Universidad de Granada Digibug

Repositorio Institucional de la Universidad de Granada >
1.-Investigación >
Departamentos, Grupos de Investigación e Institutos >
Departamento de Física Aplicada >
DFA - Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10481/32885

Title: Aerosol light-scattering enhancement due to water uptake during the TCAP campaign
Authors: Titos Vela, Gloria
Jefferson, A.
Sheridan, P. J.
Andrews, E.
Lyamani, H.
Alados-Arboledas, Lucas
Ogren, J. A.
Issue Date: 2014
Abstract: Aerosol optical properties were measured by the DOE/ARM (US Department of Energy Atmospheric Radiation Measurements) Program Mobile Facility during the Two-Column Aerosol Project (TCAP) campaign deployed at Cape Cod, Massachusetts, for a 1-year period (from summer 2012 to summer 2013). Measured optical properties included aerosol light-absorption coefficient (σap) at low relative humidity (RH) and aerosol light-scattering coefficient (σsp) at low and at RH values varying from 30 to 85%, approximately. Calculated variables included the single scattering albedo (SSA), the scattering Ångström exponent (SAE) and the scattering enhancement factor (f(RH)). Over the period of measurement, f(RH = 80%) had a mean value of 1.9 ± 0.3 and 1.8 ± 0.4 in the PM10 and PM1 fractions, respectively. Higher f(RH = 80%) values were observed for wind directions from 0 to 180° (marine sector) together with high SSA and low SAE values. The wind sector from 225 to 315° was identified as an anthropogenically influenced sector, and it was characterized by smaller, darker and less hygroscopic aerosols. For the marine sector, f(RH = 80%) was 2.2 compared with a value of 1.8 obtained for the anthropogenically influenced sector. The air-mass backward trajectory analysis agreed well with the wind sector analysis. It shows low cluster to cluster variability except for air masses coming from the Atlantic Ocean that showed higher hygroscopicity. Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in situ measurements with satellite and remote sensing retrievals. In this sense, predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we propose an exponential equation that successfully estimates aerosol hygroscopicity as a function of SSA at Cape Cod. Further work is needed to determine if the equation obtained is valid in other environments.
Sponsorship: This research was funded by the NOAA Climate Program using measurements funded by the US Department of Energy Atmospheric System Research program. The authors would like to express their gratitude to the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model. We would like to thank also the Openair project. G. Titos was funded by the Spanish Ministry of Economy and Competitiveness – Secretariat of Science, Innovation and Development under grants BES-2011-043721 and EEBB-I-13-06456, and projects P10-RNM-6299, CGL2010-18782 and EU INFRA-2010-1.1.16-262254.
Publisher: Copernicus Publications; European Geosciences Union (EGU)
Keywords: Filter-based measurements
Alpine site jungfraujoch
Relative humidity
Optical properties
Radiative properties
Hygroscopic growth
Ambient aerosol
URI: http://hdl.handle.net/10481/32885
ISSN: 1680-7316
Rights : Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Citation: Titos, G.; et al. Aerosol light-scattering enhancement due to water uptake during the TCAP campaign. Atmospheric Chemistry and Physics, 14: 7031-7043 (2014). [http://hdl.handle.net/10481/32885]
Appears in Collections:DFA - Artículos
OpenAIRE (Open Access Infrastructure for Research in Europe)
IISTA - Artículos
RNM119 - Artículos

Files in This Item:

File Description SizeFormat
Titos_TCAPCampaign.pdf2.25 MBAdobe PDFView/Open
Recommend this item

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! OpenAire compliant DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback

© Universidad de Granada