Universidad de Granada Digibug

Repositorio Institucional de la Universidad de Granada >
1.-Investigación >
Departamentos, Grupos de Investigación e Institutos >
Departamento de Psicología Experimental y Fisiología del Comportamiento >
DPEFC - Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10481/31074

Title: The Brain Network of Expectancy and Uncertainty Processing
Authors: Catena Martínez, Andrés
Perales López, José César
Megías, Alberto
Cándido Ortiz, Antonio
Jara, Elvia
Maldonado López, Antonio
Issue Date: 2012
Abstract: [Background] The Stimulus Preceding Negativity (SPN) is a non-motor slow cortical potential elicited by temporally predictable stimuli, customarily interpreted as a physiological index of expectancy. Its origin would be the brain activity responsible for generating the anticipatory mental representation of an expected upcoming event. The SPN manifests itself as a slow cortical potential with negative slope, growing in amplitude as the stimulus approximates. The uncertainty hypothesis we present here postulates that the SPN is linked to control-related areas in the prefrontal cortex that become more active before the occurrence of an upcoming outcome perceived as uncertain. [Methods/Findings] We tested the uncertainty hypothesis by using a repeated measures design in a Human Contingency Learning task with two levels of uncertainty. In the high uncertainty condition, the outcome is unpredictable. In the mid uncertainty condition, the outcome can be learnt to be predicted in 75% of the trials. Our experiment shows that the Stimulus Preceding Negativity is larger for probabilistically unpredictable (uncertain) outcomes than for probabilistically predictable ones. sLoreta estimations of the brain activity preceding the outcome suggest that prefrontal and parietal areas can be involved in its generation. Prefrontal sites activation (Anterior Cingulate and Dorsolateral Prefrontal Cortex) seems to be related to the degree of uncertainty. Activation in posterior parietal areas, however, does not correlates with uncertainty. [Conclusions/Significance] We suggest that the Stimulus Preceding Negativity reflects the attempt to predict the outcome, when posterior brain areas fail to generate a stable expectancy. Uncertainty is thus conceptualized, not just as the absence of learned expectancy, but as a state with psychological and physiological entity.
Sponsorship: Research by A. Catena is funded by CONSOLIDER-INGENIO CSD2007-00012 (http://www.bcbl.eu/consolider/index.php). Research by J.C. Perales is founded by a Spanish Ministry of Science and Innovation (MICINN) grant (Dirección General de Programas y Transferencia de Conocimiento, Ref. PSI2009-13133, http://www.micinn.es/). Research by A. Catena, A. Candido, and A. Maldonado is founded by a Spanish Ministry of Science and Innovation (MICINN) grant (Dirección General de Programas y Transferencia de Conocimiento, Ref. PSI2009-12217, http://www.micinn.es/). Research was also founded by a Junta de Andalucía grant (Reference P09/SEJ-4752, http://www.juntadeandalucia.es/servicios​/ayudas/detalle/69962.html).
Publisher: Public Library of Science (PLOS)
Keywords: Decision making
Electrode recording
Human learning
Neural networks
Parietal lobe
Prefrontal cortex
URI: http://hdl.handle.net/10481/31074
ISSN: 1932-6203
Citation: Catena, A.; et al. The Brain Network of Expectancy and Uncertainty Processing. Plos One, 7(7): e40252 (2012). [http://hdl.handle.net/10481/31074]
Appears in Collections:DPEFC - Artículos

Files in This Item:

File Description SizeFormat
Catena_Brain.pdf318.26 kBAdobe PDFView/Open
Recommend this item

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! OpenAire compliant DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback

© Universidad de Granada