Mostrar el registro sencillo del ítem

dc.contributor.authorFernández, M. Mar
dc.contributor.authorWagterveld, R. M.
dc.contributor.authorAhualli Yapur, Silvia Alejandra 
dc.contributor.authorLiu, Fei
dc.contributor.authorDelgado Mora, Ángel Vicente 
dc.contributor.authorHamelers, H. V. M.
dc.date.accessioned2015-11-13T09:57:18Z
dc.date.available2015-11-13T09:57:18Z
dc.date.issued2015
dc.identifier.citationFernández, M.M.; et al. Polylectrolyte- versus membrane-coated electrodes for energy production by Capmix salinity exchange methods. Journal of Power Sources, 302(20): 387-393 (2016). [http://hdl.handle.net/10481/38829]es_ES
dc.identifier.issn0378-7753
dc.identifier.urihttp://hdl.handle.net/10481/38829
dc.descriptionLa versión final publicada se puede encontrar en: Journal of Power Sources, 302(20): 387-393 (2016). http://dx.doi.org/10.1016/j.jpowsour.2015.10.076es_ES
dc.description.abstractIn this paper we analyze the energy and power achievable by means of a re- cently proposed salinity gradient technique for energy production. The method, denominated soft electrode or SE, is based on the potential di erence that can be generated between two porous electrodes coated with cationic and anionic polyelectrolytes. It is related to the Capacitive Donnan Potential (CDP) tech- nique, where the electrical potential variations are mostly related to the Donnan potential, of ion-selective membranes in the case of CDP, and of the polyelec- trolyte coating in SE. It is found that although SE is comparable to CDP in terms of energy production, it presents slower rates of voltage change, and lower achieved power. The separate analysis of the response of positively and neg- atively coated electrodes shows that the latter produces most of the voltage rise and also of the response delay. These results, together with electrokinetic techniques, give an idea on how the two types of polyelectrolytes adsorb on the carbon surface and a ect di erently the di usion layer. It is possible to suggest that the SE technique is a promising one, and it may overcome the drawbacks associated to the use of membranes in CDP.es_ES
dc.description.sponsorshipMINECO FIS2013-47666-C3-1-Res_ES
dc.description.sponsorshipJunta de Andalucía, PE2012-FQM0694es_ES
dc.description.sponsorshipEuropean Union 7th Framework Programme (FP7/2007–2013) under agreement No. 256868es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/256868es_ES
dc.relation.ispartofseriesCAPMIX HOLANDA;3
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.subjectBlue energyes_ES
dc.subjectCapmix techniqueses_ES
dc.subjectCDPes_ES
dc.subjectDonnan potentiales_ES
dc.subjectCarbon Electrodeses_ES
dc.subjectPolyelectrolyte coatinges_ES
dc.titlePolylectrolyte- versus membrane-coated electrodes for energy production by Capmix salinity exchange methodses_ES
dc.typeinfo:eu-repo/semantics/preprintes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.1016/j.jpowsour.2015.10.076


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License