Universidad de Granada Digibug
 

Repositorio Institucional de la Universidad de Granada >
1.-Investigación >
Departamentos, Grupos de Investigación e Institutos >
Departamento de Ciencias de la Computación e Inteligencia Artificial >
DCCIA - Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10481/34823

Title: Variational Bayesian causal connectivity analysis for fMRI
Authors: Luessi, Martin
Babacan, S. Derin
Molina Soriano, Rafael
Booth, James R.
Katsaggelos, Aggelos K.
Issue Date: 2014
Abstract: The ability to accurately estimate effective connectivity among brain regions from neuroimaging data could help answering many open questions in neuroscience. We propose a method which uses causality to obtain a measure of effective connectivity from fMRI data. The method uses a vector autoregressive model for the latent variables describing neuronal activity in combination with a linear observation model based on a convolution with a hemodynamic response function. Due to the employed modeling, it is possible to efficiently estimate all latent variables of the model using a variational Bayesian inference algorithm. The computational efficiency of the method enables us to apply it to large scale problems with high sampling rates and several hundred regions of interest. We use a comprehensive empirical evaluation with synthetic and real fMRI data to evaluate the performance of our method under various conditions.
Sponsorship: This work was partially supported by the National Institute of Child Health and Human Development (R01 HD042049). Martin Luessi was partially supported by the Swiss National Science Foundation Early Postdoc Mobility fellowship 148485. This work was supported in part by the Department of Energy under Contract DE-NA0000457, the “Ministerio de Ciencia e Innovación” under Contract TIN2010-15137, and the CEI BioTic with the Universidad de Granada Data were provided (in part) by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.
Publisher: Frontiers Research Foundation
Keywords: fMRI
Causality
Connectivity
Variational Bayesian method
Granger causality
URI: http://hdl.handle.net/10481/34823
ISSN: 1662-5196
Rights : Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Citation: Luessi, M.; et al. Variational Bayesian causal connectivity analysis for fMRI. Frontiers in Neuroinformatics, 8: 45 (2014). [http://hdl.handle.net/10481/34823]
Appears in Collections:DCCIA - Artículos

Files in This Item:

File Description SizeFormat
Luessi_fMRI.pdf1.31 MBAdobe PDFView/Open
Recommend this item

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! OpenAire compliant DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback

© Universidad de Granada