Universidad de Granada Digibug
 

Repositorio Institucional de la Universidad de Granada >
1.-Investigación >
Tesis >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10481/46939

Title: Statistical neuroimange modeling, processing and syntheris based on texture and component analysis: Tackling the small sample size problem
Authors: Martínez Murcia, Francisco J.
Direction: Ramírez Pérez de Inestrosa, Javier
Górriz Sáez, Juan Manuel
Collaborator: Universidad de Granada. Programa Oficial de Doctorado en: Tecnologías de la Información y la Comunicación
Issue Date: 2017
Submitted Date: 1-Jun-2017
Abstract: The rise of neuroimaging in the last years has provided physicians and radiologist with the ability to study the brain with unprecedented ease. This led to a new biological perspective in the study of neurodegenerative diseases, allowing the characterization of different anatomical and functional patterns associated with them. Computer Aided Diagnosis (CAD) systems use statistical techniques for preparing, processing and extracting information from neuroimaging data pursuing a major goal: optimize the process of analysis and diagnosis of neurodegenerative diseases and mental conditions. With this thesis we focus on three different stages of the CAD pipeline: preprocessing, feature extraction and validation. For preprocessing, we have developed a method that target a relatively recent concern: the confounding effect of false positives due to differences in the acquisition at multiple sites. Our method can effectively merge datasets while reducing the acquisition site effects. Regarding feature extraction, we have studied decomposition algorithms (independent component analysis, factor analysis), texture features and a complete framework called Spherical Brain Mapping, that reduces the 3-dimensional brain images to two-dimensional statistical maps. This allowed us to improve the performance of automatic systems for detecting Alzheimer’s and Parkinson’s diseases. Finally, we developed a brain simulation technique that can be used to validate new functional datasets as well as for educational purposes.
Sponsorship: Tesis Univ. Granada. Programa Oficial de Doctorado en: Tecnologías de la Información y la Comunicación
Contrato de investigación asociado al proyecto de excelencia P11-TIC- 7103 de la Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía, Spain).
Financiación complementaria de los proyectos P09-TIC-4530 de la Junta de Andalucía y TEC2008-02113, TEC2012-34306 y TEC2015-64718-R del MINECO/ FEDER.
Publisher: Universidad de Granada
Keywords: Neurología
Imágenes
Diagnóstico
Algoritmos
Procesado de imágenes
UDC: 616.8
621.3
32
URI: http://hdl.handle.net/10481/46939
ISBN: 9788491632313
Rights : Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Citation: Martínez Murcia, F.J. Statistical neuroimange modeling, processing and syntheris based on texture and component analysis: Tackling the small sample size problem. Granada: Universidad de Granada, 2017. [http://hdl.handle.net/10481/46939]
Appears in Collections:Tesis

Files in This Item:

File Description SizeFormat
26607591.pdf22.23 MBAdobe PDFView/Open
Recommend this item

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! OpenAire compliant DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback

© Universidad de Granada