Universidad de Granada Digibug

Repositorio Institucional de la Universidad de Granada >
1.-Investigación >
Departamentos, Grupos de Investigación e Institutos >
Departamento de Matemática Aplicada >
DMA - Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10481/33461

Title: Biorthogonal Systems Approximating the Solution of the Nonlinear Volterra Integro-Differential Equation
Authors: Berenguer Maldonado, María Isabel
Garralda-Guillén, Ana Isabel
Ruiz-Galán, Manuel
Issue Date: 2010
Abstract: This paper deals with obtaining a numerical method in order to approximate the solution of the nonlinear Volterra integro-differential equation. We define, following a fixed-point approach, a sequence of functions which approximate the solution of this type of equation, due to some properties of certain biorthogonal systems for the Banach spaces C[0,1]and C[0,1]2.
Sponsorship: This research is partially supported by M.E.C. (Spain) and FEDER, project MTM2006-12533, and by Junta de Andaluca Grant FQM359.
Publisher: Springer Open; Hindawi Publishing
Keywords: Nonlinear Volterra integro-differential equation
Biorthogonal systems
Banach spaces
URI: http://hdl.handle.net/10481/33461
ISSN: 1687-1820
Rights : Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Citation: Berenguer, M.I.; Garralda-Guillén, A.I.; Ruiz Galán, M. Biorthogonal Systems Approximating the Solution of the Nonlinear Volterra Integro-Differential Equation. Fixed Point Theory and Applications, 2010: 470149 (2010). [http://hdl.handle.net/10481/33461]
Appears in Collections:DMA - Artículos

Files in This Item:

File Description SizeFormat
Berenguer_BiorthogonalSystems.pdf471.81 kBAdobe PDFView/Open
Recommend this item

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! OpenAire compliant DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback

© Universidad de Granada