Universidad de Granada Digibug

Repositorio Institucional de la Universidad de Granada >
1.-Investigación >
Departamentos, Grupos de Investigación e Institutos >
Departamento de Genética >
DG - Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10481/31880

Title: Sources of individual variability: miRNAs that predispose to neuropathic pain identified using genome-wide sequencing
Authors: Bali, Kiran Kumar
Hackenberg, Michael
Lubin, Avigail
Kuner, Rohini
Devor, Marshall
Issue Date: 2014
Abstract: [Background] We carried out a genome-wide study, using microRNA sequencing (miRNA-seq), aimed at identifying miRNAs in primary sensory neurons that are associated with neuropathic pain. Such scans usually yield long lists of transcripts regulated by nerve injury, but not necessarily related to pain. To overcome this we tried a novel search strategy: identification of transcripts regulated differentially by nerve injury in rat lines very similar except for a contrasting pain phenotype. Dorsal root ganglia (DRGs) L4 and 5 in the two lines were excised 3 days after spinal nerve ligation surgery (SNL) and small RNAs were extracted and sequenced. [Results] We identified 284 mature miRNA species expressed in rat DRGs, including several not previously reported, and 3340 unique small RNA sequences. Baseline expression of miRNA was nearly identical in the two rat lines, consistent with their shared genetic background. In both lines many miRNAs were nominally up- or down-regulated following SNL, but the change was similar across lines. Only 3 miRNAs that were expressed abundantly (rno-miR-30d-5p, rno-miR-125b-5p) or at moderate levels (rno-miR-379-5p) were differentially regulated. This makes them prime candidates as novel PNS determinants of neuropathic pain. The first two are known miRNA regulators of the expression of Tnf, Bdnf and Stat3, gene products intimately associated with neuropathic pain phenotype. A few non-miRNA, small noncoding RNAs (sncRNAs) were also differentially regulated. [Conclusions] Despite its genome-wide coverage, our search strategy yielded a remarkably short list of neuropathic pain-related miRNAs. As 2 of the 3 are validated regulators of important pro-nociceptive compounds, it is likely that they contribute to the orchestration of gene expression changes that determine individual variability in pain phenotype. Further research is required to determine whether some of the other known or predicted gene targets of these miRNAs, or of the differentially regulated non-miRNA sncRNAs, also contribute.
Sponsorship: The study was supported by the German-Israel Foundation for Research and Development (GIF) and the Hebrew University Center for Research on Pain. R. K. and K.B. are members of the Molecular Medicine Partnership Unit, Heidelberg.
Publisher: Biomed Central
Keywords: Dorsal root ganglion
Neuropathic pain
URI: http://hdl.handle.net/10481/31880
ISSN: 1744-8069
Rights : Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Citation: Bali, K.K.; et al. Sources of individual variability: miRNAs that predispose to neuropathic pain identified using genome-wide sequencing. Molecular Pain, 10: 22 (2014). [http://hdl.handle.net/10481/31880]
Appears in Collections:DG - Artículos

Files in This Item:

File Description SizeFormat
Bali_miRNAs.pdf1.11 MBAdobe PDFView/Open
Recommend this item

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! OpenAire compliant DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback

© Universidad de Granada