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Resume

At the engineering practice non destructive techniques are required in order to analyse the presence

of deffects in materials. To obtain practical solutions, it is necessary to solve the so-called Inverse

Identification Problem with numerical techniques. After it, the experimental tests will provide input

data that permits the identification and inspection of specimens.

The focus of this work is the Inverse Identification Problem, stated at an important domain for

the industry sector in practice: an infinite plate. An elastic, homogeneous and isotropic material is

considered, and a three dimensional infinite domain, limited between two parallel planes defines

the layer domain. Inside of this plate there exists defects, in form of ellipsoid cavities. In order to

identify such cavities, an elastodynamic problem is stated: at an accesible part of the boundary, a set

of excitation points are defined; at different locations, a set of measurement points are fixed. The mis-

fit between the experimental and the measured data for a parametrized given location of the cavity

generates a cost function. Such cost function might be enriched with some kind of a-priori informa-

tion, such as volume of deffects. The inverse problem is stated as an Optimization Problem. The

Adjoint Variable Method is adopted in order to compute semi-analytic gradients required for BFGS

algorithm. The forward problem is solved with a Boundary Element code based on the Regularized

Boundary Integral Equation. An specific Green function has been developed in order to require a

mesh only at the cavity boundary. A set of numerical tests have been carried out in order to test de

dependence on some parameters of the optimization process: position of sources/receivers, random

noise at measurement, material damping, number of parameters, etc.

The analysis of singular tractions at sharp corners and edges is also considered in the analysis.

The development of an specific set of traction singular elements has been carried out. It has been

used in the context of inverse analysis. The presence of corners and edges generates new difracted

fields that must be properly modelized, to obtain the shape of the hidden cavities. The sensitivity to

traction shape functions has been carried out for two support configurations.

A different way to minimize the cost function is the linearization of the response in terms of the

so-called Topological Derivative. The displacement expansion in the frequency domain is obtained.

Based on it, the linearization of the cost function is carried out. At each three-dimensional point,

an optimum volume is obtained for the case of single or multiple cavity. The evaluation of the

approximed cost function is fast. This causes that zero order global optimization method, such as

Genetic Algorithm, are proposed to find the optimum position and volume of cavities. The use of

the Topological Sensitivity is also tested as an image method. A set of numerical benchmark is carried

out, with interesting conclusions for the case of simple or multiple deffect search.
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CHAPTER 1

Introduction, objetives and methodology

1.1 Introduction

Testing of materials by non destructive methods requires a set of numerical and experimental tools.

This PhD work is focused on the numerical solution of the Inverse Identification problem, stated at a

three-dimensional viscoelastic layer. The aim of the IIP stated is the identification of hidden cavities

inner in a three-dimensional viscoelastic layer, based on the scattering of time-harmonic waves. This

particular domain is very interesting for industrial aplications. Despite the use of guided waves in

testing of materials is a classical topic in the literature, the number of papers focused on the Inverse

Problem stated as an optimization problem for the layer domain is reduced. The main reason is that

no closed form or fully integrable numerical solutions exists in the state of the art to solve the direct

problem at a viscoelastic three-dimensional layer. Thus, the aim of this PhD work is the aplication

of a reduced set of numerical techniques at the layer domain, obtaining conclusions to enrich the

knowledgement about inverse problems for this particular configuration.

To reach the proposed objective, a first necessary previous work is the solution of the dificculties

involved in the forward problem. The solution of the direct scattering of waves coming from sources

and measured at selected testing points has to be programed in a numerical code. The radiation of

waves and the traction-free boundary conditions constitutes the main difficulties that the direct code

must solve for the infinite plate problem. The direct solution is going to be evaluated at each iteration

in a general non-linear optimization algorithm; thus, a fast and accurate evaluation of the solution

is required. The Boundary Element Method (BEM) permits an accurate and fast direct solution, as

it consider the radiation boundary condition as a natural property of the BEM when the adequate

Green function is included. Thus, a first objective of this PhD work was the development of an ade-

quate elastodynamic Green function stated a the three-dimensional layer. Such fundamental solution

requires only meshig the surface of deffects and some auxiliary surfaces (e.g. supports).

The solution obtained by the BEM depends strongly on two main aspects: the Green function

used and the quality of the interpolation space used to approxime tractions and displacements. The

use of the numerical codes in testing of materials require the consideration of realistic geometries

existing in testing, such as supports, boxed geometries, etc. A secondary objective is the definition of

an adequate set of approximation shape functions to represent tractions and displacements. Sharp

geometries give rise to the presence of singularities that strongly affects to the quality of the results;

in the context of elastic waves, sharp geometries changes the wave patterns, with must be taken

into account in the numerical code. A second objective of this PhD was the development of specific

traction shape functions to enhance the solution when sharp geometries are included.

The proposed fundamental solution with the new developed traction shape functions have been

included in a BEM code based on the Regularized Boundary Integral Equation. With this methodol-

ogy, no explicit regularization is required at any boundary point.
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The Inverse Problem is stated as an optimization problem, in which the hidden cavity is parametrized

as an ellipsoid and a regularized cost function depending on the misfit between experimental and

computed displacements at selected points is minimized. The Inverse Problem is general nonlinear

ill-posed problem. In this sense, solution is not unique, and it does not depends continously on the

experimental data. Also, solution is strongly affected by errors obtained at the measurement points.

The analysis of this inversion process is the next objective of this PhD work. The IIP is solved and

discussed in the context of two different approach: i) minimization based on gradient methods, in

which a direct solution is computed at the parametrized damaged layer; ii) the use of zero-order

global search algorithms to identify hidden cavities, based on an approximation of the cost function

by way of the Topological expansion of displacements.

First order algorithms are explored in the context of optimization methods. Such algorithms states

the general nonlinear optimization problem, in which the shape and location of the hidden cavities

is based on a parameter vector. At each iteration, the cost function and its first-order derivatives are

computed. Second order derivatives are not required. In this sense, this group of methods are called

quasi-Newton, in which no explicit second order Hessian matrix is computed. On this PhD work, a

first analysis of the Inverse Problem based on the BFGS algorithm is discussed in a chapter.

The BFGS method requires the computation of the first-order derivatives. Such derivatives de-

pends on the fundamental solution, and for the layer domain, the first order derivatives of the Green

function does not exists in the literature. Gradients are computed by way of a semi-analytical inte-

gral carried out over the deffect surfaces, once the so-called Adjoint Problem is solved. The use of

the Adjoint Variable Method (AVM) to compute gradients for the layer domain constitutes a novelty

included at the corresponding chapter.

To obtain general conclusions that permit the comparison between algorithms, methods, and

properties for inverse analysis of the layer domain, an exhaustive number of numerical tests have

been carried out. The computational platform permits the computation and the analysis of the re-

sults. The consideration of a-priori volume information, the definition of error at measurements, the

sensitivity to the number of sources/receivers, or the dependence on the initial guess point at each

frequency is analysed at the corresponding chapter.

The last chapter is focused on the use of zero-order algorithms. Such techniques require a fast

computation of the forward solution due to the fact that the minimum is obtained by testing the

solution space. In this sense, the evaluation of the cost function requires the solution of a direct

problem at each step. The computation of the direct cost function is expensive, in terms of number

of operations and computing time. It requires the statement and solution of an equation system at

each step. An alternative way to reduce the computational effort is the linealization of the problem,

by way of the expansion of the displacement with computations carried out at the domain without

deffects. The Topological Sensitivity approach permits the expansion of displacements, tractions,

and integral cost function. An approximed cost function can be built at each point, which permit the

fast evaluation of the direct problem. This important requirement permit the use of a particular zero-

order method, such as Genetic Algorithms. The focus of the last chapter of this work is the analysis

of the applications of the combined Genetic Algorithms and Topological Sensitivity approach. A

numerical benchmark is carried out with interesting conclusions.

1.2 Objetives

The main objectives of this PhD work may be summarized at the following items:
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• Development of an specific Green’s function for the three dimensional viscoelastic layer in the

frequency domain. The inversion is based on the scattering of elastic time-harmonic waves.

The use of the Boundary Element Method permits a minimum mesh, only at the boundary of

the deffects. Thus, this was the first objective to reach.

• Development of an specific code, in the context of Boundary Elements, to solve the direct prob-

lem. The code should be compared and contrasted with analytic or numeric solutions existing

in the literature.

• Development of an specific set of tracion shape-functions to represent sharp geometries.

• Statement of the Inverse Identification Problem as an optimization problem. Development of

the Adjoint Variable Approach to obtain the approximed gradientes.

• Numerical benchmark to obtain general properties of the IIP. Analysis of the stability of the

algorithm. Analysis of the sensitivity of the results to random noise at the measurement, and

dependence on some parameters. Comparing and contrasting the results with similar works

existing in the literature.

• Development of the Topological Expansion of the cost function combined with Genetic Algo-

rithms to obtain an approximed first guess spherical cavity, or to solve the IIP under certain

conditions. Development of a numerical benchmark to obtain general properties of the use of

the GA-TS tool as an identification of hidden cavities.

1.3 Methodology

To reach the previous objectives, the following methodology is applied.

• To develop the Green function, a general overview of the state of the art has been carried out.

After the revision, the method of displacement potentials, with Thompson-Haskell transfer

matrix system, has been explored. The use of cilindrical polar potentials, the Fourier transform

in the angular direction, and the Hankel transform in the radial direction, permits the solution

of the problem.

To learn about the specific details of the method, the author visited Dr. Bojan B. Guzina in

2003, at the University of Minnesota at Twin Cities. Apart from the particularization of the

multi-layer half space solution to the single layer, a new work was proposed, which is included

in this PhD. The development of new variable-order traction shape functions that permits the

modelization of sharp geometries. It must be mentioned that the author of this PhD worked on

the main aspects concerning the new 8-noded singular elements, the determination of the basis

for the traction shape functions, the rules to improve the integration of cuasi-singular integrals,

and the numerical tests to confirm and validate the novel formulations for such elements. This

work was also co-directed by Prof. Dr. R.Y.S. Pak. Results of this work were published in a

paper. At this PhD document, this paper is reproduced in an specific chapter. The aim of this

chapter is the introduction of such special functions. At this PhD Thesis, such traction singular

shape functios have been used in the context of inverse analysis.

The Green function was obtained and published [108]. Also, a paper about the new traction

singular shape functions was published (see [70]).

• A numerical code has been developed and optimized based on the Regularized Boundary El-

ement Method. In this sense, the work developed with Dr. Bojan Guzina was required to

optimize the code, and test it. Also, the Green function has been compared with other refer-

ences existing in the literature. The most important of them is the work by Dr. Hao Bai, which

provided tabulated material.
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The numerical code is based on Matlab and Fortran Language of Programming. The codes

have been compiled and optimized in a Linux cluster. In this sense, the author applied the

methodolgy learnt at Minnesota (Minneapolis Supercomputation Institute and Bojan Guzina’s

group). The specific hardware architecture required for intensive computation, the ways to

parallelize computations, and the better options to carry out computations depending on high

memory requeriments have been developed and optimized.

• The statement and solution of the IIP as an optimization problem was the next ofjective. To

reach it, a careful revision of the state of the art was carried out. The IIP is stated as an op-

timization problem. The hidden deffect is parametrized. The cost function is built in terms

of the discrepancy between the experimental measurement and the one obtained for a fixed

set of parameters. Different optimization methods have been explored; the BFGS has been

selected because it is common in the literature, and because less number of operations are re-

quired in comparison with Levenberg-Marquardt method and other quasi-Newton methods.

The complexities of the Green function does not permit an easy Direct Differentiation Approach

to obtain the necessary gradients. To obtain gradients, the Adjoint Variable method is used.

To learn about the Adjoint Variable method, and generate and optimize the code, the author

visited in 2004 Dr. Marc Bonnet (École Polytechnique, France). Working with Dr. Bonnet,

the author learnt the main points of the Adjoint State implementation. The combined Matlab-

Fortran is used to obtain a global solution.

• The numerical benchmark required an special treatment. The parametric analyses required to

check the dependence of the solution respect to random noise, damping, parametrization of

the ellipsoids, etc, required an important amount of time. A computational platform based on

a Linux system has been developed. The use of specific scripts premitted the generation of

analysis cases, and the postprocess of the resulting files.

• The Topological Expansion of the cost function is carried out based on the linearization of

displacements in terms of the cavity volume. A rigorous analysis is carried out to obtain the

first order displacement terms. Based on it, a quadratic approximed shape function is built.

The cost function is computed based on the properties of the Non-Damaged state. This means

that the forward problem is very fast to compute. The use of zero order methods, such as the

Genetic Algorithm, seems to be a better option for this kind of problem in which gradients are

no possible and the fordward solution is evaluated in a fast manner.

The use of the Topological Sensitivity as an image method is also a technique reported in the

literature. The way considered here is different, as the TS is used to define an approximed

cost function. Both methods are compared by analysing the three dimensional mapping of

the TS value versus the cost function. A numerical benchmark is carried out to analyse the

dependence on the main parameters.

The initial expansion of the cost function is extended for the case in which two or more cavities

are considered. The interaction between cavities terms are neglected, which would be useful

when radiation and material damping are given. The hypersingular traction kernel is required

to obtain the interaction terms. When such term is not included, the interaction between def-

fects is ignored. It is possible at moderate damping rates with low frequencies. Numerical tests

have been defined to test the identification of two cavities based on it. Also, the identification

of less number of deffects than the number of trial cavities is explored.
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1.4 Organization of this document

This PhD document is organized by independent chapters, in the sense that the revision of the state of

the art, statement of the particular problem and conclusions follow the rules of an independent paper.

The author consider that by this way reading each individual chapter is easier and more compact,

linked with the structure of the papers already published by the author about the particular topics

developed, or papers to be published from this work. The reference to general methods, such as

the Boundary Element Method, or the Regularized Boundary Integral Equations, have been omitted.

The reader can use the selected lectures on each chapter to find information about these topics.

The first chapter is focused on the Green’s function for the viscoelastic layer. The formulation and

solution method is exposed. Numerical test confirm the adequate implementation of the theoretical

development.

At the second chapter, the work developed with Dr. Guzina and Prof. Dr. Pak is included.

Formulation and numerical examples are presented to validate and enhance the convenience of using

the new shape functions. The 8-noded shape functions are used in the context of inverse problems,

at the third chapter.

The third chapter is focused on the solution of the Inverse Identification Problem with a quasi-

Newton algorithm. The Adjoint Variable Method is presented to compute semi-analytical gradients.

A set of numerical benchmark is presented, testing the stability of the inverse problem respect to the

most relevant variables involved in the inversion.

At the fourth chapter, the topological sensitivity of displacement variables is developed for the

time-harmonic problem stated at the layer. The expansion of displacements leads to a natural ex-

pansion of the cost function, which permits its combination with zero-order optimization methods

to obtain the location and shape of hidden cavities.
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CHAPTER 2

Green’s function for a three dimensional elastodynamic viscous

layer

2.1 Introduction

The numerical treatment of certain specific mixed boundary value problems involving layered me-

dia requires fundamental solutions in order to obtain accurate results which are compatible with

low computing times. Numerical methods based on fundamental solutions, such as the boundary

element method (BEM), would require such a demand. One of the high interest problems that de-

mands such a solution is the analysis of single or multi-layered elastic plates. The main applications

of waves in plates are ultrasonic non-destructive testing and parameter identification. Recent interest

in guided waves in plates came from the developments of acoustic emission and ultrasonic testing.

Recent references on this subject can be found in works by Cheeke(2002)[39], Kundu(2004)[88], and

Malhotra and Carino(2004)[105].

The problem of wave propagation in infinite plates has been extensively studied since the work

by Rayleigh(1888) [134] and Lamb(1917)[91], the main contribution of which was to introduce the

concept of wave equations. One important advance in the context of dispersion relations and ap-

proximate theories can be found in the work by Mindlin(1960)[117].

The elastodynamic Green function for a homogeneous isotropic elastic plate has long been stud-

ied since Miklowitz(1978) [114]. Initial studies into fundamental solutions for wave propagation in

plates deal with two-dimensional problems, in the context of axisymmetric problems e.g. Weaver(1982)

[161], using the eigenfunction method. In the context of three-dimensional time-domain problems,

the paper by Ceranoglu and Pao(1981)[27] shows a Green’s function based on the generalized ray

theory, using the Cagniard-De Hoop method to solve the double transform. The solutions based

on the generalized ray theory require numerical evaluation of the results, and this is a critical as-

pect of the method. Vasudevan and Mal(1985)[159] present the transient solution due to an embed-

ded dislocation. A transient Green’s function has been published in the form of a FORTRAN code by

Hsu(1985)[80], based on the ray theory solution.

In the context of approximated solutions, a semi-analytical formulation has been proposed: a 1D

finite element mesh is introduced for the layering direction, and analytic (or semi-analytic) solutions

are considered for the remaining coordinate directions. The layers are divided into sub-layers to in-

troduce the FEM mesh and this method is called the thin-layer method (TLM). For two-dimensional

problems, Galán and Abascal (2002-2003) [56, 57] show a method to analyse wave scattering due

to defects in layered media, whereby a BEM mesh is used to model the defect neighbourhood and

a FEM semi-analytical Green’s function is used in the far-field. For 3D problems, Kausel and Peek

(1982)[83] and Kausel(1994)[82] present the fundamental solution for layered media based on the

TLM. Recently, Bai et al.(2004) [7] presented a fundamental solution based on modal superposition

for homogeneous or multi-layered plates. A finite element mesh is introduced to approximate the
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vertical component of displacements, while for planar directions, the spatial double Fourier trans-

form leads to plane and antiplane modal equations, which provide the modal base for expanding the

solution.

The work by Benitez and Rosakis(1985)[12] presents a general analytic approach for obtaining the

three-dimensional Green’s function for a multi-layered plate. The double Fourier transform and the

propagator matrix technique lead to the analytic solution in the transformed domain. The authors

define the solution without attempting numerical inversion and this work is carried out in Pintado

and Benítez(1990)[131] for a uniformly moving source.

Matrix techniques have been used to analyse multilayered configurations (see the review work

by Lowe(1995)[99]. The propagator matrix method is a technique which was initially developed by

Thompson(1950)[156] and Haskell(1953)[76] to relate the tractions and displacements at the upper

and lower surfaces of a layer. The initial technique was improved by Harkrider(1964)[75], Haskell(1964)

[77], Apsel and Luco (1964)[4], Luco and Apsel(1983) [101], Franssens(1983) [52], Hisada(1994) [78],

Hisada(1995) [79], among others.

Work by Kundu and Mal (1985)[89] and Xu and Mal (1985)[164], and recently for multilay-

ered composites Banerjee and Mal (2005) [8], shows a solution method which has improved on the

Haskell-Thompson matrix method. The numerical technique used is an integral transform approach

in the frequency domain where only the surface response is computed. In this context, the solution

cannot be considered to be a Green’s function.

Work based on the double Fourier transform requires a large amount of computation time to eval-

uate the integrals of the inverse transform. The Hankel transform approach reduces the dimension

of the integrals from two to one (only in the radial direction). Pak and Guzina (2002) [124] present

the three-dimensional fundamental solution for a multilayered viscoelastic half-space, based on the

original approach by Luco and Apsel (1983)[101]. The solution is built in three steps: a) potential dis-

placements, b) angular Fourier series, c) radial Hankel transform. The propagator matrix approach is

updated in order to define the solution, free of unbounded exponential terms. The evaluation of the

fundamental solution requires the numerical evaluation of the inverse Hankel transform (henceforth

IHT). A modified integration path is proposed in order to avoid the singularities along the real axis,

see Guzina (2001)[69].

This work deals with the Green’s function for the time-harmonic elastodynamic problem in a

plate domain, including damping effects. The method proposed by Guzina and Pak is adopted here

to develop the fundamental solution by including the boundary conditions of the plate, and the

specific reflection matrices for the plate have been obtained. In order to compute the IHT, a modified

integration path is introduced. A careful analysis has been carried out to identify the poles along the

formal path which are specific for the plate domain. The result of this analysis is the identification of

unbounded poles at low excitation frequencies, which correspond to the asymmetric Lamb modes.

A numerical treatment is proposed to delineate the integration path. In order to validate the solution,

a series of numerical tests are presented, in which the solution is checked and compared with other

previously published results.

2.2 Problem Statement and Solution Method

The linear elastic response of a general three-dimensional homogeneous and isotropic solid may be

analysed in terms of the Navier equation,

(λ+ 2µ) ∇∇ · u −µ∇×∇× u + f = ρ ü (2.1)

8



where λ and µ are the Lamé constants; ρ is the material mass density; u is the displacement field; ü

stands for the acceleration field; and f is a time-dependent volumetric force field. Eq. (2.1) may be

analysed in the frequency domain by virtue of the Fourier transform leading to

(λ+ 2µ) ∇∇ · u − µ∇×∇× u + ρω2 u + f = 0 (2.2)

where the factor eiωt is omitted.

z

z

P (r, θ, z)

r

h

x1x2

x3

z = 0

θ
z = s

Figure 2.1: Infinite plate domain. Cartesian and polar references

Figure 2.1 shows the infinite plate domain with a thickness of h. The Cartesian reference, Rc =

{0; x1, x2, x3}, and the polar coordinate system Rp = {0; r,θ, z} are also shown. The plate domain

Ω = {(x1, x2, x3)|0 ≤ x3 ≤ h} is bounded by the free surfaces S1 and S2, with S1 = {(x1, x2, x3)|x3 =

0} and S2 = {(x1, x2, x3)|x3 = h}. A time-harmonic point force is located at z = s. A displacement

vector, which is the solution of Eq. (2.2), can be represented as a combination of three displacement

potentials, φ1, φ2, andφ3 Pak(1987)[123],

u(r,θ, z) = ∇φ1(r,θ, z) +∇× {φ2(r,θ, z) ez +∇× [φ3(r,θ, z) ez]} (2.3)

with ez being a unitary vector in the vertical direction (x3 or z). Considering Eq. (2.3) in Eq. (2.2), it

follows that the governing equation for each potential is Helmholtz-type,

(

∇2 + k2
q

)

φq = 0, q = 1, 2, 3 (2.4)

where

k1 = kp ≡ω
√

ρ

λ+ 2µ
; k2 = k3 = ks ≡ω

√

ρ

µ
. (2.5)
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The viscosity effects may be included in the model by complex-valued material parameters correspon-

dence principle, by Christiansen [30]. Thus, constants λ∗ and µ∗ are defined in terms of the frequency-

dependent coefficients ξα and ξβ:

λ∗ + 2µ∗ = (λ+ 2µ ) [1 + 2 iξα(ω)] , ξα ≥ 0

µ∗ = µ [1 + 2 iξβ(ω)] , ξβ ≥ 0
(2.6)

In what follows, the elastic constants will be shown as λ and µ, allowing complex values for them by

virtue of Eq. (2.6). In order to solve Eq. (2.4), the angular Fourier series is introduced

φq(r,θ, z) =
∞

∑
m=−∞

φqm(r, z) eimθ, q = 1, 2, 3 (2.7)

with analogous expressions for displacements and tractions.

At this point, the m-th order Hankel transform is introduced. Its direct and inverse forms are

defined as follows [133]:

f̃ m(ξ , z) =
∫

∞

0
f (r, z) r Jm(rξ) dr; f (r, z) =

∫

∞

0
f̃ m(ξ , z)ξ Jm(rξ) dξ (2.8)

where Jm(z) is the m-th order Bessel function.

Substituting Eqs. (2.7) in Eqs. (2.4) and taking the Hankel transform, the set of wave equations is

reduced to a set of differential ordinary equations,

(

φ̃m
qm

)′′
+
(

k2
q −ξ2

)

φ̃qm = 0, q = 1, 2, 3 (2.9)

in which (·)′ stands for d(·)/d z. The general solution of Eq. (2.9) may be written as

φ̃n
1m

(ξ , z) = An
1m

(ξ) eαz + Bn
1m

(ξ) e−αz

φ̃n
qm

(ξ , z) = An
qm

(ξ) eβz + Bn
qm

(ξ) e−βz, q = 2, 3
(2.10)

where,

α =
√

ξ2 − k2
p, β =

√

ξ2 − k2
s . (2.11)

Constants An
qm , Bn

qm will be computed from the following boundary conditions: traction free at

z = 0; z = h and source at z = s. The roots α and β are located in the first quadrant so both

their real and imaginary parts are positive. Displacement and traction Cartesian components ui, τi j,

respectively, can be related with potential derivatives through the polar components. In order to

prescribe the source condition, a general distributed load at z = s is applied as a traction jump,

τzr(r,θ, s−)− τzr(r,θ, s+) = P(r,θ) =
∞

∑
m=−∞

Pm(r) eimθ

τzθ(r,θ, s−)− τzθ(r,θ, s+) = Q(r,θ) =
∞

∑
m=−∞

Qm(r) eimθ

τzz(r,θ, s−)− τzz(r,θ, s+) = R(r,θ) =
∞

∑
m=−∞

Rm(r) eimθ.

(2.12)
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In particular, a point force located at z = s is represented by the Dirac Delta function in polar

coordinates,

fh(r,θ, z) = Fh
δ(r)
2πr

δ(z − s) eh

fv(r,θ, z) = Fv
δ(r)
2πr

δ(z − s) ez

where eh is a unit horizontal vector in the θ = θ0 direction and Fh and Fv are the magnitudes of the

point load components.

Each angular Fourier series, Eq. (2.12), of fh(r,θ, z) and fv(r,θ, z) contains only three terms, m =

−1, 0, 1, with

P±1(r) = Fh e∓iθ0
δ(r)
4πr

, Pm(r) = 0, m 6= ±1

Q±1(r) = ±i Fh e∓iθ0
δ(r)
4πr

, Qm(r) = 0, m 6= ±1

R0(r) = Fv
δ(r)
2πr

, Rm(r) = 0, m 6= 0

(2.13)

Henceforth, source magnitude loads will be indexed as

F0 = Fv ; F±1 = Fh ; Fm = 0, |m| > 1. (2.14)

2.2.1 Uncoupled PS and S Wave Propagation Systems

For numerical purposes, it is convenient to introduce a set of dimensionless parameters,

r̄ = k0 r, z̄ = k0 z, s̄ = k0 s, ζ = ξ/k0 , µ̄ = µ/µ0 ,

λ̄ = λ/µ0 , ρ̄ = ρ/ρ0 , k̄q = kq/k0, ᾱq =
√

ζ2 − k̄2
q , h̄ = k0 h

(2.15)

where µ0 and ρ0 are the reference values for shear stiffness and mass density. In what follows, such

values will be fixed as µ0 = Re(µ) and ρ0 = ρ. The parameter k0 = ω
√

ρ0/µ0 is the reference

wavenumber.

An additional change of variables leads to the dimensionless displacements,

v1m(ζ , z̄; s̄) =
µ0 k0

2 Fm

{(

ũm+1
rm + i ũm+1

θm

)

−
(

ũm−1
rm − i ũm−1

θm

)}

v2m(ζ , z̄; s̄) =
µ0 k0

Fm
ũm

zm

v3m(ζ , z̄; s̄) =
µ0 k0

2 Fm

{(

ũm+1
rm + i ũm+1

θm

)

+
(

ũm−1
rm − i ũm−1

θm

)}

(2.16)
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and dimensionless tractions

σ21m(ζ , z̄; s̄) =
1

2 Fm

{(

τ̃m+1
zrm + i τ̃m+1

zθm

)

−
(

τ̃m−1
zrm − i τ̃m−1

zθm

)}

σ22m(ζ , z̄; s̄) =
1
Fm

τ̃m
zzm

σ23m(ζ , z̄; s̄) =
1

2 Fm

{(

τ̃m+1
zrm

+ i τ̃m+1
zθm

)

+
(

τ̃m−1
zrm

− i τ̃m−1
zθm

)}

σ11m(ζ , z̄; s̄) =
1
Fm

{

τ̃m
rrm + 2µ0k0µ̄

(

˜urm

r̄
+ i m

uθm

r̄

)m}

σ33m(ζ , z̄; s̄) =
1
Fm

{

τ̃m
θθm

− 2µ0k0µ̄

(

˜urm

r̄
+ i m

uθm

r̄

)m}

σ13m(ζ , z̄; s̄) =
1
Fm

{

τ̃m
rθm

+ 2µ0k0µ̄

(

˜uθm

r̄
− i m

urm

r̄

)m}

(2.17)

where Fm is the source series defined in Eq. (2.14). Thanks to these changes of variable, two uncou-

pled propagation systems [101, 78, 124] may be written in matrix form as























v1m

v2m

σ21m

σ22m

σ33m

σ11m























=























−ζ β̄ −ζ −β̄
−ᾱ ζ ᾱ ζ

2µ̄ζᾱ −µ̄(β̄2 +ζ2) −2µ̄ζᾱ −µ(β̄2 +ζ2)

µ̄(β̄2 +ζ2) −2µ̄ζβ̄ µ̄(β̄2 +ζ2) 2µ̄ζβ̄

λ̄(ᾱ2 −ζ2) 0 λ̄(ᾱ2 −ζ2) 0

λ̄ᾱ2 − (λ̄+ 2µ̄)ζ2 2µ̄ξβ̄ λ̄ᾱ2 − (λ̄+ 2µ̄)ζ2 −2µ̄ζβ̄























[

wdm
(ζ , z̄; s̄)

wum(ζ , z̄; s̄)

]

(2.18)

for PS-waves, and







v3m

σ23m

σ13m






=







iζ iζ

−i µ̄ ζ β̄ i µ̄ ζ β̄

µ̄ ζ2 µ̄ ζ2






·
(

wdm(ζ , z̄; s̄)

wum(ζ , z̄; s̄)

)

(2.19)

for S-waves.

The terms wdm
, wum , wdm and wum are interpreted as downward and upward propagating com-

ponents of the PS and S wave vectors, respectively. It is possible to obtain the expressions for these

vectors by applying the specific plate boundary conditions. The decomposition for PS vector is

wdm
(ζ , z̄; s̄) = E(z̄) · Gd

−1 ·
[

Ru · E(s̄) · Sum + Ru · E(h̄) · Rd · E(h̄ − s̄) Sdm

]

+

H(z̄ − s̄) · E(z̄ − s̄) Sdm
(2.20)

wum(ζ , z̄; s̄) = E(h̄ − z̄) · Gu
−1 ·

[

Rd · E(h̄ − s̄) · Sdm
+ Rd · E(h̄) · Ru · E(s̄) Sum

]

+

H(s̄ − z̄) · E(s̄ − z̄) Sum (2.21)

where,

Gd =
[

I − Ru E(h̄) Rd E(h̄)
]

(2.22)

Gu =
[

I − Rd E(h̄) Ru E(h̄)
]

(2.23)
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Matrices Ru and Rq are given by,

Ru(ζ) =
1

R(ζ)
·
[

R11(ζ) R12(ζ)

R21(ζ) R11(ζ)

]

(2.24)

Rd(ζ) =
1

R(ζ)
·
[

R11(ζ) −R12(ζ)

−R21(ζ) R11(ζ)

]

(2.25)

where
R11(ζ) = −

(

4 ᾱ(ζ) β̄(ζ)ζ2 +
(

β̄2(ζ) +ζ2)2
)

R12(ζ) = −4β̄(ζ)ζ
(

β̄2(ζ) +ζ2)

R21(ζ) = −4ᾱ(ζ)ζ
(

β̄2(ζ) +ζ2
)

R(ζ) =
(

β̄2(ζ) +ζ2)2 − 4 ᾱ(ζ) β̄(ζ)ζ2

(2.26)

R(ζ) is the Rayleigh wave function whose zeroes provide the Rayleigh wave numbers. It can be

shown that det Rd = det Ru. The zeroes of this determinant would play an important role in the

definition of the integration path for the IHT, as shown below.

(2.27)

It should be noted that the determinant of Matrix E(z̄) is

E(z̄) =

[

e−ᾱ(ζ) z̄ 0

0 e−β̄(ζ) z̄

]

(2.28)

while the source terms Sum and Sdm
have the following expressions:

ST
um

(ζ) =
−1
2 ρ̄

(

Z̄m − ζ

2 ᾱ
(X̄m − Ȳm) , Z̄m

−ζ
β̄(ζ)

+
1
2
(X̄m − Ȳm)

)

ST
dm

(ζ) =
1

2 ρ̄

(

Z̄m +
ζ

2 ᾱ
(X̄m − Ȳm) , Z̄m

ζ

β̄(ζ)
+

1
2
(X̄m − Ȳm)

)

.

(2.29)

The Heaviside function is represented by H and I is the 2 × 2 identity matrix.

The pure shear wave propagating system is defined in terms of the scalar functions

wdm(ζ , z̄; s̄) = e−β̄ z̄
(

1 − e−2 β̄ h̄
)−1 [

e−β̄ s̄ + e−β̄ h̄ e−β̄(h̄−s̄)
]

Sm+

H(z̄ − s̄) e−β̄ (z̄−s̄) Sm

wum(ζ , z̄; s̄) = e−β̄ (h̄−z̄)
(

1 − e−2 β̄ h̄
)−1 [

e−β̄(h̄−s̄) + e−β̄ h̄ e−β̄ s̄
]

Sm+

H(s̄ − z̄) e−β̄ (s̄−z̄) Sm

(2.30)

with

Sm =
−i

4 µ̄ ζ β̄(ζ)

(

X̄m + Ȳm
)

(2.31)

the dimensionless coefficients for the source series are given by

X̄1(ζ) =
1

2 π
e−iθ0 , X̄m(ζ) = 0, m 6= 1

Ȳ−1(ζ) =
1

2 π
eiθ0 , Ȳm(ζ) = 0, m 6= −1

Z̄0(ζ) =
1

2 π
, Z̄m(ζ) = 0, m 6= 0

(2.32)
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where a unit load in vertical and horizontal directions has been assumed.

2.2.2 Asymptotic Decomposition

In order to evaluate the displacement and traction components of the elastodynamic fundamental so-

lution, the semi-infinite integrals corresponding to the IHT must be computed. Denoting the source

direction by superscript s = {h.v}, the displacement components can be obtained:

ûs
r + i ûs

θ =
k0

µ0

1

∑
m=−1

F s
m ei mθ

∫

∞

0
(v3m + v1m)ζ Jm+1(r̄ζ) dζ

ûs
r − i ûs

θ =
k0

µ0

1

∑
m=−1

F s
m ei mθ

∫

∞

0
(v3m − v1m)ζ Jm−1(r̄ζ) dζ

ûs
z =

k0

µ0

1

∑
m=−1

F s
m ei mθ

∫

∞

0
v2m ζ Jm(r̄ζ) dζ (2.33)

while for tractions,

τ̂ s
zz = k2

0

1

∑
m=−1

F s
m ei mθ

∫

∞

0
σ22m ζ Jm(r̄ζ)dζ

τ̂ s
zr + i τ̂ s

zθ = k2
0

1

∑
m=1

F s
m ei mθ

∫

∞

0
(σ23m +σ21m)ζ Jm+1(r̄ζ) dζ

τ̂ s
zr − i τ̂ s

zθ = k2
0

1

∑
m=1

F s
m ei mθ

∫

∞

0
(σ23m −σ21m)ζ Jm−1(r̄ζ) dζ

(2.34)

τ̂ s
rr +

2µ0 k0 µ̄

r̄

1

∑
m=−1

{

ûs
rm

+ i m ûs
θm

}

ei mθ = k2
0

1

∑
m=−1

F s
m ei mθ

∫

∞

0
σ11mζ Jm(r̄ζ) dζ

τ̂ s
θθ −

2µ0 k0 µ̄

r̄

1

∑
m=−1

{

ûs
rm + i m ûs

θm

}

ei mθ = k2
0

1

∑
m=−1

F s
m ei mθ

∫

∞

0
σ33mζ Jm(r̄ζ) dζ

τ̂ s
rθ +

2µ0 k0 µ̄

r̄

1

∑
m=−1

{

ûs
θm

− i m ûs
rm

}

ei mθ = k2
0

1

∑
m=−1

F s
m ei mθ

∫

∞

0
σ13mζ Jm(r̄ζ) dζ .

(2.35)

The fundamental solution (displacements and traction components) becomes singular at the source

point. The integrals that define the fields become singular when the area to integrate is unbounded

and the integrand is low decaying. In order to compute the IHT integrals, the integrands may be

split into a strong decaying term plus a term which is integrated in closed-form, which represents

the singular component.

The leading asymptotic expansions, see Pak(1987) [123], Pak(1994) [127] of the displacements and

traction functions are termed va
im

(ζ , z̄) and σ a
i jm

(ζ , z̄).

The components of va
im

(ζ) may be factorised as follows:

va
1m

(ζ , z̄) = γ1(ζ , z̄)
Ȳm − X̄m

2µ̄
−γ3(ζ , z̄)

Z̄m

µ̄

va
2m

(ζ , z̄) = Ω1(ζ , z̄)
X̄m − Ȳm

2µ̄
+Ω2(ζ , z̄)

Z̄m

µ̄

va
3m

(ζ , z̄) = γ2(ζ , z̄)
X̄m + Ȳm

2µ̄
(2.36)

where the functions γ1,γ2, γ3, Ω1 and Ω2 correspond to the bi-material full-space fundamental so-

lution functions Guzina(1999) [64], with the interphase plane located at x3 = 0 for 0 < s ≤ h/2

or x3 = h for h/2 < s ≤ h; the half-space fundamental solution functions are obtained from these
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taking µ = 0 for the unloaded half-material. Complex parameters µ, ν are assigned to the loaded

half-space.

The asymptotic kernels va
im

(ζ) admit closed-form IHT integrals in Eq. (2.33), corresponding

with the displacement field in a half-space, the closed-form expressions of which were obtained by

Mindlin(1936) [116]. The fundamental solution displacement field will therefore be given by

u = uhalf−space + uR (2.37)

where superscript R denotes the regular kernel. As occurs with displacements, traction components

σ a
i jm

can also be factorized Guzina(1999) [64]. The IHT traction integrals also lead to closed-form

expressions, given by Mindlin(1936) [116], and an analogous kernel decomposition may be written

for tractions.

At this point, we should mention that an alternative decomposition may be set by defining the

asymptotic part of the solution by considering the static point-load solution for an infinite slab. This

approach is possible, and it is easy to prove that such a solution can be split into Mindlin’s solution

plus a regular function (thus, the singularity is similarly removed). This alternative approach seems

to present certain advantages in the context of its use in a numerical method such as the boundary

element method. The static solution for a slab, on the other hand, involves more complexities than

Mindlin’s solution: the integrated form requires more floating-point operations, and there are fewer

references in literature to it; moreover its representation in the Hankel transformed domain does

not exist in the literature. This alternative method might therefore be explored, but it is not trivial

to argue that it is better than the one proposed here. In computing codes and in the context of

the boundary element method, the use of Mindlin’s static part introduces additional integrals for

particular geometries, but depending on the problem, such an approach would be faster than the

one which considers the slab’s static part.

2.3 Evaluation of the Inverse Hankel Transform Integrals

The regular part of the fundamental solution is given as a set of integrals for displacements

us,R
r + i us,R

θ =
k0

µ0

1

∑
m=−1

F s
m ei mθ

∫

∞

0
(v3m + v1m − (va

3m
+ va

1m
))ζ Jm+1(r̄ζ) dζ

us,R
r − i us,R

θ =
k0

µ0

1

∑
m=−1

F s
m ei mθ

∫

∞

0
(v3m − v1m − (va

3m
− va

1m
))ζ Jm−1(r̄ζ) dζ

us,R
z =

k0

µ0

1

∑
m=−1

F s
m ei mθ

∫

∞

0
(v2m − va

2m
)ζ Jm(r̄ζ) dζ (2.38)

and tractions.

The strong decay of the integrand in Eq. (2.38) allows numerical evaluation in a truncated inter-

val. The main drawback of the integration is the presence of poles along the formal path (when no

damping is considered), or quasi-singular behaviour for poles close to the integration points (when

damping is included). In order to solve these problems, a common technique consists in delineating

a deformed complex integration path Levy(1976)[94], Greenfield(1995) [61] and Guzina (2001) [69],

which smoothes the integrands. Figure 2.2 shows the modified contour, which is characterized by

the initial slope tan(φ) and the ζ-abscissas η1, η2 , η3. The path is completed from η3 along the real

axis, with ηmax being the end point of the truncated interval. The method requires delineation of
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the adequate path, avoiding the poles which remain in the shaded areas. The poles are given by the

zeroes of the determinant det Gd = det Gu and Gu, Eqs. (2.22) and (2.23).

poles

η1

Im(ζ)

φ
Re(ζ)

poles

η3

η2

Figure 2.2: Modified integration path

2.3.1 Asymptotic Plane-wave Limits

Although the poles may be directly obtained by finding the roots k̄∗ of det Gd = 0, no closed-form

expressions are available for these roots. Parameter η2 must be chosen so that max Re{k̄∗} ≤ η2. The

way to bound the real part of the poles proposed in this chapter is to analyse plane-wave propagation

problems for long values of the radial variable. The eigenfrequencies for the limiting plane problems

are included in det Gd = 0, as the radial dependence is only introduced by the Bessel functions. The

PS and SH plane problems are governed by Rayleigh-Lamb waves and antiplane modes, respectively.

Further details of plane-wave analysis can be found in Kundu(2004) [88].

Rayleigh Waves

Rayleigh waves are the PS waves that propagate along the free surface in a homogeneous half-space.

Equation R(ζ) = 0, with R(ζ) shown in Eq. (2.26), gives the normalized wavenumbers correspond-

ing to Rayleigh waves. Let cs and cp be the speeds of the P and S waves, and ks, kp the P and S

wavenumbers, respectively. The equation R(ζ) = 0 is written as

(2k2 − k2
s )

2 − 4k2αβ = 0; (2.39)

whereα =
√

k2 − k2
p and β =

√

k2 − k2
s . This formula can be written in dimensionless format as

(2 − τ2)2 − 4

√

(1 − τ2)

(

1 − τ2

κ2

)

= 0 (2.40)

with τ =
v
vs

and κ =
vp

vs
.

Since κ > 1, it can be proved Mal(1991) [103] that there is only one zero in Eq. (2.40), τR ∈ [0, 1].

Thus, k̄R = 1/τR ∈ [0, 1]. The phase velocity of Rayleigh waves depends on Poisson’s ratio and the

S-wave speed. There are two expressions for estimating vR: Eq. (2.41) due to Viktorov(1967) [160],

and Eq. (2.42) due to Schmerr(1998) [139].

vR ≃ 0.87 + 1.12ν
1 +ν

vs (2.41)

vR ≃ 0.862 + 1.14ν
1 + ν

vs (2.42)
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Poisson’s ratio is bounded by ν ∈ [0, 0.5]; thus, considering Eqs. (2.41) and (2.42), the Rayleigh wave

speed may be bounded by vR ∈ [0.87 vs, 0.96 vs]. In terms of the normalized wavenumber, k̄R ∈
[1.0416, 1.1494]. In [69], the bound for the maximum pole for a multilayered half-space configuration

is fixed to η2 = 1.25, which verifies η2 > 1.1494, defining the normalization constants ρ0 and µ0

from their values in the lowest-velocity layer. Such a bound is imposed in terms of the Rayleigh

wave, and the proposed bound is confirmed for various multi-layered configurations by numerical

experiments, in which smoothly heterogeneous configurations are tested.

Lamb Waves

Lamb waves are known as the in-plane waves for a plate and consist of P and SV waves which

propagate along the planar direction. The traction-free conditions lead to two equations, the roots of

which provide the symmetric or asymmetric modes.

• Symmetric Lamb modes. The dispersion equation is

tanh(αh/2)

tanh(βh/2)
=

(2k2 − k2
s )

2

4 k2αβ
(2.43)

Roots k in Eq. (2.43) depend on the excitation frequency ω. The mode which corresponds to

zero frequency is the fundamental symmetric mode, denoted by S0. At low frequency func-

tions, α and β are small. Thus, the left-hand side term in Eq. (2.43) may be approximated as

tanh(αh/2)

tanh(βh/2)
≃ α

β
(2.44)

With this approximation, the solution of Eq. (2.43) is

kS
L =

k2
s

2
√

k2
s − k2

p

. (2.45)

where kS
L stands for the symmetric Lamb wavenumber. The speed vS

L is

vS
L = 2vs

√

1 − v2
s

v2
p

(2.46)

Therefore, the speed of symmetric Lamb modes at near-zero frequency is a finite value. The

normalised wavenumber k̄S
L = kS

L/ks is bounded by 1/2 < k̄S
L < 1/

√
2, since the ratio v2

s /v2
p

depends only on Poisson’s ratio ν. Thus, the maximum value for k̄S
L from symmetric Lamb

modes is k̄S
L = 1/

√
2 ≃ 0.7071.

In the high frequency range, the left-hand side term in Eq. (2.43) tends to the unity; thus, in this

case, symmetric Lamb modes tend to Rayleigh modes, in which no unbounded wavenumbers

were obtained.

• Asymmetric Lamb modes. The dispersion equation for these modes is

tanh(αh/2)

tanh(βh/2)
=

4 k2αβ

(2k2 − k2
s )

2 . (2.47)

The solution at zero frequency corresponds with the fundamental asymmetric mode, denoted

by A0. The solution for vA
L in Eq. (2.47) at low frequency can be obtained by the perturbation
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method [14, 103]

vA
L ≃ vs

{

4
3

(

1 − v2
s

v2
p

)}1/4 (
ω h
2 vs

)1/2

(2.48)

Thus, the wavenumber kA
L is O(

√
ω) whenω→ 0. As ks is O(ω), it follows

k̄A
L =

kA
L

ks
=

O(
√
ω)

O(ω)
= O(

1√
ω

) (2.49)

thus,

lim
ω→0

k̄A
L (ω) = +∞. (2.50)

The approximation defined by Eq. (2.48) is a good predicting value for the root in Eq. (2.47).

From this equation, the dimensionless wavenumber for this mode is:

Re(k̄A
L ) ≃

[

h̄2

3

(

1 − Re(k̄2
p)
)

]−1/4

(2.51)

The asymmetric Lamb modes are included in the solutions of det Gd = 0. This pole is such that

the lower the frequency, the higher the value for Re{k̄A
L }. Therefore, in the low frequency range,

the position η2 is defined by the condition η2 > Re{k̄A
L }. On the other hand, the asymmetric

Lamb modes at high frequency tend to Rayleigh modes, as they do for the symmetric modes.

Antiplane Waves in a Plate

The SH eigenvalues and eigenfunctions constitute the free vibration for the antiplane modes. The

propagation velocity at a fixed frequency is given by

vSH
m =

vs
√

1 −
(m π

h

)2 (vs

ω

)2
, m = 0, 1, 2, . . . (2.52)

The velocity vs depends onω. The 0-th mode is not dispersive, whereas modes m = 1, 2, . . . are. The

dimensionless wavenumber

k̄SH
m =

√

1 −
(

m π
h̄

)2

(2.53)

is bounded by Re{k̄SH
m } ≤ 1. The antiplane modes are poles in the S uncoupled propagation system.

Eq. (2.30) shows that poles are given by (1 − e−2β̄h̄) = 0, which leads to Eq. (2.53).

2.3.2 Modified Contour Path Delineation

The analysis for parametersφ, η1, η2 and η3 proposed by [69] for the multilayered half-space problem

is checked and updated for the plate solution.

• Initial angleφ and η1. [69] proposed the limits of the initial slope and the height of the contour

path, π/8 ≤ φ ≤ 3π/8, and 0.05 ≤ tan(φ) · η1 ≤ 0.36. For the plate domain, numerical

experiments confirm the validity of these limits.

• Parameter η2. This variable requires special attention due to the presence of Lamb modes in

the plates. For the multilayered half-space problem, the bound η2 > 1.25 was proposed, on the

basis of numerical tests for multilayered configurations, in which smooth stiffness transitions

were adopted. When the plate domain is tested, such a limit is not valid in the low frequency
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range. It was shown in Section 2.3.1 how normalized asymmetric wavenumbers become un-

bounded at low frequencies, thus

lim
ω→0

Re{k̄L} = ∞ ⇒ lim
ω→0

η2 = ∞.

Although the adopted criterium should be η2 = max{Re{k̄R}, Re{k̄L}}, with k̄R being the

Rayleigh wavenumber, a more practical approach is proposed in this chapter (see below).

• Parameter η3. This is required for adequate smoothing of the integrand. A value η3 = 2 · η2 is

valid for any situation.

Integrals involving Bessel functions are performed by means of an advanced adaptive numerical

procedure which is presented in [71] and [69].

The practical delineation of the integration path for parameter η2 consists of the identification of

situations in which the real part of the furthest pole to the imaginary axis is greater than a certain

fixed parameter. The value η2 = 1.25 has been adopted and this covers a wide range of situations

in which the modified contour path is valid. In order to consider all the plate configurations, the

dimensionless parameter γ = λs/h is introduced (S-wavelength to thickness). Figure 2.3 shows the

solution γ in Eq. (2.47) with k = 1.25 and h/2 = π/(γ ks) for ν ∈ [0, 0.5]. It can be seen that ratios

γ ≤ 1.575 validate the limit η2 = 1.25. When the ratio is γ > 1.575, the solution of Eq (2.47)

provides the Lamb mode, and η2 = Re{k̄A
L } must be adopted in case the value is greater than 1.25

(this depends on ν).

0 0.1 0.2 0.3 0.4 0.5
 ν

1.5

2

2.5

3

3.5

4

 γ 

 ξα  = ξβ = 0
 ξα  = ξβ = 0.02
 ξα  = ξβ = 0.05
 ξα  = ξβ = 0.07
 ξα  = ξβ = 0.1

Figure 2.3: Value γ = λs/h such that η2 = 1.25 vs. Poisson’s ratio ν.

The situations in which the upper limit corresponds to the asymmetric Lamb modes are limited to

the low frequency range. Table 2.1 shows the values obtained for k̄A
L when Poisson’s ratio ν = 0 and

no damping is given, which constitutes the limiting case. The value γ = 1000 would be considered

a practical maximum value to use the dynamic solution instead of the static Green’s function. The
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numerical procedure for integration in the interval [η1, η2] consists of an adaptive method, fixing η2

and iterating until the required accuracy is attained.

γ k̄L
1 1.1797
2 1.3067
10 2.1826
100 6.3116
1000 19.766

Table 2.1: Normalized Lamb wavenumbers at ν = 0; no damping.

Figure 2.4 shows an example of function v2m − va
2m

defined in Eq. (2.38). A vertical source at

position s/h = 0.25 and an observation point at z/h = 0.1, r = 0 have been considered. For a

pure-vertical load, m = 0 is the only term in the series. Two integration paths have been delineated,

with η1 = 0.5, η2 = 7, η3 = 8; paths differ only in the initial slope: tan(φ) = 0.5 for “Path 1”, and

tan(φ) = 0.1 for “Path 2”. Four frequencies have been tested, at γ ∈ {1, 2, 10, 100}. The figure

shows:

• The maximum pole locations (pole positions agree with the results shown in Table 2.1).

• The role of the initial slope (the initial slope tan(φ) = 0.5 produces a smoother integrand than

tan(φ) = 0.1 since it is further from the real axis).
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Figure 2.4: Curves v20 − va
20

along the integration path
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2.4 Validation

In this section, the Green’s function is validated by means of a series of tests and a double consider-

ation:

a) Tests based on the reciprocity theorem for displacement and layer geometry for stresses, in

which the basic properties of the fundamental solution are tested using only the approach pre-

sented in this chapter;

b) A direct comparison with previously published plots in which the layer’s fundamental solution

is obtained using different techniques.

2.4.1 Reciprocity Check

The elastodynamic displacement field corresponding with any fundamental solution must fulfill a

basic identity,

u j
i (x, y,ω) = ui

j(y, x,ω) (2.54)

called Maxwell-Betti’s reciprocity identity, where x and y are the positions of the receiver and source

points, respectively. Superscript j denotes the Cartesian component of the source force. The subscript

i stands for the Cartesian component of the displacement field.

Figure 2.5 shows the reciprocity comparison. A layer, thickness h, and parameters µ, ν = 1/3,

is considered. The point force value is µh2. A dimensionless excitation frequency Ω = 12, with

Ω = ω h/
√

µ/ρ is set. The figure represents the real and imaginary parts for two solutions. For

the first one, u3/h displacement is computed for a source pointing to the x1 direction located at

(0, 0, 0.25h) and receivers at (h, 0, z). The second distribution shows u1/h corresponding with a set

of sources pointing to the x3 direction in (h, 0, z) at the observation point (0, 0, 0.25h). The contrast

between both solutions shows a perfect agreement. Although this test shows that the displacement

components fulfil the Maxwell-Betti identity, the result is not exclusive to the layered solution. In

order to check specific properties of the plate domain, the following test is proposed for tractions.
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-0.05

0

0.05

0.1

u i / h
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(x;y)}
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3

1 
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Im{u
1

3 
(x;y)}

Im{u
3

1 
(y;x)}

Figure 2.5: Reciprocity theorem check
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2.4.2 Traction Fundamental Solution Symmetry Check

The layer fundamental solution shows certain symmetries or asymmetries with respect to the plane

z = h/2, due to the geometric configuration and the boundary conditions prescribed. This as-

pect may be tested in traction fields by comparing two solutions. A layer, thickness h, stiffness µ

and Poisson’s ratio ν = 0.3 is considered. “Solution 1” consists of a point source µ h2 located at

(x1, x2, x3) = (0, 0, 1/3h). Two source directions (in x1 and x3 directions) are considered in two

independent tests. Traction profiles τi j are computed at (h, 0.5h, χ), χ = x3 ∈ [0, h]. “Solution 2”

consists of a source µ h2 located at (x1, x2, x3) = (0, 0, 2/3h), for which traction profiles are com-

puted at (h, 0.5h, χ), with χ = h − x3. Both solutions show τSol.1
i j (h, 0.5h, χ) = ±τSol.2

i j (h, 0.5h, χ),

where the sign depends on the source location (symmetric or asymmetric profiles). The x-axis rep-

resents the dimensionless abscissa χ/h. For both problems, a dimensionless excitation frequency

Ω =ω h/(
√

µ/ρ) = 12 is given as input data.

Figure 2.6 represents the comparison between both solutions for a source load pointing to the x3

direction (vertical load). The relation between traction components is

τSol.1
11 = −τSol.2

11 ; τSol.1
22 = −τSol.2

22 ; τSol.1
33 = −τSol.2

33 ;

τSol.1
12 = −τSol.2

12 ; τSol.1
13 = τSol.2

13 ; τSol.1
23 = τSol.2

23 .
(2.55)

Perfect agreement is observed. Figure 2.7 shows the traction profiles for a source pointing to the x1

direction (horizontal load). For this problem,

τSol.1
11 = τSol.2

11 ; τSol.1
22 = τSol.2

22 ; τSol.1
33 = τSol.2

33 ;

τSol.1
12 = τSol.2

12 ; τSol.1
13 = −τSol.2

13 ; τSol.1
23 = −τSol.2

23 .
(2.56)

Perfect agreement is also observed for this case.

2.4.3 Comparison with Results based on Different Methods

The aim of these tests is the direct comparison with previously published results. The source for

comparison is found in [7] which described the solution for a layered isotropic plate based on the

double Fourier transform. The solution is built through modal superposition. An alternative solution

is shown for a pure-vertical load (axisymmetric problem) based on a hybrid model, also reported

by [7], in which the Hankel functions of the first kind constitute the modal base at the near-field.

A plate, thickness h, elastic moduli µ and Poisson’s ratio ν = 1/3 is considered. A vertical source

µ h2 is located at (x1, x2, x3) = (0, 0, h/4). The receiver is located at (h, 0, z), where z ∈ [0, h]. The

u3/h dimensionless displacement is computed at z. The dimensionless frequencyΩ =ω h/
√

µ/ρ =

20 is considered. The factor e−iω t is considered at Bai’s solution; thus, the conjugate complex of the

solution proposed here is compared with the ones obtained by the hybrid and modal superposition

methods.

Figure 2.8 shows the comparison between three methods. Although agreement is quite good,

better agreement is observed with the hybrid method, and this is due to the similar near-field repre-

sentation between the hybrid method and the solution proposed here which is based on the Hankel

transform. Both representations better reproduce singular behaviour at the source neighbourhood.

Since the modal superposition method is based on the addition of planar waves (rather than singular

solutions), the near-field behaviour therefore requires more terms in order to give an accurate result.
The comparison for a horizontal source is shown in Figure 2.9. A source µ h2 pointing to the

x1 direction is located at (0, 0, h/4). The dimensionless vertical displacement u3/h is computed at
(h, 0, z). The value Ω = 20 has been considered. For this problem, only the modal superposition
solution is available (the hybrid method is valid only for vertical load). Agreement between the
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Figure 2.6: Symmetry cross-check for a vertical source, force µ h2, Ω = 12

results is good, and small differences are observed due to the different representations at the near
field.
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Figure 2.9: Comparison with Bai et al. (2004) results, horizontal source µ h2, vertical displacement.
Ω = 20. Source at (0, 0, h/4). Results at (h,0,z)

23



0 0.2 0.4 0.6 0.8 1

χ/h

-1.5
-1

-0.5
0

0.5

τ
11

/µ

Re (Sol. 1)

0 0.2 0.4 0.6 0.8 1

χ/h

-1
-0.5

0
0.5

1

τ
22

/µ

Im (Sol. 1)

0 0.2 0.4 0.6 0.8 1

-1

0

1

τ
33

/µ

0 0.2 0.4 0.6 0.8 1
-0.7
-0,.5

0
0.35
0.7

τ
12

/µ

0 0.2 0.4 0.6 0.8 1
-0.3

0

0.3

0.6

τ
23

/µ
Re (Sol. 2)

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

τ
13

/µ
Im (Sol. 2)

Figure 2.7: Symmetry cross-check for a horizontal source, force µ h2, Ω = 12

2.5 Concluding Remarks

This chapter presents the fundamental solution for the three-dimensional elastodynamic problem

for an isotropic layer domain. Time-harmonic formulation has been considered, and damping is

included by complex-valued material parameters. The solution method based on the propagator

matrix method, including updates by [124], has been adopted to develop the Green’s function, and

the specific reflection matrix components for the plate domain are presented. Displacement and trac-

tion components are given by two adding terms: an analytical closed-form solution (corresponding

with the static half-space problem) and a regular integral (which must be evaluated by numerical

methods). The modified integration path technique is used to obtain a smooth integrand. A careful

analysis of poles reveals that the asymmetric Lamb’s normalized wavenumber becomes unbounded

when the frequency decreases. A specific treatment is proposed to identify the position of such poles,

which may be extended to multilayered configurations, in which a strong stiffness transition permits

the presence of Lamb waves, not only for plates, but for some multilayered half-space configurations.

Numerical tests confirm theoretical and practical aspects have been correctly developed.
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CHAPTER 3

Singular boundary elements for three-dimensional elasticity

problems

3.1 Introduction

One of the common features of mixed boundary value problems in solid mechanics is the presence

of non-smooth boundary and interfacial surfaces. As demonstrated by a number of studies (see

works by Williams or Dempsey, [163, 42]), sharp geometries such as those involved in punch prob-

lems (Fig. 3.1) often give rise to the theoretical occurrence of singular contact tractions which can

cause inaccuracy and poor convergence in numerical analyses. To address these computational is-

sues and pursue a truly rigorous solution to solid mechanics problems in the context of Boundary

Integral Equation (BIE) formulations, the development of specialized boundary elements capable of

representing singular contact tractions would clearly be beneficial. Beyond its inherent utility as a

tool for establishing 3D benchmark results, such careful treatment may also elevate the analysis of

nano-indentation unloading response (e.g. Pha (2002)[130]) involving sharp indenters of arbitrary

shape.

Usage of traction-singular elements in BIE dates back to Cruse (1977)[38] dealing with 2D prob-

lems in linear fracture mechanics. This work was followed by a series of studies (e.g. Ingra, Martínez

or Gray, [15, 106, 60]) on the development and use of a so-called “quarter-point” boundary element

that is consistent with the occurrence of square-root singular tractions. Complicating the issue fur-

ther, however, is the coincidental presence of non-unique tractions at boundary corners and edges.

The latter problem can be mitigated by the use of double nodes, tangential derivatives, or discon-

tinuous boundary elements (e.g., Rego Silva (1993) [135], Stamos(1995) [146]). As an example of

a comprehensive treatment of non-smooth boundaries in 2D elasticity, [98] have proposed a set of

semi-discontinuous lineal boundary elements equipped to deal with both traction discontinuities

and power-type singularities of variable order.

In three-dimensional BIE stress and deformation analyses, on the other hand, attention has mostly

been focused on the treatment of fracture mechanics problems and associated square-root traction

singularities. For instance, an eight-node crack tip element with singular traction shape functions

was introduced in Luchi(1987)[100], while a nine-node surface analog of the lineal “quarter point”

element was developed in Ariza(1997)[6]. More recently a continuous, variable-order boundary ele-

ment was proposed in Zhou(2005)[166] for the specific purpose of calculating stress intensity factors

featuring 3D multi-domain fracture problems. Despite its utility, however, the latter crack tip ele-

ment requires the continuity of tractions across its “front”, representing the material or crack edge.

As such, it is not suited for the treatment of non-unique tractions occurring along the perimeter of

smooth boundary surfaces that may intersect or terminate at arbitrary angles relative to each other.

To advance the rigorous BIE treatment of problems in 3D solid mechanics, the focus of this pa-

per is a set of semi-discontinuous, surface boundary elements that are capable of representing both
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traction discontinuities and integrable power-type traction singularities, while permitting a smooth

transition to regular surface elements away from material edges. For generality, these variable-order

singular elements are developed in their four-node (linear) and eight-node (“serendipity” quadratic)

variants, allowing for situations when either one or two of the (adjacent) element’s sides coincide

with material edges. Enhanced by the proposed treatment of singular and non-unique surface trac-

tions, the regularized BIE solution is found to perform well, with fast and stable convergence for

both static and dynamic benchmark problems. Further uses of the proposed methodology may in-

volve the analysis of 3D contact problems associated with sharp indenters, as well as the calculation

of stress-intensity factors for intersecting boundary and interfacial surfaces.

3.2 Singularity of tractions at non-smooth material interfaces

In the analyses of 3D solids involving arbitrary geometric and material configurations, one often

needs to consider domains that are bounded by surfaces containing curves across which the normal

to the boundary exhibits a discontinuity. For further reference, the smooth segments of such curves

will be denoted as edges, while the points of their intersection, contact, or termination will be referred

to as corners. From the local analyses (e.g. Dempsey(1981)[42]), it is well known that the stress field

at those locations may become singular. As a result, the convergence and accuracy of numerical

solutions for this class of problems can be improved by incorporating such local characteristics into

the computational scheme [9, 74, 126]. A rigorous treatment of the rigid punch problems in Fig. 3.1,

for instance, would demand such an analysis. To determine the singular character of stresses in the

vicinity of material edges and corners, the following analytical observations are relevant:

• For points at a fixed distance from boundary corners, the near-edge displacement and stress

gradients in the direction parallel to an edge are usually negligible compared to the ones in the

perpendicular direction (ver Bažant[10]). As a result, the problem may be analyzed as that of

either plane or anti-plane strain depending on loading conditions.

• The singular character of stresses is unaffected by the (regular) inertial forces. Consequently,

one may explore singular dynamic stresses by considering the corresponding static problem.

This statement can be established by assuming a power-type, time-harmonic behavior of the

displacement field, u(r,θ, t) = f (θ,ω) eiωt rλ , Re(λ) < 1 in the vertex neighborhood, where

(r,θ) are the local polar coordinates (see Fig. 3.1) andω is the frequency of vibration. Substitu-

tion of the foregoing format into Navier equations reveals that the inertia term remains finite

for all points. As such, it becomes negligible relative to (unbounded) displacement gradients

as r→0.

3.2.1 Edge singularity

The edge-induced singularity of the stress fields for various multi-material (or equivalently multi-

wedge) configurations in the context of plane strain has been explored in studies ranging from the

classical works of Williams(1952) [163] and Bogy(1968, 1971) [16, 18] to more recent developments

[154, 150, 29, 121, 165]. As shown in Bogy, for example, singular behavior of the stress field at the apex

of a bonded bi-material wedge such as those featured in Fig. 3.1 can be determined from an eigen-

problem (signifying the existence of non-trivial stresses under zero body forces and surface tractions

as r→0) that is formulated by means of the Airy stress function and Mellin integral transform [157].
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Figure 3.1: Rigid punch problems (µ1 → ∞) involving bi-material edge configurations

With reference to a closed bi-material configuration depicted in Fig. 3.1c, the order of singularity

in the stress field at the wedge apex can be shown, using the latter approach, to permit the represen-

tation

τi j(r,θ) =
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(3.1)
in the local polar coordinates (r,θ) centered at the material edge r = 0. Here f c

i j(θ) and f s
i j(θ) are

analytic functions of the angular coordinate; i, j∈{r,θ}; ro is a reference length, and λ is a zero, with

the largest real part in the strip −2<Re(s)<−1 [17], of the characteristic equation

De(s) ≡
{

(M1−M2)
2(1+s)2 sin2θ1 − (1−M2)

2 sin2(1+s)θ1

}

×
{

(1+M2)
2 sin2(1+s)θ2 − (M1−M2)

2(1+s)2 sin2θ2

}

(3.2)

+ (M2
1−1) sin2(1+s)(π−θ2)

{

2(M1−M2)
2(1+s)2 sin2θ2 +

2(1−M2
2) sin (1+s)θ1 sin (1+s)θ2 − (M2

1−1) sin2(1+s)(π−θ2)
}

= 0,

where θk (k = 1, 2) is the angle subtended by the kth material wedge with shear modulus µk and

Poisson’s ratio νk, and

M1 =
µ1(1 − ν2)− µ2(1 −ν1)

µ1(1 − ν2) + µ2(1 −ν1)
, M2 =

µ1(
1
2 −ν2) −µ2(

1
2 −ν1)

µ1(1 −ν2) +µ2(1 −ν1)
. (3.3)

One may observe that (3.1) encompasses oscillating (η 6= 0) as well as non-oscillating (η= 0) power,

logarithmic and power-logarithmic type singularities of the stress field. It is also worth noting that

the stress field τi j exhibits no singularities for Re(λ)<−2, while the pure logarithmic type singularity

29



occurs when λ = −2 is a second-order zero of De(s). Higher powers of log(r/ro) may also be

deduced by considering the nth order poles, n > 2. This type of singularity, however, has not been

found to occur in elasticity problems [41].

In the case of an open bi-material edge featured in Figs. 3.1a and 3.1b, formula (3.1) still applies

provided that the determinant function De(s) is replaced by the expression [18]

Ds(s) = 4M2
2 K(s,θ2)K(s,θ1) + 4M1 M2 (1+s)2

{

K(s,θ1) sin2θ2 +K(s,θ2) sin2θ1

}

+ M2
1

{

4(1+s)2(2s + s2) sin2θ2 sin2θ1 + K(s,θ2−θ1)
}

+ 4M2 (1+s)2
{

K(s,θ1) sin2θ2 −K(s,θ2) sin2θ1

}

(3.4)

+ 2M1

{

2(1+s)2
(

K(s,θ2) sin2θ1 −K(s,θ1) sin2θ2

)

+K(s,θ1) −K(s,θ2)
}

+

+ K(s,θ2+θ1), K(s,θ) = sin2(1+s)θ− (1+s)2 sin2θ.

in which M1 and M2 are given in (3.3).

From the analyses of this kind, it is generally understood that the local, near-edge variation of the

stress field components is of the form

logm(r/ro) Re
(

fγ(θ)
rγ

)

as r→0, Re(γ)<1, m=0, 1 (3.5)

where fγ(θ) is complex-valued and regular, and γ≡ λ+2 is an eigenvalue (so-called singularity ex-

ponent) that is obtained as a solution of the characteristic equation associated with the relevant edge

configuration in terms of the angles, material properties, and interfacial conditions of participating

wedges. Here it is again useful to note that Im(γ) gives rise to an oscillating-type singularity [165].

In deciding suitable values of γ in (3.5) via local analysis such as that in (3.2)–(3.4), however, it

should be noted that:

• Taking the root of a featured characteristic equation, e.g. (3.2) or (3.4), with the largest real

part takes into account only the strongest possible singularity predicted by the local analysis. In

situations where multiple characteristic values with −2 < Re(λ)<−1 exist, their participation

in the elastic response depends on a particular (global) boundary value problem and transcends

the predictive capabilities of local analyses [41].

• Likewise, the relevance of either plane-strain local analysis (illustrated in this study) or its anti-

plane counterpart (e.g. [110, 107]) again depends on the global conditions, e.g. the mode of

crack loading in the context of linear fracture mechanics.

To provide a focus in the study, the performance of proposed singular elements is illustrated on

the basis of these two simplifying assumptions, namely i) the relevance of the characteristic value

λ with the largest real part, and ii) that of the plane-strain singularity analysis. The computational

platform established with the aid of these special elements however transcends these limitations.

3.2.2 Corner singularity

To determine the singular character of stresses in the neighborhood of corner points where two-

dimensional solutions are no longer applicable, one may employ for instance 3D asymptotic eigen-

analyses as in [10, 11, 145, 120, 84] where the local, power-type expansion of the stress field is coupled

with a suitable (finite element, finite difference or boundary element) discretization of the multi-

material configuration characterizing the neighborhood of the corner point. Notwithstanding their
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theoretical importance, however, the corner singularities are often highly localized and tend to be

less critical to the global solution than their edge counterparts.

In this paper, a practical computational platform that can utilize the foregoing asymptotic anal-

yses for the enhancement of three-dimensional Boundary Integral Equation (BIE) methods is de-

veloped. To cater for engineering applications, the study is focused on the derivation of special-

ized boundary elements that are capable of effectively incorporating the discontinuous and locally-

singular nature of surface tractions occurring along material edges. Depending on the problem con-

figuration, local asymptotic analyses predict power, logarithmic, or power-logarithmic type singular-

ities of the stress field (as well as their oscillatory variants) in the vicinity of material edges. By their

nature, however, the logarithmic and oscillatory features of local stress concentrations typically have

a limited effect on the overall resultant of boundary tractions, and thus on the global BIE solution. To

deal with the key effects of non-smooth material boundaries, this investigation is accordingly con-

cerned with a local, boundary element treatment of power-type traction singularities corresponding

to m=0 and Im(γ)=0 in (3.5).

3.3 Singular four–node elements

With reference to the parent domain {η1 , η2| −1 ≤ η1 ≤ 1, −1 ≤ η2 ≤ 1} of an M-node quadrilateral

boundary element whose geometry (xi), displacements (ui) and tractions (ti) are interpolated as

xi(η1, η2) = ∑M
m=1 xm

i φ
g
m(η1, η2),

ui(η1, η2) = ∑M
m=1 um

i φ
d
m(η1, η2), i=1, 2, 3

ti(η1, η2) = ∑M
m=1 tm

i φ
t
m(η1 , η2),

(3.6)

in terms of their respective nodal values, the task at hand can be readily reduced to the development

of specialized traction shape functions φt
m (and their companions φg

m andφd
m) that properly account

for both singularity and discontinuity of interfacial tractions in situations when selected element

sides coincide with material edges.

3.3.1 Edge element

As a canonic configuration of interest, one may consider the four-node quadrilateral element (M=4)

with the parent domain {η1 , η2| −1≤ η1 ≤ 1, −1≤ η2 ≤ 1} whose side η1 = 1 coincides with a sharp

boundary edge. Consistent with the previous discussion, the singular traction behavior is assumed

to be of the form

ti(η1, η2) =
ψi(η1, η2)

(1 − η1)α
as η1 → 1, −1≤ η2 ≤1, 0≤α<1, i = 1, 2, 3 (3.7)

where ti are the Cartesian components of a traction vector; ψi are smooth and regular over the par-

ent domain, and α is the order of traction singularity as η1 → 1. To adequately represent (3.7) in the

context of piecewise-smooth boundary and interfacial geometries, the sought “edge” element must

obviously be sub-parametric in terms of its shape functions. To mirror the non-uniqueness of edge

tractions, on the other hand, the element should also allow for their discontinuity across side η1 =1.

With reference to Fig. 3.2a, the latter requirement can be met by introducing a semi-discontinuous,

four-node boundary element whose nodes 2 and 3 are shifted away from the singular edge. In what

follows, such nodal shifting will be imposed in terms of both traction, displacement, and geometry

shape functions for “back-compatibility” with conventional collocation schemes, and in particular

the regularized BIE method [125] employed in this study. Here it is useful to note that the featured
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perturbation of geometric description, while deemed inessential for the examples presented, main-

tains the uniqueness of a normal to the boundary; a feature that that may facilitate the treatment of

elasticity problems involving moving boundaries (see Guzina(2003)[67]).

η

2 ( c,−1)(−1,−1)1

3

η

Singular 
edge

η

ηη

2 ( c,−1)(−1,−1)1

3

η
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η

( c, 1)(−1, 1)4

(−1, c)4 ( c, c)

2

1=1

1

22 =1

1

1=1a) b)

Figure 3.2: Singular four-node boundary elements: a) edge element and b) corner element

The basic requirement for the geometry shape functions φg
m(η1, η2), m = 1, 4 characterizing any

boundary element is the one of completeness, i.e. the element’s ability to exactly reproduce pla-

nar geometries. To satisfy the completeness requirement while maintaining compatibility with the

neighboring regular (isoparametric) element along side η1 = −1, the geometry shape functions for

the “edge” element are assumed in the bilinear form

φ
g
1(η1, η2) =

(c − η1)(1 − η2)

2 (1 + c)
,

φ
g
2(η1, η2) =

(1 + η1)(1 − η2)

2 (1 + c)
,

φ
g
3(η1, η2) =

(1 + η1)(1 + η2)

2 (1 + c)
,

φ
g
4(η1, η2) =

(c − η1)(1 + η2)

2 (1 + c)
,

(3.8)

where 0 < c < 1 is a pre-defined parameter which specifies the location of internal nodes 2 and 3 as

shown in Fig. 3.2a.

For the class of boundary value problems of interest in this study, requirements for the displace-

ment shape functions, φd
m(η1, η2), m = 1, 4 are similar: they must be able to i) exactly represent the

rigid-body motions of the domain boundary, and ii) maintain the C0-compatibility of the displace-

ment field with the neighboring isoparametric element along side η1 = −1. Accordingly, one may

assume

φd
m(η1 , η2) = φ

g
m(η1, η2), −1≤ η1≤1, −1≤ η2 ≤1, m = 1, 4. (3.9)

On expanding the regular auxiliary functions ψi(η1 , η2) over the parent domain in Taylor series

at η1 =1, the traction shape functions φt
m(η1, η2), m = 1, 4 which can correctly represent the singular
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traction behavior (3.7) can be written as

φt
1(η1, η2) =

{

a1(1 − η1)
−α + b1(1 − η1)

1−α} (1 − η2),

φt
2(η1, η2) =

{

a2(1 − η1)
−α + b2(1 − η1)

1−α} (1 − η2),

φt
3(η1, η2) =

{

a3(1 − η1)
−α + b3(1 − η1)

1−α} (1 + η2),

φt
4(η1, η2) =

{

a4(1 − η1)
−α + b4(1 − η1)

1−α} (1 + η2),

(3.10)

for −1 < η1 < 1, −1 < η2 < 1 and 0≤α< 1, where am and bm (m = 1, 4) are some constants. As can

be seen from (3.10),φt
m are all characterized by a linear variation in the η2-direction to maintain the

C0-compatibility of tractions with neighboring isoparametric elements along η2 =±1. The variation

of tractions in the η1-direction, on the other hand, is composed of the singular term (1 − η1)
−α and

the higher-order, regular term (1 − η1)
1−α. The unknown coefficients in (3.10) can be determined

from the requirement that the traction shape functions are uncoupled, i.e. that φt
m(ηk

1, ηk
2) = δmk,

m, k = 1, 4 where (ηk
1, ηk

2) are the local coordinates of the kth element node in Fig. 3.2a, and δmk

denotes the Kronecker delta. With the aid of (3.10), this requirement yields the necessary linear

algebraic equations for am and bm resulting in the solution

φt
1(η1, η2) =

2α(c − η1)(1 − η2)

2(1 + c)(1 − η1)α
,

φt
2(η1, η2) =

(1 − c)α(1 + η1)(1 − η2)

2(1 + c)(1 − η1)α
,

φt
3(η1, η2) =

(1 − c)α(1 + η1)(1 + η2)

2(1 + c)(1 − η1)α
,

φt
4(η1, η2) =

2α(c − η1)(1 + η2)

2(1 + c)(1 − η1)α
.

(3.11)

In contrast to the surface singular elements in fracture mechanics where the square-root singu-

larities are of primary interest (e.g. [100]), the proposed traction shape functions (3.11) are capable

of representing power-type singularities of arbitrary order 0 < α < 1, and are thus able to deal

with general multi-material edge configurations. Another useful property of the present develop-

ments is that (3.8), (3.9) and (3.11) can be reduced to the continuous isoparametric format associ-

ated with conventional four-node quadrilaterals [20] by setting α = 0 and c = 1. Regarding the

intermediate “offset” case 0 < c < 1, on the other hand, it is useful to recall that the strict appli-

cability of singular expansion (3.1) underlying (3.11) is limited to infinitesimal distances from the

material edge. With reference to Fig. 3.3a plotting the variation of φt
2 in (3.11) over a semi-open re-

gion {η1 , η2| −1 ≤ η1 < 1, −1 ≤ η2 < 1}, parameter c should preferably take values close to unity

for improved accuracy of singular traction computations. In the context of the collocation method,

however, the latter choice results in a highly-localized variation of the Green’s functions over the

neighboring boundary element (sharing the singular edge) when either node 2 or 3 in Fig. 3.2a is

the collocation point; a “side effect” that increases both the complexity and computational effort nec-

essary to establish a discretized BIE. From a limited set of geometric and material configurations

examined in this study, an “optimal” value of the shift parameter that balances the computational

effort with numerical accuracy was found to be in the range 0.75 < c < 0.95.

With reference to (3.8) and (3.9), one may note that the displacement shape functions are assumed

to vary linearly in the η1-direction as opposed to the power-type hypothesis

φ̃d
k(η1 , η2) =

(1 − η1)

φt
k(η

k
1, ηk

2)
φt

k(η1, η2), k = 1, 4 (3.12)
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that is more consistent with the singular distribution of tractions in (3.11) (see, e.g., [100] for crack

elements whereα=0.5). In view of the indentation problems as a primary motivation for this study,

however, bi-linear interpolation (3.9) is preferred owing to its ability to consistently represent the

rigid-body motion of surface indenters; a requirement that could not be met with assumption (3.12).

3.3.2 Corner element

To deal with non-smooth boundary geometries in a realistic fashion, one must also allow for the

presence of corners, i.e. terminal or intersection points of multiple material edges. To this end, it is

useful to consider a quadrilateral boundary element shown in Fig. 3.2b whose sides η1 =1 and η2 =1

both coincide with material edges. For generality, it is assumed that

ti(η1, η2) =







ψi(η1,η2)
(1−η1)α

as η1 → 1, −1≤ η2 <1, 0≤α<1,
ψi(η1,η2)
(1−η1)β

as η2 → 1, −1≤ η1 <1, 0≤β<1
i = 1, 2, 3 (3.13)

i.e. that the orders of traction singularity along the two edges bordering the element can be distinct.

With such premise and the nodal arrangement shown in Fig. 3.2b, the results from the previous

section may now be extended to yield the geometry, displacement, and traction shape functions for

the “corner” four-node element as

φ
g
1(η1, η2) = φd

1(η1, η2) =
(c − η1)(c − η2)

(1 + c)2 ,

φ
g
2(η1, η2) = φd

2(η1, η2) =
(1 + η1)(c − η2)

(1 + c)2 ,

φ
g
3(η1, η2) = φd

3(η1, η2) =
(1 + η1)(1 + η2)

(1 + c)2 ,

φ
g
4(η1, η2) = φd

4(η1, η2) =
(c − η1)(1 + η2)

(1 + c)2 ,

(3.14)

and

φt
1(η1 , η2) =

2α+β(c − η1)(c − η2)

(1 + c)2(1 − η1)α(1 − η2)β
,

φt
2(η1 , η2) =

2β(1 − c)α(1 + η1)(c − η2)

(1 + c)2(1 − η1)α(1 − η2)β
,

φt
3(η1 , η2) =

(1 − c)α+β(1 + η1)(1 + η2)

(1 + c)2(1 − η1)α(1 − η2)β
,

φt
4(η1 , η2) =

2α(1 − c)β(c − η1)(1 + η2)

(1 + c)2(1 − η1)α(1 − η2)β
.

(3.15)

One may observe from (3.14) that the geometry shape functions φg
m and the displacement shape

functions φg
m are again bilinear. Moreover, the C0-continuity of the displacements and tractions be-

tween the corner element and neighboring edge elements across sides η1 =−1 and η2 =−1 is also

maintained.

It should also be noted that the corner singularity of the traction field as η1 → 1 and η2 → 1

is modeled simply as a product of the corresponding edge behaviors. A more rigorous approach

would include determination of the exact asymptotic behavior of corner tractions as examined e.g. in

Koguchi works [84] and incorporation of the result in the numerical scheme. Owing to the negligible

boundary area over which such behavior is exhibited, however, the current approach is found to be

sufficient for all intended purposes.
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As an illustration of the four-node developments, traction shape functionsφt
2 for the edge element

andφt
3 for the corner element are shown in Fig. 3.3. To avoid plotting singular values, the graphs are

generated over a semi-open region {η1 , η2| −1≤η1 <1, −1≤η2 <1}.

b)a)

Figure 3.3: Four-node traction shape functions: a) φt
2 for the edge element and b) φt

3 for the corner
element (c=0.8, α=β=0.5)

In situations when the ability of a corner element to represent rigid-body motion is not essential,

the displacement shape functions in (3.14) could be superseded, by analogy to (3.12), with their

traction-compatible variants

φ̃d
k(η1, η2) =

(1 − η1)(1 − η2)

φt
k(η

k
1, ηk

2)
φt

k(η1, η2), k = 1, 4 (3.16)

where φt
k are given by (3.15). Unless stated otherwise, however, the ensuing numerical results are

based on bi-linear kinematic interpolations (3.9) and (3.14).

3.4 Singular eight–node elements

To permit more complex displacement and traction patterns such as those occurring in elastodynam-

ics while maintaining the proper local representation of traction singularities, the foregoing four-

node developments can be generalized to a set of eight-node (“serendipity”) singular boundary ele-

ments which are compatible with conventional quadratic interpolation.

3.4.1 Edge element

With reference to Fig. 3.4a the eight-node, semi-discontinuous edge element (M = 8) is designed by

shifting the nodes 2, 3, and 6 away from the material edge. As before, the nodal-shift parameter

is denoted by c, while the local tractions are assumed to be power-type singular along side η1 = 1

according to (3.7). In this setting, the geometry and displacement shape functions for the eight-node

edge element that satisfy the completeness requirement can be derived as
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φ
g
1(η1, η2) = φd

1(η1, η2) = − (c − η1) (1 − η2) (1 + η1 + η2)

2 (1 + c)
,

φ
g
2(η1, η2) = φd

2(η1, η2) = − (1 + η1) (1 − η2) (c − η1 + c η2)

2 c (1 + c)
,

φ
g
3(η1, η2) = φd

3(η1, η2) = − (1 + η1) (1 + η2) (c − η1 − cη2)

2 c (1 + c)
,

φ
g
4(η1, η2) = φd

4(η1, η2) = − (c − η1) (1 + η2) (1 + η1 − η2)

2 (1 + c)
,

φ
g
5(η1, η2) = φd

5(η1, η2) =
(c − η1) (1 + η1) (1 − η2)

2 c
,

φ
g
6(η1, η2) = φd

6(η1, η2) =
(1 + η1) (1 − η2

2)

1 + c
,

φ
g
7(η1, η2) = φd

7(η1, η2) =
(c − η1) (1 + η1) (1 + η2)

2 c
,

φ
g
8(η1, η2) = φd

8(η1, η2) =
(c − η1) (1 − η2

2)

1 + c
.

(3.17)

By design, interpolation functions in (3.17) maintain the C0-continuity with i) singular edge elements

across sides η2 = ±1, and ii) regular (eight-node) isoparametric element across side η1 = −1. The

traction shape functions, on the other hand, that satisfy (3.6)-(3.7) while maintaining the quadratic

variation in the η2-direction across the edge element in Fig. 3.4a can be shown to take the form

φt
1(η1, η2) = −2α−1 (c − η1) (1 − η2) (1 + η1 + η2)

(1 + c)(1 − η1)α
,

φt
2(η1, η2) = − (1 − c)α (1 + η1) (1 − η2) (c − η1 + c η2)

2c (1 + c)(1 − η1)α
,

φt
3(η1, η2) = − (1 − c)α (1 + η1) (1 + η2) (c − η1 − cη2)

2c (1 + c)(1 − η1)α

φt
4(η1, η2) = −2α−1 (c − η1) (1 + η2) (1 + η1 − η2)

(1 + c)(1 − η1)α
,

φt
5(η1, η2) =

(c − η1) (1 + η1) (1 − η2)

2c (1 − η1)α
,

φt
6(η1, η2) =

(1 − c)α (1 + η1) (1 − η2
2)

(1 + c)(1 − η1)α
,

φt
7(η1, η2) =

(1 + η1) (c − η1) (1 + η2)

2c (1 − η1)α
,

φt
8(η1, η2) =

2α (c − η1) (1 − η2
2)

(1 + c)(1 − η1)α
.

(3.18)
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Figure 3.4: Singular eight-node boundary elements: a) edge element and b) corner element
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3.4.2 Corner element

Following the approach outlined earlier, the relevant shape functions are next developed for the

eight-node corner element depicted in Fig. 3.4b whose sides η1 =1 and η2 =1 both coincide with ma-

terial edges. Here, the surface tractions over the element’s parent domain are assumed to be singular

according to (3.13). To properly account for the underlying traction discontinuities, nodes 2, 3, 4, 6

and 7 are “isotropically” shifted away from material edges by the amount c. With such assumptions,

one finds that the boundary geometry and displacements are locally interpolated through the shape

functions

φ
g
1(η1, η2) = φd

1(η1, η2) = − (c − η1) (c − η2) (1 + η1 + η2)

(1 + c)2 ,

φ
g
2(η1, η2) = φd

2(η1, η2) = − (1 + η1) (c − η2) (c − η1 + cη2)

c (1 + c)2 ,

φ
g
3(η1, η2) = φd

3(η1, η2) = − (1 + η1) (1 + η2) (c − η1 − η2)

c (1 + c)2 ,

φ
g
4(η1, η2) = φd

4(η1, η2) = − (c − η1) (1 + η2) (c + cη1 − η2)

c (1 + c)2 ,

φ
g
5(η1, η2) = φd

5(η1, η2) =
(c − η1) (1 + η1) (c − η2)

c (1 + c)
,

φ
g
6(η1, η2) = φd

6(η1, η2) =
(1 + η1) (c − η2) (1 + η2)

c (1 + c)
,

φ
g
7(η1, η2) = φd

7(η1, η2) =
(c − η1) (1 + η1) (1 + η2)

c (1 + c)
,

φ
g
8(η1, η2) = φd

8(η1, η2) =
(c − η1) (c − η2) (1 + η2)

c (1 + c)
,

(3.19)

whereas the (singular) local variation of tractions permits the representation

φt
1(η1, η2) = −2α+β(c − η1) (c − η2) (1 + η1 + η2)

(1 + c)2(1 − η1)α (1 − η2)
β

,

φt
2(η1, η2) = −2β(1 − c)α(1 + η1) (c − η2) (c − η1 + cη2)

c (1 + c)2(1 − η1)α(1 − η2)β
,

φt
3(η1, η2) = − (1 − c)α+β(1 + η1) (1 + η2) (c − η1 − η2)

c (1 + c)2(1 − η1)α(1 − η2)β
,

φt
4(η1, η2) = −2α(1 − c)β (c − η1) (c + cη1 − η2) (1 + η2)

c (1 + c)2 (1 − η1)α (1 − η2)β
,

φt
5(η1, η2) =

2β(c − η1) (1 + η1) (c − η2)

c (1 + c)(1 − η1)α(1 − η2)β
,

φt
6(η1, η2) =

(1 − c)α(1 + η1) (c − η2) (1 + η2)

c (1 + c)(1 − η1)α(1 − η2)β
,

φt
7(η1, η2) =

(1 − c)β(c − η1) (1 + η1) (1 + η2)

c (1 + c)(1 − η1)α(1 − η2)β
,

φt
8(η1, η2) =

2α(c − η1) (c − η2) (1 + η2)

c (1 + c)(1 − η1)α(1 − η2)β
.

(3.20)

Similar to the four-node developments in Section 3.3, setting α=β= 0 and c = 1 in (3.17)–(3.20)

reduces the eight-node edge and corner elements to a continuous isoparametric format associated

with conventional eight-node quadrilaterals. As an illustration, eight-node traction shape functions

φt
8 for the edge element andφt

3 for the corner element are plotted over a semi-open region {η1 , η2| −
1≤η1 <1, −1≤η2 <1} in Fig. 3.5.
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b)a)

Figure 3.5: Eight-node traction shape functions: a) φt
8 for the edge element and b) φt

3 for the corner
element (c=0.8, α=β=0.5)

3.5 Numerical integration

To examine the performance of singular elements, it is useful to consider their implementation within

the framework of regularized boundary integral equations [125]

∫

Γ n
ti(ξ) ûk,n

i (ξ , y) dΓξ −
∫

Γ n
[ui(ξ)− ui(y)] [t̂k,n

i (ξ , y)]1 dΓξ (3.21)

−
∫

Γ n
ui(ξ) [t̂k,n

i (ξ, y)]2 dΓξ +
∫

Ωn
fi(ξ) ûk,n

i (ξ , y) dΩξ = Υ uk(y), y ∈ Γ n, n=1, N

written respectively for each material Ωn in a piecewise-homogeneous body Ω=
⋃N

n=1Ω
n. Here, Γ n

is a piecewise-smooth boundary of the homogeneous piece Ωn; i, k = 1, 3; summation is assumed

over the repeated indexes; ui and ti are the respective Cartesian components of the boundary dis-

placements and tractions; ûk,n
i and t̂k,n

i are suitable (displacement and traction) Green’s functions

characterizing the nth material; [·]1 and [·]2 denote the respective singular and regular components

of their argument; fi stands for the body force; n is the normal to Γ n pointing outward from Ωn, and

Υ equals 0 and 1 for the interior and exterior boundary value problem, respectively.

On approximating Γ n by a boundary element mesh: Γ n
h =

⋃Q
q=1Eq where Eq are e.g. four- or eight-

node quadrilateral surface elements, (3.21) can be reduced (via the collocation method) to a set of

linear algebraic systems

Q

∑
q=1

Mq

∑
m=1

3

∑
i=1

t
mq
i

∫

Eq

φ
t,q
m (ξ) ûk,n

i (ξ , ys) dΓξ −
Q

∑
q=1

Mq

∑
m=1

3

∑
i=1

u
mq
i

∫

Eq

(φ
d,q
m (ξ)−δsmq) [t̂k,n

i (ξ , ys)]1 dΓξ

−
Q

∑
q=1

Mq

∑
m=1

3

∑
i=1

u
mq
i

∫

Eq

φ
d,q
m (ξ) [t̂k,n

i (ξ , ys)]2 dΓξ +
∫

Ω
fi(ξ) ûk,n

i (ξ , ys) dΩξ = Υ us
k, s = 1, S

(3.22)

written respectively for each Ωn in terms of the nodal values of boundary displacements (us
k) and

tractions (ts
k) evaluated at collocation points ys. In (3.22), Q and S are respectively the numbers of

boundary elements and nodes featuring Γ n
h ; Mq is the number of nodes for the qth element whose

displacement and traction shape functions are denoted respectively by φd,q
m and φt,q

m , and mq is the

global number of the mth element node. As all integrals in (3.22) exist in the ordinary sense, standard
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(two-dimensional) Gaussian quadrature can formally be applied to all boundary elements, includ-

ing: i) edge and corner elements, and ii) elements containing the collocation point. For boundary

elements over which the featuring integrands are singular (due to either singularity of the Green’s

function or the shape function), however, standard quadrature proves to be notably inefficient and

some modifications are required to maintain the desired accuracy.

3.5.1 Integration over regular elements containing the collocation point

Even though (3.22) is free of Cauchy principal values, its evaluation is complicated by the fact that

the featured 3D Green’s functions are characterized by the singular behavior

ûk,n
i (ξ, ys) = O(r−1), t̂k,n

i (ξ , ys) = O(r−2) as r = |ξ−ys| → 0,

for some i, j ∈ {1, 2, 3} in the context of both elastostatic and elastodynamic problems (e.g. [20]).

As a result, the corresponding elemental integrals demand substantial numerical integration ef-

fort. To provide a remedy, use is made of a regularizing mapping technique originally proposed

in Lachat(1976) [90]. With reference to a standard four- or eight-node quadrilateral element Eq con-

taining the collocation point as one of its corner nodes, the idea is to subdivide the element’s parent

domain into two triangles, e.g. Triangle A and Triangle B, with a common vertex at the collocation

point P (see Fig. 3.6a). On denoting the global coordinates of the singular point P by yn, the ad-

vantage of this mapping procedure is that the Jacobian of the underlying transformation is of the

order: J(ξ) = O(|ξ−yn|) as Eq∋ξ → yn which weakens the singularity of featured kernels and thus

improves the integration accuracy. With reference to Fig. 3.6a, the approach may be illustrated by

introducing the set of auxiliary coordinates {η′1 , η′2| −1≤η′1 ≤1, −1≤η′2≤1} to describe Triangle A,

and requiring that the side η′1 =1 collapses onto the singular point P (see Fig. 3.6b). On generalizing

to a situation where P coincides with the kth quadrilateral element node (k = 1, 4) with coordinates

(ηk
1, ηk

2), the above-described mapping can be synthesized as

η1 = ηk
1η

′
1 , η2 = ηk

2

{

1 − 1
2
(1 − η′1)(1 − ηk

1η
k
2η

′
2)

}

, Triangle A

η2 = ηk
2η

′
1 , η1 = ηk

1

{

1 − 1
2
(1 − η′1)(1 + ηk

1η
k
2η

′
2)

}

, Triangle B, k=1, 4 (3.23)

where −1 < η′1 < 1, −1 < η′2 < 1, and the partition is arranged so that the side of Triangle A

that is parallel to the η2-axis contains the collocation point. One may note that the Jacobian of

transformation (3.23) is (ηk
1η

k
2)

2(1−η′1)/2 for both participating triangles. Owing to the fact that

|ξ−ξ
k|= O (1−η′1) as ξ → ξ

k≡ξ(ηk
1, ηk

2), this yields the desired behavior: J(ξ) = O(|ξ−yn|) when

ξ→ yn.

In situations where the collocation point P coincides with a side node, ξ
k≡ξ(ηk

1, ηk
2) (k = 5, 8) of

a regular eight-node element (see Fig. 3.4 with c = 1), the foregoing procedure can be adapted by i)

splitting the element’s parent domain into two rectangular regions along the coordinate axis η1 and

η2 respectively for k ∈ {6, 8} and k ∈ {5, 7}, and ii) applying a suitable analogue of (3.23) to each

rectangular subdomain.

3.5.2 Integration over singular elements

In the case of singular boundary elements, additional singularity in the integrands on the left-hand

side of (3.22) arises from the traction shape functions φt
m given respectively by (3.11), (3.15), (3.18),
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Figure 3.6: Partition and mapping of a regular element containing the collocation point P.

and (3.20) for the four-node edge, four-node corner, eight-node edge, and eight-node corner ele-

ment, respectively. As an example, one may consider the four-node and eight-node edge elements in

Figs. 3.2a and 3.4a whose traction shape functions are singular as

ti(η1, η2) = O
(

(1−η1)
−α) as η1 → 1, −1≤ η2 ≤1, 0≤α<1, i = 1, 2, 3 (3.24)

For clarity, it is first assumed that none of the element nodes coincides with the collocation point. To

improve the efficiency of numerical integration for this case, one may to introduce a 1-to-1 mapping

of the local coordinates {η1, η2| −1≤η1 ≤1, −1≤η2≤1} into an auxiliary domain {η′1 , η′2| −1≤η′1 ≤
1, −1≤ η′2 ≤ 1} so that the Jacobian of transformation nullifies the singular traction behavior (3.24).

To this end, one may assume

η1 = A + B
(

1 − η′1
)C , −1 ≤ η′1 ≤ 1,

η2 = η′2 , −1 ≤ η′2 ≤ 1, (3.25)

where A, B and C are the unknown constants for the mapping. By imposing the end conditions

where η1(±1, η′2)=±1, one finds that A=1, B=−2(1−C), and consequently

(1−η1)
−αdη1dη2 = 2(1−α)(1−C) C

(

1−η′1
)(1−α)C−1 dη′1dη′2. (3.26)

For the exponent of (1−η′1) in (3.26) to be unity, one must take C=1/(1−α) and therefore

η1 = 1 − 2−α/(1−α)
(

1−η′1
)1/(1−α) , −1 ≤ η′1 ≤ 1, (3.27)

η2 = η′2 , −1 < η′2 ≤ 1.

In a similar fashion, one may find the appropriate mapping for the four- and eight-node corner

elements (Figs. 3.2b and 3.4b) to be of the form

η1 = 1 − 2−α/(1−α)
(

1−η′1
)1/(1−α) , −1 ≤ η′1 ≤ 1, (3.28)

η2 = 1 − 2−β/(1−β)
(

1−η′2
)1/(1−β) , −1 ≤ η′2 ≤ 1, (3.29)
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where 0≤β<1 represents the order of singularity for the traction shape functions along side η2 = 1,

see also (3.13).

In the special case when the collocation point coincides with one of the nodes of a singular (edge

or corner) element, the regularizing mapping technique exemplified by (3.23) should be superim-

posed over (3.28) and (3.29). For collocation points which coincide with a side or an internal (as

opposed to corner) node of a singular element, however, the element’s parent domain must first be

subdivided into a number of rectangular sub-domains so that each subdomain contains the colloca-

tion point as one of its corners. This is illustrated in Fig. 3.7 using the eight-node corner element as

an example. In the Figure, local nodes {1}, {2, 4, 5, 8}, and {3, 6, 7} are designated as the “corner”

node, “side” nodes, and “internal” nodes, respectively.

For clarity, the complete mapping sequence for a generic rectangular patch (i.e. subdomain)

{η1 , η2|d≤ η1 ≤ e, f ≤ η2≤ g} in Fig. 3.7 can be written as

η1 =
2

e − d

(

η′1 −
e + d

2

)

, η2 =
2

g − f

(

η′2 −
g + f

2

)

(3.30)

which maps the patch into a “unit” reference domain {η′1 , η′2| −1≤ η1 ≤1, −1≤ η2 ≤ 1};

η′1 = η′′1 , η′2 =η′′2 if η1|η′1=1 < 1, η2|η′2=1 < 1,

η′1 = χ(η′′1 ,α), η′2 =η′′2 if η1|η′1=1 = 1, η2|η′2=1 < 1,

η′1 = η′′1 , η′2 =χ(η′′2 ,β), if η1|η′1=1 < 1, η2|η′2=1 = 1,

η′1 = χ(η′′1 ,α), η′2 =χ(η′′2 ,β), if η1|η′1=1 = 1, η2|η′2=1 = 1,

(3.31)

where −1≤η′′1 ≤1, −1≤η′′2 ≤1, and

χ(η′′k ,γ) = 1 − 2−γ/(1−γ)
(

1−η′′k
)1/(1−γ) , k = 1, 2,

a transformation which deals with the shape-function singularity; and

η′′1 = η′′k1 η
′′′
1 η′′2 = η′′k2

{

1 − 1
2
(1 − η′′′1 )(1 − η′′k1 η

′′k
2 η

′′′
2 )

}

, Triangle A

η′′2 = η′′k2 η
′′′
1 , η′′1 = η′′k1

{

1 − 1
2
(1 − η′′′1 )(1 + η′′k1 η

′′k
2 η

′′′
2 )

}

, Triangle B, k=1, 4 (3.32)

η′′11 =η′′41 = η′′12 =η′′22 =−1, η′′21 =η′′31 =η′′32 =η′′42 =1, −1≤η′′′1 ≤1, −1≤η′′′2 ≤1

that mitigates the Green’s function singularity. By means of (3.30)-(3.32), numerical integration over

each rectangular subdomain of a singular element containing the collocation point can be effectively

performed in terms of η′′′1 and η′′′2 using standard quadrature formulae. For singular elements not

containing the collocation point, (3.32) is dropped and the numerical integration is performed in

terms of η
′′
1 and η

′′
2 with e= g=−d=− f =1.

3.6 Results

In what follows, proposed singular elements are applied to a set of canonical boundary value prob-

lems (involving piecewise-planar boundary surfaces) to evaluate their numerical performance. To

provide a reference in the absence of suitable 3D analytical solutions, results stemming from the use

of “singular” boundary element meshes are compared to their “regular” counterparts. For the clarity

of comparison, each “singular” mesh is converted to its “regular” companion by setting α = 0 and
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Figure 3.7: Partition of a singular eight-node corner element containing the collocation point P as: a)
corner node, b) side node, and c) internal node.

β=0 for all participating edge and corner elements. From a limited study, optimal value of the shift

parameter c that controls the location of internal nodes within a singular element was found to be in

the range 0.75 < c < 0.95. In the sequel, uniform boundary element meshes (composed of equi-sized

square elements) and the value of c = 0.90 are used throughout.

The first three examples deal with a rigid punch problem for the homogeneous isotropic half-

space. Owing to the use of the exact half-space Green function (see Guzina(1999)[68]), these problems

require only a minimal discretization that is limited to the contact surface. The fourth and the last

example considers both the static and dynamic solution of a mixed boundary value problem for a

solid cube, fixed at its bottom. For the latter problem, the full-space (static and dynamic) Green

functions are employed.

3.6.1 Frictionless surface punch

As a first benchmark problem, Fig. 3.8 plots the results for the “vertical” static stiffness coefficient,

Kvv, of a frictionless square surface punch (|x1|< a, |x2|< a) applied to the surface of a homogeneous

elastic half-space (x3 >0) with shear modulus µ and Poisson’s ratio ν = 1/3. Under the frictionless

interfacial conditions, the traction singularity associated with punch edges can be shown to be of the

square-root type [43], which requiresα=β=0.5.

The results obtained by the BEM approach are plotted against the solution of Dempsey and Li [40]

who used an indirect integral equation approach and treated the singular contact tractions globally

by assuming

t3(x1, x2) =
p(x1, x2)

(a − |x1|)0.5 (a − |x2|)0.5 , |x1| < a, |x2| < a
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Figure 3.8: Static stiffness of a square surface punch 2a×2a (frictionless contact).
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Figure 3.9: Effect of kinematic interpolation on the static stiffness of a square surface punch 2a×2a
(frictionless contact).

and solving for the regular part p(x1, x2). Their benchmark result

Kvv = 1.1523
(

4µa
1 −ν

)

was obtained by using 1024 elements, where the term in parentheses denotes the corresponding

static stiffness of a frictionless circular punch with radius a. As can be seen from Fig. 3.8, the im-

proved scheme with singular elements converges significantly faster to the asymptotic value 1.1523,

especially when eight-node boundary elements are employed.

For completeness, a detail from Fig. 3.8 is re-plotted in Fig. 3.9 with an addition of the 4-node

singular-element values (indicated by an asterisk) that are calculated using traction-compatible kine-

matic interpolations (3.12) and (3.16) in lieu of their (default) bi-linear counterparts (3.9) and (3.14).

As can be seen from the display, the results obtained using two alternative kinematic descriptions are

indistinguishable, which suggests that the choice of the displacement shape functions over traction-

singular boundary elements may not be essential for the class of problems under consideration.
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3.6.2 Bonded surface punch

The next example deals with a bonded square surface punch (|x1|< a, |x2|< a) applied to the half-

space with shear modulus µ and Poisson’s ratio ν = 1/3. For this problem, relevant stiffness coeffi-

cients can be summarized as

Kvv =
R∆3

3
∆3

, Khh =
R∆1

1
∆1

, Kmm =
MΘ2

2
Θ2

Kmh =
M∆1

2
∆1

, Khm =
RΘ2

1
Θ2

, Ktt =
MΘ3

3
Θ3

(3.33)

where for instance R
∆ j
i denotes the resultant contact force in the xi-direction caused by the punch

translation ∆ j in the x j direction, and M
Θ j
i is the resultant moment about the xi-axis due to punch

rotation Θ j about the x j axis.
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Figure 3.10: Static stiffness coefficients for a square surface punch 2a×2a (bonded contact, ν = 1/3).

To characterize the singular contact tractions along punch edges in the case of a bonded contact,

one may set θ2 =2θ1 =π , µ2 =µ, ν2 =ν and µ2/µ1 →0 in Fig. 3.1a, yielding

s = λ = −1.5 ± i
π

tanh−1
(

1 − 2ν
2 − 2ν

)

, (3.34)
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Table 3.1: Surface punch problem: end values of stiffness coefficients

Stiffness 4-node regular 4-node singular 8-node regular 8-node singular
coefficient N = 3600 N = 3600 N = 3605 N = 3605
Kvv/(µa) 7.1050E0 7.0578E0 7.0915E0 7.0587E0
Khh/(µa) 5.6262E0 5.5872E0 5.6133E0 5.5876E0
Ktt/(µa3) 8.7827E0 8.5939E0 8.7091E0 8.5962E0

Kmm/(µa3) 6.5896E0 6.4592E0 6.5515E0 6.4618E0
Kmh/(µa2) 5.4222E-1 5.2048E-1 5.3453E-1 5.1852E-1
Khm/(µa2) 5.1040E-1 5.1758E-1 5.1306E-1 5.1974E-1

as the first-order zeros of Ds(s) in (3.4) with the largest real part in the strip −2< Re(s)<−1 (see also

[18]). On substituting (3.34) into (3.1), the above result implies oscillatory square-root singular tractions

near the edges of the square foundation, for which again α = β = 0.5 regardless of ν. Similar to

the previous example, unbounded tractions are assumed to occur throughout the perimeter of the

foundation regardless of the mode of loading. Accordingly, the singular elements are placed along

edges x1 = ±a and x2 = ±a. Fig. 3.10 illustrates the convergence of the boundary element solution,

in terms of the stiffness coefficients (3.33), as a function of the number of boundary nodes N. As can

be seen from the display, the use of singular boundary elements results in a faster overall convergence

of the numerical solution. In particular, it is noted that the “singular mesh” with four-node elements

outperforms its eight-node “regular” (i.e. quadratic) counterpart for all modes of loading.

Notwithstanding the apparent convergence of the results in Fig. 3.10 (and in particular those ob-

tained using singular elements), however, it is important to examine whether the featured “asymp-

totic” values are reasonable. In the absence of a suitable analytical solution, one can make reference

to the Maxwell-Betti reciprocity identity which requires that Khm = Kmh. In this regard, Table 3.1

lists the "limiting" values of all stiffness coefficients, where N denotes the number of nodes in the

boundary element mesh. The results indicate that the difference between Khm and Kmh is 5.8%, 0.5%,

4.0% and 0.2% for the 4-node regular, 4-node singular, 8-node regular and 8-node singular mesh,

respectively; a result that should be weighted with the fact that Khm and Kmh are order-of-magnitude

smaller than the remaining stiffness coefficients.

To provide a broader perspective for the study, the distribution of contact tractions t3, produced

by the unit punch translation (∆1 = 1) in the ξ1-direction, is plotted in Fig. 3.11 for three boundary

element discretizations. To minimize the bias in the results, calculations are performed using two

“regular” 8-node meshes with N = 341 and N = 1281, and a “regular” 4-node mesh with N = 441.

As inferred by (3.33), this translational mode of loading is used to calculate the stiffness coefficients

Khh and Kmh. Subject to the limitations of assumed discretization and related interpolation issues, two

observations are prevalent. In the vicinity of theξ1 =±a edges, the contact tractions appear to exhibit

oscillatory singular behavior that is resemblant of (3.34). In contrast, the distribution of tractions

near the ξ2 =±a edges is considerably smoother. While illustrating the utility of local analyses e.g.

in terms of exposing an oscillatory singular behavior, these results also serve as a reminder that the

relevance of any local analysis to a particular boundary value problem is dependent on the (global)

loading conditions. In this regard, a retarded convergence of the Kmh coefficient in Fig. 3.10 can be

attributed to the fact that the assumed singular (4- and 8-node) boundary element meshes do not

properly account for the local (near-edge) features in Fig. 3.11. For completeness, it is noted that

the numerical contact tractions for the remaining modes of loading in (3.33), namely ∆3 = 1,Θ2 = 1

and Θ3 = 1 (omitted for brevity), indicate apparent singularity of contact tractions throughout the

perimeter of the punch as assumed by the numerical analysis.
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Figure 3.11: Normal contact tractions induced by the unit translation of a bonded punch in the ξ1-
direction: results obtained using a) 10×10 “regular” 8-node mesh (N = 341), ii) 20×20 “regular’
8-node mesh (N =1281), and c) 20×20 “regular’ 4-node mesh (N =441).

3.6.3 Embedded punch

In what follows, interfacial stiffness coefficients (3.33) are computed for the rigid cubical punch

(|x1|< a, |x2| < a, 0 < x3 < 2a) embedded in, and bonded to a homogeneous elastic half-space,

x3 >0 (see also Fig. 3.1). The half-space is characterized by the shear modulus µ and Poisson’s ra-

tio ν = 1/3. To examine the singularity of contact tractions along the edges of an embedded block,

it is useful to make a distinction between the surface and embedded edge, shown respectively in

Figs. 3.1b and 3.1c. Accordingly, all boundary edges lying in the plane x3 = 0 will be designated as

surface edges, while the remaining eight edges will be understood as being embedded.

In the case of a surface edge, a substitution θ1 =θ2 =π/2, ν2 =1/3 and µ2/µ1 → 0 in (3.4) yields

a numerical solution

s = λ ≈ −1.690 (3.35)

for the first-order zero of Ds(s), with the largest real part, in the strip −2 < Re(s)<−1. On the basis

of (3.1) and (3.35), the singularity orders α or β for all participating surface edges are set to 0.310.

For an embedded edge, on the other hand, the relevant characteristic equation is (3.2). On setting

θ2 =3θ1 =3π/2, ν2 =1/3 and µ2/µ1 → 0, the relevant zero of (3.2) with the largest real part can be

found as

s = λ ≈ −1.590; (3.36)
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a result that, by virtue of (3.1), requires thatα or β for embedded edges be set to 0.410. One may note

that the values in (3.35) and (3.36) are consistent with the results of the two-dimensional analysis for

the clamped-free wedge of angle π/2 and the clamped-clamped wedge of angle 3π/2, respectively

(see Williams(1952) [163]).

Fig. 3.12 illustrates the convergence of the stiffness coefficients in (3.33) for the embedded punch

problem. The results again demonstrate the utility of singular boundary elements as a tool for im-

proving the accuracy of numerical approximation. In contrast to the two earlier examples, on the

other hand, it is seen that the “regular” mesh with eight-node elements exhibits a performance that

is comparable to that stemming from the use of either “singular” mesh. This is perhaps not sur-

prising in view the fact that the singularities for the embedded punch problem, being weaker than

that for its surface counterpart, are inherently more amenable to a polynomial approximation. For

completeness, Table 3.2 lists the “limiting" values of the stiffness coefficients in Fig. 3.12. Adopting a

relative difference between the values of Khm and Kmh as a measure of solution accuracy, comparison

of the data in Tables 3.1 and 3.2 also reveals that the embedded punch results outperform those for

the surface punch. This “anomalous” behavior apparently stems from the fact that the surface-punch

traction singularity (3.34) has an oscillatory character that is not captured by the use of singular ele-

ments. In contrast, edge singularities (3.35)–(3.36) featuring the embedded punch problem exhibit

no oscillatory behavior (λ=0).
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Figure 3.12: Static stiffness coefficients for an embedded cubical punch 2a×2a×2a (bonded contact,
ν = 1/3).
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Table 3.2: Embedded punch problem: end values of stiffness coefficients

Stiffness 4-node regular 4-node singular 8-node regular 8-node singular
coefficient N = 3645 N = 3645 N = 3680 N = 3680
Kvv/(µa) 1.2373E1 1.2365E1 1.2363E1 1.2362E1
Khh/(µa) 1.4739E1 1.4731E1 1.4729E1 1.4728E1
Ktt/(µa3) 5.0226E1 5.0095E1 5.0100E1 5.0082E1

Kmm/(µa3) 6.5976E1 6.5846E1 6.5828E1 6.5809E1
Kmh/(µa2) 1.9070E1 1.9051E1 1.9045E1 1.9042E1
Khm/(µa2) 1.9070E1 1.9051E1 1.9045E1 1.9042E1

3.6.4 Solid cube

The focus of the next example is a mixed boundary value problem for a finite elastic body, involving

either static or dynamic (time-harmonic) loading. The problem domain is a solid cube |xk| < 3a

(k = 1, 2, 3) that is fixed along its bottom, x3 =−3a. The cube has a shear modulus µ, Poisson’s ratio

ν = 0.3 and mass density ρ. An internal point load of magnitude µa2 is applied at (1.5a, 0, 0) in the

x1-direction. For the dynamic case, the frequency of excitation is ω =
√

µ/ρ/a. For the edge and

corner elements along the bottom face, a local eigenvalue analysis identical to that in Section 3.6.3

shows that α = β = 0.310. Beyond their merit as benchmarks, this class of testing configurations

may also be relevant to elastic imaging problems [23], especially those involving biological tissues

where the internal forcing is realized with the aid of a confocal ultrasound beam [50].

Figs. 3.13 and 3.14 illustrate the convergence of the BIE solution in terms of the boundary dis-

placement ux(3a, 0, 0)/a for the static and dynamic case, respectively. In both instances, the use of

singular elements accelerates the convergence of the numerical solution relative to that obtained us-

ing regular elements only (α=β= 0). For the dynamic problem, however, Fig. 3.14 shows that the

improvement due to the use of quadratic (instead of linear) elements is far more significant than that

achieved by the use of singular (in lieu of regular) elements. Such behavior is apparently caused

by the inertial forces which not only complicate the displacement patterns, but also minimize the

magnitude of the bottom reaction and thus the effect of singular contact tractions.
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Figure 3.13: Normal displacement on the boundary of a solid cube 6a×6a×6a, interior static force.

As a final comparison, Tables 3.3 and 3.4 list the values of ux(3a, y, 0)/a, 0 ≤ y≤2.7a for the static

and dynamic problem, respectively. The boundary discretization used to obtain the results is uniform
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Figure 3.14: Normal displacement on the boundary of a solid cube 6a×6a×6a, interior dynamic force.

Table 3.3: Solid cube problem, static loading: boundary displacement ux(3a, y, 0)/a

y/a 4-node regular 4-node singular 8-node regular 8-node singular FEM
N =2646 N =2646 N =2046 N =2046 N =60625

0.0 1.8453E-1 1.8498E-1 1.8546E-1 1.8556E-1 1.8533E-1
0.3 1.8019E-1 1.8064E-1 1.8096E-1 1.8107E-1 1.8092E-1
0.6 1.6909E-1 1.6954E-1 1.6976E-1 1.6986E-1 1.6965E-1
0.9 1.5518E-1 1.5563E-1 1.5573E-1 1.5583E-1 1.5560E-1
1.2 1.4166E-1 1.4211E-1 1.4208E-1 1.4219E-1 1.4201E-1
1.5 1.3003E-1 1.3048E-1 1.3044E-1 1.3055E-1 1.3035E-1
1.8 1.2053E-1 1.2098E-1 1.2090E-1 1.2101E-1 1.2084E-1
2.1 1.1287E-1 1.1332E-1 1.1324E-1 1.1335E-1 1.1317E-1
2.4 1.0657E-1 1.0702E-1 1.0693E-1 1.0703E-1 1.0686E-1
2.7 1.0113E-1 1.0158E-1 1.0148E-1 1.0159E-1 1.0142E-1

and consists of either 6×20×20 linear elements, or 6×10×10 quadratic elements. For completeness,

the tables also list the finite element results (ANSYS 8.0) generated using a 24 × 24 × 24 uniform

mesh consisting of 20-node “brick” elements (quadratic interpolation). Not surprisingly, the use of

both quadratic and singular boundary elements appears to improve the BEM performance, with the

agreement between the eight-node BEM results and FEM computations maintaining a reasonable

level for both static and dynamic excitation.

3.7 Conclusions

To advance the computational treatment of three-dimensional elasticity problems involving sharp

material boundaries and interfaces, the focus of this study is the development of traction-singular,

semi-discontinuous surface boundary elements. Designed to simultaneously deal with traction dis-

continuities and integrable traction singularities of arbitrary power, these four- and eight-node ele-

ments also provide a smooth transition to regular boundary elements away for material edges. For

generality, the singular elements are developed in their both “edge” and “corner” variants, allowing

respectively for situations where either one or two of the adjacent element sides coincide with mate-

rial edges. To aid their incorporation into a boundary integral solution scheme, quadrature over the

singular elements is aided by a sequence of mapping techniques that respectively mitigate and nul-

lify the singularity of the Green’s and (traction) shape functions. For an effective treatment of rigid

indentation problems, the traction-singular elements are complemented with a (four-node) linear
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Table 3.4: Solid cube problem, dynamic loading: boundary displacement ux(3a, y, 0)/a

y/a 4-node regular 4-node singular 8-node regular 8-node singular FEM
N =2646 N =2646 N =2046 N =2046 N =60625

0.0 5.8567E-2 5.8992E-2 6.5776E-2 6.5900E-2 6.6002E-2
0.3 5.0527E-2 5.0946E-2 5.7246E-2 5.7367E-2 5.7569E-2
0.6 2.9109E-2 2.9506E-2 3.4869E-2 3.4982E-2 3.5054E-2
0.9 2.5826E-4 6.2080E-4 4.5566E-3 4.6558E-3 4.6410E-3
1.2 -3.0427E-2 -3.0109E-2 -2.8029E-2 -2.7947E-2 -2.7960E-2
1.5 -5.9284E-2 -5.9019E-2 -5.8888E-2 -5.8827E-2 -5.8998E-2
1.8 -8.4397E-2 -8.4188E-2 -8.6300E-2 -8.6261E-2 -8.6470E-2
2.1 -1.0504E-1 -1.0489E-1 -1.0924E-1 -1.0922E-1 -1.0957E-1
2.4 -1.2138E-1 -1.2128E-1 -1.2797E-1 -1.2798E-1 -1.2843E-1
2.7 -1.3442E-1 -1.3437E-1 -1.4346E-1 -1.4349E-1 -1.4405E-1

and (eight-node) quadratic kinematic description that permits exact representation of the rigid-body

motion. In situations involving deformable wedge configurations, these elements can be modified

in a straightforward manner to include traction-compatible, power-type displacement interpolation

for computational accuracy. Owing to the fact that the singular character of stresses in the vicinity of

material edges and corners is unaffected by inertial forces, the proposed developments are equally

applicable to elastostatic and elastodynamic problems. Using a direct boundary integral formulation

the singular elements are shown, through a set of benchmark results, to be an effective computational

vehicle for incorporating local singularity analyses into global calculations involving sharp geome-

tries. With the orders of traction singularities obtained via plane-strain analysis as an example, the

enhanced BIE solution is found to perform well, with fast and stable convergence for both static and

dynamic problems. Owing to its dependence on the global loading conditions, however, the rele-

vance of any local (plane or anti-plane strain) analysis is very much an open research question and

represents the next step in the rigorous treatment of solid mechanics problems involving non-smooth

material surfaces. Extended uses of the proposed methodology may include the analysis of 3D con-

tact problems associated with sharp indenters as well as the calculation of stress-intensity factors for

intersecting boundary and interfacial surfaces.

50



CHAPTER 4

The Inverse Identification Problem as an optimization problem

based on Elastodynamic Boundary Integral Equations and

gradient–based methods

4.1 Introduction

The identification of deffects in materials by using Qualitative Non-Destructive Testing (QNDT) is

an interesting problem for the industry, material testing, seismic prospecting, medical diagnosis and

underground object identification. The solution requires numerical models. An Inverse Identification

Problem (IIP) is a particular kind of inverse problem in which a hidden part of the boundary is

identified. Kubo’s work [87] shows a general overview about the different kind of inverse problems

that might be stated at a solid.

A direct problem can be stated as the calculation of the response (certain field v) given the ge-

ometry of the domain (solid Ω with boundary Γ ), the material mechanical properties k, physical

model operator (L and sources b), and boundary conditions (in terms of some known values of v, or

derivatives ) at Γ . Thus, a generic forward problem can be stated as follows: finding v in:

L(v) + b = 0 on Ω (4.1)

with Dirichlet, Newmann or Robin boundary conditions.

An Inverse Identification Problem (IIP) consists on finding some hidden unknown part of the

boundary Γ . In order to find it, additional data from the response have to be provided, besides the

boundary conditions. This data is measured at the accesible part of the boundary Γ .

This is focused on the solution of the IIP when the unknown part of the domain is a hidden

cavity and the host domain is a three-dimensional elastic layer, with a set of time-harmonic forces to

provide the experimental additional data. The mathematical structure of the task is an optimization

problem, in which a cost function is defined based on the response measured at selected observation

points for a parametrized geometry and the experimental measurements taken at the same points.

Also, additional a-priori information might be provieded in order to enrich the cost functional. The

forward problem is solved by the Boundary Element Method (BEM in what follows).

This problem has long been analyzed in the literature. The numerical inversion requires com-

puting the cost function and partial derivatives respect to parameters. Finite Difference Approach

has been demonstrated to produce poor convergence results; to solve such difficulty, there has been

proposed two ways to compute analytic gradients. First, the Direct Differentiation Approach, and

second, the Adjoint Variable Method (AVM in what follows).

The Direct Differentiation Approach is based on the analytic computation of sensitivities of any

response parameter. This approach was used by Lee and Kwak [93], Nishimura et al. [118], Meric

et al. [112], Aithal and Saigal [1], Mellings and Aliabadi [111], Suárez and Gallego [151], Rus and
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Gallego [53, 137, 138, 136]. Using this approach, any solution parameter can be differentiated via

an analytic formula. In the context of the BEM, the derivative is done via a direct differenciation of

the Green’s function (tractions or displacements) involved in the integral equations. But for some

problems, as it is the case of the single-layer domain presented at this PhD Thesis, such derivatives

are not possible or they are not available at the literature.

An alternative approach is the one proposed by the AVM. Gradients are computed through a

semi-analytic formula based on the solution of the so-called adjoint problem. The most important task

is that it is not required any derivation of kernel functions. Bonnet et al. [26, 21, 19, 48] applied

the adjoint state approach to find the sensitivity to geometry variation of a cavity in bidimensional

elasticity and elastodynamics. Bonnet and Constantinescu [22] show a general overview about in-

verse problems in elasticity, and introduce the adjoint solution for the identification of elastic moduli

and hidden cavities and cracks. Recently, Bonnet and Guzina [24] use the adjoint variable approach

to solve inverse identification problems of inclusions in an elastic three dimensional half space, by

elastodynamic measurements.

The purpose of this work is the analysis of the inversion properties of the three-dimensional elas-

tic layer, when the hidden object is an ellipsoid. The forward problem is solved by the BEM, based

on the regularized elastodynamic boundary integral equation, and using the Green’s function for

the layer, developed by the authors [108]. The IIP is stated as an optimization problem, in which a

BFGS algorithm is used, as it is proposed in works by Bonnet and Guzina [48, 24]. The cost func-

tion is built in terms of the misfit between experimental measurements and the one obtained by the

forward problem solution, considering a parametrized position (6 parameters) of the ellipsoid. The

cost function is enriched by adding some a-priori volume information. The necessary gradients of

the cost function are supplied by a semi-analytic approach, by the AVM, which is very interesting

for this case, due to the difficulties of deriving the Green’s function. As it is an ill-posed problem, the

dependence on several parameters is analyzed: number of excitation/measurement points, initial

guess, a-priori volume information, frequencies, and error in experimental measurements. An ex-

tensive number of numerical tests have been carried out, which permits the analysis of the inversion

process at the single layer domain.

Apart from these basic properties of this particular Inverse Problem, a set of numerical tests have

been carried out in order to analyse the effect on some patches with zero displacement boundary

conditions, that represents supports for some plate domains. This part of the work is interesting,

due to the important aplications of this domain for the industry. A single patch has been introduced,

considering zero-displacement boundary condition. It can be proof that singular tractions arises in

such case. The effect of considering traction singularities through a local analysis and adequate trac-

tion shape functions [70] is tested. Through numerical experiments, it is shown that the IP converges

better when singular tractions are considered, as it strongly affects to the solution of the forward and

adjoint problems.

4.2 Problem statement

This chapter deals with an inverse scattering problem in which an ellipsoid cavity is hidden inside

a three dimensional viscoelastic single layer. Figure 4.1 shows the 3D layer domain Ω, thickness

h. With reference to the cartesian basis B = {x1, x2, x3}, the layer is defined as the region Ω =

{(x1, x2, x3)|0 ≤ x3 ≤ h}, bounded by both planes S = {(x1, x2, x3)|x3 = 0} ∪ {(x1, x2, x3)|x3 = h} .

The material is elastic, isotropic, characterized by density ρ, and elastic constants λ andν. LetΩc ∈ Ω
be the cavity domain, bounded by surface Γ . Let ΓR be an auxiliary surface, ΓR = ΣR ∩Ω, where ΣR

denotes a sphere of radius R centered at point (0,0,h/2). The figure also represents the outward
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normal vector n to Γ , pointing to the interior of the cavity. Let x ∈ Ω− be an internal point, with

Ω− = Ω \ (Ωc ∪ Γ), and Ω−
R the subset of Ω− limited by ΓR.

Ω

Pe(iωt)

xm

h

n

x3

x1

z

xs

Γ ΓRλ ,µ,ρ

Figure 4.1: Ellipsoid cavity in a single layer domain. Sources and measurement points

At a finite set of NS points xs
n corresponding to the upper layer, a set of time-harmonics sources

are considered.

f(x) =
NS

∑
n=1

Pneiωtδ(x − xs
n) e3 (4.2)

where δ stands for the three-dimensional Dirac delta function, Pn is the force magnitude and e3 is

the unit vector in the x3 direction. With this reference, the forward problem is stated:

∇ · (C : ∇u) + f + ρω2 u = 0, x ∈ Ω−

t = 0, y ∈ Γ ∪ S

lim
R→∞

∫

ΓR

{ûk(y, x) · t(y)− t̂k(y, x) · u(y)}dΓ = 0

x ∈ Ω−
R , k = 1, 2, 3 (4.3)

with t is the traction unit vector, and C is the elastic tensor. The time-harmonic response includes

damping, through the dampng rates ξα y ξβ and the complex-valued material modules λ = λ∗ and

µ = µ∗, by virtue of the corresponding principle [30].

λ∗ + 2µ∗ = (λ+ 2µ) [1 + 2iξα(ω)] , ξα ≥ 0

µ∗ = µ [1 + 2iξβ(ω)] , ξβ ≥ 0

In Eq. (4.3), ûk(y, x) and t̂k(y, x) are the displacement and traction functions of the fundamental

solution.
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4.3 Inverse Problem

The solution of the IIP requires the definition of a set of measurement points xm at some accesible

part of S in which displacements u are monitored for the true cavity position (see Figure 4.1). The

statement of the optimization problem requires the definition of a cost function, as follows:

J (Γ) =
Q
2

NEP

∑
m=1

(

um − ue
)

· (um − ue) +
G
2

(

V − Vre f
)2

(4.4)

with um the measured displacements at a parametrized position of the cavity; ue the experimental

measurements for the true cavity; V is the volume of the parametrized cavity, and Vre f the a-priori

known volume. The first term in Eq. (4.4) is the quadratic difference between experimental and com-

puted measurements (considering the complex conjugate product). The second term is the quadratic

difference between the reference volume and the cavity volume computed for a set of parameters.

Parameters Q and G are weight constants required to provide more or less importance to the a-priori

information, in order to regularize the cost function.

The cavity is modelled as an ellipsoid. The position and shape of it depends on d parameters pd.

In this case, 6 degrees of freedom have been considered: the center coordinates (c1, c2, c3) and the

semi-axis (a, b, c). Thus, a parameter vector is defined for the cavity, as follows:

p = (c1, c2, c3, a, b, c) (4.5)

with pd, d = 1, . . . 6 the d − th parameter. The volume V can be computed from axis dimensions,

V =
4
3
π a b c (4.6)

In the literature, (e.g. see Nocedal and Wright [119]) there exists several optimization algorithms

avaliable to find a local minimum with an iterative procedure in which, starting from a trial configu-

ration, a solution is obtained by solving a local minimization problem in a quadratic approximation.

In the context of BEM and IIP, Rus and Gallego [136] explore different algorithms and conclude that

Levenberg-Marquardt’s is the best option when the cost function is quadratic. Such conclusion is

known in the literature: Levenberg Marquardt produces also faster convergence when the intial and

end points are not close. At the present work, a quasi-Newton algorithm is explored, particularly

the one proposed by Broyden, Fletcher, Goldfarb and Shanno (BFGS). This algorithm is also used by

Fata et al. [48], to solve the IIP when the host domain is a three-dimensional half space. Despite it

is known in the literature that, for such kind of quadratic cost functions, the Levenberg-Marquardt

algorithm is a better option respect to convergence, the BFGS will be used. The reason to use it will

be explained later, but basically for problems considered here, the Levenberg-Marquardt algorithm

requires more computing time. The aim of this work is a first attempt to obtain general properties of

inversion at the layer domain, comparing results with works published in the literature.

The BFGS algorithm requires the computation of the partial derivatives of the cost function re-

spect to the design parameters, ∂J /∂pd. Such gradients might be computed by the Finite Differences

Approach. In the literature, it is well known that such approach produces poor convergence, and re-

quires the computation of the direct problem too many times. The alternative to this approach is

the computation of the analytic gradients. The Direct Differenciation Approach is the natural way

to obtain such derivatives, but it requires the computation of derivatives of the Green function. In

the context of this work, the fundamental solution for the layer is not evaluated by a closed-form
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formula; displacements and traction fields requires the numerical evaluation of an inverse Hankel

transform. The gradients of such functions are not avaliable in the literature. An alternative way

to obtain gradients is the aplication of the Adjoint Variable Method (AVM), which requires only the

solution of a forward adjoint problem, and gradients are obtained by a convolution integral over the

cavity boundary Γ . In reference to the cost function defined in Eq. (4.4), gradient computations might

be split into two terms: the first is the misfit between trial and experimental measurements, and par-

tial derivatives are not analytic. On the contrary, the second term is explicit, and the derivative in

Eq. (4.6) is done by a direct differentiation: thus, in what follows, the AVM is used to compute the

partial derivatives of the first term.

4.4 The Adjoint Variable Method to compute gradients

The Adjoint Variable Method is used to compute the gradients respect to design parameters of the

cost function. It is a useful technique avaliable in the literature that provides a semi-analytical for-

mula to derive any function depending on some geometry-shape parametrers. The first step of the

method consists on the definition of the so-called adjoint problem: the governing equation is the same

than the one considered to solve the forward problem, Eq. (4.3), but:

• The original excitation sources are cancelled out. Instead of that, a set of point sources f̃ are

defined at the measurement points xm. The intensity of each source is equal to the difference

between the measured and computed displacements (the conjugate complex number). Thus,

f̃(x) = Q
NEP

∑
m=1

(

um − ue
)

δ(x − xm) (4.7)

• The boundary conditions of the adjoint problem are homogeneous, and same type than the

direct problem. At this case, apart from traction-free condition at S, t = 0 in Γ .

The partial derivative of the functional J respect to parameter pd is computed by a numerical

integral over boundary Γ .

∂J
∂pd

= Re
{

∫

Γ

[

ρω2 u · ũ − 2λµ
λ+ 2µ

divSu divSũ −µ
(

∇Su +∇T
S u
)

: ∇T
S ũ

+µ (∇Su · n) ·
(

∇T
S ũ · n

)

]

θd
n dΓ

}

+ G
(

V − Vre f
) ∂V

∂pd

(4.8)

In Equation (4.8), θd
n is the transformation velocity vector in the normal direction; θd

n ≡ n · θd
;

considering the parametrizaton adopted here:

θd
n =

(

n1 , n2, n3,
x1 − c1

a
n1,

x2 − c2

b
n2,

x3 − c3

c
n3

)

(4.9)

Equation (4.8) was obtained by Bonnet et al. (see [19, 48]) and involves a boundary only integral

over Γ , in terms of the solution of the direct and adjoint solutions, and its surface divergence and

gradient, with:

divSu = ui,i − ni ui,n (4.10)

∇Su = ∇u − n ⊗ u,n (4.11)

where subscript n denotes the normal derivative.

The volume term in cost function might be computed for the approximed cavity (e.g. see [48]).

In the context of this work, numerical tests confirm that using the exact formula, Eq. (4.6) is a good
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and simple option. Also, partial derivatives respect to axis a, b, c are easy to obtain from the volume

closed-form expression.

4.5 Boundary Element and Computational Framework

The Inverse Problem solution requires some particularities respet to the numerical method chosen,

when the solution is based on an iterative algorithm:

• A forward problem must be solved at each iteration, and the number of iterations required to

find a local minimum usually is very large. Thus, a minimum mesh requirement is an interesting

objective in order to minimize the global time to produce a result.

• The cavity moves from one to another iteration. Thus, a method that only involves meshing

the deffects surface is desirable.

• For this layer problem, it is also desirable that the method includes the scattering conditions

for the layer, without extra-meshing requirements.

For these reasons, the Boundary Element Method has been chosen to solve the forward problem at

each iteration. In the context of IIP, the BEM is the natural technique to provide fast and accurate

results. In this work, the formulation is based on the Regularized Boundary Integral Equation, and

the elastodynamic three-dimensional solution for the layer is used as a Green’s function [108]. For

an internal point, the regularized BIE can be stated as follows,

uk(y) +
∫

Γ

[

t̂k
i (ξ , y)

]

1
{ui(ξ)− ui(y)}dΓξ +

∫

Γ

[

t̂k
i (ξ , y)

]

2
ui(ξ)dΓξ =

NS

∑
n=1

Pnûk
3(xs

n, y) (4.12)

where [t̂k]1 is the singular part of the elastodynamic Green’s function, and [t̂k]2 is the regular part of

the fundamental solution. In the context of the present formulation, the Mindlin’s half-space solution

has been adopted as a singular part, as it is shown in [108].

In order to use Equation (4.12), a set of isoparametric eight-noded element are introduced, al-

lowing singular tractions when required [70]. The Gauss integration is performed, considering a

refined mesh when the collocation point is close to the integration point, avoiding the quasi-singular

integration problems. A matrix sistem is obtained, to solve the forward problem, written as:

HU = F (4.13)

Once the direct problem is solved, the adjoint problem is stated and solved also by a regularized

BIE:

ũk(y) +
∫

Γ

[

t̂k
i (ξ , y)

]

1
{ũi(ξ)− ũi(y)}dΓξ +

∫

Γ

[

t̂k
i (ξ , y)

]

2
ũi(ξ)dΓξ = Q

NEP

∑
m=1

ûk
i (xm, y) ×

(

um
i − ue

i

)

(4.14)

HŨ = F̃ (4.15)

where H is the same matrix than the one used to solve the direct problem; the only computation

required is vector F̃. The solution of the adjoint problem is the displacement field ũ.
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4.5.1 Computational platform

A FORTRAN code has been developed to compute the direct and adjoint problems. The BFGS al-

gorithm is solved by Matlab, by using the Optimization Toolbox. Despite the problem is better un-

derstood in the context of constrained minimization (limiting the cavity size to avoid points out of

the layer), there exists practical considerations to state the problem as an unconstrained nonlinear

optimization one: i) the initial guess is close to the true position; in this sense, the shape and loca-

tion of intial guess points could be carried out by image methods (linear sampling or topological

derivative) or by an initial approximed minimization problem (combined genetic algorithms with an

approximed linealization of the cost function): ii) the number of iterations increases with constrained

minimization, and slower convergence is reached.

Respect to using Matlab, the main advantage is the linear search algorithm implemented, using

quadratic and cubic interpolation, in order to produce a solution at each step that decreases the value

of the cost function respect to the previous step. Nevertheless, the cost function must be normalized,

as convergence criterium works with absolute values. Once the first solution is obtained, the root

mean square for displacements is obtained (urms), and an alternative cost function is defined as fol-

lows:

J (Γ) = γ





NEP

∑
m=1

1
urms

(

um − ue
)

· (um − ue) + χ

(

V − Vre f

Vre f

)2


 (4.16)

with γ a factor that controls the global stopping criterium (as it is defined by Matlab in terms of

absolute value), and χ is a fractor that involves the a-priori volume information. Numerical tests

have been carried out in order to callibrate such parameters.

4.6 Error in experimental measurements

To check the convergence and stability properties of the inverse algorithm, the sensitivity of the

process respect to noise in experimental measurement is tested. It is a common task in the literature

about Inverse Problems. Inverse problems are ill-conditioned. The algorithm proposed to solve

the IIP determines the stability respect to noise in pseudo-experimental measurements. Also, the

host domain plays a major role; noise is propagated inside the specimen, depending on damping.

Radiation boundary conditions, as semi-space or this layer domain should avoid some problems

involved with reflecting waves that amplifies the effect of noise at input data. One of the main

objectives of this work is detecting if the particular layer domain permits stable inversion algorithms,

with cost functions less sensitive to random noise, up to certain reasonable levels.

One common techinque to generate noise consists on applying a random distribution to the ’true’

experimental observed measurements, at each component,

ue,noise
i = ue

i (1 +ϕ) (4.17)

where ϕ is a random variable uniformly distributed over the interval [−η, η]. Values of η tested

in this study cover range from η=0.02 to η=0.40. A set of numerical benchmarks, varying several

aspects (numbers of experimental points, sources, a-priori data) gives an interesting result for this

layer domain. Results will be commented at Numerical Benchmark section.

4.7 Singular tractions at supports

In order to link the applications of plate testing with industry, additional geometries must be ex-

plored, to represent supports. The aim of such test is the analysis of the inversion problem when
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singular tractions occurs. In the context of ultrasound testing, the presence of sharp geometries us-

ally causes singularities in tractions and displacement fields. Such behaviour change the response

received at measurement points. Some corners and edges would act as new sources, with important

implications in the inverse analysis. For direct codes, it is known in the literature that such singular-

ities involves inaccuracy and poor convergence in numerical analysis. When gradients are supplied

by the Adjoint Variable Method, the polluted data obtained by the fordward solution are the input

date for the Adjoint Problem computation, in which also traction singularities occur. This causes that

gradients computed by this techinque become more sensitive to tractions error that each the direct

and adjoint problems.

The presence of supports in 3D plate testing is analysed at this work, as a particular case of sharp

geometries. Other problems, such as the identification of boxed-cavities (with particular interest in

underground facilities identification), are not considered here. Recently, Guzina et al. [70] developed

specific singular elements for generic traction singularities. Traction singularity order is obtained by

a local analysis, in which the power-type singularity exponent is solved as the main eigenvalue of

the characteristic equation. Opened and closed bi-material configurations are analysed. Chapter 3 of

this PhD document is focused on the development and numerical examples of such traction singular

elements.

x1

x2

x3

x1

x2

x3

Figure 4.2: Rectangular patch and embedded support

4.8 Numerical tests

An exhaustive set of numerical tests have been carried out in order to conclude some general prop-

erties of this layer domain, in which the BFGS algorithm and the AVM are used to solve the Inverse

Problem. The first step is the definition of a methodology that permits obtaining relevant conclusions

of inversion process, based on statistical methods. In the literature, there exists no normalized tests

that permit the comparison between domains and inversion techniques. At the present work, the

relevant variables are analysed, the data are processed, and general conclusions based on statistical

properties are obtained. The analysis carried out is similar than the one presented by Fata et al. [48]

and Rus and Gallego [138].

A common task in the direct and inverse solution is the boundary element mesh used to represent

the geometry and the solution. At the present work, the surface of the cavity is meshed by eight-

noded quadratic boundary elements; in order to obtain a experimental solution, a fine mesh has
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been used (294 elements), while the cavity is meshed by 54 boundary elements at each direct solution

during the inverse analysis. Figures 5.2, 5.37 and 5.47 show the kind of boundary element mesh used.

The necessary experimental measurements might be simulated by the direct code, but a particular

care must be taken when considering the same mesh and code. The inverse crime is a known problem

that occurs when the inverse code is the same than the one used to solve the direct one. With this

procedure it is difficult finding errors. In order to avoid it, a fine mesh is used to obtain the simulated

experimental set of measurements. An alternative approach consists on obtaining the experimental

solution by a different numerical method, such as the Finite Element Method, but this is not an easy

task for the layer domain, due to its radiation boundary conditions. A coarse mesh is used to solve

each forward problem during the inverse analysis. In addition, experimental errors are simulated.

Thus, the effects of the inverse-crime are minimized and general conclusions can be obtained.

There are several parameters that affects the inverse analysis, in which gradients are computed

by a semi-analytic formula, based on the Adjoint Variable Approach. The first required check is the

quality of gradients obtained by such an approach.

The parameters tested may be summarized as follows:

• Arrays of excitation/measurement points. First, the relative position between both kind of

points is considered. Two basic configurations are defined, to test the influence of symmetric

or non-simmetric profiles in arrays of sources/receivers. At a second stage, the number of

excitation/measurement points is increased, to test the sensitivity of the inversion algorithm to

the dimension of the excitation/measurement points arrays.

• Frequency tested. In a plate there exists quasi-resonance frequencies; thus, the dependence

on the excitation frequency is considered. There are better excitation frequencies in which the

convergence of the algorithm is better. Also, the frequency determines the size of the deffects

that might be found inner to the layer. Such frequency-dependence is analysed.

• True cavity position and initial guess points. The IP is an ill-posed problem. In this sense,

the convergence is not guaranteed for all the relative configurations true/guess cavities. The

resultant geometry is strongly dependent on the position of the initial guess. The solution, in

a general domain, could be non-unique. The particularities of this domain is explored in order

to fix the adequate range of cavity sizes and shapes, and relative distance of the initial guess

point to guarantee the convergence.

• Parametrization of the cavity. The cavity can be parametrized up to 6 different parameters, but

less parameters can be fixed. The dependence on the number of parameters is a common test

in the literature, and it is also checked here.

• Consideration of a-priori volume information. The effect of this regularizing term is analysed;

the definition of an adequate factor χ to give more or less importance to a-priori volume is

tested.

• Consideration of noise in experimental measurements. First, a set of tests have been carried out

without noise consideration; in a second step, the effect of noise in experimental measurements,

by increasing noise levels, is analysed.

• The effect of additonal patches that represents supports for the layer. In this context, the con-

sideration of traction singular elements have been tested.

4.8.1 Gradients checking

To show the advantages and special cares to use the Adjoint Variable Approach to compute gradi-

ents, a first numerical experiment has been carried out. An sphere of radius r is tested, centered at
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Table 4.1: Gradient checking: Finite Differences vs. Adjoint Variable Method

Gradient component 96 elements J = 12.22µr3 294 elements J = 12.43µr3

Finite Diff. Adjoint Finite Diff Adjoint
1/(µr2)∂J /∂a 1.2202 1.2009 1.2210 1.223
1/(µr2)∂J /∂b -2.2021 -2.183 -1.992 -1.982
1/(µr2)∂J /∂c 0.3323 0.2935 0.3255 0.3203
1/(µr2)∂J /∂c1 -4.342 -3.822 -4.288 -4.2901
1/(µr2)∂J /∂c2 0.4434 0.429 0.4593 0.4584
1/(µr2)∂J /∂c3 -0.7877 -0.7538 -0.7712 -0.7723

(0, 0, 3r). The layer thickness is h = 6r. Elastic constants for the layer are µ, ν = 0.3, and mass den-

sity ρ, whith cs =
√

µ/ρ the speed of the S-waves. Damping rates are ξα = ξβ = 0.05. With cs = 1,

the excitation frequency ω̄ = ω r√
µ/ρ

= 1 concludes a wavelenght for s-waves λs = 2 π r ≃ 6.28 r,

close to the thickness h = 6r adopted. No a-priori volume information is considered.

Vector p0 = (−0.5r, 1.2r, 2r, 1.5r, 0.5r, r) defines the 6 parameters of the initial guess ellipsoid. In

reference to Figure (4.6) a set of 16 sources are considered, with Pm = µr2 , m = 1, 16, located in a

square 4x4 mesh size 3r . Receptors are shown at the same figure, in a 3x3 squared mesh with size 2r.

At receivers, displacements u1, u2 and u3 are measured. Thus, 9 × 3 = 27 synthetic observation data

are obtained.

The original cost function, Eq (4.4) is computed, with Q = 1E6, without a-priori information

considered. The finite differences are computed for gradients ∂J /∂pd, with central differences∆pd =

0.01r. Table 4.1 compares the performance of the adjoint field vs. the finite differences, for two

different meshes for the cavity. As it is known in the literature, the quality of the results computed

via the AVM depends on the mesh used to discretize the cavity. Finite differences produces, in

general, better results for coarse meshes. Nevertheless, gradients computed via the AVM are less

computing-expensive, and the quality of the results are better when the point is close to the true

position.

4.8.2 Quasi-resonance phenomena in infinite layers and excitation frequencies

The dependence on the frequency in the inversion process is an interesting task, with practical con-

sequences. In a general solid, the existence of eigen frequencies determines resonance phenomena,

wich affects the convergence of the inverse algorithm. In the context of infinite plates, and for the

kind of sources tested, there are no pure eigenmodes, due to the radiation boundary condition. When

the layer is excited, a system of symmetric and asymmetric Lamb waves are generated. The study

of Lamb wave propagation in elastic waveguides is an active domain of research, notably because of

the important applications it may have in nondestructive testing. It is remarkable that, for such topic,

there remain fundamental open questions, such as the mathematical proof of the completeness of the

Lamb modes [13]. There are other fundamental problems not fully treated in the literature, such as

quasi-resonance phenomena (characterized by a large but finite amplitude response), reported in the

literature, for the semi-infinite plate (e.g. [141, 158, 62, 92, 162, 122]). The physical phenomena is the

dominance of the first symmetric mode S0 respect to the initial A0 asymmetric mode, which is the

main mode at low frequencies. The phenomenon was first discovered by experimental techniques by

Glazis, in 1956. For the layer domain, a practical tool to find quasi-resonances adopted in this work

is testing the displacements at the upper and lower layer at a range of frequencies. Quasirresonance

occurs when displacements are amplified in a symmetric profile (S0 Lamb wave).
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Numerical experiments have been carried out in a plate thickness h = 6r, to detect the ampli-

fication frequency. A point source, intensity µr2 is located at the origin, pointing to the positive x3

direction. Six point are fixed, 3 of them located at x3 = 0 and the other 3 points at the same x1 , x2

positions, but at the lower layer; x = 3 = h. Displacements u1 and u3 are computed at different fre-

quencies. Figure 4.3 show the comparative results for displacements, for two points located at both

traction-free layers, and coordinates x1 = 2r, x2 = 0. Analogous figures for points located at x1 = 4r

and x1 = 6r are shown in Figures 4.4 and 4.4, respectively.
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Figure 4.3: Quasirresonance test. Displacement patterns at x1 = 2r

The quasirresonance frequency corresponds with ω̄ = 0.85.Displacement pattern show that for

frequencies below this value, a quasi-static (asymmetric) mode is the dominant one. On the contrary,

for frequencies up to the quasirresonance, a symmetric propagating mode contains the main infor-

mation. The quasirresonance in this sense might be interpreted as the frequency that activates the

symmetric mode S0.

From this analysis, four excitation frequencies have been fixed for subsequent tests: ω̄ = ωr√
µ/ρ

=

{0.5, 1, 1.5, 2}. As it is observed in plots, frequency ¯ω = 1 is close to the quasirresonance frequency

ω̄ = 1.

4.8.3 Numerical benchmark

The inversion process depends on the relative positions of the excitation points and source points. At

this domain in which layer waves are present two basic configurations are proposed. At the first of
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Figure 4.4: Quasirresonance test. Displacement patterns at x1 = 4r

them, the source points and the receivers are disposed in a rectangular array with the same gravity

center, located at the origin of coordinates, see Figure 4.6 with this profile, reported by Fata and

Guzina’s work [48], the buried cavity is identified with the refleced waves that comes from the cavity,

but few of them coming from the lower bound (and less important when damping is included).

The second configuration checks the influence on waves coming from reflection from the lower

layer. Figure 4.7 shows a typical configuration of the second kind used in this work. Sources and

receivers are located in rectangular arrays whith different gravity centers. Waves received at mea-

surement points comes from rebounds coming from the hidden cavity, and from the lower layer.

The mirror effect coming from the lower layer is more important when low damping ratios are con-

sidered. For all the cases studied here, the distance between center coordinates from sources and

receivers is fixed in 3r, for all the problems. For both cases, a layer thickness h = 6r has been fixed;

material elastic properties µ, ν = 0.3 have been adopted, with damping parameters ξα = ξβ = 0.05.

Sources are time-harmonic, intensity Pm = µr2.

For each configuration, the following parameter variation have been carried out:

• Excitation points: Rectangular meshes, sizes r × r, 2r × 2r and 3r × 3r, are set. For each size, 5

source-points arrays have been generated, varying the number of points: 4 × 4, 5 × 5, 6 × 6,

9 × 9 and 11 × 11. Thus, 3 sizes and 5 different sets of points = 15 configurations.

• Measurement points: Measurement points are located at the center of rectangular meshes, sized

r× r, 2r× 2r and 3r× 3r. For each size, the arrays of measurement points are 3 × 3, 4 × 4, 5 × 5,
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Figure 4.5: Quasirresonance test. Displacement patterns at x1 = 6r

Sources n×n

x1

x2

Measurement points (n−1)× (n−1)

Figure 4.6: Sources and receivers, configuration 1, at x3 = 0

8 × 8 and 10 × 10. Only the 15 configurations in which n × n sources with (n − 1) × (n − 1)

receivers have been considered.

• Excitation dimensionless frequencies ω̄ = {0.5, 1, 1.5, 2} have been tested, with ω̄ = ω r
(
√
µ/ρ)

.

• True cavity position: For each problem it has been considered 9 positions for the true cavity:

– Cavity center: (0, 0, 2r); (0, 0, 3r) and (0, 0, 4r).

– Cavity semi-axis: a = b = c = 0.5; a = b = 2c = 1.1; 2a = 2b = c = 1.1.
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Measurement points (n−1)× (n−1)

x1

x3

x2

Sources n×n

Figure 4.7: Sources and receivers, configuration 2, at x3 = 0

• Initial guess point: For each problem, 5 random initial trial positions have been adopted. The

distance given is limited to 2r in center coordinates, and r in cavity diameters. Initial guess are

filtered in order to remain inside the plate domain. It is assumed that initial points are given

after a mapping tool is checked at the domain (like Topological Sensitivity or Linear Sampling

Method); thus, initial guess points remain close to the true parameters.

• Parameter configurations: 5 parameter configurations have been defined:

– 2 parameters, (c1, r), with r the cavity radius.

– 3 parameters, (c1, c3, r).

– 4 parameters, (c1, c2, c3, r).

– 4 parameters, (c1, c2, a, b).

– 6 parameters, (c1, c2, c3, a, b, c).

For each parameter configuration, different cavity positions and guess points have been adopted.

• A priori volume information: The presence of a-priori known volume information is introduced.

Value χ = 0.1 is fixed, after numerical experiments.

• Noise levels: Levels η = 0%, 2%, 10%, 20%, 30%, 40% have been considered.

• Traction singular elements: The effect of traction singularities at supports is tested. A reduced

number of problems have been chosen. Two basic configurations, according to Figure 4.2 have

been defined: a rectangular patch, size r × r centered at (0, 0, 6r) is set. Singularity coefficients

α = β = 0.5 are fixed, with c = 0.9, for edge and corner elements. A 3 × 3 8-noded element

mesh is defined. Apart from this, an embedded support is considered, r × r × 0.5r, centered at

the same location. A 3 × 3 × 3 mesh is defined, with α = β = 0.410 for the embedded edges

and corners, and α = β = 0.310 for opened bi-material edges and corners. Also, parameter

c = 0.9 defines the position of the shifted nodes.
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A-priori volume information

The effect of providing the a-priori volume information produces changes in the shape of the cost

function. It is known in the literature that the regularizing efect depends on the coefficient χ given to

the a-priori known term. At the present work, parameters χ = {0.05, 0.1, 1, 10} have been explored.

It has been observed that increasing the value χ produces a cost function in which the volume is

more and more important, giving less importance to the misfit in measurement values term. This

causes slow convergence in center coordinates parameters, and high convergence in size parameters

(a, b, c). Parameter χ = 0.1 produces a better regularizing effect, guiding the searching process by a

fast convergence to the true size and reasonable number of iterations in cavity centers.

To analyse the effect of the a-priori volume information, a first set of tests have been defined, in

which no noise is considered. Test have been designed in order to identify the dependence on the

volume information respect to the main parameters involved in the inversion: number of excitation

and measurement points, frequencies, noise, etc. In what follows results at different frequencies with

a symmetric profile of sources and receptors, size 4 × 4, with 16 source points and 9 receptors are

shown. General conclusions will be obtained.

To visualize the dependence on parameter χ, Figure 4.8 represents the number of iterations versus

the values of parameters. It is observed that the higher the value of χ, the slowest convergence is

reached. The shape of the cost function changes when a-priori volume information is provided. Cost

function becomes less sensitive to center coordinates parameters. Thus, despite convergence is better,

it requires an important amount of iterations. Parameter χ = 0.1 reports the best results, in terms of

convergence.

The regularizing efect of χ depends on the excitation frequency. At high frequencies, cost function

is more irregular, providing several critical points. In problems considered at this work, initial points

are close to the true point; thus, it is difficult obtaining as solutions based on gradient techniques

points corresponding to other zeroes of the gradient. The effect on the excitation frequency is shown

in Figure 4.9. At each frequency, the cummulative error parameter ι is computed, as follows,

ι =
K

∑
k=1

∥

∥p − ptrue∥
∥

k (4.18)

with

∥

∥p − ptrue∥
∥ =

√

√

√

√

6

∑
d=1

(

pd − ptrue
d )2

)

(4.19)

Figure 4.9 represents parameter ι at frequencies ω̄ = {0.5, 1, 1.5, 2}, computed for variuos a-

priori parameters χ = {0, 0.05, 0.1, 1, 10}. Parameter ι increases with the error level and the number

of iterations required. It is observed the frequency dependence on the identification process. The

best results are obtained at ω̄ = 1, and χ = 0.1. When parameter χ increases, the identification is less

dependent on the excitation frequency, due to the fact that the cost function is based on the misfit

between volumes. In general, increasing the frequency requires more iterations, but the regularizing

efect of the a-priori volume information term is notorious. This fact can be concluded comparing

with the results obtained at high frequency when no known volume is given.

The influence on other parameters, such as the number of excitation/measurement points, or

the initial guess points, seems to play a minor role. Despite by increasing the number of excitation

points the cost function increases at the measurement misfit term, the number of points chosen at the
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present work is moderate. This could be the reason that parameter χ = 0.1 reports the better results

for all cases.

Figure 4.11 shows the iterates obtained during the optimization process, when no volume infor-

mation is given. Optimization finishes after 11 iterations. The main characteristic is that cost function

is sensitive both to center coordinates and to element shape. In contrast, figure 4.12 represents the

iterates when a-priori volumen information is given. The parameters are adjusted in two steps: first,

the cavity parameters related with size are adjusted. Second, the center coordinates are obtained.

Providing more or less values for χ parameter, the second stage becomes more and more slow, but

it converges to the true cavity position. Numerical experiments confirm that, for such configuration,

parameter χ provides the less number of iterations, reaching the numerical convergence required.

When computations are carried out at configurations in which sources and receivers remain at

different centers, a similar behaviour is observed, but the number of iterations required for conver-

gence is higher. Figure 4.10 represents the dimensionless frequency ω̄ vs. the cummulative error

parameter ι. With reference to Figure 4.9, a similar behaviour is observed, but more iterations and

errors are obtained at the second configuration. Figure 4.13 shows the iterates for a particular prob-

lem (ω̄ = 1), identification of an ellipsoid a = b = 2c = 1.1) when no a-priori volume information

is given. In contrast with figure 4.14, the expected behaviour is observed: at the initial iterations, the

volume is fitted, and the cavity centers are adjusted, with a reasonable number of iterations. Thus,

also for this problem, volume parameter χ = 0.1 seems to play an eficient role in the optimization

process.

The main conclusion respect to volume information given by the numerical benchmark is that is

an interesting regularization factor, but only providing the adequate weight coefficient. In configu-

rations tested here, and up to the maximum frequency tested ω̄ = 2, parameter χ = 0.1 provides the

best results, in terms of convergence and less number of iterations.
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Figure 4.9: Effect of different a-priori volume parameter χ vs. the dimensionless frequency ω̄.
Sources and receivers centers at the same location.
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Figure 4.10: Effect of different a-priori volume parameter χ vs. the dimensionless frequency ω̄.
Sources and receivers centers at different locations
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Figure 4.11: Sample of iterates during the optimization process. No prior information provided.
Symmetric profile for sources/receivers.
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Figure 4.12: Sample of iterates during the optimization process. A-priori χ = 0.1 information pro-
vided. Symmetric profile of sources/receivers.
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Figure 4.13: Sample of iterates during the optimization process. No prior information provided.
Non-symmetric profile of sources/receivers.
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Figure 4.14: Sample of iterates during the optimization process. A-priori χ = 0.1 information pro-
vided. Non-symmetric profile of sources/receivers.

Experimental data set and parameters

The number of sources and receivers play a major role at the identification process. The identification

is based on measures taken at some receivers, excited by vertical sources at different points. The

numbers of configurations chosen here are 5: from 16 sources and 9 receivers, to 121 sources and 100

measurement points. Three different sizes for arrays of sources/receivers have been tested. Thus,

15 configurations are considered. In order to obtain conclusions, no noise is given at measurement

points.

Gallego and Rus [138] show that the number of measurements does not seem to play a major role

in the convergence process. At that work, results are shown in double logarithmic scale. Results

show that increasing the number of measurements does not increases the number of iterations re-

quired for convergence. It is remarked that for such configurations, more number of experimental

points than parameters are provided. All the configurations chosen at the present work consider

(n− 1)× (n− 1) receivers for n× n. Thus, the number of experimental points and sources increases.

This causes given a richer information when the number of points increases.
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The methodology developed here to compare the results is obtaining the number of iterations

required for convergence, at each frequency, and parameter configuration. At each problem, 9 con-

figurations are tested, considering the center and semi-axis coordinates. Also, it is included the effect

of providing 5 different initial guess points. Frequency and relative positions of sources and receivers

remain as independent parameters.

A first plot is shown for ω̄ = 0.5 and a symetric profile of sources and receivers. Figure 4.15

shows the dependence of convergence on the number of parameters at ω̄ = 0.5, with few differences

when more or less number of experimental points are chosen. Figure 4.16 shows the same result at

ω̄ = 2. Despite the number of iterations required at the higher frequency is higher, results shows

that convergence depends more on the number of parameters chosen to define the ellipsoidal cavity.

In contrast, Figure 4.17 shows the same test carried out when sources and receivers are disposed

in separated arrays without common center. Results when sources and receivers are located at sepa-

rated spacial zones report poorer convergence.
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Figure 4.15: Convergence with different number of measurements and parameters. Excitation fre-
quency ω̄ = 0.5. Sources and receivers at symmetric profile configuration.
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Figure 4.16: Convergence with different number of measurements and parameters. Excitation fre-
quency ω̄ = 2. Sources and receivers at symmetric profile configuration.
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Figure 4.17: Convergence with different number of measurements and parameters. Excitation fre-
quency ω̄ = 2. Sources and receivers at aymmetric profile configuration.
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Noise in experimental data

In inverse problem literature, the dependence on noise in experimental measurements is a common

task. Noise considered here affects only to the quality of the experimental data, but other kind of

noise is involved in the direct and inverse problem, such as geometry alteration, elastic parameters,

frequency, etc (e.g. see [138]). In this work, errors in modelization of sharp geometries is considered

in a different section.

Numerical errors are simulated with Equation 4.17, with aleatory variable η = {0.05, 0.1, 0.2, 0.3, 0.4}.

Poor convergence is observed for error levels up to 40%. Following the methodology proposed by

Rus and Gallego [138], the result reported at each problem involves a norm defined in terms of center

coordinates and geometrical invariants.

I =

√

1/r2 ∗
[

(c1 − cre f
1 )2 + (c2 − cre f

2 )2 + (c3 − cre f
3 )2)

]

+ (Ix/Ire f
x − 1)2 + (Iy/Ire f

y − 1)2 + (Iz/Ire f
z − 1)2

(4.20)

with Ix, Iy, Iz the main inertia moment of ellipsoids, referred to the center of the ellipsoid at each

configuration.

Parameter I is dimensionless, and it is sensitive to the difference in sizes and center coordinates.

Inertia terms are more sensitive than center parameters (c1, c2, c3).

The dependence on ω̄ is checked for a set of 2 parameters (c1, r) inverse identification problems

for variable levels of noise involved. No a-priori volume information is given. Sources are defined in

an array sized 3r× 3r, with 6 × 6 source points and 5 × 5 measurement points, centered at (0, 0, 0). It

was shown in previous section that inversion is less sensitive to the number of sources and receivers.

This kind of behaviour is also observed in tests involved in error levels in this section.

Figure 4.18 shows the dependence on measurement errors for different frequencies. The depen-

dence on the initial guess point is considered by computing the mean value and the standard devia-

tion of the geometrical invariants obtained as a result of the inversion process. At each abscissa point

it is represented the error level: for each error level, it is plot the mean and the deviation in results

in terms of a vertical bar. It is observed that the identification is sensitive to noise, but the inversion

admits high error levels, up to 40% in parameter η. When the noise level is increased, parameter I

increases and the optimization algorithm usually finishes after a criterium based on the number of

iterations required to decrease the cost function reaches a certain level. When it occurs, the inversion

is considered to be failed. In tests reported here, noise level up to η = 0.4 produces convergence,

based on tolerances at the cost function.

The inversion is sensitive to the parametrization chosen for the ellipsoid. Figure 4.19 shows the re-

sults based on a 6-parameter optimization: (c1, c2, c3, a, b, c). The same kind of behaviour is observed

when comparing with Fig. 4.18, but higher values for both standard deviation and geometrical in-

variant residual are reported.

Results are more sensitive to the relative position of sources and receivers. Results selected here

are computed with the same size and number of points for sources and receivers, but centers are

(−2, 0, 0) for sources and (2, 0, 0) for receivers. Figures 4.20 and 4.21 shows the results when the

parametrization is based on 2 or 6 parameters, respectively. The higher values for geometrical in-

variant norm are obtained; when the identification is based on 6 parameters, for the lower frequency

it is reporeted lack of convergence (solid point) for error level η = 0.4.

The frequency dependece shows the same tendency observed in previous tests: the best results

are reported for ω̄ = 1, which is close to the quasi-resonance frequency. This result might be affected
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by the sizes of the ellipsoids. When ω̄ = 1, the wavelenght is λ = 6.28r, which is similar to the

height of the layer h = 6r. Plots presented at this section shows that such frequency produces the

better results in terms of geometrical invariant residuals, and noise levels.

Normalized error I is very sensitive to axis errors: thus, the regularizing effect of providing a-

priori volume information is notorious. In tests reported here, an error 0.2r in axis parameter causes

values of I = 3.54. When a-priori volumen is provided (χ=0.1), a better adjustement is done for axis

values; differences in 0.05r in axis causes values I = 0.55. The effect of providing volume information

acts as an scale factor for results: conclusions remain the same respect to noise in measurement data

in inverse analysis and the dependence on frequency. Providing volume information decreases the

number of iterations required for convergence, in all the problems.
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Figure 4.18: Geometrical invariant residual vs. error level. Results for a symmetric profile of
sources/receivers, and 2-parameter identification
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Figure 4.19: Geometrical invariant residual vs. error level. Results for a symmetric profile of
sources/receivers, and 6-parameter identification
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Figure 4.20: Geometrical invariant residual vs. error level. Results for non-symmetric profile of
sources/receivers, and 2-parameter identification
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Figure 4.21: Geometrical invariant residual vs. error level. Results for a non-symmetric profile of
sources/receivers, and 6-parameter identification

Traction singular elements

Error in representations of sharp geometries causes also error and noise in direct and inverse cal-

culations. A particular case of sharp geometries occurs in representations of supports, in terms of

patches or boxed shape. The kind error involved in representation of sharp contacts might be re-

ported as a geometrical representation error. Similar considerations are included in the paper by

Rus and Gallego [138], but the specific error involved in traction singularities is not analysed on that

work.

To check the dependence on traction singular elements of results, two kind of configurations for

supports have been fixed. Figure 4.2 shows a rectangular patch and a boxed support. For each

configuration, the adequate singularity order has been provided through a rigorous local analysis,

reported in [70]. It is known that singular elements are required in order to obtain accurate results

with few elements: the dependence on singuarities is now analysed in the context of inverse problem.

For each configuration, the direct problem is solved by using traction singular elements and a

general fine mesh for the cavity. It is stored as the pseudo-experimental solution. To solve the in-

verse problem, a coarse mesh is used, with regular or singular elements. The presence of additional

geometries does not affect the way in which the forward and inverse problems are computed. The

support configuration includes zero displacements boundary conditions. The inverse problem re-

quires the computation of the Adjoint Problem, in order to compute integral over the cavity surface,

Equation 4.8. Traction singularity errors affects to the quality of displacement results, which are the

primary variable of inverse and adjoint problems. This mean that gradients supplied by the AVM

are strongly affected by traction singular elements.

The next sections describe tests and results for both two configurations.
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Table 4.2: Gradient checking: Influence on traction singular elements

Gradient component 3 × 3 regular 5 × 5 regular 10 × 10 regular 3 × 3 singular 5 × 5 singular
1/(µr2)∂J /∂a 3.433 2.833 2.432 2.371 2.372
1/(µr2)∂J /∂b -4.386 -3.649 -3.328 -3.163 -3.165
1/(µr2)∂J /∂c 1.218 0.885 0.792 0.670 0.672
1/(µr2)∂J /∂c1 -7.433 -6.789 -6.214 -5.792 -5.793
1/(µr2)∂J /∂c2 1.434 1.063 0.938 0.857 0.855
1/(µr2)∂J /∂c3 -1.827 -1.452 -1.321 -1.251 -1.254

Bonded surface support

This problem is represented by a layer, thickness h = 6r, with a support size 2r × 2r centered at

(0, 0, 6r) (Fig. 4.2). Material parameter µ,ρ, and ν = 1/3 are fixed. Zero-displacement boundary

condition is given to the rigid surface support. When the local analysis is carried out, the singular

coefficients α = β = 0.5 are obtained; thus, an square-root singularity type is given to the shape

functions in Eq. 3.20 for corner elements, but also for edge elements.

The direct problem is analysed by Guzina et. al. [70] in the context of static stiffnesses with a single

half-space. That paper shows the influence on the quality of the results for computed stiffnesses

when regular meshes are used, compared with singular element representation. The use of traction

singular elements results in a faster convergence.

In the context of cavity identification presented at this work, the effect of traction singularities

is first analysed to check the computation of gradients with the adjoint variable method. Gradients

are computed by the convolution integral Eq 4.8, in wich displacements of the inverse and adjoint

solutions are corrupted by traction errors. The problem tested is analogous to the one reported in

section 4.8.1. An sphere of radius r, centered at (0, 0, 3r), is located. Damping rates ξα = ξβ = 0.05

are fixed. No a-priori volume information is considered.

Vector p0 = (−0.5r, 1.2r, 2r, 1.5r, 0.5r, r) defines the 6 parameters of the initial guess ellipsoid.

The inversion is based on 16 sources with Pm = µr2 , m = 1, 16, located in a square 4x4 mesh size 3r

centered at the origin of coordinates. Measurement points are disposed in a 3x3 squared mesh with

size 2r, also centered at point (0, 0, 0).

An accurate computation of gradients requires a fine mesh. For this problem, 294 8-noded ele-

ments are given for the ellipsoid. Patch is meshed with 3 × 3, 5 × 5, 10 × 10 regular elements; 3 × 3

and 5 × 5 singular elements are used to compare the results. Table 4.2 reports the results computed,

at frequency ω̄ = 1.

Results show the importance on providing the adequate singular elements to cause convergence

due to the particular requeriments of the Adjoint Variable Method.

A different type of analysis have been carried out in order to check the dependence on noise in

experimental data. The geometrical invariant I, computed with Equation (4.20) is obtained at four

different frequencies, comparing the results with singular elements. Figure 4.22 allows the analysis

of the results, in which error bars are included. In is observed that traction error decreases the max-

imum percentage error allowed to reach convergence for some frequencies. Also, it is observed that

the standard deviation is greater when regular elements are obtained. The number of iterations re-

quired to reach the end point are considerably greater; up to 2 order of magnitudes greater for some

problems; the higher the frequency, the higher the value for iterations.
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Figure 4.22: Geometrical invariant residual vs. error level. Effect of traction singular elements in a
patch support

The effect of increasing or decreasing the number of parameters of the ellipsoid seems to play a

minor dependence on the singularities. The general behaviour shown in section 4.8.3 remains the

same here.

Embedded support

Figure 4.2 shows the basic configuration of an embedded support. Traction singularities are different,

depending on the particular configuration of the edge adjacent to the lower layer, or the embedded

edges. A local analysis is carried out (see [70]) with the resulting coefficients α = β = 0.310 for the

surface edges, andα = β = 0.410 for the embedded edges.

A boxed support, sized 2r× 2r by 0.5r is defined, centered at (0, 0, 6r). The rest or properties, end

point, and arrays of sources and receivers, remain the same than problem considered at the patch

support. The only novelty here is a local restriction at the initial guess points, in order that the initial

ellipsoid maintain a minimum separation respect to the boxed domain. This distance is fixed in 0.2r

in the x3 coordinate. This distance is required in order to avoid quasi-singular integral problems,

wich in part are avoided by increasing the number of Gauss points when the source point and the

integration point remain close. The experimental data are simulated

Results are similar than the one obtained for the patch support, except that the standard devia-

tion of results is lower, due to the restrictions carried out in initial guess points. Figure 4.23 shows

the geometrical invariant results evaluated at different frequencies, for 8-noded regular or singular
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meshes. For this case, lack of convergence is obtained for some problems at the higher error levels.

Also, it is observed that the regularization carried out by the volume parameter χ = 0.1 provides

better results, but it is observed that despite of this, gradients provided by the AVM computed with

regular meshes produces poor convergence.
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Figure 4.23: Geometrical invariant residual vs. error level. Effect of traction singular elements in an
embedded support

4.9 Concluding remarks

The Inverse Identification Problem of finding hiddeng cavities embedded in a three dimensional

viscoelastic layer is presented. The inverse algorithm is based on a BFGS optimization method.

Gradients are computed by a semi-analytic formula.

The conclusions might be summarized as follows:

• Gradient computations based on the AVM are sensitive to mesh. A compromise between itera-

tion numbers and precision level is required, in order to provide a mesh that produce medium

quality gradients, decreasing the global number of iterations. In the literature, it is known that,

despite finite differences give rise to instabilities and increase iteration number, gradient com-

putations for coarse meshes at the ellipsoid are better. Numerical results obtained at this work
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are based on a simple mesh for the ellipsoid. In experiments, the AVM has demonstrated to be

an effective and powerful techinque to solve the optimization algorithm.

• The AVM requires good quality displacement patterns obtained by each direct code. Thus,

when singularities occurs close to the ellipsoid surface, measurements for both the direct and

the adjoint problems are affected by errors. Both error combined produces a gradient by the

convolution integral over surface of the ellipsoid that causes errors in computed gradients. The

resulting optimization point are sensitive to this fact.

• The problems computed here show that the optimization depends on the excitaition frequency.

At frequencies over the quasi-resonance value, the optimization requires less iterations, with

better convergence in terms of distance between the true configuration and the end points of

the optimizations.

• The dependence on the number of experimental/source reamains a secondary factor, when

compared with the number of parameters involved in the optimization. This conclusion is also

observed in the literature.

• Better results are obtained in terms of convergence, number of iterations, and stability, when

a symmetric profile of sources/receivers are selected. This could be caused by the multiple

reflections of the hidden object with the lower layer, that acts as a mirror. This effect must

be analysed by other techniques of inverse analysis at this domain, such as the Topological

Sensitity, Linear Sampling Method, etc.
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CHAPTER 5

Topological Sensitivity Analysis

5.1 Introduction

The identification of cavities embedded in an elastic solid is a long-standing problem in inverse

analysis. The wide range of aplications cover from exploration seismology, medical imaging, non-

destructive material testing, and underground facility detection. Among the techniques that tries

to solve the identification problem, image methods are a kind of techniques focused on finding an

image of the hidden objet by way of the sensitivity of domain points at the host domain to the cavity

presence. The information of the so-called non-damaged state is used to find the hidden objects.

A group of image-method techniques are based on the far-field approximation of the wave equa-

tion, such as the ray theory [2, 142], or finite differences [132]. In a previous chapter, inverse analysis

in the context of boundary integral equation and optimization problems is presented. Such tech-

niques requires a common task: an extensive experimental an computational effort in order to fit and

adjust general parametrized properties of the problem, based on experimental data. The nonlinear

optimization problem requires direct computation of the parametrized damaged state. The quality

of results depends on the initial guess configurations. The fordward problem requires solving an

equation system to obtain displacements and tractions at the nodes of a mesh. Thus, global search

methods are not a good option due the enormous time consuming in evaluating the different direct

solutions.

An alternative approach to solve the problem is definition of some auxiliary integral functional to

use the information of the initial non-damaged state to obtain internal shapes of the hidden cavities.

Among this techniques, the Linear Sampling Method and the Topological Sensitivity are the two one

reported in the literature.

The Linear Sampling method was first proposed by Colton et al. ([33, 36, 32, 31]) for far-field

acoustic. With this approach an integral functional is developed and computed at an array of internal

points. The equal-level surfaces at certain minimum values of the integral functional computed are

related with the shapes of the actual internal cavities. Based on these works, this technique has

been adapted in the field of electromagnetics ([34, 35, 73]), far-field elastic of scattering problems

([3, 5, 28, 59, 128]), and near-field of scattering problems [49].

The Topological Sensitivity (TS in what follows) approach is a different way to obtain information

about the hidden objects based on a domain representation. The TS is the first-order derivative of the

parametrized solution of the elasticity problem respect to the generation of a small cavity.

The first paper in which the TS is used in the context of optimization problems was presented by

Eschenauer et. al. [44] and Schumacher [140]. On that work, a bubble method is defined based on

the topological expansion of the cost function respect to cavity volume. The paper by Thierauf [155]

also uses the bubble method ideas in the context of optimal topologies. The paper by Papadrakakis

et al. [102] also links the topological expansion of cost functions with its applications in topology
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optimization. The generalization to shape inverse problems was carried out by Sokołowski and co-

workers [143, 144, 95, 96, 81, 97].

These initial works are based on the adjoint variable approach to obtain the volume derivatives

of functionals involved in optimization problems [129]. Garreau et al. [58] use the adjoint method

combined with a truncation domain technique in the context of linear elasticity problems. Millot et

al. [115] applies the topological sensitivity approach in the context of finding buried objects.

The first work that introduces the idea of obtaining the topological sensitivity from boundary in-

tegral equations was presented by Gallego and Rus [54, 55]. In such work, the topological sensitivity

boundary integral equation of displacements and tractions is derived in a closed-form formula for

two-dimensional elasticity problems. The topological expansion of displacements and tractions leads

to the definition of an approximed cost function, which permit the statement of a global optimization

algorithm to find a minimum. All the computations related with the fordward problem require only

the solution of the intial problem without deffects. The approximed cost function built can be mini-

mized with global search techniques, such as the Genetic Algorithm approach. This way to combine

the topological expansion of the cost function with zero-order global methods permits the definition

of an initial guess points, defined in terms of center coordinates and size of deffects. The technique is

extended to the analysis of anysotropic solids in bi-dimensional elastostatic problems [37]. With this

approach, the TS is not used as an image method. It is used to define an approximed cost function to

be used combined with Genetic Algorithms.

The use of Genetic Algorithms (GA) for the identification of deffects in the context of Boundary

Integral Equation has been explored in the literature [85, 86, 152, 149, 148, 147]. On such works, the

evaluation of the cost funciton requires the solution of a direct BE code, considering the geometry

of the parametrized deffects. This approach leads to a very expensive algorithm, in terms of time

required for the computations. However, the computation of the residual topological sensitivity re-

quires the information of the non-damaged state. This approach reduces drastically the computation

time required to find a global minimum.

The extension to the use of TS as an image method to find initial shapes of hidden objects for

three-dimensional elasticity problems in the context of Boundary Integral Equations is carried out

by Guzina and Bonnet in 2004 ([65, 23]). The idea developed is the use of the TS to define a three-

dimensional map in which the level surfaces in which the TS is negative (or a certain fixed negative

value) represents the shapes of the hidden objects. A three-dimensional half space in elastodynamics

is considered in that work. The use of the topological sensitivity as a preliminary sampling technique

to identify guess points in inverse-minimization methods is well reported in the literature for other

related problems([63, 104, 51, 109] )

In the present work, the linearized topological expansion of the cost function is used, combined

with the GA tool, to find the initial center and size of spherical deffects. The host domain is the three-

dimensional viscoelasticl layer. The forward problem is solved based on the Green function of the

single-layered, obtained in this PhD work and published in [108]. The formulation is also extended

to the case of multiple deffect identification, neglecting the interaction between deffect terms. A

numerical benchmark is carried out in order to observe the dependence on different parameters of

the minimization process. A comparison with the use ot the TS value as an image method is also

carried out, in order to observe if the TS can be used to define initial shapes of deffects.

Recently, Faris and Gallego [47] have presented the use of the topological sensitivity in 3D elastic

solids to determine the elastic response of three dimensional damaged solids. The research work is
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based on the standard Boundary Integral Equation. The present work extends topological sensitivity

approach to 3D elastodynamic problems.

5.2 Direct Problem

The three-dimensional viscoelastic layer domain, with a set of finite sources and a hidden spherical

cavity is the basic problem considered. In reference to Figure 5.1, the host domain is the three–

dimensional layer Ω, thickness h. In reference to the cartesian basis B{O; x1, x2, x3}, it is defined the

region Ω = {(x1, x2, x3)|0 ≤ x3 ≤ h}, bounded by both traction-free planes S = {(x1, x2, x3)|x3 =

0} ∪ {(x1, x2, x3)|x3 = h}. Let ΓR be an auxiliary surface, ΓR = ΣR ∩Ω, where ΣR denotes a sphere

of radius R centered at point (0,0,h/2).

The identification cavity is the sphere Ωz, bounded by Γz. It is centered at z and its radius r. The

figure represents the outward cavity normal n, pointing at the interior direction to Γz, as it corre-

sponds with a cavity interior to the material domain.

Let x ∈ Ω− be an internal point, withΩ− = Ω \ (Ωz ∪ Γ), andΩ−
R the subset ofΩ− limited by ΓR.

At certain points xs corresponding to the upper layer, a set of time-harmonics sources are considered.

f(x) =
NS

∑
n=1

Pneiωtδ(x − xs
n) e3 (5.1)

where δ stands for the three-dimensional Dirac delta function, Pn is the force magnitude and e3 is

the unit vector in the x3 direction. With this reference, the forward problem is stated:

∇ · (C : ∇u) + f + ρω2 u = 0, x ∈ Ω−

t = 0, y ∈ Γ ∪ S

lim
R→∞

∫

ΓR

{ûk(y, x) · t(y)− t̂k(y, x) · u(y)}dΓ(y) = 0

x ∈ Ω−
R , k = 1, 2, 3 (5.2)

with t is the traction unit vector, and C is the elastic tensor. The time-harmonic response includes

damping, through the damping rates ξα y ξβ and the complex-valued material modules λ = λ∗ y

µ = µ∗, by virtue of the corresponding principle [30].

λ∗ + 2µ∗ = (λ+ 2µ) [1 + 2iξα(ω)] , ξα ≥ 0

µ∗ = µ [1 + 2iξβ(ω)] , ξβ ≥ 0

In Eq. (5.2), ûk(y, x) and t̂k(y, x) are the displacement and traction functions of the fundamental

solution for the layer [108].
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Figure 5.1: Spherical cavity in a single layer domain. Sources and measurement points

For point x, the basic elastodynamic BIE can be estated as,

ci
k(x)uk(x) +

∫

Γz

t̂i
k(y, x) uk(y)dΓ(y) =

NS

∑
n=1

Pnûi
3(xs

n, x) (5.3)

with ci
k the Kronecker delta δi

k.

The previous equation, when stated at the Non Damaged State, consists on the direct collocation

of the Fundamental Solution.

5.3 Inverse Problem

The inverse problem consists on the identification of the cavityΩZ based on the frequency-dependent

displacement measurement um at points xm. Such values are obtained for any parametrized position

of the sphere; the experimenta values of the displacement are the one obtained at the true position

and size of the cavity. In the context of this work, such displacements will be noted as ue.

The identification of the cavity is stated as an optimization problem, as occured in the previous

chapter. For this case, the cost function is stated without a-priori information of the volume. Thus:

J (Γ) =
NEP

∑
m=1

1
2

(

um − ue
)

· (um − ue) (5.4)

with NEP the Number of Experimental Points. The overlined term represents the conjugate complex

of the displacement difference.

5.4 Topological Sensitivity Boundary Integral Equation

The approach to obtain the Topological Sensitivity Boundary integral equation is well known in the

literature, in the context of Boundary Integral Equation. It can be obtained by an analysis of the

scattered waves from cavities (Guzina and Bonnet works, [23, 25, 66]) or by the decomposition in

solid-rigid body motion plus an incremental field, proposed by Gallego and Rus [54]. This is the

approach followed here. The main difference between both approaches is the way in which the

elastic field is decomposed. The particularities of the decomposition will be remarked in this section.
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At this domain Ω, bounded by the parallel planes Γ , the displacement u at an internal point

x ∈ Ω is computed by evaluating the Green function. This problem will be called the Non–Damaged

State (NDS in what follows). The presence of a traction–free small cavity bounded by Γz located at z

produces the modified displacement field ũ at y. This second state will be called the Damaged State

(DS). The Boundary Integral Equation (BIE) for the internal displacement field ũ is

ci
k(x)ũk(x) +

∫

Γz

t̂i
k(y, x) ũk(y)dΓ(y) =

NS

∑
n=1

Pnûi
3(xs

n, x) (5.5)

The displacement field at the cavity boundary can be split as ũk(y) = u0
k(y) + δūk(y), where

u0
k(y) is a rigid solid displacement, and δūk(y) is the displacement field relative to the center z due

to the local state of stresses.

The integral term in Eq. (5.5) can be transformed, by applying the Divergence Theorem at Γz, and

taking into account the negative sign of the normal n, as:

∫

Γz

t̂i
k(y, x) ũk(y)dΓ(y) = u0

k(z)
∫

Γz

t̂i
k(y, x)dΓ(y) +

∫

Γz

t̂i
k(y, x) δūk(y)dΓ(y) (5.6)

The first integral of the second term in Eq. 5.6 is zero for static problems, but for time-harmonic

problems, the integral over a closed boundary of tractions, at cavities not containing the source, is

related with the excitation frequency by the dynamic equilibrium of the problem. The equilibrium

equation is σi j, j + ρ bi = −ρω2ui; with bi = 0 as no volume forces acts at the domain. Thus, the first

term is evaluated as follows,

∫

Γz

t̂i
k(y; x) dΓ(y) = −

∫

Ωz

σ̂ i
k j, j(z, x)dΩ = V(z)ρω2 ûi

k(z, x) (5.7)

with V(z) = 4/3 π r3, the spherical cavity volume at z. The first integral of the right-hand side in

Eq. 5.6 is:

u0
k(z)

∫

Γz

t̂i
k(y, x)dΓ(y) = V(z)ρω2ûi

k(z, x) u0
k(z) (5.8)

with ûi
k the Displacement Green’s Function; u0

k is the displacement field at the Non Damaged State at

the cavity center. The Non Damaged State is the traction-free infinite three-dimenisional layer; thus,

to evaluate it, the Green function is used.

The second integral term at the right-hand side in Eq. (5.6) includes displacement field δūk(y).

The first order stresses at any point inside the domain far from the flaw location are equal to those of

the primary state σi j and therefore, the displacements δūk(y) along the vanishing flaw are equal to

those due to a uniform remote stress field in an infinite layer.

σ̃i j(y) = σi j(z) + h.o.t (5.9)

for y far from z, where h.o.t. stands for higher order terms, and,

δūk(y) = δu∞

k (y) + h.o.t (5.10)

where δu∞

k (y) represents the solution of the remote traction uniform field σi j(z). On the boundary

of the cavity,

t̂i
k(y, x) = σ̂ i

jk(y, x) n j(y) = σ̂ i
jk(z, x) n j(y) + h.o.t. (5.11)
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The second integral term at the right-hand side in Eq. (5.6) is evaluated as:

∫

Γz

t̂i
k(y, x) δūk(y)dΓ(y) = σ̂ i

jk(z; x)
∫

Γz

n j(y)δu∞

k (y) dΓ(y) + h.o.t (5.12)

Substractiong the resulting BIE for the DS, Eq. 5.5 from Eq. 5.3, stated at the NDS, and dividing

by the cavity volume (to obtain sensitivities in terms of partial derivatives respect to the cavity vol-

ume), the so-called Topological Sensitivity Boundary Integral Equation is obtained [55], in which the

displacement topological sensitivity is evaluated with a Boundary Integral Equation as follows:

ci
k(x)δuk(x) = −ρω2 ûi

k(z, x)− σ̂ i
jk(z; x)

∫

Γz

n j(y)δu∞

k (y) dΓ(y) (5.13)

At the previous equation, the last integral can be evaluated in a closed-form tensor (see works by

Eshelby [45, 46]).

∫

Γz

n j(y)δu∞

k (y) dΓ(y) = I jk (5.14)

with,

I jk = −
[

Aσ∞

jk − Bδ jkσ
∞

ii

] 1
µ

A =
15(1 −ν)

2(7 − 5ν)

B =
3(1 − ν)(1 + 5ν)

4(7 − 5ν)(1 +ν)

(5.15)

Thus, the TSBIE for a single spherical cavity is:

ci
k(x)δuk(x) = −ρω2 ûi

k(z, x)− σ̂ i
jk(z; x)I jk (5.16)

5.5 Topological Sensitivity of the Cost Function

Equation (5.16) permits the computation of the first volume derivative for all the displacements and

related variables. In the context of the Inverse Problem stated, the interest is focused on the Cost

Function (Eq. 5.4) and its sensitivity equation. The displacement field can be linearized as follows,

uk = u0
k + V δuk (5.17)

Based on the previous linearization, the approximed measured field u can be computed from the

NDS; the cost function is linearized as:

J (Γ) ≃
NEP

∑
n=1

1
2

(

um,0 + V δum − ue
)

·
(

um,0 + V δum − ue
)

(5.18)

with um,0 the measured displacement field at the NDS.

The previous equation can be expanded as,

J (Γ) ≃
NEP

∑
n=1

1
2

(

um,0 − ue
)

·
(

um,0 − ue
)

+ V
(

um,0 − ue
)

· δum +
1
2
V2δum · δum (5.19)

The cost function evaluated at the NDS and the topological sensitivity of the cost function can be

defined as:
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J 0 =
NEP

∑
n=1

1
2

(

um,0 − ue
)

·
(

um,0 − ue
)

(5.20)

T (z) =
NEP

∑
n=1

(

um,0 − ue
)

· δum (5.21)

Considering the previous definitions, the cost function can be expanded as:

J (Γ) ≃ J 0 + V T + V2 ·
NEP

∑
n=1

1
2
δum · δum (5.22)

This expansion is based on the linearization of displacement, but it does not constitute a fully-

quadratic expansion of the cost function. The quadratic expansion of displacements includes the

second-order derivative (a quadratic term in volume), which leads to a quadratic term at the lin-

earized cost function depending on the difference of measurements between the experimental dis-

placements and the approximed one at the NDS. This kind of expansion, in the context of the use of

the Topological Sensitivity as an image method, has been explored by Bonnet et al..

At the present work, the topological expansion is based on the computation of the first-order

topological sensitivity of displacements. The aim of such an approach is testing this expansion for the

layer domain. The main advantage is that no second-order topological derivatives of displacements

are required. Moreover, the wavelength consideration has not been explored at the formulation. This

leads also to a more refined topological expansion of the cost function. The simplest one is the one

considered in Eq. 5.22

In Equation 5.21, the topological sensitivity T (z) is a value depending on the position of the cav-

ity. This parameter may be understood as a cavity locator: negative values means that the generation

of a small cavity at the particular position or z decreases the value of the cost function. Thus, by

heuristic considerations, the true cavity surface would be related with some negative or zero iso-

surfaces in T . It must be remarked that this approach is not rigorously proof. Convergence, or

isosurfaces, are not guaranteed. In the literature, works by Guzina and Bonnet emphasizes this use

of the Topological Sensitivity of the cost function as an image method.

On the other hand, the approximed cost functional represented by equation 5.22 is evaluated by

easy computations at the NDS. At each point, the cost function is evaluated in terms of the cavity

volume V . Thus, a local search of the optimum radius V opt that minimizes the local expansion is

possible. A local constrained minimization is stated, with the phisical restriction V ≥ 0. The search

algorithm to identify the optimum volume at the cavity position z contains two steps:

a) Identify the optimum volume by a first derivative:

V opt = − T
∑NEP

n=1 δum · δum

b) In case that V o pt is negative (which occurs when T < 0), the optimum volume is asigned as

V opt = 0

Once the optimum volume is computed, the optimum radius is also evaluated,

ropt =

(

3
V opt

4 π

)1/3

(5.23)
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At each point, the optimum volume is obtained and the cost function, depending on V , is evalu-

ated at the optimum volume. Thus, the cost function depends only on the coordinate center of the

cavity, as the volume is fixed with V opt at each point.

5.6 Multiple cavity identification

The topological expansion for the problem with n cavities requires the analysis of a new problem, in

which a new sphere is generated in a domanin with (n − 1) existing deffects. The equation integral

that defines the displacement sensitivity includes a term to consider the effect of the (n − 1) cavities

on the new generated one.

At the present analysis, the interaction between cavities is ignored. Numerical examples confirm

that the layer domain contains a radiation damping that permit for some problems ignoring such

effect, when each cavity is far enough from the surrounding cavities.

Let v be a column vector whose v j component contains the volume of the j − th cavity located

at z j. Let T be a matrix containing the Topological Sensitivities of displacements respect to cavities

located at z j.

v j = V j(z j) (5.24)

Ti j =
∂ui

∂V j
(5.25)

Thus, the topological expansion of the displacement vector at a particular measurement point is

written as:

um = u0 + T v (5.26)

Based on the linearized expansion of displacements, the topological expansion of the cost function

is obtained as follows,

J (Γ) ≃ J 0 +
(

um,0 − ue
)

· T v +
1
2

vTTT T v (5.27)

Equation 5.27 is minimized at each position represented by the set of cavities. The optimum vol-

ume vector is computed by a local constrained minimization, which can be summarized as follows.

a) Compute the optimum volume vector vopt by minimizing the cost function with its first order

derivative. A local equation system is stated,

TT T vopt = −
(

um,0 − ue
)

· T (5.28)

b) If any component of vector vopt is negative, obtain the minimum of v at the boundaries corre-

sponding with Vi = 0.

c) Choose the vector vopt computing the cost function and choosing the configuration that pro-

vides the minimum value of J .

The constrained minimization is necessary in the context of the present work. The physical limi-

tation that volumes must be zero or positive lead to a cost function with an strong minimum point.

Numerical experiments confirm that this kind of minimization is required, and it is more convenient

for the highest frequencies, in which local pseudo-minimum points are obtained when negative vol-

umes are allowed.

Once vector vopt is obtained, the cost function is evaluated at v = vopt.
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5.7 Combined Genetic Algorithms with Topological Expansion of the cost

function

The use of zero-order algorithms is convenient when the evaluation of the cost function is cheap, in

terms of computing effort, and when gradients of the cost function respect to the design parameters

are difficult to obtain. Such is the case of the approximed cost functional proposed. Among the differ-

ent zero-order algorithms reported in the literature to solve the Inverse Problem (e.g. evolutionary

algorithms [113] or parameter-space sampling methods [153]), Genetic Algorithms provides a fast

and accurate solution for this problem. The combined use of GA-TS is reported in the literature, as it

was commented at the introduction section; the particular kind of use of the GA analysed is simmilar

to the one reported in works by Gallego and Rus, [54, 55].

Within the framework of genetic optimization, the set of design parameters, or phenotype, is en-

coded as a chain of variables, chromosomes. A population of individuals, is assumed. For the present

study, each individual of the population consists of 3 − m design parameters, which are the coordi-

nates of the defect centers. For each individual, the cost function is computed and is defined as the

fitness function.

The code to solve the GA-TS search is based on the Matlab one developed by Haataja [72]. Pa-

rameters that define the GA are reported at the next section, for each case. As the fitness function

e(x) is maximized with such code, function e(x) = −J , with J the approximed cost function and x

the vector containing the cavity centers.

5.8 Numerical benchmark

At this section a numerical benchmark has been carried out in order to illustrate the aplications of

topological sensitivity expansion in detection problems.

The first step is the validation of the topological sensitivity proposed in Equation (5.13). A practi-

cal way to do it is the comparison with the approximed topological sensitivity computed by a Finite

Differences Approach (FDA). The comparison for displacement computations is shown in section

5.8.1.

Once Equation (5.13) is validated, a set of numerical tests have been done to validate the use of

the Topological Derivative in the context of inverse identification problems.

5.8.1 Comparison with Finite Differences

In order to ilustrate the computation of the sensitivity, a direct comparative with finite diferences is

shown. A layer thickness h = 3r, material parameters ρ, µ, Poisson rate ν = 0.3, are chosen. A

point source located at (0, 0, 0) with load intensity (0, 0,µr2) is considered. A cavity is located at

z = (0, 0, 1.5r). The displacement field is observed at y = (6r, 0, 1r). The Topological Sensitivity

of displacements are computed at point y, at dimensionless frequencies ω̄ = ω r√
µ/ρ

{0.3, 1, 1.5, 2}, in

order to test Eq. (5.13). To compare the results, a Finite Differece of displacements respect to cavity

volume is computed. Various cavity diameters have been tested. The consideration of small radius

is limited to the accuracy of the direct code, due to quasi-singular integration problems. Table 5.1

shows the results for cavity radius ar = 0.25r, for which volume V = 0.0654r3. Only u1 and u3

components are computed, as u2 = 0 due to the symmetry of the problem.
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ω̄ Approach Re(u1)/r Im(u1)/r Re(u3)/r Im(u3)/r
0.3 FD 5.651E-04 -3.780E-04 3.760E-03 -9.489E-04
0.3 TS 5.816E-04 -3.833E-04 -3.330E-04 -9.753E-04
1 FD -3.592E-03 -2.174E-04 2.234E-03 1.400E-04
1 TS -3.658E-03 -2.475E-04 2.447E-03 2.932E-04

1.5 FD 3.092E-02 1.175E-03 -2.124E-03 -1.672E-02
1.5 TS 3.046E-02 2.357E-03 -1.934E-03 -1.664E-02
2 FD 1.732E-02 7.164E-03 6.111E-03 -3.101E-02
2 TS 1.772E-02 9.241E-03 1.001E-02 -3.312E-02

Table 5.1: Comparison between Finite Differences (FD) and Topological Sensitivity (TS)

Table (5.1) shows that Eq.(5.13) is correct.

5.8.2 Single cavity detection

A this section, the basic reference configuration consists on an spherical cavity, radius ar = 0.5r

centered at (0, 0, 3r). The layer domain is thickness h = 6r. Material parameters are µ, ν, density ρ.

For this configuration, a set of experiments have been designed to analyse the dependence on certain

parameters.

Symmetric profile sources/receivers

For this set of tests, a symmetric profile of sources/receivers has been chosen. Both sources and

receivers are centered at (0, 0, 0). The sources array consists on 16 points disposed in an squared

patch size 4r × 4; the receivers array consists on 9 points, disposed in an squared patch size 3r × 3r.

Figure 5.2 show the basic configuration of arrays of sources, receivers, layer, and true cavity posi-

tion. The figure also show the Boundary Element mesh used to compute the pseudo-experimental

measurements. The sphere is meshed with 54 8-noded quadratic elements. The number of nodes is

164.

Cost function expansion

The approximed expansion of the cost function by way of the topological sensitivity is compared

with the exact cost function for the problem considered at hand. The cost function is obtained for

the single cavity identification. Point (0, 0, 3r) is fixed. The only parameter is the cavity radius ar.

Figure 5.3 represents the exact and the approximed cost function, in terms of the cavity volume, at

two different frequencies. The actual radius value is r = 0.5. At each frequency, two plots have

been obtained, to shown the general shape of the cost function, and its values at radii close to the

optimum.
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Figure 5.2: Configuration of sources (red) and receivers (blue). Identification of a centered cavity
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Figure 5.3: Comparison between the exact and the topological expansion cost function at two fre-
quencies.
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It is observed that the quality of the approximation depends on the excitation frequency. At fre-

quency ω̄ = 1, the optimum volume is quite the same, with error less than 1%. When the frequency

is increased, the minimum value is reached at slightly different points. This mean that it is expected

poorer results at higher frequencies. A different kind of topological expansion could be used to con-

sider waves. Plot also shows that the approximation is good only for volumes close to the optimum

one. The exact cost function behaves different to the quadratic one for higher volume values.

Effect of noise in experimental data

Inverse problems are ill-conditioned. Convergence is not guaranteed, and results do not depend

continously on the data. In the ill-conditioned problems literature, it is a common task checking the

dependence on errors in input data, in order to show the stability of the method. In this section, noise

is introduced at the measurement data, through a random variableϕ that pollutes the experimental

data,

ue,noise
i = ue

i (1 +ϕ) (5.29)

Variable ϕ is uniformly distributed over the interval [−η, η]. Values of η tested in this study

cover the range η = {5%, 10%, 20%}. To analyse the dependence on the excitation frequency, four

excitation frequencies have been considered, ω̄ = {1, 1.5, 2, 2.5}.

The GA is used to minimize the residual. Table 5.2 show the basic settings of the GA imple-

mented.

Parameter Value
Low constrain [−2.5, −2.5, .5]
Up constrain [2.5, 2.5, 5.5]
Number of parameters 3
Number of generations 50
Size of the population 20
Probability of crossover 0.8
Probability of mutation 0.02
Tournament probability 0.7
Scale for mutation 0.1

Table 5.2: Parameters of the GA for noise evaluation

Figures 5.4, 5.5,5.6 and 5.7 show the result of the combined GA-TS at the tested frequencies. Table

5.3 show the end values at each test, and the cost function. The last column is the normalized error,

computed as:

ε =

√

(c1 − cre f
1 )2 + (c2 − cre f

2 )2 + (c3 − cre f
3 )2 + (ar − are f

r )2 (5.30)

with (cre f
1 , cre f

2 , cre f
3 , are f

r ) = (0, 0, 3r, 0.5r), the reference cavity parameters. Figure 5.8 shows the nor-

malized error in terms of the excitation frequency and error level.
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Figure 5.4: GA-TS identification of a cavity. Noise effect at ω̄ = 1
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Figure 5.5: GA-TS identification of a cavity. Noise effect at ω̄ = 1.5
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Figure 5.6: GA-TS identification of a cavity. Noise effect at ω̄ = 2
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Figure 5.7: GA-TS identification of a cavity. Noise effect at ω̄ = 2.5
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Noise c1/r c2/r c3/r ar/r J̃ /(µr3) ε/r
ω̄ = 1
0% 3.48E-04 5.39E-03 3.09 4.81E-01 2.26E-06 9.02E-2
5% -1.09E-01 2.49E-03 3.22 4.78E-01 2.64E-03 2.47E-1
10% 1.52E-01 -1.24E-01 3.23 4.90E-01 1.18E-02 3.09E-1
20% -2.43E-02 2.46E-01 3.34 5.04E-01 4.90E-02 4.20E-1
ω̄ = 1.5
0% -1.98E-03 -1.39E-03 2.99 0.461 2.29E-01 4.03E-2
5% 4.48E-03 1.76E-01 2.88 0.464 1.30E-03 2.14E-01
10% 1.18E-02 -9.63E-02 2.91 0.485 4.19E-03 1.40E-01
20% -2.77E-01 5.31E-02 2.73 0.469 2.39E-02 3.92E-01
ω̄ = 2
0% 5.06E-04 3.79E-03 3.15 0.455 6.54E-05 1.57E-01
5% 2.62E-02 -9.63E-02 3.20 0.485 1.65E-03 2.24E-1
10% -2.04 1.73 5.11 0.703 4.04E-03 3.42
20% 2.07 1.82 1.94 0.393 1.74E-02 2.96
ω̄ = 2.5
0% -7.44E-1 -4.44E-01 2.44 0.307 3.47E-04 1.12
5% -3.43E-03 -7.78E-02 4.67 0.408 7.76E-04 1.67
10% 1.5 -1.92 4.43 0.523 2.60E-5 2.83
20% -2.43 2.39 3.04 0.526 9.34E-03 3.41

Table 5.3: GA-TS global search. End values of parameters. Random noise at measurements
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Figure 5.8: GA-TS global search. Effect of noise in measurements. Normalized errors. Dependence
on the excitation frequency.

The optimization based on the GA is an stable algorithm, respect to noise in experimental mea-

surements. Numerical tests confirm that noise levels up to 20% produces an end point close to the

true cavity position. For each test, convergence is not guarateed for noise levels up to 30%. This
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fact is related with the assumed errors that comes from the approximation of the cost function. The

higher the frequency, the higher the errors.

Effect of material damping

Damping is included in the model through coefficients ξα(ω) and ξβ(ω). This kind of damping is

inherent to the material, and depends on the velocity of the particles. There are other kind of nu-

merical damping at the three-dimensional layer related with the radiation condition: the geometric

damping. This mean that, in absence of material damping, the response to time-harmonic sources

are progressive waves, and the resonance response can not occur.

Damping minimises the effect of waves reflected by solids. This fact permits a better inversion,

and this result is known in the literature. At this section, three damping rates have been considered;

ξα = ξβ = {2%, 5%, 10%}. Table 5.4 shows the end values of the genetic algorithm search. The

last column represents the error parameter ε, computed by Eq. (5.30). In all the cases, the error

decreases when damping increases. This fact is also observed in figures 5.9 and 5.10, in which the

evolution of the computed parameters during the GA-TS search is plot. Damping produces a fastest

and stable identification: the Best Value curve require less iterations to obtain an stable value: the

Standard Deviation and the Mean Value become more regular, with less STD values, when damping

is increased.

Material damping improves the convergence properties of any global search method, and in this

case, it is also observed. The layer medium contains a natural radiation damping, when ξα = ξβ =

0%. In absence of material damping it is more critical to reach an stable last point. This is the reason

that, in future sections, the absence of material damping will be considered and, in case of lack of

convergence, it will be introduced a small damping rate, to observe the convergence properties. This

procedure is very important in the context of multiple deffect identification.

The particular way in which damping has been introduced, with ξα = ξβ involves that Poisson

rate is real-valuated. Any case, the results are enough general, as damping effects on waves and

results of inverse problems is a well known task in the literature. The aim of this section is only

checking and concluding that, despite a radiation damping exists, material damping improves the

convergence.

Damping (%) c1/r c2/r c3/r ar/r J̃ /(µr3) ε/r
ω̄ = 1
0 3.48E-04 5.39E-03 3.09E+00 0.481 2.26E-06 9.02E-02
2 -2.98E-03 1.18E-03 3.09E+00 0.484 1.54E-06 9.32E-02
5 -1.09E-02 2.13E-02 3.07E+00 0.488 3.72E-06 7.46E-02
10 -2.91E-04 -6.22E-04 3.06E+00 0.492 3.25E-07 6.12E-02
ω̄ = 2
0 5.06E-04 3.79E-03 3.15E+00 0.455 6.54E-05 1.57E-01
2 -1.13E-03 -2.31E-03 3.12E+00 0.456 2.24E-05 1.24E-01
5 -1.62E-03 3.87E-03 3.07E+00 0.443 1.16E-05 8.71E-02
10 -1.44E-04 -4.21E-04 2.99E+00 0.426 6.09E-06 7.53E-02

Table 5.4: GA-TS global search. End values of parameters. Effect of material damping
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Figure 5.9: GA-TS identification of a cavity. Damping effect at ω̄ = 1
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Figure 5.10: GA-TS identification of a cavity. Damping effect at ω̄ = 2
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Combination of frequencies

At this section, the four frequencies tested are grouped. The new approximed cost function is built

by adding the contributions of each single frequency test. Thus, if J̃ (ω̄i, V) denotes the approximed

cost function at frequency ω̄i, depending on V, the combined approximed function is built as:

J̃ (V) =
NF

∑
i=1

J̃ (ω̄i, V) (5.31)

with NF the number of frequencies considered. Note that V is an scalar value computed for the

combined frequency cost function.

Table 5.5 show the results of parameters, cost function, and normalized error computed with

Eq. (5.30). The error reported with the combined cost function is less than errors obtained at each

individual frequency, but for ω̄=1.5. This result means that for some individual frequencies, the

obtained result might be better, but providing more experiments is an stable approach to determine

an optimum value. Figure 5.11 show the GA-TS evolution.

ω̄ c1/r c2/r c3/r ar/r J̃ /(µr3) ε/r
1.0 3.48E-04 5.39E-03 3.09 0.4816 2.26E-06 9.20E-02
1.5 -1.98E-03 -1.39E-03 2.99 0.461 2.29E-01 4.03E-02
2 5.06E-04 3.79E-03 3.15E+00 4.55E-01 6.54E-05 1.57E-01
2.5 -1.44E-01 -9.44E-01 2.44E+00 3.08E-01 3.47E-04 1.12E+00
Combined 7.91E-03 4.66E-03 3.06E+00 0.46246 2.28E-03 7.38E-02

Table 5.5: GA-TS global search. Combination of frequencies. Centered cavity with a symmetric
profile of sources and receivers
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Figure 5.11: GA-TS identification of a cavity. Combination of frequencies.
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Cost Function and Topological Sensitivity as Image Methods

The use of small-asymptotic expansion of functionals and variables is an interesting task to minimize

the time required to compute the forward problem. It provides the value of the topological sensitivity,

and the cost function evaluated at the optimum volume values. The three-dimensional mapping of

such parameters is used in the literature as an image method. At this section the two image methods

are compared.

The Topological Derivative of the cost function is used in the literature as an image method. When

mapped in a 3D region, the negative values of it is understood as point in which the presence of a

cavity decreases the cost function. The isosurfaces of some percentage of the negative values might

be understood as shapes of the hidden objects (see works by Guzina and Bonnet). This approach is

based on heuristic ideas, and no rigorous proof is stablished to define the isosurface corresponding

with the boundary of the hidden cavity. In works by Bonnet, Guzina and co-workers ([23, 65, 63])

the delineation of internal cavities and inclusions, and the way to combine frequencies, are carried

out by heuristic ideas. The approach to combine the results at different frequencies is not based on

cost functions, but on image properties. In such papers, it is observed some cases in which internal

shapes are identifies, but also cases in which such heuristic procedure fails. The advantage of this

method is that no a-priori shape of the hidden cavity is assumed.

The three-dimensional map provided by the cost function depends on the shape of the assumed

cavity. In this sense, it is not an image method, as this method does not pretend to obtain the shape

of a hidden object by an isosurface of a particular function evaluated at the domain. Any case, it is

interesting the comparison of the TS and the cost function maps. In what follows, it will be observed

that the cost function provides a minimum point at the coordinate center of the cavity, when the

deffect corresponds with a single cavity. It will be observed that the TS is not a good image method

for this problem.

Figures 5.12, 5.14, 5.16 and 5.18 represent the three-dimensional map of the Topological Derivative

of the cost function. Two isosurfaces are represented, corresponding with value T = 0 (blue) and

0.5 min{T } (red). The red one surface is the predicted hidden cavity. It is observed that the predicted

shape is not an sphere, and that when the frequency increases, the position of the center is wrong.

Figures 5.13,5.15, 5.17 and 5.19 represent the three-dimensional mapping of the cost function

(three slices). It has been computed at the optimum volumes at each point. The cost function in

all the cases reach a minimum value at the center of the true sphere position. The end point of the

GA-TS approach are shown in Table 5.5.
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Figure 5.12: Identification of a centered spherical cavity. Isosurfaces of T at ω̄ = 1. Symmetric profile
sources/receivers.
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Figure 5.13: Identification of a centered spherical cavity. Linearized Cost Function slices at ω̄ = 1.
Symmetric profile sources/receivers.
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Figure 5.14: Identification of a centered spherical cavity. Isosurfaces of T at ω̄ = 1.5. Symmetric
profile sources/receivers.
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Figure 5.15: Identification of a centered spherical cavity. Linearized Cost Function slices at ω̄ = 1.5.
Symmetric profile sources/receivers.
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Figure 5.16: Identification of a centered spherical cavity. Isosurfaces of T at ω̄ = 2. Symmetric profile
sources/receivers.

Figure 5.17: Identification of a centered spherical cavity. Linearized Cost Function slices at ω̄ = 2.
Symmetric profile sources/receivers.
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Figure 5.18: Identification of a centered spherical cavity. Isosurfaces of T at ω̄ = 2.5. Symmetric
profile sources/receivers.

Figure 5.19: Identification of a centered spherical cavity. Linearized Cost Function slices at ω̄ = 2.5.
Symmetric profile sources/receivers.
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Effect of positions of sources/receivers
The identification of the hidden cavity radious ar = 0.5r centered at (0, 0, 3r) is carried out at this
section with a non-symmetric profile of sources and receivers. The effect of multiple wave reflection
is the main effect explored here. Figure 5.20 represents the position of the 16 sources (red) and 9
receivers (blue). Sources are centered at (−1.5r, 0, 0), located in a rectangular patch 2r× 2r. Receivers
are centered at (1.5r, 0, 0) and are disposed in an squared array size 2r. Figure also represent the
Boundary Element Mesh.

Figure 5.20: Configuration of sources (red) and receivers (blue). Identification of a centered cavity
with a non-symmetric profile of sources and receivers

The identification is carried out by a combined GA-TS approach, with parameters shown in table

5.2. The combination of frequencies is also explored. Table 5.6 show the end points, cost function

and error ε computed by Equation 5.30. It is observed that despite higher error rates are repored

for the lowest frequencies, when compared with Table 5.5, lower errors are reported for the higher

frequencies.

The error of the combination of frequencies search is less than the error obtained with any monochro-

matic test. In comparison with Table 5.5, the magnitude of the error obtained with the combination

frequencies approach is similar. The inverse problem depends on the number of experiments. It is

expected that the convergence is improved by increasing the number of experimental data.

The evolution of the GA-TS algorithm at each single frequency is shown in figure 5.21. The

evolution for the combination of frequencies is shown in figure 5.22.
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ω̄ c1/r c2/r c3/r ar/r J̃ /(µr3) ε/r
1 -3.24E-02 1.33E-03 3.153 0.488 3.08E-05 1.57E-01
1.5 1.58E-01 4.79E-03 3.040 0.489 6.35E-05 1.64E-01
2 8.59E-02 8.06E-03 3.028 0.437 4.71E-04 1.11E-01
2.5 2.37E-01 2.71E-03 3.039 0.427 2.27E-04 2.51E-01
Combined 6.92E-02 1.05E-03 3.059 0.463 1.73E-03 9.80E-02

Table 5.6: GA-TS global search. Spherical cavity identification. Non-symmetric profile of sources and
receivers
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Figure 5.21: GA-TS identification of a cavity. Non-symmetric profile sources/receivers. Results at
four frequencies.
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Figure 5.22: GA-TS identification of a cavity. Non-symmetric profile sources/receivers. Combination
of frequencies.

The observation of the Topological Sensitivity Map can be done in figures 5.23, 5.25, 5.27, 5.29.

The isosurface corresponding with 0.5min{T } is represented in red colour; the isosurface T = 0 is

represented in blue colour. For this problem, figures evidences that the minimum value in T is not

reached at the center of the sphere. The isosurfaces does not show any kind of information about

the shape of the hidden cavity. On the contrary, the Cost Function, evaluated at each point at the

optimum radius, obtain the coordinate center at the true cavity position. Figures 5.24, 5.26, 5.28 and

5.30 represents the cost functon at four frequencies.
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Figure 5.23: Identification of a centered spherical cavity. Isosurfaces of T at ω̄ = 1. Non-symmetric
profile sources/receivers.

Figure 5.24: Identification of a centered spherical cavity. Linearized Cost Function slices at ω̄ = 1.
Non-symmetric profile sources/receivers.
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Figure 5.25: Identification of a centered spherical cavity. Isosurfaces of T at ω̄ = 1.5. Non-symmetric
profile sources/receivers.

Figure 5.26: Identification of a centered spherical cavity. Linearized Cost Function slices at ω̄ = 1.5.
Non-symmetric profile sources/receivers.
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Figure 5.27: Identification of a centered spherical cavity. Isosurfaces of T at ω̄ = 2. Non-symmetric
profile sources/receivers.

Figure 5.28: Identification of a centered spherical cavity. Linearized Cost Function slices at ω̄ = 2.
Non-symmetric profile sources/receivers.
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Figure 5.29: Identification of a centered spherical cavity. Isosurfaces of T at ω̄ = 2.5. Non-symmetric
profile sources/receivers.

Figure 5.30: Identification of a centered spherical cavity. Linearized Cost Function slices at ω̄ = 2.5.
Non-symmetric profile sources/receivers.
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5.8.3 Two cavities detection

The identification of two spherical cavities based on the linearization of the cost function is explored

at this section. It must be remarked that it is assumed that the interaction between cavities is small.

Damping also minimises the interaction between cavities. Thus, the sensitivity to damping is con-

sidered.

The combined GA-TS is used to find the global minimum. For all tests, the aim of the tests is

the identification of two cavities. Thus, the number of parameters of the Genetic Algorithm search is

6, the coordinate centers of both cavities: for cavity C1, the center is (c1
1, c1

2, c1
3) and its volume is v1.

Cavity C2 is centered at (c2
1, c2

2, c2
3), and volume v2. Both cavities are spherical.

At each point, a local expansion of the cost function in terms of the two volume is obtained.

Optimum volumes are solved by stating a local constrained minimization problem, by the physical

consideration that volumes must be positive or zero. Thus, the optimum volumes are search at the

boundary v1 = 0 or v2 = 0, when the optimum volume obtained by solving the local minimization

problem produces negative values at any of values v1 or v2.

Parameters of the combined GA-TS global search are shown in Table 5.7. Note that despite it is a

six-parameter identification, the order of the cavity is not fixed; thus, two optimum points might be

obtained. Symmetric results are obtained, and a careful analysis of the results reveal the cavity order.

Parameter Value
Low constrain [−2.5, −2.5, 0.5, −2.5, −2.5, 0.5]
Up constrain [2.5, 2.5, 5.5, 2.5, 2.5, 5.5]
Number of parameters 6
Number of generations 100
Size of the population 50
Probability of crossover 0.8
Probability of mutation 0.02
Tournament probability 0.7
Scale for mutation 0.1

Table 5.7: Parameters of the GA for two cavities identification

Two cavities identification: Different diameters

The first test consists on the identification of two cavities. Cavity C1 is centered at (−1.5r, 0, 2r) and

radius a1
r = 0.5r. The second cavity C2 is located at (1.5r, 2r, 4r), radius a2

r = r. Figure 5.31 represents

the BE mesh and the location of sources and receivers. The exitation frequency is fixed in ω̄ = 1.

Layer and material properties are analogous to the one considered at the other numerical tests.
The interaction between cavities causes that the approximed topological expansion of the cost

function fails. The interaction depends on damping, among other parameters (e.g. relative distance,
excitation frequency, sources, receivres, etc). Thus, it is expected that an small damping rate ξα =
ξβ = 5% improves the convergence.
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Figure 5.31: Two cavities identification. Different radius. Boundary elements mesh

The combined GA-TS global search produces end points reported in table 5.8. The last column

represent the error computed by Eq. 5.30, particularized for each cavity. Damping improves the

convergence and minimizes the interaction between cavities, as it can be observed by lesser errors ε.

Figure 5.32 show the evolution of the GA-TS. It can be observed that the residual when damping is

considered is less than the residual without damping.

Cavity c1/r c2/r c3/r ar/r ε/r
ξα = ξβ = 0%
C1 -1.80 0.12 2.07 0.48 0.33
C2 1.69 1.08 4.26 0.96 0.98
ξα = ξβ = 5%
C1 -1.48 0.15 2.11 0.47 0.19
C2 1.64 1.11 4.14 0.96 0.92

Table 5.8: GA-TS global search. Two cavities identification, different radius. End values of parame-
ters.
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Figure 5.32: GA-TS identification of two cavities with different diameters. Effect of damping at ω̄ = 1

Two cavities identification: Equal diameters

At the second test involving two cavities, two small and equal diameters are considered. Cavity C1

is centered at (r, −r, 4r) and radius a1
r = 0.5r. The second cavity C2 is located at (−2r, 2r, 2r), radius

a2
r = 0.5r. Figure 5.33 represents the BE mesh and the location of sources and receivers. The exitation

frequency is also fixed in ω̄ = 1. The same consideration respect to layer and material properties

remains from the previous test.

The interaction between cavities is greater than the one for the previous test. Despite both radii

are small, the reflection of waves is important. Table 5.9 show the last point when: a) no damping is

provided and b) 5% damping is provided. When no damping is given, no convergence is reached. On

the contrary, when damping is included, error decreases drastically. Thus, material damping permit

neglecting the interaction between cavities. This different behaviour is also observed in figure 5.34,

in which the residual strongly decays when damping is considered.
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Figure 5.33: Two cavities identification. Same radius. Boundary Element mesh

Cavity c1/r c2/r c3/r ar/r ε/r
ξα = ξβ = 0%
C1 0.22 0.23 4.66 1.88 2.11
C2 -1.21 -1.22 2.31 1.19 3.40
ξα = ξβ = 5%
C1 1.00 -1.01 4.10 0.51 0.10
C2 -1.92 1.95 2.04 0.47 0.11

Table 5.9: GA-TS global search. Two cavities identification, same radius. End values of parameters
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Figure 5.34: GA-TS identification of two cavities with the same diameters. Effect of damping at
ω̄ = 1

5.8.4 Multiple deffect identification without a-priori information on the number of cavities

One of the most interesting applications of the GA-TS approach to find cavities is the possibility of

detection of less number of cavities than the number of trial cavities. The main advantage of the

topological expansion is that zero volumes are obtained as natural solutions. At each point, the local

search is restricted to zero or positive radius, which has proved to be very important to define a cost

function with a strong local minimum.

The proposed expansion for the multiple-cavity case is based on the linearization of the cost

function considering that the interaction between cavities is small. Terms involved in the interaction

are relevant for the problem. Including damping, or considering long distances between deffects, are

natural ways to ignore such interaction terms. At this section it is also observed that the effects of the

interaction depends on the excitation frequencies. The higher the frequency, the more relevance for

such effect.

At this section, the basic cavity identified in section 5.8.2 is considered. A single cavity centered

at (0, 0, 3r), radius ar = 0.5r is identified by a 6-parameter GA-TS search (two cavity centers). Pa-

rameters of the Genetic Algorithm global search are reported in table 5.7. The true cavity is centerd

at (0, 0, 3r), and radius ar = 0.5r. The symmetric profile of 16 sources and 9 receivers used in section

5.8.2 is considered here.

Table 5.10 show the end point of the GA-TS global search. It is observed that two cavities are

obtained. One of them is close to the exact one. The second one has a small radius. This second small

cavity depends on some parameters, such as damping, number of experiments, etc. Such kind of

solution with two cavities, one a main cavity and a secondary small cavity, is also reported for static

problems in Gallego and Rus works. The interaction between cavities is small when the frequency

is low. This is the reason that, by increasing the frequency, the higher the error are obtained. At the

highest tested frequency, ω̄ = 2.5 is observed that two equal-size cavities are obtained, with only

one of the positions close to the true cavity. This test reveals that the consideration of the interaction
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between cavities become more important at the highest frequencies. As it was reported in tests

involving two cavities, the global search can be improved by the consideration of an small material

damping rate.

Figure 5.35 show the evolution of the GA-TS global search. For all the problems, the algorithm

stop when the number of iterations is reached. Plots suggest that probably the number of iterations

and the size of the population should be increased to reach a better best value. Thus, a slow conver-

gence is obtained for this kind of identification, in comparison with the identification of two cavities

shown in previous section. To visualize the dependence on the population size and the number of

generations, the case for frequency ω̄ = 2.5 has been computed, with a population size 80 and num-

ber of generations 200. The resulting cavities are: C1, centered at (3.69E − 02, 1.49E − 02, 3.24)r,

radius ar = 0.41r; C2, centered at (7.54E − 02, 1.33E − 02, 2.65)r, radius ar = 0.35r. This result can

be compared with the one obtained in Table 5.10. Figure 5.36 shows the evolution of the Genetic

Algorithm with the refined parameters, for the frequency ω̄ = 2.5. It is observed, when compared

with figure 5.35 that this combined approach requires more iterations when the frequency increases.

The interaction between cavities become an important term for this configuration.

Cavity c1/r c2/r c3/r ar/r
ω̄ = 1
C1 4.17E-01 3.36E-01 3.08 0.11
C2 -5.34E-03 -3.40E-03 3.09 0.48
ω̄ = 1.5
C1 8.04E-03 8.44E-02 4.22 0.18
C2 2.613E-03 -2.63E-03 2.99 0.46
ω̄ = 2
C1 -4.23E-01 8.13E-02 2.23 0.22
C2 -5.91E-02 3.24E-04 3.16 0.48
ω̄ = 2.5
C1 2.24E-02 -5.73E-02 3.08 0.36
C2 4.74E-02 -2.20E-01 5.29 0.36

Table 5.10: GA-TS global search. Identification of a single spherical cavity giving two trial cavities.
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Figure 5.35: GA-TS identification of a spherical cavity with two trial cavities.
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Figure 5.36: GA-TS identification of a spherical cavity with two trial cavities. Refined search at
ω̄ = 2.5

5.8.5 Ellipsoidal cavity detection: oblate spheroid

At this section the identification of an oblate spheroid is tested. The combined methodology GA-

TS is used. Thus, the exact solution is not a possible one. The algorithm is explored to check the

potentiallity of the method to provide a location and size of a cavity when the shape is not an sphere.

The ellipsoid a = b = 2c = 1.1r centered at (0, 0, 3r) is considered. The same symmetric profile

of sources and receivers used at the identification of an spherical cavity are used. Figure 5.37 show
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the BE mesh used to solve the forward problem that provides the pseudo-experimental data. Also,

the location of sources and receivers are shown.

Figure 5.37: Oblate spheroid cavity. Boundary Element mesh

The exact solution is not possible at this test. For each frequency, the end point of the GA-TS

approach is shown in table 5.11. For each end-point, the quadratic error ε is computed, in which the

volume and the center coordinates are the four parameters considered, Eq. 5.32. The exact volume

for the true ellipsoid is vre f = 2.7876. It is observed that the spherical cavity obtained as an end

point produces a position and volume similar to the position and volume of the exact ellipsoidal

cavity. Figure 5.38 show the evolution of parameters in terms of best value, mean value and standard

deviation, corresponding with the GA-TS global search.

ε =

√

(c1 − cre f
1 )2 + (c2 − cre f

2 )2 + (c3 − cre f
3 )2 + (v − vre f )2 (5.32)

ω̄ c1/r c2/r c3/r v/r3 J̃ /(µr3) ε

1 1.38E-03 1.06E-05 3.85E+00 3.0297 8.04E-04 8.83E-01
1.5 -4.13E-04 1.74E-03 3.03E+00 2.1752 1.23E-03 6.13E-01
2 1.66E-03 6.38E-03 3.25E+00 1.2735 5.30E-03 1.53E+00
2.5 2.70E-03 -3.15E-02 2.59E+00 1.1793 8.26E-03 1.66E+00

Table 5.11: GA-TS global search. Oblated ellipsoid. End points and errors
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Figure 5.38: GA-TS identification of an oblate ellipsoidal cavity

The observation of the topological sensitivity map, and the cost function, is an interesting task for

this problem. Figures 5.39, 5.41,5.43 and 5.45 show the three-dimensional isosurfaces correspond-

ing with the topological derivative T at four frequencies; the red shape corresponds with value

0.5 min{T } value. The blue one, corresponds with T = 0. It is observed that the shape of such

surfaces can not be used as an image method to identify the shape of the ellipsoid. Particularly at

the higher frequencies, the T map provides poor information about the location of the cavity. The

point with minimum value of T does not necessarily corresponds with the center of the ellipsoid.

On the contrary, the cost function always provide a minimum value at the center of the ellipsoid, for

the frequencies tested. The slices of the cost function mapped at three different planes are shown at

figures 5.40,5.42,5.44 and 5.46.
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Figure 5.39: Oblate ellipsoid identification. Isosurfaces of T at ω̄ = 1.
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Figure 5.40: Oblate ellipsoid identification. Linearized Cost Function slices at ω̄ = 1.
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Figure 5.41: Oblate ellipsoid identification. Isosurfaces of T at ω̄ = 1.5.
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Figure 5.42: Oblate ellipsoid identification. Linearized Cost Function slices at ω̄ = 1.5.
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Figure 5.43: Oblate ellipsoid identification. Isosurfaces of T at ω̄ = 2.
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Figure 5.44: Oblate ellipsoid identification. Linearized Cost Function slices at ω̄ = 2.
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Figure 5.45: Oblate ellipsoid identification. Isosurfaces of T at ω̄ = 2.5.
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Figure 5.46: Oblate ellipsoid identification. Linearized Cost Function slices at ω̄ = 2.5.
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5.8.6 Ellipsoidal cavity detection: prolate spheroid

The identification of a prolate spheroid is the focus of this section. The combined methodology GA-

TS is used. As occured with the previous section, the exact solution is not included in the search

space; thus, a best approximation provided by the global search method is obtained. The position of

the center and the volume are the adjustement parameters.

The ellipsoid 2a = 2b = c = 1.1r centered at (0, 0, 3r) is considered. Figure 5.47 show the BE

mesh and the relative positions of sources and receivers.

Figure 5.47: Prolate spheroid cavity. Boundary Element mesh

The end point of the GA-TS approach is shown in table 5.12, with the cost function and the

quadratic error ε (Eq. 5.32). The exact volume for the ellipsoid is vre f = 1.3938. As occured with

the oblate spheroid, the volume and center coordinates are close to the exact ellipsoid parameters.

Figure 5.48 show the evolution of parameters of the Genetic Algorithm.
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ω̄ c1/r c2/r c3/r v/r3 J̃ /(µr3) ε

1 1.38E-03 1.06E-05 3.85E+00 3.0297 8.04E-04 1.84E+00
1.5 -4.13E-04 1.74E-03 3.03E+00 2.1752 1.23E-03 7.82E-01
2 1.66E-03 6.38E-03 3.25E+00 1.2735 5.30E-03 2.76E-01
2.5 2.70E-03 -3.15E-02 2.59E+00 1.1793 8.26E-03 4.66E-01

Table 5.12: GA-TS global search. Prolate ellipsoid. End points and errors
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Figure 5.48: GA-TS identification of a prolate ellipsoidal cavity

The topological sensitvity map is shown in figures 5.49, 5.51,5.53 and 5.55. The red shape corre-

sponds with 0.5 min{T }. The blue one, corresponds with T = 0. It is observed that the 3D T map

provides poor information about the location and shape of the cavity. The cost function is shown in

figures 5.50,5.52,5.54 and 5.56. The minimum value correspond for the four cases tested with the true

coordinate center: the volume at the optimum point is similar to the volume provided by the spheric

approximation.
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Figure 5.49: Prolate ellipsoid identification. Isosurfaces of T at ω̄ = 1.
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Figure 5.50: Prolate ellipsoid identification.Linearized Cost Function slices at ω̄ = 1.

128



Figure 5.51: Prolate ellipsoid identification. Isosurfaces of T at ω̄ = 1.5.
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Figure 5.52: Prolate ellipsoid identification. Linearized Cost Function slices at ω̄ = 1.5.
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Figure 5.53: Prolate ellipsoid identification. Isosurfaces of T at ω̄ = 2.
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Figure 5.54: Prolate ellipsoid identification. Linearized Cost Function slices at ω̄ = 2.
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Figure 5.55: Prolate ellipsoid identification. Isosurfaces of T at ω̄ = 2.5.
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Figure 5.56: Prolate ellipsoid identification. Linearized Cost Function slices at ω̄ = 2.5.
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5.9 Concluding Remarks

The topological expansion of the cost function is presented for the layer domain in the context of

time-harmonic problems. The small-asymptotic expansion of displacements in terms of a single

cavity volume is presented and validated. The expansion is extended to the multi-deffect case, ne-

glecting the interaction between deffects terms.

At each three dimensional point, the cost function can be built and optimized in terms of vol-

umes. The volume optimization is carried out by a local constrained minimization. This aspect has

been proof to be very important in the context of frequency domain computations, by numerical

experiments.

The search of the optimum position and sizes of cavities is carried out by a global zero-order

optimization algorithm, in the context of Genetic Algorithms. At each point, the optimum volumes

are computed and the linearized cost function is evaluated. This approach is particularly interesting

for the multiple-deffect global search. The proposed cost function permits the collapse of some cavi-

ties, providing a way to reduce the number of supposed cavities to fit the number of voids proposed

with the actual existing one at the specimen. This approach has been demonstrated to be sensitive to

frequency, due to the fact that the important terms involving the interaction between cavities are not

included here.

The linearized cost function depends on the shape of the deffect. The problem involving shperical

shapes has been considered here. Based on it, two examples have been carried out in order to check

the possibility of finding ellipsoids based on this formulation. Numerical test show that the center

coordinates and the volumes are successfully find with the proposed linealization.

The linealized cost function permits two basic ways to improve the global search. The first one is

including terms that represent the interaction between cavities. Such terms requires, in the context

of boundary integral equation, the hypersingular boundary integral equation of tractions. Such ker-

nel is not available in the literature for the layer domain at the present context; thus, it is required a

previous work with the Green’s fuction. The second approach is the definition of a different expan-

sion. The topological expansion migh be carried out in the frequency domain with radial functions

depending on the wavenumber. This topological sensitivity become more stable at the highest fre-

quencies.

At the frequency domain, the information provided by different frequencies might be combined

to generate a new cost function. Numerical tests confirm that the end point obtained by considering

the combination of frequencies is usually better than the ones obtained for a monchromatic test.

The use of the Topological Sensitivity as an image method has been explored also. Numerical

tests confirm that it is a difficult task obtaining images of hidden cavities based on the TS values. On

the contrary, the approximed cost function show a strong minimum point at the coordinate centers.

The optimum volumes are obtained by a local minimization procedure. Combined with a zero order

global method of minimization, such as the Genetic Algorithm approach, solutions are obtained close

to the exact one.
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CHAPTER 6

Conclusions and future works

6.1 Concluding remarks

The analysis of the Inverse Identification problem of hidden objects at a three-dimensional viscoelas-

tic layer is stated at the present PhD work. The identification is based on the scattering of elastic

waves, with time-harmonic excitation. The deffect type is limited to ellipsoids inner in a three-

dimensional layer. This domain is very interesting for industrial aplications, in which ultrasound

testing is used at lamites in the context of non-destructive testing.

At each chapter, particular conclusions are obtained when testing specific aspects of the inversion

process. At this section the main contributions of this PhD works are summarized.

• A new Green function has been developed for the three-dimensional viscoelastic layer. New

delimitations of the integration paths have been proposed.

• To include sharp geometries, new 8-noded variable-order traction singular elements have been

presented.

• The use of an optimization method based on gradients, such as the AVM, has been explored.

An exhaustive set of numerical tests have been presented. Conclusions about the use of first

order algorithms, based on a quasi-Newton method, for the layer domain are presented. The

layer domain, due to its particular geometrical damping, permits the inversion and results

report stability respect to random noise at measurements.

• The time-harmonic formulation for the topological sensitivity boundary integral equation is

presented. The proposed displacement expansion is tested, and is used as a basis to develop an

approximed cost function, free of higher-order displacmente derivatives. Genetic Algorithms

have been used to find the location and optimum sizes of hidden cavities. A numerical bench-

mark have been carried out, in which the sensitivity respect to the most relevant variables of

the inverse problem have been tested for this GA-TS approach.

6.2 Future works

The work reported at this document permit the analysis of the inverse problem at a layer. Among

the future works proposed based on this work, the following items are proposed.

a) Extension of the TS to different geometries, such as ellipsoids and cracks.

b) Development of a topological expansion depending on the wavelenght. Compare and contrast

the results with the expansion presented here.

c) Development of experimental tests, which provide true experimental data for the numerical

codes developed at the present work.
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[97] T. Lewiński and J. Sokołowski. Energy change due to the appearance of cavities in elastic

solids. Int. J. Solids and Structures, 40:1765–1803, 2003.

[98] K.M. Lim, K. H. Lee, A. A. O. Tay, and W. Zhou. A new variable–order singular boundary

element for two–dimensional stress analysis. International Journal for Numerical Methods in En-

gineering, 55:293–316, 2002.

[99] M. J. S. Lowe. Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE

Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 42 (4):525–542, 1995.

[100] M.L. Luchi and S. Rizzuti. Boundary elements for three–dimensional elastic crack analysis.

International Journal for Numerical Methods in Engineering, 24:2253–2271, 1987.

[101] J. E. Luco and R. J. Apsel. On the Green’s functions for a layered half-space: Part I. Bull. Seismol.

Soc. Am., 73:909–929, 1983.

139



[102] E. Hinton M. Papadrakakis, Y. Tsompanakis and J. Sienz. Advanced solution methods in topol-

ogy optimisation and shape sensitivity analysis. Engineering Computations, 13(5):57–90, 1996.

[103] A. K. Mal and S. J. Singh. Deformation of Elastic Solids. Prentice Hall, New Jersey, 1991.

[104] A. Malcolm and B. Guzina. On the topological sensitivity of transient acoustic fields. Wave

Motion, 45:821––834, 2008.

[105] V. M. Malhotra and N. J. Carino. Nondestructive testing of concrete. CRC Press, 2004.

[106] J. Martínez and J. Domínguez. On the use of quarter-point boundary elements for stress in-

tensity factor computations. International Journal for Numerical Methods in Engineering, 20:1941–

1950, 1984.

[107] J. M. Martinez-Esnaola. Stress singularity at the junction of three dissimilar materials. Interna-

tional Journal of Fracture, 113:133–137, 2002.

[108] A. Martínez-Castro and R. Gallego. Three-dimensional green’s function for time-harmonic

dynamics in a viscoelastic layer. International Journal of Solids and Structures, 44:4541–4558,

2007.

[109] M. Masmoudi, J. Pommier, and B. Samet. The topological asymptotic expansion for the

maxwell equations and some applications. Inverse Problems, 21:547—-564, 2005.

[110] M. Melkoumian, S. M. Mkhitaryan, and B. B. Lin. Stress-strain state of a cracked elastic wedge

under anti-plane deformation with mixed boundary conditions on its faces. International Jour-

nal of Fracture, 108:291–315, 2001.

[111] S. C. Mellings and M. H. Aliabadi. Flaw identification using the boundary element method.

International Journal for Numerical Methods in Engineering, 38:399–419, 1995.

[112] R. A. Meric. Differential and integral sensitivity formulations and shape optimization by BEM.

Engineering Analysis with Boundary Elements, 15:181–188, 1995.

[113] Z. Michaelewicz and D. B. Fogel. How to Solve It: Modern Heuristics. Springer, Berlin, 2004.

[114] J. Miklowitz. The theory of elastic waves and waveguides. North-Holland, Amsterdam, 1978.

[115] P. Millot, X. Ferriers, J. Pommier, and Mohamed Masmoudi. A new method for solving an

inverse scattering problem using topological sensitivity in the context of detection of buried

objects with a ground-penetrating radar. In Proceedings of the European Symposium on numerical

methods in electromagnetics, March 2002.

[116] R. D. Mindlin. Force at a point in the interior of a semi-infinite solid. Pysics, 7:195–201, 1936.

[117] R. D. Mindlin. Waves and vibrations in isotropic, elastic plates. In Book: Structural Mechanics, by

Goodier, J. N. and Hoff, N. J. editors. Pergamon Press, New York, 1960.

[118] N. Nishimura and S. Kobayashi. Determination of cracks having arbitrary shapes with the

boundary integral equation method. Engineering Analysis with Boundary Elements, 15:189–195,

1994.

[119] J. Nocedal and S.J. Wright. Numerical Optimization. Springer-Verlag, 2006.

[120] S. S. Pageau and S. B. Biggers. A finite element approach to three–dimensional singular stress

states in anysotropic multi–material wedges and junctions. International Journal of Solids and

Structures, 33(1):33–37, 1996.

[121] S. S. Pageau, P. F. Joseph, and S. B. Biggers. The order of stress singularities for bonded and

disbonded three–material junctions. International Journal of Solids and Structures, 31(21):2979–

2997, 1994.

[122] V. Pagneaux. Revisiting the edge resonance for lamb waves in a semi-infinite plate. J. Acoust.

Soc. Am. 120, pages 649–656, 2006.

140



[123] R. Y. S. Pak. Asymmetric wave propagation in a half-space by a method of potentials. Journal

of Applied Mechanics. ASME, 434:121–126, 1987.

[124] R. Y. S. Pak and B. Guzina. Three-dimensional Green’s funcions for a multilayered half-space

in displacement potentials. Journal of Engineerng Mechanics, 128(4):449–461, 2002.

[125] R. Y. S. Pak and B. B. Guzina. Seismic soil–structure interaction analysis by direct boundary

element methods. International Journal of Solids and Structures, 36:4743–4766, 1999.

[126] R.Y.S. Pak and F. Ji. Rational mechanics of axial soil–pile interaction. Journal of Engineering

Mechanics, ASCE, 119(4):813–832, 1993.

[127] R.Y.S. Pak and F. Ji. Mathematical boundary integral equations analysis of an embedded

shell under dynamic excitations. International Journal for Numerial Methods in Engineering,

37(14):2501–2520, 1994.

[128] G. Pelekanos and V. Sevroglou. Inverse scattering by penetrable objects in two-dimensional

elastodynamics. Journal of Computational Applied Mathematics, 151:129–140, 2003.

[129] H. Petryk and Z. Mroz. Time derivatives of integrals functionals defined on varying volume

and surface domains. Applied Numerical Mathematics, 38:694–724, 1986.

[130] G. M. Pharr. Understanding nanoindentation unloading curves. J. Mater. Res., 17:660–2671,

2002.

[131] P. Pintado and F. G. Benítez. Three-dimensional elastodynamics of a plate subjected to concen-

trated internal loads under uniform motion. Computers & Structures, 36:355–368, 1990.

[132] R. E. Plessix, Y. H. de Roeck, and G. Chavent. Localizar. SIAM J. Sci. Comput., 20:1033–1052,

1999.

[133] A.D. Poularikas. The Transforms and Applications Handbook. CRC and IEEE Press, 2000.

[134] L. Rayleigh. On the free vibration of an infinite plate of homogeneous isotropic elastic matter.

Proc. London Math. Soc., 20 (357):225–234, 1888–1889.

[135] J.J. Rego Silva, H. Power, and L.C. Wrobel. Boundary element xv: Stress analysis. In Proc. of

the International Conference on Boundary Element Methods (BEM XV), pages 423–439, Worcester,

MA, USA, 1993.

[136] G. Rus and R. Gallego. Optimization algorithms for identification inverse problems with the

boundary element method. Engineering Analysis with Boundary Elements, 26:315–327, 2002.

[137] G. Rus and R. Gallego. Boundary integral equation for inclusion and cavity shape sensitivity

in harmonic elastodynamics. Engineering Analysis with Boundary Elements, 25:77–91, 2005.

[138] G. Rus and R. Gallego. Solution of identification inverse problems in elastodynamics using

semi-analytical sensitivity computation. Engineering Analysis with Boundary Elements, 31, 2007.

[139] L. W. Schmerr. Fundamentals of ultrasonic nondestructive evaluation — A modeling approach.

Plenum Press, New York, 1998.

[140] A. Schumacher. Topologieoptimierung von Bauteilstrukturen unter Verwendung von Lochposition-

ierungskriterien. PhD thesis, University of Siegen, Germany, 1995.

[141] E. A. G. Shaw. On the resonant vibrations of thick barium titane disks. J. Acoust. Soc. Am.,

28:38–50, 1956.

[142] R. E. Sheriff and L. P. Geldart. Exploration Seismology. Cambridge University Press, 1995.
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