• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new estimation algorithm from measurements with multiple-step random delays and packet dropouts

[PDF] CaballeroAguila_Algorithm.pdf (1.975Mb)
Identificadores
URI: http://hdl.handle.net/10481/33538
DOI: 10.1155/2010/258065
ISSN: 1024-123X
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Caballero-Águila, R.; Hermoso-Carazo, Aurora; Linares-Pérez, Josefa
Editorial
Hindawi Publishing Corporation
Materia
Least-squares linear estimation
 
Algorithm
 
Fecha
2010
Referencia bibliográfica
Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. A new estimation algorithm from measurements with multiple-step random delays and packet dropouts. Mathematical Problems in Engineering, 2010: 258065 (2010). [http://hdl.handle.net/10481/33538]
Patrocinador
This research is supported by Ministerio de Educación y Ciencia (Grant no. MTM2008-05567) and Junta de Andalucía (Grant no. P07-FQM-02701).
Resumen
The least-squares linear estimation problem using covariance information is addressed in discrete-time linear stochastic systems with bounded random observation delays which can lead to bounded packet dropouts. A recursive algorithm, including the computation of predictor, filter, and fixed-point smoother, is obtained by an innovation approach. The random delays are modeled by introducing some Bernoulli random variables with known distributions in the system description. The derivation of the proposed estimation algorithm does not require full knowledge of the state-space model generating the signal to be estimated, but only the delay probabilities and the covariance functions of the processes involved in the observation equation.
Colecciones
  • DEIO - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias