Reconocimiento de señales sismo-volcánicas mediante canales específicos basados en modelos ocultos de Markov Cortés Moreno, Guillermo Benítez Ortúzar, María Del Carmen Ibáñez Godoy, Jesús Miguel Universidad de Granada. Departamento de Teoría de la Señal, Telemática y Comunicaciones Instituto Andaluz de Geofísica Sismología Procesado de señales Procesos de Markov Vulcanismo Análisis del riesgo volcánico Procesos estocásticos La actividad volcánica en nuestro planeta genera un gran impacto económico y social. Actualmente la monitorización de volcanes se fundamenta principalmente en el análisis de la actividad sísmica de los eventos considerados precursores de erupciones. Un sistema automático que sea capaz de detectar y clasificar eventos sismo-volcánicos en tiempo real permitiría una gestión más eficaz al evaluar del riesgo volcánico sobre todo cuando previo a una erupción el incremento de la actividad es tal que compromete la fiabilidad de la clasificación supervisada llevada a cabo por los técnicos de los observatorios. Un análisis detallado de la situación es crucial a la hora de tomar decisiones que pueden ser críticas como la necesidad de evacuación de la población. Los sistemas automáticos de reconocimiento de señales sismo-volcánicas (Volcano- Seismic Recognition - VSR) en una etapa de aprendizaje construyen modelos probabilísticos para cada tipo de evento o clases a partir del análisis de datos previamente clasificados por técnicos expertos. Dichos modelos permiten posteriormente una clasificación sobre registros continuos de forma automática y no supervisada. El funcionamiento en tiempo real de estos sistemas ha sido tímidamente explorado por la comunidad científica lo que se une al problema complejo del modelado dada la naturaleza y variabilidad de las señales sismo-volcánicas sometidas a solapamiento entre eventos, efectos de sitio, ruidos, etc. Tomando inspiración en los últimos avances en las áreas de inteligencia artificial, reconocimiento de patrones y aprendizaje automático, se abre un mundo de lineas de investigación muy interesantes que están atrayendo la atención de los geofísicos y los observatorios, no solo por la posibilidad de monitorizar el grado de actividad sísmica en tiempo real, sino también por la ventaja de contar con una herramienta robusta y fiable de clasificación automática no susceptible de sufrir errores inevitablemente asociados a la condición humana como la falta de un criterio unificado, el cansancio y la variabilidad en la toma de decisiones debido a factores subjetivos o psicológicos. Por ello, son cada vez más los observatorios vulcanológicos que incorporan sistemas expertos automatizados de monitarización y métodos de predicción de erupciones (Carniel et al., 2006; Ham et al., 2012; Boué et al., 2015), lo que explica el auge que los sistemas de reconocimiento automático de eventos sismo-volcánicos están teniendo en los últimos 10 años (Orozco-Alzate et al., 2012). Complementariamente, la capacidad del cerebro humano de describir y analizar una se centra gran parte de los últimos trabajos de inteligencia artificial: el aprendizaje profundo (deep learning) o cómo enseñar a las máquinas a describir y aprender lo verdaderamente importante. Aspecto que también hay que tener en cuenta en los sistemas VSR: enseñar al sistema qué características son importantes para describir los eventos y cómo evaluar correctamente los resultados de clasificación. Los Modelos Ocultos de Markov (Hidden Markov Models - HMMs), dada su naturaleza estructurada y su capacidad para modelar datos doblemente estocásticos en el espacio secuencial (el tiempo en nuestro caso) y en el espacio de descripción de los datos, se han convertido en una de las técnicas más utilizadas en el área VSR (Ohrnberger, 2001; Alasonati et al., 2006; Benítez et al., 2007; Ibáñez et al., 2009; Beyreuther et al., 2012). En esta tesis, proponemos una evolución de los sistemas VSR clásicos basados en HMMs a un sistema estructurado en paralelo (Parallel System Architecture - PSA) compuesto por distintos canales de reconocimiento cada uno de ellos especializado en un tipo de evento volcánico o clases concretas (Cortés et al., 2014). Esto permite el análisis por independiente de clases de eventos especialmente relevantes, así como el estudio de la mejor configuración y el mejor conjunto de características para describir cada tipo de canal (evento), contribuyendo así a incrementar la eficacia de reconocimiento y la capacidad de análisis así como la flexibilidad y funcionalidad del sistema. El objetivo último es la construcción de un sistema automático no supervisado de carácter general que sea fácilmente integrable en los centros de monitorización de volcanes activos. 2016-07-07T09:50:30Z 2016-07-07T09:50:30Z 2016 2015-12-18 info:eu-repo/semantics/doctoralThesis Cortés Moreno, G. Reconocimiento de señales sismo-volcánicas mediante canales específicos basados en modelos ocultos de Markov. Granada: Universidad de Granada, 2016. [http://hdl.handle.net/10481/42050] 9788491254492 http://hdl.handle.net/10481/42050 spa info:eu-repo/grantAgreement/EC/FP7/308665 http://creativecommons.org/licenses/by-nc-nd/3.0/ info:eu-repo/semantics/openAccess Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License Universidad de Granada