Universidad de Granada Digibug
 

Repositorio Institucional de la Universidad de Granada >
1.-Investigación >
Tesis >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10481/24513

Title: Algoritmos heurísticos en bioinformática
Authors: Pelta, David Alejandro
Direction: Verdegay, José L.
Blanco Morón, Armando
Collaborator: Universidad de Granada. Departamento de Ciencias de la Computación e Inteligencia Artificial
Issue Date: 2013
Submitted Date: 2002
Abstract: Dada la importancia de los problemas que surgen en Bioinformática, la necesidad de resolverlos mediante técnicas heurísticas (debido a su complejidad computacional), y la adecuación de los conjuntos difusos para modelizar ideas subjetivas o conceptos vagos, en esta tesis se propone combinar un método simple de optimización con ideas básicas de la lógica difusa, para dar lugar a una herramienta robusta y flexible que resulte útil en el área de la Bioinformática. El método desarrollado se denomina Fuzzy Adaptive Neighborhodd Search (FANS) y es esencialmente una herramienta de optimización basada en búsqueda por entornos que incorpora como elementos novedosos, la utilización de una "valoración difusa" de las soluciones y la utilización de varios operadores en el proceso de búsqueda. En primer lugar se describen los componentes de FANS, sus características y se presenta el esquema del algoritmo. Posteriormente se muestra la utilidad de los dos elementos novedosos. Respecto a la valoración difusa, se muestra que su manipulación hace que FANS se comporte de forma similar (cualitativamente) a otros métodos de búsqueda por entornos lo que permite plantear que FANS es un (cualitativamente) a otros métodos de búsqueda por entornos lo que permite plantear que FANS es un "framework" de métodos simples de búsqueda local. En segundo lugar se realizan experimentos comparativos entre FANS, algoritmos genéticos y recocido simulado sobre instancias del problema de la mochila clásico y con múltiples restricciones, y sobre el problema de minimización de funciones reales. Los resultados sobre los 3 problemas de prueba indican que FANS es una herramienta capaz de obtener soluciones razonablemente buenas y con poco esfuerzo computacional; y que dada su simplicidad y buenos resultados, FANS resulta útil para establecer líneas de base para la comparación con otros algoritmos más sofisticados. En tercer lugar se muestra la aplicación de FANS a 2 problemas de bioinformática: 1,- El problema de predicción de estructura de proteínas en modelos basado en reticulados. 2,- El problema de emparejamiento estructural de moléculas. Para el primer problema, se analizó la influencia de la codificación en los resultados y se comprobó que la influencia era similar en algoritmos genéticos y en FANS; se detectó que la mejor versión de FANS es la que acepta transiciones a soluciones peores (hecho también observado en algoritmos meméticos); y finalmente se verificó la hipótesis que no es necesario el uso de una población en un AG si este usa coordenadas internas y operadores de cruce estandar. Para el segundo problema, se analizó la influencia del tamaño del patrón en el rendimiento del algoritmo sobre un conjunto de prueba artificial. Los resultados indican que FANS obtuvo mejores soluciones para patrones grandes que para pequeños, lo que indica que FANS fue capaz de resolver problemas con espacios de búsqueda de gran tamaño. Además, el conjunto de comportamientos inducido por FANS, fue suficiente para resolver satisfactoriamente cada instancia de prueba con esfuerzo reducido. Al final de la tesis se recogen las principales conclusiones y aportaciones, se plantean una serie de líneas de investigación futuras y se concluye con las referencias bibliográficas que sirvieron de base para el desarrollo del trabajo.
Sponsorship: Tesis Univ. Granada. Departamento de la Computación e Inteligencia Artificial
Publisher: Universidad de Granada
Keywords: Algoritmos
Heurística
UDC: 681.3
510
URI: http://hdl.handle.net/10481/24513
Rights : Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Citation: Pelta, D.A. Algoritmos heurísticos en bioinformática. Granada: Universidad de Granada, 2013. 182 p. [http://hdl.handle.net/10481/24513]
Appears in Collections:Tesis

Files in This Item:

File Description SizeFormat
Tesis David Pelta.pdf1.01 MBAdobe PDFView/Open
Recommend this item

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! OpenAire compliant DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback

© Universidad de Granada