Universidad de Granada Digibug
 

Repositorio Institucional de la Universidad de Granada >
1.-Investigación >
Departamentos, Grupos de Investigación e Institutos >
Departamento de Genética >
DG - Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10481/37089

Title: Sail or sink: novel behavioural adaptations on water in aerially dispersing species
Authors: Hayashi, Morito
Bakkali, Mohammed
Hyde, Alexander
Goodacre, Sara L.
Issue Date: 2015
Abstract: Background: Long-distance dispersal events have the potential to shape species distributions and ecosystem diversity over large spatial scales, and to influence processes such as population persistence and the pace and scale of invasion. How such dispersal strategies have evolved and are maintained within species is, however, often unclear. We have studied long-distance dispersal in a range of pest-controlling terrestrial spiders that are important predators within agricultural ecosystems. These species persist in heterogeneous environments through their ability to re-colonise vacant habitat by repeated long-distance aerial dispersal (“ballooning”) using spun silk lines. Individuals are strictly terrestrial, are not thought to tolerate landing on water, and have no control over where they land once airborne. Their tendency to spread via aerial dispersal has thus been thought to be limited by the costs of encountering water, which is a frequent hazard in the landscape.
Results: In our study we find that ballooning in a subset of individuals from two groups of widely-distributed and phylogenetically distinct terrestrial spiders (linyphiids and one tetragnathid) is associated with a hitherto undescribed ability of those same individuals to survive encounters with both fresh and marine water. Individuals that showed a high tendency to adopt ‘ballooning’ behaviour adopted elaborate postures to seemingly take advantage of the wind current whilst on the water surface.
Conclusions: The ability of individuals capable of long-distance aerial dispersal to survive encounters with water allows them to disperse repeatedly, thereby increasing the pace and spatial scale over which they can spread and subsequently exert an influence on the ecosystems into which they migrate. The potential for genetic connectivity between populations, which can influence the rate of localized adaptation, thus exists over much larger geographic scales than previously thought. Newly available habitat may be particularly influenced given the degree of ecosystem disturbance that is known to follow new predator introductions.
Sponsorship: This work was supported by research fellowships from the Japan Society for the Promotion of Science and Daiwa Foundation, Japan. M. Bakkali wishes to thank the Spanish Ministerio de Ciencia y Tecnología and Ministerio de Ciencia e Innovación for the BFU2010-16438 and the Ramón y Cajal fellowship.
Publisher: Biomed Central
Keywords: Sail
Sink
Water
Dispersing species
Agricultural ecosystems
Spiders
Ecosystems
URI: http://hdl.handle.net/10481/37089
ISSN: 1471-2148
Rights : Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Citation: Hayashi, M.; et al. Sail or sink: novel behavioural adaptations on water in aerially dispersing species. BMC Evolutionary Biology, 15: 118 (2015). []
Appears in Collections:DG - Artículos

Files in This Item:

File Description SizeFormat
Hayashi_Sail_Sink.pdf1.48 MBAdobe PDFView/Open
Recommend this item

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! OpenAire compliant DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback

© Universidad de Granada