Universidad de Granada Digibug
 

Repositorio Institucional de la Universidad de Granada >
1.-Investigación >
Departamentos, Grupos de Investigación e Institutos >
Departamento de Ciencias de la Computación e Inteligencia Artificial >
DCCIA - Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10481/49082

Title: Improving the Naive Bayes Classifier via a Quick Variable Selection Method Using Maximum of Entropy
Authors: Abellán, Joaquín
García Castellano, Francisco Javier
Issue Date: 25-May-2017
Abstract: Variable selection methods play an important role in the field of attribute mining. The Naive Bayes (NB) classifier is a very simple and popular classification method that yields good results in a short processing time. Hence, it is a very appropriate classifier for very large datasets. The method has a high dependence on the relationships between the variables. The Info-Gain (IG) measure, which is based on general entropy, can be used as a quick variable selection method. This measure ranks the importance of the attribute variables on a variable under study via the information obtained from a dataset. The main drawback is that it is always non-negative and it requires setting the information threshold to select the set of most important variables for each dataset. We introduce here a new quick variable selection method that generalizes the method based on the Info-Gain measure. It uses imprecise probabilities and the maximum entropy measure to select the most informative variables without setting a threshold. This new variable selection method, combined with the Naive Bayes classifier, improves the original method and provides a valuable tool for handling datasets with a very large number of features and a huge amount of data, where more complex methods are not computationally feasible.
Sponsorship: This work has been supported by the Spanish “Ministerio de Economía y Competitividad” and by “Fondo Europeo de Desarrollo Regional” (FEDER) under Project TEC2015-69496-R.
Publisher: MDPI
Keywords: Variable selection
Classification
Naive Bayes
Imprecise probabilities
Uncertainty measures
URI: http://hdl.handle.net/10481/49082
ISSN: 1099-4300
Rights : Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Citation: Abellán, J.; García Castellano, F.J. Improving the Naive Bayes Classifier via a Quick Variable Selection Method Using Maximum of Entropy. Entropy, 19(6): 247 (2017). [http://hdl.handle.net/10481/49082]
Appears in Collections:DCCIA - Artículos

Files in This Item:

File Description SizeFormat
Abellan_NaiveBayes.pdf283.52 kBAdobe PDFView/Open
Recommend this item

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! OpenAire compliant DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback

© Universidad de Granada