Universidad de Granada Digibug

Repositorio Institucional de la Universidad de Granada >
1.-Investigación >
Departamentos, Grupos de Investigación e Institutos >
Departamento de Geometría y Topología >
DGT - Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10481/29868

Title: A Fundamental Theorem for Hypersurfaces in Semi-Riemannian Warped Products
Authors: Ortega, Miguel
Lawn, Marie-Amélie
Issue Date: 14-Jan-2014
Abstract: We give necessary and sufficient conditions for a semi-Riemannian manifold of arbi- trary signature to be locally isometrically immersed into a warped product ±I ×a M^n (c), where I ⊂ R and M^n (c) is a semi-Riemannian space of constant nonzero sectional cur- vature. Then, we describe a way to use the structure equations of such immersions to construct foliations of marginally trapped surfaces in a four-dimensional Lorentzian space- times. We point out that, sometimes, Gauß and Codazzi equations are not sufficient to ensure the existence of a local isometric immersion of a semi-Riemannian manifold as a hypersurface of another manifold. We finally give two low-dimensional examples to illustrate our results.
Sponsorship: Spanish MEC-FEDER Grant MTM2007-60731 and Junta de Andalucía Grant P09-FQM-4496 (with FEDER funds.)
Keywords: Differential geometry
General relativity and quantum cosmology
Mathematical physics
URI: http://hdl.handle.net/10481/29868
Rights : Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Appears in Collections:DGT - Artículos

Files in This Item:

File Description SizeFormat
MAmeliLawn-MOrtega.2014-01-14.pdf329 kBAdobe PDFView/Open
Recommend this item

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! OpenAire compliant DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback

© Universidad de Granada