Mostrar el registro sencillo del ítem

dc.contributor.authorLyamani, H.
dc.contributor.authorOlmo Reyes, Francisco José 
dc.contributor.authorAlados Arboledas, Lucas 
dc.date.accessioned2014-05-20T11:08:31Z
dc.date.available2014-05-20T11:08:31Z
dc.date.issued2010
dc.identifier.citationLyamani, H.; Olmo, F.J.; Alados-Arboledas, L .Physical and optical properties of aerosols over an urban location in Spain: seasonal and diurnal variability. Atmospheric Chemistry nd Physics, 10: 239-254 (2010). [http://hdl.handle.net/10481/31809]es_ES
dc.identifier.issn1680-7316
dc.identifier.issn1680-7324
dc.identifier.urihttp://hdl.handle.net/10481/31809
dc.description.abstractMeasurements of aerosol optical properties and aerosol number size distribution obtained during the period from December 2005 to November 2007 at Granada, an urban site in south-eastern Spain, are analyzed. Large variations of the measured variables have been found, and related to variations in emissions sources and meteorological conditions. High values of aerosol absorption and scattering coefficients are obtained during winter and low values are measured during summer. This seasonal pattern in the surface aerosol optical properties is opposite to the seasonal cycle showed by columnar aerosol optical depth. The differences in the seasonal features of the surface and column-integrated data are related to seasonal variations in the aerosol vertical distribution, aerosol sources and boundary layer height. In winter the number density of "fine" particles (0.5<particle diameter<1 μm) is significantly larger than in summer while the number density of "coarse" particles (1<particle diameter<20 μm) is slightly larger during summer and spring than during winter and autumn. The scattering Angström exponent, αs, presents an evident seasonal cycle with values of 1.8±0.2, 1.6±0.3, 1.3±0.3 and 1.4±0.3 in winter, spring, summer and autumn, respectively. This suggests the presence of a large fraction of submicron particles at the site, especially during winter. The aerosols measured in this study contain a large fraction of absorbing material as indicated by the average single-scattering albedo that has values of 0.65±0.07, 0.66±0.06, 0.70±0.06 and 0.73±0.06 in autumn, winter, spring and summer, respectively. The aerosol scattering albedo obtained in the surface boundary layer of Granada is below the critical value of 0.86 that determines the shift from cooling to warming. These results put in evidence the need of efforts to reduce absorbing particles (black carbon) emissions to avoid the possible warming that would result from the reductions of the cooling aerosols only. The aerosol absorption and scattering coefficients present a clear diurnal pattern, in all seasons, with two local maxima, one early in the morning and the second one in the evening. This diurnal cycle is mainly attributed to the diurnal evolution of atmospheric boundary layer and local anthropogenic activities.es_ES
dc.description.sponsorshipThis work was supported by the Spanish Ministry of Science and Technology through projects No: CGL2007-66477-C02-01 and CSD2007-00067 and by the Andalusian Regional Government through projects No: P06-RNM-01503 and P08-RNM-3568.es_ES
dc.language.isoenges_ES
dc.publisherCopernicus Publicationses_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.subjectLight-absorption measurementses_ES
dc.subjectHeat-wavees_ES
dc.subjectAtmospheric aerosolses_ES
dc.subjectBlack carbones_ES
dc.subjectRadiative propertieses_ES
dc.subjectSoutheastern Spaines_ES
dc.subjectDustes_ES
dc.subjectScatteringes_ES
dc.titlePhysical and optical properties of aerosols over an urban location in Spain: seasonal and diurnal variabilityes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.5194/acp-10-239-2010


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License