docs/snomed_ct_user_guide.pdf
http://www.ihtsdo.org/fileadmin/user_upload/Docs_01/Technical_Docs/snomed_ct_user_guide.pdf

BIBLIOGRAPHY 203

[72] Dave Crane, Eric Pascarello, and Darren James. Ajax in action. Man-

ning, 2006.

[73] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike

Sattler. “A logical framework for modularity of ontologies”. In: Pro-

ceedings of the 20th International Joint Conference on Artificial Intel-

ligence (IJCAI-07). Hyderabad, India 2007. Pp. 298–304.

[74] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike

Sattler. “Modular Reuse of Ontologies: Theory and Practice”. In:

Journal of Artificial Intelligence Research 31 (2008). Pp. 273–318.

[75] Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy,

Nirmal Mukhi, and Sanjiva Weerawarana. “Unraveling the Web Ser-

vices Web: An Introduction to SOAP, WSDL, and UDDI”. In: IEEE In-

ternet Computing 6.2 (2002). Pp. 86–93.

[76] J. Davies, R. Studer, and P. Warren. Semantic Web Technologies:

Trends and Research in Ontology-based Systems. John Wiley & Sons,

2006.

[77] Miguel Delgado, Juan Gómez-Romero, Pedro J. Magaña, and Ramon

Pérez-Pérez. “A flexible architecture for distributed knowledge based

systems with nomadic access through handheld devices”. In: Expert

Systems with Applications 29.4 (2005). Pp. 965–975.

[78] Michael L. Dertouzos. “The future of computing”. In: Scientific Amer-

ican 281.2 (1999). Pp. 36–47.

[79] A.K. Dey and G.D. Abowd. “Towards a Better Understanding of Con-

text and Context-Awareness”. In: Proceedings of the Workshop on the

What, Who, Where, When, and How of Context-Awareness (CHI 2000).

The Hague, Netherlands 2000.

[80] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. “A concep-

tual framework and a toolkit for supporting the rapid prototyping of

context-aware applications”. In: Human-Computer Interaction 16.2-4

(2001). Pp. 97–166.

BIBLIOGRAPHY 204

[81] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea

Schaerf. “Principles of Knowledge Representation”. In: CSLI Studies

In Logic, Language And Information. 1996. Chap. Reasoning in De-

scription Logics, pp. 191–236.

[82] Raymond G. Duncan and Michael M. Shabot. “Secure remote access

to a clinical data repository using a wireless personal digital assistant

(PDA)”. In: Proceedings of the AMIA Annual Symposium (AMIA 2000).

Vol. 155. Los Angeles, CA, USA 2000. Pp. 210–214.

[83] Angela Edmunds and Anne Morris. “The problem of information

overload in business organisations: a review of the literature”.

In: International Journal of Information Management 20 (2000).

Pp. 17–28.

[84] Marco Eichelberg, Thomas Aden, Jörg Riesmeier, Asuman Dogac,

and Gokce B. Laleci. “A survey and analysis of Electronic Health-

care Record standards”. In: ACM Computing Surveys 37.4 (2005).

Pp. 277–315.

[85] Martin J. Eppler and Jeanne Mengis. “The Concept of Information

Overload: A Review of Literature from Organization Science, Ac-

counting, Marketing, MIS, and Related Disciplines”. In: The Infor-

mation Society 20 (2004). Pp. 325–344.

[86] Hans-Erik Eriksson, Magnus Penker, Brian Lyons, and David Fado.

UML 2 Toolkit. Wiley Publishing, 2004.

[87] Ali F. Farhoomand and Don H. Drury. “Managerial information over-

load ”. In: Communications of the ACM 45 (2002). Pp. 127–131.

[88] Cristina Feier. Web Service Modeling Ontology Primer. Online. W3C

Member Submission. June 2005. URL: http://www.w3.org/

Submission/WSMO-primer/.

[89] Edward A. Feigenbaum, Pamela McCorduck, and H. Penny Nii. The

rise of the expert company. Times Books New York, NY, USA, 1988.

http://www.w3.org/Submission/WSMO-primer/
http://www.w3.org/Submission/WSMO-primer/

BIBLIOGRAPHY 205

[90] Lee Feigenbaum, Ivan Herman, Tonya Hongsermeier, Eric Neumann,

and Susie Stephens. “The Semantic Web in Action”. In: Scientific

American 297 (2007). Pp. 90–97.

[91] Jacques Ferber. Multi-agent Systems: An Introduction to Distributed

Artificial Intelligence. Harlow: Addison-Wesley Longman, 1999.

[92] Richard Fikes and Tom Kehler. “The role of frame-based represen-

tation in reasoning”. In: Communications of the ACM 28.9 (1985).

Pp. 904–920.

[93] Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire.

“KQML as an agent communication language”. In: Proceedings of the

3rd International Conference on Information and Knowledge Manage-

ment (CIKM94). 1994. Pp. 456–463.

[94] FIPA. FIPA Specifications. Online. Accesed: May 2008. URL: http:

//www.fipa.org/specifications/index.html.

[95] Giorgios Flouris, Dimitris Plexousakis, and Grigoris Antoniou. “On

applying the AGM theory to DLs and OWL”. In: LNCS 3729. Pro-

ceedings of the 4th International Semantic Web Conference (ISWC 05).

Galway, Ireland 2005. Pp. 216–231.

[96] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlis-

sides. Design patterns: Elements of reusable object-oriented software.

Addison-Wesley Professional, 1994. P. 416.

[97] Aldo Gangemi. “Ontology design patterns for Semantic Web con-

tent”. In: LNCS 3729. Proceedings of the 4th International Semantic

Web Conference (ISWC 05). Galway, Ireland 2005. Pp. 262–276.

[98] David Garlan, Dan Siewiorek, Asim Smailagic, and Peter Steenkiste.

“Project Aura: Toward distraction-free Pervasive Computing”. In:

IEEE Pervasive Computing 1.2 (2002). Pp. 22–31.

[99] David Gelernter. “Generative communication in Linda”. In: ACM

Transactions on Programming Languages and Systems 7.1 (1985).

Pp. 80–112.

http://www.fipa.org/specifications/index.html
http://www.fipa.org/specifications/index.html

BIBLIOGRAPHY 206

[100] Michael R. Genesereth and Richard Fikes. Knowledge Interchange

Format, Version 3.0. Reference Manual. Online. Knowledge Systems

Laboratory, University of Stanford. 1992. URL: http://www-ksl.

stanford.edu/knowledge-sharing/papers/kif.ps.

[101] Silvio Ghilardi, Carsten Lutz, and Frank Wolter. “Did I damage my

ontology? A case for conservative extensions in Description Logics”.

In: Proceeding of the of 10th International Conference on Principles of

Knowledge Representation and Reasoning (KR2006). Lake District, UK

2006. Pp. 187–197.

[102] Peter G. Goldschmidt. “HIT and MIS: Implications of health informa-

tion technology and medical information systems”. In: Communica-

tions of the ACM 48.10 (2005). Pp. 68–74.

[103] Asuncion Góomez-Pérez, Oscar Corcho, and Mariano Fernández-

López. Ontological Engineering: with examples from the areas

of Knowledge Management, e-Commerce and the Semantic Web.

Springer, 2004.

[104] Ian Gorton. “Essential Software Architecture”. In: ed. by Ian Gor-

ton. Springer, 2006. Chap. Understanding Software Architecture,

pp. 1–15.

[105] Thomas R. Gruber. “A translation approach to portable ontology

specifications”. In: Knowledge Acquisition 5.2 (1993). Pp. 199–220.

[106] Tao Gu, Hung Keng Pung, and Da Qing Zhang. “A service-oriented

middleware for building context-aware services”. In: Journal of Net-

work and Computer Applications 28.1 (2005). Pp. 1–18.

[107] Ramanathan Guha, Rob McCool, and Richard Fikes. “Contexts for

the Semantic Web”. In: LNCS 3298. Proceedings of the 3rd Interna-

tional Semantic Web Conference (ISWC 04). Hiroshima, Japan 2004.

Pp. 32–46.

http://www-ksl.stanford.edu/knowledge-sharing/papers/kif.ps
http://www-ksl.stanford.edu/knowledge-sharing/papers/kif.ps

BIBLIOGRAPHY 207

[108] Volker Haarslev and Ralf Moller. “Description of the RACER System

and its Applications”. In: CEUR-WS 49. Proceedings of the Interna-

tional Workshop on Description Logics (DL-2001). Stanford Univer-

sity, California, USA 2001.

[109] Peter Haase, Pascal Hitzler, Sebastian Rudolph, and Guilin Qi. For-

malisms for context sensitivity (state-of-the-art review). Tech. rep.

D.3.1.1. Institute AIFB, University of Karlsruhe, 2006. URL: http://

www.neon-project.org/web-content/index.php?option=

com_weblinks&task=view&catid=17&id=30.

[110] E.S. Hall, D.K. Vawdrey, C.D. Knutson, and J.K. Archibald. “Enabling

remote access to personal electronic medical records”. In: IEEE Engi-

neering in Medicine and Biology Magazine 22.3 (2003). Pp. 133–139.

[111] Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, and Paul Web-

ster. “The anatomy of a context-aware application”. In: Wireless Net-

works 8.2 (2002). Pp. 187–197.

[112] James Hendler. “Agents and the Semantic Web”. In: IEEE Intelligent

Systems 16.2 (2001). Pp. 30–37.

[113] James Hendler. Shirkyng my responsibility. Online. Nov. 2007. URL:

http://www.mindswap.org/blog/2007/11/21/shirkyng-

my-responsibility/.

[114] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram.

“Design Science in Information Systems Research”. In: MIS Quarterly

28.1 (2004). Pp. 75–105.

[115] Jason I. Hong and James A. Landay. “An infrastructure approach to

context-aware computing”. In: Human-Computer Interaction 16.2-5

(2001). Pp. 287–303.

[116] Matthew Horridge, Sean Bechhofer, and Olaf Noppens. “Igniting the

OWL 1.1 Touch Paper: The OWL API”. In: CEUR-WS 258. Proceed-

ings of the OWLED’07 Workshop on OWL: Experiences and Directions.

Innsbruck, Austria 2007.

http://www.neon-project.org/web-content/index.php?option=com_weblinks&task=view&catid=17&id=30
http://www.neon-project.org/web-content/index.php?option=com_weblinks&task=view&catid=17&id=30
http://www.neon-project.org/web-content/index.php?option=com_weblinks&task=view&catid=17&id=30
http://www.mindswap.org/blog/2007/11/21/shirkyng-my-responsibility/
http://www.mindswap.org/blog/2007/11/21/shirkyng-my-responsibility/

BIBLIOGRAPHY 208

[117] Matthew Horridge, Nick Drummond, John Goodwin, Alan Rector,

Robert Stevens, and Hai H. Wang. “The Manchester OWL Syntax”.

In: CEUR-WS 216. Proceedings of the OWLED’06 Workshop on OWL:

Experiences and Directions. Athens, Georgia, USA 2006.

[118] Ian Horrocks. “Using an Expressive Description Logic: FaCT or Fic-

tion?”. In: Procedings of the Sixth International Conference on Princi-

ples of Knowledge Representation and Reasoning (KR’98). Trento, Italy

1998. Pp. 636–645.

[119] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. “The even more ir-

resistible SROIQ”. In: Proceedings of the 10th International Con-

ference on Principles of Knowledge Representation and Reasoning (KR

2006). Lake District, UK 2006. Pp. 452–457.

[120] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen.

“From SHIQ and RDF to OWL: the making of a Web Ontology Lan-

guage”. In: Web Semantics: Science, Services and Agents on the World

Wide Web 1.1 (2003). Pp. 7–26.

[121] Ian Horrocks and Peter Patel-Schneider. “Reducing OWL entailment

to description logic satisfiability”. In: Web Semantics: Science, Services

and Agents on the World Wide Web 1.4 (2004). Pp. 345–357.

[122] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. “Practical reasoning

for expressive Description Logics”. In: LNCS 1705. Logic for Program-

ming and Automated Reasoning. 1999. Pp. 161–180.

[123] Wen-Chen Hu, Chung-Wei Lee, and Weidong Kou. Advances in secu-

rity and payment methods for mobile commerce. Idea Group Publish-

ing, 2004.

[124] IEEE. IEEE Standards Description: 1471-2000. Online. 2000. URL:

http://standards.ieee.org/reading/ieee/std_public/

description/se/1471-2000_desc.html.

[125] Juhani Iivari. “A paradigmatic analysis of contemporary schools of

IS development”. In: European Journal of Information Systems 1.4

(1991). Pp. 249–272.

http://standards.ieee.org/reading/ieee/std_public/description/se/1471-2000_desc.html
http://standards.ieee.org/reading/ieee/std_public/description/se/1471-2000_desc.html

BIBLIOGRAPHY 209

[126] Juhani Iivari. “Information Systems development: Advances in the-

ory, practice, and education”. In: ed. by Olegas Vasilecas, Wita

Wojtkowski, Jože Zupančič, Albertas Caplinskas, W. Gregory Wo-

jtkowski, and Stanislaw Wrycza. Springer, 2005. Chap. Information

Systems as a Design Science. Advances in theory, practice, and edu-

cation.

[127] Juhani Iivari. “Towards Information Systems as a science of meta-

artifacts”. In: Communications of the Association for Information Sys-

tems 12 (2003). Pp. 568–581.

[128] Informa Telecoms and Media. Mobile Converged Devices: Enabling

IMS, SIP, UMA & VCC servicesWorldwide market Analysis, Strategic

Outlook & Forecasts to 2012. Tech. rep. 2007. URL: http://www.

the-infoshop.com/pdf/itm55508.pdf.

[129] Heecheol Jeon, Charles Petrie, and Mark R. Cutkosky. “JATLite: A

Java Agent Infrastructure with Message Routing”. In: IEEE Internet

Computing 4.2 (2000). Pp. 87–96.

[130] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ulrike Sattler,

Thomas Schneider, and Rafael Berlanga. “Safe and economic re-

use of ontologies: A logic-Based methodology and tool support”. In:

LNCS 5021. Proceedings of the 5th European Semantic Web Conference

(ESWC 08). Tenerife, Spain 2008. Pp. 185–199.

[131] Jin Jing, Abdelsalam Sumi Helal, and Ahmed Elmagarmid. “Client-

server computing in mobile environments”. In: ACM Computing Sur-

veys 31.2 (1999). Pp. 117–157.

[132] Brad Johanson, Armando Fox, and Terry Winograd. “The Interactive

Workspaces project: experiences with ubiquitous computing rooms”.

In: Pervasive Computing, IEEE 1.2 (2002). Pp. 67–74.

[133] Rod Johnson. Expert one-on-one J2EE design and development. Wrox,

2002. ISBN: 0764543857.

http://www.the-infoshop.com/pdf/itm55508.pdf
http://www.the-infoshop.com/pdf/itm55508.pdf

BIBLIOGRAPHY 210

[134] Diane Jordan and John Evdemon. Web Services Business Process Exe-

cution Language Version 2.0. Online. Oasis Standard. Apr. 2007. URL:

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.

0-OS.html.

[135] Eero Kasanen, Kari Lukka, and Arto Siitonen. “The constructive ap-

proach in Management Accounting research”. In: Journal of Manage-

ment Accounting Research 5 (1993). Pp. 243–264.

[136] Yarden Katz and Bijan Parsia. “Towards a Nonmonotonic Extension

to OWL”. In: CEUR-WS 188. Proceedings of the OWLED’05 Workshop

on OWL: Experiences and Directions. Galway, Ireland 2005.

[137] Nickolas Kavantzas, David Burdett, Gregory Ritzinger, Tony Fletcher,

Yves Lafon, and Charlton Barreto. Web Services Choreography De-

scription Language Version 1.0. Online. W3C Candidate Recommen-

dation. Nov. 2005. URL: http://www.w3.org/TR/ws-cdl-10/.

[138] Peter G. Keen and Ron Mackintosh. The freedom economy. McGraw-

Hill Professional, 2001.

[139] Mohamed Khedr and Ahmed Karmouch. “ACAI: agent-based context-

aware infrastructure for spontaneous applications”. In: Journal of

Network and Computer Applications 28.1 (2005). Pp. 19–44.

[140] Deepali Khushraj, Ora Lassila, and Tim Finin. “sTuples: semantic

tuple spaces”. In: Proceedings of Mobile and Ubiquitous Systems:

Networking and Services, 2004. MOBIQUITOUS 2004. Boston, Mas-

sachusetts, USA 2004. Pp. 268–277.

[141] Michael Kifer. “Rules and Ontologies in F-Logic”. In: LNCS 3564. Pro-

ceedings of Reasoning Web: First International Summer School. Msida,

Malta 2005. Pp. 22–34.

[142] Michael Kifer, Georg Lausen, and James Wu. “Logical Foundations

of Object-Oriented and Frame-Based Languages”. In: Journal of the

ACM 42 (1995). Pp. 741–843.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/ws-cdl-10/

BIBLIOGRAPHY 211

[143] Ozgur Kilic, Veli Bicer, and Asuman Dogac. Mapping

Archetypes to OWL. Online. 2005. URL: http : / / www .

srdc . metu . edu . tr / webpage / publications / 2005 /

MappingArchetypestoOWLTechnical.pdf.

[144] Eunhoe Kim and Jaeyoung Choi. “A context-awareness middleware

based on Service-Oriented Architecture”. In: LNCS 4611. Proceedings

of the Ubiquitous Intelligence and Computing Conference (UIC-07).

Hong Kong, China 2007. Pp. 953–962.

[145] Tim Kindberg and John Barton. “A Web-based nomadic computing

system”. In: Computer Networks 35 (2001). Pp. 443–456.

[146] George J. Klir and Bo Yuan. Fuzzy sets and fuzzy logic. Prentice Hall,

1995.

[147] Holger Knublauch, Ray W. Fergerson, Natalya F. Noy, and Mark A.

Musen. “The Protégé OWL plugin: An open development environ-

ment for Semantic Web applications”. In: LNCS 3298. Proceedings of

the 3rd International Semantic Web Conference (ISWC 04). Hiroshima,

Japan 2004. Pp. 229–243.

[148] Vladimir Kolovski, Bijan Parsia, and Yarden Katz. “Implementing

OWL Defaults ”. In: CEUR-WS 216. Proceedings of the OWLED’06

Workshop on OWL: Experiences and Directions. Athens, Georgia, USA

2006.

[149] Panu Korpipää, Jani Mäntyjärvi, Juha Kela, Heikki Keränen, and

Eski-Juhani Malm. “Managing context information in mobile de-

vices”. In: Pervasive Computing, IEEE 2 (2003). Pp. 42–51.

[150] Michal Kostic. “Code Generation from AML”. PhD thesis. Univerzity

Komenského, Bratislava, 2006.

[151] Georg von Krogh, Kazuo Ichijo, and Ikujiro Nonaka. Enabling knowl-

edge creation: How to unlock the mystery of tacit knowledge and release

the power of innovation. Oxford University Press, 2000.

http://www.srdc.metu.edu.tr/webpage/publications/2005/MappingArchetypestoOWLTechnical.pdf
http://www.srdc.metu.edu.tr/webpage/publications/2005/MappingArchetypestoOWLTechnical.pdf
http://www.srdc.metu.edu.tr/webpage/publications/2005/MappingArchetypestoOWLTechnical.pdf

BIBLIOGRAPHY 212

[152] Reto Krummenacher, Francisco J. Martin-Recuerda, Martin Murth,

and Johannes Riemer. TSC Deliverable D1.2 TSC Framework. On-

line. Project Deliverable. July 2006. URL: http://tsc.deri.at/

deliverables/D12v11.html.

[153] Yu-Kwong Ricky Kwok and Vincent K.N. Lau. Wireless Internet

and Mobile Computing: Interoperability and Performance. Wiley-IEEE

Press, 2007.

[154] Ohbyung Kwon, Sungchul Choi, and Gyuro Park. “NAMA: a context-

aware multi-agent based web service approach to proactive need

identification for personalized reminder systems”. In: Expert Systems

with Applications 29.1 (2005). Pp. 17–32.

[155] Cristian Pérez de Laborda Schwankhart. “Incorporating Relational

Data into the Semantic Web”. PhD thesis. Heinrich-Heine-Universität

Düsseldorf, 2006.

[156] Jennifer Lai, Anthony Levas, Paul Chou, Claudio Pinhanez, and

Marisa Viveros. “BlueSpace: personalizing workspace through

awareness and adaptability”. In: International Journal of Human-

Computer Studies 57 (2002). Pp. 415–428.

[157] Ora Lassila. “Using the Semantic Web in Mobile and Ubiquitous Com-

puting”. In: Proceedings of the IFIP International Federation for Infor-

mation Processing : Industrial Applications of Semantic Web. 2005.

Pp. 19–25.

[158] Ora Lassila and Deepali Khushraj. “Contextualizing Applications via

Semantic Middleware”. In: Proceedings of the 2nd Annual Interna-

tional Conference on Mobile and Ubiquitous Systems: Networking and

Services (MobiQuitous 05). San Diego, California, USA 2005.

[159] Valentino Lee, Heather Schneider, and Robbie Schell. Mobile applica-

tions: Architecture, design, and development. Prentice Hall, 2004.

[160] Fritz Lehmann. “Semantic networks”. In: Computers & Mathematics

with Applications 23 (1992). Pp. 1–50.

http://tsc.deri.at/deliverables/D12v11.html
http://tsc.deri.at/deliverables/D12v11.html

BIBLIOGRAPHY 213

[161] Hector Levesque and Ronald Brachman. “Expressiveness and

tractability in knowledge representation and reasoning”. In: Com-

putational intelligence 3.1 (1987). Pp. 78–93.

[162] Hector Levesque, Fiora Pirri, and Ray Reiter. “Foundations for the

situation calculus”. In: Linköping Electronic Articles in Computer and

Information Science 3.18 (1998).

[163] Jinshan Liu, Daniele Sacchetti, Françoise Sailhan, and Valérie Is-

sarny. “Group management for mobile ad hoc networks: design, im-

plementation and experiment”. In: Proceedings of the 6th Interna-

tional Conference on Mobile Data Management. Ayia Napa, Cyprus

2005. Pp. 192–199.

[164] Steve Love. Understanding mobile human-computer interaction. Infor-

mation Systems Series. Butterworth-Heinemann, 2005.

[165] Thomas Lukasiewicz and Umberto Straccia. An Overview of Uncer-

tainty and Vagueness in Description Logics for The Semantic Web. Tech.

rep. Institut für Informationssysteme, Technische Universität Wien,

Austria, 2006.

[166] Alexander Maedche and Steffen Staab. “Measuring similarity be-

tween ontologies”. In: Proceedings of the 13th International Confer-

ence on Knowledge Engineering and Knowledge Management: Ontolo-

gies and the Semantic Web. Sigüenza, Spain 2002. Pp. 251–263.

[167] Frank Manola and Eric Miller. RDF Primer. Online. W3C Recommen-

dation. Feb. 2004. URL: http://www.w3.org/TR/rdf-primer/.

[168] Jani Mäntyjärvi and Tapio Seppänen. “Adapting applications in

handheld devices using fuzzy context information”. In: Interacting

with Computers 15.4 (2003). Pp. 521–538.

[169] Salvatore T. March and Gerald F. Smith. “Design and natural science

research on information technology”. In: Decision Support Systems

15.4 (1995). Pp. 251–266.

http://www.w3.org/TR/rdf-primer/

BIBLIOGRAPHY 214

[170] David Martin, Mark Burstein, Drew McDermott, Sheila McIlraith,

Massimo Paolucci, Katia Sycara, Deborah L. McGuinness, and Even

Sirin. “Bringing Semantics to Web Services with OWL-S”. In: World

Wide Web 10.3 (2007). Pp. 243–277.

[171] David Martin et al. OWL-S: Semantic Markup for Web Services. On-

line. W3C Member Submission. Nov. 2004. URL: http://www.w3.

org/Submission/OWL-S/.

[172] Ana Mas, ed. Agentes software y Sistemas Multi-Agente: Conceptos,

Arquitecturas y Aplicaciones. Pearson-Prentice Hall, 2005.

[173] Ryusuke Masuoka, Yannis Labrou, Bijan Parsia, and Even Sirin.

“Ontology-enabled Pervasive Computing applications”. In: IEEE In-

telligent Systems 18.5 (2003). Pp. 68–72.

[174] Neil Mawston. Nokia reaches 40% share as 332 million cellphones ship

worldwide in Q4 2007. Tech. rep. Strategy Analytics, 2008.

[175] Brian McBride. RDF Vocabulary Description Language 1.0: RDF

Schema. Online. W3C Recommendation. Feb. 2004. URL: http:

//www.w3.org/TR/rdf-schema/.

[176] D.L McGuiness and F. van Harmelen. OWL Web Ontology Language

Overview. Online. W3C Recommendation. Feb. 2004. URL: http:

//www.w3.org/TR/owl-features/.

[177] Sheila A. McIlraith, Tran C. Son, and Honglei Zeng. “Semantic Web

services”. In: Intelligent Systems 16.2 (2001). Pp. 46–53.

[178] Alexander Mikroyannidis. “Toward a Social Semantic Web”. In: Com-

puter 40.11 (2007). Pp. 113–115.

[179] Dejan Milojicic et al. “MASIF: The OMG mobile agent system interop-

erability facility”. In: Personal and Ubiquitous Computing 2.2 (1998).

Pp. 117–129.

[180] Jack Minker. “An overview of nonmonotonic reasoning and logic

programming”. In: The Journal of Logic Programming 17 (1993).

Pp. 95–126.

http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/

BIBLIOGRAPHY 215

[181] Boris Motik, Ian Horrocks, Riccardo Rosati, and Ulrike Sattler. “Can

OWL and Logic Programming live together happily ever after?”. In:

LNCS 4273. Proceedings of the 5th International Semantic Web Con-

ference (ISWC 06). Athens, Georgia, USA 2006. Pp. 501–514.

[182] Bernd Mrohs, Marko Luther, Raju Vaidya, Matthias Wagner, Stephan

Steglich, Wolfgang Kellerer, and Stefan Arbanowski. “OWL-SF - A

distributed semantic service framework”. In: Proceedings of the Work-

shop on Context Awareness for Proactive Systems (CAPS05). Helsinki

2005. Pp. 67–77.

[183] Joel Murach and Andrea Steelman. Murach’s Java Servlets and JSP

(2nd Edition). Mike Murach & Associates, 2008.

[184] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. “Soft-

ware architecture for Mobile Computing”. In: Proceedings of the 3rd

International School on Formal Methods for the Design of Computer,

Communication and Software Systems: Software Architectures (SFM

2003). Bertinoro, Italy 2003. Pp. 182–206.

[185] National Institutes of Health. National Center for Research Re-

sources. Electronic Health Records In Academic Medical Centers. On-

line. 2006. URL: http://www.ncrr.nih.gov/publications/

informatics/EHR.pdf.

[186] Eric Newcomer. Understanding Web Services: XML, WSDL, SOAP and

UDDI. Addison-Wesley Professional, 2002.

[187] Eric W. T. Ngai and Angappa Gunasekaran. “A review for mobile com-

merce research and applications”. In: Decision Support Systems 43

(2007). Pp. 3–15.

[188] Ilkka Niiniluoto. “The aim and structure of applied research”. In:

Erkenntnis 38.1 (1993). Pp. 1–21.

[189] Lyndon Nixon, Olena Antonechko, and Robert Tolksdorf. “Towards

semantic tuplespace computing: the Semantic Seb Spaces system”.

In: Proceedings of the 2007 ACM symposium on Applied Computing.

Seoul, Korea 2007. Pp. 360–365.

http://www.ncrr.nih.gov/publications/informatics/EHR.pdf
http://www.ncrr.nih.gov/publications/informatics/EHR.pdf

BIBLIOGRAPHY 216

[190] Natalya F. Noy, Ray W. Fergerson, and Mark A. Musen. “The knowl-

edge model of Protege-2000: Combining interoperability and flexi-

bility”. In: LNCS 1937. Proceedings of the 2th International Conference

on Knowledge Engineering and Knowledge Management (EKAW’2000).

Juan-les-Pins, France 2000. Pp. 69–82.

[191] Natalya F. Noy and Deborah L. McGuinness. Ontology Devel-

opment 101: A guide to creating your first Ontology. Online.

(Written). Knowledge Systems Laboratory. 2001. URL: http://

www.ksl.stanford.edu/people/dlm/papers/ontology101/

ontology101-noy-mcguinness.html.

[192] Natalya F. Noy, Michael Sintek, Stefan Decker, Monica Crubezy, Ray

W. Fergerson, and Mark A. Musen. “Creating Semantic Web contents

with Protege-2000”. In: IEEE Intelligent Systems 2 (2001). Pp. 60–71.

[193] Jay F. Nunamaker, Minder Chen, and Titus D.M. Purdin. “Systems

development in Information Systems research”. In: Journal of Man-

agement Information Systems 7.3 (1991). Pp. 99–106.

[194] Tero Ojanperä. “Convergence Transforms Internet”. In: Wireless Per-

sonal Communications 37 (2006). Pp. 167–185.

[195] Ontology Engineering and Patterns Task Force. Online. Feb. 2008.

URL: http://www.w3.org/2001/sw/BestPractices/OEP/.

[196] Charles Oppenheim. “Managers’ use and handling of information”.

In: International Journal of Information Management 17 (1997).

Pp. 239–248.

[197] Tim O’Reilly. What Is Web 2.0. Online. Sept. 2005. URL: http://

www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/

30/what-is-web-20.html.

[198] Amir Padovitz, Seng W. Loke, and Arkady Zaslavsky. “The ECORA

framework: A hybrid architecture for context-oriented pervasive

computing”. In: Pervasive and Mobile Computing (In Press).

[199] Christos H. Papadimitriou. Computational Complexity. Addison Wes-

ley, 1993.

http://www.ksl.stanford.edu/people/dlm/papers/ontology101/ontology101-noy-mcguinness.html
http://www.ksl.stanford.edu/people/dlm/papers/ontology101/ontology101-noy-mcguinness.html
http://www.ksl.stanford.edu/people/dlm/papers/ontology101/ontology101-noy-mcguinness.html
http://www.w3.org/2001/sw/BestPractices/OEP/
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

BIBLIOGRAPHY 217

[200] Bijan Parsia and Peter F. Patel-Schneider. OWL 2 Web Ontology Lan-

guage primer. Online. W3C Working Draft. Apr. 2008. URL: http:

//www.w3.org/TR/owl2-primer/.

[201] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL Web

Ontology Language Semantics and Abstract Syntax. Online. W3C Rec-

ommendation. Feb. 2004. URL: http://www.w3.org/TR/owl-

semantics/.

[202] Peter F. Patel-Schneider, Ian Horrocks, and Bernardo Cuenca Grau.

OWL 1.1 Web Ontology Language Overview. Online. W3C Member

Submission. Dec. 2006. URL: http://www.w3.org/Submission/

2006/SUBM-owl11-overview-20061219/.

[203] Terry R. Payne. “Web Services from an Agent Perspective”. In: IEEE

Intelligent Systems 23.2 (2008). Pp. 12–14.

[204] Alex P. Pentland. “Smart rooms”. In: Scientific American 274 (1996).

Pp. 54–62.

[205] Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. “Jadex:

Implementing a BDI-Infrastructure for JADE Agents”. In: EXP – in

search of innovation 3 (2003). Pp. 76–85.

[206] Shankar R. Ponnekanti, Brad Johanson, Emre Kiciman, and Armando

Fox. “Portability, Extensibility and Robustness in iROS”. In: Proceed-

ings of the First IEEE International Conference on Pervasive Comput-

ing and Communications, 2003. (PerCom 2003). Dallas, Texas, USA

2003. P. 11.

[207] Ian Poole. Cellular Communications Explained: From Basics to 3G.

Newnes, 2006.

[208] Stefan Poslad, Phil Buckle, and Rob Hadingham. “The FIPA-OS agent

platform: Open Source for Open Standards”. In: Proceedings of the

5th International Conference and Exhibition on the Practical Applica-

tion of Intelligent Agents and Multi-Agents (2000). Pp. 355–368.

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/owl-semantics/
http://www.w3.org/Submission/2006/SUBM-owl11-overview-20061219/
http://www.w3.org/Submission/2006/SUBM-owl11-overview-20061219/

BIBLIOGRAPHY 218

[209] Eric Prud’hommeaux. SPASQL: SPARQL Support In MySQL. Online.

2005. URL: http://www.w3.org/2005/05/22-SPARQL-MySQL/

XTech.

[210] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language

for RDF. Online. W3C Recommendation. Jan. 2008. URL: http://

www.w3.org/TR/rdf-sparql-query/.

[211] Gilin Qi. Context representation formalism. Tech. rep. D.3.1.2. Uni-

versität Karlsruhe (TH), 2007.

[212] He Qiu-sheng and Tu Shi-liang. “A lightweight architecture to sup-

port context-aware ubiquitous agent system”. In: LNCS 4088. Agent

Computing and Multi-Agent Systems: 9th Pacific Rim International

Workshop on Multi-Agents. Guilin, China 2006. Pp. 696–701.

[213] M. Ross Quillian. “Word concepts: A theory and simulation of some

basic semantic capabilities”. In: Behavioral Science 12.5 (1967).

Pp. 410–430.

[214] Carlos Ramos, Juan Carlos Augusto, and Daniel Shapiro. “Ambient

Intelligence – The next step for Artificial Intelligence”. In: IEEE Intel-

ligent Systems 23 (2008). Pp. 15–18.

[215] Anand Ranganathan, Jalal Al-Muhtadi, and Roy H. Campbell. “Rea-

soning about uncertain contexts in pervasive computing environ-

ments”. In: IEEE Pervasive Computing 3.2 (2004). Pp. 62–70.

[216] Anand Ranganathan and Roy H. Campbell. “A middleware for

context-aware agents in Ubiquitous Computing environments”. In:

Proceedings of ACM/IFIP/USENIX International Middleware Confer-

ence. Rio de Janeiro, Brazil 2003. Pp. 16–20.

[217] Anand Ranganathan, Robert E. McGrath, Roy H. Campbell, and

M. Dennis Mickunas. “Use of ontologies in a pervasive comput-

ing environment”. In: Knowledge Engineering Review 18.3 (2003).

Pp. 209–220.

http://www.w3.org/2005/05/22-SPARQL-MySQL/XTech
http://www.w3.org/2005/05/22-SPARQL-MySQL/XTech
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

BIBLIOGRAPHY 219

[218] Alan Rector and Jeremy Rogers. “Ontological and practical issues

in using a Description Logic to represent medical concept systems:

Experience from GALEN”. In: LNCS 4126. Reasoning Web. Second In-

ternational Summer School, Tutorial Lectures. Lisbon, Portugal 2006.

Pp. 197–231.

[219] Jacqueline R. Reich. “Ontological design patterns: Metadata of

molecular biological ontologies, information and knowledge”. In:

Proceedings of the 11th International Conference on Database and

Expert Systems Applications (DEXA 2000). London, UK 2000.

Pp. 698–709.

[220] Bradley J. Rhodes, Nelson Minar, and Josh Weaver. “Wearable

Computing meets Ubiquitous Computing: Reaping the best of both

worlds”. In: Third International Symposium on Wearable Computers

(ISWC’99). Digest of Papers. San Francisco, California, USA 1999.

Pp. 141–149.

[221] Jeremy Rogers, Angus Roberts, Danny Solomon, Egbert van der Har-

ing, Christopher Wroe, Pieter Zanstra, and Alan Rector. “GALEN ten

years on: tasks and supporting tools”. In: Proceedings of Congress

of the International Medical Informatics Association (MEDINFO2001).

London, UK 2001. Pp. 256–260.

[222] Isabel Román. Ontology for EHR. Online. (Accessed). 2008. URL:

http://trajano.us.es/~isabel/EHR/.

[223] Stuart J. Russell and Peter Norvig. Artificial intelligence: a modern

approach. Prentice-Hall, 1995.

[224] Ivo Salmre. Writing mobile Code: Essential software engineering for

building mobile applications. Addison-Wesley Professional, 2005.

[225] Ellie Sanchez, ed. Fuzzy Logic and the Semantic Web. Elsevier Science,

2006.

[226] Mahadev Satyanarayanan. “Pervasive computing: vision and chal-

lenges”. In: IEEE Personal Communications 8.4 (2001). Pp. 10–17.

http://trajano.us.es/~isabel/EHR/

BIBLIOGRAPHY 220

[227] Andrea Schaerf. “Reasoning with individuals in concept languages”.

In: Data Knowledge and Engineering 13.2 (1994). Pp. 141–176.

[228] Manfred Schmidt-Schauss and Gert Smolka. “Attributive concept de-

scriptions with complements”. In: Artificial Intelligence 48.1 (1991).

Pp. 1–26.

[229] Albrecht Schmidt, Michael Beigl, and Hans-W. Gellersen. “There

is more to context than location”. In: Computers & Graphics 23.6

(1999). Pp. 893–901.

[230] Nigel Shadbolt, Wendy Hall, and Tim Berners-Lee. “The semantic

Web revisited”. In: Intelligent Systems 21.3 (2006). Pp. 96–101.

[231] David Shenk. Data Smog: Surviving the information glut. Harper-

Collins Publishers, 1997. P. 250.

[232] Clay Shirky. The Semantic Web, Syllogism, and Worldview. On-

line. Nov. 2003. URL: http://www.shirky.com/writings/

semantic_syllogism.html.

[233] Abhishek Singh and Michael Conway. Survey of context aware frame-

works: Analysis and criticism. Online. 2006. URL: http://its.

unc.edu/teap/tap/core/caf_review.pdf.

[234] Even Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,

and Yarden Katz. “Pellet: A practical OWL-DL reasoner”. In: Web

Semantics: Science, Services and Agents on the World Wide Web 5.2

(2007). Pp. 51–53.

[235] John Soldatos, Ippokratis Pandis, Kostas Stamatis, Lazaros Poly-

menakos, and James L. Crowley. “Agent based middleware infras-

tructure for autonomous context-aware ubiquitous computing ser-

vices”. In: Computer Communications 30.3 (2007). Pp. 577–591.

[236] John Soldatos, Kostas Stamatis, Siamak Azodolmolky, Ippokratis

Pandis, and Lazaros Polymenakos. “Semantic Web technologies for

Ubiquitous Computing resource management in smart spaces”. In:

International Journal of Web Engineering and Technology 3 (2007).

Pp. 353–373.

http://www.shirky.com/writings/semantic_syllogism.html
http://www.shirky.com/writings/semantic_syllogism.html
http://its.unc.edu/teap/tap/core/caf_review.pdf
http://its.unc.edu/teap/tap/core/caf_review.pdf

BIBLIOGRAPHY 221

[237] John F. Sowa. Conceptual structures: information processing in mind

and machine. Addison-Wesley, 1984.

[238] John F. Sowa. Knowledge Representation. Logical, Philosophical and

Computational Foundations. Brooks/Cole, 2000.

[239] Steffen Staab, Michael Erdmann, and Alexander Maedche. “Engi-

neering ontologies using semantic patterns”. In: Proceedings of the

IJCAI-01 Workshop on E-Business & the Intelligent Web. Seattle, USA

2001. Pp. 174–185.

[240] Andrew J. Stanley and Philip S. Clipsham. “Information overload:

myth or reality?”. In: Proceedings of the IEEE Colloquium on IT Strate-

gies for Information Overload. London, UK 1997. Pp. 1–4.

[241] Damian Steer. SquirrelRDF. Online. (Accessed). 2008. URL: http:

//jena.sourceforge.net/SquirrelRDF/.

[242] Giorgos Stoilos, Giorgos Stamou, Jeff Z. Pan, V Tzouvaras, and Ian

Horrocks. “Reasoning with very expressive fuzzy Description Logics”.

In: Journal of Artificial Intelligence Research 30 (2007). Pp. 273–320.

[243] Giorgos Stoilos, Nikos Simou, Giorgos Stamou, and Stefanos Kollias.

“Uncertainty and the Semantic Web”. In: IEEE Intelligent Systems 21

(2006). Pp. 84–87.

[244] Peter Stone and Manuela Veloso. “Multiagent Systems: A survey from

a Machine Learning perspective”. In: Autonomous Robots 8.3 (2000).

Pp. 345–383.

[245] Umberto Straccia. “Fuzzy Logic and the Semantic Web”. In: ed. by

Elie Sanchez. Vol. 1. Capturing Intelligence. Elsevier Science, 2006.

Chap. Uncertainty and Description Logic programs over lattices,

pp. 115–133.

[246] Umberto Straccia. “Reasoning within fuzzy Description Logics”. In:

Journal of Artificial Intelligence Research 14 (2001). Pp. 137–166.

http://jena.sourceforge.net/SquirrelRDF/
http://jena.sourceforge.net/SquirrelRDF/

BIBLIOGRAPHY 222

[247] Umberto Straccia. “Transforming fuzzy Description Logics into clas-

sical Description Logics”. In: LNCS 3229. Proceedings of the 9th Euro-

pean Conference on Logics in Artificial Intelligence (JELIA-04). Lisbon,

Portugal 2004. Pp. 385–399.

[248] Thomas Strang and Claudia Linnhoff-Popien. “A context modeling

survey”. In: Proceedings of the Workshop on Advanced Context Mod-

elling, Reasoning and Management associated with the Sixth Interna-

tional Conference on Ubiquitous Computing (UbiComp 2004). 2004.

[249] H. Stuckenschmidt. “Toward multi-viewpoint reasoning with OWL

ontologies”. In: LNCS 4011. Proceedings of the 3rd European Semantic

Web Conference (ESWC 06). Budva, Montenegro 2006. Pp. 259–272.

[250] Rudi Studer, V. Richard Benjamins, and Dieter Fensel. “Knowledge

engineering: principles and methods”. In: Data Knowledge Engineer-

ing 25.1-2 (1998). Pp. 161–197.

[251] Gerhard Sutschet. The CHIL reference model architecture for multi-

modal perceptual Systems. Online. 2007. URL: http://chil.

server.de/servlet/is/6503/.

[252] Vojtěch Svátek. “Design patterns for Semantic Web ontologies: Moti-

vation and discussion”. In: Proceedings of the 7th Conference on Busi-

ness Information Systems (BIS2004). Poznaň, Poland 2004.

[253] Simon G. Thompson and Behnam Azvine. “No Pervasive Computing

without Intelligent Systems”. In: BT Technology Journal 22.3 (2004).

Pp. 39–49.

[254] Stephan Tobies. “Complexity Results and Practical Algorithms for

Logics in Knowledge Representation”. PhD thesis. RWTH Aachen,

2001.

[255] Robert Tolksdorf, Lyndon Nixon, Elena Paslaru Bontas, Duc Minh

Nguyen, and Franziska Liebsch. “Enabling real world Semantic Web

applications through a coordination middleware”. In: Proceedings of

the 2nd European Semantic Web Conference. Heraklion, Greece 2005.

Pp. 679–693.

http://chil.server.de/servlet/is/6503/
http://chil.server.de/servlet/is/6503/

BIBLIOGRAPHY 223

[256] Ivan Trencansky and Radovan Cervenka. “Agent Modelling Language

(AML): A comprehensive approach to modelling MAS”. In: Informat-

ica 29.4 (2005). Pp. 391–400.

[257] Paul Warren. “From Ubiquitous Computing to Ubiquitous Intelli-

gence”. In: BT Technology Journal 22.2 (2004). Pp. 28–38.

[258] Mark Weiser. “The computer for the 21st century”. In: Scientific

American 265.3 (1991). Pp. 94–104.

[259] Gerhard Weiss, ed. Multiagent systems: a modern approach to dis-

tributed artificial intelligence. MIT Press, 1999. P. 619.

[260] Wayne Wolf. Computers as components: Principles of Embedded Com-

puting system design. Morgan Kaufmann, 2001.

[261] Stephen S. Yau, Fariaz Karim, Yu Wang, Bin Wang, and Sandeep K.S.

Gupta. “Reconfigurable context-sensitive middleware for Pervasive

Computing”. In: IEEE Pervasive Computing 01.3 (2002). Pp. 33–40.

[262] Giulio Zambon and Michael Sekler. Beginning JSP, JSF and Tomcat

Web Development: From Novice to Professional. Apress, 2007.

[263] Weishan Zhang, Thomas Kunz, and Klaus Marius. “Product Line En-

abled Intelligent Mobile Middleware”. In: Proceedings of the 12th

IEEE International Conference on Engineering Complex Computer Sys-

tems. Auckland, New Zealand 2007. Pp. 148–160.

[264] Evgeny Zolin. Description Logic Complexity Navigator. Online. (Ac-

cessed). Apr. 2008. URL: http://www.cs.man.ac.uk/~ezolin/

dl/.

http://www.cs.man.ac.uk/~ezolin/dl/
http://www.cs.man.ac.uk/~ezolin/dl/

	Cover

	Contents

	Resumen
	Motivación
	Propuesta
	Contenidos
	Contribuciones

	1 Introduction
	1.1 Antecedents
	1.2 Objectives
	1.3 Methodology
	1.4 Thesis structure

	2 Knowledge Mobilization
	2.1 Definition
	2.2 KMob and Ubiquitous Computing
	2.3 Use cases
	2.4 Methods, technologies and tools
	2.5 Related work
	2.6 Towards Knowledge Mobilization

	3 An Architecture for Knowledge Mobilization
	3.1 Rationale
	3.2 Agent-based architectures
	3.3 Architecture description
	3.4 Frameworks and technologies

	4 A Context-Dependent Model for Knowledge Mobilization
	4.1 Rationale
	4.2 Related work
	4.3 Definition
	4.4 Context-aware reasoning
	4.5 CDS Plug-in for Protégé
	4.6 A fuzzy extension of the CDS pattern

	5 A Knowledge Mobilization Application
	5.1 Problem description
	5.2 Related work
	5.3 Design
	5.4 Implementation
	5.5 Execution

	6 Conclusions and Future Work
	Appendices
	A Ontologies and Description Logics
	A.1 Background
	A.2 Definition
	A.3 Description Logics
	A.4 Reasoning in Description Logics
	A.5 Fuzzy Description Logics

	B The Semantic Web
	B.1 Basics
	B.2 The Resource Description Framework (RDF)
	B.3 The Web Ontology Language (OWL)
	B.4 Semantic Web technologies
	B.5 Semantic Web Services
	B.6 The future of the Semantic Web

	Bibliography

