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This paper proposes an Intrusion Detection System (IDS) employing the Harris Hawks Optimization algorithm 
(HHO) to optimize Multilayer Perceptron learning by optimizing bias and weight parameters. HHO-MLP aims 
to select optimal parameters in its learning process to minimize intrusion detection errors in networks. HHO-

MLP has been implemented using EvoloPy NN framework, an open-source Python tool specialized for training 
MLPs using evolutionary algorithms. For purposes of comparing the HHO model against other evolutionary 
methodologies currently available, specificity and sensitivity measures, accuracy measures, and mse and rmse 
measures have been calculated using KDD datasets. Experiments have demonstrated the HHO MLP method 
is effective at identifying malicious patterns. HHO-MLP has been tested against evolutionary algorithms like 
Butterfly Optimization Algorithm (BOA), Grasshopper Optimization Algorithms (GOA), and Black Widow 
Optimizations (BOW), with validation by Random Forest (RF), XGBoost. HHO-MLP showed superior performance 
by attaining top scores with accuracy rate of 93.17%, sensitivity level of 89.25%, and specificity percentage of 
95.41%.
1. Introduction

Computer networks are a group of interconnected nodes that are 
distributed within a local or wide geographic area to allow end-users 
to transmit and receive data over a communication medium (wired 
or wireless). The primary goals of building a computer network are 
to share resources (hardware, software, or data), to communicate be-

tween remote users using (digital audio, digital video, or text), and to 
provide various types of services such as web services (the World Wide 
Web) and application services (databases), and communication services 
(social networks). Recently, there has been remarkable progress in the 
networking field by designing different types of networks that differ 
based on several criteria such as typologies, protocols, architectures, 
and size [1].
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One of the serious problems that may arise in computer networks 
is security and privacy breaches [2]. Digitization facilitates the work of 
hackers to carry out their criminal missions and cause security disas-

ters. Cyber attackers take advantage of weaknesses within a network to 
infiltrate and cause disruptions or even bring it down altogether. A dis-

tributed denial-of-service (DDoS) attacks are a common security threat. 
They involve flooding a server with fake requests to clog up network 
channels and block legitimate requests [3]. Other security problems 
may occur by running malicious code on a server that changes or dis-

rupts the functionality of the network [4].

Intrusion or unauthorized access takes place when network users 
exceed the privileges assigned to them [5]. Therefore there are a set 
of rules and practices that prevent any illegal access to the network. 
Intrusion detection systems (IDS) are typically implemented using a 
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software-driven method. They identify abnormal behavior in a network 
and pinpoint evidence of security breaches. This system is crucial in 
protecting digital environments against potential threats and unautho-

rized entry. Signature and anomaly detection methods are the two main 
categories of IDS [6]. Both methods rely on analyzing network traffic 
to detect malicious patterns. However, the main difference is in the de-

tection process. Signature-based methods detect malicious patterns like 
malware, while anomaly-based detection methods monitor any devia-

tion from normal activity [7].

Anomaly detection methods typically use machine learning algo-

rithms to increase network security [8,9]. This depends on some fea-

tures that help the algorithm distinguish regular traffic from malicious 
ones. Recent investigations have utilized various machine learning tech-

niques to create efficient network intrusion detection systems [10]. 
Meta-heuristic techniques are often used in network IDS design to re-

duce the discrepancy between malicious and legitimate traffic detec-

tion. [11].

Swarm-based algorithms are meta-heuristic algorithms that simulate 
the natural survival of animals in nature [1,12]. They are based on solid 
mathematical methodologies that reflect the social relations of animals 
that live in groups such as the colonies of bees, flocks of birds, and 
swarms of wolves. Swarm-based algorithms have proved their efficiency 
in solving various optimization problems. HHO is a swarming algorithm 
that inspires the hunting mechanism of Harris’s Hawks when they find 
and pounce on their prey.

HHO has been used in different applications for solving several op-

timization problems [13–15]. The main reason behind selecting HHO 
in this work is that it has a suitable opportunity to utilize its features 
to build a reliable secure network IDS. The main features of HHO that 
encouraged using it for optimizing network security are: that it can ef-

fectively balance between exploring the search regions and exploiting 
them using a single parameter that controls the energy of the Hawks. 
It also uses an adaptive update strategy, which changes the position of 
the solutions in the search area in a time-varying fashion [16]. This al-

lows the number of best solutions to decrease relative to increasing the 
number of iterations. HHO also has four stages of exploitation which 
enhance the local search and help the optimizer overcome some search 
problems such as premature convergence.

The suggested solution makes use of the HHO to enhance network-

based IDS’s ability to detect malicious traffic by choosing the best multi-

layer perceptron parameters [17]. The selection of MLP over other 
classification methods is because MLP is a simple structure neural net-

work. This means that it can produce accurate detection results within 
a promising running time compared with other complex deep-learning 
methods. Detection time is an important factor that a researcher must 
consider when designing a network IDS.

The following is how the paper is set up: Some of the earlier rel-

evant studies are described in section 2 The specifics of the HHO and 
MLP algorithms are presented in section 3. The new evolutionary IDS 
is described in section 4. Section 5 displays the experimental methodol-

ogy and the outcomes. The key conclusions and the future directions of 
the work are summarized in section 6.

2. Literature review

This section presents some of the latest research that proposed 
evolutionary-based methodologies for building promising and reliable 
security-aware network IDS. For more information about evolutionary-

based IDS systems, a reader can refer to the survey [18].

Pozi et al. (2016) [19] introduced an innovative technique for de-

tecting rare attacks by combining Support Vector Machines (SVMs) and 
Genetic Programming (GP). Their proposed GPSVM method demon-

strated its remarkable capability of accurately detecting rare and 
anomalous attacks with increased precision. The study’s findings 
showed that GPSVM maintained comparable levels of accuracy while 
2

achieving a greater detection rate for uncommon attacks. More specif-
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ically, GPSVM detected DoS attacks with an outstanding 94.56% geo-

metric mean detection rate. Notably, this study did not employ feature 
selection or resampling techniques; its findings demonstrate the effi-

ciency of the GPSVM approach in rare attack detection. Furthermore, 
this method could potentially enhance the accuracy and reliability of 
intrusion detection systems while strengthening overall network secu-

rity.

Ali [20] developed a PSO FLN IDS model, which is based on the prin-

ciples and techniques of Particle Swarm Optimization (PSOs) and Fast 
Learning Networks. This model’s primary objective is to optimize val-

ues for neurons in hidden layers. The PSO FLN model, which achieved 
an impressive accuracy of 99.68% during testing was developed to com-

bat the problem of decreased precision for certain categories due to a 
lack of training data.

The authors in [21] conducted an innovative network intrusion de-

tection system by employing the Firefly algorithm (FA) to improve 
K-means clustering efficiency. Their proposed approach was tested 
against six other clustering methodologies such as K-Means enhanced 
by Cuckoo, K-Means with Bat, K-Means++, Canopy, and Farthest First; 
with its results showing it outperforming traditional classification tech-

niques by attaining an outstanding recall rate of 72.6%.

Chen et al. [22] described how an IDS was developed using fuzzy 
clustering techniques implemented within a cloud computing infras-

tructure, using fuzzy clustering as its foundation. Experimental results 
demonstrated this approach was capable of considering 10 attack types 
simultaneously while outperforming alternative models with an accu-

racy rate of 80

Mohammadi (2019) [23] developed an IDS by employing cluster-

ing techniques. His method involved combining cuttlefish algorithms 
and Decision Trees (DT) for optimal system performance; his results 
achieved remarkable accuracy (95.03%) and detection rates (95.23%), 
with minimal false-positive rates (1.65%). These performances out-

shone any established methods found in scholarly works.

Kalaivani [24] developed an effective IDS utilizing the Artificial 
Bee Colony (ABC) algorithm for cloud environments. He successfully 
employed his proposed classification model with 96% accuracy - far 
surpassing other methods. Further work will include improving exist-

ing classifiers as well as creating hybridized classification systems with 
even greater performance potential.

Ren et al. [25] conducted an innovative IDS by combining SVM, DT, 
and Genetic Algorithm (GA). SVM served as the learning mechanism, 
while DT provided feature selection functionality, and GA provided 
optimization techniques to improve FS processes. Comparable with ex-

isting algorithms, this integrated model showed remarkable proficiency 
at identifying infrequent anomalous behaviors with an impressive ac-

curacy rate of 93.55%. This advanced system could potentially have 
applications in other areas of anomaly detection such as fraudulent 
activities; however, the training process for classifiers may be time-

consuming, suggesting there could be additional optimization of search 
strategies.

Elhag [26], designed a fuzzy network IDS approach that was based 
on using a multi-objective evolutionary algorithm which allowed the 
users to select the solutions that are best suited for the network features. 
It achieved (accuracy=98.10%). Comparing the proposed method with 
FARC-HDclassifiers, FARCHD with OVO, and C4.5 decision trees, the 
high quality of this methodology was demonstrated. The proposed 
method achieved a good balance between Precision and interpretability 
in all cases.

Benmessahe [27], developed a reliable network IDS called (FNN-

LSO-IDS) based on Locust Swarm Optimization (LSO) and Feed-forward 
Neural Network (FNN). This method improves the detection rate and 
convergence speed, as well as reliability, due to a reduced chance of 
being caught in local minima.

The authors in [28] presented an innovative method for detect-

ing abnormal traffic using an RNN implemented within the Apache 

Spark Framework. The authors reported outstanding IDS evaluation 
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metrics, such as detection accuracy, detection rate, and false alarm 
rate, for their UNSW-NB15 dataset, with scores of 95.42%, 99.33%, 
and 9.40% achieving detection accuracy; 94.02% 89.83% and 2.21% 
were achieved with NSL-KDD dataset respectively. These scores out-

shone those obtained through other training techniques, demonstrating 
the promise of their ENN (FNN-LSO) approach for creating practical 
IDSs. However, experiments were performed only on subsets of datasets; 
therefore the authors acknowledged that additional research with larger 
datasets and more powerful hardware infrastructure is required to con-

firm their approach’s efficacy. Still, their results provided promising 
directions for future IDS research.

Naik [29], proposed a technique based on Teaching-Learning Based 
Optimization (TLBO), the Functional Link Neural Nets (FLANN), mu-

tation operation, and elitism to build a reliable IDS that can deliver 
accurate security results. Mutation operations provide an efficient so-

lution for handling redundant parameters, avoiding palindrome occur-

rences while also dramatically increasing the efficiency of the method. 
By decreasing computational load, the proposed technique shows an 
impressive 96.30% detection rate.

Almomani et al. (2020) [30], presented a feature-based technique 
for network IDS. This study incorporated four meta-heuristic advanced 
techniques: Grey Wolf Optimization (GWO), Particle Swarm Optimiza-

tion (PSO), Firefly Algorithm (FA), and Genetic Algorithm (GA). These 
strategies were used to improve the performance of IDS. This multi-

faceted approach, which harnessed the strengths of every algorithm, 
aimed to enhance the IDS’s capabilities in identifying potential security 
threats and mitigating them. By employing wrapper methods in com-

bination with MI filter methods, this system was able to select features 
effectively for intrusion detection. With using the J48 classifier as part 
of its proposed methodology, classification accuracy rates reached be-

tween 79.175% and 90.484% when employing classification accuracy 
rates between 80.1750%-90.5484%. Applying SVM classifiers yielded 
classification accuracy rates ranging from 79.077% to 90.119%. These 
results demonstrate the success of feature selection processes by show-

ing that most feature reduction rules in proposed models outperformed 
those that utilized all available features, demonstrating their efficacy as 
part of a selection process. They advise that, despite positive results ob-

tained, further advanced learning structures like Recurrent Neural Nets 
(RNNs) and Convolutional Neuronal Networks be explored for compre-

hensive evaluation of model performance and efficiency.

In [9] a new approach was proposed based on enhancing the MFO 
by adopting new operators besides the embedded spiral operator to bal-

ance the exploration and exploitation alleviating the local minima prob-

lem. The main contribution of this work is the adoption of the cosine 
similarity measure to binarize the continuous MFO into a binary prob-

lem. Cosine similarity overcomes the limitations of the commonly used 
sigmoid function that depends on using a threshold value for conver-

sion. However, cosine similarity computes the similarity ratio between 
the current solution and the optimal solution. The augmented MFO 
wrapper framework was applied as an IDS to detect anomalous traf-

fic in the network. The proposed method was compared against several 
well-known state-of-the-art algorithms on three network datasets (KD-

DCUPP9, NSL-KDD, and UNSW-NB15), using IDSACC, IDSTPR, IDSFPR, 
IDSF-score, and convergence evaluation measures to assess the perfor-

mance of the proposed method. The experimental results demonstrated 
the superiority of the proposed cosine similarity method compared to 
other algorithms with an accuracy of 97.8%, F-score of 99%, TPR of 
99.6%, and FPR of 8.1% using only five selected features from the KD-

DCUPP99 dataset. It achieved the accuracy of 89.7%, TPR of 89.1%, 
FPR of 2.9%, when four selected features from the NSL-KDD dataset are 
used. And finally, it achieved an accuracy of 92.4%, TPR of 92.3%, FPR 
of 3%, and F-score 94.2% when the UNSW-NB15 dataset is used.

In [31], the authors proposed a hybridization of modified binary 
GWO and PSO. The proposed solution used two benchmarking datasets, 
NSL KDD’99 and UNSW-NB15, and the results revealed that the pro-
3

posed solution outperformed the existing solutions, as the proposed 
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approach improved the detection accuracy by approximately 0.3% to 
12%, and the detection rate by 2% to 12%. In addition, it reduces 
false alarm rates by 4% to 43%, and reduced the number of features 
by approximately 31% to 75%. Last, the proposed approach reduced 
processing time by approximately 14% to 22% compared to state-of-

that-art approaches.

Overall, machine learning techniques have a major impact on de-

signing IDS that are capable of improving the security of different types 
of networks. This idea can be used by researchers to continue this line 
of research by proposing different optimization algorithms, new en-

hancement operators, and novel updates to be evaluated and tested on 
different network datasets and in different processing platforms. This 
opens the opportunity for cybersecurity researchers to be up to date 
and provide state-of-the-art solutions capable of addressing new chal-

lenging security breaches emerging in networks. The main positives of 
the proposed methodology, is to simultaneously optimize the number 
of selected features in addition to optimizing the parameters of the 
MLP neural network. Optimizing the feature set and the parameters 
of the MLP can generate a better model for classifying the malicious 
and normal traffic. So that the classification results produce fewer er-

rors and better performance accuracy. The most recent HHO algorithm 
in particular was chosen because of its outstanding attributes for adap-

tive convergence and balancing the exploration and exploitation stages 
of search results. This significantly improves the classification perfor-

mance of the optimizer and helps alleviate local minima. This research’s 
main contributions can be summed up as follows:

• Introduction and implementation of the novel HHO-MLP approach. 
In this approach, HHO serves as an initial preprocessing step which 
helps accelerate the FS process and ensures MLP learns about 
relevant and informative network traffic features. HHO can also 
optimally assign weight and bias values for improved model per-

formance. MLP uses multiple layers of hidden nodes instead of 
relying on just one or two to obtain more accurate results compared 
to traditional methods. This innovative architecture is intended to 
produce more precise outcomes compared to their counterparts.

• Utilization of an extensive set of features and instances within 
network intrusion detection datasets enables models to develop a 
deeper understanding of their data, leading to improved predic-

tions.

3. The proposed detection methodology

We examine the research methods used in our investigation in this 
section of the paper. The HHO algorithm and MLP are the two main 
parts of this strategy. We’ll go over each of these separately.

3.1. HHO algorithm

HHO inspires Harris’s Hawks strategy to hunt and capture prey in 
the environment. Heidari [32] developed the HHO methodology in such 
a way there are two exploration strategies and four exploitation strate-

gies.

Fig. 1 depicts the two approaches employed by HHO.

3.1.1. HHO exploration strategies

HHO applies two strategies for perching based on the value of a 
random variable 𝑞. When 𝑞 ≥ 0.5 in, the first technique is implemented. 
Eq. (1) and the second technique is used when 𝑞 ≥ 0.5 in Eq. (1).

𝐻(𝑖𝑡𝑒𝑟+ 1)

=

⎧⎪⎪⎨⎪⎪
𝐻𝑟𝑎𝑛𝑑𝑜𝑚(𝑖𝑡𝑒𝑟) − 𝑟1𝐻𝑟𝑎𝑛𝑑𝑜𝑚(𝑖𝑡𝑒𝑟) − 2𝑟2𝐻(𝑖𝑡𝑒𝑟)
, 𝑞 ≥ 0.5
(𝐻𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) −𝐻𝑚(𝑖𝑡𝑒𝑟)) − 𝑟3(𝐿𝑜𝐵𝑜+ 𝑟4(𝑈𝑝𝐵𝑜−𝐿𝑜𝐵𝑜))
, 𝑞 < 0.5

(1)
⎩
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Fig. 1. HHO exploration and exploitation strategies.

where the location of the Hawks in the following cycle is 𝐻(𝑖𝑡𝑒𝑟 + 1)
Prey’s location is 𝑖𝑡𝑒𝑟, 𝐻𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟), and the solutions’ current location 
is 𝐻(𝑖𝑡𝑒𝑟). In the range of (0,1), 𝑟1, 𝑟2, 𝑟3, 𝑟4, and 𝑞 are all random 
values. The variables’ highest and lowest values are shown by 𝐿𝑜𝐵𝑜
and 𝑈𝑝𝐵𝑜, respectively. The random solution is called 𝐻𝑟𝑎𝑛𝑑𝑜𝑚(𝑖𝑡𝑒𝑟), 
and the average position of the current swarm of solutions is called 
𝐻𝑚. The average hawk location is calculated using Eq. (2):

𝐻𝑚(𝑖𝑡𝑒𝑟) =
1
𝑁

𝑁∑
𝑖=1

𝐻𝑖(𝑖𝑡𝑒𝑟) (2)

where N is the total number of solutions, and 𝐻𝑖(𝑖𝑡𝑒𝑟) is the position of 
each solution in a given iter.

HHO alternates between the global and local search phases before 
moving between the various exploitation phases. Prey energy is calcu-

lated as follows:

𝐸 = 2𝐸0(1 −
𝑖𝑡𝑒𝑟

all-iter
) (3)

where 𝐸 is the power of the prey, all-iter is the total number of cycles, 
and 𝐸0 is the starting energy that randomly changes in (-1, 1) at each 
cycle.

3.1.2. HHO exploitation strategies

In the HHO, there are four potential exploitation methods. Assume 
that the chance for a prey to successfully escape is (𝑟 <0.5) and that the 
chance of a prey being unsuccessful in escaping is (𝑟 ≥0.5).

• SB: 𝑟 ≥ 0.5 and 𝐸 ≥ 0.5.

𝐻(𝑖𝑡𝑒𝑟+ 1) = Δ(𝐻(𝑖𝑡𝑒𝑟) −𝐸𝐽𝐻𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) −𝐻(𝑖𝑡𝑒𝑟)) (4)

Δ𝐻(𝑖𝑡𝑒𝑟) =𝐻𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) −𝐻(𝑖𝑡𝑒𝑟) (5)

where Δ𝐻(𝑖𝑡𝑒𝑟) is the difference between the prey and the current 
location in cycle 𝑖𝑡𝑒𝑟, 𝑟5 is a random value in (0,1), and 𝐽 = 2(1 −
𝑟5) is the random jump strength of the prey. The 𝐽 value changes 
randomly in each cycle.

• HB: 𝑟 ≥0.5 and 𝐸 <0.5. Eq. (6):

𝐻(𝑖𝑡𝑒𝑟+ 1) =𝐻𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) −𝐸Δ𝐻(𝑖𝑡𝑒𝑟) (6)

• SB-PRD: 𝐸 ≥0.5 but 𝑟 <0.5. The levy flight (LeFl) is applied in 
4

Eq. (7):
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𝑌 =𝐻𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) −𝐸𝐽𝐻𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) −𝐻(𝑖𝑡𝑒𝑟) (7)

The LeFl is applied as in Eq. (8).

𝑍 = 𝑌 +𝑆𝑖𝑧𝑒 ×𝐿𝑒𝐹 𝑙(𝐷𝑖𝑚) (8)

where 𝐷𝑖𝑚 is the dimensionality of the problem and 𝑆𝑖𝑧𝑒 is a ran-

dom vector by size 1 × 𝐷𝑖𝑚 and LeFl is the levy flight function, 
which is shown in Eq. (9):

𝐿𝑒𝐹 𝑙(𝑥) = 0.01 × 𝑢 × 𝜎

𝑣
1
𝛽

, 𝜎 = (
Γ(1 + 𝛽) × 𝑠𝑖𝑛( 𝜋𝛽2 )

Γ( 1+𝛽2 ) × 𝛽 × 2(
𝛽−1
2 ))

)
1
𝛽 (9)

where 𝑢 and 𝑣 are two arbitrary quantities that lie within an open 
interval (0,1); these random variables may take any value between 
0 and 1, including endpoints. Assume 𝛽 remains constant by as-

signing it a numerical value of 1.5. SB strategy can be applied as in 
Eq. (10):

𝐻(𝑖𝑡𝑒𝑟+ 1) =
{

𝑌 𝑖𝑓𝐹 (𝑌 ) < 𝐹 (𝐻(𝑖𝑡𝑒𝑟))
𝑍 𝑖𝑓𝐹 (𝑍) < 𝐹 (𝐻(𝑖𝑡𝑒𝑟)) (10)

where 𝑌 and 𝑍 are obtained using Eq. (7) and Eq. (8).

• HB-PRD

When |𝐸| <0.5 and 𝑟 <0.5, the following equation is applied:

𝐻(𝑖𝑡𝑒𝑟+ 1) =
{

𝑌 𝑖𝑓𝐹 (𝑌 ) < 𝐹 (𝐻(𝑖𝑡𝑒𝑟))
𝑍 𝑖𝑓𝐹 (𝑍) < 𝐹 (𝐻(𝑖𝑡𝑒𝑟)) (11)

where 𝑌 and 𝑍 are computed in Eq. (12) and Eq. (13).

𝑌 =𝐻𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) −𝐸𝐽𝐻𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) −𝐻𝑚(𝑖𝑡𝑒𝑟) (12)

𝑍 = 𝑌 +𝑆𝑖𝑧𝑒 ×𝐿𝑒𝐹 𝑙(𝐷𝑖𝑚) (13)

where 𝐻𝑚(𝑖𝑡𝑒𝑟) is computed in Eq. (2).

3.1.3. Pseudo-code of HHO

HHO algorithm can be represented using Algorithm B as shown in 
Algorithm 1.

Algorithm 1 HHO pseudo-code.

Inputs: The total number of cycles (𝑇 ) and the swarm size (𝑁)

Outputs: The prey’s location and fitness worth

random initialization of the swarm 𝐻𝑖(𝑖 = 1, 2, … , 𝑁)
while (there have been fewer iterations than T) do

Calculate the solutions’ fitness values.

Modify the prey’s location to 𝐻𝑝𝑟𝑒𝑦

for (every (𝐻𝑖)) do

alter 𝐸0 and 𝐽 ⊳ E0=2random()-1, J=2(1-random())
alter the 𝐸 using Eq. (3)

if (|𝐸| ≥ 1) then

alter the hawk’s position by Eq. (1)

if (|𝐸| < 1) then

if (𝑟 ≥0.5 and |𝐸| ≥ 0.5 ) then

alter the hawk’s position by Eq. (4)

else if (𝑟 ≥0.5 and |𝐸𝑛𝑒𝑟𝑔𝑦| < 0.5 ) then

alter the hawk’s position by Eq. (6)

else if (𝑟 <0.5 and |𝐸| ≥ 0.5 ) then

alter the hawk’s position by Eq. (10)

else if (𝑟 <0.5 and |𝐸| < 0.5 ) then

alter the hawk’s position by Eq. (11)

Return 𝐻𝑝𝑟𝑒𝑦

3.2. MLP architecture

The Artificial neural network (ANN) has been commonly used as a 
learning algorithm to perform a training process on a given data in-

stance and generate a pattern (data model) that is used then to predict 
the output of another hidden part of the dataset in the testing process. 
The MLP connects the neurons in the hidden layer with 𝑛 weights and 

one bias [33,34]. Each hidden neuron performs two primary functions: 
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the summation as illustrated in Eq. (14) and the activation as illustrated 
in Eq. (15). Neuron 𝑗 that performs a summation operation then uses its 
activation function to transform its output, producing results which are 
further used for computation within its neural network. Each neuron’s 
functionality in a neural network depends on two key processes - sum-

mation function and activation function - both combining input signals 
from various neurons into aggregate sums that are then transformed by 
activation into specific output values that can then be further processed 
through subsequent computations within its network.

𝑆𝑢𝑚𝑗 =
𝑛∑

𝑖=1
𝑤𝑖𝑗 × 𝐼𝑖 + 𝑏𝑗 (14)

Where 𝑤𝑖𝑗 stands for the weight between the nodes of the input and 
hidden layers, respectively, and 𝑏𝑗 stands for the bias in favor of the 
hidden node, respectively.

𝑦𝑗 = 𝑓𝑢𝑛𝑐(𝑠𝑢𝑚𝑗 ) (15)

where 𝑦𝑗 represents the output neuron 𝑗, 𝑗 = 1, 2, ..., 𝑚, and 𝑓𝑢𝑛𝑐, as 
stated in Eq. (16).

𝑓𝑢𝑛𝑐(𝑠𝑢𝑚𝑗 ) =
1

1 + 𝑒−𝑠𝑢𝑚𝑗
(16)

Using the summing and activation functions as stated in EEq. (17) and 
Eq. (18), the final outputs 𝑌𝑗 are calculated based on the outputs of all 
hidden neurons.

𝑆𝑢𝑚𝑗 =
𝑚∑
𝑖=1

𝑤𝑖𝑗 × 𝑦𝑗 + 𝑏𝑗 (17)

where 𝑏𝑗 is the bias of the output neuron 𝑗, and 𝑤𝑖𝑗 is the weight 
between the hidden neuron 𝑖 and the neuron 𝑗 in the output layer.

𝑌𝑗 = 𝑓𝑢𝑛𝑐(𝑠𝑢𝑚𝑗 ) (18)

where the same sigmoid function as in Eq. (16) is utilized in 𝑓𝑢𝑛𝑐, 𝑌𝑗 , 
𝑗 = 1, 2, ..., 𝑘, and 𝑌𝑗 is the final output 𝑗.

4. System design and implementation of the proposed HHO-MLP

The proposed HHO-MLP relies on reducing the error in predicting 
network intrusions. To reduce the output error, the proposed HHO-MLP 
applies several steps as follows:

• One-dimensional arrays that represent the results of the HHO algo-

rithm are used to encode the weights and biases of the MLP.

• The fitness function that calculates the intrusion detection error 
rate in each iteration of the optimization process is used to evaluate 
each member of the HHO swarm.

• An adaptive update strategy is implemented at each iteration to 
change the position of the swarm solutions and facilitate the 
switching between searching globally and locally.

• The HHO converges in the latest stages towards the best solution 
that represents the optimal weights and biases. These values of 
weights and biases are then used to build the architecture of the 
MLP.

Fig. 2 shows the steps of proposed HHO-MLP steps for performing 
intrusion detection in networks. Based on the flowchart, the first step is 
to encode the MLP in the HHO.

Two subprocesses make up the proposed HHO-MLP’s preprocessing 
stage: data normalization and feature selection-based dimensionality re-

duction. The network data needs to be reduced and standardized before 
training. This refers to putting all network traffic feature values inside 
a certain range, as [a,b]. Eq. (19) shows the normalization equation.

𝑓𝑟− min-traf
5

𝑓𝑟 =
max-traf −min-traf

(𝑁𝑏−𝑁𝑎) +𝑁𝑎 (19)
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Fig. 2. Flowchart of the HHO-MLP.

where 𝑓𝑟 is the normalized value, 𝑓𝑟 is the abnormalized value of the 
traffic features, min-traf and max-traf, are the lower and upper bound of 
the traffic, 𝑁𝑏, 𝑁𝑎 are the limits of the normalization range. If the nor-

malization range is in the [0,1], then the normalization of the equation 
is shown in Eq. (20)

𝑓𝑟− min-traf

𝑓𝑟 =

max-traf − min-traf
(20)
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Normalizing the network traffic helps increase the classification ac-

curacy. The next preprocessing step is dimensionality reduction which 
is based on implementing the feature selection process. The feature se-

lection is carried out using the HHO algorithm. To represent the feature 
vector, a solution in the HHO algorithm’s population is employed. The 
value of ‘0’ for the feature vector means that the associated feature is 
not chosen whereas the value ‘1’ means that the associated feature is 
chosen. Eq. (21) shows the feature vector of the network traffic that 
represents a Harris hawk or a solution in the population of the HHO 
algorithm.

𝐻𝐻𝑂𝑖 = [𝐹𝑟1
𝑖
, 𝐹 𝑟2

𝑖
, 𝐹 𝑟3

𝑖
, ..., 𝐹 𝑟𝐷

𝑖
] (21)

𝐻𝐻𝑂𝑖 is a Harris hawk or a solution in the swarm of the HHO al-

gorithm. This represents a feature vector in the network traffic. 𝐹𝑟
𝑗

𝑖
is 

the 𝑗𝑡ℎ element of the feature array 𝑖 and 𝐷 is the dimensionality of 
the problem. As mentioned previously, the values of the feature vector 
are either ‘1’ or ‘0’ means whether or not the feature is chosen. A set of 
feature vectors composes the population of candidate solutions which 
are initiated randomly as several harris hawks. The proposed methodol-

ogy seeks to reduce both the number of attributes derived from network 
traffic as well as reduce error rates associated with intrusion detection. 
The basic goal is to use the fewest network traffic attributes possible to 
reduce intrusion detection. Therefore, Eq. (22) shows the cost function 
used in the HHO algorithm to optimize the feature vector.

Cost-IDS = 𝛼 ×𝐸𝑟𝑟+ 𝛽 × 𝑓𝑟

𝐹 𝑟
(22)

The Cost-IDS is the value associated with each Harris hawk during 
the optimization process. The aim is to find a solution with minimum 
Cost-IDS value. 𝐸𝑟𝑟 is the error rate of intrusion detection. 𝑓𝑟 is the cho-

sen feature and 𝐹𝑟 is the set of all features. By applying the Hybrid Har-

mony Optimization and Multi-Layer Perceptron (HHO-MLP) approach 
to feature vectors, we can efficiently identify an optimal feature vec-

tor with minimum features while still maintaining an acceptable error 
rate for intrusion detection systems. These streamline feature selection 
while decreasing false alarm rates. This process further strengthens their 
performance and is an invaluable asset when applied correctly. The 
reduced features set is used then to train the MLP. Furthermore, the 
HHO-MLP can be used to enhance the weights and biases to minimize 
the intrusion error rate.

Eq. (23) demonstrates the set of biases and weights that a solution 
vector represents.

𝑆(𝑖) = {𝑤1,𝑤2, ..,𝑤𝑚, 𝑏1, 𝑏2, 𝑏3, .., 𝑏𝑘} (23)

Eq. (23) shows the set of weights {𝑤1, 𝑤2, 𝑤3, ...., 𝑤𝑒𝑚} and the set of 
biases

{𝑏1, 𝑏2, 𝑏3, ..., 𝑏𝑘} of the MLP coded as Harris Hawk or a solution in 
the swarm of HHO. In the HHO-MLP, the set of solutions that consist 
of weights and biases composes the population or the swarm of the 
HHO algorithm. These candidate solutions are initiated randomly in 
the search space. Eq. (24) shows the HHO swarm.

𝑆 = {𝑆(1), 𝑆(2), 𝑆(3), ...., 𝑆(𝑛)} (24)

𝑆 is the population or swarm of Harris hawks and 𝑛 is the population 
size. Furthermore, 𝑆 represents the possible MLPs. Each solution or 
MLP inside the population needs to be evaluated to determine its good-

ness. Eq. (25) shows the fitness function which represents the intrusion 
detection error rate.

𝐸𝑟𝑟 = 1
𝑛
(

𝑛∑
𝑖=1

(�̂�𝑖 −𝐸𝑖)2) (25)

where 𝐸𝑖 and �̂�𝑖 are the actual and the detected classes of the 𝑖𝑡ℎ net-

work traffic respectively. The next step is to update the weights and 
biases in each vector of the HHO population. The update mechanism is 
6

applied in each iteration to select the optimal weights and biases and 
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minimize the intrusion detection error by MLP. In Algorithm 2, The al-

gorithm’s pseudo-code for the HHO-MLP is displayed.

Algorithm 2 HHO-MLP pseudo-code.

Inputs: The swarm size 𝑁 and the number of all cycles 𝑇
Coding: Each harris hawk population: 𝑆1(𝑖) = {𝑤1,𝑤2, ..,𝑤𝑚, 𝑏1 , 𝑏2, 𝑏3 , .., 𝑏𝑘}
Outputs: The position of prey and its fitness value

Initialize the random swarm 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖(𝑖 = 1, 2, … , 𝑁)
while (the number of cycles is less than T) do

MLP training with any weight and bias of solutions

Compute the fitness values of solutions using the following equation

𝑒𝑟𝑟𝑜𝑟 = 1
𝑛
(
∑𝑛

𝑖=1(�̂�𝑖 −𝐸𝑖)2)
Set 𝑆𝑝𝑟𝑒𝑦 as the position of prey. (The best weights and biases vector)

for (each (𝑆𝑖)) do

Update 𝐸0 and 𝐽 ⊳ E0=2random()-1, J=2(1-random())
Update the 𝐸𝑛𝑒𝑟𝑔𝑦 using:

𝐸𝑛𝑒𝑟𝑔𝑦 = 2𝐸𝑛𝑒𝑟𝑔𝑦0(1 − 𝑖𝑡𝑒𝑟

T
)

if (𝐸𝑛𝑒𝑟𝑔𝑦 ≥ 1) then

Update the solution position according to the following equation:

𝑆(𝑖𝑡𝑒𝑟 + 1) =

⎧⎪⎪⎨⎪⎪⎩
𝑆𝑟𝑎𝑛𝑑𝑜𝑚(𝑖𝑡𝑒𝑟) − 𝑟1𝑆𝑟𝑎𝑛𝑑𝑜𝑚(𝑖𝑡𝑒𝑟) − 2𝑟2𝑆(𝑖𝑡𝑒𝑟)
, 𝑞 ≥ 0.5
𝑆𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) −𝑆𝑚(𝑖𝑡𝑒𝑟) − 𝑟3(𝐿𝑜𝐵𝑜+ 𝑟4(𝑈𝑝𝐵𝑜−𝐿𝑜𝐵𝑜)) ,

, 𝑞 < 0.5

.

if (𝐸 < 1) then

if (𝑟 ≥0.5 and 𝐸 ≥ 0.5 ) then

Update the hawk position using

𝑆(𝑖𝑡𝑒𝑟 + 1) =Δ𝑆(𝑖𝑡𝑒𝑟) −𝐸𝐽𝑆_𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) −𝑆(𝑖𝑡𝑒𝑟)
else if (𝑟 ≥0.5 and 𝐸 < 0.5 ) then

Update the hawk position using

𝑆(𝑖𝑡𝑒𝑟 + 1) = 𝑆𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) −𝐸Δ𝑆(𝑖𝑡𝑒𝑟)
else if (𝑟 <0.5 and 𝐸 ≥ 0.5 ) then

Update the hawk position using:

𝑆(𝑖𝑡𝑒𝑟 + 1) =
{

𝑌 𝑖𝑓𝐹 (𝑌 ) < 𝐹 (𝑆(𝑖𝑡𝑒𝑟))
𝑍 𝑖𝑓𝐹 (𝑍) < 𝐹 (𝑆(𝑖𝑡𝑒𝑟))

where 𝑌 and 𝑍 are obtained using:

𝑌 = 𝑆𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) −𝐸𝐽𝑆(𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) −𝑆(𝑖𝑡𝑒𝑟)
The LeFl is applied as in Eq. (8) 𝑍 = 𝑌 +𝑆𝑖𝑧𝑒 ×𝐿𝑒𝐹 𝑙(𝐷𝑖𝑚)

else if (𝑟 <0.5 and 𝐸 < 0.5 ) then

Update the hawk position using:

𝑆(𝑖𝑡𝑒𝑟 + 1) =
{

𝑌 𝑖𝑓𝐹 (𝑌 ) < 𝐹 (𝑆(𝑖𝑡𝑒𝑟))
𝑍 𝑖𝑓𝐹 (𝑍) < 𝐹 (𝑆(𝑖𝑡𝑒𝑟))

.

𝑌 = 𝑆𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) −𝐸𝐽𝑆𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) −𝑆𝑚(𝑖𝑡𝑒𝑟)
𝑍 = 𝑌 +𝑆𝑖𝑧𝑒 ×𝐿𝑒𝐹 𝑙(𝐷𝑖𝑚)

Return 𝑆𝑝𝑟𝑒𝑦 with best weights and biases.

MLP training using the best weights and biases vector (𝑆𝑝𝑟𝑒𝑦)

5. The experiment and results

5.1. Description of the network dataset

The HHO-MLP method is evaluated using the KDD dataset. It is a 
collection of network traffic from a single host and every other node 
in the network. The KDD dataset is comprised of 42 features (34 nu-

merical and 8 non-numerical), and the IDS is evaluated using a specific 
portion of its occurrences. [35]. This is because it compromises normal 
and suspicious traffic which makes it promising for evaluating intru-

sion detection. Furthermore, it doesn’t limit network traffic in real-time 
and it compromises four types of intrusions: U2R, R2L, DOS, and Prob. 
The KDDCUP99 training dataset distribution is done as in the following 
(#instances, ratio): Normal (97277, 19.69%), DOS (391458, 79.24%), 
Probe (4107,0.83%), R2L (1126, 0.23%), U2L(52, 0.01%), so that the 
total (494,019, 100%). Regarding the UNSW-NB15 dataset, it simulates 
nine different types of attacks. The attacks include DOS, ShellCode, 
Worms, Fuzzers, Backdoors, Exploits, Analysis, Generic, and Reconnais-

sance.

Implementation of the proposed HHO-MLP is using the EvoloPy-NN 
open-source python framework.1 It consists of a set of hybrid evolution-

ary algorithms integrated with ANN. The HHO has a population of 10 
1 https://github .com /7ossam81 /EvoloPy -NN.

https://github.com/7ossam81/EvoloPy-NN
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Fig. 3. Inverse relationship between the Harris Hawks swarm size and the in-

trusion detection error rate in a network.

and has gone through 30 iterations. The neural network has 2 and 5 
hidden layers and neurons, respectively.

5.2. IDS security evaluation measures

The accuracy, sensitivity, and specificity [9] measures are used to 
evaluate the proposed HHO-MLP approach to detect network intru-

sions. These are shown in Eq. (26) to Eq. (27). True Positive intrusion 
detection (TP-ID), False Positive intrusion detection (FP-ID), True Nega-

tive intrusion detection (TN-ID), and False Negative intrusion detection 
(FN-ID) are needed for these calculations. As shown by the equations 
Eq. (29) and Eq. (30), other metrics used include mean average-error-in-

dex and squared-error when distinguishing legitimate from anomalous 
traffic detection errors are employed. Eq. (26) shows the accuracy of 
the intrusion detection system.

𝐼𝐷-𝑎𝑐𝑐 = 𝑇𝑃 -𝐼𝐷 + 𝑇𝑁-𝐼𝐷

𝑇𝑃 -𝐼𝐷 + 𝑇𝑁-𝐼𝐷 + 𝑇𝑃 -𝐼𝐷 + 𝐹𝑁-𝐼𝐷
(26)

Eq. (27) shows the specificity of the intrusion detection system.

𝐼𝐷-𝑠𝑝𝑒𝑐 = 𝑇𝑁-𝐼𝐷

𝑇𝑁-𝐼𝐷 + 𝐹𝑃 -𝐼𝐷
(27)

Eq. (28) shows the sensitivity of the intrusion detection system.

𝐼𝐷-𝑠𝑒𝑛𝑠 = 𝑇𝑃 -𝐼𝐷

𝑇𝑃 -𝐼𝐷 + 𝐹𝑁-𝐼𝐷
(28)

Eq. (29) shows the average-error-index of the intrusion detection sys-

tem.

𝐼𝐷-𝑚𝑠𝑒 = 1
𝑛
(

𝑛∑
𝑖=1

(�̂�𝑖 −𝐸𝑖)2) (29)

Eq. (30) shows the squared-error of the intrusion detection system.

𝐼𝐷-𝑟𝑚𝑠𝑒 =

√√√√1
𝑛
(

𝑛∑
𝑖=1

(�̂�𝑖 −𝐸𝑖)2) (30)

5.3. Discussion and limitations

Fig. 3 shows the results of different experiments when 30 iterations 
and initial swarm sizes of 5, 10, 15, 20, and 30 are considered. The re-

sults prove the effect of swarm size on reducing the network IDS error 
rate. As it is clearly shown that the MSE decreases dramatically from 
0.205 to 0.086. The error rate decreases in ascending order relative to 
the swarm size. This means that the minimum error rate is achieved 
for the largest swarm size. In addition, regardless of the starting swarm 
size, the increased iteration count helps the MLP converge to the best 
weights and biases, which in turn lowers the error rate.
7

Fig. 4 shows the values of Intro-detect-accuracy, Intro-detect-sensitivity, 
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Table 1

Comparison between HHO-MLP and other hybrid evolution-

ary algorithms with MLP over the KDD dataset.

IDS name ID-acc ID-sens ID-spec ID-time (second)

HHO-MLP 99.13 96.10 97.29 0.2

BOA-MLP 93.82 93.29 93.54 0.4

GOA-MLP 95.41 93.17 89.25 0.3

BWO-MLP 94.66 94.26 94.33 0.8

RF 94.23 93.92 94.19 1.2

XGBoost 95.15 94.82 94.88 1.5

Table 2

Comparison between HHO-MLP and other hybrid evolution-

ary algorithms with MLP over the UNSW dataset.

IDS name ID-acc ID-sens ID-spec ID-time (second)

HHO-MLP 99.23 98.34 98.45 0.1

BOA-MLP 97.83 97.44 97.58 0.3

GOA-MLP 98.88 98.09 98.14 0.2

BWO-MLP 98.19 98.07 98.12 0.7

RF 97.82 97.59 97.63 0.9

XGBoost 98.33 97.66 98.08 1.2

and Intro-detect-specificity of SVM, PSO-C4.5-IDS, PSO-SVM, HHO-

MLP, MLP [36].

Notice that in this comparison we try to study the efficiency of the 
new model against other hybrid methods in which other evolution-

ary algorithms are integrated with the MLP algorithm. Furthermore, 
it is compared with other learning algorithms implemented without 
hybridization with evolutionary algorithms. Comparative analysis indi-

cates that the Hybrid HHO-MLP outshone other methods when assessed 
using selected evaluation metrics. HHO-MLP showed superior perfor-

mance by attaining top scores in accuracy, sensitivity, and specificity 
measurements; specifically, an accuracy rate of 93.17%, sensitivity level 
of 89.25%, and specificity percentage of 95.41% were recorded by this 
approach. It appears that the hybridization of the HHO algorithm with 
MLP enhances the intrusion detection rate. The HHO-MLP achieved 
higher accuracy, sensitivity, and specificity compared with the stan-

dard MLP by 4.77%, 6.89%, and 7.49%, respectively. In Fig. 5, we 
observe a comparative analysis between the suggested Hybrid HHO-

MLP technique and other well-established algorithms, such as Binary 
Particle Swarm Optimization (Bi-PSO), Binary Bat Algorithm incorpo-

rating Levy Flights (Bi-BA-LF), Binary Firefly Algorithm (Bi-FA), and the 
Naive Bayes (NB) classifier [37], [38].

The next experiments conduct comparisons between the proposed HHO-

MLP and other hybrid evolutionary algorithms that are integrated with 
the MLP learning algorithm. They used evolutionary algorithms includ-

ing BOA, GOA, and BOW. Furthermore, RF and XGBoost are considered 
for the validation of the proposed approach. Evaluations of these al-

gorithms were carried out utilizing two widely recognized datasets, 
KDD Cup 1999 and UNSW-NB15, with the primary goal of gauging 
their ability to detect cyber intrusions. This approach provides a com-

prehensive comparison between techniques in terms of their detection 
performance. Tables 1 and 2 show these algorithms. The results show 
that HHO-MLP has achieved the highest accuracy in detecting intru-

sions in networks. Then, the GOA-MLP comes in the next place. XGBoost 
has the third order in terms of accuracy. Furthermore, the proposed 
HHO-MLP has the highest specificity, while GOA-MLP and BWO-MLP 
are in third place.

It is worth this regard to point to the essential criteria of the net-

work IDS which is the intrusion detection speed. An additional benefit 
of the proposed HHO-MLP is that it performs the training process on a 
small part of the network traffic. Then, a feature selection is applied by 
filtering some significant features of the network traffic. This reduced 
the size of the dataset from 42 to 15 feature subsets. Conducting a train-

ing process on a smaller size of features helped to speed up the process 

so implementing the HHO-MLP takes less time than the standard MLP. 
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Fig. 4. Comparison of HHO-MLP against other methods in the literature on the KDD dataset in terms of sensitivity and accuracy.
Fig. 5. Comparison of HHO-MLP against other methods in the literature based 
on accuracy.

The main limitation of the proposed HHO-MLP is that it was not vali-

dated under real network environment to check the robustness of the 
approach and to check its capability to detect unkown types of threats

6. Conclusion

This study presents a novel network-intrusion detector system. The 
Multilayer Perceptron learning algorithm (MLP), combined with the 
Harris Hawks optimization technique (HHO), reduces the network in-

trusion error. This hybrid HHO-MLP system aims to optimize MLP 
parameters during the learning process to reduce network detection er-

rors.

This methodology has been implemented within the EvoloPy-NN 
Python framework and evaluated using KDD and UNSW datasets, with 
its performance measured against several well-established algorithms 
including RF, XGBoost, ANN), BOA, GOA, and BWO. The HHO-MLP 
model showed its superiority across three evaluation metrics by reach-

ing 93.17% accuracy, 95.25% sensitivity, and 95.41% specificity re-

spectively.

Future research endeavors aim to explore multi-objective swarm 
intelligence algorithms combined with FS techniques to optimize clas-

sification methods across various network infrastructures. Furthermore, 
we intend to implement other evolutionary algorithms with deep learn-

ing methodologies to enhance intrusion detection capabilities across 
8

varying networking systems such as internet of things (IoT).
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