Mostrar el registro sencillo del ítem

dc.contributor.authorSorribas, M.es_ES
dc.contributor.authorAdame, J. A.es_ES
dc.contributor.authorOlmo Reyes, Francisco José es_ES
dc.contributor.authorVilaplana, J. M.es_ES
dc.contributor.authorGil-Ojeda, M.es_ES
dc.contributor.authorAlados Arboledas, Lucas es_ES
dc.date.accessioned2017-12-20T13:58:57Z
dc.date.available2017-12-20T13:58:57Z
dc.date.issued2015-04
dc.identifier.citationSorribas, M.; et al. A long-term study of new particle formation in a coastal environment: Meteorology, gas phase and solar radiation implications. Science of the Total Environment, 511: 723-737 (2015). [http://hdl.handle.net/10481/48631]es_ES
dc.identifier.issn0048-9697en_EN
dc.identifier.urihttp://hdl.handle.net/10481/48631
dc.description.abstractNew particle formation (NPF) was investigated at a coastal background site in Southwest Spain over a four-year period using a Scanning Particle Mobility Sizer (SMPS). The goals of the study were to characterise the NPF and to investigate their relationship to meteorology, gas phase (O3, SO2, CO and NO2) and solar radiation (UVA, UVB and global). A methodology for identifying and classifying the NPF was implemented using the wind direction and modal concentrations as inputs. NPF events showed a frequency of 24% of the total days analyzed. The mean duration was 9.2±4.2 hours. Contrary to previous studies conducted in other locations, the NPF frequency reached its maximum during cold seasons for approximately 30% of the days. The lowest frequency took place in July with 10%, and the seasonal wind pattern was found to be the most important parameter influencing the NPF frequency. The mean formation rate was 2.2±1.7 cm-3 s-1, with a maximum in the spring and early autumn and a minimum during the summer and winter. The mean growth rate was 3.8±2.4 nm h-1 with higher values occurring from spring to autumn. The mean and seasonal formation and growth rates are in agreement with previous observations from continental sites in the Northern Hemisphere. NPF classification of different classes was conducted to explore the effect of synoptic and regional-scale patterns on NPF and growth. The results show that under a breeze regime, the temperature indirectly affects NPF events. Higher temperatures increase the strength of the breeze recirculation, favouring gas accumulation and subsequent NPF appearance. Additionally, the role of high relative humidity in inhibiting the NPF was evinced during synoptic scenarios. The remaining meteorological variables (RH), trace gases (CO and NO), solar radiation, PM10 and condensation sink, showed a moderate or high connection with both formation and growth rates.en_EN
dc.description.sponsorshipThis work was partially supported by the Andalusian Regional Government through projects P10-RNM-6299 and P12-RNM-2409, the Spanish Ministry of Science and Technology (MINECO) through projects CGL2010-18782, CGL2011-24891/CLI, CGL2013-45410-R and the Complementary Action CGL2011-15008-E.es_ES
dc.description.sponsorshipEuropean Union through the ACTRIS project (EU INFRA-2010-1.1.16-262254).es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/262254es_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licenseen_EN
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/en_EN
dc.subjectNew particle formationen_EN
dc.subjectMeteorological variablesen_EN
dc.subjectSolar radiation en_EN
dc.subjectTrace gasesen_EN
dc.subjectFormation and growth ratesen_EN
dc.titleA long-term study of new particle formation in a coastal environment: Meteorology, gas phase and solar radiation implicationsen_EN
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.1016/j.scitotenv.2014.12.011


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License