Universidad de Granada Digibug
 

Repositorio Institucional de la Universidad de Granada >
1.-Investigación >
Proyectos Fin de Máster >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10481/39658

Title: Modelos de mixturas finitas para la caracterización y mejora de las redes de monitorización de la calidad del aire
Authors: Gómez Losada, Álvaro
Direction: Pino Mejías, Rafael
Román Montoya, Yolanda
Collaborator: Universidad de Granada. Departamento de Estadística e Investigación Operativa
Issue Date: 2014
Submitted Date: 2014
Abstract: Antecedentes Los planes de monitorización de la calidad del aire, en ocasiones, no son convenientemente actualizados en concordancia con las cambiantes condiciones locales, repercutiendo en la información atmosférica que proporcionan, bien dejando de detectar nuevas fuentes de contaminación o duplicando cierta información. Además, posibles mantenimientos deficientes del equipamiento de las redes de monitorización suponen a aquel un inconveniente añadido. Para abodar estos aspectos, se ha recurrido a una combinación de métodos estadísticos para la optimización de los recursos empleados en la monitorización, introduciendo nuevos criterios para su mejora. Métodos Datos de monitorización de contaminantes clave como el monóxido de carbono (CO), dióxido de nitrógeno (NO2), ozono (O3), material particulado (PM10) y dióxido de azufre (SO2) fueron obtenidos de 12 estaciones de monitorización de la calidad del aire en Sevilla (España). Un total de 49 conjuntos de datos fueron modelizados mediante mixturas finitas gaussianas utilizando el algoritmo de esperanza-maximización (EM). Para resumir estos 49 modelos, la media (μm) y coeficiente de variación (cvm) de cada mixtura fueron calculados, y a partir de ellos, se realizó un análisis clúster jerárquico (ACJ) para estudiar el agrupamiento de las estaciones de acuerdo con estos estadísticos. El valor de los parámetros no monitorizados en las estaciones de medición fueron imputados aplicando un algoritmo basado en bosques aleatorios, utilizando los valores de μm y cvm conocidos. Posteriormente, el análisis de componentes principales (ACP) permitió comprender la relación intrínseca entre las estaciones de la red, así como la concordancia en su clasificación. Todas las técnicas fueron aplicadas utilizando el software estadístico gratuito y de código abierto R. Resultados y conclusiones Se ha analizado un ejemplo de atribución y contribución de fuentes utilizando la modelización mediante mixturas finitas, y el potencial de estos modelos es propuesto para caracterizar tendencias de contaminación. Los estadísticos de la mixturas μm y cvm representan su huella dactilar, y su empleo es nuevo en la caracterización de los modelos mixtos en el área de la gestión de la calidad del aire. La técnica de imputación empleada ha permitido la estimación de valores de concentración de parámetros no monitorizados y el planteamiento de nuevos esquemas de monitorización para esta red. El empleo posterior del ACP ha confirmado una clasificación errónea de una estación detectada inicialmente mediante el ACJ.
Background Existing air quality monitoring programs are, on occasion, not updated according to local, varying conditions and as such the monitoring programs become non-informative over time, under-detecting new sources of pollutants or duplicating information. Furthermore, inadequate maintenance may cause the monitoring equipment to be utterly deficient in providing information. To deal with these issues, a combination of formal statistical methods is used to optimize resources for monitoring and to characterize the monitoring networks, introducing new criteria for their refinement. Methods Monitoring data were obtained on key pollutants such as carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), particulate matter (PM10) and sulfur dioxide (SO2) from 12 air quality monitoring sites in Seville (Spain) during 2012. A total of 49 data sets were fit to mixture models of Gaussian distribution using the expectation-maximization (EM) algorithm. To summarize these 49 models, the mean (μm) and coefficient of variation (cvm) were calculated for each mixture and carried out a hierarchical clustering analysis (HCA) to study the grouping of the sites according to these statistics. To handle the lack of observational data from the sites with unmonitored pollutants, the missing statistical values were imputed by applying the random forests technique and then later, a principal component analysis (PCA) was carried out to better understand the relationship between the level of pollution and the classification of monitoring sites. All of the techniques were applied using free, open-source, statistical software R. Results and conclusions One example of source attribution and contribution is analyzed using mixture models and the potential for mixture models is posed in characterizing pollution trends. The mixture statistics μm and cvm have proven to be a fingerprint for every model and this work presents a novel use of it and represents a promising approach to characterizing mixture models in the air quality management discipline. The imputation technique used is allowed for estimating the missing information from key unmonitored pollutants to gather information about unknown pollution levels and to suggest new possible monitoring configurations for this network. Posterior PCA confirmed the misclassification of one site detected with HCA.
Sponsorship: Universidad de Granada. Máster Universitario en Estadística Aplicada
Publisher: Universidad de Granada
Keywords: Contaminación
Aire
Monitorización
Estadística
Vigilancia ambiental
URI: http://hdl.handle.net/10481/39658
Rights : Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Appears in Collections:Proyectos Fin de Máster

Files in This Item:

File Description SizeFormat
GomezLosada_MixturasFinitas.pdf2.28 MBAdobe PDFView/Open
Recommend this item

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! OpenAire compliant DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback

© Universidad de Granada