Fluid-evolving landform interaction by a surface-tracking method Molina Moya, Jorge Antonio Ortiz Rossini, Pablo Gregorio Bravo Pareja, Rafael Sediment transport Coupled model Adaptive grid Positive definite algorithm The research was supported by the Grant #PID2020-115778GB-I00 funded by MCIN/AEI/10.13039/ 501100011033. Funding for open access publishing: Universidad de Granada/CBUA. Open access charge was funded by Universidad de Granada / CBUA. This paper introduces a continuous finite element model to simulate fluid flow-bedform interaction problems. The approach utilizes a non-oscillatory finite element algorithm to compute the fluid dynamics by solving the complete Navier–Stokes equations. Additionally, it addresses the evolution of the fluid–bedform interface as a consequence of spatially non-balanced sediment fluxes through the solution of a conservation equation for the erodible layer thickness. A sign preservation algorithm is particularly relevant for landform tracking because a positive definite thickness of the erodible sediment layer is essential to model the interaction between evolving cohesionless sediment layers and rigid beds. The fluid/terrain interface is explicitly captured through a surface tracking methodology. First, new nodes fitting the interface are incorporated into the finite element mesh; then, elements beneath this interface are deactivated, while intersected elements are restructured to get amesh composed exclusively of tetrahedral elements. Numerical experiments demonstrate capabilities of the method by exploring relevant problems related with civil engineering, such as the evolution of trenches and the scour of a submerged pile. 2024-03-04T07:37:08Z 2024-03-04T07:37:08Z 2024-03-02 info:eu-repo/semantics/article Molina, J., Ortiz, P. & Bravo, R. Fluid-evolving landform interaction by a surface-tracking method. Comput Mech (2024). https://doi.org/10.1007/s00466-024-02464-6 https://hdl.handle.net/10481/89737 10.1007/s00466-024-02464-6 eng http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional Springer Nature