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Abstract
Large-scale behavior of a wide class of spatial and spatiotemporal processes is characterized in terms of informational

measures. Specifically, subordinated random fields defined by nonlinear transformations on the family of homogeneous and

isotropic Lancaster–Sarmanov random fields are studied under long-range dependence (LRD) assumptions. In the spatial

case, it is shown that Shannon mutual information between random field components for infinitely increasing distance,

which can be properly interpreted as a measure of large scale structural complexity and diversity, has an asymptotic power

law decay that depends on the underlying LRD parameter scaled by the subordinating function rank. Sensitivity with

respect to distortion induced by the deformation parameter under the generalized form given by divergence-based Rényi

mutual information is also analyzed. In the spatiotemporal framework, a spatial infinite-dimensional random field approach

is adopted. The study of the large-scale asymptotic behavior is then extended under the proposal of a functional formu-

lation of the Lancaster–Sarmanov random field class, as well as of divergence-based mutual information. Results are

illustrated, in the context of geometrical analysis of sample paths, considering some scenarios based on Gaussian and Chi-

Square subordinated spatial and spatiotemporal random fields.

Keywords Lancaster–Sarmanov random field models � Subordinated random fields � Information measures �
Spatial functional models � Structural complexity

1 Introduction

A growing interest is observed, in the last few decades, on

the parametric (Bosq 2000) and nonparametric (Ferraty and

Vieu 2006) spatiotemporal data analysis based on infinite-

dimensional spatial models. Particularly, the field of

Functional Data Analysis (FDA) has been nurtured by

various disciplines, including probability in abstract spaces

(see, e.g., Ledoux and Talagrand 1991). The most recent

contributions are developed in the framework of stochastic

partial differential and pseudodifferential equations (see,

e.g., Ruiz-Medina 2022). Particularly in the Gaussian

random field context, it is well-known that Gaussian

measures in Hilbert spaces and associated infinite-dimen-

sional quadratic forms play a crucial role (see Da Prato and

Zabczyk 2002). The tools developed have recently been

exploited in several statistical papers on spatiotemporal

modeling under the umbrella of infinite-dimensional

inference, based on statistical analysis of infinite-dimen-

sional multivariate data and stochastic processes (see, e.g.,

Frı́as et al. 2022; Ruiz-Medina 2022; Torres-Signes et al.

2021). In particular, statistical distance based approaches

are often adopted in hypothesis testing (see, e.g., Ruiz-

Medina 2022, where an estimation methodology based on a

Kullback–Leibler divergence-like loss operator is proposed

in the temporal functional spectral domain). This method-

ology has been also exploited in structural complexity

analysis based on sojourn measures of spatiotemporal

Gaussian and Gamma-correlated random fields. Indeed,

there exists a vast literature in the context of stochastic

geometrical analysis of the sample paths of random fields
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based on these measures (see, e.g., Bulinski et al. 2012;

Ivanov and Leonenko 1989, among others). Special atten-

tion has been paid to the asymptotic analysis of long-range

dependent random fields (see Leonenko 1999; Leonenko

and Olenko 2014; Makogin and Spodarev 2022). Recently,

in Leonenko and Ruiz-Medina (2023), new spatiotemporal

limit results have been derived to analyze, in particular, the

limit distribution of Minkowski functionals, in the context

of Gaussian and Chi-Square subordinated spatiotemporal

random fields.

The geometrical interpretation of these functionals,

which, for instance in 2D, is related to the total area of all

hot regions, and the total length of the boundary between

hot and cold regions, as well as the Euler–Poincaré char-

acteristic, counting the number of isolated hot regions

minus the number of isolated cold regions within the hot

regions, has motivated several statistical approaches,

adopted, for instance, in the Cosmic Microwave Back-

ground (CMB) evolution modeling and data analysis (see,

e.g., Marinucci and Peccati 2011).

The present work continues the above-referred research

lines in relation to structural complexity analysis of long-

range dependent Gaussian and Chi-Square subordinated

spatial and spatiotemporal random fields. Indeed, a more

general random field framework is considered, defined

from the Lancaster–Sarmanov random field class.

The approach adopted here is based on the quantitative

assessment in terms of appropriate information-theoretic

measures, a framework which has played a fundamental

role, with a very extensive related literature, in the prob-

abilistic and statistical characterization and description of

structural aspects inherent to stochastic systems arising in a

wide variety of knowledge areas. More precisely, the

asymptotic behavior, for infinitely increasing distance, of

divergence-based Shannon and Rényi mutual information

measures, which are formally and conceptually connected

to certain forms of ‘complexity’ and ‘diversity’ (see, for

instance, Angulo et al. 2021, and references therein), is

derived for this random field class. This behavior is char-

acterized by the long-range dependence (LRD) parameter,

that in this context determines the global diversity loss,

associated with lower values of such a parameter. The

deformation parameter q 6¼ 1 involved in the definition of

Rényi mutual information also modulates the power rate of

decay of this structural dependence indicator as the dis-

tance between the considered spatial location increases. As

is well-known, the derived asymptotic analysis results

based on Shannon mutual information arise as limiting

cases, for q ! 1, of the ones obtained based on Rényi

mutual information. The spatiotemporal case is analyzed in

an infinite-dimensional spatial framework. In particular,

related spatiotemporal extensions of the Lancaster–Sar-

manov random field class, as well as of divergence-based

mutual information measures, are formalized under a

functional approach. A simulation study is undertaken

showing, in particular, that the same asymptotic orders as

in the purely spatial case hold for the infinite-dimensional

versions of divergence measures here considered (see, e.g.,

Angulo and Ruiz-Medina 2023).

The main results of this paper, Theorem 1 and 2, illustrate

the asymptotic behavior derived in reduction theorems for local

means of nonlinear transformation ofGaussian andChi-Square

random fields (see, e.g., Leonenko et al. 2017). Specifically, a

suitable scaling depending on the LRD parameter allows con-

vergence in the second Wiener chaos in the case of quadratic

transformations of Gaussian random fields. That is the case of

Chi-Square subordinated random fields. In our framework this

fact is reflected in the convergence to zero of the statistical

distance, evaluated from mutual information, according to a

power law decay involving the LRD parameter. The asymp-

totic self-similarity of the family of nonlinear random field

models analyzed here allows to establish asymptotic equiva-

lence between the transition rate from spatial dependence to

independence and from spatial correlation to uncorrelation, in

terms of a power law decay. This fact has also clear implica-

tions in the transition to asymptotic spatial linear association

between the spatial components of thenonlinear transformation

of LRD Gaussian random fields in the family studied. The

approach presented has indeed interesting applications in

mutual information analysis of nonlinear groundwater

stochastic fields; see, e.g., Butera et al. (2018), where these

aspects are addressed through the uncertainty coefficient in an

alternative modeling framework.

The paper content is structured as follows. Section 2

provides the preliminary elements on the analyzed class of

Lancaster–Sarmanov random fields, as well as the intro-

duction of information-complexity measures. The main

results derived on the asymptotic large scale behavior of

Shannon and Rényi mutual information measures, involving

the bivariate distributions of the Lancaster–Sarmanov sub-

ordinated random field class studied, are obtained in Sect. 3.

These aspects are illustrated in terms of some numerical

examples in subsection 3.3. The functional approach to the

spatiotemporal case based on an infinite-dimensional spatial

framework is addressed in Sect. 4. Final comments, with a

reference to open research lines, are given in Sect. 5.

2 Preliminaries

Let ðX;A;PÞ be the basic complete probability space, and

denote by L2ðX;A;PÞ the Hilbert space of equivalence

classes (with respect to P) of zero-mean second-order

random variables on ðX;A;PÞ. Consider X ¼ fXðzÞ; z 2
Rdg to be a zero-mean spatial homogeneous and isotropic
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mean-square continuous second-order random field, with

correlation function cðkx� ykÞ ¼ Corr XðxÞ;XðyÞð Þ.
Assume that the marginal probability distributions are

absolutely continuous, having probability density p(u) with

support included in (a, b), �1� a\b�1. Let now

L2ðða; bÞ; pðuÞduÞ be the Hilbert space of equivalence

classes of measurable real-valued functions on the interval

(a, b) which are square-integrable with respect to the

measure lðduÞ ¼ pðuÞdu.

2.1 Lancaster–Sarmanov random field class

Assume that there exists a complete orthonormal basis

fek; k � 0g, with e0 � 1, of the space L2ðða; bÞ; pðuÞduÞ
such that

o2

ouov
P XðxÞ�u;XðyÞ�v½ � ¼: pðu;v;kx�ykÞ

¼ pðuÞ pðvÞ 1þ
X1

k¼1

ckðkx�ykÞ ekðuÞ ekðvÞ
" #

; 8x;y2Rd:

ð1Þ

The family of random fields X satisfying the above con-

ditions is known as the Lancaster–Sarmanov random field

class (see, e.g., Lancaster 1958; Sarmanov 1963). Gaussian

and Gamma-correlated random fields are two important

cases within this class, with fek; k � 0g being given by the

(normalized) Hermite polynomial system in the Gaussian

case (see, for example, Peccati and Taqqu 2011), and by

the generalized Laguerre polynomials in the Gamma-cor-

related case. An interesting special case of the latter is

defined by the Chi-Square random field family.

Remark 1 Equation (1) constitutes a particular case of the

more general construction introduced in Sarmanov (1963)

involving the series expansion of transition probability

functions of Markov processes (e.g., in the particular

framework of diffusion processes). This construction is

based on the orthonormal polynomials of the infinitesimal

generator (respectively, forward operator) in the l2ðmÞ
space of square integrable functions with respect to the

invariant measure m. Specifically, in the spirit of this pio-

neer paper, one can consider the Hilbert–Schmidt integral

operator K on l2ðmÞ with kernel

Kðu; v; kx� ykÞ ¼ pðu; v; kx� ykÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðuÞ pðvÞ

p ;

satisfying

Z b

a

Z b

a

K2ðu; v; kx� ykÞpðuÞ pðvÞ du dv\1: ð2Þ

Hence, the symmetric kernel

Qðu; v; kx� ykÞ ¼ pðu; v; kx� ykÞ
pðuÞ pðvÞ ð3Þ

admits the following series expansion (see, e.g., equation

(5) in Leonenko et al. 2017):

Qðu; v; kx� ykÞ ¼
X1

k¼0

rkðkx� ykÞ ekðuÞ ekðvÞ; ð4Þ

with
P1

k¼0 r2k ðkx� ykÞ\1: In the context of Markov

processes, ekðuÞf g are the orthonormal eigenfunctions

(polynomials) of the infinitesimal generator, and p(u)du

plays the role of invariant measure (see also Theorem 1 in

Ascione et al. 2022, for the case of solvable birth-death

processes, in the special case of state space E ¼ ða; bÞ).
Additionally to the case analyzed here where rkðkx�

ykÞ ¼ ckðkx� ykÞ; one can see alternative interesting exam-

ples of the sequence of functions rkðkx� ykÞ; k� 0f g in

Sarmanov (1963) by changing the invariant measure, leading

to different definitions of the infinitesimal generator. That is

the case, for d ¼ 1, of the Jacobi Markovian diffusion with

beta marginal distributions, and Jacobi orthogonal polynomi-

als, where rkðkx� ykÞ are negative exponents of eigenvalues
of generators, which depend on k as quadratic functions (see

equation (66) in Sarmanov 1963).

It is well-known (see, e.g., Leonenko et al. 2017, and

references therein) that nonlinear transformations of these

random fields can be approximated in terms of the above

series expansions: For every u 2 L2ðða; bÞ; pðuÞduÞ,

uðxÞ ¼
X1

k¼0

Cu
k ekðxÞ; with Cu

k ¼
Z b

a

uðuÞ ekðuÞ pðuÞ du; k � 0:

ð5Þ

In particular, Cu
0 ¼ Ep½uðXÞ�. The maximum integer m

such that Cu
k ¼ 0 for all 1� k �m � 1 represents the rank

of function u in the orthonormal basis fek; k� 0g of the

space L2ðða; bÞ; pðuÞduÞ; that is,

uðxÞ ¼ Cu
0 þ

X1

k¼m

Cu
k ekðxÞ: ð6Þ

In the cases of Gaussian and Gamma-correlated subordi-

nated random fields we will refer to the Hermite and

generalized Laguerre ranks, respectively, of function u.
An interesting example is Minkowski functional

M0ðm;X;DÞ providing the random volume of the set of

spatial points within D (usually a bounded subset of Rd)

where random field X crosses above a given threshold m.
That is, denoting by k the Lebesgue measure on Rd,

M0ðm;X;DÞ ¼
Z

D

1mðXðyÞÞ dy ¼ kðSX;DðmÞÞ; ð7Þ

where
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SX;DðmÞ ¼ z 2 D : XðzÞ� mf g ¼ z 2 D : 1mðXðzÞÞ ¼ 1f g; ð8Þ

hence with uðxÞ ¼ 1mðxÞ, the indicator function based on

threshold m, i.e., 1mðxÞ ¼ 1 if x� m, and 1mðxÞ ¼ 0

otherwise.

In the Gaussian standard case, since pðuÞ ¼ 1ffiffiffiffi
2p

p exp

ð�u2=2Þ, Eq. 5 leads to

1mðxÞ ¼
X1

k¼0

GkðmÞ
k!

HkðxÞ;

where fHk; k � 0g denotes the basis of (non-normalized)

Hermite polynomials, with

GkðmÞ ¼ 1m;Hkh iL2ðða;bÞ;pðuÞduÞ

¼ 1ffiffiffiffiffiffi
2p

p expð�m2=2ÞHk�1ðmÞ; k � 1;

and G0ðmÞ ¼ 1ffiffiffiffi
2p

p
R1
m expð�u2=2Þdu ¼ 1� UðmÞ, with U

denoting the probability distribution function of a standard

normal random variable, and hence, 1� UðmÞ being the

value of the decumulative normal distribution at m:
Therefore,

M0ðm;X;DÞ ¼
X1

k¼0

GkðmÞ
k!

Z

D

HkðXðyÞÞ dy

(see Leonenko and Ruiz-Medina 2023).

The following assumption on the large-scale behavior of

the correlation function c is considered:

Assumption I.

cðkzkÞ ¼O kzk�.ð Þ; as kzk ! 1; . 2 ð0; dÞ:
ð9Þ

2.2 Information-complexity measures

Since the seminal paper by Shannon (1948), arisen in the

context of communications, Information Theory has

extraordinarily grown as a fundamental scientific disci-

pline, with a wide projection in many diverse fields of

application. In particular, a variety of information and

complexity measures have been proposed and thoroughly

studied, with the aim of characterizing the uncertain

behavior inherent to random systems.

Although most concepts have a simpler interpretation in

the case of systems with a finite number of states, in this

preliminary introduction, and in the sequel, we directly

refer to definitions for the continuous case, as is the object

of this paper. Accordingly, for a continuous multivariate

probability distribution with density function

ff ðxÞ; x 2 Rng, Shannon entropy (also called ‘differential

entropy’ in this continuous case) is defined as

Hðf Þ :¼ �
Z

Rn
lnðf ðxÞÞ f ðxÞ dx ¼ Ef ½� lnðf Þ�:

As is well known, the infimum and supremum of H(f) over

the family of probability density functions on Rn are �1
and 1, respectively. In fact, some examples of distribu-

tions where the infimum is attained can be found, for

instance, in Cadirci et al. (2020), Appendix A, and refer-

ences therein. Shannon entropy satisfies ‘extensivity’, i.e.,

additivity for independent (sub)systems.

Among various generalizations of Shannon entropy,

Rényi entropy (Rényi 1961), based on a deformation

(distortion) parameter, constitutes the most representative

one under preservation of extensivity. For a continuous

multivariate distribution with probability density function

ff ðxÞ; x 2 Rng, Rényi entropy of order q is defined as

Hqðf Þ :¼
1

1� q
ln

Z

Rn
f qðxÞ dx

� �

¼ 1

1� q
ln Ef ½f q�1�
� �

ðq 6¼ 1Þ:

As before, the infimum and supremum of Hqðf Þ are �1
and þ1, respectively. Shannon entropy H(f) is the limiting

case of Rényi entropy Hqðf Þ as q ! 1, hence also denoted

as H1ðf Þ.
In particular, Rényi entropy constitutes the basis for the

formal definition of the two-parameter generalized com-

plexity measures proposed by López-Ruiz et al. (2009),

given by

Ca;bðf Þ :¼ eHaðf Þ�Hbðf Þ;

for 0\a; b\1.

Campbell (1968) justified the interpretation of Shannon

and Rényi entropies in exponential scale (both in the dis-

crete and continuous cases) as an index of ‘diversity’ or

‘extent’ of a distribution. For the continuous case, the

diversity index of order q,

DIqðf Þ ¼ eHqðf Þ;

then varies between 0 and þ1, and

Ca;bðf Þ ¼
DIaðf Þ
DIbðf Þ

;

which leads to the interpretation of this concept of com-

plexity in terms of sensitivity of the diversity index of order

q with respect to the deformation parameter; see Angulo

et al. (2021).

Beyond the assessment on global uncertainty, diver-

gence measures are defined for comparison of two given

probability distributions at state level. As before, we here

directly focus on versions for the continuous case. For two

density functions f ðxÞ; x 2 Rnf g and gðxÞ; x 2 Rnf g, with
f being absolutely continuous with respect to g, Kullback

and Leibler (1951), following the same conceptual

20 Stochastic Environmental Research and Risk Assessment (2024) 38:17–31
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approach leading to the definition of Shannon entropy,

introduced the (directed) divergence of f from g as

KLðfkgÞ :¼
Z

Rn
f ðxÞ ln

f ðxÞ
gðxÞ

� �
dx ¼ Ef ln

f

g

� �� �
;

which, among other uses, has been widely adopted as a

meaningful reference measure for inferential optimization

purposes. Correspondingly, a generalization is given by

Rényi (1961) divergence of order q, defined as

HqðfkgÞ :¼ 1

q � 1
ln

Z

Rn
f ðxÞ f ðxÞ

gðxÞ

� �q�1

dx

 !

¼ 1

q � 1
ln Ef

f

g

� �q�1
" # !

ðq 6¼ 1Þ:

For q ! 1, HqðfkgÞ tends to KLðfkgÞ (also denoted as

H1ðfkgÞ).
Angulo et al. (2021) proposed a natural formulation of a

‘relative diversity’ index of order q as

DIqðfkgÞ ¼ eHqðfkgÞ;

meaning the structural departure of f from g in terms of the

state-by-state probability contribution to diversity. This

also gives a complementary interpretation, in terms of

sensitivity with respect to the deformation parameter of

Rényi divergence, for the two-parameter generalized rela-

tive complexity measure introduced by Romera et al.

(2011):

Ca;bðfkgÞ :¼ eHaðfkgÞ�HbðfkgÞ ¼ DIaðfkgÞ
DIbðfkgÞ ;

for 0\a; b\1.

A further step, aiming at quantifying stochastic depen-

dence between two random vectors, is achieved in terms of

mutual information measures. From the point of view of

departure from independence, divergence measures consti-

tute, in particular, a direct instrumental approach, comparing

the (true) joint distribution to the product of the corresponding

marginal distributions (hypothetical case of independence).

Thus, in the continuous case, for two random vectors X � fX

and Y � fY , with ðX; YÞ� fXY , the Rényi-divergence-based

measure of mutual information of order q is defined as

IqðX; YÞ :¼ HqðfXYkfXfYÞ; ð10Þ

including the special case

IðX; YÞ :¼ KLðfXYkfXfYÞ ¼ HðXÞ þ HðYÞ � HðX; YÞ
ð11Þ

(with the last equality not being similarly satisfied, in

general, for q 6¼ 1). Here, HðX; YÞ ¼ EfXY
� ln fXYð Þ½ �:

Related concepts and interpretations can be derived in

relation to ‘mutual complexity’ and ‘mutual diversity’ (see,

e.g., Alonso et al. 2016; Angulo et al. 2021).

These elements are applied in the next sections to

studying, under the informational approach, the large-scale

asymptotic behavior of real and infinite-dimensional val-

ued (for the spatiotemporal case) random fields of Lan-

caster–Sarmanov type.

3 Methodology: mutual information
dependence assessment

In this section, we apply Eq. 9 in the derivation of the

asymptotic order characterizing the spatial large scale

behavior of mutual information between the marginal

spatial components of Lancaster–Sarmanov subordinated

random fields. Under Assumption I, this asymptotic order

is related to the LRD parameter . of the underlying Lan-

caster–Sarmanov random field. Note that the lower values

of . correspond to higher asymptotic structural diversity

loss. Such an asymptotic order is evaluated in Sect. 3.1, in

particular, for mutual information based on Shannon

entropy.

3.1 Asymptotic analysis from Shannon mutual
information

Let fXðxÞ; x 2 Rdg be an element of the Lancaster–Sar-

manov random field class. From Eq. 1, mutual information

between component r.v.’s XðxÞ and XðyÞ can be expressed

as follows:

IðXðxÞ;XðyÞÞ

¼
Z b

a

Z b

a

pðu; v; kx� ykÞ ln
pðu; v; kx� ykÞ

pðuÞ pðvÞ

� �
dudv

¼
Z b

a

Z b

a

pðuÞ pðvÞ 1þ
X1

k¼1

ckðkx� ykÞ ekðuÞ ekðvÞ
" #

	 ln 1þ
X1

k¼1

ckðkx� ykÞ ekðuÞ ekðvÞ
 !

dudv:

ð12Þ

The following lemma shows that, under Assumption I, the

asymptotic behavior of S.ðkx� ykÞ :¼ IðXðxÞ;XðyÞÞ,
when kx� yk ! 1, involves the LRD parameter ., thus
providing an indicator of diversity loss at large scale, with

higher values attained as . gets closer to 0.

Lemma 1 Under Assumption I, the following asymptotic

behavior holds:

S.ðkzkÞ ¼ O kzk�.ð Þ; as kzk ! 1: ð13Þ
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Proof Note that pðuÞ 2 L2ðða; bÞ; pðuÞduÞ admits the ser-

ies expansion

pðuÞ¼
X1

k¼0

Cp
k ekðuÞ; with Cp

k ¼
Z b

a

½pðuÞ�2 ekðuÞdu; k�0:

From Eq. 12, applying Taylor series expansion of loga-

rithmic function at a neighborhood of 1, keeping in mind

that
P1

k¼0 Cp
k

	 
2\1; we obtain

S.ðkx� ykÞ ¼IðXðxÞ;XðyÞÞ

’
Z b

a

Z b

a

X1

k¼0

Cp
k ekðuÞ

" #
X1

l¼0

Cp
l elðvÞ

" #

	 1þ
X1

i¼1

ciðkx� ykÞ eiðuÞ eiðvÞ
" #

X1

j¼1

c jðkx� ykÞ ejðuÞ ejðvÞ
" #

dudv

¼
X1

j¼1

c jðkx� ykÞ Cp
j

h i2

þ
X1

i¼1

X1

j¼1

ciþjðkx� ykÞ

	
Z b

a

Z b

a

eiðuÞ eiðvÞ ejðuÞ ejðvÞ

pðuÞ pðvÞ dudv

¼
X1

j¼1

c jðkx� ykÞ Cp
j

h i2

þ
X1

i¼1

X1

j¼1

ciþjðkx� ykÞ di;j

ð14Þ

¼
X1

j¼1

c jðkx� ykÞ Cp
j

h i2
þ
X1

i¼1

c2iðkx� ykÞ

� sup
j� 1

Cp
j

h i2
 !

X1

j¼1

c jðkx� ykÞ

þ
X1

i¼1

c2iðkx� ykÞ

¼ sup
j� 1

Cp
j

h i2
 !

cðkx� ykÞ
1� cðkx� ykÞ

þ c2ðkx� ykÞ
1� c2ðkx� ykÞ

¼ O kx� yk�.ð Þ; as kx� yk ! 1;

ð15Þ

where in (14) we have applied the orthonormality of the basis

fejð�Þgj� 0 in the space L2 ða; bÞ; pðuÞduð Þ; and’’ denotes the

local approximation obtained when kx� yk ! 1; since

cðkx� ykÞ ! 0; and 1þ
P1

i¼1 c
iðkx� ykÞ eiðuÞ eiðvÞ

	 

!

1: Hence, for kx� yk sufficiently large, one can consider the
local approximation provided by Taylor expansion at a

neighborhood of 1.

Similarly,

S.ðkx� ykÞ ¼ IðXðxÞ;XðyÞÞ

’
X1

j¼1

c jðkx� ykÞ Cp
j

h i2
þ
X1

i¼1

c2iðkx� ykÞ

�
X1

j¼1

c jðkx� ykÞ Cp
j

h i2

� inf
j� 1

Cp
j

h i2� �X1

j¼1

c jðkx� ykÞ

¼ O kx� yk�.ð Þ; as kx� yk ! 1;

ð16Þ

where we have applied the fact that the rank of function

p 2 L2ðða; bÞ; pðuÞduÞ is equal to 1. h

For u 2 L2ðða; bÞ; pðuÞduÞ, a similar asymptotic behav-

ior is displayed by mutual information

IðuðXðxÞÞ;uðXðyÞÞÞ when kx� yk ! 1, involving the

LRD parameter . scaled by the rank m of function u in the

orthonormal basis fek; k � 0g (Hermite and general-

ized Laguerre ranks in the Gaussian and Gamma-correlated

cases, respectively). This fact is proved in the following

result.

Theorem 1 Let p(u) be, as before, the probability density

characterizing the marginal probability distributions of the

Lancaster–Sarmanov random field X ¼ fXðzÞ; z 2 Rdg.

Assume that u 2 L2ðða; bÞ; pðuÞduÞ has rank m, and is such

that uðXðzÞÞ is a discrete random variable whose state

space is finite (with cardinal N), for z 2 Rd: The following

asymptotic behavior then holds:

I uðXðxÞÞ;uðXðyÞÞð Þ ¼O kx� yk�m.ð Þ; as kx� yk!1:

ð17Þ

Remark 2 Note that applying variable change theorem,

Eq. 17 is also satisfied in the case where, for every z 2 Rd;

uðXðzÞÞ is a continuous random variable and u admits an
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inverse function u�1 having non-null derivatives over

uðða; bÞÞ: Identity (17) also holds when u is non injective

but a countable set fu�1
k ðyÞ; k 2 Ng of preimages is

associated with every point y 2 uðða; bÞÞ; with u�1
k having

non-null derivatives over uðða; bÞÞ; for k 2 N:

Proof Under Assumption I, applying Jensen’s inequality,

since fek; k� 0g is an orthonormal basis of the space

L2ðða; bÞ; pðuÞduÞ;
I uðXðxÞÞ;uðXðyÞÞð Þ

¼
XN

i¼1

XN

j¼1

ln
puðXðxÞÞ;uðXðyÞÞðui;ujÞ

puðXðxÞÞðuiÞ puðXðyÞÞðujÞ

" #

	
Z

u�1ðuiÞ	u�1ðujÞ
pðuÞ pðvÞ

1þ
X1

h¼m

chðkx� ykÞ ehðuÞ ehðvÞ
" #

dudv

� sup
i;j

ln
puðXðxÞÞ;uðXðyÞÞðui;ujÞ

puðXðxÞÞðuiÞ puðXðyÞÞðujÞ

" # !

	 N2 1þ
X1

h¼m

chðkx� ykÞ
"

Z b

a

Z b

a

pðuÞ pðvÞ ehðuÞ ehðvÞ dudv

�

¼ sup
i;j

ln
puðXðxÞÞ;uðXðyÞÞðui;ujÞ

puðXðxÞÞðuiÞ puðXðyÞÞðujÞ

" # !

	 N2 1þ
X1

h¼m

chðkx� ykÞ Ep ehð�Þ½ �
� �2

" #

� sup
i;j

ln
puðXðxÞÞ;uðXðyÞÞðui;ujÞ

puðXðxÞÞðuiÞ puðXðyÞÞðujÞ

" # !

	 N2 1þ
X1

h¼m

chðkx� ykÞkehk2L2ðða;bÞ;pðuÞduÞ

" #

¼ sup
i;j

ln
puðXðxÞÞ;uðXðyÞÞðui;ujÞ

puðXðxÞÞðuiÞ puðXðyÞÞðujÞ

" # !

	 N2 c0ðkx� ykÞ þ
X1

h¼m

chðkx� ykÞ
" #

¼ O kx� yk�m.ð Þ; as kx� yk ! 1:

ð18Þ

From (1), the following lower bound is obtained:

I uðXðxÞÞ;uðXðyÞÞð Þ

¼
XN

i¼1

XN

j¼1

ln
puðXðxÞÞ;uðXðyÞÞðui;ujÞ

puðXðxÞÞðuiÞ puðXðyÞÞðujÞ

" #

	
Z

u�1ðuiÞ	u�1ðujÞ
pðuÞ pðvÞ

1þ
X1

h¼m

chðkx� ykÞ ehðuÞ ehðvÞ
" #

dudv

� inf
i;j

ln
puðXðxÞÞ;uðXðyÞÞðui;ujÞ

puðXðxÞÞðuiÞ puðXðyÞÞðujÞ

" # !

	 N2 1þ
X1

h¼m

chðkx� ykÞ
" #"

Z

S	S

ehðuÞ ehðvÞ pðuÞ pðvÞ dudv

�

¼ inf
i;j

ln
puðXðxÞÞ;uðXðyÞÞðui;ujÞ

puðXðxÞÞðuiÞ puðXðyÞÞðujÞ

" # !

	 N2 Ep½1Sehð�Þ�
� �2h

þ
X1

h¼m

chðkx� ykÞ
" #

Ep½1Sehð�Þ�
� �2

#

� inf
i;j

ln
puðXðxÞÞ;uðXðyÞÞðui;ujÞ

puðXðxÞÞðuiÞ puðXðyÞÞðujÞ

" # !

	 N inf
h�m

Ep½1Sehð�Þ�
� �� �2

c0ðkx� ykÞ þ
X1

h¼m

chðkx� ykÞ
" #

¼ O kx� yk�m.ð Þ; as kx� yk ! 1;

ð19Þ

where S 
 ða; bÞ satisfies pðSÞ ¼ infi¼1;...;N pðu�1ðuiÞÞ
[ 0; and in the last inequality we have applied that 1S 2
L2ðða; bÞ; pðuÞduÞ with k1SkL2ðða;bÞ;pðuÞduÞ [ 0; and

Ep½1Semð�Þ�[ 0, 8m, hence infh�m Ep½1Sehð�Þ�[ 0: From

(18) and (19), Eq. 17 holds. h

3.2 Asymptotic analysis from Rényi mutual
information

This section extends the asymptotic analysis derived in the

previous section beyond the special limit case based on

Shannon entropy to the framework of Rényi mutual
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information. Hence, several interpretations arise in terms

Campbell’s diversity indices for generalized complexity

measures.

From Eq. 1, for any x; y 2 Rd, Rényi mutual informa-

tion between random components XðxÞ and XðyÞ of ran-

dom field X in the Lancaster–Sarmanov class is given by

IqðXðxÞ;XðyÞÞ

¼ 1

q � 1
ln

Z b

a

Z b

a

pðu; v; kx� ykÞ
pðuÞ pðvÞ

� �q�1
 

pðu; v; kx� ykÞ dudvÞ;

ð20Þ

for any q� 0; with q 6¼ 1:

Theorem 2 Under the conditions assumed in Lemma 1, if

sup
ðk1;...;kLÞ2NL

Ep

YL

i¼1

eki
ð�Þ

" # !2

\1 ð21Þ

for a given integer L[ 1, then, for any q� L,

IqðXðxÞ;XðyÞÞ ¼ O kx� yk�q.ð Þ; as kx� yk ! 1:

ð22Þ

Here, as before, Ep½�� denotes the expectation with respect

to the marginal probability density p.

Proof Under the conditions of Lemma 1, from Eqs. 1 and

20, and assumption (21), applying the orthogonality of the

basis fek; k � 0g in the space L2ðða; bÞ; pðuÞduÞ, for any

x; y 2 Rd, and for any integer q 2 f1; . . .; Lg, we obtain

IqðXðxÞ;XðyÞÞ ¼ 1

q � 1
ln

Z b

a

Z b

a

1þ
X1

k¼1

ckðkx� ykÞ ekðuÞ ekðvÞ
" #q 

pðuÞ pðvÞ dudvÞ

¼ 1

q � 1
ln 1þ

Z b

a

Z b

a

jQkx�ykðu; vÞjqpðuÞ pðvÞ dudv

� �

¼ 1

q � 1
ln 1þ

X

k1;...;kq

ck1þ...þkq kx� ykð Þ

0
@

	
Z b

a

Z b

a

Yq

i¼1

eki
� eki

ðu; vÞ p � pðu; vÞ dudv

!

¼ 1

q � 1
ln 1þ

X

k1;...;kq

ck1þ...þkq kx� ykð Þ Ep

Yq

i¼1

eki
ð�Þ

" #" #20
@

1
A

’ 1

q � 1

X

k1;...;kq

ck1þ...þkq kx� ykð Þ Ep

Yq

i¼1

eki
ð�Þ

" #" #20
@

1
A

� 1

q � 1
sup

ðk1;...;kqÞ2Nq

Ep

Yq

i¼1

eki
ð�Þ

" # !2
cðkx� ykÞ

1� cðkx� ykÞ

� �q

¼ C1ðqÞ
cðkx� ykÞ

1� cðkx� ykÞ

� �q

¼ O kx� yk�q.ð Þ; as kx� yk ! 1:

Here, Qkx�ykðu; vÞ denotes the kernel
P1

k¼1 c
kðkx�

ykÞ ekðuÞ ekðvÞ; for u; v 2 ða; bÞ.
Similarly, the following asymptotic behavior is

obtained:

IqðXðxÞ;XðyÞÞ

’ 1

q � 1

X

k1;...;kq

ck1þ...þkq kx� ykð Þ

0

@

Ep

Yq

i¼1

eki
ð�Þ

" #" #21

A

¼ 1

1� q
ln 1þ

X

ðk1;...;kqÞ2E1

ck1þ...þkq kx� ykð Þ

2
4

Ep

Yq

i¼1

eki
ð�Þ

" #" #2

þ
X

ðk1;...;kqÞ2NqnðE1[fð0;...;0ÞgÞ
ck1þ...þkq kx� ykð Þ

Ep

Yq

i¼1

eki
ð�Þ

" #" #23
5

� 1

q � 1
inf

ðk1;...;kqÞ2Nq
Ep

Yq

i¼1

eki
ð�Þ

" #" #2

cðkx� ykÞ
1� cðkx� ykÞ

� �q

¼ C2ðqÞ
cðkx� ykÞ

1� cðkx� ykÞ

� �q

¼ O kx� yk�q.ð Þ; kx� yk ! 1;

where

E1 ¼ fðk1; . . .; kqÞ 2 Nq : 9! l
2 f1; . . .; qg with kl � 1 and ki ¼ 0; i
2 f1; . . .; qg n flgg:

Noting that, as kx� yk ! 1,

sup
q2f1;...;Lg

C1ðqÞ �
1� cðkx� ykÞ
cðkx� ykÞ

� �q

IqðXðxÞ;XðyÞÞ

� inf
q2f1;...;Lg

C2ðqÞ;

and applying Dominated Convergence Theorem, we have

that Eq. 22 holds for q 2 ½1; L�. For q 2 ½0; 1�, the result

also holds from Theorem 1, applying a similar argument, as

I0ðXðxÞ;XðyÞÞ � 0. h

Remark 3 Condition (21) is satisfied, for example, when

the moment generating function of the marginal probability
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distributions exists. That is the case of Gaussian and

Gamma-correlated random fields.

3.3 Simulations

Let fXðxÞ; x 2 Rdg be a measurable zero-mean Gaussian

homogeneous and isotropic mean-square continuous ran-

dom field on a probability space ðX;A;PÞ; with E½Y2ðxÞ� ¼
1; for all x 2 Rd; and correlation function E½XðxÞXðyÞ� ¼
Bðkx� ykÞ of the form:

BðkzkÞ ¼ LðkzkÞ
kzka ; z 2 Rd; 0\a\d=2: ð23Þ

The correlation B of X is a continuous function of r ¼ kzk:
It then follows that LðrÞ ¼ OðraÞ; r ! 0: Note that the

covariance function

BðkzkÞ ¼ 1

ð1þ kzkbÞc
; 0\b� 2; c[ 0; ð24Þ

is a particular case of the family of covariance functions

(23) studied here with a ¼ bc; and

LðkzkÞ ¼ kzkbc

ð1þ kzkbÞc
: ð25Þ

In the present simulation study, we restrict our attention to

such a family of covariance functions. Specifically, we

have considered the parameter values b ¼ c ¼ 0:2; in the

generations of Gaussian random field X with covariance

function (24) (see Fig. 1). From ten independent copies Xi;

i ¼ 1; . . .; 10; of random field X a v210 random field is also

generated from the identity

v210ðxÞ ¼
1

2
X2
1ðxÞ þ . . .þ X2

10ðxÞ
	 


; x 2 Rd:

Its correlation function c is given by

cðkx� ykÞ ¼ Cov ðv210ðxÞ; v210ðyÞÞ
Var ðv210ð0ÞÞ

¼ B2ðkzkÞ;

where B2ðkzkÞ has been introduced in (24).

The results derived in Lemma 1, and Theorems 1 and 2

are illustrated for both models, computing Shannon and

Rényi mutual informations for the corresponding original

random variables, and for their transformed versions in

terms of indicator functions, considering an increasing

sequence of distances between the involved random vari-

ables. Specifically, a truncated version of IðXðxÞ;XðyÞÞ;
and IqðXðxÞ;XðyÞÞ; based on M ¼ 5 Hermite and Laguerre

polynomials, respectively, is computed for spatial distances

dn ¼ kxn � ynk; dn ¼ 1; . . .; 1000: The derived lower and

upper bounds are represented as well. In particular, Fig. 2

displays in green dashed line IðXðxÞ;XðyÞÞ (top-left), and
Iðv210ðxÞ; v210ðyÞÞ (top-right), IðuðXðxÞÞ;uðXðyÞÞÞ (bottom-

left), and Iðuðv210ðxÞÞ;uðv210ðyÞÞÞ (bottom-right). Here,

uðxÞ ¼ 1mðxÞ; m ¼ 0:95: The upper and lower bounds

are represented in dashed red and blue lines, respec-

tively. The values of IqðXðxÞ;XðyÞÞ; q ¼ 1:5; 2:10; 2:25;

Iqðv210ðxÞ; v210ðyÞÞ; q ¼ 2; 2:05; 2:10; IqðuðXðxÞÞ;uðXðyÞÞÞ;
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Fig. 1 Covariance function of X (left-hand side), and covariance function of v210 (right-hand side) for a regular grid of 20	 20 spatial locations,

with respect to distances in horizontal axis
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q ¼ 1:5; 1:75; 1:95; and Iqðuðv210ðxÞÞ;uðv210ðyÞÞÞ; q ¼
1:75; 1:85; 1:95; for uðxÞ ¼ 1mðxÞ; m ¼ 0:95; are also

plotted in Fig. 3. It must be observed that, as we have

checked through a large number of simulations, sensitivity

at shorter distances with respect to the deformation

parameter q depends on the polynomial basis and the

truncation order selected.

4 Spatiotemporal case: functional approach

In this section, we consider the extension of the above

introduced concepts and elements in an infinite-dimen-

sional framework. In this sense, a wider concept of diver-

sity is adopted for functional systems characterized by

separable non-countable families of infinite-dimensional

random variables, and their measurable functions.

Specifically, the departure from independence of the

components of a functional system, as displayed by spatial

white noise random fields, is measured in terms of diversity

loss in the spatial functional sample paths. Equivalently,

diversity loss is induced here by the strong interrelations

displayed by the functional random components of such

systems.

4.1 Mutual information in an infinite-
dimensional framework

The formulation of mutual information as a measure for

spatiotemporal structural complexity analysis can be

addressed for the general class of Lancaster–Sarmanov

random fields adopting the infinite-dimensional spatial

framework introduced in Angulo and Ruiz-Medina (2023).

Let X ¼ fXxð�Þ; x 2 Rdg be a zero-mean homogeneous

and isotropic spatial functional random field on the sepa-

rable Hilbert space ðH;\�; �[ HÞ, mean-square-continu-

ous w.r.t. the H norm. In the following, we will assume that

H ¼ L2ðT Þ; with T 
 Rþ. For every x; y 2 Rd,

Xxð�Þ;Xyð�Þ
� �T

is a random element in the separable Hilbert

Fig. 2 In green color, truncated

IðXðxÞ;XðyÞÞ (top-left), and
Iðv210ðxÞ; v210ðyÞÞ (top-right),
IðuðXðxÞÞ;uðXðyÞÞÞ (bottom-

left), and

Iðuðv210ðxÞÞ;uðv210ðyÞÞÞ
(bottom-right). The upper and

lower bounds are represented in

red and blue colors,

respectively. Here, uðxÞ ¼
1mðxÞ; m ¼ 0:95
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space H2; �; �h iH2

� �
of vector functions f ¼ ðf1; f2ÞT

, with

the inner product given by f;gh iH2¼
P2

i¼1 fi;gih iH ;8f;g2H2.

Thus, for every x;y2Rd, we consider the measurable

function

Xxð�Þ;Xyð�Þ
� �T

: ðX;A;PÞ �! H2;BðH2Þ;Pkx�ykðdh1; dh2Þ
� �

:

Let us denote by fPXxð�ÞðdhÞ; x 2 Rdg the marginal infi-

nite-dimensional probability distributions, with

PXxð�ÞðdhÞ ¼ PðdhÞ; for every x 2 Rd: Let L2ðH;PðdhÞÞ be
the space of measurable functions u : H �! R such thatR

H juðhÞj2PðdhÞ\1: Assume that there exists an

orthonormal basis fBk; k � 0g of L2ðH;PðdhÞÞ such that

the Radon-Nikodym derivative of the bivariate infinite-di-

mensional probability distribution Pkx�ykðdh1; dh2Þ can be

written in terms of the corresponding marginals as (see,

e.g., Ledoux and Talagrand 1991), for n;m� 1;

Fig. 3 In green color, truncated

IqðXðxÞ;XðyÞÞ; q ¼
1:5; 2:10; 2:25 (top-row);

Iqðv210ðxÞ; v210ðyÞÞ; q ¼
2; 2:05; 2:10 (second row);

IqðuðXðxÞÞ;uðXðyÞÞÞ; q ¼
1:5; 1:75; 1:95 (third row), and

Iqðuðv210ðxÞÞ;uðv210ðyÞÞÞ; q ¼
1:75; 1:85; 1:95 (fourth row).

The upper and lower bounds are

represented in red and blue

colors, respectively. As before,

uðxÞ ¼ 1mðxÞ; m ¼ 0:95
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pkx�yk;n;mðh1; h2Þ
¼ pðh1Þpðh2Þ

	 1þ
X

k� 1

Z

H

Xxð�Þ;/nð�Þh iL2ðT Þ Xyð�Þ;/mð�Þ
� �

L2ðT Þ

�"

Pkx�ykðdXxð�Þ; dXyð�ÞÞ

k

Bkðh1ÞBkðh2Þ�lðdh1; dh2Þ;

for a given orthonormal basis f/n; n� 1g of H, with

ckx�ykð/nÞð/mÞ ¼ Corr ðXxð/nÞ;Xyð/mÞÞ

¼
Z

H

Xxð�Þ;/nð�Þh iL2ðT Þ Xyð�Þ;/mð�Þ
� �

L2ðT Þ

Pkx�ykðdXxð�Þ; dXyð�ÞÞ

being the spatial correlation operator applied to the ele-

ments /n and /m of the orthonormal basis f/n; n� 1g; for
every x; y 2 Rd: Here, p(h) denotes the Radon–Nikodym

derivative of the absolutely continuous marginal infinite-

dimensional probability measure P(dh), with respect to the

uniform probability measure lðdhÞ in H, constructed from

the uniform measure on cylinder sets of H, defined from

Riesz Theorem (see, e.g., Gel’fand and Vilenkin 1968, and

Ledoux and Talagrand 1991). The bivariate uniform mea-

sure on H2 is denoted as lðdh1; dh2Þ:
Under the above setting of conditions, the resulting class

of spatial functional random fields defines the infinite-

dimensional version of Lancaster–Sarmanov random fields.

In the simulation study undertaken in the next section, we

analyze the asymptotic behavior of the Shannon entropy

based mutual information between two random compo-

nents of an element of this functional random field class.

Specifically, from the infinite-dimensional formulation of

Kullback–Leibler divergence established in Angulo and

Ruiz-Medina (2023), we consider the following version of

Shannon mutual information operator as a functional

counterpart of Eq. 12: For x; y 2 Rd, and n;m� 1;

S.ðkx� yk; n;mÞ
:¼ S.ðkx� ykÞð/nÞð/mÞ

¼
Z

H2

Pkx�yk;n;mðdh1; dh2Þ ln
pkx�yk;n;mðh1; h2Þ

pðh1Þpðh2Þ

� �

¼
Z

H2

pðh1Þ pðh2Þ

1þ
X1

k¼1

½ckx�ykð/nÞð/mÞ�k Bkðh1ÞBkðh2Þ
" #

	 ln 1þ
X1

k¼1

½ckx�ykð/nÞð/mÞ�k Bkðh1ÞBkðh2Þ
 !

lðdh1; dh2Þ:

ð26Þ

4.2 Simulation study

Let !ðuÞ, u� 0, be a completely monotone function, and

suppose further that wðuÞ, u� 0, is a positive function with

a completely monotone derivative (such functions are also

called Bernstein functions). Consider the function

Cð zk k; sÞ ¼ r2

½wðs2Þ�d=2
!

zk k2

wðs2Þ

 !
; r2 � 0; ðz; sÞ 2 Rd 	 R:

ð27Þ

Hence C is a covariance function under Gneiting’s criterion

(see Gneiting 2002). Let now consider the special case of

functions ! and w given by

!ðuÞ ¼ 1

ð1þ cucÞd
; u[ 0; c[ 0; 0\c� 1; d[ 0

wðuÞ ¼ð1þ auaÞb; a[ 0; 0\a� 1; 0\b� 1; u� 0:

ð28Þ

Note that, functions ! and w can also be written as

!ðuÞ ¼L1ðuÞ
ucd

; L1ðuÞ ¼
ucd

ð1þ cucÞd

wðuÞ ¼ L2ðuÞ
uab

� ��1

; L2 ¼
uab

ð1þ auaÞb
;

ð29Þ

where Li; i ¼ 1; 2; represent positive continuous slowly

varying function at infinity, satisfying

lim
T!1

Li Tkzkð Þ
L Tð Þ ¼ 1; i ¼ 1; 2; ð30Þ

for every z 2 Rd, d � 1, z 6¼ 0.
Applying Tauberian Theorems (see Doukhan et al.

1996; see also Leonenko and Olenko 2013, and Theorems

4 and 11 in Leonenko and Olenko 2014), their corre-

sponding Fourier transforms satisfy

b!ðkÞ ¼
Z

Rd
exp �i k; zh ið Þ!ðkzk2Þdz

� cð1; 2cdÞ
L1

1
kkk


 �

kkkd�2cd ; as kkk ! 0

bwðxÞ ¼
Z

R

exp �i x; th ið Þwðjtj2Þdt

� cð1; 2abÞ
L2

1
jxj


 �

jxj1�2ab ; as jxj ! 0;

ð31Þ
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where c d; hð Þ ¼ C d�h
2ð Þ

pd=22hCðh=2Þ ; with h ¼ 2cd; and h ¼ 2ab; for
0\2cd\d; and 0\2ab\1:

Figure 4 displays color plots surfaces of the Gaussian

spatiotemporal random field, generated with covariance

function in the Gneiting class for a ¼ 0:3; b ¼ 0:7; c ¼
0:2; and d ¼ 0:35; at times t ¼ 25; 50; 75; 100: Shannon

mutual information surfaces are evaluated from the

reconstruction formula

KSkx�yk ðt; sÞ ¼
XM

n¼1

XM

m¼1

S.ðkx� ykÞð/nÞð/mÞ/n � /mðt; sÞ

implemented for M ¼ 100: Figure 4 displays spatial cross–

sections KSkxi�yik
ðt; sÞ corresponding to spatial nodes (i, 1),

i ¼ 1; 2; 3; 4; 5 (labeled at the x-axis), and (i, 1), i ¼
6; 7; 8; 9; 10 (labeled at the y-axis), at ðt; sÞ 2 ½1; 100� 	
½1; 100�: It can be observed the same power law in the

decay of KSkx�yk ðt; sÞ as kx� yk ! 1; for each fixed

ðt; sÞ 2 ½1; 100� 	 ½1; 100�:

5 Conclusion

This paper focuses on the asymptotic mutual information

based analysis of a class of spatial and spatiotemporal LRD

Lancaster–Sarmanov random fields, as well as their sub-

ordinated forms. Persistence of memory in space is

characterized in terms of the LRD parameter, modeling the

mutual information decay representing spatial structure

dissipation at large scales. Random field subordination

affects this decay rate when the rank m of the function u
involved is larger than one. Hence, large scale aggregation

is lost up to order m. Faster decay to zero is then observed

in the corresponding asymptotic order modeling a faster

spatial structure dissipation from intermediate scales.

However, when the rank is equal to one, as illustrated here

in the case of u being the indicator function, spatial

structure dissipation occurs at the same rate, for the orig-

inal and transformed random variables. The structural

index provided by Rényi mutual information reflects some

different behaviors depending on the characteristics of the

polynomial basis (in our simulation study, Hermite or

generalized Laguerre polynomials), as well as on the range

analyzed for the q deformation parameter. Particularly, this

range induces strong changes at small spatial scales, but the

general shape of the curves reflecting asymptotic decay is

invariant, and displays a power law involving the LRD and

the deformation parameters.

In the spatiotemporal case, the class of Lancaster–Sar-

manov random fields is introduced in a spatial functional

framework. The simulation study undertaken shows a

similar asymptotic behavior at spatial large scale level, i.e.,

power law decay of the mutual information surfaces, which

is accelerated at coarser temporal scales. Thus, time

varying asymptotic orders are obtained characterizing the

Fig. 4 The surfaces values at

times t ¼ 25; 50; 75; 100 of the

Gaussian spatiotemporal

random field generated with

covariance function in the

Gneiting class are displayed
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spatial diversity loss in a functional framework, under an

increasing domain asymptotics. Similar results will be

derived, in a subsequent paper, regarding the asymptotic

analysis of Shannon and Rényi mutual information mea-

sures, in an infinite-dimensional framework, in terms of

time-varying spatial local complexity orders associated

with a fixed domain asymptotics, reflecting limiting

behaviors at high resolution levels.
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