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Chapter 1: Introduction 
 

A magnetic nanofluid consists basically of magnetic nano particles dispersed in a liquid 

carrier forming a thermodynamically stable colloidal suspension [Rosensweig, 1997]. 

Their mechanical properties are similar to those of the carrier liquid but in the presence 

of a magnetic field, they behave like ferromagnetic materials and magnetic body forces 

are induced on them. The carrier liquid can be either a polar or non polar medium 

depending of the application in mind. For instance, water-based fluids have been 

studied as biocompatible suspensions for medical applications such as target drug 

delivery and magnetic resonance studies [Lavaca, 1999; Lavaca, 2010; Racuciu, 2007]. 

Oil-based magnetic nanofluids are most commonly used for mechanical applications. In 

a magnetic liquid seal, for example, a magnetic nanofluid is confined in a position due 

to the action of an appropriately-applied, non-uniform magnetic field distribution 

[Ravaud, 2010]. The magnetic nanofluid keeps two media separated by supporting the 

force exerted by the difference of pressure between them. At the same time, the fluid 

sustains moving parts of the mechanical system where the seal is being used. This is the 

case of the rotatory shaft used in the hard drive motors. This kind of seal has two main 

advantages, no maintenance is required and the leakage of sealing fluid during 

operation is almost negligible. For those reasons, they are widely used in many 

industrial and scientific applications, and they represent one of the most important 

mechanical applications of magnetic nanofluids. 

We can also find in literature many theoretical studies of the possibility of using 

magnetic nanofluids to improve the performance of lubricated contacts. Thrust, journal 

and pad bearings are examples of contacts widely used in mechanical systems. For 

instance, in a thrust bearing, theoretical calculations have shown that the use of 

magnetic nanofluids as lubricants is plausible for small contacts with size limited to a 

few centimeters and loads restricted to lower than 100 N [Walker, 1979]. These 

conditions are satisfied for instance in micro electro mechanical systems (MEMS) [Ku, 

2009], but obviously, a magnetically lubricated pad bearing is not suitable for use in a 

boat-propelling system. In journal bearings, the confinement ability of magnetic 

nanofluids is convenient to avoid lubricant leakage out of the contact clearance [Shah, 

2004; Naduvinamani, 2009; Kuzhir, 2007].  
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 Irrespective of the contact geometry, a key role of lubrication is to reduce the 

friction forces acting on rubbing surfaces during operation. Bearing this in mind, the 

control of friction in contacts lubricated with magnetic nanofluids and operating in the 

hydrodynamic lubrication regime was taken as the main objective of the present work. 

In the hydrodynamic lubrication regime, the surfaces of the contact are fully separated 

by a thin, pressurized lubricant film. Hydrodynamic lubrication usually occurs between 

sliding/rotating non-conforming surfaces in the presence of a fluid or lubricant. An 

alternative to this mechanism is so-called squeeze flow, where occurs when the surface 

approach forces the fluid to flow outward from the contact. The performance of a 

contact lubricated by a perfect Newtonian fluid operating in this regime is well 

described by the Reynolds lubrication theory. Describing a contact lubricated by a 

magnetic nanofluid requires the introduction of the extra magnetic body forces that 

appear on it when placed in the presence of a magnetic field. 

This work is structured as follows: Chapter 2 is used to present a brief revision 

of theoretical details related to the mechanics of Newtonian fluids, including the 

Reynolds theory for hydrodynamic lubrication. Chapter 3 describes the properties of 

magnetic nanofluids and introduces a modified Reynolds lubrication theory to describe 

their performance as lubricants in the presence of a magnetic field distribution. In 

Chapter 4 the first results of this study are presented. Here, a contact lubricated with a 

Newtonian fluid consisting of two tilted rigid flat surfaces, which operates in the 

hydrodynamic lubrication regime, is studied by means of the Reynolds lubrication 

theory. A contact with a similar geometry, but lubricated with a magnetic nanofluid, is 

experimentally and theoretically studied in Chapter 5. The possibility of control the 

friction in the contact using an externally applied magnetic is explored. In Chapter 6 the 

appearance of starvation is studied in a contact lubricated with a magnetic nanofluid 

working in the soft elasto-hydrodynamic lubrication regime. In the absence of a 

magnetic field, starvation occurs in this contact at high speeds of operation due to the 

limited amount of lubricant available. A magnetic field distribution is used to confine 

the fluid around the contact in order to prevent the onset of starvation. Finally, in 

Chapter 7, a summary of all the results is presented together the most important 

conclusions from this work. 

 



 

3 

Chapter 2: Basic concepts on lubrication 
 

 

In this chapter, a brief revision of fluid mechanics is presented. The concept of 

Newtonian fluid is introduced, as well as the equations governing its motion. Finally, 

the Reynolds lubrication theory for contacts working in the hydrodynamic lubrication 

regime is explained. 
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2.1  Lubricated contacts. 
 
 
A lubricated contact consists of two or more rubbing surfaces in the presence of a fluid. 

The fluid can be a liquid or a gas.  The fluid forms a lubricating film between the 

surfaces.  The surfaces support a load that tends to bring them into contact and this load 

is counteracted by pressurization that occurs within the lubricating film.  The presence 

of the lubricating film between the surfaces decreases the friction force. The varying 

nature of the lubrication forces acting on a contact results in a classification into three 

lubrication regimes: boundary, mixed and hydrodynamic lubrication. In the boundary 

regime, the lubrication is provided by very thin protective layers formed on contacting 

surface asperities by physical or chemical adsorption, whose thickness and strength are 

determined by the nature of interaction between the surfaces and the lubricant, such as 

hydrophobic-hydrophilic forces [Bongaerts, 2007; Persson, 2009].  In this regime, 

friction is determined by the force needed to shear the coatings on the asperities in 

direct contact. In the hydrodynamic lubrication regime, the surfaces are separated by a 

relatively thick film of fluid and the friction is determined by the shear stress of the 

fluid film. This regime is well described by the hydrodynamic lubrication theory of 

Reynolds that will be explained in detail in the next sections. The mixed lubrication 

regime shares characteristics of both boundary and hydrodynamic lubrication since 

there is partial asperity contact.  

 All of these lubrication regimes are commonly described in the form of a 

“Stribeck curve” (Figure 2.1) [Lubbinge; 1999, Kavehpour, 2004] in which the friction 

coefficient m is plotted as a function of the Gumbel number Gu (or duty parameter). The 

friction coefficient is the ratio between the tangential (rolling and/or sliding) force FS 

and the normal load FN (commonly known as load capacity) applied to the contact 

surfaces as mathematically expressed in equation (2.1);  

 

N

S

F
F

=μ                                                          (2.1) 

 

The most general definition of the Gumbel number groups the relative speed V between 

rubbing surfaces, the high shear rate lubricant viscosity η, the contact area A and the 
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normal load FN. The proportionality between this group of variables and the Gumbel 

number  Gu is given in equation (2.2). 

 

NF
VAGu η

∝                                                      (2.2) 

 

 

 
 

Figure 2.1. The performance of a lubricated contact is usually represented in a Stribeck 
curve as shown here. The curve is divided in three regions corresponding to the 
different lubrication regimes: boundary, mixed and hydrodynamic lubrication. 
 
 
2.2 Equations of motion of Newtonian fluids 

 

2.2.1 Newtonian fluids. 

 

Consider the simple shearing experiment depicted in Figure 2.2. Two parallel planes are 

separated by a thin fluid film of thickness h. The upper plane is displaced with velocity 

V while the lower remains in a fixed position. In this experiment, the force exerted on 

the displaced surface is equilibrated by a force on the other surface with the same 

Friction 
Coefficicient 

Gumbel Number (Gu) 

Boundary 
Lubrication 

Mixed 
Lubrication 

Hydrodynamic 
Lubrication 

)(μ
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magnitude but opposite direction. Thus, the surfaces submit the fluid to a superficial 

force per unit area τ called the shear stress. A fluid is called Newtonian when it satisfies 

the relation [Bird, 1982; Fay, 1996] 

 

h
Vητ =                                                          (2.3) 

 

where η is independent of the shear rate. The quantity V/h is the velocity gradient 

generated through the fluid film and it is commonly known as shear rate. The 

proportionality constant in equation (2.3) is the fluid viscosity η, which determines the 

resistance of a fluid to flow when this is submitted to external shearing forces.  

 

 

 
Figure 2.2. Shearing experiment on a fluid between to parallel surfaces. The space of 
height h between two parallel surfaces is filled with a fluid. The upper surface is 
displaced with velocity V and the lower is kept fixed. Both surfaces experience a force 
per unit area, τ of the same magnitude but opposite direction. 
 

In general, for a Newtonian fluid, the stress and the velocity profile satisfies the 

relation 

  

 

 ( ) ( )IVVV T •∇+∇+∇= ηητ
2
3                                   (2.4) 

 

Here, τ  is the second order extra-stress tensor, I  is the second order identity tensor, V  

is the velocity vector, V•∇  is its divergence, V∇ and VT∇ are the velocity gradient 

and the velocity gradient transposed, respectively. The first term in equation (2.4) is the 

generalization of equation (2.3), while the second term is related to the changes in the 
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fluid density due to the imposition of a normal stress. In most cases, the fluids are 

supposed to be incompressible and the last term is zero.  

The flow of Newtonian fluids is mathematically described by the continuity and 

the Navier-Stokes equations. Unlike turbulent flows, in which non-stationary chaotic 

velocity fields may occur even when the conditions controlling the flows are time-

independent, laminar flow can be described by physical intuition. On the one hand, the 

continuity equation expresses the conservation of mass rate in the flow. On the other 

hand, the Navier-Stokes equation expresses the second law of Newton for viscous 

Newtonian fluids. Solving an isothermal flow problem implies to solve both equations 

simultaneously. These equations will be introduced in the following subsections. 

 

2.2.2 Continuity equation. 

 

The continuity equation expresses mathematically the conservation of the fluid mass in 

a flow experiment. This equation is deduced by applying a balance of matter in a 

stationary element of volume crossed by the fluid flow. The mass rate of fluid entering 

the volume must be the sum of the rate of fluid leaving it and the rate of accumulation 

of fluid inside the volume. Consider the simple situation in Figure 2.3.  A fluid of 

density ρ enters in a volume zyx ΔΔΔ  through the face x with mass rate zyxVx ΔΔ)(ρ  

and leaves the volume with mass rate zyxxVx ΔΔΔ+ )(ρ  through the face situated at 

xx Δ+ . The rate of mass being accumulated inside the fluid is 
t

zyx
∂
∂

ΔΔΔ
ρ . For this 

simple case, the balance of matter is 

t
zyxzyxxVzyxV xx ∂

∂
ΔΔΔ=ΔΔΔ+−ΔΔ

ρρρ )()(                           (2.5) 

 

For a flow that crosses all the faces, the rest of the mass rate component entering and 

leaving the volume must be included in equation (2.5). The resulting balance of matter 

is  

 

 
[ ] [ ]

[ ]
t

zyxyxzzVzzzVz

zxyyVyyyVyzyxxVxxxVx

zz

yyxx

∂
∂

ΔΔΔ=ΔΔΔ+Δ+−+

ΔΔΔ+Δ+−+ΔΔΔ+Δ+−

ρρρ

ρρρρ

)()()()(

)()()()()()()()(
 (2.6) 
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Dividing equation (2.6) by the volume size and taking the limit when this goes to 

zero, we obtain the continuity equation [Bird, 1982; Fay, 1996] 

 

( )V
t

ρρ
•−∇=

∂
∂                                                   (2.7) 

 

The material derivative of a quantity can be written as 

 

∇•+
∂
∂

= V
tdt

d                                                  (2.8) 

 

Using equation (2.8), equation (2.7) can be rewritten as 

 

V
dt
d

•∇−= ρρ                                                    (2.9) 

 

If the fluid density is constant and uniform then the fluid is considered 

incompressible and the material derivative of the fluid density in equation (2.9) is zero. 

Then the continuity equation for an incompressible fluid is; 

  

0=•∇ V                                                   (2.10) 
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Figure 2.3. A volume of size zyx ΔΔΔ  is crossed by a fluid along the x direction. 

 

2.2.3 Navier-Stokes equation. 

 

In this section, the equation of motion that describes the flow of a Newtonian fluid will 

be introduced in its more general form. To describe the motion of a fluid it is necessary 

to find a Newton-like equation for an infinitesimal volume, i.e., an equation of the form  

 

t
f

dt
Vd

=ρ                                                  (2.11) 

 

where 
t

f  is the total density force acting on an infinitesimal fluid volume. For a 

viscous Newtonian fluid 
t

f  is the sum of gravity, pressure and viscous forces. The 

gravity density force 
g

f  acting on every point at the fluid is 
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gf
g

ρ=                                                      (2.12) 

 

where g  is the gravitational acceleration. 

On any infinitesimal fluid volume acts a force due to the difference of pressure p 

at the faces of the small volume. The pressure-density force 
p

f  acting at any point at 

the fluid is mathematically expressed by equation (2.13).   

 

pf
p

−∇=                                                  (2.13) 

 

Finally, the viscous-density force is; 

 

τ•∇=
v

f                                                  (2.14) 

 

In agreement with the continuity equation, for an incompressible Newtonian 

fluid, the stress expressed in equation (2.4) is 

 

( )VV T∇+∇= ητ                                              (2.15) 

 

Introducing equation (2.15) in (2.14) it is found that the viscous-density force for 

an incompressible Newtonian fluid is 

 

Vf
v

2∇= η                                                (2.16) 

  

Thus, the total density force acting on an infinitesimal fluid volume is 

 

gVpf
t

ρη +∇+−∇= 2                                     (2.17) 

 

 

Now it is possible to write an equation to describe the motion of an 

incompressible Newtonian fluid. That is 
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gVpVV
t
V ρηρ +∇+−∇=⎥⎦

⎤
⎢⎣
⎡ ∇•+

∂
∂ 2                             (2.18) 

 

Equation (2.18) is known as the Navier-Stokes equation [Bird, 1982; Fay, 1996].  

 

 

2.3 Hydrodynamic lubrication theory 
 

2.3.1 The lubrication approximation: Reynolds equation 

 

Figure 2.4 presents a scheme of hydrodynamic lubrication between two sliding, non-

parallel surfaces in the presence of a fluid. The bottom surface moves with speed V0 

while the upper surfaces remains fixed. The plane where the displacement of the surface 

lies will be called the shearing plane in further discussion. As the bottom surface moves 

it drags the lubricant along it into the converging wedge. A pressure field is generated 

as otherwise there would be more lubricant entering the wedge than leaving it. Thus at 

the beginning of the wedge the increasing pressure restricts the entry flow and at the 

exit there is a decrease in pressure boosting the exit flow. The pressure gradient 

therefore causes the fluid velocity profile to bend inwards at the entrance to the wedge 

and bend outwards at the exit, as shown in Figure 2.4 [Stachowiak, 2000]. The 

generated pressure separates the two surfaces and is also able to support a certain load. 

It is important to note that if there is no converging wedge, no pressure gradient will 

arise. 
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Figure 2.4. Schematic representation of a shearing flow between two tilted surfaces. In 
the hydrodynamic lubrication regime a pressurized fluid film separates completely the 
surfaces.  
 

Usually in a lubricated contact the distance between the surfaces h is small 

compared to the dimensions L of their surfaces, even in the hydrodynamic lubrication 

regime. Under this assumption, it is plausible to suppose that the changes in the pressure 

through the thin lubricant film in the perpendicular direction to the shearing plane are 

negligible together the gravitational effects. In addition, inertial effects in the gap can be 

considered small in comparison with viscous forces. Then the Navier-Stokes equation 

that describes the problem of a narrow contact gap becomes [Stachowiak, 2000] 

 

Vp 20 ∇+−∇= η                                              (2.19) 

 

Equation (2.19) can be divided in its components parallel and perpendicular with 

respect to the shearing plane. In the following, these components will be denoted using 

the subscripts || and ^ respectively. As example, consider the case of the shearing plane 

corresponding to the plane x-y, in such a way that the coordinate ||V  of the velocity 

Inlet flow 

Outlet   
flow 

Pressure profile 

L 

Sliding surface 

Fixed surface 

)( ||rp

maxp

0V

)( ||rh

0V
x

y

z 

xV0

yV 0
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profile lies on the cited plane, and ⊥V  lies on the axis z. Then, nabla operators can be 

defined to contain the derivatives of the variables of the x-y plane ( ||∇ ) and z axis ( ⊥∇ ).  

Equation (2.19) can be further simplified if we realize that, in a thin film, the gradients 

of velocity in the direction parallel of plane of stress (||) are small compared to the 

gradient in the perpendicular direction (^). Then we can suppose that 

 

02
|| ≈∇ V                                                      (2.20) 

 

Bearing all this in mind, the Navier-Stokes equation can be rewritten as 

 

||
2

|| Vp ⊥∇=∇ η                                                    (2.21) 

 

and 

 

 0=∇⊥ p                                                       (2.22) 

 

All the assumptions to go from equation (2.18) to equations (2.21) and (2.22) 

constitute the so-called lubrication approximation. Equation (2.22) expresses 

mathematically what was previously mentioned: the pressure does not depend on the 

coordinate perpendicular to the shearing plane. Equation (2.21) can be integrated to 

obtained expressions for the speed components on the shearing plane assuming no-slip 

boundary conditions. If the fluid is supposed to be incompressible, the condition of 

mass rate conservation in the flow can be mathematically expressed by equation (2.10). 

After substitution of the expressions for fluid speed in equation (2.10), the last must be 

integrated to obtain the Reynolds equation for lubrication. 

For the case described previously, where the shearing plane lies parallel to the 

plane x-y, with z = 0, the expressions for the speeds are 

 

               ( )
),(

)),((
),(

2
),( 0

2

yxh
zyxhV

yxpzzyxhV x
xx

−
+∂

−
=

η
                      (2.23) 

 

and  
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( )
),(

)),((
),(

2
),( 0

2

yxh
zyxhV

yxpzzyxhV y
yy

−
+∂

−
=

η
                      (2.24) 

 

Here, p(x,y) and h(x,y) are the pressure and the thickness of the lubricant film. V0x and 

V0y are the components of the speed of the surface in the x and y directions, respectively. 

Using equation (2.23) and (2.24) in the continuity equation (2.10), the Reynolds 

equation (2.25) is obtained. 

 

[ ] [ ] [ ]),(),(12),(),(),(),( 00
33 yxhVyxhVyxpyxhyxpyxh yyxxyyxx ∂+∂=∂∂+∂∂ η      (2.25) 

 

Reynolds equation can be equivalently written in other coordinates systems to 

straightforwardly describe any contact shape. For instance, in polar coordinates 

Reynolds equation can be written as (Sabir, 2007; Koc, 2007) 

 

[ ] [ ] ),(6),(1),( 33 θηθθ θθθ rhrrph
r

rprh rr ∂Ω=∂∂+∂∂                  (2.26) 

 

and the angular velocity is 

 

   ( )
h
zrpzrhzrV Ω+∂

−
= θθ η

θθ
2

),(),(
2

                            (2.27) 

 

Equation (2.26) describes the contact represented in Figure 2.5, the upper 

surface rotates with angular speed W and the bottom surface is fixed. The shearing plane 

is parallel to the x-y plane.  
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Figure 2.5. Schematic representation of a contact where the upper surface rotates with 
angular speed W, and the bottom surface is fixed. A straightforward description of this 
contact can be carried out by a Reynolds equation written in polar coordinates, where 
the position of any point in the x-y plane is described by the polar coordinates (r,θ). 
 

It is important to remark that if the film thickness is uniform along the contact 

surfaces, no pressure film will be generated, in agreement to the right hand term in the 

Reynolds equation.  

 

2.3.2 The lubrication parameters. 

 

Once pressure and film thickness of lubricant in the contact have been found by solving 

Reynolds equation, it is possible to find the parameters needed to describe the 

performance of the lubricated contact. The normal force applied to the surfaces, which 

is supported completely by the fluid film in the hydrodynamic lubrication regime, is 

called the load capacity FN. It is found integrating the pressure over the surface of the 

contact S covered by the fluid. 

 

Lubricant film 

Rotating surface

Fixed surface

r
x

y 

z

θ (x,y) 

Ω 
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')'( dSrpF
S

N ∫=                                                  (2.28) 

 

The shearing force FS acting on the fluid is calculated by integrating the shear 

stress τ (equation (2.15)) on the fluid over the contact surface.  

 

∫=
S

S dSrF ')'(τ                                                 (2.29) 

 

The tangential force is the sum of the contributions of the Couette and the Poisseuille 

flow in the contact. The first is directly related to the film shape, relative velocity of 

surfaces and fluid viscosity. The second is due to the pressure film distribution 

generated in the fluid film. 

Once the normal and tangential forces have been found, the region of the 

Stribeck curve corresponding to the hydrodynamic lubrication regime can be 

determined by calculating the friction coefficient and Gumbel number as given in 

equation (2.1) and (2.2), respectively. 

 
 
2.3.3 Soft elasto-hydrodynamic lubrication in point contacts. 
 
 
Soft elasto-hydrodynamic lubrication occurs when the contact pressure is high enough 

to deform at least one of the contacting surfaces, but is not high enough to cause a 

significant change on the lubricant viscosity at the contact inlet. Soft elasto-

hydrodynamic lubrication occurs not only in engineering applications like elastic 

bearing and seals, but also in biological systems [de Vicente, 2005, de Vicente, 2006]. 

In cartilaginous joints the elastic properties of the surfaces may play an important role 

in the performance of the hydrodynamic lubrication forces in the contact [Skotheim, 

2004].  

The elastic deformation w at the point r  of a contact composed of two surfaces 

of area S due to a pressure distribution p is [Ranger, 1975] 

 

'
''

2)( dS
rr

p
E

r
S
∫ −

=
π

ω                                            (2.30) 

 



2. Basic concepts on lubrication                                                                                      17 

 

Here, ( ) ( )[ ]2
2
21

2
1 /1/1'/2 EEE νν −+−= , where ν1, ν2, E1 and E2 are the Poisson’s ratios 

and Young modulus of the two contacting bodies, respectively. Thus, the deformed film 

thickness h is 

 

krrhrh ++= )()()( 0 ω                                       (2.31) 

 

where h0 is the non-deformed shape of the contact and k is a constant to be determined 

by the conditions imposed to the problem.  

By solving Reynolds equation in combination of equation (2.30) and (2.31), the 

film thickness and the pressure in a soft contact can be found, and therefore the load 

capacity and friction acting between the surfaces can be calculated.  

In particular for this work, the soft contact of interest is a soft point contact similar to 

that illustrated in Figure 2.6.  For a sliding-rolling ball-plate contact operating in the soft 

elasto-hydrodynamic lubrication regime under fully-flooded conditions, Reynolds 

equation predicts values of the minimum hm and central hc film thickness given by 

equations (2.32) and (2.33), respectively [de Vicente, 2005, de Vicente, 2006].  

 

( )
22.044.0

66.078.0

'
'8.2

WE
URhm

η
=                                          (2.33) 

 

and 

 

( )
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'3.3

WE
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η
=                                           (2.34) 

 

Here, W represents the load applied to the contact and U = (uB+uD)/2 the entrainment 

speed, where uB and uD are the surface speed of the ball and disc, respectively. R’ is the 

reduced radius in the entrainment direction, given by 21 /1/1'/1 xx RRR += , where Rx1, 

Rx2 represent the radii of the two contacting bodies respectively. These predictions are 

not far from other theoretical models available in literature [Hamrock, 1978].  

The friction at the contact is 
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Here SRR denotes the slide-to-roll ratio defined as the ratio of the absolute value of 

sliding speed, |uB-uD| to the entrainment speed U. The first term in equation (2.35) is the 

Poiseuille contribution to the friction while the second corresponds to the Couette 

friction. In the hydrodynamic lubrication regime, both contributions increase with the 

parameter hU, and decreases with the load applied between the ball and the plane. 

 
Figure 2.6. Soft point contact between a ball and a plane. The ball and the plane move 
with linear speed uB and uD, respectively. The dotted line represents the deformation of 
the contact. The contact area increases due to the deformation. 
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Chapter 3: Ferro-hydrodynamic lubrication theory 
 

 

The properties of magnetic nanofluids, commonly denominated as ferrofluids, are 

discussed in this chapter. Most of this discussion is a summary of the content on this 

subject from the book of “Ferrohydrodynamics” by Rosensweig. In addition, the 

Reynolds theory for hydrodynamic lubrication has been modified to include the 

magnetic body forces acting on the magnetic nanofluid in the presence of a magnetic 

field. 
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3.1 Magnetic nanofluids. 
 

3.1.1 What are magnetic nanofluids? 

 

Magnetic nanofluids (more commonly called ferrofluids) are colloidal dipolar 

suspensions of superparamagnetic monodomain ferro- or ferrimagnetic nanometric 

particles coated with an absorbed layer of a long chain molecular species and dispersed 

in a liquid carrier [Rosensweig, 1997]. The latter is commonly a Newtonian fluid. A 

very well stabilized suspension of this kind retains the Newtonian behaviour of the 

continuum phase but ha properties of a ferromagnetic material when it is placed in a 

magnetic field. The basic properties of a magnetic nanofluid, such as magnetization and 

magnetic body forces, will be studied in the next subsections. Here the requirements 

that a magnetic nanofluid must satisfy to behave as a well stabilized suspension will be 

discussed. 

The particle size must lie in the colloidal range to allow Brownian motion to 

keep particles suspended without settling out. In addition, the interparticle dipolar 

magnetic interaction will induce the formation of particle clusters if Brownian forces are 

not strong compared to the magnetic forces. The balance between these forces can be 

quantified by means of their respective energies. On the one hand, the thermal energy 

ET of a particle suspended in a fluid at absolute temperature T is  

 

TkE BT =                                                       (3.1) 

 

where kB is the Boltzmann constant. On the other hand, two particles of diameter d with 

permanent dipolar moment  

 

Mdm 3

6
π

=                                                    (3.2) 

 

where M is their permanent magnetization, interact with a magnetic energy  

 

32
072

dMEd μπ
=                                               (3.3) 
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In order to avoid particle agglomeration ET > Ed, i.e., 

 

32
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dMTkB μπ
>                                               (3.4) 

 

Equation (3.4) restricts the particle size to 
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As example, for a suspension of magnetite particles with M = 447 kA/m the 

particle diameter must be smaller than 10 nm at room temperature in agreement to 

equation (3.5). In an actual magnetic fluid, the particles are not completely single-sized. 

The larger particles may aggregate forming clusters and result in the suspension 

displaying non-Newtonian behavior [Mahle, 2008]. To ensure stabilization of magnetic 

colloids with particle size around the limit previously mentioned, it is also important to 

reduce the particle size polydipersity.  

Van der Waals attractive forces can not be forgotten in this discussion, as they may also 

promote the formation of colloidal aggregates in the suspension. distances. These forces 

appear spontaneously between neutral and charged particles due to the dipole-dipole 

interaction. The energy of interaction Ew of the fluctuating dipoles can be estimated 

using equation (3.6) [Rosensweig, 1997]. 
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In equation (3.6), A is the so called Hamaker constant and depends on the 

dielectric properties of the particle and the continuum medium, 
d
sl 2

=  where s is the 

distance between the surfaces of the interacting particles and d is their diameter. The 

force related to the energy in equation (3.6) is of short range, it varies with l-6 for distant 

particles and l-1 when the particles are close to contact. If the surfaces of two particles 

come into contact, in theory an infinite energy would be needed to separate them. Thus, 
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the direct contact between particles surfaces must be avoided. This is achieved by 

adding a steric repulsive mechanism to the set of forces acting on the particles. The 

steric repulsion is provided by a protective coating of amphiphilic molecules adsorbed 

on the particle surfaces.  

For two spheres of diameter d coated with uniform molecular layers of thickness 

d with the surfaces separated by a distance s, the steric energy of repulsion is 

[Rosensweig, 1997] 
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where x is the surface concentration of molecules adsorbed at the particle surface and 

d
t δ2

= . The steric repulsive force is proportional to the number of molecule adsorbed 

on the particle surfaces and increases also with the coating thickness. These two values 

must be carefully chosen to achieve the stabilization of the suspension. This mechanism 

can be affected if a well stabilized suspension is diluted, due to the surface molecular 

density being decreased [Dababneh, 1995; Chantrell, 1982].  

Very well stabilized magnetic nanofluids offer interesting properties that can be 

used in mechanical [Miranda, 2004; Walker, 1979; Kumar, 1993] and medical 

applications. For instance, the synthesis of magnetic nanofluids has found a challenge in 

obtaining stable biocompatible suspensions for medical applications such as magnetic 

resonance studies [Lavaca, 1999; Lavaca, 2010; Racuciu, 2007]. 

 

3.1.2 Magnetization models for magnetic nanofluids. 

 

In a magnetic nanofluid, the magnetization M(H) is a nonlinear function of the applied 

magnetic field H. The simplest model to describe M(H) is the Langevin model. This 

model considers a suspension of non-interacting, superparamagnetic and monodisperse 

particle of diameter d and saturation magnetization Md. For a fluid that satisfies the 

these conditions the fluid magnetization is given by the expression [Rosensweig, 1997] 
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)()( αφ LMHM d=                                              (3.8) 

 

where 
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Figure 3.1 shows the Langevin magnetization model as function of the applied magnetic 

field for different particle diameters. In agreement with the Langevin model, the fluid 

magnetization M(H) has an asymptotic linear behavior with the strength of the magnetic 

field H for low values of the latter. Here, the slope of the magnetization curve is the 

initial magnetic susceptibility, defined as  
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The initial susceptibility is proportional to the cubed power of particle diameter 

d. This can be observed in the faster growth of the fluid magnetization at low values of 

the magnetic field for larger particle size. At very intense magnetic fields, the fluid 

magnetization reaches a maximum value of saturation Ms. This value is proportional to 

the volume fraction of the particles and their magnetic saturation as expressed by 

equation (3.12). 

  

ds MM φ=                                                     (3.12) 

 

Experimental evidence shows that, in a fine magnetic nanofluid, the particle size 

distribution satisfies a lognormal distribution function of the form [Berret, 2006; Huang, 

2004] 
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where the particle size polydispersity is described by the standard deviation s. The 

magnetization of the fluid is then the sum of the contribution of particles of different 

sizes x. Thus, the Langevin function must be weighted using the particle size 

distribution as shown in equation (3.14).  

 

∫
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)(),()( dxxfHxLMHM psφ                                   (3.14) 

 

Magnetization curves obtained using equation (3.14) are shown in Figure 3.2 for 

a particle size of 10 nm and s = 0.1, 0.3 and 0.5. The smaller particles have a major 

influence than larger ones at intermediate and high magnetic field, lowering the 

magnetic susceptibility of the fluid. In contrast to this, the initial susceptibility is more 

influenced by the larger particles (see Figure 3.1) and increases with s as shown in 

Figure 3.3. Fitting equation (3.14) to experimental measurements of the magnetization 

curve of a magnetic nanofluid allows determination of the mean particle size and the 

polydispersity of its solid content [Chantrell, 1978; Ivanov, 2007].  
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Figure 3.1. Langevin model of fluid magnetization for magnetite particles Md = 447 
kA/m, with diameter of (solid) 5, (dashed) 10 and (dotted) 20 nm. T = 298.15  ºK. 
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Figure 3.2. Fluid magnetization curves for magnetite particles with diameter d = 10 nm 
and values of s of (solid) 0.0, (dotted) 0.1, (dashed) 0.3 and (dash-dotted) 0.5. T = 
298.15 ºK. 
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Figure 3.3. Initial susceptibility as function of the particle size polydispersity. 

 

 

3.1.3 Magnetic body forces on magnetic nanofluids. 

 

The total magnetic body force density acting on a magnetic nan-fluid in the presence of 

a magnetic field distribution is [Rosensweig, 1997] 
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Here vf and T are the volume and temperature of the fluid, respectively. The first term in 

equation (3.15) is a magnetostrictive term related to the changes of fluid density due to 

the applied magnetic field. If the fluid is considered incompressible, this term is 

neglected and equation (3.15) becomes  

 

HHMf
m

∇= )(0μ                                       (3.16) 

 

In agreement with equation (3.16), to provoke the appearance of magnetic forces 

in an incompressible magnetic nanofluid, it is necessary to place it in the presence of a 

non-uniform magnetic field distribution.  
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3.1.4 Magnetic nanofluid viscosity 

 

A magnetic nanofluid is a colloidal suspension which is expected to retain the 

Newtonian behavior of the continuum phase. The Newtonian viscosity of the 

suspension, h, increases with the particle volume concentration f respect to the. For a 

suspension with volume concentration f of spherical particles and continuum medium 

viscosity hc, the relative viscosity can be approximated by the expression [Rosensweig, 

1997] 
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where fc is the maximum packing concentration. The particle coating used to stabilize 

the suspension against Van der Waals interactions increases the total volume of solid in 

the suspension. For an uniform coating of thickness d, the solid volume increments by a 

factor ( )3/21 dδ+ . Including this effect in equation (3.17), the solution viscosity is 

found to be 
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Due to thermal fluctuations in the continuum medium, the particles in a colloidal 

suspension exhibit translational and rotational Brownian motion. Additionally, if a shear 

deformation is imposed to the suspension, hydrodynamic forces act on the particles 

having a similar effect to thermal forces. When a magnetic field is applied to a magnetic 

nanofluid subjected to a shear deformation, the magnetic particles in the fluid tend to 

remain rigidly aligned in the direction of the magnetic field. As a result, larger gradients 

in the velocity surrounding a particle are expected and viscous dissipation increases in 

the fluid. This magnetic contribution to the total viscosity is called rotational viscosity. 
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This contribution can be calculated as function of a (see equation (3.10)) using the 

Shliomis model mathematically expressed in equation (3.19) [Shliomis, 2001] 
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3.2 Reynolds theory for magnetic nanofluids. 
 

Taken into account the discussion in previous sections, a magnetic nanofluid can be 

thought as a Newtonian fluid in which an additional force appears when it is placed in 

the presence of a magnetic field distribution. The motion of an incompressible magnetic 

Newtonian nanofluid can be described by the modified Navier- Stokes equation shown 

as follows; 
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Equation (3.20) differs from equation (2.18) in the magnetic body force density 

expressed in equation (3.20). 

We are interested in obtaining the Reynolds equation for a magnetic nanofluid. It 

is obtained by integrating the continuity and the modified Navier-Stokes equations 

under the lubrication approximation as decribed in section 2.3.1. Here again, the vector 

components of all the equations will be separated into their components perpendicular 

to the shearing plane (denoted by the suffix ^) and those that lie on the cited plane 

(denoted by the suffix ||). In order to retain a problem where the pressure does not vary 

through the lubricant film, it will be supposed that the gradient of the magnetic field 

distribution has non-vanishing components only in the shearing plane. This condition 

can be expressed mathematically as 
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The Navier-Stokes equation for a Newtonian fluid under the lubrication 

approximation given in equations (2.21) and (2.22), must include the magnetic body 

forces for a magnetic nanofluid, which, in agreement to equations (3.16) and (3.21), is 
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and  
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The modified Navier-Stokes equation for an incompressible Newtonian magnetic 

nanofluid under the lubrication approximation is 
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and 

 

 0=∇⊥ p                                                     (3.25) 

 

Equation (3.25) expresses mathematically that fluid pressure does not vary in the 

perpendicular direction to the shearing plane and then equation (3.24) can be 

analytically integrated through the fluid film to find expressions for the component of 

the velocity fluid profile lying on the shearing plane.  

Considering the case represented in Figure 3.4, of two surfaces displacing with 

relative velocity V0x and V0y  in the x and y directions, respectively. Then, the shearing 

plane for this problem is parallel to the plane x-y. The magnetic field strength H must be 

such as 

 

),( yxHH ≡                                                    (3.26) 

 

in order to satisfy the condition in equation (3.25). Then, in agreement with equations 

(3.22) and (3.26), the magnetic body force density on the fluid is 
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Figure 3.4 Surfaces separated by a magnetic nanofluid in the presence of a magnetic 
field H(x,y). The bottom surface displaces with speed V0 on the plane x-y, 
corresponding to the shearing plane. 
 

 

The expressions for the components of the fluid velocity profile under the 

lubrication approximation are 
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Equations (3.28) and (3.29) are the solutions of the Navier-Stokes equation (3.24) 

for the fluid film of thickness h(x,y) under no-slip boundary condition on the surfaces.  

They must also satisfy the continuity equation (2.10). Substituting equations (3.28) and 

(3.29) in the continuity equation and integrating the latter, we obtain the modified 

Reynolds equation for a magnetic nanofluid expressed in equation (3.34) 
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The modified Reynolds equation for a magnetic nanofluid differs from the one 

for a Newtonian fluid only in the terms corresponding to the magnetic body forces. In 

the absence of a magnetic field or in the case that the magnetic field distribution is 

uniform, equation (3.30) reduces to equation (2.25). 
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Chapter4: Hydrodynamic lubrication between rigid tilted 

plates 
 

 

Hydrodynamic lubrication theory is used to solve the problem of a contact of two, 

slightly tilted, flat rigid surfaces operating in the hydrodynamic lubrication regime, 

where one of surfaces rotates while the other is kept fixed. It is shown that theoretical 

results are in agreement with experimental ones available in literature. In addition, a 

method to estimate the misalignment between surfaces of a plate-plate rheometer is 

developed. 
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4.1 Introduction 
 

Reynolds lubrication theory has been successfully used in the past to explain the 

hydrodynamic lubrication regime in different kinds of lubricated contacts including 

seals, journal and pad bearings. In this chapter, this theory is used to solve a problem 

consisting of a contact similar to the plate-plate rheometer, where the surfaces are 

slightly tilted. Only the flow in a misaligned cone-and-plate rheometer, where the axis is 

not perpendicular to the surface, has been investigated in full detail by the method of 

domain perturbation [Dudgeon, 1993]. For Newtonian fluids in a parallel-plate system, 

Taylor and Saffman [Taylor, 1957] found theoretically and Greensmith and Rivlin 

[Greensmith, 1953] experimentally that an extra pressure is exerted at the plate when 

the axis of rotation is not perfectly perpendicular to the fixed plate and that the pressure 

on the plate varies with position. In the aligned parallel plates, of course, there should 

be no such normal force for a Newtonian fluid [Walters, 1975]. It is our experience, 

however, that most parallel plate arrangements suffer from imperfections in parallelism 

between the plates [Bernzen, 2008]. It has been experimentally shown in the past that a 

small degree of non-parallelism can give rise to a large positive pressure in the 

converging flow region and a large negative pressure in the diverging flow region, 

superimposed on the pressure due to normal stress effects [Adams, 1964; Greensmith, 

1953; Walters, 1975]. In this chapter we will show theoretical evidence of the effect of 

non-parallelism on thin film rheological measurements using plate-plate geometries. 

Theoretical results will be compared to experiments reported in the literature. 

 

4.2 Theoretical modelling of rotating tilted plates 
 
 
The problem solved in this chapter consists of describing the hydrodynamic lubrication 

regime of a contact composed of two rigid, flat, slightly tilted surfaces (see Figure 4.1), 

lubricated with an incompressible Newtonian fluid. The upper surface is commanded to 

rotate with angular speed W and the bottom is kept fixed. The film thickness at any 

point in the contact gap can be mathematically expressed as 

 

0cos),( hrrh += θεθ                                            (4.1) 
 

where  
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Rhh /)( min0 −=ε                                             (4.2) 
 

quantifies the plate misalignment, R is the plate radius, h0 is the height at the midpoint 

in the contact and r and θ are the plate coordinates.  

 

 

 

 
 

Figure 4.1. Schematic representation of two non parallel surfaces of radius R. The upper 

surface is commanded to rotate at a constant angular speed, while the lower is kept 

fixed. The gap between the plates is filled by a lubricant film characterized by the 

parameters hmin and h0, corresponding to the minimum and central film thickness, 

respectively. 

 

The hydrodynamic lubrication regime of the contact can be described by using 

the Reynolds lubrication theory assuming that the conditions of the lubrication 

approximation (discussed in section 2.3.1) are satisfied. The problem is then reduced to 

solving Reynolds equation (2.26) for the film shape given in equation (4.1) with the 

appropriate conditions on the manometric pressure p(r,q) inside the gap. If the contact is 

supposed to be open to the atmosphere, pressure must satisfy the boundary conditions 

mathematically expressed in equation (4.3). 
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Also, a condition of periodicity inside the gap must be imposed on the pressure. 

It is  

 

)2()( πθθ += pp                                               (4.4) 
 

In addition, the load capacity FN of the contact, i.e. the load that the lubricant 

film must support, imposes another condition on the pressure as expressed 

mathematically in equation (4.5). 
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The torque T needed to move the upper surface of the contact shown in Figure 

2.1 can be calculated as 
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where tzq(z=h) is the shear stress acting on the fluid in contact with the rotating surface, 

as expressed in equation (2.4) this can be found as 
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Here Vq is the angular component of the fluid velocity, which under the lubrication 

approximation is given by equation (2.30). Substitution of this in equation (4.7) gives us 

the mathematical expression for tzq(z=h) shown in equation (4.8).  
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So far, we have presented the expressions needed to calculate the load capacity 

FN and torque T acting in the contact after solution of the Reynolds equation. Their 

calculation may be simplified by using dimensionless variables, and also it may allow 

comparison with previous solutions of the lubrication equation. To do this, the set of 

dimensionless variables shown in equation (4.9) has been used. 
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It should be noted that, if the plates are consider to be always separated by the lubricant, 

then it must be satisfied that 1'/0 0 <≤ hε . 

With these dimensionless variables Reynolds equation (2.26) becomes 

 

      
θθ

θ
θ

θ
∂
∂

=⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂

+⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂ ''6),(''

'
1

'
),('''

'
33 hArrph

rr
rphr

r
                 (4.10)            

 

where  
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The equation for the load capacity (4.5) can be rewritten as 
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Simultaneous solution of equations (4.10) and (4.12) leads to a closed form 

relationship between the parameter A and the dimensionless film thickness h’. 

It is also of interest to rewrite the variables related to the torque using dimensionless 

variables. The normalized shear stress is 
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and in consequence the dimensionless torque must be defined as 

 

∫ ∫==
1

0

2

0

2

0

'''
'

'
π

θτ drdr
hRF

TT
N

                                 (4.14) 

 

Substituting equation (4.13) in (4.14) we find that the total normalized torque is 
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where two contributions can be distinguished, these are the Couette and Pousseuille 

normalized torques, corresponding to the first and second integral terms respectively. 

Equation (4.15) represents a relation between the torsional and normal forces acting on 

the contact, which can be determined by solving the Reynolds equation given values for 

the fluid viscosity η, angular speed W, central film thickness h0 and plate misalignment 

ε.  

Reynolds equation was solved using a finite difference numerical method, with 

the resulting matrix being solved by Gauss-Seidel iteration using the Reynolds 

boundary conditions [Khonsari, 2001]. If the pressure at any point of the contact takes a 

negative value during the cycle of iterations this is replaced by zero. This restricts the 

pressure to take only positive values.  

To apply the method of finite differences, the area of integration must be divided 

into a mesh containing points regularly spaced a distance Dr and Dq apart in the radial 

and angular directions respectively. Then a point (i , j) in the mesh corresponds to a 

point ri=iDr and qj=jDq inside the contact. The first and second order derivatives in 

equation (4.10) at the point of the mesh (i , j) must be approximated as follows: 
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Using equations (4.16)  to (4.19)  on (4.10) we obtain the set of simultaneous 

equations 
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where the coefficients are: 
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To solve Reynolds equation, the integration area was divided in a mesh of (i,j) = 

200x100 points. Increasing the number of points beyond this had no significant further 

effect on the results. The details related to the algorithm used to this solution are shown 

in the Appendix I.  

 

 

4.3 Results and Discussion 

 

4.3.1. Normal force in the contact 

 

The numerical solution of Reynolds equation gives a relation of the form 
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It can be observed in equation (4.27) that the load capacity and the product ηW 

keeps a linear relation, whose proportionality constant depends on both the 

dimensionless central film thickness and the relative plate misalignment characterized 

by ε. Reynolds equation was solved as explained in section 4.2.3, for a wide range of  

0'/ hε  from 1x10-2 to 0.95 and the results are shown in Figure 4.2. Over the whole 

range covered, the load capacity increases with the relative plate tilt while decreasing 

with film thickness. For values of 0'/ hε  up to approximately 0.2, a linear dependence 

is observed with A-1. In this range, the load capacity is proportional to ε and it has a 

reciprocal dependence on h0
3. For larger values of 0'/ hε , the load capacity increases 

more rapidly, with what it seems to be a power law. When the misalignment is close to 

the value of the medium film thickness, the load capacity becomes the most sensitive to 

any change of both the plate tilt ε and film thickness h0. To give an approximate 

mathematical expression for f(h’) in equation (4.27), a three parameter equation of the 

form  
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was used to fit the results. The best fit parameters were found to be α= 1.018 ± 0.001, 

β = 0.196 ± 0.0012 and γ = 5.915 ± 0.002. 
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Figure 4.2. Theoretical results showing the dependence among all the parameters 

included in the Reynolds equation. The red line corresponds to the fit obtained using 

equation (4.28). 

 

4.3.2. Friction forces between the surfaces 

 

4.3.2.1 Couette torque 

 

When the surfaces are completely parallel to each other (ε = 0) and separated by a fluid 

film of thickness hc, the total torque is given by [Steffe, 1992] 
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The Couette torque Tc is not related to the hydrodynamic pressure generated in the film 

but to the geometrical aspect of the contact established for the relative plate tilt 0'/ hε . 

This change is to be studied by means of the ratio of the actual Couette torque Tc and 

the torque in parallel plates Tε=0 given by equation (4.29). This ratio is shown in Figure 

4.3 as function of 0'/ hε . The change in the Couette torque is negligible for values of 

0'/ hε  up to 0.2. For larger values of 0'/ hε , Tc increases slowly relatively to Tε=0, until 

an abrupt increment is found approximately at 0'/ hε  = 0.8. Finally, when ε is the 95% 

of the central film thickness the value of Tc is approximately double Tε=0. 
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 Figure 4.3. Ratio of actual Couette torque to its parallel plate value as function of the 

relative plate tilt. 

 

 

4.3.2.2. Poiseuille torque 

 

As shown in Figure 4.4 the normalized Poiseuille torque T’p, previously defined 

in equation (4.15), grows proportionally with 0'/ hε , for values of the later up to 0.9, 
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where the former reaches a plateau about a value of 0.523. At this value, the value of T’p  

represents 4.25% of the total torque. 

As the Poiseuille torque is proportional to the angular derivative of the pressure, 

its behaviour can be visualized with the help of Figure 4.5, where the normalized 

pressure distributions corresponding to values of 0'/ hε  of 0.05, 0.5, 0.75 and 0.95 are 

shown. A Cartesian reference frame is used for discussion of results. For the lowest 

relative plate tilt, the distribution appears to be symmetrical with respect to the y-axis 

and then the Poisseuille contribution to the torque is negligible. As 0'/ hε  is increased, 

the maximum value of the distribution increases as shifted to the position of minimum 

film thickness (x = -R), breaking the symmetry and giving rise to higher values of the 

Poisseuille torque.  
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Figure 4.4. Normalized Poiseuille torque as function of the relative plate tilt. 
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Figure 4.5. Hydrodynamic pressure distribution generated on the lubricant film between 

the plates.  

 

4.3.2.3. Total torque 

  

The total normalized torque containing Poiseueille and Couette contributions is shown 

in Figure 4.6. This curve suggests that the highest frictions are found for the lowest 

values of 0'/ hε , where the poorest performance of lubrication forces is expected. A fit 

to curve was carried out, using a three parameter expression: 
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where α’ = 1.067 ± 0.002, β’ = -0.021 ± 0.001and γ’ = 0.0357±0.0002. 

 

x + 

x - 

y + y - 

05.0
'0

=
h
ε 5.0

'0
=

h
ε

75.0
'0

=
h
ε 95.0

'0
=

h
ε



4. Hydrodynamic lubrication between rigid tilted plates                                                45 

 

0,0 0,2 0,4 0,6 0,8 1,0
0

200

400

600

800

1000

1200

1400

1600

1800

 

 

ε/h'0

T'

 

 

Figure 4.6. Normalized total torque as function of the relative plate tilt. 

 

4.3.3 Stribeck Curve 

 

As discussed in section 2.4, the performance of a lubricated contact can be described 

properly with respect to the so-called Stribeck curve. On the one hand, for this contact 

an appropriate form for the Gumbel number is  
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and using equations (4.27) and (4.28) the Gumbel number Gu can be related to the 

central film thickness h0’ and the misalignment parameter ε by  
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Here a, b and g correspond to the constants in equation (4.28). 

On the other hand, the friction coefficient for a torsion force must be defined in terms of 

the applied torque. For this geometry, the friction coefficient is defined in equation 

(4.34). 

 

NRF
T2

=μ                                                    (4.34) 

 

Introducing equations (4.14) and (4.30) into (4.34), the friction coefficient is 

found to be 
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Here a’, b’ and g’ corresponds to the constants in equation (4.30). 

Equations (4.33) and (4.35) are the parametric representations of a Stribeck 

curve equivalent to a typical tribo-rheological experiment, where a normal force is 

applied to the plates and the torque required to rotate the plates at a given angular speed 

is monitored. Given a value for ε, a Stribeck curve can be built, where every point 

corresponds to only one value of the central film thickness h0.  

Definitions in equations (4.32) and (4.34) were chosen to allow the comparison 

of the model developed here with experimental results available in literature. 

[Kavehpour, 2004] studied the performance of lubrication forces in a parallel plate 

tribometer. They estimated an effect of eccentricity of approximately 25 μm (ε=25x10-

4). Their results reveal the appearance of lubrication forces largely enough to find well-

defined hydrodynamic lubrication regions in their Stribeck curves. Figure 4.7 shows the 

hydrodynamic lubrication regime of an experimental Stribeck curve, where the applied 

load was 10 N and the lubricant was a Pennzoil oil with Newtonian viscosity of 700 

mPa·s. Theoretical Stribeck curves are also shown, corresponding to four different 

values of ε between 4x10-4 and 1x10-4. The best agreement between experimental and 

theoretical curves was found for ε = 2x10-4 corresponding to h0 - hmin=20 μm, which is 

close to the eccentricity in the experimental set-up.  
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Figure 4.7. Stribeck curves for sheared Newtonian fluids. The model is represented in 

lines for values of ε of (solid) 0.0001, (dash) 0.0002, (dot) 0.0003 and (dash dot) 0.0004. 

Open circles correspond to experimental results obtained by [Kavehpour, 2004, Fig. 4, 

page 333]. 

 
 
 
4.4 Application in rheometry: estimation of non-parallelism on a plate-plate       
rheometer. 
 
 

As previously discussed in the introduction section, in most plate-plate rheometer 

geometries a small misalignment will be present between the surfaces when they are at a 

very close distance (see Figure 4.1). As shown in section (4.3.2), the total torque 

measured in the rotating plate of a plate-plate rheometer suffers deviations from the 

expected value for perfect parallel geometries. The deviation becomes larger with both 

an increase of misalignment between the surfaces or a decrease of the central gap h0 

between the surfaces.  
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The model developed in this chapter represents an alternative to estimate the 

value of the mentioned error in the geometry [Andablo-Reyes, 2010-1]. The parameter  

A and the normalized torque T’ given in equations (4.27) and (4.30), respectively 

represent a set of two equations with two variables whose values must be determined, 

once the rest of the parameters load capacity FN, torque T, plate diameter R, fluid 

viscosity η, and angular velocity W of the rotating plate have been measured or set. To 

facilitate the solution of the set of equations for A and T’, the combination of these 

quantities shown in equation (4.36) was introduced. 

 
242 /'/1 TFRAT N Ω= η                                     (4.36) 

 

The convenience of using equation (4.36) is that, in agreement to equations (4.27) 

and (4.30), the combination of variables shown in (4.36) depends only on the ratio 

0'/ hε . Figure 4.8 shows the functional dependence between the mentioned ratio and the 

measurable variables together to the best fit to the shown data. The mathematical 

relation between the measurable parameters and the ratio 0'/ hε  is 
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Introducing all the measured values for all the parameters in equation (4.36) a 

value for 0'/ hε  is found. The latter must be used either in equation (4.27) or (4.30) to 

find the value of h0 and then a value for ε. 
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Figure 4.8. Relation between measurable parameters and the ratio 0'/ hε . The solid line 

corresponds to the best fit to the data. 

 

 
4.5 Chapter conclusions 
 

In agreement with Reynolds lubrication theory, the non-parallelism in plate-plate 

rheometers provokes the appearance of lubrication forces in the fluid film between the 

plates. The magnitude of the normal force appearing on the rotating plate is directly 

proportional to the angular speed and the fluid viscosity. The proportionality constant 

increases with relative tilt of the plates and decreases with the fluid film thickness. The 

Stribeck curve model presented here successfully explains results of tribo-rheological 

experiments available in the literature. The model presented in this chapter allows 

estimation of the misalignment between the surfaces in a plate-plate rheometer. 
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Chapter 5: Ferro-hydrodynamic lubrication in a contact of 
tilted rigid plates 
 

 

The hydrodynamic lubrication regime of a contact of slightly tilted surfaces lubricated 

with a magnetic nanofluid was studied under the action of an externally-applied 

magnetic field distribution. Experiments were carried out in a plate-plate 

magnetorheometer and the modified Reynolds theory for magnetic fluids was employed 

for theoretical modeling of the contact, imposing cavitation conditions on the fluid film. 

Both theory and experiment showed that the friction on the contact can be controlled by 

means of modifying the strength of the applied magnetic field. The control mechanism 

is directly associated to an additional contribution to the load capacity due to the 

magnetic forces acting on the magnetic nanofluid. 
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5.1 Introduction 
 
 
The shearing and hydrodynamic forces acting on a lubricated contact working in the 

hydrodynamic lubrication regime have a close relationship, which is determined by the 

contact design variables and the operating conditions. Usually, the operating conditions 

are imposed by the needs of the application where the contact is being used, and thus 

the friction acting on it during operation depends completely on its design, which may 

include clever modifications from the standard model to improve its performance, 

reducing its operating friction. An example of this is the inclusion of self-adjustable 

surfaces in journal and pad bearings in order to enable a control mechanism for the 

hydrodynamic forces, depending on the needs established by the operating conditions.  

Magnetic nanofluids offer another alternative to control the performance of the 

lubrication of a contact and the friction between their surfaces via an external variable 

independent of the operation conditions. Previous theoretical studies have concluded 

that the body forces acting on the magnetic fluid when this is placed in presence of a 

non-uniform magnetic field distribution can modify the strength of the lubricant film, 

increasing the load capacity of the contact [Walker, 1979; Shah, 2004; Naduvinamani, 

2009; Kuzhir, 2007]. Based on the dearth of comparison between theory and 

experimental evidence in current literature of the performance of magnetic nanofluids as 

lubricants, this work has as a main objective to study experimentally and theoretically 

the problem of a simple contact lubricated with a magnetic nanofluid. The experimental 

study will be carried out using a plate-plate magnetorheometer, which geometrically 

corresponds to the contact studied in the previous chapter. In addition, the modified 

Reynolds equation for magnetic nanofluids will be used to describe the performance of 

the lubrication forces in the contact. 

 
 
5.2 Experimental section 
 
 
5.2.1 Magnetic nanofluids 
 
 

Magnetic nanofluids used in this work were bought from FerroTec Inc., and are stable 

suspensions of magnetite particles (Md = 447 kA/m) in ester based oils. All of them have 

the same saturation magnetization in agreement with the data provided by the 
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manufacturer. In order to corroborate all the data previously mentioned and to obtain 

more information about the composition of the suspension, shear flow and 

magnetization measurement experiments were carried out. 

The objective of the shear flow experiments was to corroborate that the magnetic 

nanofluids have a Newtonian behavior and to obtain more reliable data for their 

Newtonian viscosities. These experiments were carried using a Cone-Plate rheometer 

CP50-1 of Anton Paar, which is schematically represented in Figure 5.1. The cone angle 

is q = 1º and its radius R = 25 mm. All the tests were carried out at temperature of 25 ºC. 

 

 
 
Figure 5.1. Schematic representation of a cone-plate rheometer.  
 
 

When the cone rotates with angular velocity W and the plate is fixed, the shear 

rate γ  at any point inside the gap between these surfaces is [Steffe, 1992] 
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In a cone-plate rheometer, the shear rate is independent of the radial distance 

from the gap centre. Thus, the shear stress is also uniform along the gap and is related to 

the total torque T measured on the cone as 
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The shear stress as function of the shear rate is shown in Figure 5.2 for the three 

different fluid viscosities. As expected for Newtonian fluids, a linear relation is found 

between the variables previously mentioned. The slopes of these lines correspond to the 

fluid viscosities, which were found to be 46, 200 and 560 mPa·s. 
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Figure 5.2. Shear flow curves obtained for the magnetic nanofluids used in this work 
using a cone-plate rheometer . This curves show linear behavior between shear stress t 
and shear rate γ  as expected for Newtonian fluids. They correspond to fluid viscosities 
of (squares) 46, (circles) 200 and (triangles) 560 mPa·s. 
 

Curves for the magnetization of the magnetic nanofluids used in this work were 

obtained using a Quantum Design (San Diego, CA) MPMS-XL 5.0 Tesla magnetometer. 

The magnetization curves are shown in figure 5.3. All of them show a similar behavior, 

with similar initial susceptibility and saturation magnetization. The experimental data 
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were contrasted with the Langevin magnetization model assuming that the particle size 

satisfies a log normal distribution. All the details are given in Chapter Three, subsection 

3.2.2. For this model the fitting parameters are the initial magnetic susceptibility ci, the 

magnetization saturation Ms, and the standard deviation s of the particle size 

distribution. The latter quantifies the polydispersity in the particle size. The results of 

the model are presented together the experimental curves in Figure 5.3, and the values 

of the fitting parameters are given in Table 1. The Langevin model captures 

satisfactorily the real magnetic response of all the fluids. Nicely, it can be observed that 

the values of the fitting parameters are very similar for all the curves. 
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Figure 5.3. Magnetization curves for magnetic nanofluids with Newtonian viscosities of 
(squares) 46, (circles) 200 and (triangles) 560 mPa·s. The solid lines correspond to the 
fitted Langevin model of magnetization for polydisperse suspensions. 
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Fluid 

viscosity 
(mPa·s) 

Fluid saturation 
magnetization 

Ms (A/m) 

Initial 
susceptibility 

χi 

Particle 
concentration  

f 

Particle size 
polydispersity  

s 

Particle 
diameter  
d(nm) 

46  25485 0,5933 0,057 0,25 8,98 

200  24316 0,6152 0,054 0,2 9,52 

560  24457 0,5325 0,054 0,28 8.59 

 
Table 1. Properties of magnetic nanofluids used in this work obtained from adjusting 
the Langevin model. 
 
 
5.2.2 Experimental set-up 
 
All the experimental results of lubrication shown in this chapter were obtained using the 

commercial magnetorheological plate-plate rheometer MCR-501 of Anton Paar, which 

is schematically shown in Figure 5.4. The geometry is provided of a magnetic circuit 

which generates a non uniform magnetic field distribution inside the gap between the 

plates. The magnetic field strength is controlled by the electric current fed to the coil in 

the magnetic circuit as is shown in Figure 5.5. A maximum current of 5 amperes can be 

applied to the coil, corresponding to a magnetic field distribution with maximum field 

strength of approximately 885 kA/m,.  

The hydrodynamic lubrication experiments were carried out in a similar fashion 

to rheological flow tests. The upper plate was rotated with angular velocity W at a fixed 

gap distance and a fixed magnetic field strength. All the flow tests were carried out at a 

controlled temperature T of 25 ºC in order to obtained isothermal conditions. The 

angular speed was swept from zero up to 150 rad/s. The torque and normal force on the 

upper plate were measured with a precision of 0.01 mNm and 0.01 N, respectively. The 

upper plate is made of titanium, thus no magnetic force is directly exerted on it by the 

magnetic field.  

As schematically represented in Figure 5.4, inside of the contact the upper 

surface is divided in three levels, an inner circular surface with radius of 10 mm, 

followed by a circular furrow with 0.75 mm of depth with respect to the inner surface, 

and 7 mm width that finishes at a ring of 0.3 mm of height. The reason for the existence 

of this furrow is to keep any excess of fluid out of the inner gap.  

Using a clock dial with a fine grating, concentricity error was measured to be less than 

mμ2  and misalignment was found to be mhh μ75.1min0 =− . The set value h’ and real 
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gap distance h are not exactly the same, and an error Dh is commonly obtained. The gap 

error between plates was carefully evaluated in shear flow experiments using a semi-

empirical procedure [11, 12]. This approach assumes that the sum of the set gap and the 

gap error gives the real gap ( hhh Δ+= ' ). Hence, the following equation holds: 

hhh c Δ+=ηη , where cη  is the measured viscosity based on the set gap and η  is the 

true viscosity. A gap error of Dh = 18 μm is obtained by plotting cch η  against the 

commanded gap ch  for a range of Newtonian silicone oils. 

 

 

 

 

Figure 5.4. Schematic representation (not to scale) of the misalignment in a parallel 
plate geometry (face seal). The device is adapted for the application of an external 
magnetic field with strength up to ~ 800 kA/m by using an external magnetic circuit. A 
non-uniform magnetic field distribution exists in the contact due to the hole bored 
through the magnetically soft permeable material. Additionally a transverse cut of the 
upper surfaces is shown. 
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Figure 5.5. External magnetic field density distribution, B , as a function of radial 
distance r , in the mechanical face seal for a wide range of electric currents applied to 
the electromagnet. 
 
 
5.3 Modeling the contact 
 
 

The problem to be solved here is geometrically the same one solved in Chapter Four. 

Flat rigid surfaces that are relatively tilted are supposed to be separated by a lubricating 

pressurized film that supports a load FN. But now the contact gap is filled with a 

magnetic nanofluid and a non-uniform magnetic field distribution which depends only 

on the radial coordinate r is generated inside the gap, as shown in figure 5.5. The 

magnetic nanofluid is expected to behave like a perfect Newtonian fluid in both the 

absence and in the presence of the magnetic field. Basically, the magnetic field does not 

modify the fluid viscosity η further than the changes expected for the rotational 

viscosity [Shliomis, 2001]. The fluid film pressure will be the combination of 

hydrodynamic and magnetic forces. The latter offers the advantage of manipulability by 

the externally applied magnetic field.  

The contact schematically presented in Figure 5.4 will be theoretically modeled 

in this work using the Reynolds modified theory for magnetic nanofluids. In agreement 

with equation (3.16), the magnetic body forces acting on the magnetic nanofluid in the 
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presence of a magnetic field distribution whose strength depends only on the radial 

coordinate are given by 

 

)(ˆ)(0 rHrHMf rrm
∂= μ                                          (5.3) 

 

where m0 = 4px10-7 T/A·m is the vacuum permeability, M(H) is the fluid magnetization 

and H(r) is the magnetic field strength at a distance r from the contact centre.  

In agreement to equation (3.24), the appropriate Navier-Stokes equation under the 

lubrication approximation to describe this problem is 

 

)()(),( 0
2 rHHMVrp rrzr ∂+∂=∂ μηθ                             (5.4) 

 

and 

 

θθ ηθ Vrp
r z

22),(1
∂=∂                                       (5.5) 

 

The result of integrating equations (5.4) and (5.5) through the lubricant film (z 

direction) under no-slip conditions on the surfaces are the expressions for the fluid 

velocity inside the contact given in equations (5.6) and (5.7). 

 

[ ][ ]hzzrHHMrpV rrr −∂−∂= 2
0 )()(),(

2
1 μθ
η

                          (5.6) 
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h

zrhzzrp
r

V Ω
+−∂= 2),(

2
1 θ
η θθ                                     (5.7) 

 

In equations (5.6) and (5.7), h(r,q) is the thickness of the fluid film separating 

the contact surfaces. For this contact  

 

0cos),( hrrh += θεθ                                             (5.8) 
 

where  
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Rhh /)( min0 −=ε                                             (5.9) 
 

quantifies the plate misalignment, R is the plate radius, h0 is the height at the midpoint. 

Finally, in order to find the Reynolds equation to describe our problem, the 

continuity equation must be integrated through the fluid film using equations (5.6) and 

(5.7).  

 

[ ] [ ] [ ])()(),(6),(1),( 0
333 rHHMrhrhrrph

r
rprh rrrr ∂∂+∂Ω=∂∂+∂∂ μθηθθ θθθ    (5.10) 

 

Here, p(r,q) represents the total fluid manometric pressure which includes the 

hydrodynamic and magnetic forces contributions. This may be mathematically 

expressed as 

( ) ( ) ( )rprprp mH += θθ ,,                                         (5.11) 

 

Here, ( )θ,rpH  and ( )rpm  represent the pressure in the fluid film generated due to 

hydrodynamic and magnetic forces, respectively. The latter can be easily found by 

integrating equation (5.10) under static conditions (W=0). Assuming that the contact is 

open to the atmosphere at the edge of the fluid film the total pressure must satisfy that 

 

1( , ) 0p R θ =                                                   (5.12) 

 

where R1 is the radius at the edge of the fluid film. It can be obtained that 

 

∫=
r

R
m drrHHMrp

1

)()()( 0μ                                       (5.13) 

 

Introducing equations (5.11) and (5.13) in equation (5.10), the latter reduces to 

 

 [ ] [ ] ),(6),(1),( 33 θηθθ θθθ rhrrph
r

rprh HHrr ∂Ω=∂∂+∂∂        (5.14) 
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The pressure ( )θ,rpH  can be determined solving equation (5.14) using finite 

differences, as was explained in section 4.2.3. For the results obtained in Chapter Four it 

is expected that a portion of the fluid film will cavitate. As the total fluid manometric 

pressure is not allowed to take negative values, the cavitation condition can be 

expressed as 

 

( ) ( )θθ ,, rprp mH −=                                        (5.15) 

 

Equation (5.15) implies that hydrodynamic and magnetic body forces are 

coupled inside the contact due to the fluid cavitation. In agreement with equation (5.13), 

to ensure that all the magnetic pressure on the fluid film is positive, the film must cover 

a radius such that, at the edge of the film, the magnetic field is lower than at any point 

inside of it. In agreement with the magnetic field distribution shown in Figure 5.5, this 

is achieved approximately for radius larger than 12 mm, it is 2 mm out from the inner 

surface (see Figure 5.4). Following this criteria, a volume of 20 ml was placed, centered 

at the contact. The hydrodynamic pressure ( )θ,rpH  is expected to be generated only 

inside of the inner contact of radius R=10 mm. Then it can be assumed that  

 

( ), 0Hp R θ =                                          (5.16) 

 
 
5.4 Results 
 
 
5.4.1 Load capacity vs. angular speed 
 
 
The load capacity of the contact is shown in Figure 5.6 as function of the angular speed 

of the upper surface for a central film thickness h0 = 38mm. It is expected that all the 

hydrodynamic lubrication occurs inside of the gap formed between the inner surface of 

the upper plate and the lower surface. Then the pressure in the part of the fluid film 

contained in the furrow can be considered of purely magnetic origin. 

Experimental results and theoretical calculations are shown together. The load 

capacity predicted by Reynolds theory is larger than the measured value during the 

experiments carried out in the magnetorheological device. Despite the quantitative 

difference between the results from the theoretical model and the experiments, 
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functional similarities can be observed. In both cases, the load capacity remains constant 

for low values of the angular speed W. For larger values of W, the load capacity suffer a 

non-negligible increment, which is evidence of appearance of hydrodynamic forces in 

the fluid film. In the inset of Figure 5.6, the pressure distributions are shown for three 

values of angular speed: 0.6, 22 and 113 rad/s, when the maximum magnetic field 

strength was set to approximately 88.5 kA/m. For the lowest speed, the total pressure is 

due purely to the magnetic body forces on the fluid. Like the magnetic field distribution, 

the pressure distribution is symmetric in the radial coordinate. The hydrodynamic forces 

start to contribute to the total pressure in an asymmetric way with respect to the tilt axis 

as the angular speed increases, until cavitation appears, as shown in Figure 5.6 in the 

pressure distributions corresponding to 22 and 113 rad/s. Numerical simulations reveal 

that a load capacity increase occurs only when the maximum hydrodynamic pressure 

( )θ,rpH  overcomes the maximum of the magnetic pressure distribution since only then 

is cavitation achieved in the diverging wedge-like region of the geometry so that a 

noticeable increment in the load capacity is observed. The cavitation region reaches its 

maximum extension at the highest speed. 
 

 
Figure 5.6 Load capacity in contact as function of the angular speed of the upper surface. 
Experimental and theoretical results are shown for a viscosity of 200 mPa·s and a 
magnetic field strength of 88.5 kA/m. Reynolds theory was solved assuming a central 
film thickness of 38 mm and ε = 1.75 mm. 
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5.4.2 Load capacity vs. fluid viscosity 
 
 
Once we have probed that hydrodynamic forces may appear on the lubricant film of the 

magnetorheological geometry when the angular speed becomes large enough, we can 

investigate the influence of other lubrication parameters. We studied in Chapter 4 that 

hydrodynamic forces are proportional to the fluid viscosity, as mathematically 

expressed in equation (4.27). Here we will study the influence of the magnetic nanofluid 

viscosity in the presence of a magnetic field. Figure 5.7 shows the load capacity for 

three fluid viscosities 46, 200 and 560 mPa·s with a central film thickness h0 = 38 mm.  
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Figure 5.7. Load capacity for fluid viscosities of 46, 200 and 560 mPa·s and magnetic 
field of 88.5 kA/m. The solid lines are the theoretical calculations obtained from 
Reynolds theory, assuming a central film thickness of 38 mm and ε = 1.75 mm. 
 
 
Again, it is observed that the load capacity remains constant at low angular speeds at a 

value independent of the fluid viscosity, as expected because in this range of speeds the 

total load capacity is provided by the magnetic body forces that depend only on the 

magnetic field strength and the magnetic properties of the fluid, which are very similar 

for all the fluid viscosities. The influence of the fluid viscosity can be appreciated as 

soon as the total load capacity starts to increase at larger speeds. The larger the fluid 

viscosity, the lower of the angular speed at which the load capacity starts increasing. 

Actually, in agreement to the Reynolds equation (5.14) hydrodynamic forces depend on 
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the product of the angular speed and the fluid viscosity. This can be observed in Figure 

5.8, as the load capacity curves for different fluid viscosities collapse when they are 

plotted as function of the parameter ηW. 
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Figure 5.8. Load capacity as function of the parameter ηW for fluid viscosities of 
(squares) 46, (circles) 200 and (triangles) 560 mPa·s and magnetic field with strength of 
88.5 kA/m. The solid line is the theoretical calculation obtained from Reynolds theory, 
assuming a central film thickness of 38 mm and ε = 1.75 mm. 
 
 

 
 
5.4.3 Load capacity vs. film thickness 
 
 

The experimental equipment used in this work did not allow the surface misalignment 

represented by the parameter ε to be changed. This is not a real limitation in our study, 

since, in agreement with hydrodynamic lubrication theory, the influence of the film 

thickness on the hydrodynamic forces is represented by the ratio between the surface 

misalignment and the central film thickness εR/h0, as concluded in Chapter 4. Equation 

(4.28) shows that the strength of the hydrodynamic force acting on the contact increases 

with the value of the parameter εR/h0. The latter can be changed in both ways, either 

changing the plate misalignment ε  or the central thickness of the fluid film h0. The 
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experimental set-up used in this work does allow the latter to be modified. In figure 5.9, 

the load capacity is shown as a function of the angular speed for central film thicknesses 

of 38, 48, 58 and 68 mm, corresponding to values of εR/h0 =0.046, 0,036, 0.03 and 

0.025, respectively. In this case, the contact was lubricated using a magnetic nanofluid 

with Newtonian viscosity of 560 mPa·s and the maximum magnetic field distribution of 

88.5 kA/m was used. If the volume of magnetic nanofluid fluid inside is fixed, the area 

of the contact covered by the fluid decreases inversely proportionally with the central 

film thickness. In agreement with equation (5.13), the previously-described changes of 

area modify the contribution of the magnetic pressure to the total load capacity. To 

solve this problem, the load capacity shown in Figure 5.9 was normalized to value of 

the plateau obtained at low angular speeds. As previously discussed, in agreement with 

hydrodynamic lubrication theory, the hydrodynamic forces become stronger as the 

value of εR/h0 increases. This fact can be observed in two ways, in the lower speed 

needed to observe a contribution of hydrodynamic forces to the load capacity for larger 

values of εR/h0,  and in the larger load capacities obtained for larger values of εR/h0. 
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Figure 5.9. Load capacity normalized to its value in the initial plateau as function of the 
angular speed. The curves correspond to central film thickness of (squares) 38, (circles) 
48, (up triangles) 58 and (down triangles) 68 mm. 
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5.4.4 Load capacity vs. field magnetic strength 
 
 

The magnetic field strength is the externally controlled variable of interest in this work. 

It is expected to control the strength of the magnetic body forces on the fluid 

independent of the lubrication parameters, fluid viscosity, angular speed and separation 

between surfaces. The load capacity is shown as function of the angular speed for 

different magnetic field strengths in Figures 5.10, 5.11 and 5.12, for fluid viscosities of 

46, 200 and 560 mPa·s. The load capacity for low speeds increases with the magnetic 

field strength equally for all the fluid viscosities. This fact is better observed in Figure 

5.13, where this load capacity is shown as function of the magnetic field for the three 

fluid viscosities. The load increases linearly until the fluids approach the magnetic 

saturation and the rate of increase becomes lower.  

As the magnetic body forces are enhanced by increasing the magnetic field 

strength inside the contact, the hydrodynamic pressure required to produce cavitation in 

the fluid film becomes larger. Thus, the presence of the hydrodynamic forces becomes 

non-negligible at higher speeds as the magnetic field strength is increased. This can be 

observed in the results for all the fluid viscosities studied in this work. The fluid 

viscosity enhances the hydrodynamic forces so that, for the same magnetic field 

strength, the increase in the load capacity is seen at lower values of angular speed for 

higher fluid viscosities. At high angular speeds the contribution of the magnetic field 

strength becomes less important so the curves for different values of magnetic field tend 

to converge. This is observed clearly in Figure 5.12, where hydrodynamic forces are 

stronger compared to the results shown in Figures 5.10 and 5.11, due to higher fluid 

viscosity. This fact is observed in both, theoretical and experimental results. The 

combined action of hydrodynamic and magnetic body forces is observed for 

intermediate angular speeds where an enhancement of the load capacity with the 

increment of the strength of the magnetic field is clear. 
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Figure 5.10. Load capacity of the contact lubricated with a magnetic nanofluid of 46 
mPa·s of viscosity in the presence of magnetic fields of (squares) 88 and (circles) 177. 
The solid lines are the theoretical calculations obtained from Reynolds theory, assuming 
a central film thickness of 20 mm and ε = 1.75 mm. 

0,1 1 10 100
0,1

1

10

 
 

F N
 (N

)

Ω (rad/s)
 

Figure 5.11. Load capacity of the contact lubricated with a magnetic nanofluid of 200 
mPa·s of viscosity in the presence of magnetic fields of (squares) 88, (circles) 177 and 
(triangles) 885 kA/m. The solid lines are the theoretical calculations obtained from 
Reynolds theory, assuming a central film thickness of 20 mm and ε = 1.75 mm. 
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Figure 5.12. Load capacity of the contact lubricated with a magnetic nanofluid of 560 
mPa·s of viscosity in the presence of magnetic fields of (squares) 88, (circles) 177 and 
(triangles) 885 kA/m. The solid Lines are the theoretical calculations obtained from 
Reynolds theory, assuming a central film thickness of 20 mm and ε = 1.75 mm. 
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Figure 5.13. Load capacity provided entirely for the magnetic body forces on the fluid is 
represented here as function of the magnetic field strength for fluid viscosities of 
(squares) 46, 200 and 560 mPa·s. 
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Again, deviations are observed between values predicted from theory and values 

obtained in experiments. The agreement is the best at low angular speeds, where only 

the magnetic body forces provide the load capacity. Once the cavitated region in the 

fluid film has reached its maximum extension the theory predicts a log-log linear 

relation between the load capacity and the angular speed. This behavior is not shared by 

the experimental data, where a more complex behavior is observed. However, 

theoretical and experimental results agree in the fact that magnetic body forces improve 

the performance of the contact increasing its load capacity.  

 

5.4.5 Control of friction in the contact 
 
 
It this subsection, the effects of the magnetic body forces on the friction generated in the 

contact during operation is analyzed. Using the calculated and measured values of the 

torque on the upper plate, the friction coefficient on the contact was calculated using 

equation (4.34).  

Firstly, the rheological behavior of the magnetic nanofluids used in this work in 

the presence of a magnetic field was explored using the results shown in Figure 5.14, 

where Stribeck-like curves are presented for different values of magnetic field strength 

and fluid viscosity. A variant of the Gumbel number defined in equation (4.32) is used 

here. We define a modified Gumbel number Gu*, as  

 

0

*
h
RGuGu =                                                  (5.17) 

 

From the definition of the friction coefficient (equation (4.34)), the Gumbel 

number and the torque measured in a parallel plates rheometer (equation (4.29)), we 

have  
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In the geometry used for this work, the surfaces are not parallel and a small 

misalignment exists, such as for a central film thickness h0 = 38 mm we have that 

εR/h0=0.046. In agreement with the results shown in Figure 4.3, the deviation expected 
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for the values of the Couette torque for misaligned and perfectly aligned surfaces is 

negligible for this value of the parameter εR/h0, hence equation (5.18) must hold. The 

latter is represented in Figure 5.14 as a dashed line. Nicely, it can be observed that the 

points obtained for the magnetic nanofluid in shear flow experiments fall close to this 

line, satisfying a Newtonian behavior for the range of magnetic field strength covered in 

this work. 
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Figure 5.14. Experimental Stribeck curves where friction coefficient is shown as 
function of the modified Gumbel number. The experimental results correspond to three 
values of fluid viscosity; 46 mPa s (closed symbols), 200 mPa s (open symbols) and 560 
mPa s (crossed symbols), for several magnetic field distributions; 88.5 kA/m (squares), 
177 kA/m (circles), 354 kA/m (up triangles), 531 kA/m (down triangles), 708 kA/m 
(diamonds), and 885 kA/m (left triangles). Dashed line corresponds to predictions using 
classical rheology of Newtonian fluids under parallel plates ( *Gu=μ ).  
 
 

Secondly, it was shown theoretically in Chapter 4 that, for a contact lubricated 

with a simple Newtonian fluid and fixed film thickness, the friction on the contact 

depends solely on the product of the surface speed and the fluid viscosity (see equation 

(4.35)). However, in the case of magnetic nanofluids, a wide range of friction 

coefficients are allowed at a given Ωη  value, depending on the applied magnetic field 

strength, as shown in Figure 5.15. As observed, friction can be reduced by one order of 
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magnitude by increasing the external magnetic field applied. Theoretical predictions and 

experimental results are not quantitatively in agreement, but both agree in the reduction 

of friction in the contact due to a magnetic field. Theoretical predictions obtained from 

Reynolds lubrication equation satisfactorily capture trends at low Ωη  where, as shown 

in the previous subsection, the load capacity is mostly due to the magnetic forces in the 

fluid film. However, deviations between theory and experiment appear at large Ωη  

values, possibly due to the simple condition used to predict cavitation. Cavitation plays 

a very important role, because, as shown in Figure 5.5, the zone cavitated in agreement 

with Reynolds theory may occupy almost the half of the contact surface. Nevertheless, 

the results show that the friction of the contact can be externally controlled by the action 

of the magnetic field distribution when the contact is lubricated with a magnetic 

nanofluid. 
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Figure. 5.15. Dependence of the friction coefficient, μ  on the magnetic field strength 
H  for Ωη = 0.878, 1.202, 1.646, 2.32, 3.2, 4.44, and 6.3 Pa. Lines represent theoretical 
predictions from full numerical solution of ferrohydrodynamic Reynolds equation. A 
good agreement with experimental results is found in the case of low Ωη  values where 
cavitation is not present. 
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5.5 Chapter conclusion 
 
 
The magnetorheological device used in this work behaved like a lubricated contact in 

which the small misalignment between the surfaces and the non-uniform magnetic field 

distribution applied inside it, produced, respectively, the appearance of hydrodynamic 

and magnetic body forces on the fluid film. On the one hand, hydrodynamic forces 

respond to the common lubrication parameters: relative surface speed, fluid viscosity 

and fluid film thickness. On the other hand, the magnetic forces respond to the magnetic 

properties of the fluid and to the strength of the applied field. In agreement with 

theoretical calculations, cavitation appears during operation of the contact, coupling the 

two kinds of forces. The load capacity as function of the parameter ηΩ shows three 

different regions. At low values of ηΩ, where no cavitation takes place in fluid film, the 

strength of the magnetic body force determines the total load capacity of the contact. At 

intermediate values of ηΩ, cavitation appears in a portion of the fluid film and only then, 

the hydrodynamic forces become noticeable in the total load capacity.  At high values of 

ηΩ, the contribution of the magnetic body force becomes negligible compared to the 

hydrodynamic force. 

Experimental and theoretical results agree in the fact that tuning the strength of 

the applied magnetic field in the range covered in this work allows controlling the 

friction in the contact by at least in one order of magnitude. 
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Chapter 6: Control of starvation in a soft contact using 

magnetic nanofluids 
 

 

This chapter examines the use of magnetic nanofluids to control starvation in lubricated 

contacts. Starvation in a ball-plate contact is experimentally studied under sliding-

rolling conditions using a Mini Traction Machine (MTM). Friction is measured and the 

experimental results are presented in the form of Stribeck curves. The volume of 

lubricant is controlled in such a way that no free bulk oil is present in the vicinity of the 

contact. An abrupt change in the slope of the Stribeck curve in the Hydrodynamic 

Lubrication zone is interpreted as the onset of starvation. It is then shown that the use of 

magnetic nanofluids in the presence of a magnetic field distribution can change the 

conditions at which this onset of starvation occurs. Different magnetic field 

distributions are tested for different values of load and fluid viscosity. It is proposed 

that magnetic nanofluids in conjunction with a suitably-positioned magnetic field can 

be used to promote replenishment and thus control and reduce lubricant starvation. 
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6.1 Introduction 
 

The surfaces of a contact working in the hydrodynamic lubrication regime are fully 

separated by a pressurized fluid film. Under flooded conditions, the Reynolds 

lubrication theory represents a powerful tool to predict the thickness and build-up 

pressure distribution of the film as function of the lubrication parameters, relative 

surfaces speed, fluid viscosity and load capacity.  This way, many theoretical 

predictions have been developed for different contact geometries, including contacts 

composed of surfaces that suffer deformations due to the built-up pressure at the contact 

under normal conditions of operation. When the latter occurs and pressure is not high 

enough to provoke a change on lubricant viscosity at the contact inlet, the contact 

operates in the so called soft elasto-hydrodynamic lubrication regime. 

A problem associated to contacts operating in this regime is the appearance of 

starvation. A contact goes from operating from flooded to starved conditions when the 

amount of free bulk lubricant in the inlet of the contact is not enough to build a lubricant 

film with the thickness expected under flooded conditions. Previous works have 

employed optical techniques to study starvation and thus to predict whether a contact is 

operating under flooded or starved conditions [Chiu, 1974; Guangteng, 1992; Jianhai, 

1992; Cann, 2004; Yin, 2009]. Apart from this, it is also important to develop methods 

to improve the natural replenishment mechanism when the amount of oil needed to 

lubricate the contact is restricted, and hence prevent or limit starvation. The best way to 

do this is to find a method that allows some control via an external parameter, 

independent of other conventional lubrication parameters.  

In this chapter, the frictional properties of a soft ball on plate contact were 

measured under restricted lubricant supply conditions. The use of magnetic nanofluids 

is proposed as a novel method to improve the replenishment of lubricant to the contact 

in the absence of free bulk lubricant [Andablo-Reyes, 2010-2]. 
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6.2 Problem definition 
 

In a point contact working in the soft elasto-hydrodynamic lubrication regime, the 

pressure in the lubricant film, starts to build-up at a distance xB from the contact centre 

as illustrated in Figure 6.1. That position corresponds to the contact inlet. Commonly, 

when applying Reynolds lubrication theory it is supposed that the inlet distance is much 

larger than the radius of the solid-solid dry contact and the properties of the lubricant 

film is then independent of the inlet position. If this is satisfied, it is expected that the 

amount of lubricant around the contact will always sufficient to build the required 

lubricant film, and then the contact works under flooded conditions. Actually, 

experiments carried out in a ball-plate contact reveal that the minimum distance Sf 

between the inlet and dry contact radius aH required to achieve a flooded condition is  
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where hcf is the central film thickness under flooded conditions, R is the ball radius and  
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is the dry contact radius from Hertz theory. In equation (6.2), FN is the contact load 

capacity, R’ is the reduced radius in the entrainment direction and E’ is the reduced 

elastic modulus. The latter are given by 21 /1/1'/1 xx RRR +=  and 

( ) ( )[ ]2
2
21

2
1 /1/1'/2 EEE νν −+−= , where Rx1, Rx2, ν1, ν2, E1 and E2 represent the radii, 

the Poisson’s ratios and Young moduli of the contacting bodies respectively. 

Theoretical calculations have been used to produce equations such as that given in 

equation (2.33) to predict the central film thickness hcf.  This quantity is found to depend 

on the operating conditions, load capacity, lubricant viscosity and the relative speed of 

the contacting surfaces. 
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Figure 6.1. Schematic representation of a soft ball-plate contact. The contact inlet is 
placed a distant S = xB-aH from the edge of the flat contact where xB is the position of 
the inlet and aH is the radius of the dry contact.  
 

 

When the amount of lubricant around the contact is restricted, the condition 

mathematically expressed in equation (6.1) may not be satisfied and hence flooded 

hydrodynamic lubrication will not necessarily be achieved. In that case, the contact will 

operate in a regime known as starved elasto-hydrodynamic lubrication, where the 

functional dependence of the film thickness on the lubrication parameters is different 

and less than that expected for flooded conditions. Once the contact has started to 

operate in a starved soft elasto-hydrodynamic regime, the central film thickness hcs 

depends on the height of the film hB at the inlet position. Experimental evidence 

suggests that hcs and hcf are related, as shown in equation (6.3) [Cann, 2004]. 
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In equation (6.3) η is the fluid viscosity, U is the relative contact surfaces speed, 

Ha is the dry Hertz contact and ss is the fluid-air surface tension. The latter plays an 

important role in the replenishment mechanism of oil expelled to the sides of the contact 

and returned to the contact inlet. The higher lubricant-air surface tension, the larger 

amount of oil returned to the contact inlet. As soon as the contact operates under starved 

conditions the thickness of the lubricant film decreases respect to its value of flooded 

conditions as the factor ηU increases. The last mentioned is basically the problem of 

starvation, and results in the friction in the contact becoming larger than the value 

expected under flooded conditions. 

Despite efforts to develop empirical and theoretical models to predict whether a 

rolling-sliding contact is operating under flooded or starved conditions, no mechanisms 

have been proposed to stop or reduce the degree of starvation apart from supplying oil 

directly to the contact. In the present study, the use of magnetic nanofluids as lubricants 

in the presence of a non-uniform magnetic field is proposed as a route for starvation 

reduction. Theoretical studies suggest that, under the proper conditions, magnetic fluids 

improve the contact load capacity and help preventing leakage at high operating speed 

or under the action of gravity [Chandra, 1993; Shah, 2004; Bali, 2005]. A successful 

application of this kind of fluid is the so-called magnetic seal, where the fluid is used to 

separate two plates that are maintained at different operating pressures [Rosenweig, 

1997; Chandra, 1993; Shah, 2004; Bali, 2005; Ravaud, 2010]. In this, the fluid is 

externally manipulated by the application of a magnetic field distribution and confined 

in a desired position. The same mechanism can also be applied, in principle, to feed 

lubricant back into the contact using external forces when no free bulk oil is available. 

Commonly, magnetic nanofluids are opaque media and, as a consequence, 

optical techniques cannot be used to determine the film thickness of lubricant in the 

contact. An indirect method to obtain information of the performance of this 

replenishment mechanism consists of measuring the friction force in the contact under 

different running conditions. This way, the performance of the lubricating forces 

(magnetic and hydrodynamic) is evaluated under different operation conditions of 

magnetic field strength and distribution, fluid viscosity, entrainment speed and applied 

load. 
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6.3 Experimental method 

 
In this work, friction measurements were carried out using a Mini Traction Machine 

(MTM), which was adapted to study lubrication using magnetic fluids. In this apparatus, 

a ball is loaded and rotated against a flat surface of a rotating disc in the presence of a 

lubricant. The motion of both parts can be controlled independently to achieve any 

desired sliding-rolling speed combination and the ball shaft is inclined to minimize spin 

in the contact. Friction is measured by a load cell attached to the ball motor and, in the 

MTM, is determined by taking a pair of measurements at the same slide-roll ratio but 

with the ball moving respectively faster and slower than the disc. These two values are 

then differenced to eliminate any zero load offset in the load cell.  

The contact studied was that of a PDMS elastomer ball (SylgardTM 184, supplied 

by Dow Corning) against an aluminium disc. A mould having a spherical cavity of 19 

mm diameter was used to fabricate the elastic balls. The Sylgard components were 

mixed, degassed in a vacuum chamber, placed inside the mould and cured at a 

temperature of 60 ºC for a period of one hour in an oven. From this, bubble-free, 

elastomer spheres with a non-deformed radius of 19 mm and Young modulus of 3 MPa 

were prepared. The MTM aluminium disc had Young’s modulus 69 GPa. The Poisson’s 

ratio of the elastomer and aluminium were taken as 0.3 and 0.5 respectively, so the 

reduced elastic modulus was 8 MPa.  

All the tests were carried out at room temperature at a slide-roll ratio SRR = 0.50. 

Friction was measured over an entrainment speed range of U = 0.005 to 1 m/s, at 

applied loads of W = 3, 5 and 7 N.  

A radially-symmetric magnetic field distribution centered at the point contact 

was achieved by placing circular permanent magnets under the aluminium disc. The 

strength and shape of the distribution was easily changed by varying the number of 

magnets in the arrangement, as shown in Figure 6.2. The diameter of the magnets was 6 

mm, which fully covers the largest Hertz contact radius, which has a value of 1.3 mm at 

a load of 7 N. The magnetic field distributions corresponding to the different magnet 

configurations are labeled as “maximum”, “medium” and “minimum”. The magnetic 

field density reached at the centre of the contact was 150, 50 and 25 mT respectively.  

Magnetic nanofluids used here were provided by FerroTec, Co. and all have the same 

( )HM  superparamagnetic Langevin type dependence (saturation magnetization 24.3 ± 
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0.7 kA/m), but different Newtonian viscosities of 46, 200 and 560 mPa·s. The carrier 

fluids are synthetic ester and synthetic hydrocarbon, for the first and the last two 

magnetic nanofluids respectively. Also, density and surface tension is approximately the 

same for all the fluids. With the last, we ensure that the natural replenishment 

mechanism is independent of the fluid viscosity. Considering a particle size log-normal 

distribution and using the Langevin function, a value of 9 nm was obtained for the 

average particle diameter, with a polydispersity around of 20 % [Chantrell, 1978]. 

Particle volume fraction is around 5.5 vol % for the three lubricants, assuming a 

saturation magnetization for bulk magnetite of 447 kA/m. A rheological 

characterization of the magnetic nanofluids was performed.  Neither shear-thinning nor 

viscoelasticity were observed in the range of shear rates of interest. The fluid 

characterization has been previously explained in section 5.2. 

For every test, one drop of 500 μL of ferrofluid was deposited in the vicinity of 

the contact at rest conditions. As soon as the oil was placed around the contact it was 

trapped by the magnetic field. The amount of oil is then restricted to the oil trapped by 

the magnetic field.  

 

 
Figure 6.2. Schematic representation of the adapted Mini Traction Machine. The three 
magnet set-ups are represented. 
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6.4. Results 
 

In both fully flooded and starved conditions, entrainment speed U, fluid viscosity η, and 

load capacity W control the contact friction. Therefore each of these parameters will be 

studied, introducing at the same time the magnetic field as a controllable external 

parameter. 

 

6.4.1 Role of the entrainment speed on the starvation 

 

The scaling number Uη determines the film thickness and thus the regime in which the 

contact operates. Initially the fluid viscosity was held constant and the effect of speed 

on lubrication studied. Figure 6.3 shows the friction coefficient versus the entrainment 

speed U, for a viscosity of 200 mPa·s, a load of 7 N and the maximum magnetic field 

distribution. Mixed and hydrodynamic lubrication regions are shown in the range of 

entrainment speed swept in the figure.  

Despite the limitation in lubricant supply, this curve shows similar behaviour of 

a contact under fully flooded conditions for entrainment speeds up to approximately 0.6 

m/s. The log-log slope in the hydrodynamic regime is 0.4 ± 0.07. This value is similar to 

the value of 0.33, calculated by considering a simple Couette flow, and assuming that 

the fully flooded film thickness is proportional to U0.67 [de Vicente, 2005]. Moreover, 

this result is different from that obtained by solving Reynolds equation under the 

assumption of fully flooded condition given in equation (2.34), as shown in Figure 6.3 

in which this model is represented as a solid line. The slope predicted by the model is 

clearly larger than the slope of the experimental data. However, the experimental and 

theoretical values for the friction coefficient m  are similar until a dramatic change in the 

slope of the experimental curve occurs. This change occurs when the speed becomes 

larger than 0.6 m/s (pointed out by a vertical dashed line in Figure 6.3); this is believed 

to be the critical point that divides full lubrication and starved lubrication and to result 

from the lack of lubricant to achieve the fully flooded film thickness. 

In agreement to equation (6.3), the oil film thickness is found to be proportional 

to U-1.67 when the contact operates under starved conditions. If the same assumption of a 

simple Couette flow is taken, the resulting friction coefficient is proportional to U2. 

However, the slope found for these measurements is larger, at about 5.9. In addition to 
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the previous mechanisms proposed for rolling contacts, in rolling-sliding conditions 

both the disc and the ball are in motion. Due to the movement of the disc, centrifugal 

forces act on the lubricant, whose magnitude depends on the disc speed and the position 

of the contact respect to the spinning centre and also on the fluid density. This force is 

neglected by Reynolds theory, under the assumption of fully flooded conditions. 

However, when the amounts of oil are restricted and entrainment speed is large enough 

they play an important role pulling the lubricant out from the Hertz contact to the rim of 

the plate, hindering the replenishment mechanism and increasing the starvation. 
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Figure 6.3. Friction coefficient m as function of the entrainment speed U for a 200 mPa·s 
magnetic nanofluid. Mixed and hydrodynamic lubrication regions are shown. The load 
is 7 N and the maximum magnetic field distribution is applied. A dotted line divides the 
fully and the starved hydrodynamic lubrication regimes. The solid line corresponds to 
the model obtained by solving Reynolds equation under the assumption of fully flooded 
conditions. 
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6.4.2 Role of the fluid viscosity on the starvation 

 

The viscosity is another important parameter governing the performance of the lubricant 

in the contact. Results for fluid viscosities of η = 46, 200 and 560 mPa·s are shown in 

Figure 6.4. As expected from hydrodynamic lubrication theory, the higher the viscosity, 

the larger the friction coefficient. The critical point between fully flooded and starved 

lubrication is reached at lower speeds for the higher viscosity, as shown by the division 

lines inserted in the figure. This is in agreement with observations obtained from film 

thickness measurements by other authors, where it was found that the fluid film 

starvation increases with fluid viscosity [Chiu, 1974; Guangteng, 1992; Jianhai, 1992; 

Cann, 2004]. Figure 6.5 shows the friction coefficient plotted as function of the product 

of the entrainment speed and the fluid viscosity Uη. All the curves collapse to a single 

one in the fully lubricated regime. However, the same effect is not observed in the 

starved lubrication regime since for different fluid viscosities, the critical point occurs at 

a different value of the parameter Uη.  
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Figure 6.4. Friction coefficient m as function of the entrainment speed U for three 
magnetic nanofluid viscosities (triangles) 46, (circles) 200 and (squares) 560 mPa·s in 
the presence of the maximum field strength and a 7 N applied load. The transition 
between the fully flooded and the starved lubrication regime was observed for 200 
mPa·s (dotted line) and 560 mPa·s (dashed line). Contrarily, starvation was not observed 
for the lowest viscosity ferrofluid investigated.  
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Figure 6.5. Friction coefficient μ vs. the parameter Uη for (squares) 46, (circles) 200 
and (triangles) 560 mPa·s magnetic nanofluids in the presence of the maximum 
magnetic field at 7 N load. 

 

 

6.4.3 Role of the load capacity on the starvation 

 

Figure 5 shows the friction coefficient as function of the entrainment speed for a 200 

mPa·s fluid. Loads of 3, 5 and 7 N were tested at the maximum magnetic field 

distribution. Similarly to the case of fully flooded conditions (see equation (2.34)), here 

the friction coefficient decreases with the applied load. For all the loads investigated, 

the transition point occurs at U = 0.8 m/s, which is observed as an increment of the 

slope of the curves of friction coefficient. A dashed line is used to separate the fully 

flooded and starved lubrication regimes. The values of the slopes after the transition do 

not differ significantly for different values of W. Hence, the applied load has no 

significant influence on the performance in this starved regime. 
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Figure 6.6. 200 mPa·s magnetic nanofluid at three different loads (triangles) 3, (circles) 
5 and (squares) 7 N, in the presence of the maximum magnetic field. The dotted line 
corresponds to the transition point between the fully to the starved lubrication regime. 
The transition occurs at the same speed for all the curves.  
 

 

 

6.4.4 Role of magnetic field distribution on the starvation 

 

Once the role of the lubrication parameters (U, η and FN) in controlling the occurrence 

and development of starvation in the contact has been established, it is important to 

study the influence of the parameter proposed here to control starvation, the magnetic 

field. 

The lubricants were chosen so that, regardless the fluid viscosity, the magnetic 

response was approximately the same. This means that the magnetic lubrication forces 

are completely controlled by the strength and shape of the external magnetic field 

distribution, with no variation due to mechanical properties (e.g. density, surface 

tension).  
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Magnetic body forces appear in the magnetic fluid when a magnetic field 

distribution is applied and are given by HHM )(0μ− , where μ0 is the vacuum 

permeability, M(H) the functional fluid magnetization and H the magnetic field strength. 

Thus these forces depend on the magnetic response of the fluid and the shape and 

strength of the magnetic field distribution. Due to magnetic forces, the pressure on the 

fluid is increased, and the main effect of this is the confinement of the fluid around the 

region of maximum field, i.e. in this case around the centre of the contact. All the 

results shown in the previous subsections were carried out at the maximum field 

distribution. The effect of decreasing the strength of the magnetic field is now explored.  

In Figure 6.7, Stribeck curves for a fluid viscosity of 46 mPa·s are shown for the 

three different magnetic field distributions used in this work. As shown above, the load 

applied did not significantly affect the transition from fully flooded to starved elasto-

hydrodynamic lubrication regime. So a value of 7 N was fixed. As observed in Figure 

6.7, there was not any significant difference between applying the minimum and 

medium magnetic field distribution. However, when the maximum magnetic field was 

applied, the contact remained working in the fully lubricated regime over the range of 

speeds studied in this work, which means that starvation was prevented by increasing 

the magnetic field. The same experimental tests are shown in Figure 6.8, now for a 

much more viscous ferrofluid. In this case, the transition point between tribological 

regimes is clearly shifted to higher speeds for higher values of magnetic field strength. 

In highly viscous magnetic nanofluids, starvation was not fully prevented even for the 

highest magnetic fields employed, in contrast to low viscosity magnetic nanofluids (see 

Figure 6.7). Summing up, higher viscosities and higher speeds require higher magnetic 

fields to prevent starvation. It is demonstrated here that the external magnetic field can 

be used as a lubricant supply control parameter, which can be tuned independently, 

without interfering with the rest of the lubrication parameters.  
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Figure 6.7. Stribeck curve for three different magnetic field distributions (triangles) 
Low, (circles) Medium and (squares) Maximum. The viscosity is 46 mPa·s and the 
applied load is fixed at 7 N. 
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Figure 6.8. Stribeck curve for three different magnetic field distributions (triangles) 
Low, (circles) Medium and (squares) Maximum. The viscosity is 200 mPa·s and the 
applied load is fixed at 7 N. 
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6.5 Chapter conclusions 
 

Starvation is a problem in many lubricated systems.  It occurs at high speeds and with 

high viscosity lubricants and is thus a problem in rolling element bearings operating at 

low temperatures.  It is especially prevalent with low elastic modulus, polymeric 

bearings where the contact is large and wetting of the surfaces by the lubricant often 

poor.  

The experimental results show that magnetic nanofluids can be used as smart 

lubricants to limit starvation in sliding-rolling contacts where the amount of lubricant is 

restricted. A non-uniform magnetic field distribution is centered on a sliding, non-

conforming contact lubricated with magnetic nanofluid. This has the effect of confining 

the fluid within the region of the contact, thus greatly reducing the total amount of 

lubricant required. Experiments show that the transition between the fully and starved 

lubrication regimes can be controlled by modifying the magnetic field distribution. 

The transition between hydrodynamic and starved regimes depends on the fluid 

viscosity and not on the applied load, at least in the range covered in the present study. 

The higher the viscosity, the lower the speed associated to the onset of starvation. 

Hence, it is shown that the higher the viscosity, the higher the magnetic field strength 

required to prevent starvation.  

 As well as helping to control starvation, it is likely that the ability to confine a 

magnetic nanofluid lubricant close to the location where lubrication is required using a 

magnetic fluids might also be desirable in situations where viscous drag losses need to 

be minimized. For example the application of magnetic fields to transmissions could 

potentially offer increased efficiency by reducing the volume of lubricant in which 

contacting surfaces are submerged. As shown in this work, if an appropriate magnetic 

field distribution is applied, very small lubricant volumes can be employed without the 

normally-associated risk of starvation.  
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Chapter 7: Summary and conclusions 
 

 

The aim of this work was to study the performance of magnetic nanofluids as lubricants 

in contacts operating in the hydrodynamic and soft elasto-hydrodynamic lubrication 

regimes. The results of this study have been divided in three chapters.  Here we present 

a brief summary of all them and their most important conclusions. 
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7.1 Hydrodynamic lubrication forces in a contact of two tilted rigid 
surfaces 
 

 

Using the Reynolds lubrication theory we studied the theoretical performance of a 

lubricated contact operating in the hydrodynamic lubrication regime. This contact 

consisted of two tilted flat circular rigid surfaces, separated by a thin film of a 

Newtonian fluid. One of the surfaces was made to rotate while the other was kept fixed, 

transmitting a torsional shearing force on the fluid film under the assumption of no slip 

at the surfaces. The shearing force resulted in the fluid passing periodically from a 

converging wedge-like zone to a diverging one in circular laminar flow inside the 

contact. This mechanism produced hydrodynamic forces that pressurized the fluid film. 

The pressure film increased in the convergent zone while in the divergent one, it 

decreased until cavitation was induced. The area of the cavitated region depended on the 

operating conditions of the contact. 

A set of reduced variables were introduced to facilitate the solution of the 

lubrication equation, which was solved numerically using a method of finite differences. 

The load capacity provided by the fluid film pressure showed a direct proportional 

relation with the product of the fluid viscosity and the angular speed of the rotating 

surface. It also increased with the surfaces misalignment and it was reciprocal to the 

central film thickness. Regression equation to describe the dependence of the load 

capacity and friction on the operation conditions of the contact were developed using 

the results for the normalized variables. Using these equations, the compromise between 

all the lubrication and geometrical parameters of the contact was summarized in a 

Stribeck curve representation. This curve depends only on the parameter describing the 

relative tilt of the contact surfaces. The theoretical Stribeck curve obtained here were in 

good agreement with experimental results available in literature for a similar contact. 

Besides the interest of this problem in lubrication, it has also interest in 

rheometry. The equations developed here may be used to determine the central film 

thickness and misalignment between the surfaces of a plate-plate rheometer, provided 

that the rest of the lubrication parameters are known or measured. 
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7.2 Hydrodynamic lubrication in a contact of tilted rotating surfaces 
 
 

A magnetorheological plate-plate rheometer was used to study the performance of a 

contact lubricated with a magnetic nanofluid. This geometry corresponds to rotating 

contact between two slightly tilted surfaces described in the previous section. Thus, in 

agreement to the theoretical results hydrodynamic forces appeared in the fluid due to the 

periodically passage of the fluid through converging and diverging wedge-like zones 

formed by the tilted surfaces. In addition, magnetic body forces were introduced in the 

fluid film due to a non-uniform magnetic field distribution applied inside the contact.  

In addition to experimental results, a theoretical description of the problem was 

carried out by solving the modified Reynolds theory for magnetic nanofluids. 

If the load capacity is represented as function of the product of the fluid 

viscosity and the angular speed ηW, the former can be located in one of three different 

regions depending on the balance of magnetic and hydrodynamic forces in the fluid film, 

which were determined, respectively, for the magnetic parameters and the value of ηW. 

In the first region, at low values of the product ηW, the load capacity depends 

only on the strength of the magnetic body forces on the fluid. In agreement with 

theoretical calculations, in this region, a plateau in the load capacity curve can be 

observed.  In this region, the pressure due to the hydrodynamic force is lower than the 

pressure resulting from the magnetic ones and cavitation is not achieved. The larger the 

magnetic field, the wider the range of ηW where the plateau is observed. Once a portion 

of the fluid film had cavitated, an increment in the load capacity was observed. In this 

region the total load capacity depends on the strength of both hydrodynamic and 

magnetic forces on the fluid. 

Finally, for low or intermediate values of the magnetic field strength and high 

values of the product ηW, hydrodynamic forces dominate over the magnetic ones, and 

the total load capacity becomes independent of the value of the strength of the applied 

magnetic field. 

Theoretical and experimental results agree in the fact that the improvement in 

the total load capacity in the contact due to the magnetic body forces appearing in the 

fluid helps decrease the friction in the contact, which can be controlled by in at least one 

order of magnitude, in agreement with the results shown in this work. 
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7.3 Control of starvation in a soft contact using magnetic nanofluids 
 

A contact works in the soft elasto-hydrodynamic lubrication when the pressure in the 

fluid film separating completely its surfaces is high enough to deform at least one of the 

contact surfaces but not to cause changes in the fluid viscosity at the inlet of the contact. 

This regime of lubrication was studied experimentally in a contact composed of a soft 

elastomeric ball loaded and rotated against a flat surface of a rigid rotating disc in the 

presence of a limited amount of a magnetic nanofluid.  A set of circular magnets 

arranged in a tower like structure was placed under the disc, centered with the contact. 

This induced a non-uniform magnetic field radial dependent distribution which confined 

the fluid around the contact. 

Due to the small amount of lubricant at the contact, starvation occurred in the 

contact at high speeds. This was observed in an abrupt change of the slope in the curves 

where the friction was represented as function of the relative surfaces speed. The 

friction coefficient increases more rapidly in a starved regime than in a fully flooded 

one. The starvation occurs because the rupture of the natural replenishment mechanism 

of lubricant to the inlet contact. 

In agreement with the observed the higher the viscosity, the lower the speed 

associated to the onset of starvation. The load capacity of the contact had no significant 

influence on this.  

Experiments showed that the transition between the fully and starved lubrication 

regimes can be controlled by modifying the magnetic field distribution. The magnetic 

forces appear to act like an extra lubricant replenishment mechanism, externally 

manipulated by the applied magnetic field. The higher the viscosity, the higher the 

magnetic field strength required to prevent starvation.  
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Capítulo 8: Resumen y conclusiones 
 

 

El objetivo de este trabajo fue estudiar el comportamiento de un fluido magnético 

empleado como lubricante en contactos que operan en los regímenes conocidos como 

lubricación hidrodinámica y lubricación elasto-hidrodinámica suave. Los resultados de 

este estudió fueron divididos en tres capítulos a lo largo de este manuscrito. Aquí se 

presenta un breve resumen de todos ellos, así como las conclusiones más importantes. 
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8.1 Fuerzas de lubricación hidrodinámica entre dos superficies 

inclinadas 
 

Empleando la teoría de lubricación de Reynolds se estudió  el funcionamiento de un 

contacto lubricado operando en el régimen de lubricación hidrodinámica. Dicho 

contacto estaba compuesto por dos superficies circulares, planas, relativamente 

inclinadas y separadas por una fina capa de un fluido Newtoniano. Al hacer rotar una de 

las superficies manteniendo la otra fija, el fluido era forzado a fluir periódicamente 

dentro del contacto, pasando de una primera zona en la cual la distancia entre 

superficies disminuía a una segunda donde las superficies se separaban. Se encontró que 

este mecanismo era capaz de generar la aparición de fuerzas de lubricación 

hidrodinámica, presurizando así la capa de fluido. En la primera zona se producía un 

aumento de presión, mientras que en la segunda la presión disminuía hasta provocar la 

aparición de cavitación en el fluido. 

Para facilitar la resolución de la ecuación de Reynolds se introdujo una serie de 

variables normalizadas. Dicha resolución se llevó a cabo mediante la utilización de un 

método numérico de diferencias finitas. Como resultado, se obtuvo la relación que 

guardan las fuerzas actuando en el contacto (torsión y capacidad de carga), así como las 

condiciones de operación impuestas sobre éste, es decir, la viscosidad del fluido, 

velocidad angular y espesor de la capa de lubricante. Finalmente, se obtuvieron las 

siguientes conclusiones: 

La capacidad de carga de la capa de fluido es directamente proporcional al 

producto de la viscosidad del fluido y la velocidad angular de la superficie en rotación; 

a su vez la capacidad de carga disminuye con la distancia entre las superficies del 

contacto y aumenta con la inclinación entre ellas.  

La curva de Stribeck, la cual resume el funcionamiento del contacto lubricado, 

depende solamente de la inclinación relativa entre las superficies del mismo. Estos 

resultados concuerdan satisfactoriamente con resultados experimentales encontrados en 

la literatura. 

Más allá del interés de este problema desde el punto de vista de la lubricación, 

las soluciones encontradas aquí tienen también aplicación en reometría. Los resultados 

obtenidos pueden ser usados para determinar la inclinación en una geometría de 

caracterización reológica del tipo  plato-plato. 
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8.2 Lubricación ferrohidrodinámica en un contacto de superficies 

inclinadas 
 

Con el objetivo de estudiar el funcionamiento de un contacto lubricado con un fluido 

magnético se realizaron experimentos de flujo en una geometría de plato-plato adaptada 

para estudios magnetoreológicos, esto es, permite aplicar un campo magnético sobre la 

muestra considerada. Esta geometría fue matemáticamente modelada como el contacto 

estudiado en la sección anterior, siendo el mismo mecanismo el encargado de introducir 

las fuerzas de lubricación en el contacto. La diferencia en este caso reside en aplicar un 

campo magnético sobre el nanofluido magnético, provocando la aparición de fuerzas 

magnéticas sobre este. 

Mediante experimentos de flujo se midieron la fuerza de cizalla en el contacto, 

así como su capacidad de carga. La representación de la última en función del producto 

de la viscosidad del fluido y la velocidad angular de la superficie en rotación, ηW, puede 

ser dividida en tres regiones, determinadas por el balance entre las fuerzas 

hidrodinámicas y magnéticas actuando en la capa de fluido magnético que separaba las 

superficies del contacto. Tras analizar éstas tres regiones se obtuvieron las siguientes 

conclusiones: 

En la primera de ellas, correspondiente a valores bajos del parámetro ηW, la 

capacidad de carga se mantenía constante a un valor que dependía solamente de la 

intensidad de las fuerzas magnéticas en la capa de fluido. De acuerdo con los resultados 

obtenidos a partir de la teoría de lubricación hidrodinámica de Reynolds, en esta región, 

la presión generada en la capa de fluido por las fuerzas de origen hidrodinámico era 

menor que la de origen magnético, por lo que no se encontró cavitación dentro del 

fluido.  

Sólo cuando aparece cavitación en una porción de la capa de fluido se encuentra 

que la fuerza hidrodinámica aumenta con respecto al parámetro ηW, determinando una 

segunda región.  Finalmente, en la tercera región para intensidades bajas o intermedias 

de campo magnético y valores altos del parámetro ηW, las fuerzas hidrodinámicas 

dominan sobre las magnéticas, siendo las primeras las que contribuyen en mayor 

medida a la capacidad de carga del contacto 
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8.3 Control de inanición en un contacto suave empleando fluidos 

magnéticos 
 

Se dice que un contacto opera en el régimen de lubricación elasto-hidrodinámica suave 

cuando la presión en la capa de fluido que separa sus superficies es lo suficientemente 

alta como para causar la deformación de al menos una de ellas, pero no tan alta como 

para causar cambios en la viscosidad del fluido a la entrada del contacto. En este trabajo 

se presentaron resultados experimentales obtenidos para un contacto compuesto de una 

bola cargada contra un plano, trabajando en el régimen de lubricación previamente 

mencionado. La cantidad de fluido magnético colocada en el contacto para lubricarlo 

fue restringida y atrapada alrededor de éste por un campo magnético producido por 

imanes circulares colocados por debajo del disco.  

A altas velocidades de operación, el contacto trabajaba en un régimen de 

lubricación de inanición de lubricante. Este fenómeno pudo ser observado en un cambio 

abrupto en la pendiente de las curvas de fricción frente a la velocidad de arrastre de 

fluido en el interior del contacto. Este cambio de régimen ocurrió debido a la ruptura del 

mecanismo de reabastecimiento de fluido a la entrada del contacto desde la salida de 

éste.   

De acuerdo a los datos experimentales obtenidos en este trabajo se pudo concluir 

que: 

El contacto empieza a trabajar en inanición a menor velocidad de arrastre para 

una viscosidad mayor del fluido. La capacidad de carga no tiene un efecto significativo 

en el valor de la velocidad previamente mencionada. 

El campo magnético aplicado al fluido dentro del contacto es capaz de aumentar 

la velocidad de transición entre los regímenes de lubricación mencionados en este 

apartado, e incluso evitar por completo que el contacto trabaje en el régimen de 

inanición. Cuanta mayor sea la viscosidad del fluido lubricando el contacto, mayor será 

la intensidad del campo magnético aplicado para evitar dicha transición.  
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Appendix I. Algorithm for numerical solution of the Reynolds 
equation 
 

 

To clarify the procedure used in this work to numerically solve the Reynolds equation, 

the code of the program written for this work and its corresponding flow diagram are 

shown in this appendix. 
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The code was written using the Visual basic platform available in the program 
Microsoft Excel. This is presented in the following: 
 
Option Explicit 
'----------------------------------------------------------------------------------- 
'----------------------------------------------------------------------------------- 
Dim nr As Integer, nt As Integer, nt2 As Integer 'number of intervals 
Dim deltar As Double, deltat As Double 'mesh size 
Dim radio As Double, hin As Double, epsilon As Double, radioi As Double, wa As 
Double 'geometry dimensions 
Dim eta As Double 
Dim angular As Double 
Dim pinicial As Double 
Dim teta() As Double, r() As Double 
Dim p() As Double, pold() As Double 
Dim h() As Double 
Dim dhdt() As Double, dhdr() As Double 
Dim A As Double, B As Double, D As Double 'dummy coeff for reynolds equation 
Dim C1() As Double, C2() As Double, C3() As Double, C4() As Double, C() As 
Double, E() As Double 'coeff for reynolds equation 
Dim pc As Double 'central pressure 
Dim pmax As Double 'maximum pressure 
Dim fin As Double 
'----------------main program----------------------------------------------------- 
Sub main() 
Call read 
Call dimensioning 
Call grid 
Call calc_gap 
Call calc_coef 
Call calc_inicial 
Call solver 
Call calc_maxp 
Call write_results 
Call fuerza_in 
End Sub 
'-----------------read input parameters------------------------------------------ 
Sub read() 
nr = Worksheets(1).Cells(2, 2) 
nt2 = Worksheets(1).Cells(4, 2) 
radio = Worksheets(1).Cells(6, 2) 
radioi = Worksheets(1).Cells(6, 5) 
hin = Worksheets(1).Cells(8, 2) 
angular = Worksheets(1).Cells(10, 2) 
epsilon = Worksheets(1).Cells(12, 2) 
eta = Worksheets(1).Cells(14, 2) 
pinicial = Worksheets(1).Cells(16, 2) 
wa = Worksheets(1).Cells(18, 2) 
wa = wa * 0.000001 
nt = 4 * nt2 
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epsilon = epsilon * 0.000001 
hin = hin * 0.000001 
End Sub 
'----------------------------------------------------------------------------------- 
Sub dimensioning() 
ReDim p(0 To nr, 0 To nt) 
ReDim pold(0 To nr, 0 To nt) 
ReDim teta(0 To nt) 
ReDim r(0 To nr) 
ReDim h(0 To nr, 0 To nt) 
ReDim dhdr(0 To nr, 0 To nt) 
ReDim dhdt(0 To nr, 0 To nt) 
ReDim C(0 To nr, 0 To nt) 
ReDim E(0 To nr, 0 To nt) 
ReDim C1(0 To nr, 0 To nt) 
ReDim C2(0 To nr, 0 To nt) 
ReDim C3(0 To nr, 0 To nt) 
ReDim C4(0 To nr, 0 To nt) 
End Sub 
'----------------------------------------------------------------------------------- 
Sub grid() 
Dim i As Integer 
deltar = (radio - radioi) / nr 
deltat = 8 * Atn(1) / nt 
For i = 0 To nr 
    r(i) = i * deltar + radioi 
Next i 
For i = 0 To nt 
    teta(i) = i * deltat 
Next i 
End Sub 
'----------------------------------------------------------------------------------- 
Sub calc_gap() 
Dim i As Integer, j As Integer 
For i = 0 To nr 
    For j = 0 To nt 
       h(i, j) = hin + hsd(r(i), teta(j)) 
    Next j 
Next i 
For i = 1 To nr - 1 
    For j = 0 To nt 
        dhdr(i, j) = dhr(teta(j)) 
        dhdt(i, j) = dht(r(i), teta(j)) 
    Next j 
Next i 
End Sub 
'----------------------------------------------------------------------------------- 
Sub calc_coef() 
Dim i As Integer, j As Integer 
For i = 1 To nr - 1 
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    A = r(i) * r(i) 
    For j = 0 To nt 
        B = (1 / r(i) + 3 * dhdr(i, j) / h(i, j)) 
        D = 3 * dhdt(i, j) / (h(i, j) * A) 
        C(i, j) = 2 / (deltar * deltar) + 2 / (A * deltat * deltat) 
        C1(i, j) = 1 / (deltar * deltar) + B / (2 * deltar) 
        C2(i, j) = 1 / (deltar * deltar) - B / (2 * deltar) 
        C3(i, j) = 1 / (A * deltat * deltat) + D / (2 * deltat) 
        C4(i, j) = 1 / (A * deltat * deltat) - D / (2 * deltat) 
        E(i, j) = -6 * eta * angular * dhdt(i, j) / (h(i, j) * h(i, j) * h(i, j)) 
    Next j 
Next i 
 
End Sub 
'----------------------------------------------------------------------------------- 
Sub calc_inicial() 
Dim i As Integer, j As Integer 
For i = 0 To nr 
    For j = 0 To nt 
        pold(i, j) = pin(r(i)) 
    Next j 
Next i 
End Sub 
'----------------------------------------------------------------------------------- 
Sub solver() 
Dim i As Integer, j As Integer, iter As Long 
Dim pd As Double 
Dim resta As Double, sumresta As Double, suma As Double 
Dim error As Double, tol As Double 
Dim relax As Double 
Dim pcold As Double 
tol = 0.00001 
error = 2 * tol 'ensures it always goes inside the while cycle 
iter = 0 
relax = 1 
pcold = pinicial 
While error > tol 
iter = iter + 1 
If iter > 50000 Then relax = 0.5 
If iter > 100000 Then relax = 0.3 
sumresta = 0 
suma = 0 
 
For i = 1 To nr - 1 
    pd = (E(i, 0) + C1(i, 0) * pold(i + 1, 0) + C2(i, 0) * pold(i - 1, 0) + C3(i, 0) * pold(i, 1) 
+ C4(i, 0) * pold(i, nt - 1)) / C(i, j) 
    resta = pd - pold(i, 0) 
    If pd < 0 Then 
        pd = 0 
        resta = 0 



I. Algorithm for numerical solution of the Reynolds equation                                      101 

 

    End If 
    pold(i, 0) = pold(i, 0) + relax * resta 
    pold(i, nt) = pold(i, 0) 
    sumresta = sumresta + relax * Abs(resta) 
    suma = suma + Abs(pold(i, 0)) 
Next i 
For i = 1 To nr - 1 
    For j = 1 To nt - 1 
        pd = (E(i, j) + C1(i, j) * pold(i + 1, j) + C2(i, j) * pold(i - 1, j) + C3(i, j) * pold(i, j 
+ 1) + C4(i, j) * pold(i, j - 1)) / C(i, j) 
        resta = pd - pold(i, j) 
         
        pold(i, j) = pd + relax * resta 
        If pd < 0 Then 
             
            pold(i, j) = 0 
            resta = 0 
        End If 
        sumresta = sumresta + relax * Abs(resta) 
        suma = suma + Abs(pold(i, j)) 
    Next j 
Next i 
 
error = sumresta / suma 
Worksheets(3).Cells(1, 1) = iter 
Worksheets(3).Cells(1, 2) = error 
Worksheets(3).Cells(1, 3) = pc 
Wend 
End Sub 
Sub calc_maxp() 
Dim i As Integer, j As Integer 
Dim imax As Integer, jmax As Integer 
pmax = pc 
imax = 0 
jmax = 0 
For i = 1 To nr - 1 
    For j = 0 To nt - 1 
    If pold(i, j) > pmax Then 
        pmax = pold(i, j) 
        imax = i 
        jmax = j 
    End If 
    Next j 
Next i 
Worksheets(3).Cells(6, 6) = imax 
Worksheets(3).Cells(6, 7) = jmax 
End Sub 
'----------Integrates pressure to obtain the force excerted by the fluid----------------------- 
'----------------------integration by simpson 1/3 method--------------------------------------- 
Sub fuerza_in() 
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Dim i As Integer, j As Integer 
Dim sum As Single 
For i = 0 To nr 
    For j = 0 To nt 
        p(i, j) = r(i) * pold(i, j) 
    Next j 
Next i 
 
sum = p(0, 0) + p(nr, nt) + p(0, nt) + p(nr, 0) 
For i = 2 To nr - 2 Step 2 
    sum = sum + 2 * p(i, 0) + 4 * p(i - 1, 0) + 2 * p(i, nt) + 4 * p(i - 1, nt) 
    sum = sum + 8 * p(i, nt - 1) + 16 * p(i - 1, nt - 1) 
Next i 
sum = sum + 4 * p(nr - 1, 0) + 4 * p(nr - 1, nt) 
For j = 2 To nt - 2 Step 2 
    sum = sum + 2 * p(0, j) + 2 * p(nr, j) + 4 * p(0, j - 1) + 4 * p(nr, j - 1) 
    sum = sum + 8 * p(nr - 1, j) + 16 * p(nr - 1, j - 1) 
Next j 
sum = sum + 4 * p(0, nt - 1) + 4 * p(nr, nt - 1) 
For i = 2 To nr - 2 Step 2 
    For j = 2 To nt - 2 Step 2 
        sum = sum + 4 * p(i, j) + 8 * p(i - 1, j) + 8 * p(i, j - 1) + 16 * p(i - 1, j - 1) 
    Next j 
Next i 
sum = sum + 16 * p(nr - 1, nt - 1) 
fin = (deltar * deltat) * sum / 9 
Worksheets(3).Cells(5, 6) = fin 
End Sub 
'----------------------------------------------------------------------------------- 
Sub write_results() 
Dim i As Integer, j As Integer 
For i = 0 To nr 
    Worksheets(2).Cells(i + 2, 1) = r(i) 
    For j = 0 To nt - 1 
        Worksheets(2).Cells(1, j + 2) = teta(j) 
        Worksheets(2).Cells(i + 2, j + 2) = pold(i, j) 
    Next j 
Next i 
Worksheets(3).Cells(5, 5) = pmax 
End Sub 
'----------------------------------------------------------------------------------- 
'----------------------------------------------------------------------------------- 
Function hsd(ByVal rs As Double, ByVal tetas As Double) As Double 
    hsd = epsilon * rs * Cos(tetas) / (radio * 2) + epsilon / 2 + wa * (1 + Cos(2 * tetas)) 
End Function 
'----------------------------------------------------------------------------------- 
Function dhr(ByVal tetas As Double) As Double 
    dhr = epsilon * Cos(tetas) / (radio * 2) 
End Function 
'----------------------------------------------------------------------------------- 
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Function dht(ByVal rs As Double, ByVal tetas As Double) As Double 
    dht = -epsilon * rs * Sin(tetas) / (radio * 2) - 2 * wa * Sin(2 * tetas) 
End Function 
'----------------------------------------------------------------------------------- 
Function pin(ByVal rs As Double) 
    pin = pinicial * ((radio - rs) * (rs - radioi)) / (radio * radio) 
End Function 
 
'----------------------------------------------------------------------------------- 
'End of the program 
'------------------------------------------------------------------------------- 
 
 
 
The flow diagram corresponding to this code is presented in Figure I.1. 
 
 
 
 

 
 
 
Figure I.1. Flow diagram corresponding to the code used to solve Reynolds equation. 
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