Universidad de Granada Digibug
 

Repositorio Institucional de la Universidad de Granada >
1.-Investigación >
Departamentos, Grupos de Investigación e Institutos >
Departamento de Teoría de la Señal, Telemática y Comunicaciones >
DTSTC - Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10481/37225

Title: Multivariate Statistical Approach for Anomaly Detection and Lost Data Recovery in Wireless Sensor Networks
Authors: Magán-Carrión, Roberto
Camacho, José
García Teodoro, Pedro
Issue Date: 2015
Abstract: Data loss due to integrity attacks or malfunction constitutes a principal concern in wireless sensor networks (WSNs). The present paper introduces a novel data loss/modification detection and recovery scheme in this context. Both elements, detection and data recovery, rely on a multivariate statistical analysis approach that exploits spatial density, a common feature in network environments such as WSNs. To evaluate the proposal, we consider WSN scenarios based on temperature sensors, both simulated and real. Furthermore, we consider three different routing algorithms, showing the strong interplay among (a) the routing strategy, (b) the negative effect of data loss on the network performance, and (c) the data recovering capability of the approach. We also introduce a novel data arrangement method to exploit the spatial correlation among the sensors in a more efficient manner. In this data arrangement, we only consider the nearest nodes to a given affected sensor, improving the data recovery performance up to 99%. According to the results, the proposed mechanisms based on multivariate techniques improve the robustness of WSNs against data loss.
Sponsorship: This work has been partially supported by Spanish MICINN (Ministerio de Ciencia e Innovación) through Project TEC2011-22579, by Spanish MINECO (Ministerio de Economía y Competitividad) through Project TIN2014-60346-R, and the FPU P6A grants program of the University of Granada.
Publisher: Hindawi Publishing Corporation
Keywords: Wireless sensor networks (WSNs)
Data loss
Missing data
URI: http://hdl.handle.net/10481/37225
ISSN: 1550-1329
1550-1477
Rights : Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Citation: Magán-Carrión, R.; Camacho, J.; García-Teodoro, P. Multivariate Statistical Approach for Anomaly Detection and Lost Data Recovery in Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 2015: 672124 (2015). [http://hdl.handle.net/10481/37225]
Appears in Collections:DTSTC - Artículos

Files in This Item:

File Description SizeFormat
MaganCarrion_WirelessSensor.pdf4.44 MBAdobe PDFView/Open
Recommend this item

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! OpenAire compliant DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback

© Universidad de Granada