Show simple item record

dc.contributor.authorGarcés Pérez, Jorge José
dc.contributor.authorPeralta, Antonio Miguel
dc.contributor.authorPuglisi, Daniele
dc.contributor.authorRamírez, María Isabel
dc.date.accessioned2014-04-23T09:42:52Z
dc.date.available2014-04-23T09:42:52Z
dc.date.issued2013
dc.identifier.citationGarcés, J.J.; Peralta, A.M.; Puglisi, D.; Ramírez, M.I. Orthogonally Additive and Orthogonality Preserving Holomorphic Mappings between C*-Algebras. Abstract and Applied Analysis, 2013: 415354 (2013). [http://hdl.handle.net/10481/31360]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/31360
dc.description.abstractWe study holomorphic maps between C * -algebras A and B, when f: BA (0, ρ) → B is a holomorphic mapping whose Taylor series at zero is uniformly converging in some open unit ball U = BA (0, δ). If we assume that f is orthogonality preserving and orthogonally additive on A s a ∩ U and f (U) contains an invertible element in B, then there exist a sequence (hn) in B * * and Jordan * -homomorphisms Θ, Θ: M (A) → B * * such that f (x) = ∑ n = 1 ∞ h n Θ (an) = ∑n = 1 ∞ Θ (an) hn uniformly in a ∈ U. When B is abelian, the hypothesis of B being unital and f (U) ∩ i n v (B) ≠ ∅ can be relaxed to get the same statement.es_ES
dc.description.sponsorshipThe authors are partially supported by the Spanish Ministry of Economy and Competitiveness, D.G.I. Project no. MTM2011-23843, and Junta de Andalucía Grant FQM3737.es_ES
dc.language.isoenges_ES
dc.publisherHindawi Publishing Corporationes_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.subjectPolynomials es_ES
dc.subjectSpaceses_ES
dc.subjectC(K)es_ES
dc.titleOrthogonally Additive and Orthogonality Preserving Holomorphic Mappings between C*-Algebrases_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.1155/2013/415354


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Except where otherwise noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License