Universidad de Granada Digibug
 

Repositorio Institucional de la Universidad de Granada >
1.-Investigación >
Departamentos, Grupos de Investigación e Institutos >
Departamento de Geometría y Topología >
DGT - Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10481/38428

Title: Real Hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting shape operator
Authors: Pérez Jiménez, Juan de Dios
Suh, Young Jin
Woo, Changhwa
Issue Date: 2015
Abstract: In this paper we prove a non-existence of real hypersurfaces in complex hyperbolic two-plane Grassmannians SU2.m/S(U2·Um), m≥3, whose structure tensors {ɸi}i=1,2,3 commute with the shape operator.
Sponsorship: First author is partially supported by MCT-FEDER Grant MTM2010-18099, the second by Grant Proj. No. NRF-2015-R1A2A1A-01002459. And the third author supported by NRF Grant funded by the Korean Government (NRF-2013-Fostering Core Leaders of Future Basic Science Program).
Publisher: Gruyter Open
Description: This article was written at the conference of 2015RSME which was held at Univ. of Granada in Spain during the period from Feb. 2-6, 2015.
Keywords: Real hypersurfaces
Complex hyperbolic two-plane Grassmannians
Commuting shape operator
URI: http://hdl.handle.net/10481/38428
ISSN: 2391-5455
Rights : Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Citation: Pérez Jiménez, J.D.; Suh, Y.J.; Woo, C. Real Hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting shape operator. Open Mathematics, 13(1): 493-501 (2015). [http://hdl.handle.net/10481/38428]
Appears in Collections:DGT - Artículos

Files in This Item:

File Description SizeFormat
Perez_RealHypersurfaces.pdf239.73 kBAdobe PDFView/Open
Recommend this item

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! OpenAire compliant DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback

© Universidad de Granada