Universidad de Granada Digibug
 

Repositorio Institucional de la Universidad de Granada >
1.-Investigación >
Departamentos, Grupos de Investigación e Institutos >
Departamento de Microbiología >
DM - Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10481/46911

Title: BSocial: Deciphering Social Behaviors within Mixed Microbial Populations
Authors: Purswani, Jessica
Romero-Zaliz, Rocío
Martín-Platero, Antonio Manuel
Guisado, Isabel María
González López, Jesús
Pozo Llorente, Clementina
Issue Date: 24-May-2017
Abstract: Ecosystem functionality depends on interactions among populations, of the same or different taxa, and these are not just the sum of pairwise interactions. Thus, know-how of the social interactions occurring in mixed-populations are of high interest, however they are commonly unknown due to the limitations posed in tagging each population. The limitations include costs/time in tediously fluorescent tagging, and the number of different fluorescent tags. Tag-free strategies exist, such as high-throughput sequencing, but ultimately both strategies require the use of expensive machinery. Our work appoints social behaviors on individual strains in mixed-populations, offering a web-tool (BSocial http://m4m.ugr.es/BSocial.html) for analyzing the community framework. Our quick and cheap approach includes the periodic monitoring of optical density (OD) from a full combinatorial testing of individual strains, where number of generations and growth rate are determined. The BSocial analyses then enable us to determine how the addition/absence of a particular species affects the net productivity of a microbial community and use this to select productive combinations, i.e., designate their social effect on a general community. Positive, neutral, or negative assignations are applied to describe the social behavior within the community by comparing fitness effects of the community against the individual strain. The usefulness of this tool for selection of optimal inoculum in biofilm-based methyl tert-butyl ether (MTBE) bioremediation was demonstrated. The studied model uses seven bacterial strains with diverse MTBE degradation/growth capacities. Full combinatorial testing of seven individual strains (triplicate tests of 127 combinations) were implemented, along with MTBE degradation as the desired function. Sole observation of highest species fitness did not render the best functional outcome, and only when strains with positive and neutral social assignations were mixed (Rhodococcus ruber EE6, Agrobacterium sp. MS2 and Paenibacillus etheri SH7), was this obtained. Furthermore, the use of positive and neutral strains in all its combinations had a significant higher degradation mean (x1.75) than exclusive negative strain combinations. Thus, social microbial processes benefit bioremediation more than negative social microbial combinations. The BSocial webtool is a great contributor to the study of social interactions in bioremediation processes, and may be used in other natural or synthetic habitat studies.
Sponsorship: JP was funded by Junta de Andalucía through the “Programa Proyectos de Excelencia” (Project reference P10-RNM-6153). The work was funded by CEIBioTic through their “II Convocatoria de Proyectos I+D+I” (project reference CEI2013-MP-31), the Spanish Ministry of Science and Technology (project reference TIN2012-38805), and the Consejeria de Innovacion, Investigacion y Ciencia, Junta de Andalucia (project reference TIC-02788).
Publisher: Frontiers Media
Description: BSocial Analysis: http://m4m.ugr.es/BSocial.html
Keywords: Biofilms
High throughput
Microbial interactions
Net-positive species
Social behavior
Microbial cooperation
Bioremediation
Microbial fitness
URI: http://hdl.handle.net/10481/46911
ISSN: 1664-302X
Rights : Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Citation: Purswani, J.; et al. BSocial: Deciphering Social Behaviors within Mixed Microbial Populations. Frontiers in Microbiology, 8: 919 (2017). [http://hdl.handle.net/10481/46911]
Appears in Collections:DM - Artículos

Files in This Item:

File Description SizeFormat
Purswani_BSocial.pdf1.51 MBAdobe PDFView/Open
Recommend this item

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! OpenAire compliant DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback

© Universidad de Granada