• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Networked Fusion Filtering from Outputs with Stochastic Uncertainties and Correlated Random Transmission Delays

[PDF] CaballeroAguila_NetworkedFusion.pdf (367.9Kb)
Identificadores
URI: http://hdl.handle.net/10481/44990
ISSN: 1424-8220
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Caballero-Águila, R.; Hermoso-Carazo, Aurora; Linares-Pérez, Josefa
Editorial
MDPI
Materia
Least-squares estimation
 
Distributed and centralized fusion methods
 
Random parameter matrices
 
Correlated noises
 
Random delays
 
Fecha
2016
Referencia bibliográfica
Caballero-Águila, R. [et al]. Networked Fusion Filtering from Outputs with Stochastic Uncertainties and Correlated Random Transmission Delays. Sensors 2016, 16, 847. [http://hdl.handle.net/10481/44990]
Resumen
This paper is concerned with the distributed and centralized fusion filtering problems in sensor networked systems with random one-step delays in transmissions. The delays are described by Bernoulli variables correlated at consecutive sampling times, with different characteristics at each sensor. The measured outputs are subject to uncertainties modeled by random parameter matrices, thus providing a unified framework to describe a wide variety of network-induced phenomena; moreover, the additive noises are assumed to be one-step autocorrelated and cross-correlated. Under these conditions, without requiring the knowledge of the signal evolution model, but using only the first and second order moments of the processes involved in the observation model, recursive algorithms for the optimal linear distributed and centralized filters under the least-squares criterion are derived by an innovation approach. Firstly, local estimators based on the measurements received from each sensor are obtained and, after that, the distributed fusion filter is generated as the least-squares matrix-weighted linear combination of the local estimators. Also, a recursive algorithm for the optimal linear centralized filter is proposed. In order to compare the estimators performance, recursive formulas for the error covariance matrices are derived in all the algorithms. The effects of the delays in the filters accuracy are analyzed in a numerical example which also illustrates how some usual network-induced uncertainties can be dealt with using the current observation model described by random matrices.
Colecciones
  • DEIO - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias