Universidad de Granada Digibug

Repositorio Institucional de la Universidad de Granada >
1.-Investigación >
Departamentos, Grupos de Investigación e Institutos >
Departamento de Genética >
DG - Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10481/32814

Title: The molecular basis of defective lens development in the Iberian mole
Authors: Carmona López, Francisco David
Jiménez Medina, Rafael
Martin Collinson, J.
Issue Date: 2008
Abstract: Background: Fossorial mammals face natural selection pressures that differ from those acting on surface dwelling animals, and these may lead to reduced visual system development. We have studied eye development in a species of true mole, the Iberian mole Talpa occidentalis, and present the molecular basis of abnormal lens development. This is the first embryological developmental study of the eyes of any fossorial mammal at the molecular level. Results: Lens fibre differentiation is not completed in the Iberian mole. Although eye development starts normally (similar to other model species), defects are seen after closure of the lens vesicle. PAX6 is not down-regulated in developing lens fibre nuclei, as it is in other species, and there is ectopic expression of FOXE3, a putative downstream effector of PAX6, in some, but not all lens fibres. FOXE3-positive lens fibres continue to proliferate within the posterior compartment of the embryonic lens, but unlike in the mouse, no proliferation was detected anywhere in the postnatal mole lens. The undifferentiated status of the anterior epithelial cells was compromised, and most of them undergo apoptosis. Furthermore, β-crystallin and PROX1 expression patterns are abnormal and our data suggest that genes encoding β-crystallins are not directly regulated by PAX6, c-MAF and PROX1 in the Iberian mole, as they are in other model vertebrates. Conclusion: In other model vertebrates, genetic pathways controlling lens development robustly compartmentalise the lens into a simple, undifferentiated, proliferative anterior epithelium, and quiescent, anuclear, terminally differentiated posterior lens fibres. These pathways are not as robust in the mole, and lead to loss of the anterior epithelial phenotype and only partial differentiation of the lens fibres, which continue to express 'epithelial' genes. Paradigms of genetic regulatory networks developed in other vertebrates appear not to hold true for the Iberian mole.
Sponsorship: This work was supported by the Alfonso Martín Escudero Foundation and Junta de Andalucía through Group PAI CVI-109 (BIO-109). Work in JMC's laboratory is supported by Wellcome Trust grant 074127 and BBSRC grant BB/E015840/1.
Publisher: Biomed Central
Keywords: Fiber cell differentiation
Crystallin gene expression
Eye development
Talpa europaea
Spalax ehrenbergi
Zeta crystallin
URI: http://hdl.handle.net/10481/32814
ISSN: 1741-7007
Rights : Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Citation: Carmona, F.D.; Jiménez, R.; Martin Collinson, J. The molecular basis of defective lens development in the Iberian mole. BMC Biology, 6: 44 (2008). [http://hdl.handle.net/10481/32814]
Appears in Collections:DG - Artículos

Files in This Item:

File Description SizeFormat
Carmona_IberianMole.pdf5.76 MBAdobe PDFView/Open
Recommend this item

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! OpenAire compliant DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback

© Universidad de Granada