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Abstract: Systemic lupus erythematosus (SLE) is a multifactorial disorder with contributions from
hormones, genetics, and the environment, predominantly affecting young women. Cardiovascular
disease is the primary cause of mortality in SLE, and hypertension is more prevalent among SLE
patients. The dysregulation of both innate and adaptive immune cells in SLE, along with their
infiltration into kidney and vascular tissues, is a pivotal factor contributing to the cardiovascular
complications associated with SLE. The activation, proliferation, and differentiation of CD4+ T
cells are intricately governed by cellular metabolism. Numerous metabolic inhibitors have been
identified to target critical nodes in T cell metabolism. This review explores the existing evidence and
knowledge gaps concerning whether the beneficial effects of metabolic modulators on autoimmunity,
hypertension, endothelial dysfunction, and renal injury in lupus result from the restoration of a
balanced immune system. The inhibition of glycolysis, mitochondrial metabolism, or mTORC1
has been found to improve endothelial dysfunction and prevent the development of hypertension
in mouse models of SLE. Nevertheless, limited information is available regarding the potential
vasculo-protective effects of drugs that act on immunometabolism in SLE patients.
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1. Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized
by multisystemic inflammation and organ damage manifestations that affect the skin,
joints, kidneys, heart, lungs, blood, and the central nervous system [1]. Autoantibodies
targeting the cell nucleus are present in 99% of SLE patients, and autoantibodies specific to
double-stranded DNA (anti-dsDNA) have been identified in more than 70% of patients [2].
Even though the presence of anti-dsDNA is predictive in 95% of SLE cases, a more ex-
tensive immune dysregulation is involved in the etiopathogenesis of SLE, although the
exact cause of SLE remains unclear [3]. In a study by Wang et al., mitochondrial DNA
(mtDNA) was detected in neutrophils with extracellular traps (NETs) [4]. The researchers
observed elevated levels of anti-mtDNA antibodies in SLE patients compared to control
subjects, which were significantly correlated with disease activity. Moreover, the pres-
ence of anti-mtDNA antibodies was disproportionately associated with lupus nephritis
and showed a stronger correlation with the lupus nephritis activity index compared to
anti-dsDNA levels [4].

SLE is a complex disorder influenced by a combination of hormonal, genetic, and
environmental factors, primarily affecting young women (with a female-to-male ratio of 9 to
1) and typically manifesting during the reproductive years. The leading cause of mortality in
SLE is cardiovascular disease (CVD), which can be attributed to a combination of risk factors
such as hypertension, dyslipidemia, and a prothrombotic state. Increased atherosclerosis
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has already been demonstrated in SLE [5]. SLE has been linked to a proatherogenic
lipid profile that includes elevated total cholesterol, triglycerides, low-density lipoprotein
cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) [6]. The most
common abnormality seen in SLE patients is a decrease in HDL-C. The prevalence of
dyslipidemia was 36% at the time of diagnosis and 60% at 3-year follow-up in a cohort of
918 SLE patients [7,8]. In this study, the prevalence of other traditional risk factors, such
current smoking and diabetes, at enrollment was 13.7% and 3.4%, respectively, which was
also increased through the follow-up [7,8]. Furthermore, metabolic syndrome is recognized
as a proinflammatory state that may contribute to premature atherosclerosis and diabetes
development in SLE patients, increasing their CVD risk. Metabolic syndrome is more
common in SLE patients [9]. A recent systematic review and meta-analysis looked at the
risk of CV events and CV risk factors in adult SLE patients. When compared to adults
without SLE, the relative risk (RR) of hypertension was higher at 2.7, whereas the RRs
of diabetes and metabolic syndrome were elevated but not statistically significant [10].
However, while traditional Framingham risk factors may contribute to CVD pathogenesis
in SLE patients, they cannot fully explain the increased CVD risk in SLE patients [11].
Indeed, certain SLE-specific factors may play a role in CVD onset and progression in
SLE patients. Additionally, another contributing factor to cardiovascular disease in SLE
is the presence of elevated antiphospholipid antibodies, which can directly induce pro-
inflammatory and prothrombotic effects on the endothelium and disrupt coagulation by
inhibiting annexin A5, thereby negating its antithrombotic and protective effects [12].

Zhao M et al. reported that 71.9% of SLE patients had hypertension, and a significant
portion of them, specifically 74.4%, were either undertreated or not treated at all [13].
Despite the high prevalence of hypertension among SLE patients, current hypertension
management guidelines do not address the specific needs of individuals with autoimmune
disorders like SLE. This has led healthcare providers to rely on recommendations designed
for the general population, lacking data from comprehensive clinical trials within the SLE
patient group [14]. Consequently, many patients with this autoimmune disease do not
receive the appropriate antihypertensive medications they may require [15].

Nevertheless, limited research has been conducted to explore the underlying patho-
physiological mechanisms responsible for hypertension in SLE [16]. It is possible that part
of the challenge in controlling blood pressure in autoimmune disease patients is due to
an incomplete understanding of the pathophysiological mechanisms in SLE. Emerging
evidence suggests that T helper (Th)17 cells may play a role in the development of hyper-
tension in SLE [17,18]. The activation, proliferation, and differentiation of CD4+ T cells
are intricately regulated by cellular metabolism, and the use of metabolic modulators has
shown potential for benefiting individuals with SLE-associated hypertension.

In this context, our focus is on the evidence supporting the notion that metabolic
modulators, aimed at improving the impaired CD4+ T cell metabolism in SLE, could serve
as a therapeutic alternative in managing hypertension in SLE patients.

2. Systemic Lupus Erythematosus and Arterial Hypertension

Hypertension stands as the leading risk factor for the progression of renal, vascular,
and cardiac diseases in the general population [19], which is exacerbated by immune-
mediated mechanisms in SLE patients. Multiple studies highlight the elevated prevalence
of hypertension in women with SLE. Women aged 35 to 44 with SLE are 50 times more likely
to experience a cardiac event, such as infarction or angina, than individuals of the same
age without the condition [12,20]. Nonetheless, there is a scarcity of mechanistic studies on
hypertension in SLE, and the precise underlying mechanisms remain unknown [21].

The renal pathological mechanisms related to autoimmune-induced hypertension
remain incompletely understood. It is established that a loss of self-tolerance results in
the production of autoantibodies. These autoantibodies form complexes, which deposit
into tissues such as the kidneys, leading to the activation of other immune cells and the
complement system. This, in turn, triggers the local secretion of inflammatory mediators,
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promoting chronic renal inflammation and oxidative stress [22]. These processes can
potentially disrupt fluid and electrolyte balance in the kidneys or lead to renal vascular
dysfunction, subsequently causing hypertension [23].

Various animal models of SLE have been employed to investigate the genetic and
immunological mechanisms contributing to this autoimmune disorder. The NZBWF1
mouse model, utilized for over four decades, closely resembles human lupus nephritis.
These mice exhibit features like immunocomplex deposition in glomeruli, high plasma
levels of anti-dsDNA, albuminuria, and hypertension between 25–30 weeks of age [24]. In
both female humans with SLE and the NZBWF1 mouse model, lupus nephritis precedes
hypertension. This provides an opportunity to study the contributing factors to hyper-
tension in the context of chronic renal inflammation [25]. However, like humans, it exists
a disparity between nephritis and blood pressure in animal models of SLE. For instance,
MRL/lpr, BXSB, and NZBWF1 mice develop glomerulonephritis, but only the NZBWF1
mouse model develops hypertension [26]. Hence, the NZBWF1 model is especially valuable
for understanding the pathophysiology of hypertension in SLE.

Several factors contribute to hypertension in this model, including altered renal hemo-
dynamics, endothelial dysfunction, changes in the inflammatory cytokine profile, oxidative
stress, dysfunction in the adaptive immune system, and sex hormones [21]. However, it is
important to note that hypertension in this lupus mouse model is not salt-sensitive [27]. This
precludes the use of diuretics as a treatment option. Nevertheless, angiotensin-converting
enzyme inhibitor drugs (ACEIs) like captopril and enalapril delay the onset of renal dam-
age and reduce blood pressure, while cyclophosphamide treatment does not have effect
in blood pressure [28,29]. Moreover, captopril reduced chronic renal lesions by reducing
TGF-beta expression in the kidneys but had no effect on autoantibody production [30].

Recently, a murine model of lupus induced by topical administration of imiquimod,
a toll-like receptor (TLR) 7 agonist, in the ears of BALB/c mice has been established [31].
These mice develop splenomegaly, autoantibody production, and glomerulonephritis with
immunocomplex deposition within 4–6 weeks. Furthermore, they exhibit elevated levels
of type I interferon, a result of TLR7 activation. It is worth noting that gain-of-function
variants of TLR7 have been linked to lupus nephritis [32]. This model has also shown signs
of endothelial dysfunction [33] and hypertension [18], indicating that TLR7 endosomal
receptor activation, triggered by self-antigens (ds-DNA and ssRNA), may contribute to
lupus-associated vasculopathy.

Additionally, we have observed an approximately 2.5-fold increase in TLR7 expres-
sion in the vascular wall (unpublished data) in hypertensive NZBWF1 mice. However,
the relevance of this finding to the occurrence of endothelial dysfunction in this model
remains unknown. In another murine model induced by pristane to mimic SLE, which is
widely used to evaluate potential therapeutic agents resembling human idiopathic lupus
syndrome [34], hypertension, chronic inflammation, and endothelial dysfunction were
also observed [35].

There is limited evidence regarding the impact of first line SLE therapies on blood
pressure. Corticosteroids, the most commonly used agents for all autoimmune diseases,
have been associated with hypertension in SLE patients. Furthermore, women who had
used prednisone for a longer period and had a higher cumulative dose of prednisone,
as well as those who had previously had a coronary event, were more likely to have
plaque [36]. On the other hand, mycophenolate mofetil (MMF) and hydroxychloroquine
have demonstrated beneficial effects on blood pressure, independently of additional an-
tihypertensive treatments and existing renal disease [37]. Several mechanisms by which
hydroxychloroquine may protect against vascular injury have been proposed in mouse
studies, including the reduction of vascular oxidative stress via antioxidant action in a
mouse model of SLE [17,38] and the regulation of endothelial nitric oxide synthase in
a mouse model of antiphospholipid syndrome [39]. Novel immunomodulatory drugs
like belimumab and anifrolumab offer promising options for regulating immune system
activation in SLE, but their effects on renal inflammation and hypertension in SLE have re-
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ceived limited investigation. Other new immunomodulatory drugs include JAK inhibitors
(jakinibs), which inhibit the downstream cellular effects of various cytokines, including
type I IFNs and cytokines involved in neutrophil development and function. Jakinib tofac-
itinib was shown to be effective in reversing lupus symptoms and vascular dysfunction
in mice, as well as inhibiting netosis [40]. Short-term use of tofacitinib in SLE patients
with mild–moderate disease activity was safe and improved arterial stiffness [41]; however,
long-term clinical studies are needed to determine whether this treatment confers benefits
for SLE patients addressing CV morbidity and mortality, especially given a reported link
between thrombosis and JAK inhibition [42].

2.1. Role of Endothelial Function in SLE Hypertension

A substantial number of individuals with SLE exhibit signs of subclinical vascular
disease that precede the onset of atherosclerosis. These subclinical changes include the
development of endothelial dysfunction (with preserved vascular smooth muscle func-
tion) [43], arterial wall thickening, and coronary perfusion abnormalities [44]. Multiple
studies emphasize the prominent impact on the endothelium in SLE.

A meta-analysis of 25 case-control studies encompassing 1313 SLE patients and
1012 healthy controls, utilizing a random effects model, revealed that SLE patients ex-
hibited lower brachial artery endothelium-dependent flow-mediated dilation compared
to healthy controls [45]. Notably, diabetes mellitus, renal disease, and diastolic hyperten-
sion are significant contributors to endothelial dysfunction in SLE patients [45]. However,
whether endothelial dysfunction plays a causal role in SLE-associated hypertension or is
merely an associated condition remains uncertain.

Possible mechanisms underlying endothelial dysfunction in SLE encompass neto-
sis, endotoxemia, and an imbalance between pro-inflammatory and anti-inflammatory
cytokines, leading to reduced nitric oxide (NO) bioavailability, endothelial leakage, and
impaired endothelial repair (Figure 1). The decreased vasodilator response to acetylcholine
in NZBWF1 mice is observed before the onset of proteinuria and elevated blood pressure,
suggesting that these early vascular function changes may contribute to the development
of hypertension in SLE [46]. The specific causes of endothelial dysfunction in the NZBWF1
model are not yet completely understood. Oxidative stress and proinflammatory cytokines
have been proposed as potential factors contributing to hypertensive endothelial dysfunc-
tion in SLE.

Our research has indicated that endothelial nitric oxide synthase (eNOS) expression in
the aorta of NZBWF1 mice remains unaltered [17]. However, we have observed a reduction
in the phosphorylation of its activation site, Ser-1177, and no changes in the NO- cyclic
guanosine monophosphate (cGMP) pathway signaling [47]. Additionally, we have iden-
tified an increased production of oxygen free radicals (ROS), mediated by the activation
of the NADPH oxidase (NOX) system, which appears to be responsible not only for en-
dothelial dysfunction but also for the development of hypertension. The administration of
antioxidants (tempol + apocynin) restored endothelial function and reduced blood pressure
in lupus mice [17]. Similarly, in pristane-induced SLE mice, endothelial dysfunction was
associated with eNOS uncoupling and overexpression of NOX-1 [48].

The alterations in endothelial function observed in the NZBWF1 model may be linked
to the vascular proinflammatory state triggered by circulating autoantibodies and proin-
flammatory cytokines (tumor necrosis factor (TNF)α, interferon (IFN)γ, interleukin (IL)-17,
and IL21), or the infiltration of immune cells, particularly Th17 lymphocytes, into the
vascular wall [47,49]. The proinflammatory cytokine IL-17 is known to induce endothelial
dysfunction in the vasculature through Rho-kinase-mediated mechanisms [50], possibly
due in part to increased ROS generation via NOX activation [51]. In contrast, IL-10, the
primary cytokine released by Tregs, is known to attenuate NOX activity [52]. In SLE mice,
elevated levels of plasma endotoxins were observed. Activation of TLR-4 in vessels with
bacterial products such as lipopolysaccharide (LPS) can lead to increased NOX-dependent
O2

− production and inflammation [53]. The endothelial dysfunction identified in human
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umbilical vein endothelial cells (HUVECs) acutely induced (within 24 h) by plasma from lu-
pus patients with active nephritis is associated with ROS production generated sequentially
by endoplasmic reticulum stress and NOX activation [54].
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specific factors, such as impairment of endothelial repair, endothelial dysfunction and arterial stiffness
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oxide synthase; ECs, endothelial cells; EPCs, endothelial progenitor cells; ER, endoplasmic reticulum;
FcRs, Fc receptors; IFN, interferon; IL, interleukin; NETs, neutrophil extracellular traps; NO, nitric
oxide; LPS, lipopolysaccharide; TLR, Toll-like receptors; VSMCs, vascular smooth muscle cells.

The innate immune system’s role in SLE pathogenesis is of special interest, with current
research identifying neutrophils, neutrophil extracellular traps (NETs), and IFN signaling as
disease progression and endothelial dysfunction drivers. By cleaving vascular endothelial
cadherin with neutrophil elastase present within NETs, NETs can promote vascular leakage
and endothelial-to-mesenchymal transition, increasing beta-catenin signaling, which may
have profibrotic effects in SLE patients [55]. Furthermore, endothelial progenitor cell
loss and dysfunction have been linked to elevated serum levels of type I IFNs in SLE
patients [56] and in mouse models of lupus [57,58], suggesting a role for SLE-specific
immune dysregulation in contributing to an imbalance of increased endothelial damage
and reduced vascular repair/angiogenesis. In addition, IFN-α has been shown to alter
NO signaling via transcriptional control of eNOS expression, resulting in decreased NO
generation in insulin-stimulated HUVECs, which contribute to endothelial dysfunction [59].

Large artery stiffness is caused by the deterioration of the anatomical features of the
arterial wall, which results in a decrease in the elastin-to-collagen ratio. Vascular stiffness
is an outcome of hypertension rather than its cause. When compared to controls, SLE
patients had higher arterial stiffness [60,61]. Arterial stiffness, as well as associated features
of reflected pulse waves in the artery, may contribute to systolic blood pressure and pulse
pressure rises. Endothelial dysfunction and collagen deposition in the extracellular matrix
are both important factors in arterial stiffness. Moreover, in young patients with SLE, there
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was a significant positive correlation of arterial stiffness with triglyceride-rich lipoproteins,
although the cause–effect relationship of this link was not established [62].

2.2. Immune System and Hypertension in SLE

It is now commonly accepted that aberrant immune system activation is linked to the
development of hypertension, both in humans and experimental models. In fact, there
have been numerous genetic polymorphisms associated with hypertension described that
exert effects on the immune response [63]. Non-specific immunosuppressive therapies,
such as cyclophosphamide, have been proven in experimental models of spontaneous
non-autoimmune hypertension to not only prevent the development of hypertension but
also to lower blood pressure in animals with established hypertension [64]. Similarly,
MMF, an immunosuppressive therapy frequently used in SLE patients to suppress T and B
lymphocyte proliferation, has been effective in attenuating the development of hypertension
in various experimental models and in humans [65–67]. Several studies have found a link
between circulating autoantibodies, which are seen in systemic autoimmune diseases, and
essential hypertension in humans.

SLE is a chronic autoimmune disorder characterized by the hyperreactivity of B and
T lymphocytes due to a loss of tolerance to self-antigens, resulting in the production of
pathogenic autoantibodies, particularly against nuclear components. However, it remains
unclear whether the autoantibodies produced in SLE contribute mechanistically to the
development of hypertension in these patients. The immunization process leading to the
abnormal production of autoantibodies in SLE is partly attributed to the delayed clear-
ance of apoptotic cells. Our research has demonstrated that the activation of peroxisome
proliferator-activated receptors β/δ (PPARβ/δ) plays a crucial role in the proper clearance
of deceased cells by macrophages in the NZBWF1 model, which has been associated with a
reduction in elevated blood pressure [47].

Animal models of SLE are critical in understanding the relationship between au-
toantibodies and hypertension. As previously stated, the NZBWF1 mouse model closely
resembles key characteristics of clinical SLE, including autoantibody generation, immune-
complex-mediated kidney damage, and hypertension. Recent studies have shown that
long-term B cell depletion using anti-CD20 successfully reduced autoantibody synthesis
and prevented the onset of hypertension in SLE mice [68]. Furthermore, continuous ad-
ministration of the immunosuppressive medication MMF selectively lowered B cells while
preventing the development of hypertension [69]. These data unequivocally indicate a
relationship between B cells, autoantibodies, and the onset of hypertension. However, it
is important to highlight that these treatments were only beneficial when started before
the commencement of the disease. Similarly, treatment efforts targeting B cells in humans,
such as anti-CD20 (rituximab), have had minimal effectiveness in large controlled clinical
studies [70]. It has been suggested that the low efficacy is due in part to the persistence of
plasma cells, which are not the target of B cell treatments.

Plasma cells take up residence in the bone marrow and spleen for extended peri-
ods, ranging from months to years, and are primarily responsible for producing serum
immunoglobulins, including SLE autoantibodies. The depletion of plasma cells using
the proteasome inhibitor bortezomib has been demonstrated to diminish autoantibody
production and alleviate hypertension in female NZBWF1 mice. Collectively, these findings
indicate that the mechanistic link between autoantibody production and autoimmune-
associated hypertension involves plasma cells [71].

Autoantibody production and the clinical severity of lupus in NZBWF1 mice prone to
the disease are contingent on the assistance of CD4+ T cells [72]. Activated B cells migrate to
areas rich in T cells within secondary lymphoid organs, where they recruit antigen-bound
T cells. Subsequently, B cell differentiation occurs, either extrafollicularly into plasmablasts,
with limited antibody production capacity, or by transitioning along the follicular pathway,
forming germinal centers (GCs). Within GCs, follicular T-helper (Tfh) cells facilitate somatic
hypermutation and isotype switching of B cells, culminating in the generation of long-lived
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plasma cells capable of producing high-affinity antibodies [73,74]. In a murine model of SLE,
a connection between increased Tfh cell numbers and the development of autoimmunity
has been established [75,76], suggesting that anomalies in the positive selection of Tfh cells
could lead to systemic autoimmunity. Tregs also play a role in regulating the production of
lupus-associated antibodies, including anti-dsDNA [77]. A substantial inverse correlation
has been observed between Tregs and anti-dsDNA levels [78]. Although the precise role
of Tregs in the pathogenesis of SLE remains to be fully elucidated, expanding Tregs could
pose a potential challenge in the treatment of SLE, especially in terms of inducing B cell
tolerance. Additionally, it has been postulated that Th17 cells, a subset of T cells, might
be responsible for the abnormal selection of autoreactive B cells in GCs and the humoral
response in vivo [79]. Collectively, inhibiting the differentiation of Tfh cells into Th17 cells
and B cells into long-lived plasma cells, alongside expanding Tregs, could emerge as novel
treatment options for SLE, centered on diminishing autoantibody production. Furthermore,
the expansion of Treg cells through low-dose IL-2 has been shown to alleviate hypertension
in NZBWF1 mice [80], while the neutralization of IL-17, the primary proinflammatory
cytokine produced by Th17 cells, has been found to ameliorate endothelial dysfunction and
reduce high blood pressure in SLE mice induced by TLR7 activation [18].

A vital clinical objective for patients with autoimmune diseases is the induction of
tolerance. To attain this objective, a monoclonal antibody to CD3+ (anti-CD3), a subunit of
the T cell co-receptor complex expressed on the surface of all T cells, has been utilized in
both preclinical and clinical studies. It induces peripheral tolerance by expanding Treg cells
and promoting the elimination of apoptotic bodies. Treatment of female NZBWF1 mice
with anti-CD3 has reduced T and B cell hyperactivity, circulating anti-dsDNA levels, and
the development of hypertension, irrespective of changes in renal injury. These findings
suggest that anti-CD3 therapy, which mitigates immune system hyperactivity during
autoimmune disease, may confer clinical advantages in attenuating cardiovascular risk
factors, such as hypertension [81].

Conventional dendritic cells (DCs) are antigen-presenting cells that regulate the func-
tion of immature CD4+ T cells through cytokine production. The depletion of DCs in lupus
MRL/lpr mice has been found to reduce autoimmune pathology and levels of autoantibod-
ies. Surprisingly, this depletion had little impact on spontaneous CD4+ T cell activation,
indicating that B cells, rather than DCs, are responsible for activating autoreactive CD4+ T
cells. B cells activate CD4+ T cells differently than DCs. In general, B cells may play a more
crucial role in CD4+ T cell activation in lupus, at least partly due to their chronic activation
via the self-antigen-induced stimulation of endosomal TLR7 and TLR9 receptors mediated
by the adaptor myeloid differentiation primary response protein 88 (MyD88). It has been
noted that in vivo, B cells from lupus mice promote enhanced differentiation of CD4+ T
cells into Th1 and Tfh cells while limiting the expansion of Treg cells to a greater extent
than B cells from non-lupus mice [82].

In both SLE patients and SLE murine models, there was a significant enrichment of
isolevuglandin-adducted proteins (isoLG adducts) in monocytes and DCs. Treatment of
SLE-prone animals with the selective isoLG scavenger 2-hydroxybenzylamine (2-HOBA)
improved several autoimmune measures, including plasma cell growth, circulating IgG
levels, and anti-dsDNA antibody titers. Furthermore, 2-HOBA reduced blood pressure,
reduced kidney damage, and decreased inflammatory gene expression, notably in C1q-
expressing DCs. As a result, isoLG adducts play an important role in the development and
maintenance of systemic autoimmunity and hypertension in SLE [83].

Neutrophils from MRL/lpr mice produce NETs faster than control mice. These
MRL/lpr mice also generate autoantibodies against NETs and show signs of endothe-
lial dysfunction. Inhibition of peptidylarginine deiminase (PAD) reduces NET formation
and safeguards against lupus-related vascular damage in the New Zealand Mixed model
of lupus [84] and MRL/lpr mice [85].

Several recent studies suggest that the gut microbiota may contribute to the onset of
symptoms and the progression of autoimmune disease in both human and mouse models
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of SLE [86–91]. Notably, we have reported that the gut microbiota plays a role in the
development of hypertension in both female NZBWF1 mice [92] and SLE mice induced by
TLR7 activation [93]. In both murine models, the vascular changes induced by hypertensive
SLE microbiota were linked to Th17 infiltration in the vasculature. Strategies aimed at
modifying the gut microbiota composition in SLE, through the chronic consumption of
probiotics, prebiotic fibers, or postbiotics, resulted in the restoration of Th17 polarization in
gut secondary lymphoid organs. This, in turn, reduced Th17 infiltration in the vascular wall,
improved vascular function, and lowered high blood pressure [49,94–96]. In summary,
these findings suggest that the dysregulation of innate and adaptive immune cells in
SLE and their infiltration into kidney and vascular tissues are key events associated with
cardiovascular complications in SLE.

3. The Role of Cellular Metabolism in the Pathogenesis of SLE

As previously mentioned, autoreactive CD4+ T cells play a crucial role in SLE. Conse-
quently, both SLE patients and mice prone to lupus exhibit elevated numbers of activated
CD4+ T cells [97], and increased populations of Th1 and Th17 lymphocytes [98]. Further-
more, lupus-prone mice display signaling deficiencies in CD4+ T cells [99]. Mice lacking
IFN-γ or IL-17 are protected against autoantibody production and the development of
glomerulonephritis. Therefore, reducing Th1 and Th17 cells presents a promising approach
for SLE treatment, involving the reduction of CD4+ T cell activation, proliferation, and
differentiation upon antigen exposure.

These processes in CD4+ T cells are intricately regulated by cellular metabolism
(Figure 2). Quiescent T cells have a low energy demand and can support oxidative
metabolism with glucose, lipids, and amino acids. T cell receptor activation increases
glycolysis and mitochondrial metabolism. Overexpression of the glucose transporter Glut1
in mice resulted in CD4+ T cell hyperactivation, hypergammaglobulinemia, and immuno-
logical complex-mediated nephritis, demonstrating the importance of glucose metabolism
in autoimmunity [100]. Cellular metabolism also governs the differentiation of effector
T cells and the formation of memory cells. Th1, Th2, and Th17 cells primarily rely on
glycolysis, while Treg cells and long-lived memory T cells exhibit higher rates of lipid
oxidation [101]. As a result, CD4+ T lymphocytes rely on glycolysis to perform inflamma-
tory effector tasks. However, the role of these mechanisms in lupus is unknown. When
lupus-prone B6.Sle1.Sle2.Sle3 (TC) mice are compared to non-autoimmune controls, both
glycolysis and mitochondrial oxidative metabolism are increased in CD4+ T cells.

The triple congenic TC mouse model (Sle1, Sle2, and Sle3) carries three NZM2410-
derived lupus susceptibility loci (Sle1, Sle2, and Sle3) on a non-autoimmune C57BL/6 (B6)
strain. TC mice spontaneously develop symptoms similar to SLE patients, such as anti-
dsDNA immunoglobulin G production and a high rate of fatal immune-complex-mediated
glomerulonephritis. The Sle1c2 susceptibility locus corresponds to Esrrg gene expression,
which contributes to CD4+ T cell activation and enhanced IFN-γ secretion. Esrrg controls
cell metabolism by increasing mitochondrial oxidative phosphorylation [102].

Inhibition of the glycolytic pathway promotes differentiation into Treg cells, which are
deficient in SLE. Treg cells rely on exogenous fatty acids and mitochondrial metabolism
during differentiation [101].

Glutamine is an essential substrate for lymphocyte functions, playing a vital role
in differentiating CD4+ T lymphocytes into inflammatory cell types, such as Th1 and
Th17 [103]. Glutaminase 1 (Gls1), the first enzyme in glutaminolysis, converts glutamine to
glutamate. Kono et al. demonstrated that Gls1 inhibition with bis-2-(5-phenylacetamido-
1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) reduced Th17 differentiation and ameliorated
lupus-like disease in MRL/lpr mice [104]. Additionally, enhanced mitochondrial functions,
such as oxidative phosphorylation through glutaminolysis in B cells, induce plasmablast
differentiation, correlating with disease activity scores in SLE patients. BPTES reduced
oxidative phosphorylation, ROS production, and plasmablast differentiation, suggesting
its potential as a therapeutic agent for SLE [105].
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The understanding of how cellular metabolism influences immune cell activity has
advanced dramatically in recent years, with T cells leading the way among other immune
cell types [106]. Quiescent T cells produce ATP via oxidizing glucose, fatty acids, or
glutamine. Several metabolic inhibitors impair important nodes of T cell metabolism
(Figure 2). T cell metabolism has been recommended as a target for immunotherapy due
to the dramatic variations in metabolic requirements and the crucial function of effector T
cells in autoimmune disorders [107].

4. Metabolic Modulators and SLE

Multiple defects in immune metabolism have been observed in lupus patients and
murine models of the disease [108]. Dysfunctional CD4+ T cell metabolism has been
identified, making it a potential therapeutic target in both murine and human SLE. However,
aside from CD4+ T cells, metabolic modulators can also directly impact other immune
cell types in vivo. Glucose metabolism is crucial for B cell functions [109]. Both glycolysis
and mitochondrial metabolism also play a vital role in the activation and maturation of
DCs [110,111], which can indirectly affect T cells.

Metformin, a mitochondrial chain complex I inhibitor, and 2-deoxy-D-glucose (2DG), a
glucose metabolism inhibitor, both inhibited IFN-γ production in vitro, though at different
phases of activation. In vivo, the treatment of TC mice and other lupus models, including
NZBWF1, with metformin and 2DG restored T cell metabolism and disease biomarkers,
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albeit their impact on the development of vascular dysfunction and hypertension was not
tested. Furthermore, SLE patients’ CD4+ T cells had enhanced glycolysis and mitochondrial
metabolism, which was associated with their activation state. Metformin considerably
reduced their excessive IFN-γ production in vitro. Metformin also inhibited the type 1
IFN response in human CD4+ T lymphocytes via interfering with mitochondrial respira-
tion [112]. These findings suggest that normalizing T cell metabolism through the dual
inhibition of glycolysis and mitochondrial metabolism is a promising therapeutic target for
SLE [113]. Moreover, treatment with the lactate production inhibitor, dichloroacetate, did
not effectively prevent or reverse autoimmune pathology [114].

Metformin inhibited systemic autoimmunity in Roquinsan/san mice, a novel murine
SLE model, by suppressing the differentiation of marginal zone B (MZB) cells and B
lymphocytes into plasma cells, leading to a significant reduction in GC formation. Con-
cerning T cells, metformin treatment resulted in a significant decrease in Tfh and Th17
cell populations, while increasing the Treg population. Metformin treatment also elevated
AMP-activated protein kinase (AMPK) activity in splenic CD19+ B cells and CD4+ T cells
in Roquinsan/san mice, while attenuating the expression levels of their downstream mam-
malian target of rapamycin (mTOR)/signal transducer and activator of transcription protein
3 (STAT3) signals. The mTOR signaling operates through two complexes: mTOR complex
(mTORC)1 and mTORC2. mTORC1 is crucial for Th17 differentiation and inhibits Treg dif-
ferentiation by suppressing Foxp3 expression. In SLE T cells, mTORC1 activity is increased,
whereas mTORC2 activity is decreased. These findings suggest that an AMPK induction
strategy could offer a novel therapeutic approach for lupus nephritis [115]. Recent research
has demonstrated that metformin enhances the immunomodulatory potential of adipose
tissue-derived mesenchymal stem cells, thus increasing their protective effects in lupus
MRL/lpr mice [116]. Additionally, metformin alleviated kidney injury in lupus nephritis by
suppressing renal necroptosis and inflammation through the AMPK/STAT3 pathway [117].
Notably, it has been observed that the protective effect of glycolysis inhibition in lupus is
transferable through the gut microbiota, directly linking alterations in immunometabolism
to gut dysbiosis in the hosts [118]. In a clinical trial, the metformin add-on group exhibited
a 51% reduction in the frequency of flares in lupus patients compared to the conventional
treatment group (comprising corticosteroids and immunosuppressive agents). Metformin
demonstrated steroid-sparing effects, although no significant differences were observed
between the two groups regarding overall prednisone exposure. Furthermore, metformin
effectively reduced body weight in SLE patients, impacting both patient well-being and car-
diovascular risk [4]. A multi-center, randomized, double-blind, placebo-controlled trial (the
“Met Lupus” Trial) was conducted to further assess the efficacy and safety of metformin in
Chinese SLE patients with low-grade activity (baseline SELENA-SLEDAI ≤6, prednisone
≤20 mg/day) at risk of flares (with a documented flare within 12 months before screening).
However, this trial faced recruitment challenges, preventing a definitive conclusion. Post
hoc pooled analyses suggested that metformin reduced subsequent disease flares in patients
with SLE who had low disease activity, especially in serologically quiescent patients [119],
although its impact on plasma autoantibody levels and blood pressure was not determined.
It was observed that metformin may have a synergistic effect with hydroxychloroquine,
whereas no such effect was observed with other immunosuppressants, such as MMF [119].

Apart from its impact on immune cells, metformin may also mitigate tissue injury
associated with lupus manifestations. Oxidative stress and mitochondrial damage have
been observed in the kidneys of patients with lupus nephritis, as well as in animal models
of the disease [120]. They have also been observed in the liver of lupus-prone mice [121]
and in vascular tissues of murine hypertensive SLE mice [17]. Other end-organ targets of
lupus pathogenesis likely exhibit similar oxidative stress. It is important to independently
evaluate their response to metformin beyond immune cells. Furthermore, SLE patients
are more likely to have metabolic syndrome, which includes insulin resistance and ele-
vated fasting blood glucose levels [122–124]. Additionally, impaired metabolism predicts
coronary artery calcification in women with SLE [125]. Some of these individuals may
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be prescribed metformin to treat hyperglycemia, potentially lowering the oxidative stress
associated with metabolic syndrome and lupus symptoms. However, very few, if any, data
have been published to show metformin’s non-immune protective benefits in SLE.

In addition to the beneficial effect of the dual inhibition of glycolysis and mitochondrial
metabolism by metformin and 2-DG on autoantibody production and disease progres-
sion, other metabolic modulators have also been evaluated in SLE. Rapamycin, which
has mTORC1-inhibiting properties, promotes Treg expansion in untouched T cells and
reduces disease activity in MRL/lpr mice [126], proving effective in patient’s refractory to
conventional treatment [127]. Treatment with N-acetylcysteine, a glutathione precursor
that blocks mTOR, reduced mortality in NZBWF1 mice [128] and reduced disease activity
in SLE patients [129]. A clinically approved inhibitor of glycosphingolipid biosynthesis,
N-butyldeoxynojirimycin, normalized CD4+ T cell functions and decreased anti-dsDNA
antibody production by autologous B cells in SLE patients [130]. 3PO, 3-(3-pyridinyl)-
1-(4-pyridinyl)-2-propen-1-one, an antagonist of 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatases (PFKFB3), an enzyme controlling a limiting step in glycolysis, prevented
the development of imiquimod-induced T cell-mediated delayed-type hypersensitivity
and psoriasis in mice [131]. Endothelial cells are highly dependent on glycolysis for migra-
tion and proliferation, and PFKFB3 gene deletion in endothelial cells inhibits intraplaque
angiogenesis and lesion formation in a murine model of venous bypass grafting [132].
Moreover, the damage to bone marrow endothelial progenitor cells, which are dysfunc-
tional in SLE, was mitigated by PFKFB3 inhibition with 3-PO [133], suggesting potential
protective cardiovascular effects of glycolysis inhibition.

It will be important to determine whether lupus mice that develop hypertension
exhibit abnormal metabolism in other immune and non-immune cell compartments, such
as endothelial cells, and whether the metabolism of these cells is altered following in vivo
and in vitro treatment with metabolic modulators.

Despite the relevant data regarding the protective effects of metabolic modulators in
reducing autoimmunity and protecting the kidneys in SLE, there is limited evidence regard-
ing their vascular effects. We discovered that the chronic treatment of female NZBWF1 mice
with a combination of metformin and 2DG restored splenic Th17/Tregs polarization and
reduced disease biomarkers. Remarkably, they improved endothelial dysfunction and pre-
vented the development of hypertension (Figure S1). Likewise, chronic mTORC1 inhibition
with rapamycin also enhanced disease activity, vascular oxidative stress, endothelial func-
tion, and high blood pressure in female NZBWF1 mice (Figure S1). These vasculo-protective
effects were associated with reduced Th17 infiltration. Recently, a randomized double-blind
clinical trial study demonstrated that N-acetylcysteine treatment reduced vascular compli-
cations in SLE [134]. Idebenone, a synthetic quinone analog of coenzyme Q10, enhances
electron transfer chain function by bypassing deficient complex I activity and increasing
the amount of ATP synthesized, thereby improving mitochondrial physiology, reducing
the aberrant production of mROS, the formation of NETs and the activation of the type
I IFN pathway. In fact, in MRL/lpr mice, idebenone-treated mice exhibited a significant
reduction in autoimmunity and lupus nephritis, and improved endothelium-dependent
vasorelaxation, suggesting that this drug could target SLE vasculopathy [135].

5. Conclusions

Numerous pharmacological strategies aimed at restoring dysfunctional metabolism
in immune cells, including the inhibition of glycolysis, mitochondrial metabolism, or
mTORC1, have shown promising results in improving endothelial dysfunction and pre-
venting the development of hypertension in mouse models of SLE. However, there is
limited information available regarding the vasculo-protective effects of drugs targeting
immunometabolism in SLE patients. The key points are included in Table 1.
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Table 1. Key points.

Key Points

• SLE is associated with several complications, including hypertension and endothelial
dysfunction, which promotes a significantly increased risk of stroke and myocardial
infarction, although the etiology remains unclear.

• The establishment and progression of endothelial dysfunction in SLE are regulated by
immunological cells’ imbalance and pro-inflammatory cytokines, together with higher ROS
production and arterial stiffness.

• The dysregulation of innate and adaptive immune cells in SLE and their infiltration into
kidney and vascular tissues are key events associated with cardiovascular complications in
SLE, where CD4+ T cells play a crucial role.

• T cells depend on glycolysis for inflammatory effector functions (Th1/Th17), while Tregs
exhibit higher rates of lipid oxidation, pointing to T cell metabolism as a target
for immunotherapy.

• Metformin, 2DG, and rapamycin are promising metabolic modulators that have
demonstrated beneficial effects on autoimmunity and vascular dysfunction in SLE mice.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines11123142/s1, Figure S1: Protective effects of metabolic
modulators on autoimmunity, hypertension, and endothelial dysfunction in female NZBWF1 mice.
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