Universidad de Granada Digibug
 

Repositorio Institucional de la Universidad de Granada >
1.-Investigación >
Departamentos, Grupos de Investigación e Institutos >
Departamento de Física Aplicada >
DFA - Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10481/32280

Title: Effects of systematic and random errors on the retrieval of particle microphysical properties from multiwavelength lidar measurements using inversion with regularization
Authors: Pérez-Ramírez, Daniel
Whiteman, D. N.
Veselovskii, I.
Kolgotin, A.
Korenskiy, M.
Alados-Arboledas, Lucas
Issue Date: 2013
Abstract: In this work we study the effects of systematic and random errors on the inversion of multiwavelength (MW) lidar data using the well-known regularization technique to obtain vertically resolved aerosol microphysical properties. The software implementation used here was developed at the Physics Instrumentation Center (PIC) in Troitsk (Russia) in conjunction with the NASA/Goddard Space Flight Center. Its applicability to Raman lidar systems based on backscattering measurements at three wavelengths (355, 532 and 1064 nm) and extinction measurements at two wavelengths (355 and 532 nm) has been demonstrated widely. The systematic error sensitivity is quantified by first determining the retrieved parameters for a given set of optical input data consistent with three different sets of aerosol physical parameters. Then each optical input is perturbed by varying amounts and the inversion is repeated. Using bimodal aerosol size distributions, we find a generally linear dependence of the retrieved errors in the microphysical properties on the induced systematic errors in the optical data. For the retrievals of effective radius, number/surface/volume concentrations and fine-mode radius and volume, we find that these results are not significantly affected by the range of the constraints used in inversions. But significant sensitivity was found to the allowed range of the imaginary part of the particle refractive index. Our results also indicate that there exists an additive property for the deviations induced by the biases present in the individual optical data. This property permits the results here to be used to predict deviations in retrieved parameters when multiple input optical data are biased simultaneously as well as to study the influence of random errors on the retrievals. The above results are applied to questions regarding lidar design, in particular for the spaceborne multiwavelength lidar under consideration for the upcoming ACE mission.
Sponsorship: This work was supported by the NASA/Goddard Space Flight Center, the Spanish Ministry of Science and Technology through projects CGL2010-18782 and CSD2007-00067, the Andalusian Regional Government through projects P10-RNM-6299 and P08-RNM-3568, the EU through ACTRIS project (EU INFRA-2010-1.1.16-262254) and the Postdoctoral Program of the University of Granada.
Publisher: Copernicus Publications; European Geosciences Union (EGU)
Keywords: Aerosol size distribution
Spectral resolution lidar
Raman lidar
Optical properties
Atmospheric aerosols
URI: http://hdl.handle.net/10481/32280
ISSN: 1867-1381
1867-8548
Rights : Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Citation: Pérez-Ramírez, D.; et al. Effects of systematic and random errors on the retrieval of particle microphysical properties from multiwavelength lidar measurements using inversion with regularization. Atmospheric Measurement Techniques, 6: 3039-3054 (2013). [http://hdl.handle.net/10481/32280]
Appears in Collections:DFA - Artículos
IISTA - Artículos
RNM119 - Artículos

Files in This Item:

File Description SizeFormat
PerezRamirez_RetrievalParticle.pdf844.55 kBAdobe PDFView/Open
Recommend this item

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! OpenAire compliant DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback

© Universidad de Granada